Sample records for banana ripening implications

  1. Differential gene expression in ripening banana fruit.

    PubMed Central

    Clendennen, S K; May, G D

    1997-01-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866

  2. Identification of genes differentially expressed during ripening of banana.

    PubMed

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  3. Carbohydrate Analysis: Can We Control the Ripening of Bananas?

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.

    2002-04-01

    We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.

  4. Delayed ripening of banana fruit by salicylic acid.

    PubMed

    Srivastava; Dwivedi

    2000-09-08

    Salicylic acid treatment has been found to delay the ripening of banana fruits (Musa acuminata). Fruit softening, pulp:peel ratio, reducing sugar content, invertase and respiration rate have been found to decrease in salicylic acid treated fruits as compared with control ones. The activities of major cell wall degrading enzymes, viz. cellulase, polygalacturonase and xylanase were found to be decreased in presence of salicylic acid. The major enzymatic antioxidants namely, catalase and peroxidase, were also found to be decreased in presence of salicylic acid during banana fruit ripening.

  5. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  6. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  7. Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality.

    PubMed

    Hu, Wei; Yang, Hai; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Yang; Wu, Chunlai; Wang, Jiashui; Reiter, Russel J; Tan, Dun-Xian; Shi, Haitao; Xu, Biyu; Jin, Zhiqiang

    2017-11-22

    This study aimed to investigate the role of melatonin in postharvest ripening and quality in various banana varieties with contrasting ripening periods. During the postharvest life, endogenous melatonin showed similar performance with ethylene in connection to ripening. In comparison to ethylene, melatonin was more correlated with postharvest banana ripening. Exogenous application of melatonin resulted in a delay of postharvest banana ripening. Moreover, this effect is concentration-dependent, with 200 and 500 μM treatments more effective than the 50 μM treatment. Exogenous melatonin also led to elevated endogenous melatonin content, reduced ethylene production through regulation of the expression of MaACO1 and MaACS1, and delayed sharp changes of quality indices. Taken together, this study highlights that melatonin is an indicator for banana fruit ripening in various varieties, and the repression of ethylene biosynthesis and postharvest ripening by melatonin can be used for biological control of postharvest fruit ripening and quality.

  8. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene.

  9. Simultaneous application of ethylene and 1-MCP affects banana ripening features during storage.

    PubMed

    Botondi, Rinaldo; De Sanctis, Federica; Bartoloni, Serena; Mencarelli, Fabio

    2014-08-01

    In order to avoid the ripening blocking effect of 1-MCP (1-methylcyclopropene) on bananas when applied before ethylene commercial treatment, 1-MCP in combination with 'CD ethylene' (ethylene-cyclodextrin complex) was used in gas formulations: 300 nmol mol(-1) 1-MCP + 1200, 2400 or 4800 nmol mol(-1) ethylene (ETH). Control bananas received 1-MCP alone or 4800 nmol mol(-1) ethylene alone or no treatment. Treatments were done on overseas shipped bananas, at 14 °C, 90% relative humidity (RH), for 16 h; the bananas were stored under the same atmospheric conditions. After 4 or 12 days the bananas were commercially treated with 500 µmol mol(-1) ethylene. A 300 nmol mol(-1) 1-MCP treatment significantly blocked banana ripening in terms of physiological and technological parameters, inhibiting ethylene production and respiration, despite the commercial ethylene treatment. The application of 300 nmol mol(-1) 1-MCP + 1200 or 2400 nmol mol(-1) ethylene delayed ripening but with a regular pattern. A 300 nmol mol(-1) 1-MCP + 4800 nmol mol(-1) ethylene application did not delay ripening as did 4800 nmol mol(-1) ethylene treatment. The development of black spots was closely associated with advanced ripening/senescence of fruits. The combined 300 nmol mol(-1) 1-MCP + 1200 or 2400 nmol mol(-1) ethylene treatment appears to be a promising treatment to extend banana storage, following overseas shipping. © 2014 Society of Chemical Industry.

  10. Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety 'Robusta'.

    PubMed

    Kulkarni, Shyamrao Gururao; Kudachikar, V B; Keshava Prakash, M N

    2011-12-01

    Banana (Musa sp var 'Robusta') fruits harvested at 75-80% maturity were dip treated with different concentrations of ethrel (250-1,000 ppm) solution for 5 min. Ethrel at 500 ppm induced uniform ripening without impairing taste and flavour of banana. Untreated control banana fruits remained shriveled, green and failed to ripen evenly even after 8 days of storage. Fruits treated with 500 ppm of ethrel ripened well in 6 days at 20 ± 1 °C. Changes in total soluble solids, acidity, total sugars and total carotenoids showed increasing trends up to 6 days during ripening whereas fruit shear force values, pulp pH and total chlorophyll in peel showed decreasing trends. Sensory quality of ethrel treated banana fruits (fully ripe) were excellent with respect to external colour, taste, flavour and overall quality.

  11. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit.

    PubMed

    Huang, Jen-Yi; Xu, Fengying; Zhou, Weibiao

    2018-04-24

    With the ability to tailor wavelengths necessary to the photosynthetically active radiation spectrum of plant pigments, light-emitting diodes (LEDs) offer vast possibilities in horticultural lighting. The influence of LED light irradiation on major postharvest features of banana was investigated. Mature green bananas were treated daily with selected blue (464-474 nm), green (515-525 nm) and red (617-627 nm) LED lights for 8 days, and compared with non-illuminated control. The positive effect of LED lighting on the acceleration of ripening in bananas was greatest for blue, followed by red and green. Under the irradiation of LED lights, faster peel de-greening and flesh softening, and increased ethylene production and respiration rate in bananas were observed during storage. Furthermore, the accumulations of ascorbic acid, total phenols, and total sugars in banana fruit were enhanced by LED light exposure. LED light treatment can induce the ripening of bananas and improve their quality and nutrition potential. These findings might provide new chemical-free strategies to shorten the time to ripen banana after harvest by using LED light source. This article is protected by copyright. All rights reserved.

  12. Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas

    USDA-ARS?s Scientific Manuscript database

    Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2 %, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening period...

  13. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security.

    PubMed

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J; Friedman, Haya

    2016-05-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security1[OPEN

    PubMed Central

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J.

    2016-01-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  15. Physiological, molecular and ultrastructural analyses during ripening and over-ripening of banana (Musa spp., AAA group, Cavendish sub-group) fruit suggest characteristics of programmed cell death.

    PubMed

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, C Eduardo; Kelley, Karen

    2018-01-01

    Programmed cell death (PCD) is a part of plant development that has been studied for petal senescence and vegetative tissue but has not been thoroughly investigated for fleshy fruits. The purpose of this research was to examine ripening and over-ripening in banana fruit to determine if there were processes in common to previously described PCD. Loss of cellular integrity (over 40%) and development of senescence related dark spot (SRDS) occurred after day 8 in banana peel. Nuclease and protease activity in the peel increased during ripening starting from day 2, and decreased during over-ripening. The highest activity was for proteases and nucleases with apparent molecular weights of 86 kDa and 27 kDa, respectively. Images of SRDS showed shrinkage of the upper layers of cells, visually suggesting cell death. Decrease of electron dense areas was evident in TEM micrographs of nuclei. This study shows for the first time that ripening and over-ripening of banana peel share physiological and molecular processes previously described in plant PCD. SRDS could represent a morphotype of PCD that characterizes a structural and biochemical failure in the upper layers of the peel, thereafter spreading to lower and adjacent layers of cells. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Effect of microgravity simulation using 3D clinostat on cavendish banana (Musa acuminata AAA Group) ripening process

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny Martha; Esyanti, Rizkita R.; Prapaisie, Adeline; Puspa Kirana, Listya; Latief, Chunaeni; Ginaldi, Ari

    2016-11-01

    The objective of the research was to determine the effect of microgravity simulation by 3D clinostat on Cavendish banana (Musa acuminata AAA group) ripening process. In this study, physical, physiological changes as well as genes expression were analysed. The result showed that in microgravity simulation condition ripening process in banana was delayed and the MaACOl, MaACSl and MaACS5 gene expression were affected.

  17. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening

    PubMed Central

    Jourda, Cyril; Cardi, Céline; Gibert, Olivier; Giraldo Toro, Andrès; Ricci, Julien; Mbéguié-A-Mbéguié, Didier; Yahiaoui, Nabila

    2016-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage. PMID:27994606

  18. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  19. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  20. Expression profiles of a MhCTR1 gene in relation to banana fruit ripening.

    PubMed

    Hu, Huei-Lin; Do, Yi-Yin; Huang, Pung-Ling

    2012-07-01

    The banana (Musa spp.) is a typical climacteric fruit of high economic importance. The development of bananas from maturing to ripening is characterized by increased ethylene production accompanied by a respiration burst. To elucidate the signal transduction pathway involved in the ethylene regulation of banana ripening, a gene homologous to Arabidopsis CTR1 (constitutive triple response 1) was isolated from Musa spp. (Hsien Jin Chiao, AAA group) and designated as MhCTR1. MhCTR1 spans 11.5 kilobases and consists of 15 exons and 14 introns with consensus GT-AG nucleotides situated at their boundaries. MhCTR1 encodes a polypeptide of 805 amino acid residues with a calculated molecular weight of 88.6 kDa. The deduced amino acid sequence of MhCTR1 demonstrates 55%, 56% and 55% homology to AtCTR1, RhCTR1, and LeCTR1, respectively. MhCTR1 is expressed mostly in the mature green pulp and root organs. During fruit development MhCTR1 expression increases just before ethylene production rises. Moreover, MhCTR1 expression was detected mainly in the pulps at ripening stage 3, and correlated with the onset of peel yellowing, while MhCTR1 was constitutively expressed in the peels. MhCTR1 expression could be induced by ethylene treatment (0.01 μL L(-1)), and MhCTR1 expression decreased in both peel and pulp 24 h after treatment. Overall, changes observed in MhCTR1 expression in the pulp closely related to the regulation of the banana ripening process. Copyright © 2012. Published by Elsevier Masson SAS.

  1. Malate synthase gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Williams).

    PubMed

    Pua, Eng-Chong; Chandramouli, Sumana; Han, Ping; Liu, Pei

    2003-01-01

    Malate synthase (MS) is a key enzyme responsible for malic acid synthesis in the glyoxylate cycle, which functions to convert stored lipids to carbohydrates, by catalysing the glyoxylate condensation reaction with acetyl-CoA in the peroxisome. In this study, the cloning of an MS cDNA, designated MaMS-1, from the banana fruit is reported. MaMS-1 was 1801 bp in length encoding a single polypeptide of 556 amino acid residues. Sequence analysis revealed that MaMS-1 possessed the conserved catalytic domain and a putative peroxisomal targeting signal SK(I/L) at the carboxyl terminal. MaMS-1 also shared an extensive sequence homology (79-81.3%) with other plant MS homologues. Southern analysis indicated that MS might be present as multiple members in the banana genome. In Northern analysis, MaMS-1 was expressed specifically in ripening fruit tissue and transcripts were not detected in other organs such as roots, pseudostem, leaves, ovary, male flower, and in fruit at different stages of development. However, the transcript abundance in fruit was affected by stage of ripening, during which transcript was barely detectable at the early stage of ripening (FG and TY), but the level increased markedly in MG and in other fruits at advanced ripening stages. Furthermore, MaMS-1 expression in FG fruit could be stimulated by treatment with 1 microl l(-1) exogenous ethylene, but the stimulatory effect was abolished by the application of an ethylene inhibitor, norbornadiene. Results of this study clearly show that MS expression in banana fruit is temporally regulated during ripening and is ethylene-inducible.

  2. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.

  3. Phosphoglucose isomerase from bananas: partial characterization and relation to main changes in carbohydrate composition during ripening.

    PubMed

    Cordenunsi, B R; Oliveira do Nascimento, J R; Vieira da Mota, R; Lajolo, F M

    2001-10-01

    Some characteristics of phosphoglucose isomerase (PGI, EC 5.3.1.9) from banana were measured during fruit ripening of three banana cultivars. In banana, PGI was present as two dimeric isoenzymes, named PGI1 and PGI2, which had similar native molecular masses but differed in relation to heat stability and isoelectric point. Total PGI activity showed a distinct two-step change during fruit ripening. Before the climacteric period, PGI activity gradually decreased with the starch content, then its activity began to increase with sucrose accumulation. The ratio of PGI1, and PGI2 was constant, indicating that both enzymes would be involved in starch degradation and sucrose synthesis. PGI activity and changes in carbohydrate composition suggests the existence of some control to fit the requirements of the intense carbon flow from starch to sucrose.

  4. Determination of optimum harvest maturity and physico-chemical quality of Rastali banana (Musa AAB Rastali) during fruit ripening.

    PubMed

    Kheng, Tee Yei; Ding, Phebe; Abdul Rahman, Nor Aini

    2012-01-15

    A series of physico-chemical quality (peel and pulp colours, pulp firmness, fruit pH, sugars and acids content, respiration rate and ethylene production) were conducted to study the optimum harvest periods (either week 11 or week 12 after emergence of the first hand) of Rastali banana (Musa AAB Rastali) based on the fruit quality during ripening. Rastali banana fruit exhibited a climacteric rise with the peaks of both CO(2) and ethylene production occurring simultaneously at day 3 after ripening was initiated and declined at day 5 when fruits entered the senescence stage. De-greening was observed in both of the harvesting weeks with peel turned from green to yellow, tissue softening, and fruits became more acidic and sweeter as ripening progressed. Sucrose, fructose and glucose were the main sugars found while malic, citric and succinic acids were the main organic acids found in the fruit. Rastali banana harvested at weeks 11 and 12 can be considered as commercial harvest period when the fruits have developed good organoleptic and quality attributes during ripening. However, Rastali banana fruit at more mature stage of harvest maturity taste slightly sweeter and softer with higher ethylene production which also means the fruits may undergo senescence faster than fruit harvested at week 11. Copyright © 2011 Society of Chemical Industry.

  5. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene

    PubMed Central

    Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L−1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2−), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2’-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway. PMID:28662156

  6. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    PubMed

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  7. Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams).

    PubMed

    Pua, Eng-Chong; Lee, Yi-Chuan

    2003-02-13

    As part of a study to understand the molecular basis of fruit ripening, this study reports the isolation and characterization of a banana cytochrome P450 (P450) cDNA, designated as MAP450-1, which was associated with fruit ripening of banana. MAP450-1 encoded a single polypeptide of 507 amino acid residues that shared an overall identity of 27-45% with that of several plant P450s, among which MAP450-1 was most related phylogenetically to the avocado P450 CYP71A1. The polypeptide that possessed residue domains conserved in all P450s was classified as CYP71N1. Expression of CYP71N1 varied greatly between banana organs. Transcripts were detected only in peel and pulp of the ripening fruit and not in unripe fruit tissues at all developmental stages or other organs (root, leaf, ovary and flower). During ripening, transcripts were barely detectable in pre-climacteric and climacteric fruits but, as ripening progressed, they began to accumulate and reached a maximum in post-climacteric fruits. CYP71N1 expression in pre-climacteric fruit could be upregulated by exogenous application of ethylene (1-5 ppm) and treatment of overripe fruit with exogenous sucrose (50-300 mM) but not glucose downregulated the expression. These results indicate that P450s may not play a role in fruit development and its expression is associated with ripening, which may be regulated, in part, by ethylene and/or sucrose, at the transcript level.

  8. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    PubMed

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. Copyright 2010 Elsevier GmbH. All rights reserved.

  9. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening.

  10. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine).

    PubMed

    Mbéguié-A-Mbéguié, Didier; Hubert, Olivier; Fils-Lycaon, Bernard; Chillet, Marc; Baurens, Franc-Christophe

    2008-06-01

    Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.

  11. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  12. Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-01-01

    Abstract The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  13. Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop

    PubMed Central

    Hubert, Olivier; Mbéguié-A-Mbéguié, Didier

    2012-01-01

    Background and aims Banana finger drop is defined as dislodgement of individual fruits from the hand at the pedicel rupture area. For some banana varieties, this is a major feature of the ripening process, in addition to ethylene production and sugar metabolism. The few studies devoted to assessing the physiological and molecular basis of this process revealed (i) the similarity between this process and softening, (ii) the early onset of related molecular events, between the first and fourth day after ripening induction, and (iii) the putative involvement of ethylene as a regulatory factor. This study was conducted with the aim of identifying, through a candidate gene approach, a quality-related marker that could be used as a tool in breeding programmes. Here we examined the relationship between ripening ethylene biosynthesis (EB) and finger drop in order to gain further insight into the upstream regulatory steps of the banana finger drop process and to identify putative related candidate genes. Methods Postharvest ripening of green banana fruit was induced by acetylene treatment and fruit taken at 1–4 days after ripening induction, and total RNA extracted from the median area [control zone (CZ)] and the pedicel rupture area [drop zone (DZ)] of peel tissue. Then the expression patterns of EB genes (MaACO1, MaACO2, MaACS1, MaACS2, MaACS3 and MaACS4) were comparatively examined in CZ and DZ via real-time quantitative polymerase chain reaction. Principal results Differential expression of EB gene was observed in CZ and DZ during the postharvest period examined in this study. MaACO1, MaACS2 and MaACS1 were more highly induced in DZ than in the control, while a slight induction of the MaACS4 gene was observed. No marked differences between the two zones were observed for the MaACO2 gene. Conclusions The finger drop process enhanced EB gene expression including developmental- and ripening-induced genes (MaACO1), specific ripening-induced genes (MaACS1) and wound

  14. Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop

    PubMed Central

    Mbéguié-A-Mbéguié, D.; Hubert, O.; Baurens, F. C.; Matsumoto, T.; Chillet, M.; Fils-Lycaon, B.; Sidibé-Bocs, S.

    2009-01-01

    Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1–4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates. PMID:19357434

  15. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    PubMed

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-08-27

    The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana

    PubMed Central

    Li, Meiying; Ren, Licheng; Xu, Biyu; Yang, Xiaoliang; Xia, Qiyu; He, Pingping; Xiao, Susheng; Guo, Anping; Hu, Wei; Jin, Zhiqiang

    2016-01-01

    Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana. PMID:27713761

  18. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening. © 2015 Scandinavian Plant Physiology Society.

  19. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    PubMed

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  20. Characterization of an AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening Regulatory System in Banana

    PubMed Central

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N.

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496

  1. Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ~95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development.

  2. Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening

    PubMed Central

    Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  3. Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening.

    PubMed

    Sundaram, Shanthy; Anjum, Shadma; Dwivedi, Priyanka; Rai, Gyanendra Kumar

    2011-08-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel.

  4. Characterization of Musa sp. fruits and plantain banana ripening stages according to their physicochemical attributes.

    PubMed

    Valérie Passo Tsamo, Claudine; Andre, Christelle M; Ritter, Christian; Tomekpe, Kodjo; Ngoh Newilah, Gérard; Rogez, Hervé; Larondelle, Yvan

    2014-08-27

    This study aimed at understanding the contribution of the fruit physicochemical parameters to Musa sp. diversity and plantain ripening stages. A discriminant analysis was first performed on a collection of 35 Musa sp. cultivars, organized in six groups based on the consumption mode (dessert or cooking banana) and the genomic constitution. A principal component analysis reinforced by a logistic regression on plantain cultivars was proposed as an analytical approach to describe the plantain ripening stages. The results of the discriminant analysis showed that edible fraction, peel pH, pulp water content, and pulp total phenolics were among the most contributing attributes for the discrimination of the cultivar groups. With mean values ranging from 65.4 to 247.3 mg of gallic acid equivalents/100 g of fresh weight, the pulp total phenolics strongly differed between interspecific and monospecific cultivars within dessert and nonplantain cooking bananas. The results of the logistic regression revealed that the best models according to fitting parameters involved more than one physicochemical attribute. Interestingly, pulp and peel total phenolic contents contributed in the building up of these models.

  5. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  6. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    PubMed

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  7. The Abundant Class III Chitinase Homolog in Young Developing Banana Fruits Behaves as a Transient Vegetative Storage Protein and Most Probably Serves as an Important Supply of Amino Acids for the Synthesis of Ripening-Associated Proteins1

    PubMed Central

    Peumans, Willy J.; Proost, Paul; Swennen, Rony L.; Van Damme, Els J.M.

    2002-01-01

    Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a β-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas. PMID:12376669

  8. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes

    PubMed Central

    Feng, Bi-hong; Han, Yan-chao; Xiao, Yun-yi; Kuang, Jian-fei; Fan, Zhong-qi; Chen, Jian-ye; Lu, Wang-jin

    2016-01-01

    The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1–MaDof25. Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening. PMID:26889012

  9. The regulation of MADS-box gene expression during ripening of banana and their regulatory interation with ethylene

    USDA-ARS?s Scientific Manuscript database

    MADS-box genes (MaMADS1-6), potential components of the developmental control of ripening have been cloned from Grand Nain banana cultivar. Similarity of these genes to tomato LeRIN is very low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns...

  10. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

    PubMed

    Shan, Wei; Kuang, Jian-fei; Chen, Lei; Xie, Hui; Peng, Huan-huan; Xiao, Yun-yi; Li, Xue-ping; Chen, Wei-xin; He, Quan-guang; Chen, Jian-ye; Lu, Wang-jin

    2012-09-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.

  11. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening

    PubMed Central

    Shan, Wei; Kuang, Jian-fei; Chen, Jian-ye; Lu, Wang-jin

    2012-01-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1–MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1–MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components. PMID:22888129

  12. Influence of fungi associated with bananas on nutritional content during storage.

    PubMed

    Odebode, A C; Sanusi, J

    1996-06-01

    Botryodiplodia theobromae, Rhizopus oryzae, Aspergillus niger, A. flavus and Fusarium equiseti were found to be associated with the ripening of bananas and also caused rot during storage. Bananas stored in baskets with ash fire wood ripened 2-3 days earlier than bananas stored in fibre sacks and under constant light. The infected bananas showed a decrease in the quantity of total soluble sugars, protein, lipid, crude fibre, ash, ascorbic acid and mineral elements when compared with the control fruit. Paper chromatographic studies showed the presence of glucose, sucrose, fructose, maltose and raffinose in healthy control fruit, while only sucrose appeared during storage in bananas infected with B. theobromae. The total soluble sugar and crude protein contents increased during ripening.

  13. Application of Cold Storage for Raja Sere Banana (Musa acuminata colla)

    NASA Astrophysics Data System (ADS)

    Crismas, S. R. S.; Purwanto, Y. A.; Sutrisno

    2018-05-01

    Raja Sere is one of the indigenous banana cultivars in Indonesia. This cultivar has a yellow color when ripen, small size and sweet taste. Traditionally, the growers market this banana cultivar to the market without any treatment to delay the ripening process. Banana fruits are commonly being harvested at the condition of hard green mature. At this condition of hard green mature, banana fruits can be stored for a long-term period. The objective of this study was to examine the effect of cold storage on the quality of raja sere banana that stored at 13°C. Banana fruits cultivar Raja Sere were harvested from local farmer field at the condition of hard green mature (about 14 weeks age after the flower bloom). Fifteen bunches of banana were stored in cold storage with a temperature of 13°C for 0, 3, 6, 9, and 12 days, respectively. For the control, room temperature storage (28°C) was used. At a storage period, samples of banana fruits ripened in the ripening chamber by injecting 100 ppm of ethylene gas at 25°C for 24 hours. The quality parameters namely respiration rate, hardness, total soluble solids (TSS), change in color, and weight loss were measured. For those banana fruits stored at room temperature, the shelf-life of banana was only reached up to 6 days. For those banana fruits stored in cold storage, the condition of banana fruits was reached up to 12 days. After cold storage and ripening, the third day measurement was the optimal time for bananas to be consumed which indicated by the yellow color (lightness value = 68.51, a* = 4.74 and value b* = 62.63), TSS 24.30 °Brix and hardness 0.48 kgf, weight loss about 7.53-16.45% and CO2 respiration rate of 100.37 mLCO2 / kg.hr.

  14. Translating the "Banana Genome" to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening.

    PubMed

    Dash, Prasanta K; Rai, Rhitu

    2016-01-01

    Evolutionary frozen, genetically sterile and globally iconic fruit "Banana" remained untouched by the green revolution and, as of today, researchers face intrinsic impediments for its varietal improvement. Recently, this wonder crop entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution) genotype of Musa acuminata . Its complex genome decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Historically, banana has faced the wrath of pandemic bacterial, fungal, and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small/marginal farmers' and destroyed commercial plantations. Decoding structural genome of this climacteric fruit has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unraveling the process of parthenocarpy, and fruit ripening for better fruit quality. Further, injunction of comparative genomics will usher in integration of information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana.

  15. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric.

    PubMed

    Hubbard, N L; Pharr, D M; Huber, S C

    1990-09-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP.

  16. Comparison of tissue deterioration of ripening banana fruit (Musa spp., AAA group, Cavendish subgroup) under chilling and non-chilling temperatures.

    PubMed

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E

    2018-03-08

    In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Role of Sucrose Phosphate Synthase in Sucrose Biosynthesis in Ripening Bananas and Its Relationship to the Respiratory Climacteric 1

    PubMed Central

    Hubbard, Natalie L.; Pharr, D. Mason; Huber, Steven C.

    1990-01-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO2 respired during ripening was positively correlated with sugar accumulation (R2 = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO2 was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688

  18. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    PubMed Central

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  19. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    PubMed

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance.

  20. Comparative study of the banana pulp browning process of 'Giant Dwarf' and FHIA-23 during fruit ripening based on image analysis and the polyphenol oxidase and peroxidase biochemical properties.

    PubMed

    Escalante-Minakata, Pilar; Ibarra-Junquera, Vrani; Ornelas-Paz, José de Jesús; García-Ibáñez, Victoria; Virgen-Ortíz, José J; González-Potes, Apolinar; Pérez-Martínez, Jaime D; Orozco-Santos, Mario

    2018-01-01

    This work presents a novel method to associate the polyphenol oxidase (PPO) and the peroxidase (POD) activities with the ripening-mediated color changes in banana peel and pulp by computational image analysis. The method was used to follow up the de-greening of peel and browning of homogenized pulp from 'Giant Dwarf' (GD: Musa AAA, subgroup Cavendish) and FHIA-23 (tetraploid hybrid, AAAA) banana cultivars. In both cultivars, the color changes of peel during the ripening process clearly showed four stages, which were used to group the fruit into ripening stages. The PPO and POD were extracted from pulp of fruit at these ripening stages, precipitated, and partially purified by gel filtration chromatography. Moreover, the pulp browning was digitally monitored after homogenization for a span time of up to 120 min. The browning level was higher for GD than FHIA-23 tissues. This fact correlated with an 11.7-fold higher PPO activity in the GD cultivar, as compared with that of FHIA-23. POD activity was 8.1 times higher for GD as compared that that of FHIA-23.

  1. Characterization and expression analysis of a banana gene encoding 1-aminocyclopropane-1-carboxylate oxidase.

    PubMed

    Huang, P L; Do, Y Y; Huang, F C; Thay, T S; Chang, T W

    1997-04-01

    A cDNA encoding the banana 1-aminocyclopropane-1-carboxylate (ACC) oxidase has previously been isolated from a cDNA library that was constructed by extracting poly(A)+ RNA from peels of ripening banana. This cDNA, designated as pMAO2, has 1,199 bp and contains an open reading frame of 318 amino acids. In order to identify ripening-related promoters of the banana ACC oxidase gene, pMAO2 was used as a probe to screen a banana genomic library constructed in the lambda EMBL3 vector. The banana ACC oxidase MAO2 gene has four exons and three introns, with all of the boundaries between these introns and exons sharing a consensus dinucleotide sequence of GT-AG. The expression of MAO2 gene in banana begins after the onset of ripening (stage 2) and continuous into later stages of the ripening process. The accumulation of MAO2 mRNA can be induced by 1 microliter/l exogenous ethylene, and it reached steady state level when 100 microliters/l exogenous ethylene was present.

  2. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  3. Effects of reactive oxygen species on cellular wall disassembly of banana fruit during ripening.

    PubMed

    Cheng, Guiping; Duan, Xuewu; Shi, John; Lu, Wangjin; Luo, Yunbo; Jiang, Weibo; Jiang, Yueming

    2008-07-15

    Fruit softening is generally attributed to cell wall disassembly. Experiments were conducted to investigate effects of various reactive oxygen species (ROS) on in vitro cellular wall disassembly of harvested banana fruit. The alcohol-extracted insoluble residue (AEIR) was obtained from the pulp tissues of banana fruit at various ripening stages and then used to examine the disassembly of cellular wall polysaccharides in the presence of superoxide anion (O2(-)), hydrogen peroxide (H2O2) or hydroxyl radical (OH) and their scavengers. The presence of OH accelerated significantly disassembly of cellular wall polysaccharides in terms of the increase in contents of total sugars released and uronic acid, and the decrease in molecular mass of soluble polysaccharides, using gel permeation chromatography. However, the treatment with H2O2 or O2(-) showed no significant effect on the disassembly of cellular wall polysaccharides. Furthermore, the degradation of the de-esterified AEIR was more susceptible to OH attack than the esterified AEIR. In addition, the effect of OH could be inhibited in the presence of OH scavenger. This study suggests that disassembly of cellular wall polysaccharides could be initiated by OH as the solublisation of the polysaccharides increased, which, in turn, accelerated fruit softening. Copyright © 2008 Elsevier Ltd. All rights reserved.

  4. Changes in resistant starch from two banana cultivars during postharvest storage.

    PubMed

    Wang, Juan; Tang, Xue Juan; Chen, Ping Sheng; Huang, Hui Hua

    2014-08-01

    Banana resistant starch samples were extracted and isolated from two banana cultivars (Musa AAA group, Cavendish subgroup and Musa ABB group, Pisang Awak subgroup) at seven ripening stages during postharvest storage. The structures of the resistant starch samples were analysed by light microscopy, polarising microscopy, scanning electron microscopy, X-ray diffraction, and infrared spectroscopy. Physicochemical properties (e.g., water-holding capacity, solubility, swelling power, transparency, starch-iodine absorption spectrum, and Brabender microviscoamylograph profile) were determined. The results revealed significant differences in microstructure and physicochemical characteristics among the banana resistant starch samples during different ripening stages. The results of this study provide valuable information for the potential applications of banana resistant starches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Translating the “Banana Genome” to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening

    PubMed Central

    Dash, Prasanta K.; Rai, Rhitu

    2016-01-01

    Evolutionary frozen, genetically sterile and globally iconic fruit “Banana” remained untouched by the green revolution and, as of today, researchers face intrinsic impediments for its varietal improvement. Recently, this wonder crop entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution) genotype of Musa acuminata. Its complex genome decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Historically, banana has faced the wrath of pandemic bacterial, fungal, and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small/marginal farmers’ and destroyed commercial plantations. Decoding structural genome of this climacteric fruit has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unraveling the process of parthenocarpy, and fruit ripening for better fruit quality. Further, injunction of comparative genomics will usher in integration of information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana. PMID:27833619

  6. Molecular cloning and characterisation of banana fruit polyphenol oxidase.

    PubMed

    Gooding, P S; Bird, C; Robinson, S P

    2001-09-01

    Polyphenol oxidase (PPO; EC 1.10.3.2) is the enzyme thought to be responsible for browning in banana [Musa cavendishii (AAA group, Cavendish subgroup) cv. Williams] fruit. Banana flesh was high in PPO activity throughout growth and ripening. Peel showed high levels of activity early in development but activity declined until ripening started and then remained constant. PPO activity in fruit was not substantially induced after wounding or treatment with 5-methyl jasmonate. Banana flowers and unexpanded leaf roll had high PPO activities with lower activities observed in mature leaves, roots and stem. Four different PPO cDNA clones were amplified from banana fruit (BPO1, BPO11, BPO34 and BPO35). Full-length cDNA and genomic clones were isolated for the most abundant sequence (BPO1) and the genomic clone was found to contain an 85-bp intron. Introns have not been previously found in PPO genes. Northern analysis revealed the presence of BPO1 mRNA in banana flesh early in development but little BPO1 mRNA was detected at the same stage in banana peel. BPO11 transcript was only detected in very young flesh and there was no detectable expression of BPO34 or BPO35 in developing fruit samples. PPO transcripts were also low throughout ripening in both flesh and peel. BPO1 transcripts were readily detected in flowers, stem, roots and leaf roll samples but were not detected in mature leaves. BPO11 showed a similar pattern of expression to BPO1 in these tissues but transcript levels were much lower. BPO34 and BPO35 mRNAs were only detected at a low level in flowers and roots and BPO34 transcript was detected in mature leaves, the only clone to do so. The results suggest that browning of banana fruit during ripening results from release of pre-existing PPO enzyme, which is synthesised very early in fruit development.

  7. Remote quality monitoring in the banana chain

    PubMed Central

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-01-01

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  8. Remote quality monitoring in the banana chain.

    PubMed

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-06-13

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container.

  9. Activity, cloning, and expression of an isoamylase-type starch-debranching enzyme from banana fruit.

    PubMed

    Bierhals, Jacqueline Dettmann; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana; Oliveira do Nascimento, João Roberto

    2004-12-01

    Unripe bananas have a high content of starch (almost 20%) that is metabolized during fruit ripening with a concomitant synthesis of soluble sugars. Since starch granules are composed of amylose and amylopectin, several enzymes have to be involved in its mobilization during banana ripening, with a necessary participation of one starch-debranching enzyme (DBE) to hydrolyze the alpha-1,6-branches of amylopectin. Banana DBE seems to be an isoamylase-type enzyme, as indicated by substrate specificity and the cloning of a 1575 bp cDNA, similar to the isoamylase sequences from potato, Arabdopsis, and maize. The assays for DBE indicated only minor changes in activity during ripening, and the results of the northern and western blots with antiserum against the recombinant banana isoamylase were in agreement with the steady-state level of activity, since no significant changes in gene expression were observed. The high activity on beta-limit dextrin and the similarity to the potato isoform 3 suggest that during banana ripening the hydrolysis of alpha-1,6-linkage of amylopectin results from the activity of a pre-existing isoamylase-type debranching enzyme in coordination with other amylolitic enzymes. To the best of our knowledge, this is the first evaluation of activity and expression of a DBE from a fruit.

  10. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    PubMed Central

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  11. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  12. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    PubMed Central

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  13. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    PubMed

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption.

  14. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    PubMed

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.

  15. Evaluation of different methods of protein extraction and identification of differentially expressed proteins upon ethylene-induced early-ripening in banana peels.

    PubMed

    Zhang, Li-Li; Feng, Ren-Jun; Zhang, Yin-Dong

    2012-08-15

    Banana peels (Musa spp.) are a good example of a plant tissue where protein extraction is challenging due to the abundance of interfering metabolites. Sample preparation is a critical step in proteomic research and is critical for good results. We sought to evaluate three methods of protein extraction: trichloroacetic acid (TCA)-acetone precipitation, phenol extraction, and TCA precipitation. We found that a modified phenol extraction protocol was the most optimal method. SDS-PAGE and two-dimensional gel electrophoresis (2-DE) demonstrated good protein separation and distinct spots of high quality protein. Approximately 300 and 550 protein spots were detected on 2-DE gels at pH values of 3-10 and 4-7, respectively. Several spots were excised from the 2-DE gels and identified by mass spectrometry. The protein spots identified were found to be involved in glycolysis, the tricarboxylic acid cycle, and the biosynthesis of ethylene. Several of the identified proteins may play important roles in banana ripening. Copyright © 2012 Society of Chemical Industry.

  16. Accumulation of soluble sugars in peel at high temperature leads to stay-green ripe banana fruit.

    PubMed

    Yang, Xiaotang; Pang, Xuequn; Xu, Lanying; Fang, Ruiqiu; Huang, Xuemei; Guan, Peijian; Lu, Wangjin; Zhang, Zhaoqi

    2009-01-01

    Bananas (Musa acuminata, AAA group) fail to develop a yellow peel and stay green when ripening at temperatures >24 degrees C. The identification of the mechanisms leading to the development of stay-green ripe bananas has practical value and is helpful in revealing pathways involved in the regulation of chlorophyll (Chl) degradation. In the present study, the Chl degradation pathway was characterized and the progress of ripening and senescence was assessed in banana peel at 30 degrees C versus 20 degrees C, by monitoring relevant gene expression and ripening and senescence parameters. A marked reduction in the expression levels of the genes for Chl b reductase, SGR (Stay-green protein), and pheophorbide a oxygenase was detected for the fruit ripening at 30 degrees C, when compared with fruit at 20 degrees C, indicating that Chl degradation was repressed at 30 degrees C at various steps along the Chl catabolic pathway. The repressed Chl degradation was not due to delayed ripening and senescence, since the fruit at 30 degrees C displayed faster onset of various ripening and senescence symptoms, suggesting that the stay-green ripe bananas are of similar phenotype to type C stay-green mutants. Faster accumulation of high levels of fructose and glucose in the peel at 30 degrees C prompted investigation of the roles of soluble sugars in Chl degradation. In vitro incubation of detached pieces of banana peel showed that the pieces of peel stayed green when incubated with 150 mM glucose or fructose, but turned completely yellow in the absence of sugars or with 150 mM mannitol, at either 20 degrees C or 30 degrees C. The results suggest that accumulation of sugars in the peel induced by a temperature of 30 degrees C may be a major factor regulating Chl degradation independently of fruit senescence.

  17. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene

    PubMed Central

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J.; Goldschmidt, Eliezer E.; Friedman, Haya

    2010-01-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO2 peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  18. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    PubMed

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  19. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life

    NASA Astrophysics Data System (ADS)

    Pratiwi, Aksarani'Sa; Dwivany, Fenny M.; Larasati, Dwinita; Islamia, Hana Cahya; Martien, Ronny

    2015-09-01

    Chitosan has been widely used as fruit preserver and proven to extend the shelf life of many fruits, such as banana. However, banana producers and many industries in Indonesia still facing storage problems which may lead to mechanical damage of the fruits and ripening acceleration. Therefore, we have designed food storage chamber (FSC) based on bamboo material. Bamboo was selected because of material abundance in Indonesia, economically effective, and not causing an autocatalytic reaction to the ethylene gas produced by the banana. In this research, Cavendish banana that has reached the maturity level of mature green were coated with 1% chitosan and placed inside the FSC. As control treatments, uncoated banana was also placed inside the FSC as well as uncoated banana that were placed at open space. All of the treatments were placed at 25°C temperature and observed for 9 days. Water produced by respiration was reduced by the addition of charcoal inside a fabric pouch. The result showed that treatment using FSC and chitosan can delay ripening process.

  20. Fruit ripening using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    ., Swetha; Chidangil, Santhosh; Karpate, Tanvi; Asundi, Anand

    2017-06-01

    The ripening of fruits is associated with changes, in some cases subtle, in the color of the fruit. Traditionally spectroscopy used to measure these subtle changes and infer the ripeness of fruits. Spectrometers provides high-resolution but only measure a small area of the fruit. That might not be a good indicator of the overall ripeness. In this paper, we propose a compact tunable LED based hyper spectral imaging system that scans through a set of wavelengths and images, the reflectance from the whole fruit. Based on the type of fruit, only specific wavelengths need to be scanned. Following a validation using a Rubik's cube, an example banana going through its ripening cycles is used to demonstrate the system.

  1. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: bananas, avocados, and peaches.

    PubMed

    Pierce, G E; Drago, G K; Ganguly, S; Tucker, T-A M; Hooker, J W; Jones, S; Crow, S A

    2011-09-01

    Despite the use of refrigeration, improved packaging, adsorbents, and ethylene receptor blockers, on average, nearly 40% of all fruits and vegetables harvested in the US are not consumed. Many plant products, especially fruit, continue to ripen after harvesting, and as they do so, become increasingly susceptible to mechanical injury, resulting in increased rot. Other plant products during transportation and storage are susceptible to chill injury (CI). There is a real need for products that can delay ripening or mitigate the effects of CI, yet still permit full ripeness and quality to be achieved. Preliminary results are discussed where catalyst derived from cells of Rhodococcus rhodochrous DAP 96253, grown under conditions that induced high levels of nitrile hydratase, were able to extend the ripening and thus the shelf-life of selected climacteric fruits (banana, avocado, and peach). A catalyst, when placed in proximity to, but not touching, the test fruit delayed the ripening but did not alter the final ripeness of the fruit tested. Organoleptic evaluations conducted with control peaches and with peaches exposed to, but not in contact with, the catalyst showed that the catalyst-treated peaches achieved full, natural levels of ripeness with respect to aroma, flavor, sweetness, and juice content. Furthermore, the results of delayed ripening were achieved at ambient temperatures (without the need for refrigeration).

  2. Effect of gamma radiation on the ripening and levels of bioactive amines in bananas cv. Prata

    NASA Astrophysics Data System (ADS)

    Gloria, Maria Beatriz A.; Adão, Regina C.

    2013-06-01

    Green Prata bananas at the full three-quarter stage were exposed to gamma radiation at doses of 0.0 (control), 1.0, 1.5 and 2.0 kGy and stored at 16±1 °C and 85% relative humidity. Samples were collected periodically and analyzed for peel color, pulp-to-peel ratio and levels of starch, soluble sugars and bioactive amines. Degradation of starch and formation of fructose and glucose followed first- and zero-order kinetics, respectively. Higher irradiation doses caused increased inhibitory effect on starch degradation and glucose formation. However, doses of 1.5 and 2.0 kGy caused browning of the peel, making the fruit unacceptable. Irradiation at 1.0 kGy was the most promising dose: it did not affect peel color, the pulp-to-peel ratio or the levels of the amines spermidine, serotonin and putrescine. However, it slowed down starch degradation and the formation and accumulation of fructose and glucose, delaying the ripening of the fruit for 7 days.

  3. Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate).

    PubMed

    Deng, Zilong; Jung, Jooyeoun; Simonsen, John; Zhao, Yanyun

    2017-10-01

    Cellulose nanomaterials (CNs)-incorporated emulsion coatings with improved moisture barrier, wettability and surface adhesion onto fruit surfaces were developed for controlling postharvest physiological activity and enhancing storability of bananas during ambient storage. Cellulose nanofiber (CNF)-based emulsion coating (CNFC: 0.3% CNF/1% oleic acid/1% sucrose ester fatty acid (w/w wet base)) had low contact angle, high spread coefficient onto banana surfaces, and lower surface tension (ST, 25.4mN/m) than the critical ST (35.2mN/m) of banana peels, and exhibited good wettability onto banana surfaces. CNFC coating delayed the ethylene biosynthesis pathway and reduced ethylene and CO 2 production, thus delaying fruit ripening. As the result, CNFC coating minimized chlorophyll degradation, weight loss, and firmness of bananas while ensuring the properly fruit ripening during 10d of ambient storage. This study demonstrated the effectiveness of CNF based emulsion coatings for improving the storability of postharvest bananas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses.

    PubMed

    Miao, Hongxia; Sun, Peiguang; Liu, Qing; Liu, Juhua; Xu, Biyu; Jin, Zhiqiang

    2017-07-25

    ADP-glucose pyrophosphorylase (AGPase) is the first rate-limiting enzyme in starch biosynthesis and plays crucial roles in multiple biological processes. Despite its importance, AGPase is poorly studied in starchy fruit crop banana ( Musa acuminata L.). In this study, eight MaAGPase genes have been identified genome-wide in M. acuminata , which could be clustered into the large (APL) and small (APS) subunits. Comprehensive transcriptomic analysis revealed temporal and spatial expression variations of MaAPLs and MaAPSs and their differential responses to abiotic/biotic stresses in two banana genotypes, Fen Jiao (FJ) and BaXi Jiao (BX). MaAPS1 showed generally high expression at various developmental and ripening stages and in response to abiotic/biotic stresses in both genotypes. MaAPL-3 and -2a were specifically induced by abiotic stresses including cold, salt, and drought, as well as by fungal infection in FJ, but not in BX. The presence of hormone-related and stress-relevant cis -acting elements in the promoters of MaAGPase genes suggests that MaAGPases may play an important role in multiple biological processes. Taken together, this study provides new insights into the complex transcriptional regulation of AGPases , underlying their key roles in promoting starch biosynthesis and enhancing stress tolerance in banana.

  5. The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses

    PubMed Central

    Miao, Hongxia; Sun, Peiguang; Liu, Qing; Liu, Juhua; Xu, Biyu; Jin, Zhiqiang

    2017-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate-limiting enzyme in starch biosynthesis and plays crucial roles in multiple biological processes. Despite its importance, AGPase is poorly studied in starchy fruit crop banana (Musa acuminata L.). In this study, eight MaAGPase genes have been identified genome-wide in M. acuminata, which could be clustered into the large (APL) and small (APS) subunits. Comprehensive transcriptomic analysis revealed temporal and spatial expression variations of MaAPLs and MaAPSs and their differential responses to abiotic/biotic stresses in two banana genotypes, Fen Jiao (FJ) and BaXi Jiao (BX). MaAPS1 showed generally high expression at various developmental and ripening stages and in response to abiotic/biotic stresses in both genotypes. MaAPL-3 and -2a were specifically induced by abiotic stresses including cold, salt, and drought, as well as by fungal infection in FJ, but not in BX. The presence of hormone-related and stress-relevant cis-acting elements in the promoters of MaAGPase genes suggests that MaAGPases may play an important role in multiple biological processes. Taken together, this study provides new insights into the complex transcriptional regulation of AGPases, underlying their key roles in promoting starch biosynthesis and enhancing stress tolerance in banana. PMID:28757545

  6. Influence of ripeness of banana on the blood glucose and insulin response in type 2 diabetic subjects.

    PubMed

    Hermansen, K; Rasmussen, O; Gregersen, S; Larsen, S

    1992-10-01

    Banana is a popular and tasty fruit which often is restricted in the diet prescribed for diabetic patients owing to the high content of free sugars. However, in under-ripe bananas starch constitutes 80-90% of the carbohydrate content, which as the banana ripens changes into free sugars. To study the effect of ripening on the postprandial blood glucose and insulin responses to banana, 10 type 2 (non-insulin-dependent) diabetic subjects consumed three meals, consisting of 120 g under-ripe banana, 120 g over-ripe banana or 40 g white bread on separate days. The mean postprandial blood glucose response area to white bread (181 +/- 45 mmol l-1 x 240 min) was significantly higher compared with under-ripe banana (62 +/- 17 mmol l-1 x 240 min: p < 0.01) and over-ripe banana (106 +/- 17 mmol l-1 x 240 min: p < 0.01). Glycaemic indices of the under-ripe and over-ripe bananas differed (43 +/- 10 and 74 +/- 9: p < 0.01). The mean insulin response areas to the three meals were similar: 6618 +/- 1398 pmol l-1 x 240 min (white bread), 7464 +/- 1800 pmol l-1 x 240 min (under-ripe banana) and 8292 +/- 2406 pmol l-1 x 240 min (over-ripe banana). The low glycaemic response of under-ripe compared with over-ripe bananas may be ascribed to the high starch content, which has previously been found to be only hydrolysed slowly by alfa-amylase in humans.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue

    USDA-ARS?s Scientific Manuscript database

    Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programs of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and...

  8. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana

    PubMed Central

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-01-01

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were ‘catalytic activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%), ‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis. PMID:27681726

  9. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard

    2009-01-01

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  10. Ripening influences banana and plantain peels composition and energy content.

    PubMed

    Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel

    2011-01-01

    Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre.

  11. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  12. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    PubMed

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  13. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments

    PubMed Central

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L−1 of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox–oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  14. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit.

    PubMed

    Chen, Jiao; Chen, Jian-Ye; Wang, Jun-Ning; Kuang, Jian-Fei; Shan, Wei; Lu, Wang-Jin

    2012-04-01

    CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties.

    PubMed

    Happi Emaga, Thomas; Robert, Christelle; Ronkart, Sébastien N; Wathelet, Bernard; Paquot, Michel

    2008-07-01

    The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins.

  16. Changes in Sugars, Enzymic Activities and Acid Phosphatase Isoenzyme Profiles of Bananas Ripened in Air or Stored in 2.5% O2 with and without Ethylene 1

    PubMed Central

    Kanellis, Angelos K.; Solomos, Theophanes; Mattoo, Autar K.

    1989-01-01

    This study investigates the effect of 2.5% O2, both alone and in combination with ethylene, on respiration, sugar accumulation and activities of pectin methylesterase and acid phosphatase during ripening of bananas (Musa paradisiaca sapientum). In addition, the changes in the phosphatase isoenzyme profiles are also analyzed. Low oxygen diminished respiration and slowed down the accumulation of sugars and development of the yellow color. Furthermore, low O2 prevented the rise in acid phosphatase activities and this suppression was not reversed by the inclusion of 100 microliters per liter ethylene in 2.5% O2 atmosphere. Gel electrophoresis of both the soluble and particulate cell-free fractions under nondenaturing conditions revealed the presence of 8 and 9 isoenzymes in the soluble and particulate fractions, respectively. Low O2 suppressed the appearance of all isoenzymes, and the addition of 500 microliters per liter ethylene to the low oxygen atmosphere did not reverse this effect. Similarly, the decline in pectin methylesterase that was observed in air-ripened fruits was prevented by 2.5% O2 alone and in combination with 500 microliters per liter ethylene. Images Figure 5 Figure 6 Figure 7 PMID:16666745

  17. Quarantine security of bananas at harvest maturity against Mediterranean and Oriental fruit flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Armstrong, J W

    2001-02-01

    Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.

  18. Fructose 2,6-bisphosphate and the climacteric in bananas.

    PubMed

    Ball, K L; ap Rees, T

    1988-11-15

    This work was done to test the view that there is a marked rise in the content of fructose 2,6-bisphosphate during the climacteric of the fruit of banana (Musa cavendishii Lamb ex. Paxton). Bananas were ripened in the dark in a continuous stream of air in the absence of exogenous ethylene. CO2 production and the contents of fructose 2,6-bisphosphate and sucrose were monitored over a 15-day period. A range of extraction procedures for fructose 2,6-bisphosphate were compared. Recovery of fructose 2,6-bisphosphate added to samples of unripe fruit varied from poor to unmeasurable. Recoveries from samples of ripe fruit were high. It is argued that this differential recovery of fructose 2,6-bisphosphate undermines claims that the amount of this compound increases at the climacteric. When recoveries are taken into account, our data suggest that there is no major change in fructose 2,6-bisphosphate content during the onset of the climacteric in bananas.

  19. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    PubMed Central

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  20. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv 'Embul'.

    PubMed

    Abayasekara, C L; Adikaram, N K B; Wanigasekara, U W N P; Bandara, B M R

    2013-03-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar 'Embul' (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. (1)H and (13)C NMR spectral data of one purified phytoalexin compared closely with 4'-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana.

  1. Total soluble solids from banana: evaluation and optimization of extraction parameters.

    PubMed

    Carvalho, Giovani B M; Silva, Daniel P; Santos, Júlio C; Izário Filho, Hélcio J; Vicente, António A; Teixeira, José A; Felipe, Maria das Graças A; Almeida e Silva, João B

    2009-05-01

    Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e.g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.

  2. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv ‘Embul’

    PubMed Central

    Abayasekara, C. L.; Adikaram, N. K. B.; Wanigasekara, U. W. N. P.; Bandara, B. M. R.

    2013-01-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar ‘Embul’ (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. 1H and 13C NMR spectral data of one purified phytoalexin compared closely with 4′-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana. PMID:25288931

  3. Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.

    PubMed

    Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D

    2014-06-01

    Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Visually suboptimal bananas: How ripeness affects consumer expectation and perception.

    PubMed

    Symmank, Claudia; Zahn, Susann; Rohm, Harald

    2018-01-01

    One reason for the significant amount of food that is wasted in developed countries is that consumers often expect visually suboptimal food as being less palatable. Using bananas as example, the objective of this study was to determine how appearance affects consumer overall liking, the rating of sensory attributes, purchase intention, and the intended use of bananas. The ripeness degree (RD) of the samples was adjusted to RD 5 (control) and RD 7 (more ripened, visually suboptimal). After preliminary experiments, a total of 233 participants were asked to judge their satisfaction with the intensity of sensory attributes that referred to flavor, taste, and texture using just-about-right scales. Subjects who received peeled samples were asked after tasting, whereas subjects who received unpeeled bananas judged expectation and, after peeling and tasting, perception. Expected overall liking and purchase intention were significantly lower for RD 7 bananas. Purchase intention was still significantly different between RD 5 and RD 7 after tasting, whereas no difference in overall liking was observed. Significant differences between RD 5 and RD 7 were observed when asking participants for their intended use of the bananas. Concerning the sensory attributes, penalty analysis revealed that only the firmness of the RD 7 bananas was still not just-about-right after tasting. The importance that consumers attribute to the shelf-life of food had a pronounced impact on purchase intention of bananas with different ripeness degree. In the case of suboptimal bananas, the results demonstrate a positive relationship between the sensory perception and overall liking and purchase intention. Convincing consumers that visually suboptimal food is still tasty is of high relevance for recommending different ways of communication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.

    PubMed

    Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S

    1997-07-01

    A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening.

  6. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions.

    PubMed

    Chen, Lei; Zhong, Hai-ying; Kuang, Jian-fei; Li, Jian-guo; Lu, Wang-jin; Chen, Jian-ye

    2011-08-01

    Reverse transcription quantitative real-time PCR (RT-qPCR) is a sensitive technique for quantifying gene expression, but its success depends on the stability of the reference gene(s) used for data normalization. Only a few studies on validation of reference genes have been conducted in fruit trees and none in banana yet. In the present work, 20 candidate reference genes were selected, and their expression stability in 144 banana samples were evaluated and analyzed using two algorithms, geNorm and NormFinder. The samples consisted of eight sample sets collected under different experimental conditions, including various tissues, developmental stages, postharvest ripening, stresses (chilling, high temperature, and pathogen), and hormone treatments. Our results showed that different suitable reference gene(s) or combination of reference genes for normalization should be selected depending on the experimental conditions. The RPS2 and UBQ2 genes were validated as the most suitable reference genes across all tested samples. More importantly, our data further showed that the widely used reference genes, ACT and GAPDH, were not the most suitable reference genes in many banana sample sets. In addition, the expression of MaEBF1, a gene of interest that plays an important role in regulating fruit ripening, under different experimental conditions was used to further confirm the validated reference genes. Taken together, our results provide guidelines for reference gene(s) selection under different experimental conditions and a foundation for more accurate and widespread use of RT-qPCR in banana.

  7. Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA "Berangan" during fruit ripening.

    PubMed

    S Mohamed, Nuratika Tamimi; Ding, Phebe; Kadir, Jugah; M Ghazali, Hasanah

    2017-09-01

    Crown rot caused by fungal pathogen is the most prevalent postharvest disease in banana fruit that results significant economic losses during transportation, storage, and ripening period. Antifungal effects of ultraviolet C (UVC) irradiation at doses varied from 0.01 to 0.30 kJ m -2 were investigated in controlling postharvest crown rot disease, maintenance of fruit quality, and the effects on antioxidant capacity of Berangan banana fruit during ripening days at 25 ± 2°C and 85% RH. Fruits irradiated with 0.30 kJ m -2 exhibited the highest (i.e., 62.51%) reduction in disease severity. However, the application of UVC at all doses caused significant browning damages on fruit peel except the dose of 0.01 kJ m -2 . This dose synergistically reduced 46.25% development of postharvest crown and did not give adverse effects on respiration rate, ethylene production, weight loss, firmness, color changes, soluble solids concentration, titratable acidity, and pH in banana as compared to the other treatments and control. Meanwhile, the dose also enhanced a significant higher level of total phenolic content, FRAP, and DPPH values than in control fruits indicating the beneficial impact of UVC in fruit nutritional quality. The results of scanning electron micrographs confirmed that UVC irradiation retarded the losses of wall compartments, thereby maintained the cell wall integrity in the crown tissue of banana fruit. The results suggest that using 0.01 kJ m -2 UVC irradiation dose as postharvest physical treatment, the crown rot disease has potential to be controlled effectively together with maintaining quality and antioxidant of banana fruit.

  8. Effect of 1-Methylcyclopropene coupled with controlled atmosphere storage on the ripening and quality of ‘Cavendish’ bananas

    USDA-ARS?s Scientific Manuscript database

    Fresh-fruit banana is well known to have a short-life after harvest. A short pre-pilot study was carried out to test the effect of atmospheric condition exposure to 1-MCP on the quality, limited to cosmetic and peel appearance, and shelf life of fresh-fruit bananas. Low level of O2 (3 kPa) and high ...

  9. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. © 2014 CIRAD New Phytologist © 2014 New Phytologist Trust.

  10. Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security

    USDA-ARS?s Scientific Manuscript database

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, ...

  11. Fruit ripening mutants reveal cell metabolism and redox state during ripening.

    PubMed

    Kumar, Vinay; Irfan, Mohammad; Ghosh, Sumit; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-03-01

    Ripening which leads to fruit senescence is an inimitable process characterized by vivid changes in color, texture, flavor, and aroma of the fleshy fruits. Our understanding of the mechanisms underlying the regulation of fruit ripening and senescence is far from complete. Molecular and biochemical studies on tomato (Solanum lycopersicum) ripening mutants such as ripening inhibitor (rin), nonripening (nor), and never ripe (Nr) have been useful in our understanding of fruit development and ripening. The MADS-box transcription factor RIN, a global regulator of fruit ripening, is vital for the broad aspects of ripening, in both ethylene-dependent and independent manners. Here, we have carried out microarray analysis to study the expression profiles of tomato genes during ripening of wild type and rin mutant fruits. Analysis of the differentially expressed genes revealed the role of RIN in regulation of several molecular and biochemical events during fruit ripening including fruit specialized metabolism and cellular redox state. The role of reactive oxygen species (ROS) during fruit ripening and senescence was further examined by determining the changes in ROS level during ripening of wild type and mutant fruits and by analyzing expression profiles of the genes involved in maintaining cellular redox state. Taken together, our findings suggest an important role of ROS during fruit ripening and senescence, and therefore, modulation of ROS level during ripening could be useful in achieving desired fruit quality.

  12. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana

    PubMed Central

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  13. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    PubMed

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-08-19

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.

  14. Chlorophyll Breakdown in Senescent Banana Leaves: Catabolism Reprogrammed for Biosynthesis of Persistent Blue Fluorescent Tetrapyrroles

    PubMed Central

    Vergeiner, Clemens; Banala, Srinivas; Kräutler, Bernhard

    2013-01-01

    Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll-derived bilin-type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll catabolites identified were hypermodified fluorescent chlorophyll catabolites (hmFCCs). Surprisingly, nonfluorescent chlorophyll catabolites (NCCs) were not found, the often abundant and apparently typical final chlorophyll breakdown products in senescent leaves. As a rule, FCCs exist only fleetingly, and they isomerize rapidly to NCCs in the senescent plant cell. Amazingly, in the leaves of banana plants, persistent hmFCCs were identified that accounted for about 80 % of the chlorophyll broken down, and yellow leaves of M. acuminata display a strong blue luminescence. The structures of eight hmFCCs from banana leaves were analyzed by spectroscopic means. The massive accumulation of the hmFCCs in banana leaves, and their functional group characteristics, indicate a chlorophyll breakdown path, the downstream transformations of which are entirely reprogrammed towards the generation of persistent and blue fluorescent FCCs. As expressed earlier in related studies, the present findings call for attention, as to still elusive biological roles of these linear tetrapyrroles. PMID:23946204

  15. In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-01-01

    Musa ssp. is among the world's leading fruit crops. Although a strong interest on banana biochemistry exists in the scientific community, focused on metabolite composition, proteins have been scarcely investigated even if they play an important role in food allergy and stability, are a source of biologically active peptides, and can provide information about nutritional aspects of this fruit. In this work we have employed the combinatorial peptide ligand libraries after different types of protein extractions, for searching the very low-abundance proteins in banana. The use of advanced MS techniques and Musa ssp. mRNAs database in combination with the Uniprot_viridiplantae database allowed us to identify 1131 proteins. Among this huge amount of proteins we found several already known allergens such as Mus a 1, pectinesterase, superoxide dismutase, and potentially new allergens. Additionally several enzymes involved in degradation of starch granules and strictly correlated to ripening stage were identified. This is the first in-depth exploration of the banana fruit proteome and one of the largest descriptions of the proteome of any vegetable system. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Radiation preservation of foods of plant origin. III. Tropical fruits: bananas, mangoes, and papayas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.

    1986-01-01

    The current status of research on the use of ionizing radiation for shelf life improvement and disinfestation of fresh tropical fruits like bananas, mangoes, and papayas are reviewed. The aspects covered are influence of maturity and physiological state of the fruits on delayed ripening and tolerance to radiation; varietal responses; changes in chemical constituents, volatiles, respiration, and ethylene evolution; biochemical mechanisms of delayed ripening and browning of irradiated fruits; and organoleptic quality. The efficacy of the combination of hot water dip and radiation treatments for control of postharvest fungal diseases are considered. The immediate potential of radiation as a quarantinemore » treatment, in place of the currently used chemical fumigants, for disinfestation of fruit flies and mango seed weevil are discussed. Future prospects for irradiation of tropical fruits are discussed in the light of experience gained from studies conducted in different countries.146 references.« less

  17. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  18. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants.

  19. Adsorption studies of volatile organic compounds on germanene nanotube emitted from banana fruit for quality assessment - A density functional application.

    PubMed

    Srimathi, U; Nagarajan, V; Chandiramouli, R

    2018-06-01

    We report the density functional application of adsorption behavior of volatile organic compounds (VOCs) emitted from the different ripening stages of banana fruit on germanene nanotube (GNT). Initially, the geometric structural stability of GNT is ascertained and the tunable electronic properties lead to the application of GNT as a base material in order to know the adsorption features of VOCs. We further explored the adsorption behavior of VOCs on to GNT through charge transfer, adsorption energy and band gap variation. The energy band structure and density of states (DOS) spectrum shows a noteworthy variation upon adsorption of different VOCs on to the GNT. Also, the electron density variation is noticed upon adsorption of VOCs emitted from the banana on to the GNT base material. Besides, the difference in the energy band gap of GNT upon emission of VOCs from banana leads to the use of GNT as a chemiresistor to assess fruit freshness with adsorption studies. Moreover, we suggest the use of GNT to discriminate the fruit freshness of banana through the adsorption process of VOCs on to GNT. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Generalized banana-drift transport

    NASA Astrophysics Data System (ADS)

    Mynick, H. E.

    1985-10-01

    The theory of tokamak ripple transport in the banana-drift and ripple-plateau is extended in a number of directions. The theory is valid for small values of the toroidal periodicity number n of the perturbation, as well as for the moderate values (n approx. 10 - 20) previously assumed. It is shown that low-n perturbations can produce much greater transport than the larger-n perturbations usually studied. In addition, the ripple perturbation is allowed arbitrary values of poloidal mode number m and frequency omega, making it applicable to the transport induced by MHD modes. Bounce averaging is avoided, so the theory includes the contributions to transport from all harmonics of the bounce frequency, providing a continuous description of the transition from the banana drift to the ripple-plateau regime. The implications of the theory for toroidal rotation in tokamaks are considered.

  1. Relative susceptibility of Musa genotypes to banana bunchy top disease in Cameroon and implication for disease management

    USDA-ARS?s Scientific Manuscript database

    Banana bunchy top disease (BBTD) is a serious threat to banana and plantain (Musa spp.) production. BBTD is caused by the Banana bunchy top virus (BBTV, genus Babuvirus) which is spread through infected plant propagules and banana aphid, Pentalonia nigronervosa. A high level of resistance to BBTD in...

  2. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages

    PubMed Central

    Tranbarger, Timothy J.; Fooyontphanich, Kim; Roongsattham, Peerapat; Pizot, Maxime; Collin, Myriam; Jantasuriyarat, Chatchawan; Suraninpong, Potjamarn; Tragoonrung, Somvong; Dussert, Stéphane; Verdeil, Jean-Luc; Morcillo, Fabienne

    2017-01-01

    The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are

  3. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    PubMed

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  4. Let's Go Bananas.

    ERIC Educational Resources Information Center

    Brown, Helen; And Others

    1995-01-01

    Presents a hands-on primary science unit of activities designed to teach students concepts about bananas. Real bananas are used as students investigate and use the process skills of observation, measurement, and communication. Using bananas as a theme, science, mathematics, social studies, music, and writing are integrated into the curriculum of…

  5. Metabolite Profiling Reveals Developmental Inequalities in Pinot Noir Berry Tissues Late in Ripening.

    PubMed

    Vondras, Amanda M; Commisso, Mauro; Guzzo, Flavia; Deluc, Laurent G

    2017-01-01

    Uneven ripening in Vitis vinifera is increasingly recognized as a phenomenon of interest, with substantial implications for fruit and wine composition and quality. This study sought to determine whether variation late in ripening (∼Modified Eichhorn-Lorenz stage 39) was associated with developmental differences that were observable as fruits within a cluster initiated ripening (véraison). Four developmentally distinct ripening classes of berries were tagged at cluster véraison, sampled at three times late in ripening, and subjected to untargeted HPLC-MS to measure variation in amino acids, sugars, organic acids, and phenolic metabolites in skin, pulp, and seed tissues separately. Variability was described using predominantly two strategies. In the first, multivariate analysis (Orthogonal Projections to Latent Structures-Discriminant Analysis, OPLS-DA) was used to determine whether fruits were still distinguishable per their developmental position at véraison and to identify which metabolites accounted for these distinctions. The same technique was used to assess changes in each tissue over time. In a second strategy and for each annotated metabolite, the variance across the ripening classes at each time point was measured to show whether intra-cluster variance (ICV) was growing, shrinking, or constant over the period observed. Indeed, berries could be segregated by OPLS-DA late in ripening based on their developmental position at véraison, though the four ripening classes were aggregated into two larger ripening groups. Further, not all tissues were dynamic over the period examined. Although pulp tissues could be segregated by time sampled, this was not true for seed and only moderately so for skin. Ripening group differences in seed and skin, rather than the time fruit was sampled, were better able to define berries. Metabolites also experienced significant reductions in ICV between single pairs of time points, but never across the entire experiment

  6. Ripening Behavior of Wild Tomato Species 1

    PubMed Central

    Grumet, Rebecca; Fobes, Jon F.; Herner, Robert C.

    1981-01-01

    Nine wild tomato species were surveyed for variability in ripening characteristics. External signs of ripening, age of fruit at ripening, and ethylene production patterns were compared. Ethylene production was monitored using an ethylene-free air stream system and gas chromatography. Based on these ripening characteristics, the fruits fell into three general categories: those that change color when they ripen, green-fruited species that abscise prior to ripening, and green-fruited species that ripen on the vine. The fruits that change color, Lycopersicon esculentum var. cerasiforme, Lycopersicon pimpinellifolium and Lycopersicon cheesmanii, exhibited a peak of ethylene production similar to the cultivated tomato; there were differences, however, in the timing and magnitude of the ethylene production. Peak levels of ethylene production are correlated with age at maturity. For the two species that abscise prior to ripening, Lycopersicon chilense and Lycopersicon peruvianum, ability to produce ethylene varied with stage of maturity. The two species differed from each other in time of endogenous ethylene production relative to abscission, suggesting differences in the control mechanisms regulating their ripening. For two of the green-fruited species that ripen on the vine, Lycopersicon chmielewskii and Lycopersicon parviflorum, ethylene production was correlated to fruit softening. For Lycopersicon hirsutum and Solanum pennellii, however, ethylene production was not correlated with external ripening changes, making questionable the role of ethylene as the ripening hormone in these fruits. PMID:16662121

  7. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil.

    PubMed

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-08-25

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars-Musa acuminata cv. "Grande Naine" (AAA) and Musa acuminata × balbisiana Colla cv. "Bluggoe" (ABB)-when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of "Bluggoe" that had been fed on by the weevils.

  8. Ecuadorian Banana Farms Should Consider Organic Banana with Low Price Risks in Their Land-Use Portfolios

    PubMed Central

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios. PMID:25799506

  9. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios.

    PubMed

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios.

  10. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  11. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil

    PubMed Central

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-01-01

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of “Bluggoe” that had been fed on by the weevils. PMID:27571112

  12. Ripening of Semiconductor Nanoplatelets.

    PubMed

    Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J

    2017-11-08

    Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.

  13. A Guide to Lexical Acquisition in the JANUS System.

    DTIC Science & Technology

    1986-02-01

    compounds and not verbs with case prepositions: Don’t tread on the banana peel It*- been trodden on already Go ahead, stare at me I like to be stared...agent is italicized. MIDDLE EFFECTIVE The bananas ripened The ,un ripened the bananas The bomb exploded The police exploded the bomb Mary believed the...verb is carried out. Bob rhythmically chopped the celery Christian peeled the tomatoes skillfully Slowly, Nancy melted the butter in the pan 4.2.4.4

  14. Temperature and relative humidity influence the ripening descriptors of Camembert-type cheeses throughout ripening.

    PubMed

    Leclercq-Perlat, M-N; Sicard, M; Perrot, N; Trelea, I C; Picque, D; Corrieu, G

    2015-02-01

    Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Natural Radioactivity in Bananas

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-01

    The content of 40K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, São Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  16. In vitro digestibility of banana starch cookies.

    PubMed

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  17. Natural Radioactivity in Bananas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.

    The content of {sup 40}K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, Sao Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed bymore » the plant, which is mainly concentrated in the banana peel.« less

  18. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits.

    PubMed

    Chen, Jiao; Liu, Xixia; Li, Fenfang; Li, Yixing; Yuan, Debao

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits.

  19. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits

    PubMed Central

    Li, Fenfang; Li, Yixing

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits. PMID:29253879

  20. Micropropagation of banana.

    PubMed

    Kaçar, Yıldız Aka; Faber, Ben

    2012-01-01

    Banana (Musa spp. AAA) is propagated vegetatively and can be rapidly and efficiently propagated by micropropagation. Conventional micropropagation techniques, however, may be too costly for commercial purposes. Our laboratory has found that depending on the combination of culture vessel and gelling agent more economic methods can be chosen for successfully micropropagating banana.

  1. Irradiated Chinese Rugao ham: Changes in volatile N-nitrosamine, biogenic amine and residual nitrite during ripening and post-ripening.

    PubMed

    Wei, Fashan; Xu, Xinglian; Zhou, Guanghong; Zhao, Gaiming; Li, Chunbao; Zhang, Yingjun; Chen, Lingzhen; Qi, Jun

    2009-03-01

    N-nitrosamines, biogenic amines and residual nitrite are harmful substances and often present in cured meat. The effects of gamma-irradiation (γ-irradiation) on these chemicals in dry-cured Chinese Rugao ham during ripening and post-ripening were investigated. Rugao hams were irradiated at a dose of 5kGy before ripening and were then ripened in an aging loft. Although γ-irradiation degraded tyramine, putrescine and spermine, on the other hand, it promoted the formation of spermidine, phenylethylamine, cadaverine and tryptamine. Residual nitrite was significantly reduced by γ-irradiation. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosopyrrolidine (NPYR) were found in Chinese Rugao ham during ripening and post-ripening but could be degraded with γ-irradiation. The results suggest that γ-irradiation may be a potential decontamination measure for certain chemical compounds found in dry-cured meat.

  2. Going Bananas over The Rainforest

    ERIC Educational Resources Information Center

    Curriculum Review, 2005

    2005-01-01

    With a market of nearly $5 billion a year, the banana is the world's most popular fruit, and the most important food crop after rice, wheat, and maize. Banana businesses are economic pillars in many tropical countries, providing millions of jobs for rural residents. But, for much of its history, the banana industry was notorious for destructive…

  3. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries

    PubMed Central

    Gouthu, Satyanarayana; O’Neil, Shawn T.; Di, Yanming; Ansarolia, Mitra; Megraw, Molly; Deluc, Laurent G.

    2014-01-01

    Transcriptional studies in relation to fruit ripening generally aim to identify the transcriptional states associated with physiological ripening stages and the transcriptional changes between stages within the ripening programme. In non-climacteric fruits such as grape, all ripening-related genes involved in this programme have not been identified, mainly due to the lack of mutants for comparative transcriptomic studies. A feature in grape cluster ripening (Vitis vinifera cv. Pinot noir), where all berries do not initiate the ripening at the same time, was exploited to study their shifted ripening programmes in parallel. Berries that showed marked ripening state differences in a véraison-stage cluster (ripening onset) ultimately reached similar ripeness states toward maturity, indicating the flexibility of the ripening programme. The expression variance between these véraison-stage berry classes, where 11% of the genes were found to be differentially expressed, was reduced significantly toward maturity, resulting in the synchronization of their transcriptional states. Defined quantitative expression changes (transcriptional distances) not only existed between the véraison transitional stages, but also between the véraison to maturity stages, regardless of the berry class. It was observed that lagging berries complete their transcriptional programme in a shorter time through altered gene expressions and ripening-related hormone dynamics, and enhance the rate of physiological ripening progression. Finally, the reduction in expression variance of genes can identify new genes directly associated with ripening and also assess the relevance of gene activity to the phase of the ripening programme. PMID:25135520

  4. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    PubMed Central

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  5. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone.

    PubMed

    Tinzaara, W; Gold, C S; Dicke, M; van Huis, A

    2005-07-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey.

  6. Combating the Sigatoka disease complex on banana

    USDA-ARS?s Scientific Manuscript database

    Banana is the fourth most important staple food in the world behind rice, wheat and maize, with more than 100 million tons produced annually. Although the majority of bananas produced are consumed locally, banana export is a multi-billion dollar business. Bananas are grown in more than 100 countri...

  7. Breakdown of Chlorophyll in Higher Plants—Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death

    PubMed Central

    2016-01-01

    Abstract Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin‐type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical‐biological efforts have led to the elucidation of the key Chl‐breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated. PMID:26919572

  8. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  9. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

    PubMed Central

    2013-01-01

    Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated

  10. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  11. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato1[OPEN

    PubMed Central

    Gomes, Bruna Lima; Mila, Isabelle; Frasse, Pierre; Zouine, Mohamed; Bouzayen, Mondher

    2016-01-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  12. Comprehensive ripeness-index for prediction of ripening level in mangoes by multivariate modelling of ripening behaviour

    NASA Astrophysics Data System (ADS)

    Eyarkai Nambi, Vijayaram; Thangavel, Kuladaisamy; Manickavasagan, Annamalai; Shahir, Sultan

    2017-01-01

    Prediction of ripeness level in climacteric fruits is essential for post-harvest handling. An index capable of predicting ripening level with minimum inputs would be highly beneficial to the handlers, processors and researchers in fruit industry. A study was conducted with Indian mango cultivars to develop a ripeness index and associated model. Changes in physicochemical, colour and textural properties were measured throughout the ripening period and the period was classified into five stages (unripe, early ripe, partially ripe, ripe and over ripe). Multivariate regression techniques like partial least square regression, principal component regression and multi linear regression were compared and evaluated for its prediction. Multi linear regression model with 12 parameters was found more suitable in ripening prediction. Scientific variable reduction method was adopted to simplify the developed model. Better prediction was achieved with either 2 or 3 variables (total soluble solids, colour and acidity). Cross validation was done to increase the robustness and it was found that proposed ripening index was more effective in prediction of ripening stages. Three-variable model would be suitable for commercial applications where reasonable accuracies are sufficient. However, 12-variable model can be used to obtain more precise results in research and development applications.

  13. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    PubMed

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  14. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit

    PubMed Central

    Lang, Zhaobo; Wang, Yihai; Tang, Kai; Tang, Dengguo; Datsenka, Tatsiana; Cheng, Jingfei; Zhang, Yijing; Handa, Avtar K.

    2017-01-01

    DNA methylation is a conserved epigenetic mark important for genome integrity, development, and environmental responses in plants and mammals. Active DNA demethylation in plants is initiated by a family of 5-mC DNA glycosylases/lyases (i.e., DNA demethylases). Recent reports suggested a role of active DNA demethylation in fruit ripening in tomato. In this study, we generated loss-of-function mutant alleles of a tomato gene, SlDML2, which is a close homolog of the Arabidopsis DNA demethylase gene ROS1. In the fruits of the tomato mutants, increased DNA methylation was found in thousands of genes. These genes included not only hundreds of ripening-induced genes but also many ripening-repressed genes. Our results show that SlDML2 is critical for tomato fruit ripening and suggest that active DNA demethylation is required for both the activation of ripening-induced genes and the inhibition of ripening-repressed genes. PMID:28507144

  15. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  16. Banana orchard inventory using IRS LISS sensors

    NASA Astrophysics Data System (ADS)

    Nishant, Nilay; Upadhayay, Gargi; Vyas, S. P.; Manjunath, K. R.

    2016-04-01

    Banana is one of the major crops of India with increasing export potential. It is important to estimate the production and acreage of the crop. Thus, the present study was carried out to evolve a suitable methodology for estimating banana acreage. Area estimation methodology was devised around the fact that unlike other crops, the time of plantation of banana is different for different farmers as per their local practices or conditions. Thus in order to capture the peak signatures, biowindow of 6 months was considered, its NDVI pattern studied and the optimum two months were considered when banana could be distinguished from other competing crops. The final area of banana for the particular growing cycle was computed by integrating the areas of these two months using LISS III data with spatial resolution of 23m. Estimated banana acreage in the three districts were 11857Ha, 15202ha and 11373Ha for Bharuch, Anand and Vadodara respectively with corresponding accuracy of 91.8%, 90% and 88.16%. Study further compared the use of LISS IV data of 5.8m spatial resolution for estimation of banana using object based as well as per-pixel classification and the results were compared with statistical reports for both the approaches. In the current paper we depict the various methodologies to accurately estimate the banana acreage.

  17. Statistical differentiation of bananas according to their mineral composition.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Martín, Jacinto Darias; Díaz Romero, Carlos

    2002-10-09

    The concentrations of Na, K, Ca, Mg, Fe, Cu, Zn, and Mn were determined in banana cultivars Gran enana and Pequeña enana cultivated in Tenerife and in cv. Gran enana bananas from Ecuador. The mineral concentrations in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the mineral concentrations except in the case of Fe. Variations according to cultivation method (greenhouse and outdoors) and farming style (conventional and organic) in the mineral concentrations in the bananas from Tenerife were observed. The mineral concentrations in the internal part of the banana were higher than those in the middle and external parts. Representation of double log correlations K-Mg and Zn-Mn tended to separate the banana samples according to origin. Applying factor and cluster analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife, and therefore, these are useful tools for differentiating the origin of bananas.

  18. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    PubMed

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    PubMed

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (p<0.05), while potassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Banana Gold: Problem or Solution?

    ERIC Educational Resources Information Center

    Joseph, Garnet

    1992-01-01

    Since 1955, the British banana industry has dominated the lives of the Caribs and other peoples in Dominica. Banana growing supplants other economic activities, including local food production; toxic chemicals and fertilizers pollute the land; community is dwindling; suicide is common; and child labor diminishes school attendance. (SV)

  1. Ion exchanger from chemically modified banana leaves.

    PubMed

    El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H

    2013-07-25

    Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Artificial ripening of sugar pine seeds

    Treesearch

    Stanley L. Krugman

    1966-01-01

    Immature sugar pine seeds were collected and ripened either in the cone or in moist vermiculate. Seeds collected before the second week of August could not be artificially ripened and the causes for these failures were investigated. After the second week of August, immature seeds could be brought to maturity. A practical method for a commercial operation should be...

  3. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa.

    PubMed

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries.

  4. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa

    PubMed Central

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Background Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. Objective To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. Data Sources The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. Analysis We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. Results On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. Conclusion The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries. PMID:26414379

  5. Textural properties of mango cultivars during ripening.

    PubMed

    Jha, Shyam Narayan; Jaiswal, Pranita; Narsaiah, Kairam; Kaur, Poonam Preet; Singh, Ashish Kumar; Kumar, Ramesh

    2013-12-01

    Firmness and toughness of fruit, peel and pulp of seven different mango cultivars were studied over a ripening period of ten days to investigate the effects of harvesting stages (early, mid and late) on fruit quality. Parameters were measured at equatorial region of fruits using TA-Hdi Texture Analyzer. The textural characteristics showed a rapid decline in their behaviour until mangoes got ripened and thereafter, the decline became almost constant indicating the completion of ripening. However, the rate of decline in textural properties was found to be cultivar specific. In general, the changes in textural attributes were found to be significantly influenced by ripening period and stage of harvesting, but firmness attributes (peel, fruit and pulp) of early harvested mangoes did not differ significantly from mid harvested mangoes, while peel, fruit and pulp firmness of late harvested mangoes were found to be significantly lower than early and mid harvested mangoes.

  6. The ambiguous ripening nature of the fig (Ficus carica L.) fruit: a gene-expression study of potential ripening regulators and ethylene-related genes

    PubMed Central

    Freiman, Zohar E.; Rosianskey, Yogev; Dasmohapatra, Rajeswari; Kamara, Itzhak; Flaishman, Moshe A.

    2015-01-01

    The traditional definition of climacteric and non-climacteric fruits has been put into question. A significant example of this paradox is the climacteric fig fruit. Surprisingly, ripening-related ethylene production increases following pre- or postharvest 1-methylcyclopropene (1-MCP) application in an unexpected auto-inhibitory manner. In this study, ethylene production and the expression of potential ripening-regulator, ethylene-synthesis, and signal-transduction genes are characterized in figs ripening on the tree and following preharvest 1-MCP application. Fig ripening-related gene expression was similar to that in tomato and apple during ripening on the tree, but only in the fig inflorescence–drupelet section. Because the pattern in the receptacle is different for most of the genes, the fig drupelets developed inside the syconium are proposed to function as parthenocarpic true fruit, regulating ripening processes for the whole accessory fruit. Transcription of a potential ripening regulator, FcMADS8, increased during ripening on the tree and was inhibited following 1-MCP treatment. Expression patterns of the ethylene-synthesis genes FcACS2, FcACS4, and FcACO3 could be related to the auto-inhibition reaction of ethylene production in 1-MCP-treated fruit. Along with FcMADS8 suppression, gene expression analysis revealed upregulation of FcEBF1, and downregulation of FcEIL3 and several FcERFs by 1-MCP treatment. This corresponded with the high storability of the treated fruit. One FcERF was overexpressed in the 1-MCP-treated fruit, and did not share the increasing pattern of most FcERFs in the tree-ripened fig. This demonstrates the potential of this downstream ethylene-signal-transduction component as an ethylene-synthesis regulator, responsible for the non-climacteric auto-inhibition of ethylene production in fig. PMID:25956879

  7. Cryopreservation of banana's cv Grand Naine in vitro rhizomes.

    PubMed

    Londe, Luciana C N; Vendrame, Wagner A; Sanaei, Massy; Oliveira, Alexandre B DE

    2018-01-01

    The preservation of banana genetic material is usually performed through seedlings. However, most banana cultivars do not produce seed and are propagated vegetatively. Therefore, cryopreservation is a feasible technique that allows the preservation of banana genotypes indefinitely. For the success of cryopreservation protocols, the selection of cryoprotectants and pre-freezing techniques are important factor. Therefore, the objective of this study was to verify the effects of different cryoprotectants with and without 1% phloroglucinol and pre-cooling periods on the development of a protocol for cryopreservation of in vitro rhizomes ofMusa accuminata(AAA) cv Grand Naine banana. The addition of 1% phloroglucinol to the cryoprotective solutions, such as PVS2 enhanced recovery of cryopreserved banana rhizomes. In addition, pre-cooling of explants in ice for 3 hours in PVS2 + 1% of phloroglucinol allowed efficient cryopreservation of banana rhizomes, followed by successful recovery and regeneration of in vitro shoots of banana cv Grand Naine.

  8. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses.

    PubMed

    Guenther, Susanne; Loessner, Martin J

    2011-03-01

    Soft-ripened cheeses belong to the type of food most often contaminated with Listeria monocytogenes, and they have been implicated in several outbreaks of listeriosis. Bacteriophages represent an attractive way to combat foodborne pathogens without affecting other properties of the food. We used the broad host range, virulent Listeria phage A511 for control of L. monocytogenes during the production and ripening phases of both types of soft-ripened cheeses, white mold (Camembert-type) cheese, as well as washed-rind cheese with a red-smear surface (Limburger-type). The surfaces of young, unripened cheese were inoculated with 10(1)-10(3) cfu/cm(2)L. monocytogenes strains Scott A (serovar 4b) or CNL 10(3)/2005 (serovar 1/2a). Phage was applied at defined time points thereafter, in single or repeated treatments, at 3 × 10(8) or 1 × 10(9) pfu/cm(2). With Scott A (10(3) cfu/cm(2)) and a single dose of A511 (3 × 10(8) pfu/cm(2)) on camembert-type cheese, viable counts dropped 2.5 logs at the end of the 21 day ripening period. Repeated phage application did not further inhibit the bacteria, whereas a single higher dose (1 × 10(9) pfu/cm(2)) was found to be more effective. On red-smear cheese ripened for 22 days, Listeria counts were down by more than 3 logs. Repeated application of A511 further delayed re-growth of Listeria, but did not affect bacterial counts after 22 days. With lower initial Listeria contamination (10(1)-10(2) cfu/cm(2)), viable counts dropped below the limit of detection, corresponding to more than 6 logs reduction compared to the control. Our data clearly demonstrate the potential of bacteriophage for biocontrol of L. monocytogenes in soft cheese.

  9. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    PubMed

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  10. Lipolytic and oxidative changes in 'Chorizo' during ripening.

    PubMed

    Fernández, M C; Rodríguez, J M

    1991-01-01

    Changes in fats during the ripening of 'chorizo'-a Spanish dry sausage- elaborated by traditional and industrial processes have been studied. Total free fatty acids (FFA), carbonyls, volatile fatty acids (acetic acid), TBA number and individual FFA were determined. A marked increase of total free fatty acids was observed, although an increase of rancidity was not detected. Except in one of the batches studied in which a rise in carbonyls was reported, these compounds remained unchanged during the ripening in the rest of the batches analysed. No significant change occurred in the proportions of different free fatty acids during ripening in both types of 'chorizo'. There was a marked increase of acetic acid during the first days of ripening followed by a slow fall in the ultimate stages. Copyright © 1990. Published by Elsevier Ltd.

  11. 21 CFR 133.182 - Soft ripened cheeses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Soft ripened cheeses. 133.182 Section 133.182 Food... HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.182 Soft ripened cheeses. (a) The cheeses for which definitions and standards of...

  12. Pasta with unripe banana flour: physical, texture, and preference study.

    PubMed

    Agama-Acevedo, Edith; Islas-Hernandez, José J; Osorio-Díaz, Perla; Rendón-Villalobos, Rodolfo; Utrilla-Coello, Rubí G; Angulo, Ofelia; Bello-Pérez, Luis A

    2009-08-01

    Banana is a starchy food that contains a high proportion of undigestible compounds such as resistant starch and nonstarch polysaccharides. Products with low glycemic response such as pasta are considered favorable to health. The objective of this study was to use unripe banana flour to make spaghetti with low-carbohydrates digestibility and evaluate its physical and texture characteristics, as well as consumer preference. Formulations with 100% durum wheat semolina (control) and formulations with 3 semolina: banana flour ratios (85: 15, 70: 30, and 55: 45) were prepared for spaghetti processing. The use of banana flour decreased the lightness and diameter of cooked spaghetti, and increased the water absorption of the product. Hardness and elasticity of spaghetti were not affected by banana flour, but adhesiveness and chewiness increased as the banana flour level in the blend rose. Spaghettis prepared in the laboratory (control and those with banana flour) did not show differences in preference by consumers. In general, the preference of spaghettis with different banana flour level was similar. The addition of a source of undigestible carbohydrates (banana flour) to spaghetti is possible without affecting the consumer preference.

  13. Physical and biochemical properties of green banana flour.

    PubMed

    Suntharalingam, S; Ravindran, G

    1993-01-01

    Banana flour prepared from two cooking banana varieties, namely 'Alukehel' and 'Monthan', were evaluated for their physical and biochemical characteristics. The yields of flour averaged 31.3% for 'Alukehel' and 25.5% for 'Monthan'. The pH of the flour ranged from 5.4 to 5.7. The bulk density and particle size distribution were also measured. The average chemical composition (% dry matter) of the flours were as follows: crude protein, 3.2; crude fat, 1.3; ash, 3.7; neutral detergent fiber, 8.9; acid detergent fiber, 3.8; cellulose, 3.1; lignin, 1.0 and hemicellulose, 5.0. Carbohydrate composition indicated the flour to contain 2.8% soluble sugars, 70.0% starch and 12.0% non-starch polysaccharides. Potassium is the predominant mineral in banana flour. Fresh green banana is a good source of vitamin C, but almost 65% is lost during the preparation of flour. Oxalate content (1.1-1.6%) of banana flour is probably nutritionally insignificant. The overall results are suggestive of the potential of green bananas as a source of flour.

  14. Laser photoacoustic system for characterization of climacteric and nonclimacteric fruits in postharvest

    NASA Astrophysics Data System (ADS)

    Giubileo, G.; Lai, A.; Piccinelli, D.; Puiu, A.

    2005-06-01

    The emission of ethylene from climacteric fruit banana (Musa x paradisiaca L.) and non climacteric fruits lemon (Citrus limon Burm. F.) at different stages of ripening (from a few days after setting to full maturity stage) by the Laser Photoacoustic Spectroscopy System, developed in ENEA Frascati, was measured. A high ethylene production rate from mature banana fruit was found, as expected for climacteric fruit. Significant differences between ethylene emitted by the lemon after setting stage and by the young fruit were observed. Also ethylene emission from lemon fruits at different ripening stages (from light green to turning and full ripe) was detected. Depending on the ripening stage, differences in ethylene emission rates were found, although the emissions were low as expected for non-climacteric fruit.

  15. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers (SR...

  16. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers (SR...

  17. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers (SR...

  18. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers (SR...

  19. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers (SR...

  20. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  1. I Have a Banana Tree in My Classroom

    ERIC Educational Resources Information Center

    Williams, Patricia A.

    2007-01-01

    When the banana is growing, the broadest part of the banana is located at the bottom, while the tapered end points upward. It appears upside down, however, from the banana tree's perspective, it is growing right side up. The author observes that the students in her classroom labeled by society as "at risk," are also, in a sense, "upside down."…

  2. Regulation of Wheat Seed Dormancy by After-Ripening Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling

    PubMed Central

    Kanno, Yuri; Jordan, Mark C.; Kamiya, Yuji; Seo, Mitsunori; Ayele, Belay T.

    2013-01-01

    Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals. PMID:23437172

  3. Dissipation and residue of azoxystrobin in banana under field condition.

    PubMed

    Wang, Siwei; Sun, Haibin; Liu, Yanping

    2013-09-01

    A method was developed for determining azoxystrobin in banana and cultivation soil using gas chromatography. The dissipation and residue of azoxystrobin in banana fields at GAP conditions were investigated. The average recoveries ranged from 80.3 to 96.0 % with relative standard deviations of 2.9 to 7.2 % at three different spiking levels for each matrix. The results indicated that the half-life of azoxystrobin in bananas and soil ranged from 7.5 to 13.5 days in Guangdong and from 8.7 to 12.7 days in Fujian. The dissipation rates of azoxystrobin in banana and soil were almost the same. Terminal residues in banana and banana flesh (0.01 mg/kg) were all below the maximum residue limit (2 mg/kg by Codex Alimentarius Commission and China). The results demonstrated that the safety of using azoxystrobin at the recommended agriculture dosage to protect bananas from diseases.

  4. Crystallization mechanisms in cream during ripening and initial butter churning.

    PubMed

    Buldo, Patrizia; Kirkensgaard, Jacob J K; Wiking, Lars

    2013-01-01

    The temperature treatment of cream is the time-consuming step in butter production. A better understanding of the mechanisms leading to partial coalescence, such as fat crystallization during ripening and churning of the cream, will contribute to optimization of the production process. In this study, ripening and churning of cream were performed in a rheometer cell and the mechanisms of cream crystallization during churning of the cream, including the effect of ripening time, were investigated to understand how churning time and partial coalescence are affected. Crystallization mechanisms were studied as function of time by differential scanning calorimetry, nuclear magnetic resonance and by X-ray scattering. Microstructure formation was investigated by small deformation rheology and static light scattering. The study demonstrated that viscosity measurements can be used to detect phase inversion of the emulsion during churning of the cream in a rheometer cell. Longer ripening time (e.g., 5h vs. 0 h) resulted in larger butter grains (91 vs. 52 µm), higher viscosity (5.3 vs. 1.3 Pa · s), and solid fat content (41 vs. 13%). Both ripening and churning time had an effect on the thermal behavior of the cream. Despite the increase in solid fat content, no further changes in crystal polymorphism and in melting behavior were observed after 1h of ripening and after churning. The churning time significantly decreased after 0.5h of ripening, from 22.9 min for the cream where no ripening was applied to 16.23 min. Therefore, the crystallization state that promotes partial coalescence (i.e., aggregation of butter grains) is obtained within the first hour of cream ripening at 10 °C. The present study adds knowledge on the fundamental processes of crystallization and polymorphism of milk fat occurring during ripening and churning of cream. In addition, the dairy industry will benefit from these insights on the optimization of butter manufacturing. Copyright © 2013 American

  5. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control.

    PubMed

    Churchill, Alice C L

    2011-05-01

    Banana (Musa spp.) is grown throughout the tropical and subtropical regions of the world. The fruits are a key staple food in many developing countries and a source of income for subsistence farmers. Bananas are also a major, multibillion-dollar export commodity for consumption primarily in developed countries, where few banana cultivars are grown. The fungal pathogen Mycosphaerella fijiensis causes black leaf streak disease (BLSD; aka black Sigatoka leaf spot) on the majority of edible banana cultivars grown worldwide. The fact that most of these cultivars are sterile and unsuitable for the breeding of resistant lines necessitates the extensive use of fungicides as the primary means of disease control. BLSD is a significant threat to the food security of resource-poor populations who cannot afford fungicides, and increases the environmental and health hazards where large-acreage monocultures of banana (Cavendish subgroup, AAA genome) are grown for export. Mycosphaerella fijiensis M. Morelet is a sexual, heterothallic fungus having Pseudocercospora fijiensis (M. Morelet) Deighton as the anamorph stage. It is a haploid, hemibiotrophic ascomycete within the class Dothideomycetes, order Capnodiales and family Mycosphaerellaceae. Its taxonomic placement is based on DNA phylogeny, morphological analyses and cultural characteristics. Mycosphaerella fijiensis is a leaf pathogen that causes reddish-brown streaks running parallel to the leaf veins, which aggregate to form larger, dark-brown to black compound streaks. These streaks eventually form fusiform or elliptical lesions that coalesce, form a water-soaked border with a yellow halo and, eventually, merge to cause extensive leaf necrosis. The disease does not kill the plants immediately, but weakens them by decreasing the photosynthetic capacity of leaves, causing a reduction in the quantity and quality of fruit, and inducing the premature ripening of fruit harvested from infected plants. Although Musa spp. are the

  6. The influence of crop management on banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae) populations and yield of highland cooking banana (cv. Atwalira) in Uganda.

    PubMed

    Rukazambuga, N D T M; Gold, C S; Gowen, S R; Ragama, P

    2002-10-01

    A field study was undertaken in Uganda using highland cooking banana (cv. Atwalira) to test the hypothesis that bananas grown under stressed conditions are more susceptible to attack by Cosmopolites sordidus (Germar). Four banana treatments were employed to create different levels of host-plant vitality: (1) high stress: intercrop with finger millet; (2) moderate stress: monoculture without soil amendments; (3) low stress: monoculture with manure; (4) high vigour: monoculture with continuous mulch and manure. Adult C. sordidus were released at the base of banana mats 11 months after planting and populations were monitored for three years using mark and recapture methods. Cosmopolites sordidus density was greatest in the mulched plots which may have reflected increased longevity and/or longer tenure time in moist soils. Lowest C. sordidus numbers were found in intercropped banana. Damage, estimated as percentage corm tissue consumed by larvae, was similar among treatments. However, the total amount of tissue consumed was greater in mulched banana than in other systems. Plants supporting the heaviest levels of C. sordidus damage displayed bunch size reductions of 40-55%. Banana yield losses ranged from 14-20% per plot with similar levels in the intercropped and mulched systems. Yield reductions, reported as t ha-1, were twice as high in the mulched system as in the intercrop. The results from this study indicate that C. sordidus problems are not confined to stressed banana systems or those with low levels of management, but that the weevil can also attain pest status in well-managed and productive banana stands.

  7. Surface Microflora of Four Smear-Ripened Cheeses

    PubMed Central

    Mounier, Jérôme; Gelsomino, Roberto; Goerges, Stefanie; Vancanneyt, Marc; Vandemeulebroecke, Katrien; Hoste, Bart; Scherer, Siegfried; Swings, Jean; Fitzgerald, Gerald F.; Cogan, Timothy M.

    2005-01-01

    The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses. PMID:16269673

  8. Brucella melitensis survival during manufacture of ripened goat cheese at two temperatures.

    PubMed

    Méndez-González, Karla Y; Hernández-Castro, Rigoberto; Carrillo-Casas, Erika M; Monroy, Jorge F; López-Merino, Ahide; Suárez-Güemes, Francisco

    2011-12-01

    The aim of the current work was to assess the influence of two temperatures, 4°C and 24°C, on pH and water activity and their association with Brucella melitensis survival during the traditional manufacture of ripened goat cheese. Raw milk from a brucellosis-free goat herd was used for the manufacture of ripened cheese. The cheese was inoculated with 5×10(9) of the B. melitensis 16M strain during the tempering stage. The cheeses were matured for 5, 20, and 50 days at both temperatures. To assess Brucella survival, the pH and a(w) were recorded at each stage of the process (curd cutting, draining whey, immersion in brine, ripening I, ripening II, and ripening III). B. melitensis was detected at ripening stage III (1×10(3) colony-forming unit [CFU]/mL) from cheeses matured at 4°C with a pH of 5.0 and a(w) of 0.90, and at a ripening stage II (1×10(4) CFU/mL) from cheeses ripened at 24°C with a pH of 4.0 and a(w) of 0.89. The remaining stages were free from the inoculated pathogen. In addition, viable B. melitensis was recovered in significant amounts (1-2×10(6) CFU/mL) from the whey fractions of both types of cheese ripened at 24°C and 4°C. These results revealed the effects of high temperature (24°C vs. 4°C) on the low pH (4) and a(w) (0.89) that appeared to be associated with the suppression of B. melitensis at the early stages of cheese ripening. In the ripened goat cheeses, B. melitensis survived under a precise combination of temperature during maturation, ripening time, and a(w) in the manufacturing process.

  9. Quality comparison of hydroponic tomatoes (Lycopersicon esculentum) ripened on and off vine

    NASA Technical Reports Server (NTRS)

    Arias, R.; Lee, T. C.; Specca, D.; Janes, H.

    2000-01-01

    There is a general belief that the quality of tomatoes ripened on vine is better than tomatoes ripened off the vine, influencing among other parameters, the price of this commodity. We compared the quality of hydroponic tomatoes ripened on and off vine by chemical, physical, and sensory evaluation to find what attributes are affected and to what extent. Lycopene, beta-carotene, total and soluble solids, moisture content, ascorbic acid, acidity, pH, texture, and color were analyzed. Tomatoes ripened on vine had significantly more lycopene, beta-carotene, soluble and total solids, higher a* and lower L*, and were firmer. However, a 100-judge panel rated only the color and overall liking of the vine-ripened tomatoes as more intense than the fruit ripened off vine. Therefore, the chemical and physical differences were mostly not large enough to influence the panelist's perception. The characterization of tomatoes ripened on and off vine may help to guide post-harvest handling and treatment and to improve the quality of tomatoes ripened off vine.

  10. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    PubMed

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  11. Multidisciplinary perspectives on banana (Musa spp.) domestication

    PubMed Central

    Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim

    2011-01-01

    Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future. PMID:21730145

  12. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...)) by an inspector before or after undergoing irradiation treatment; or (2) The bananas are irradiated... banana moth (Opogona sacchari (Bojen)) before or after undergoing irradiation treatment. (3) Untreated...

  13. A DEMETER-like DNA demethylase governs tomato fruit ripening.

    PubMed

    Liu, Ruie; How-Kit, Alexandre; Stammitti, Linda; Teyssier, Emeline; Rolin, Dominique; Mortain-Bertrand, Anne; Halle, Stefanie; Liu, Mingchun; Kong, Junhua; Wu, Chaoqun; Degraeve-Guibault, Charlotte; Chapman, Natalie H; Maucourt, Mickael; Hodgman, T Charlie; Tost, Jörg; Bouzayen, Mondher; Hong, Yiguo; Seymour, Graham B; Giovannoni, James J; Gallusci, Philippe

    2015-08-25

    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening- an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato.

  14. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...

  15. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...

  16. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...

  17. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...

  18. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...

  19. Home cervical ripening with dinoprostone gel in nulliparous women with singleton pregnancies.

    PubMed

    Stock, Sarah J; Taylor, Rebecca; Mairs, Rebecca; Azaghdani, Abdulhamid; Hor, Kahyee; Smith, Imogen; Dundas, Kirsty; Kissack, Chris; Norman, Jane E; Denison, Fiona

    2014-08-01

    To evaluate whether home cervical ripening is safe and results in shorter hospital stay. This was a retrospective cohort study of women with singleton pregnancies having induction of labor for postmaturity at a single center between January 2007 and June 2010. Women were offered home cervical ripening with 1 mg dinoprostone gel if they were nulliparous, had uncomplicated singleton pregnancies, and the indication for induction was postmaturity. Nine hundred seven of 1,536 (59.1%) nulliparous women having induction of labor for postmaturity were eligible for home cervical ripening. The median number of hours at home was 11.76 hours (range 0-24.82 hours). There were no cases of birth outside of the hospital, uterine rupture, or significant neonatal morbidity or neonatal death related to home cervical ripening. Eighty-five (5.5%) women who underwent hospital cervical ripening because of maternal preference or social issues formed a hospital cervical ripening comparison group. There was no significant difference in the total number of hours before delivery spent in the hospital between the two groups (26.25; 95% confidence interval [CI] 25.27-27.23 in home cervical ripening group compared with 24.28; 95% CI 22.5-26.0 in the hospital group; P=.26). Clinical outcomes are comparable in nulliparous women who receive a single dose of dinoprostone gel for home cervical ripening compared with those who undergo hospital cervical ripening. However, preadmission home cervical ripening with 1 mg dinoprostone does not decrease the number of hours women spend in the hospital. II.

  20. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    PubMed Central

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  1. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry.

    PubMed

    Li, Qian; Ji, Kai; Sun, Yufei; Luo, Hao; Wang, Hongqing; Leng, Ping

    2013-10-01

    In plants, β-glucosidases (BG) have been implicated in developmental and pathogen defense, and are thought to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA; however, there is no genetic evidence for the role of BG genes in ripening and biotic/abiotic stress in fruits. To clarify the role of BG genes in fruit, eight Fa/FvBG genes encoding β-glucosidase were isolated using information from the GenBank strawberry nucleotide database. Of the Fa/FvBG genes examined, expression of FaBG3 was the highest, showing peaks at the mature stage, coincident with the changes observed in ABA content. To verify the role of this gene, we suppressed the expression of FaBG3 via inoculation with Agrobacterium tumefaciens containing tobacco rattle virus carrying a FaBG3 fragment (RNAi). The expression of FaBG3 in FaBG3-RNAi-treated fruit was markedly reduced, and the ABA content was lower than that of the control. FaBG3-RNAi-treated fruit did not exhibit full ripening, and were firmer, had lower sugar content, and were pale compared with the control due to down-regulation of ripening-related genes. FaBG3-RNAi-treated fruit with reduced ABA levels were much more resistant to Botrytis cinerea fungus but were more sensitive to dehydration stress than control fruit. These results indicate that FaBG3 may play key roles in fruit ripening, dehydration stress and B. cinerea fungal infection in strawberries via modulation of ABA homeostasis and transcriptional regulation of ripening-related genes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  2. Evolution of endogenous sequences of banana streak virus: what can we learn from banana (Musa sp.) evolution?

    PubMed

    Gayral, Philippe; Blondin, Laurence; Guidolin, Olivier; Carreel, Françoise; Hippolyte, Isabelle; Perrier, Xavier; Iskra-Caruana, Marie-Line

    2010-07-01

    Endogenous plant pararetroviruses (EPRVs) are viral sequences of the family Caulimoviridae integrated into the nuclear genome of numerous plant species. The ability of some endogenous sequences of Banana streak viruses (eBSVs) in the genome of banana (Musa sp.) to induce infections just like the virus itself was recently demonstrated (P. Gayral et al., J. Virol. 83:6697-6710, 2008). Although eBSVs probably arose from accidental events, infectious eBSVs constitute an extreme case of parasitism, as well as a newly described strategy for vertical virus transmission in plants. We investigated the early evolutionary stages of infectious eBSV for two distinct BSV species-GF (BSGFV) and Imové (BSImV)-through the study of their distribution, insertion polymorphism, and structure evolution among selected banana genotypes representative of the diversity of 60 wild Musa species and genotypes. To do so, the historical frame of host evolution was analyzed by inferring banana phylogeny from two chloroplast regions-matK and trnL-trnF-as well as from the nuclear genome, using 19 microsatellite loci. We demonstrated that both BSV species integrated recently in banana evolution, circa 640,000 years ago. The two infectious eBSVs were subjected to different selective pressures and showed distinct levels of rearrangement within their final structure. In addition, the molecular phylogenies of integrated and nonintegrated BSVs enabled us to establish the phylogenetic origins of eBSGFV and eBSImV.

  3. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    PubMed

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit

  4. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the

  5. Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars.

    PubMed

    Agama-Acevedo, Edith; Nuñez-Santiago, Maria C; Alvarez-Ramirez, José; Bello-Pérez, Luis A

    2015-06-25

    Banana starches from diverse varieties (Macho, Morado, Valery and Enano Gigante) were studied in their physicochemical, structural and digestibility features. X-ray diffraction indicated that the banana starches present a B-type crystallinity pattern, with slight difference in the crystallinity level. Macho and Enano Gigante starches showed the highest pasting temperatures (79 and 78°C, respectively), whilst Valery and Morado varieties presented a slight breakdown and higher setback than the formers. Morado starch presented the highest solubility value and Valery starch the lowest one. The swelling pattern of the banana starches was in agreement with their pasting profile. All banana starches showed a shear-thinning profile. The resistant starch (RS) fraction was the main fraction in the uncooked banana starches. Morado variety showed the highest amount of slowly digestible starch (SDS) and the lowest RS content reported until now in banana starches. Banana starch cooked samples presented an important amount of SDS and RS. Molecular weight and gyration radius of the four banana starches ranged between 2.88-3.14×10(8)g/mol and 286-302nm, respectively. The chain-length distributions of banana amylopectin showed that B1 chains (DP 13-24) is the main fraction, and an important amount of long chains (DP≥37) are present. The information generated from this study can be useful to determine banana varieties for starch isolation with specific functionality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    PubMed

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. © 2015 SETAC.

  7. Neoclassical quasilinear theory in the superbanana plateau regime and banana kinetics in tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.

    2017-12-01

    Neoclassical quasilinear transport theory, which is part of a more general theory that unifies neoclassical and quasilinear theories, is extended to the superbanana plateau regime for low frequency (of the order of the drift frequency) electrostatic fluctuations. The physics mechanism that is responsible for the transport losses in this regime is the superbanana plateau resonance. Besides the usual magnetic drifts, Doppler shifted mode frequency also contributes to the resonance condition. Because the characteristic frequency involved in the resonance is of the order of the drift frequency, which is lower than either the bounce or the transit frequency of the particles, the transport losses are higher than the losses calculated in the conventional quasilinear theory. The important effects of the finite banana width, i.e., banana kinetics, are included and are found to reduce the transport losses for short wavelength modes. The implications on the energetic alpha particle energy loss are discussed.

  8. Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening.

    PubMed

    Alberti, Aline; Zielinski, Acácio Antonio Ferreira; Couto, Marcelo; Judacewski, Priscila; Mafra, Luciana Igarashi; Nogueira, Alessandro

    2017-05-01

    The effect of variety and ripening stage on the distribution of phenolic compounds and in vitro antioxidant capacity of Gala, Fuji Suprema and Eva apples were evaluated. Hydroxycinnamic acids, flavonoids, flavanols, flavonols, dihydrochalcones and antioxidant activity (FRAP and DPPH) were assessed in the epicarp, mesocarp and endocarp of three varieties at three ripening stages (unripe, ripe and senescent). The Fuji Suprema variety distinguished by its content of flavonols at senescent stage, while Eva variety distinguished by its content of dihydrochalcones (unripe stage) and anthocyanins (ripe stage). In general, phenolic acids and flavonoids decreased with ripening in the epicarp and endocarp. However, in the mesocarp, the effect of ripening was related with the apple variety. Hierarchical cluster analysis confirmed the influence of ripening in the apple tissue. The evolution of these compounds during ripening occurred irregularly and it was influenced by the variety.

  9. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  10. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  11. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit.

    PubMed

    Grassi, Stefania; Piro, Gabriella; Lee, Je Min; Zheng, Yi; Fei, Zhangjun; Dalessandro, Giuseppe; Giovannoni, James J; Lenucci, Marcello S

    2013-11-12

    Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Total carotenoids progressively increased during fruit ripening up to ~55 μg g(-1) fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening.

  12. Transcriptomic analysis of apple fruit ripening and texture attributes

    USDA-ARS?s Scientific Manuscript database

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. The ripening behavior and texture attributes of two apple cultivars, ‘Pink Lady’ and ‘Honey...

  13. The effect of application of cold natural smoke on the ripening of Cheddar cheese.

    PubMed

    Shakeel-Ur-Rehman; Farkye, N Y; Drake, M A

    2003-06-01

    The present study was undertaken to study the effects of application of natural wood smoke on ripening of Cheddar cheese, and to determine the effects of smoking before or after ripening on cheese quality. A 20-kg block of Cheddar cheese obtained immediately after pressing was divided into six approximately 3-kg blocks and ripened at 8 degrees C for up to 270 d. One 3-kg block was taken after 1 d, 1, 3, 6, or 9 mo and smoked for 20 min, then returned to the ripening room for further ripening. Cheeses were sampled at intervals for lactobacilli counts, moisture, pH, and proteolysis. Sensory analysis was conducted on 6 and 9-mo-old cheeses by a trained sensory panel (n = 7). Results show that application of natural wood smoke did not significantly affect cheese pH or primary proteolysis during ripening. However, secondary proteolysis as assessed by the concentrations of free amino acids was generally higher in smoked cheeses than in control cheeses after 6 mo of ripening. Cheese smoked after 6 mo of ripening had better smoked flavor than that smoked after 9 mo of ripening. Cheese smoked after 3 mo of age and further ripened for 6 mo had the highest smoked flavor intensity. It is concluded that it is best to smoke cheese after ripening for at least 3 mo.

  14. Fermentation of Foc TR4-infected bananas and Trichoderma spp.

    PubMed

    Yang, J; Li, B; Liu, S W; Biswas, M K; Liu, S; Wei, Y R; Zuo, C W; Deng, G M; Kuang, R B; Hu, C H; Yi, G J; Li, C Y

    2016-10-17

    Fusarium wilt (also known as Panama disease) is one of the most destructive banana diseases, and greatly hampers the global production of bananas. Consequently, it has been very detrimental to the Chinese banana industry. An infected plant is one of the major causes of the spread of Fusarium wilt to nearby regions. It is essential to develop an efficient and environmentally sustainable disease control method to restrict the spread of Fusarium wilt. We isolated Trichoderma spp from the rhizosphere soil, roots, and pseudostems of banana plants that showed Fusarium wilt symptoms in the infected areas. Their cellulase activities were measured by endoglucanase activity, β-glucosidase activity, and filter paper activity assays. Safety analyses of the Trichoderma isolates were conducted by inoculating them into banana plantlets. The antagonistic effects of the Trichoderma spp on the Fusarium pathogen Foc tropical Race 4 (Foc TR4) were tested by the dual culture technique. Four isolates that had high cellulase activity, no observable pathogenicity to banana plants, and high antagonistic capability were identified. The isolates were used to biodegrade diseased banana plants infected with GFP-tagged Foc TR4, and the compost was tested for biological control of the infectious agent; the results showed that the fermentation suppressed the incidence of wilt and killed the pathogen. This study indicates that Trichoderma isolates have the potential to eliminate the transmission of Foc TR4, and may be developed into an environmentally sustainable treatment for controlling Fusarium wilt in banana plants.

  15. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    PubMed

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  16. A DEMETER-like DNA demethylase governs tomato fruit ripening

    USDA-ARS?s Scientific Manuscript database

    This work shows that active DNA demethylation governs ripening, an important plant developmental process. Our work defines a molecular mechanism, which has until now been missing, to explain the correlation between genomic DNA demethylation and fruit ripening. It demonstrates a direct cause-and-effe...

  17. [Chemical and biological evaluation of ripe banana peel].

    PubMed

    Ranzani, M R; Sturion, G L; Bicudo, M H

    1996-12-01

    Chemical and biological evaluation of ripe banana peel was conducted, aiming its potential use as a source of dietary fiber in human nutrition. Two types of flour were prepared from banana peel: a) untreated (UT), using washed and dried peel; b) treated (SMB), using peel treated with sodium metabisulfite and citric acid, in attempt to minimize the darkening of the flour. As expected, banana peel flour revealed to be an important source of fiber (NDF), corresponding about 32% of its dried weight. The addition of this flour to a basal casein diet lowered its protein digestibility and increased the fecal bulk of the rats, which are the known effects of dietary fiber. However, it did not alter the protein quality, since there was no difference in the PER values of the diets studied; in addition, the growth of the rats fed diets containing banana peel did not differ from those fed control diet. These results suggest the feasibility of technological studies aiming the development of food products with banana peel. Besides, biological assays should be realized in the elucidation of its effects in food intake and biochemical parameters.

  18. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  19. Prospects of banana waste utilization in wastewater treatment: A review.

    PubMed

    Ahmad, Tanweer; Danish, Mohammed

    2018-01-15

    This review article explores utilization of banana waste (fruit peels, pseudo-stem, trunks, and leaves) as precursor materials to produce an adsorbent, and its application against environmental pollutants such as heavy metals, dyes, organic pollutants, pesticides, and various other gaseous pollutants. In recent past, quite a good number of research articles have been published on the utilization of low-cost adsorbents derived from biomass wastes. The literature survey on banana waste derived adsorbents shown that due to the abundance of banana waste worldwide, it also considered as low-cost adsorbents with promising future application against various environmental pollutants. Furthermore, raw banana biomass can be chemically modified to prepare efficient adsorbent as per requirement; chemical surface functional group modification may enhance the multiple uses of the adsorbent with industrial standard. It was evident from a literature survey that banana waste derived adsorbents have significant removal efficiency against various pollutants. Most of the published articles on banana waste derived adsorbents have been discussed critically, and the conclusion is drawn based on the results reported. Some results with poorly performed experiments were also discussed and pointed out their lacking in reporting. Based on literature survey, the future research prospect on banana wastes has a significant impact on upcoming research strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of environmental friendly lost circulation material from banana peel

    NASA Astrophysics Data System (ADS)

    Sauki, Arina; Hasan, Nur â.€˜Izzati; Naimi, Fardelen Binti Md; Othman, Nur Hidayati

    2017-12-01

    Loss of expensive mud could lead to major financial problem in executing a drilling project and is one of the biggest problems that need to be tackled during drilling. Synthetic Based Mud (SBM) is the most stable state of the art drilling mud used in current drilling technologies. However, the problem with lost circulation is still inevitable. The focus of this project is to develop a new potential waste material from banana peel in order to combat lost circulation in SBM. Standard industrial Lost Circulation Material (LCM) is used to compare the performance of banana peel as LCM in SBM. The effects of different sizing of banana peels (600 micron, 300 micron and 100 micron) were studied on the rheological and filtration properties of SBM and the bridging performance of banana peel as LCM additive. The tests were conducted using viscometer, HTHP filter press and sand bed tester. Thermal analysis of banana peel was also studied using TGA. According to the results obtained, 300 and 100 micron size of banana peel LCM exhibited an improved bridging performance by 65% as compared to industrial LCM. However, banana peel LCM with the size of 600 micron failed to act as LCM due to the total invasion of mud into the sand bed.

  1. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    PubMed Central

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  2. Effect of Gamma Radiation on the Ripening of Bartlett Pears 1

    PubMed Central

    Maxie, E. C.; Sommer, N. F.; Muller, Carlos J.; Rae, Henry L.

    1966-01-01

    Gamma radiation at doses of 300 Krad or more inhibits the ripening of Bartlett pears (Pyrus communis L.). Immediately after irradiation there is a transitory burst of C2H4, which subsequently declines in fruits subjected to inhibitory doses. Ethylene production associated with ripening begins at the same time in unirradiated fruits and those subjected to noninhibitory doses, but the latter produces much more C2H4 at the climacteric peak. Fruits subjected to inhibitory doses produce low levels of C2H4 unless subjected to exogenously applied C2H4, whereupon they produce enough of the gas to induce ripening in unirradiated fruits. Pears subjected to 300 and 400 Krad of gamma rays did not ripen even when held in a flowing atmosphere containing 1000 ppm of C2H4 for 8 days at 20°. It is concluded that the action of gamma rays on Bartlett pears involves both an inhibition of C2H4 production and a decreased sensitivity of the fruit to the ripening action of the gas. Ripening of Bartlett pears is inhibited by gamma radiation only when applied to preclimacteric fruit. PMID:16656274

  3. Ammonia-nitrogen sorptional properties of banana peels.

    PubMed

    Chen, Yunnen; Ding, Lichao; Fan, Jingbiao

    2011-04-01

    Using modified banana peel as a biosorbent to treat water containing ammonia-nitrogen (NH4(+)-N) was studied. Related parameters in the sorptional process, such as chemical modification, pH, and contact time were investigated. The experimental results showed that banana peel modified by 30% sodium hydroxide (NaOH) and mesothermal microwaves (NMBPs) can greatly improve the sorption removal for NH4(+)-N. The kinetics study revealed that the sorption behavior better fit the pseudo-second-order equation than the Lagergren first-order equation. Fourier transform infrared absorption spectrum analysis of banana peels and NMBPs before and after NH4(+)-N sorption revealed that the activity of hydroxyl groups at the surface of the banana peels was strengthened after modification, and nitrogenous groups appeared after biosorpting the NH4(+)-N. In the end, metallurgical wastewater containing a low concentration of NH4(+)-N was treated by NMBPs. The initial NH4(+)-N concentration of 138 mg/L was reduced to 13 mg/L in 25 minutes by 4 g/L NMBPs at pH 10.

  4. Physical, chemical and sensory characteristics of red guava (Psidium guajava) velva at different fruit ripening time

    NASA Astrophysics Data System (ADS)

    Ishartani, D.; Rahman, F. L. F.; Hartanto, R.; Utami, R.; Khasanah, L. U.

    2018-01-01

    This study purposed to determine the effect of red guava fruit ripening time on the physical (overrun and melting rate), chemical (vitamin C, pH, total dissolved solid) and sensory (color, taste, aroma, texture, and overall compare to control (without ripening) velva) characteristic of red guava velva. Red guava fruits were harvested at 90 days after flowering, ripened and then processed into velva. This research used Completely Randomized Design with fruit ripening time (without ripening, 4 days, and 6 days) as single factor. The research was conducted in triplicate. Chemical and physical characteristic data was analysed using One Way Analysis of Varian whether sensory characteristic data was analyzed using Independent Sample T-test. The result showed that fruit ripening time significantly affected the physical, chemical and sensory characteristic of the velva. Vitamin C, pH, and total solid of the velva were increased as the ripening time prolonged. In other hand, increasing of fruit ripening time decreased the overrun and melting rate of the velva. Red guava velva made from 6 days ripening had better sensory characteristics compared to velva made from red guava fruit without ripening or 4 day ripening. This research conclude that 6 days ripening time gives better chemical, physical and sensory characteristics of the velva compare to 4 days ripening time. Red guava fruits ripened for 6 days were recommended as raw material in velva making.

  5. Early stages of Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Shneidman, Vitaly A.

    2013-07-01

    The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the matrix.

  6. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    PubMed Central

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  7. Stomatal Density and Responsiveness of Banana Fruit Stomates

    PubMed Central

    Johnson, Barbara E.; Brun, W. A.

    1966-01-01

    Determination of stomatal densities of the banana peel (Musa acuminata L. var Hort. Valery) by microscopic observations showed 30 times fewer stomates on fruit epidermis than found on the banana leaf. Observations also showed that peel stomates were not laid down in a linear pattern as on the leaf. It was demonstrated that stomatal responses occurred in banana fruit. Specific conditions of high humidity and light were necessary for stomatal opening: low humidity and darkness were necessary for closure. Responsiveness of the stomates continued for a considerable length of time after the fruit had been severed from the host. Images PMID:16656239

  8. Electromagnetic banana kinetic equation and its applications in tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Chu, M. S.; Sabbagh, S. A.; Seol, J.

    2018-03-01

    A banana kinetic equation in tokamaks that includes effects of the finite banana width is derived for the electromagnetic waves with frequencies lower than the gyro-frequency and the bounce frequency of the trapped particles. The radial wavelengths are assumed to be either comparable to or shorter than the banana width, but much wider than the gyro-radius. One of the consequences of the banana kinetics is that the parallel component of the vector potential is not annihilated by the orbit averaging process and appears in the banana kinetic equation. The equation is solved to calculate the neoclassical quasilinear transport fluxes in the superbanana plateau regime caused by electromagnetic waves. The transport fluxes can be used to model electromagnetic wave and the chaotic magnetic field induced thermal particle or energetic alpha particle losses in tokamaks. It is shown that the parallel component of the vector potential enhances losses when it is the sole transport mechanism. In particular, the fact that the drift resonance can cause significant transport losses in the chaotic magnetic field in the hitherto unknown low collisionality regimes is emphasized.

  9. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  10. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  11. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  12. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  13. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in processing...

  14. Hydrolysis of alkaline pretreated banana peel

    NASA Astrophysics Data System (ADS)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  15. Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars

    PubMed Central

    Sousa, Lisete; Pais, Maria Salomé; Kopka, Joachim; Fortes, Ana Margarida

    2013-01-01

    Background Grapes (Vitis species) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to ripening of berries as well as how aroma is developed are not fully understood. Methodology/Principal Findings In an attempt to identify the common mechanisms associated with the onset of ripening independently of the cultivar, grapes of Portuguese elite cultivars, Trincadeira, Aragonês, and Touriga Nacional, were studied. The mRNA expression profiles corresponding to veraison (EL35) and mature berries (EL36) were compared. Across the three varieties, 9,8% (2255) probesets corresponding to 1915 unigenes were robustly differentially expressed at EL 36 compared to EL 35. Eleven functional categories were represented in this differential gene set. Information on gene expression related to primary and secondary metabolism was verified by RT-qPCR analysis of selected candidate genes at four developmental stages (EL32, EL35, EL36 and EL 38). Gene expression data were integrated with metabolic profiling data from GC-EI-TOF/MS and headspace GC-EI-MS platforms. Conclusions/Significance Putative molecular and metabolic markers of grape pre-ripening and ripening related to primary and secondary metabolism were established and revealed a substantial developmental reprogramming of cellular metabolism. Altogether the results provide valuable new information on the main metabolic events leading to grape ripening. Furthermore, we provide first hints about how the development of a cultivar specific aroma is controlled at transcriptional level. PMID:23565246

  16. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  17. The influence of ripening temperature on ‘Hass’ fruit quality

    USDA-ARS?s Scientific Manuscript database

    Previous research demonstrated the importance of temperature management during avocado (Persea americana Mill) fruit ripening; however this work was focused on maintaining the fruit at elevated temperatures continuously during the ripening process. We examined the influence of short duration high t...

  18. Changes in Gene Expression during Tomato Fruit Ripening 1

    PubMed Central

    Biggs, M. Scott; Harriman, Robert W.; Handa, Avtar K.

    1986-01-01

    Total proteins from pericarp tissue of different chronological ages from normally ripening tomato (Lycopersicon esculentum Mill. cv Rutgers) fruits and from fruits of the isogenic ripening-impaired mutants rin, nor, and Nr were extracted and separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Analysis of the stained bands revealed increases in 5 polypeptides (94, 44, 34, 20, and 12 kilodaltons), decreases in 12 polypeptides (106, 98, 88, 76, 64, 52, 48, 45, 36, 28, 25, and 15 kilodaltons), and fluctuations in 5 polypeptides (85, 60, 26, 21, and 16 kilodaltons) as normal ripening proceeded. Several polypeptides present in ripening normal pericarp exhibited very low or undetectable levels in developing mutant pericarp. Total RNAs extracted from various stages of Rutgers pericarp and from 60 to 65 days old rin, nor, and Nr pericarp were fractionated into poly(A)+ and poly(A)− RNAs. Peak levels of total RNA, poly(A)+ RNA, and poly(A)+ RNA as percent of total RNA occurred between the mature green to breaker stages of normal pericarp. In vitro translation of poly(A)+ RNAs from normal pericarp in rabbit reticulocyte lysates revealed increases in mRNAs for 9 polypeptides (116, 89, 70, 42, 38, 33, 31, 29, and 26 kilodaltons), decreases in mRNAs for 2 polypeptides (41 and 35 kilodaltons), and fluctuations in mRNAs for 5 polypeptides (156, 53, 39, 30, and 14 kilodaltons) during normal ripening. Analysis of two-dimensional separation of in vitro translated polypeptides from poly(A)+ RNAs isolated from different developmental stages revealed even more extensive changes in mRNA populations during ripening. In addition, a polygalacturonase precursor (54 kilodaltons) was immunoprecipitated from breaker, turning, red ripe, and 65 days old Nr in vitro translation products. Images Fig. 1 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:16664828

  19. Characterisation of colletotrichum species associated with anthracnose of banana.

    PubMed

    Zakaria, Latiffah; Sahak, Shamsiah; Zakaria, Maziah; Salleh, Baharuddin

    2009-12-01

    A total of 13 Colletotrichum isolates were obtained from different banana cultivars (Musa spp.) with symptoms of anthracnose. Colletotrichum isolates from anthracnose of guava (Psidium guajava) and water apple (Syzygium aqueum) were also included in this study. Based on cultural and morphological characteristics, isolates from banana and guava were identified as Colletotrichum musae and from water apple as Colletotrichum gloeosporiodes. Isolates of C. musae from banana and guava had similar banding patterns in a randomly amplified polymorphic DNA (RAPD) analysis with four random primers, and they clustered together in a UPGMA analysis. C. gloeosporiodes from water apple was clustered in a separate cluster. Based on the present study, C. musae was frequently isolated from anthracnose of different banana cultivars and the RAPD banding patterns of C. musae isolates were highly similar but showed intraspecific variations.

  20. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm. Copyright © 2016. Published by Elsevier GmbH.

  1. Some Properties of Fresh and Ripened Traditional Akcakatik Cheese

    PubMed Central

    2018-01-01

    Akcakatik cheese (yogurt cheese) is produced by drying strained yogurt with or without adding cloves or black cumin. The main objective of this study was to detect the properties of both fresh and ripened Akcakatik cheeses and to compare them. For this purpose the biogenic amine content, volatile flavor compounds, protein degradation level, chemical properties and some microbiological properties of 15 Akcakatik cheese samples were investigated. Titratable acidity, total dry matter, NaCl, total nitrogen, water soluble nitrogen, ripened index, histamine, diacetyl and acetaldehyde levels were found to be higher in ripened cheese samples than in fresh cheese samples. On the other hand, the clove and black cumin ratios were found to be higher in the fresh cheese samples. Sodium dodecyl sulphate polyacrylamide gel electropherograms of cheese samples showed that protein degradation was higher in ripened cheese samples than in fresh samples, as expected. The dominant Lactic acid bacteria (LAB) flora of Akcakatik cheese samples were found to be Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. PMID:29725229

  2. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages.

    PubMed

    Liu, Ying; Ma, Shuang-shuang; Ibrahim, S A; Li, Er-hu; Yang, Hong; Huang, Wen

    2015-10-15

    In this study, polyphenols from lotus seed epicarp (PLSE) at three different ripening stages were purified by column chromatography and identified by RP-HPLC and HPLC-ESI-MS(2). The antioxidant activities of PLSE were also investigated. We found that the contents of PLSE at the green ripening stage, half ripening stage and full ripening stage are 13.08%, 10.95% and 6.73% respectively. The levels of catechin, epicatechin, hyperoside, and isoquercitrin in PLSE at the three different ripening stages were different. Moreover, the amounts of catechin and epicatechin decreased, while the contents of hyperoside and isoquercitrin increased as the seed ripened. We found that PLSE at three different ripening stages had good scavenging abilities on DPPH and ABTS(+) radicals. However, the scavenging ability decreased with maturation. Our results may be valuable with regard to the utilization of lotus seed epicarp as a functional food material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Transcriptional analysis of late ripening stages of grapevine berry

    PubMed Central

    2011-01-01

    Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7), harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl

  4. Decrease in fruit moisture content heralds and might launch the onset of ripening processes.

    PubMed

    Frenkel, Chaim; Hartman, Thomas G

    2012-10-01

    It is known that fruit ripening is a genetically programmed event but it is not entirely clear what metabolic cue(s) stimulate the onset of ripening, ethylene action notwithstanding. Here, we examined the conjecture that fruit ripening might be evoked by an autonomously induced decrease in tissue water status. We found decline in water content occurring at the onset of ripening in climacteric and nonclimacteric fruit, suggesting that this phenomenon might be universal. This decline in water content persisted throughout the ripening process in some fruit, whereas in others it reversed during the progression of the ripening process. Applied ethylene also induced a decrease in water content in potato (Solanum tuberosum) tubers. In ethylene-mutant tomato (Solanum lycopersicum) fruit (antisense to1-aminocyclopropane carboxylate synthase), cold-induced decline in water content stimulated onset of ripening processes apparently independently of ethylene action, suggesting cause-and-effect relationship between decreasing water content and onset of ripening. The decline in tissue water content, occurring naturally or induced by ethylene, was strongly correlated with a decrease in hydration (swelling) efficacy of cell wall preparations suggesting that hydration dynamics of cell walls might account for changes in tissue moisture content. Extent of cell wall swelling was, in turn, related to the degree of oxidative cross-linking of wall-bound phenolic acids, suggesting that oxidant-induced wall restructuring might mediate cell wall and, thus, fruit tissue hydration status. We propose that oxidant-induced cell wall remodeling and consequent wall dehydration might evoke stress signaling for the onset of ripening processes. This study suggests that decline in fruit water content is an early event in fruit ripening. This information may be used to gauge fruit maturity for appropriate harvest date and for processing. Control of fruit hydration state might be used to regulate the

  5. Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics.

    PubMed

    Zhao, Ran; Chen, Dong; Wu, Hualing

    2017-11-15

    To evaluate effects of Pu-erh ripened tea in hyperuricemic mice, a mouse hyperuricemia model was developed by oral administration of potassium oxonate for 7 d. Serum metabolomics, based on gas chromatography-mass spectrometry, was used to generate metabolic profiles from normal control, hyperuricemic and allopurinol-treated hyperuricemic mice, as well as hyperuricemic mice given Pu-erh ripened tea at three doses. Pu-erh ripened tea significantly lowered serum uric acid levels. Twelve potential biomarkers associated with hyperuricemia were identified. Pu-erh ripened tea and allopurinol differed in their metabolic effects in the hyperuricemic mice. Levels of glutamic acid, indolelactate, L-allothreonine, nicotinoylglycine, isoleucine, l-cysteine and glycocyamine, all involved in amino acid metabolism, were significantly changed in hyperuricemic mice treated Pu-erh ripened tea. Thus, modulating amino acid metabolism might be the primary mechanism of anti-hyperuricemia by Pu-erh ripened tea. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Lipophilic extracts from banana fruit residues: a source of valuable phytosterols.

    PubMed

    Oliveira, Lúcia; Freire, Carmen S R; Silvestre, Armando J D; Cordeiro, Nereida

    2008-10-22

    The chemical composition of the lipophilic extracts of unripe pulp and peel of banana fruit 'Dwarf Cavendish' was studied by gas chromatography-mass spectrometry. Fatty acids, sterols, and steryl esters are the major families of lipophilic components present in banana tissues, followed by diacylglycerols, steryl glucosides, long chain fatty alcohols, and aromatic compounds. Fatty acids are more abundant in the banana pulp (29-90% of the total amount of lipophilic extract), with linoleic, linolenic, and oleic acids as the major compounds of this family. In banana peel, sterols represent about 49-71% of the lipophilic extract with two triterpenic ketones (31-norcyclolaudenone and cycloeucalenone) as the major components. The detection of high amounts of steryl esters (469-24405 mg/kg) and diacylglycerols (119-878 mg/kg), mainly present in the banana peel extract, explains the increase in the abundance of fatty acids and sterols after alkaline hydrolysis. Several steryl glucosides were also found in significative amounts (273-888 mg/kg), particularly in banana pulp (888 mg/kg). The high content of sterols (and their derivatives) in the 'Dwarf Cavendish' fruit can open new strategies for the valorization of the banana residues as a potential source of high-value phytochemicals with nutraceutical and functional food additive applications.

  7. Comparative analysis of pigments in red and yellow banana fruit.

    PubMed

    Fu, Xiumin; Cheng, Sihua; Liao, Yinyin; Huang, Bingzhi; Du, Bing; Zeng, Wei; Jiang, Yueming; Duan, Xuewu; Yang, Ziyin

    2018-01-15

    Color is an important characteristic determining the fruit value. Although ripe bananas usually have yellow peels, several banana cultivars have red peels. As details of the pigments in banana fruits are unknown, we investigated these pigments contents and compositions in the peel and pulp of red cultivar 'Hongjiaowang' and yellow cultivar 'Baxijiao' by UPLC-PDA-QTOF-MS and HPLC-PDA techniques. The 'Hongjiaowang' peel color was mainly determined by the presence of anthocyanin-containing epidermal cells. Rutinoside derivatives of cyanidin, peonidin, petunidin, and malvidin were unique to the red peel, and possibly responsible for the red color. 'Hongjiaowang' contained higher total content of carotenoids than 'Baxijiao' in both pulp and peel. Lutein, α-carotene, and β-carotene were main carotenoids, which might play a more important role than flavonoids in producing the yellow banana color owing to the properties and distribution in the fruit. The information will help us understand a complete profile of pigments in banana. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Olive oil quality and ripening in super-high-density Arbequina orchard.

    PubMed

    Benito, Marta; Lasa, José Manuel; Gracia, Pilar; Oria, Rosa; Abenoza, María; Varona, Luis; Sánchez-Gimeno, Ana Cristina

    2013-07-01

    The aim of this work was to evaluate the evolution of the quality of extra virgin olive oil obtained from a super-high-density Arbequina orchard, under a drip irrigation system, throughout the ripening process. For this objective, physicochemical, nutritional and sensory parameters were studied. In addition, the oxidative stability, pigment content and colour evolution of olive oil were analysed during the ripening process. Free acidity increased slightly throughout the ripening process, while peroxide value and extinction coefficient decreased. Total phenol content and oxidative stability showed a similar trend, increasing at the beginning of ripening up to a maximum and thereafter decreasing. α-Tocopherol and pigment contents decreased with ripening, leading to changes in colour coordinates. Sensory parameters were correlated with total phenol content, following a similar trend throughout the maturation process. By sampling and monitoring the ripeness index weekly, it would be possible to determine an optimal harvesting time for olives according to the industrial yield and the physicochemical, nutritional and sensory properties of the olive oil. © 2012 Society of Chemical Industry.

  9. Bananas, pesticides and health in southwestern Ecuador: A scalar narrative approach to targeting public health responses.

    PubMed

    Brisbois, Benjamin

    2016-02-01

    Public health responses to agricultural pesticide exposure are often informed by ethnographic or other qualitative studies of pesticide risk perception. In addition to highlighting the importance of structural determinants of exposure, such studies can identify the specific scales at which pesticide-exposed individuals locate responsibility for their health issues, with implications for study and intervention design. In this study, an ethnographic approach was employed to map scalar features within explanatory narratives of pesticides and health in Ecuador's banana-producing El Oro province. Unstructured observation, 14 key informant interviews and 15 in-depth semi-structured interviews were carried out during 8 months of fieldwork in 2011-2013. Analysis of interview data was informed by human geographic literature on the social construction of scale. Individual-focused narratives of some participants highlighted characteristics such as carelessness and ignorance, leading to suggestions for educational interventions. More structural explanations invoked farm-scale processes, such as uncontrolled aerial fumigations on plantations owned by elites. Organization into cooperatives helped to protect small-scale farmers from 'deadly' banana markets, which in turn were linked to the Ecuadorian nation-state and actors in the banana-consuming world. These scalar elements interacted in complex ways that appear linked to social class, as more well-off individuals frequently attributed the health problems of other (poorer) people to individual behaviours, while providing more structural explanations of their own difficulties. Such individualizing narratives may help to stabilize inequitable social structures. Research implications of this study include the possibility of using scale-focused qualitative research to generate theory and candidate levels for multi-level models. Equity implications include a need for public health researchers planning interventions to engage with

  10. Unfolding energetics and stability of banana lectin.

    PubMed

    Gupta, Garima; Sinha, Sharmistha; Surolia, Avadhesha

    2008-08-01

    The unfolding pathway of banana lectin from Musa paradisiaca was determined by isothermal denaturation induced by the chaotrope GdnCl. The unfolding was found to be a reversible process. The data obtained by isothermal denaturation provided information on conformational stability of banana lectin. The high values of DeltaG of unfolding at various temperatures indicated the strength of intersubunit interactions. It was found that banana lectin is a very stable and denatures at high chaotrope concentrations only. The basis of the stability may be attributed to strong hydrogen bonds of the order 2.5-3.1 A at the dimeric interface along with the presence of water bridges. This is perhaps very unique example in proteins where subunit association is not a consequence of the predominance of hydrophobic interactions. (c) 2008 Wiley-Liss, Inc.

  11. Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening

    PubMed Central

    Inês, Carla; Parra-Lobato, Maria C.; Paredes, Miguel A.; Labrador, Juana; Gallardo, Mercedes; Saucedo-García, Mariana; Gavilanes-Ruiz, Marina; Gomez-Jimenez, Maria C.

    2018-01-01

    Plant sphingolipids are involved in the building of the matrix of cell membranes and in signaling pathways of physiological processes and environmental responses. However, information regarding their role in fruit development and ripening, a plant-specific process, is unknown. The present study seeks to determine whether and, if so, how sphingolipids are involved in fleshy-fruit development and ripening in an oil-crop species such as olive (Olea europaea L. cv. Picual). Here, in the plasma-membranes of live protoplasts, we used fluorescence to examine various specific lipophilic stains in sphingolipid-enriched regions and investigated the composition of the sphingolipid long-chain bases (LCBs) as well as the expression patterns of sphingolipid-related genes, OeSPT, OeSPHK, OeACER, and OeGlcCerase, during olive-fruit development and ripening. The results demonstrate increased sphingolipid content and vesicle trafficking in olive-fruit protoplasts at the onset of ripening. Moreover, the concentration of LCB [t18:1(8Z), t18:1 (8E), t18:0, d18:2 (4E/8Z), d18:2 (4E/8E), d18:1(4E), and 1,4-anhydro-t18:1(8E)] increases during fruit development to reach a maximum at the onset of ripening, although these molecular species decreased during fruit ripening. On the other hand, OeSPT, OeSPHK, and OeGlcCerase were expressed differentially during fruit development and ripening, whereas OeACER gene expression was detected only at the fully ripe stage. The results provide novel data about sphingolipid distribution, content, and biosynthesis/turnover gene transcripts during fleshy-fruit ripening, indicating that all are highly regulated in a developmental manner. PMID:29434611

  12. Production of bioethanol using agricultural waste: Banana pseudo stem

    PubMed Central

    Ingale, Snehal; Joshi, Sanket J.; Gupte, Akshaya

    2014-01-01

    India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production. PMID:25477922

  13. Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses

    PubMed Central

    Teissandier, Aurélie; Onésime, Djamila; Loux, Valentin; Monnet, Christophe; Irlinger, Françoise; Landaud, Sophie; Leclercq-Perlat, Marie-Noëlle; Bento, Pascal; Fraud, Sébastien; Gibrat, Jean-François; Aubert, Julie; Fer, Frédéric; Guédon, Eric; Pons, Nicolas; Kennedy, Sean; Beckerich, Jean-Marie; Swennen, Dominique; Bonnarme, Pascal

    2015-01-01

    Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process. PMID:25867897

  14. Characterisation of Colletotrichum Species Associated with Anthracnose of Banana

    PubMed Central

    Zakaria, Latiffah; Sahak, Shamsiah; Zakaria, Maziah; Salleh, Baharuddin

    2009-01-01

    A total of 13 Colletotrichum isolates were obtained from different banana cultivars (Musa spp.) with symptoms of anthracnose. Colletotrichum isolates from anthracnose of guava (Psidium guajava) and water apple (Syzygium aqueum) were also included in this study. Based on cultural and morphological characteristics, isolates from banana and guava were identified as Colletotrichum musae and from water apple as Colletotrichum gloeosporiodes. Isolates of C. musae from banana and guava had similar banding patterns in a randomly amplified polymorphic DNA (RAPD) analysis with four random primers, and they clustered together in a UPGMA analysis. C. gloeosporiodes from water apple was clustered in a separate cluster. Based on the present study, C. musae was frequently isolated from anthracnose of different banana cultivars and the RAPD banding patterns of C. musae isolates were highly similar but showed intraspecific variations. PMID:24575184

  15. Differential characteristics in the chemical composition of bananas from Tenerife (Canary Islands) and Ecuador.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2002-12-18

    The contents of moisture, protein, ash, ascorbic acid, glucose, fructose, total sugars, and total and insoluble fiber were determined in cultivars of bananas (Gran Enana and Pequeña Enana) harvested in Tenerife and in bananas (Gran Enana) from Ecuador. The chemical compositions in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the chemical composition, except for insoluble fiber content. Variations of the chemical composition were observed in the bananas from Tenerife according to cultivation method (greenhouse and outdoors), farming style (conventional and organic), and region of production (north and south). A highly significant (r = 0.995) correlation between glucose and fructose was observed. Correlations of ash and protein contents tend to separate the banana samples according to origin. A higher content of protein, ash, and ascorbic acid was observed as the length of the banana decreased. Applying factor analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife. An almost total differentiation (91.7%) between bananas from Tenerife and bananas from Ecuador was obtained by selecting protein, ash, and ascorbic acid content and applying stepwise discriminant analysis. By selecting the bananas Pequeña Enana and using discriminant analysis, a clear separation of the samples according to the region of production and farming style was observed.

  16. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development

    PubMed Central

    Dong, Chen; Hu, Huigang; Hu, Yulin; Xie, Jianghui

    2016-01-01

    Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. ‘Xiangfen 1,’ a novel flavonoid-rich banana germplasm, was studied with ‘Brazil’ serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with ‘Brazil,’ ‘Xiangfen 1’ fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and ‘Xiangfen 1’ banana can be a rich source of natural antioxidants in human diets. PMID:27625665

  17. After-Ripening Induced Transcriptional Changes of Hormonal Genes in Wheat Seeds: The Cases of Brassinosteroids, Ethylene, Cytokinin and Salicylic Acid

    PubMed Central

    Yao, Zhen; Jordan, Mark C.; Park, Seokhoon; Ayele, Belay T.

    2014-01-01

    Maintenance and release of seed dormancy is regulated by plant hormones; their levels and seed sensitivity being the critical factors. This study reports transcriptional regulation of brassinosteroids (BR), ethylene (ET), cytokinin (CK) and salicylic acid (SA) related wheat genes by after-ripening, a period of dry storage that decays dormancy. Changes in the expression of hormonal genes due to seed after-ripening did not occur in the anhydrobiotic state but rather in the hydrated state. After-ripening induced dormancy decay appears to be associated with imbibition mediated increase in the synthesis and signalling of BR, via transcriptional activation of de-etiolated2, dwarf4 and brassinosteroid signaling kinase, and repression of brassinosteroid insensitive 2. Our analysis is also suggestive of the significance of increased ET production, as reflected by enhanced transcription of 1-aminocyclopropane-1-carboxylic acid oxidase in after-ripened seeds, and tight regulation of seed response to ET in regulating dormancy decay. Differential transcriptions of lonely guy, zeatin O-glucosyltransferases and cytokinin oxidases, and pseudo-response regulator between dormant and after-ripened seeds implicate CK in the regulation of seed dormancy in wheat. Our analysis also reflects the association of dormancy decay in wheat with seed SA level and NPR independent SA signaling that appear to be regulated transcriptionally by phenylalanine ammonia lyase, and whirly and suppressor of npr1 inducible1 genes, respectively. Co-expression clustering of the hormonal genes implies the significance of synergistic and antagonistic interaction between the different plant hormones in regulating wheat seed dormancy. These results contribute to further our understanding of the molecular features controlling seed dormancy in wheat. PMID:24498132

  18. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese

    PubMed Central

    Martins, José M.; Galinari, Éder; Pimentel-Filho, Natan J.; Ribeiro, José I.; Furtado, Mauro M.; Ferreira, Célia L.L.F.

    2015-01-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April–September) and rainy season (October–March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g −1 ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g −1 ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111

  19. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of

  20. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    PubMed

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are

  1. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control

  2. Non-climacteric ripening and sorbitol homeostasis in plum fruits.

    PubMed

    Kim, Ho-Youn; Farcuh, Macarena; Cohen, Yuval; Crisosto, Carlos; Sadka, Avi; Blumwald, Eduardo

    2015-02-01

    During ripening fruits undergo several physiological and biochemical modifications that influence quality-related properties, such as texture, color, aroma and taste. We studied the differences in ethylene and sugar metabolism between two genetically related Japanese plum cultivars with contrasting ripening behaviors. 'Santa Rosa' (SR) behaved as a typical climacteric fruit, while the bud sport mutant 'Sweet Miriam' (SM) displayed a non-climacteric ripening pattern. SM fruit displayed a delayed ripening that lasted 120 days longer than that of the climacteric fruit. At the full-ripe stage, both cultivars reached similar final size and weight but the non-climacteric fruits were firmer than the climacteric fruits. Fully ripe non-climacteric plum fruits, showed an accumulation of sorbitol that was 2.5 times higher than that of climacteric fruits, and the increase in sorbitol were also paralleled to an increase in sucrose catabolism. These changes were highly correlated with decreased activity and expression of NAD(+)-dependent sorbitol dehydrogenase and sorbitol oxidase and increased sorbitol-6-phosphate dehydrogenase activity, suggesting an enhanced sorbitol synthesis in non-climacteric fruits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Optimatization of transient transformation methods to study gene expression in Musa acuminata (AAA group) cultivar Ambon Lumut

    NASA Astrophysics Data System (ADS)

    Prayuni, Kinasih; Dwivany, Fenny M.

    2015-09-01

    Banana is classified as a climateric fruit, whose ripening is regulated by ethylene. Ethylene is synthesized from ACC (1-aminocyclopropane-1-carboxylic acid) by ACC oxidase enzyme which is encoded by ACO gene. Controling an important gene expression in ethylene biosynthesis pathway has became a target to delay the ripening process. Therefore in the previous study we have designed a MaACO-RNAi construct to control MaACO gene expression. In this research, we study the effectiveness of different transient transformation methods to deliver the construct. Direct injection, with or no vaccum infiltration methods were used to deliver MaACO-RNAi construct. All of the methods succesfully deliver the construct into banana fruits based on RT-PCR result.

  4. A Simple Diffraction Experiment Using Banana Stem as a Natural Grating

    ERIC Educational Resources Information Center

    Aji, Mahardika Prasetya; Karunawan, Jotti; Chasanah, Widyastuti Rochimatun; Nursuhud, Puji Iman; Wiguna, Pradita Ajeng; Sulhadi

    2017-01-01

    A simple diffraction experiment was designed using banana stem as natural grating. Coherent beams of lasers with wavelengths of 632.8 nm and 532 nm that pass through banana stem produce periodic diffraction patterns on a screen. The diffraction experiments were able to measure the distances between the slit of the banana stem, i.e. d = (28.76 ±…

  5. Prostaglandin dehydrogenase is a target for successful induction of cervical ripening

    PubMed Central

    Kishore, Annavarapu Hari; Liang, Hanquan; Xing, Chao; Ganesh, Thota; Akgul, Yucel; Posner, Bruce; Ready, Joseph M.; Markowitz, Sanford D.; Word, Ruth Ann

    2017-01-01

    The cervix represents a formidable structural barrier for successful induction of labor. Approximately 10% of pregnancies undergo induction of cervical ripening and labor with prostaglandin (PG) E2 or PGE analogs, often requiring many hours of hospitalization and monitoring. On the other hand, preterm cervical ripening in the second trimester predicts preterm birth. The regulatory mechanisms of this paradoxical function of the cervix are unknown. Here, we show that PGE2 uses cell-specific EP2 receptor-mediated increases in Ca2+ to dephosphorylate and translocate histone deacetylase 4 (HDAC4) to the nucleus for repression of 15-hydroxy prostaglandin dehydrogenase (15-PGDH). The crucial role of 15-PGDH in cervical ripening was confirmed in vivo. Although PGE2 or 15-PGDH inhibitor alone did not alter gestational length, treatment with 15-PGDH inhibitor + PGE2 or metabolism-resistant dimethyl-PGE2 resulted in preterm cervical ripening and delivery in mice. The ability of PGE2 to selectively autoamplify its own synthesis in stromal cells by signaling transcriptional repression of 15-PGDH elucidates long sought-after molecular mechanisms that govern PG action in the cervix. This report details unique mechanisms of action in the cervix and serves as a catalyst for (i) the use of 15-PGDH inhibitors to initiate or amplify low-dose PGE2-mediated cervical ripening or (ii) EP2 receptor antagonists, HDAC4 inhibitors, and 15-PGDH activators to prevent preterm cervical ripening and preterm birth. PMID:28716915

  6. Small RNA Profiling of Two Important Cultivars of Banana and Overexpression of miRNA156 in Transgenic Banana Plants

    PubMed Central

    Ganapathi, Thumballi R.

    2015-01-01

    Micro RNAs (miRNAs) are a class of non-coding, short RNAs having important roles in regulation of gene expression. Although plant miRNAs have been studied in detail in some model plants, less is known about these miRNAs in important fruit plants like banana. miRNAs have pivotal roles in plant growth and development, and in responses to diverse biotic and abiotic stress stimuli. Here, we have analyzed the small RNA expression profiles of two different economically significant banana cultivars by using high-throughput sequencing technology. We identified a total of 170 and 244 miRNAs in the two libraries respectively derived from cv. Grand Naine and cv. Rasthali leaves. In addition, several cultivar specific microRNAs along with their putative target transcripts were also detected in our studies. To validate our findings regarding the small RNA profiles, we also undertook overexpression of a common microRNA, MusamiRNA156 in transgenic banana plants. The transgenic plants overexpressing the stem-loop sequence derived from MusamiRNA156 gene were stunted in their growth together with peculiar changes in leaf anatomy. These results provide a foundation for further investigations into important physiological and metabolic pathways operational in banana in general and cultivar specific traits in particular. PMID:25962076

  7. How Do Fruits Ripen?

    ERIC Educational Resources Information Center

    Sargent, Steven A.

    2005-01-01

    A fruit is alive, and for it to ripen normally, many biochemical reactions must occur in a proper order. After pollination, proper nutrition, growing conditions, and certain plant hormones cause the fruit to develop and grow to proper size. During this time, fruits store energy in the form of starch and sugars, called photosynthates because they…

  8. Actor Diversity and Interactions in the Development of Banana Hybrid Varieties in Uganda: Implications for Technology Uptake

    ERIC Educational Resources Information Center

    Sanya, Losira Nasirumbi; Sseguya, Haroon; Kyazze, Florence Birungi; Baguma, Yona; Kibwika, Paul

    2018-01-01

    Purpose: We examine the nature of networks through which new hybrid banana varieties (HBVs) in Uganda are developed, and how different actors engage in the technology development process. Design/methodology/approach: We collected the data through 20 key informant interviews and 5 focus group discussions with actors involved in the process. We…

  9. Comparative Transcriptome Analyses between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild Type Suggest the Functions of ABA, Sucrose and JA during Citrus Fruit Ripening

    PubMed Central

    Zhang, Ya-Jian; Wang, Xing-Jian; Wu, Ju-Xun; Chen, Shan-Yan; Chen, Hong; Chai, Li-Jun; Yi, Hua-Lin

    2014-01-01

    A spontaneous late-ripening mutant of ‘Jincheng’ (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening. PMID:25551568

  10. A DEMETER-like DNA demethylase governs tomato fruit ripening

    PubMed Central

    Liu, Ruie; How-Kit, Alexandre; Stammitti, Linda; Teyssier, Emeline; Rolin, Dominique; Mortain-Bertrand, Anne; Halle, Stefanie; Liu, Mingchun; Kong, Junhua; Wu, Chaoqun; Degraeve-Guibault, Charlotte; Chapman, Natalie H.; Maucourt, Mickael; Hodgman, T. Charlie; Tost, Jörg; Bouzayen, Mondher; Hong, Yiguo; Seymour, Graham B.; Giovannoni, James J.; Gallusci, Philippe

    2015-01-01

    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening— an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato. PMID:26261318

  11. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene

    PubMed Central

    Lin, Hong-Hui

    2012-01-01

    Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato. PMID:22915749

  12. Factors affecting skin tannin extractability in ripening grapes.

    PubMed

    Bindon, Keren A; Madani, S Hadi; Pendleton, Phillip; Smith, Paul A; Kennedy, James A

    2014-02-05

    The acetone-extractable (70% v/v) skin tannin content of Vitis vinifera L. cv. Cabernet Sauvignon grapes was found to increase during late-stage ripening. Conversely, skin tannin content determined following ethanol extraction (10, 20, and 50% v/v) did not consistently reflect this trend. The results indicated that a fraction of tannin became less extractable in aqueous ethanol during ripening. Skin cell walls were observed to become more porous during ripening, which may facilitate the sequestering of tannin as an adsorbed fraction within cell walls. For ethanol extracts, tannin molecular mass increased with advancing ripeness, even when extractable tannin content was constant, but this effect was negligible in acetone extracts. Reconstitution experiments with isolated skin tannin and cell wall material indicated that the selectivity of tannin adsorption by cell walls changed as tannin concentration increased. Tannin concentration, tannin molecular mass, and cell wall porosity are discussed as factors that may influence skin tannin extractability.

  13. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    PubMed

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after-ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Lipophilic phytochemicals from banana fruits of several Musa species.

    PubMed

    Vilela, Carla; Santos, Sónia A O; Villaverde, Juan J; Oliveira, Lúcia; Nunes, Alberto; Cordeiro, Nereida; Freire, Carmen S R; Silvestre, Armando J D

    2014-11-01

    The chemical composition of the lipophilic extract of ripe pulp of banana fruit from several banana cultivars belonging to the Musa acuminata and Musa balbisiana species (namely 'Chinese Cavendish', 'Giant Cavendish', 'Dwarf Red', 'Grand Nain', 'Eilon', 'Gruesa', 'Silver', 'Ricasa', 'Williams' and 'Zelig') was studied by gas chromatography-mass spectrometry for the first time. The banana cultivars showed similar amounts of lipophilic extractives (ca. 0.4% of dry material weight) as well as qualitative chemical compositions. The major groups of compounds identified in these fractions were fatty acids and sterols making up 68.6-84.3% and 11.1-28.0%, respectively, of the total amount of lipophilic components. Smaller amounts of long chain aliphatic alcohols and α-tocopherol were also identified. These results are a relevant contribution for the valorisation of these banana cultivars as sources of valuable phytochemicals (ω-3 and ω-6 fatty acids, and sterols) with well-established beneficial nutritional and health effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Storage stability of banana chips in polypropylene based nanocomposite packaging films.

    PubMed

    Manikantan, M R; Sharma, Rajiv; Kasturi, R; Varadharaju, N

    2014-11-01

    In this study, polypropylene (PP) based nanocomposite films of 15 different compositions of nanoclay, compatibilizer and thickness were developed and used for packaging and storage of banana chips. The effect of nanocomposite films on the quality characteristics viz. moisture content (MC), water activity (WA), total color difference(TCD), breaking force (BF), free fatty acid (FFA), peroxide value(PV), total plate count (TPC) and overall acceptability score of banana chips under ambient condition at every 15 days interval were studied for 120 days. All quality parameters of stored banana chips increased whereas overall acceptability scores decreased during storage. The elevation in FFA, BF and TCD of stored banana chips increased with elapse of storage period as well as with increased proportion of both nanoclay and compatibilizer but decreased by reducing the thickness of film. Among all the packaging materials, the WA of banana chips remained lower than 0.60 i.e. critical limit for microbial growth up to 90 days of storage. The PV of banana chips packaged also remained within the safe limit of 25 meq oxygen kg(-1) throughout the storage period. Among all the nanocomposite films, packaging material having 5 % compatibilizer, 2 % nanoclay & 100 μm thickness (treatment E) and 10 % compatibilizer, 4 % nanoclay & 120 μm thickness (treatment N) showed better stability of measured quality characteristics of banana chips than any other treatment.

  16. Cereal bars produced with banana peel flour: evaluation of acceptability and sensory profile.

    PubMed

    Carvalho, Vania Silva; Conti-Silva, Ana Carolina

    2018-01-01

    A mixture design was used to investigate the effects of banana peel flour, rice flakes and oat flour on sensory acceptability of cereal bars, with subsequent evaluation of sensory profile of products identified as having high acceptability. Regions of greater response for acceptability of the cereal bars, which are dependent on the three investigated components, were found. Although having good acceptability, sensory profiles of cereal bars were different. A cereal bar with the lowest quantity of banana peel flour was described as having a higher amount of rice flakes, chewiness and crispness, while formulations with intermediate and highest quantities of banana peel flour were described by darker color, higher banana aroma and bitter taste. Contrary to expectations, banana flavor of cereal bar with highest quantity of banana peel flour was lower than cereal bars with intermediate quantities. Cereal bars were not different in terms of hardness and adhesiveness and they also had a similar sweet taste and oat flavor. The use of banana peel flour in production of cereal bars is feasible and, even with different sensory profiles, cereal bars with banana peel flour are acceptable, which may favor the development of new products for different market niches. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Origins and Domestication of Cultivated Banana Inferred from Chloroplast and Nuclear Genes

    PubMed Central

    Zhang, Cui; Wang, Xin-Feng; Shi, Feng-Xue; Chen, Wen-Na; Ge, Xue-Jun

    2013-01-01

    Background Cultivated bananas are large, vegetatively-propagated members of the genus Musa. More than 1,000 cultivars are grown worldwide and they are major economic and food resources in numerous developing countries. It has been suggested that cultivated bananas originated from the islands of Southeast Asia (ISEA) and have been developed through complex geodomestication pathways. However, the maternal and parental donors of most cultivars are unknown, and the pattern of nucleotide diversity in domesticated banana has not been fully resolved. Methodology/Principal Findings We studied the genetics of 16 cultivated and 18 wild Musa accessions using two single-copy nuclear (granule-bound starch synthase I, GBSS I, also known as Waxy, and alcohol dehydrogenase 1, Adh1) and two chloroplast (maturase K, matK, and the trnL-F gene cluster) genes. The results of phylogenetic analyses showed that all A-genome haplotypes of cultivated bananas were grouped together with those of ISEA subspecies of M. acuminata (A-genome). Similarly, the B- and S-genome haplotypes of cultivated bananas clustered with the wild species M. balbisiana (B-genome) and M. schizocarpa (S-genome), respectively. Notably, it has been shown that distinct haplotypes of each cultivar (A-genome group) were nested together to different ISEA subspecies M. acuminata. Analyses of nucleotide polymorphism in the Waxy and Adh1 genes revealed that, in comparison to the wild relatives, cultivated banana exhibited slightly lower nucleotide diversity both across all sites and specifically at silent sites. However, dramatically reduced nucleotide diversity was found at nonsynonymous sites for cultivated bananas. Conclusions/Significance Our study not only confirmed the origin of cultivated banana as arising from multiple intra- and inter-specific hybridization events, but also showed that cultivated banana may have not suffered a severe genetic bottleneck during the domestication process. Importantly, our findings

  18. Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit.

    PubMed

    Dang, Khuyen T H; Singh, Zora; Swinny, Ewald E

    2008-02-27

    The effects of different edible coatings on mango fruit ripening and ripe fruit quality parameters including color, firmness, soluble solids concentrations, total acidity, ascorbic acid, total carotenoids, fatty acids, and aroma volatiles were investigated. Hard mature green mango (Mangifera indica L. cv. Kensigton Pride) fruits were coated with aqueous mango carnauba (1:1 v/v), Semperfresh (0.6%), Aloe vera gel (1:1, v/v), or A. vera gel (100%). Untreated fruit served as the control. Following the coating, fruits were allowed to dry at room temperature and packed in soft-board trays to ripen at 21+/-1 degrees C and 55.2+/-11.1% relative humidity until the eating soft stage. Mango carnauba was effective in retarding fruit ripening, retaining fruit firmness, and improving fruit quality attributes including levels of fatty acids and aroma volatiles. Semperfresh and A. vera gel (1:1 or 100%) slightly delayed fruit ripening but reduced fruit aroma volatile development. A. vera gel coating did not exceed the commercial mango carnauba and Semperfresh in retarding fruit ripening and improving aroma volatile biosynthesis.

  19. Development of a recombinase polymerase amplification assay for the diagnosis of banana bunchy top virus in different banana cultivars.

    PubMed

    Kapoor, Reetika; Srivastava, Nishant; Kumar, Shailender; Saritha, R K; Sharma, Susheel Kumar; Jain, Rakesh Kumar; Baranwal, Virendra Kumar

    2017-09-01

    Recombinase polymerase amplification (RPA) is a rapid, isothermal amplification method with high specificity and sensitivity. In this study, an assay was developed and evaluated for the detection of banana bunchy top virus (BBTV) in infected banana plants. Three oligonucleotide primer pairs were designed from the replicase initiator protein gene sequences of BBTV to function both in RPA as well as in polymerase chain reaction (PCR). A total of 133 symptomatic as well as asymptomatic banana leaf samples from various cultivars were collected from the different regions of India and evaluated for BBTV infection using the RPA assay. BBTV was efficiently detected using crude leaf sap in RPA and the results obtained were consistent with PCR-based detection using purified DNA as template. To our knowledge, this is the first report of reliable diagnosis of BBTV infection by RPA using crude leaf sap as a template.

  20. Detection and Viability of Lactococcus lactis throughout Cheese Ripening

    PubMed Central

    Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese. PMID:25503474

  1. Changes in proteins during the ripening of Spanish dried beef 'Cecina'.

    PubMed

    García, I; Díez, V; Zumalacárregui, J M

    1997-08-01

    Changes in the solubility of sarcoplasmic and myofibrillar proteins were tracked in Semitendinosus and Rectus femoris muscles during the ripening process of Spanish 'Cecina'. The extractability of both types of proteins decreased during the ripening. This phenomenon was more marked in the initial stages of processing. Electrophoretic studies of the myofibrillar proteins showed the virtual disappearance of the myosin heavy chain, troponin C and myosin light chain 2 from the smoking phase onward and the appearance of three components of molecular weight of about 65, 70 and 75 kda during ripening. The remaining proteins did not suffer appreciable changes.

  2. Diversity of Lactic Acid Bacteria Associated with Banana Fruits in Taiwan.

    PubMed

    Chen, Yi-Sheng; Liao, Yu-Jou; Lan, Yi-Shan; Wu, Hui-Chung; Yanagida, Fujitoshi

    2017-04-01

    Banana is a popular fruit worldwide. The lactic acid bacteria (LAB) microflora in banana fruits has not been studied in detail. A total of 164 LAB were isolated from banana fruits in Taiwan. These isolates were initially divided into nine groups (r1 to r9) using restriction fragment length polymorphism analysis and 16S ribosomal DNA sequencing. Isolates belonging to Lactobacillus plantarum group were further divided into three additional groups using multiplex PCR assay targeting the recA gene. The most common bacterial genera found in banana fruits were Lactobacillus and Weissella. The distribution of LAB indicated that, in most cases, neighboring regions shared common strains, but there were still some differences between regions. On the basis of phylogenetic analysis of 16S rRNA, rpoA, and pheS gene sequences, two strains included in the genera Lactobacillus were identified as potential novel species or subspecies. In addition, a total 36 isolates were found to have bacteriocin-producing abilities. These results suggest that various LAB are associated with banana fruits in Taiwan. This is the first report describing the distribution and varieties of LAB associated with banana fruits. In addition, one potential novel LAB species was also found in this study.

  3. Molecular Characterization of Geographically Different Banana bunchy top virus Isolates in India.

    PubMed

    Selvarajan, R; Mary Sheeba, M; Balasubramanian, V; Rajmohan, R; Dhevi, N Lakshmi; Sasireka, T

    2010-10-01

    Banana bunchy top disease (BBTD) caused by Banana bunchy top virus (BBTV) is one of the most devastating diseases of banana and poses a serious threat for cultivars like Hill Banana (Syn: Virupakshi) and Grand Naine in India. In this study, we have cloned and sequenced the complete genome comprised of six DNA components of BBTV infecting Hill Banana grown in lower Pulney hills, Tamil Nadu State, India. The complete genome sequence of this hill banana isolate showed high degree of similarity with the corresponding sequences of BBTV isolates originating from Lucknow, Uttar Pradesh State, India, and from Fiji, Egypt, Pakistan, and Australia. In addition, sixteen coat protein (CP) and thirteen replicase genes (Rep) sequences of BBTV isolates collected from different banana growing states of India were cloned and sequenced. The replicase sequences of 13 isolates showed high degree of similarity with that of South Pacific group of BBTV isolates. However, the CP gene of BBTV isolates from Shervroy and Kodaikanal hills of Tamil Nadu showed higher amino acid sequence variability compared to other isolates. Another hill banana isolate from Meghalaya state had 23 nucleotide substitutions in the CP gene but the amino acid sequence was conserved. This is the first report of the characterization of a complete genome of BBTV occurring in the high altitudes of India. Our study revealed that the Indian BBTV isolates with distinct geographical origins belongs to the South Pacific group, except Shervroy and Kodaikanal hill isolates which neither belong to the South Pacific nor the Asian group.

  4. Phylogeny of Banana Streak Virus reveals recent and repetitive endogenization in the genome of its banana host (Musa sp.).

    PubMed

    Gayral, Philippe; Iskra-Caruana, Marie-Line

    2009-07-01

    Banana streak virus (BSV) is a plant dsDNA pararetrovirus (family Caulimoviridae, genus badnavirus). Although integration is not an essential step in the BSV replication cycle, the nuclear genome of banana (Musa sp.) contains BSV endogenous pararetrovirus sequences (BSV EPRVs). Some BSV EPRVs are infectious by reconstituting a functional viral genome. Recent studies revealed a large molecular diversity of episomal BSV viruses (i.e., nonintegrated) while others focused on BSV EPRV sequences only. In this study, the evolutionary history of badnavirus integration in banana was inferred from phylogenetic relationships between BSV and BSV EPRVs. The relative evolution rates and selective pressures (d(N)/d(S) ratio) were also compared between endogenous and episomal viral sequences. At least 27 recent independent integration events occurred after the divergence of three banana species, indicating that viral integration is a recent and frequent phenomenon. Relaxation of selective pressure on badnaviral sequences that experienced neutral evolution after integration in the plant genome was recorded. Additionally, a significant decrease (35%) in the EPRV evolution rate was observed compared to BSV, reflecting the difference in the evolution rate between episomal dsDNA viruses and plant genome. The comparison of our results with the evolution rate of the Musa genome and other reverse-transcribing viruses suggests that EPRVs play an active role in episomal BSV diversity and evolution.

  5. Agronomic performance of five banana cultivars under protected cultivation

    USDA-ARS?s Scientific Manuscript database

    Banana has been grown both in open-field and protected cultivation in Turkey. So far protected cultivation is very popular due to the high yield and quality. The objective of the study was to evaluate agronomic performance of five new banana cultivars under plastic greenhouse. ‘MA 13’, ‘Williams’, ‘...

  6. A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L.

    Treesearch

    Necia B. Bair; Susan E. Meyer; Phil S. Allen

    2006-01-01

    After-ripening, the loss of dormancy under dry conditions, is associated with a decrease in mean base water potential for germination of Bromus tectorum L. seeds. After-ripening rate is a linear function of temperature above a base temperature, so that dormancy loss can be quantified using a thermal after-ripening time (TAR) model. To incorporate storage water...

  7. The Effects of Treatments on Batu Banana Flour and Percentage of Wheat Substitution on The Resistant Starch, In Vitro Starch Digestibility Content and Palatability of Cookies Made with Banana (Musa balbisiana Colla) Flour

    NASA Astrophysics Data System (ADS)

    Ratnasari, D.; Rustanti, N.; Arifan, F.; Afifah, DN

    2018-02-01

    Diabetes mellitus (DM) is the most common endocrine disease worldwide. Resistant starch is polysaccharide that is recommended for DM patient diets. One of the staple crops containing resistant starch is banana. It is the fourth most important staple crop in the world and critical for food security, best suited plant in warm, frost-free, and coastal climates area. Among banana varieties, Batu bananas (Musa balbisiana Colla) had the highest content of resistant starch (~39%), but its use as a food ingredient is limited. Inclusion of Batu banana flour into cookies manufacturing would both increase the economic value of Batu bananas and provide alternative snacks for DM patients. Here we sought to examine whether cookies made with modified Batu banana flour would be a suitable snack for DM patients. This study used a completely randomized design with two factors: substitution of Batu banana flour (25%, 50%,75%) for wheat-based flour and Batu banana flour treatment methods (no treatment, autoclaving-cooling, autoclaving-cooling-spontaneous fermentation). The resistant starch and in vitro starch digestibility levels were analyzed using two-way ANOVA and Tukey test, whereas the acceptance level was analyzed by Friedman and Wilcoxon tests. The content of resistant starch and in vitro starch digestibility of the different treatments ranged from 3.10 to 15.79% and 16.03 to 52.59%, respectively. Both factors differed significantly (p<0.05) with respect to Batu banana flour substitution, but not to processing method (p>0.05). Meanwhile, palatability in terms of color, aroma, texture, and flavor differed significantly among the different treatments and starch contents (p<0.05). Together these results show that Batu banana flour could be a promising ingredient for the production of snacks suitable for consumption by DM patients. Keywords: Batu banana, cookies, resistant starch, in vitro starch digestibility

  8. Analysis of strawberry ripening by dynamic speckle measurements

    NASA Astrophysics Data System (ADS)

    Mulone, C.; Budini, N.; Vincitorio, F. M.; Freyre, C.; López Díaz, A. J.; Ramil Rego, A.

    2013-11-01

    This work seeks to determine the age of a fruit from observation of its dynamic speckle pattern. A mobile speckle pattern originates on the fruit's surface due to the interference of the wavefronts reflected from moving scatterers. For this work we analyzed two series of photographs of a strawberry speckle pattern, at different stages of ripening, acquired with a CMOS camera. The first day, we took ten photographs at an interval of one second. The same procedure was repeated the next day. From each series of images we extracted several statistical descriptors of pixel-to-pixel gray level variation during the observation time. By comparing these values from the first to the second day we noticed a diminution of the speckle activity. This decay demonstrated that after only one day the ripening process of the strawberry can be detected by dynamic speckle pattern analysis. For this study we employed a simple new algorithm to process the data obtained from the photographs. This algorithm allows defining a global mobility index that indicates the evolution of the fruit's ripening.

  9. Biosynthesis of CdS nanoparticles in banana peel extract.

    PubMed

    Zhou, Guang Ju; Li, Shuo Hao; Zhang, Yu Cang; Fu, Yun Zhi

    2014-06-01

    Cadmium sulfide (CdS) nanoparticles (NPs) were synthesized by using banana peel extract as a convenient, non-toxic, eco-friendly 'green' capping agent. Cadmium nitrate and sodium sulfide are main reagents. A variety of CdS NPs are prepared through changing reaction conditions (banana extracts, the amount of banana peel extract, solution pH, concentration and reactive temperature). The prepared CdS colloid displays strong fluorescence spectrum. X-ray diffraction analysis demonstrates the successful formation of CdS NPs. Fourier transform infra-red (FTIR) spectrogram indicates the involvement of carboxyl, amine and hydroxyl groups in the formation of CdS NPs. Transmission electron microscope (TEM) result reveals that the average size of the NPs is around 1.48 nm.

  10. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    PubMed Central

    Bartley, Glenn E; Ishida, Betty K

    2003-01-01

    Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion. PMID:12906715

  11. Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.

    PubMed

    Carbonell-Bejerano, Pablo; Santa María, Eva; Torres-Pérez, Rafael; Royo, Carolina; Lijavetzky, Diego; Bravo, Gema; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Antolín, M Carmen; Martínez-Zapater, José M

    2013-07-01

    Berry organoleptic properties are highly influenced by ripening environmental conditions. In this study, we used grapevine fruiting cuttings to follow berry ripening under different controlled conditions of temperature and irradiation intensity. Berries ripened at higher temperatures showed reduced anthocyanin accumulation and hastened ripening, leading to a characteristic drop in malic acid and total acidity. The GrapeGen GeneChip® combined with a newly developed GrapeGen 12Xv1 MapMan version were utilized for the functional analysis of berry transcriptomic differences after 2 week treatments from veraison onset. These analyses revealed the establishment of a thermotolerance response in berries under high temperatures marked by the induction of heat shock protein (HSP) chaperones and the repression of transmembrane transporter-encoding transcripts. The thermotolerance response was coincident with up-regulation of ERF subfamily transcription factors and increased ABA levels, suggesting their participation in the maintenance of the acclimation response. Lower expression of amino acid transporter-encoding transcripts at high temperature correlated with balanced amino acid content, suggesting a transcriptional compensation of temperature effects on protein and membrane stability to allow for completion of berry ripening. In contrast, the lower accumulation of anthocyanins and higher malate metabolization measured under high temperature might partly result from imbalance in the expression and function of their specific transmembrane transporters and expression changes in genes involved in their metabolic pathways. These results open up new views to improve our understanding of berry ripening under high temperatures.

  12. [Subchronic toxicity testing of mold-ripened cheese].

    PubMed

    Schoch, U; Lüthy, J; Schlatter, C

    1984-08-01

    The biological effects of known mycotoxins of Penicillium roqueforti or P. camemberti and other still unknown, but potentially toxic metabolites in mould ripened cheese (commercial samples of Blue- and Camembert cheese) were investigated. High amounts of mycelium (equivalents of 100 kg cheese/man and day) were fed to mice in a subchronic feeding trial. The following parameters were determined: development of body weight, organ weights, hematology, blood plasma enzymes. No signs of adverse effects produced by cheese mycotoxins could be detected after 28 days. No still unknown toxic metabolites could be demonstrated. From these results no health hazard from the consumption of mould ripened cheese, even in high amounts, appears to exist.

  13. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions.

    PubMed

    Ioannidi, Eugenia; Kalamaki, Mary S; Engineer, Cawas; Pateraki, Irene; Alexandrou, Dimitris; Mellidou, Ifigeneia; Giovannonni, James; Kanellis, Angelos K

    2009-01-01

    L-ascorbate (the reduced form of vitamin C) participates in diverse biological processes including pathogen defence mechanisms, and the modulation of plant growth and morphology, and also acts as an enzyme cofactor and redox status indicator. One of its chief biological functions is as an antioxidant. L-ascorbate intake has been implicated in the prevention/alleviation of varied human ailments and diseases including cancer. To study the regulation of accumulation of this important nutraceutical in fruit, the expression of 24 tomato (Solanum lycopersicon) genes involved in the biosynthesis, oxidation, and recycling of L-ascorbate during the development and ripening of fruit have been characterized. Taken together with L-ascorbate abundance data, the results show distinct changes in the expression profiles for these genes, implicating them in nodal regulatory roles during the process of L-ascorbate accumulation in tomato fruit. The expression of these genes was further studied in the context of abiotic and post-harvest stress, including the effects of heat, cold, wounding, oxygen supply, and ethylene. Important aspects of the hypoxic and post-anoxic response in tomato fruit are discussed. The data suggest that L-galactose-1-phosphate phosphatase could play an important role in regulating ascorbic acid accumulation during tomato fruit development and ripening.

  14. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method.

    PubMed

    Airianah, Othman B; Vreeburg, Robert A M; Fry, Stephen C

    2016-03-01

    Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides

  15. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method

    PubMed Central

    Fry, Stephen C.

    2016-01-01

    Background and aims Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals (•OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to ‘fingerprint’ •OH-attacked polysaccharides. Methods We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during •OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Key Results Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA–pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. Conclusions GalA–pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents (•OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by •OH. The evidence shows that •OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen

  16. Expression profiling of various genes during the fruit development and ripening of mango.

    PubMed

    Pandit, Sagar S; Kulkarni, Ram S; Giri, Ashok P; Köllner, Tobias G; Degenhardt, Jörg; Gershenzon, Jonathan; Gupta, Vidya S

    2010-06-01

    Mango (Mangifera indica L. cv. Alphonso) development and ripening are the programmed processes; conventional indices and volatile markers help to determine agronomically important stages of fruit life (fruit-setting, harvesting maturity and ripening climacteric). However, more and precise markers are required to understand this programming; apparently, fruit's transcriptome can be a good source of such markers. Therefore, we isolated 18 genes related to the physiology and biochemistry of the fruit and profiled their expression in developing and ripening fruits, flowers and leaves of mango using relative quantitation PCR. In most of the tissues, genes related to primary metabolism, abiotic stress, ethylene response and protein turnover showed high expression as compared to that of the genes related to flavor production. Metallothionin and/or ethylene-response transcription factor showed highest level of transcript abundance in all the tissues. Expressions of mono- and sesquiterpene synthases and 14-3-3 lowered during ripening; whereas, that of lipoxygenase, ethylene-response factor and ubiquitin-protein ligase increased during ripening. Based on these expression profiles, flower showed better positive correlation with developing and ripening fruits than leaf. Most of the genes showed their least expression on the second day of harvest, suggesting that harvesting signals significantly affect the fruit metabolism. Important stages in the fruit life were clearly indicated by the significant changes in the expression levels of various genes. These indications complemented those from the previous analyses of fruit development, ripening and volatile emission, revealing the harmony between physiological, biochemical and molecular activities of the fruit.

  17. Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene.

    PubMed

    Guo, Jiaxuan; Wang, Shufang; Yu, Xiaoyang; Dong, Rui; Li, Yuzhong; Mei, Xurong; Shen, Yuanyue

    2018-05-01

    Polyamines (PAs) participate in many plant growth and developmental processes, including fruit ripening. However, it is not clear whether PAs play a role in the ripening of strawberry ( Fragaria ananassa ), a model nonclimacteric plant. Here, we found that the content of the PA spermine (Spm) increased more sharply after the onset of fruit coloration than did that of the PAs putrescine (Put) or spermidine (Spd). Spm dominance in ripe fruit resulted from abundant transcripts of a strawberry S -adenosyl-l-Met decarboxylase gene ( FaSAMDC ), which encodes an enzyme that generates a residue needed for PA biosynthesis. Exogenous Spm and Spd promoted fruit coloration, while exogenous Put and a SAMDC inhibitor inhibited coloration. Based on transcriptome data, up- and down-regulation of FaSAMDC expression promoted and inhibited ripening, respectively, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, polyamine content, auxin (indole-3-acetic acid [IAA]) content, abscisic acid (ABA) content, and ethylene emission. Using isothermal titration calorimetry, we found that FaSAMDC also had a high enzymatic activity with a K d of 1.7 × 10 -3 m In conclusion, PAs, especially Spm, regulate strawberry fruit ripening in an ABA-dominated, IAA-participating, and ethylene-coordinated manner, and FaSAMDC plays an important role in ripening. © 2018 American Society of Plant Biologists. All Rights Reserved.

  18. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    PubMed Central

    Ortega, Zaida; Morón, Moisés; Monzón, Mario D.; Badalló, Pere; Paz, Rubén

    2016-01-01

    Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight) at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production. PMID:28773490

  19. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants.

    PubMed

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M; Verheggen, François; Massart, Sébastien

    2017-05-16

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

  20. Biology, etiology, and control of virus diseases of banana and plantain.

    PubMed

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review. © 2015 Elsevier Inc

  1. Kinetic synergistic transitions in the Ostwald ripening processes

    NASA Astrophysics Data System (ADS)

    Sachkov, I. N.; Turygina, V. F.; Dolganov, A. N.

    2018-01-01

    There is proposed approach to mathematical description of the kinetic transitions in Ostwald ripening processes of volatile substance in nonuniformly heated porous materials. It is based upon the finite element method. There are implemented computer software. The main feature of the software is to calculate evaporation and condensation fluxes on the walls of a nonuniformly heated cylindrical capillary. Kinetic transitions are detected for three modes of volatile substances migration which are different by condensation zones location. There are controlling dimensionless parameters of the kinetic transition which are revealed during research. There is phase diagram of the Ostwald ripening process modes realization.

  2. Drying characteristics and quality of bananas under infrared radiation heating

    USDA-ARS?s Scientific Manuscript database

    Hot air (HA) drying of banana has low drying efficiency and results in undesirable product quality. The objectives of this research were to investigate the feasibility of infrared (IR) heating to improve banana drying rate, evaluate quality of the dried product, and establish models for predicting d...

  3. Characterization of Polyester Matrix Reinforced with Banana Fibers Thermal Properties by Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    de Assis, Foluke S.; Netto, Pedro A.; Margem, Frederico M.; Monteiro, Artur R. P. Junior Sergio N.

    Synthetic fibers are being replaced gradually by natural materials such as lignocellulosic fibers. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as environmental and economic. So there is a growing international interest in the use of those fibers. The banana fiber presents significant properties to be studied, but until now few thermal properties on banana fiber as reinforcement of polyester matrix were performed. The present work had as its objective to investigate, by photoacoustic spectroscopy and photothermal techniques the thermal properties of diffusivity, specific heat capacity and conductivity for polyester composites reinforced with banana fibers. In the polyester matrix will be added up to 30% in volume of continuous and aligned banana fibers. These values show that the incorporation of banana fibers in the polyester matrix changes its thermal properties.

  4. Image analysis to evaluate the browning degree of banana (Musa spp.) peel.

    PubMed

    Cho, Jeong-Seok; Lee, Hyeon-Jeong; Park, Jung-Hoon; Sung, Jun-Hyung; Choi, Ji-Young; Moon, Kwang-Deog

    2016-03-01

    Image analysis was applied to examine banana peel browning. The banana samples were divided into 3 treatment groups: no treatment and normal packaging (Cont); CO2 gas exchange packaging (CO); normal packaging with an ethylene generator (ET). We confirmed that the browning of banana peels developed more quickly in the CO group than the other groups based on sensory test and enzyme assay. The G (green) and CIE L(∗), a(∗), and b(∗) values obtained from the image analysis sharply increased or decreased in the CO group. And these colour values showed high correlation coefficients (>0.9) with the sensory test results. CIE L(∗)a(∗)b(∗) values using a colorimeter also showed high correlation coefficients but comparatively lower than those of image analysis. Based on this analysis, browning of the banana occurred more quickly for CO2 gas exchange packaging, and image analysis can be used to evaluate the browning of banana peels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  6. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.

    PubMed

    Zeng, Yunliu; Pan, Zhiyong; Wang, Lun; Ding, Yuduan; Xu, Qiang; Xiao, Shunyuan; Deng, Xiuxin

    2014-02-01

    Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post-translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome-wide mapping of in vivo phosphorylation sites in chromoplast-enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide-based affinity chromatography for phosphoprotein enrichment with LC-MS/MS. A total of 109 plastid-localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif-X analysis, two distinct types of phosphorylation sites, one as proline-directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P(3) DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high-level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening. © 2013 Scandinavian Plant Physiology Society.

  7. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice.

    PubMed

    Barman, Sumi; Sit, Nandan; Badwaik, Laxmikant S; Deka, Sankar C

    2015-06-01

    Optimization of substrate concentration, time of incubation and temperature for crude pectinase production from A. niger was carried out using Bhimkol banana (Musa balbisiana) peel as substrate. The crude pectinase produced was partially purified using ethanol and effectiveness of crude and partially purified pectinase was studied for banana juice clarification. The optimum substrate concentration, incubation time and temperature of incubation were 8.07 %, 65.82 h and 32.37 °C respectively, and the polygalacturonase (PG) activity achieved was 6.6 U/ml for crude pectinase. The partially purified enzyme showed more than 3 times of polygalacturonase activity as compared to the crude enzyme. The SDS-PAGE profile showed that the molecular weight of proteins present in the different pectinases varied from 34 to 42 kDa. The study further revealed that highest clarification was achieved when raw banana juice was incubated for 60 min with 2 % concentration of partially purified pectinase and the absorbance obtained was 0.10.

  8. Ostwald ripening theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.

    1986-01-01

    The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.

  9. Traditional Banana Diversity in Oceania: An Endangered Heritage.

    PubMed

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the

  10. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    PubMed

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  11. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening.

    PubMed

    Renato, Marta; Pateraki, Irini; Boronat, Albert; Azcón-Bieto, Joaquín

    2014-10-01

    During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages. © 2014 American Society of Plant Biologists. All Rights Reserved.

  12. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis.

    PubMed

    Dong, Chen; Hu, Huigang; Jue, Dengwei; Zhao, Qiufang; Chen, Hongliang; Xie, Jianghui; Jia, Liqiang

    2016-04-01

    The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Antioxidant and Antihyperglycemic Properties of Three Banana Cultivars (Musa spp.)

    PubMed Central

    Oboh, Ganiyu

    2016-01-01

    Background. This study sought to investigate the antioxidant and antihyperglycemic properties of Musa sapientum (Latundan banana) (MSL), Musa acuminata (Cavendish banana) (MAC), and Musa acuminate (Red Dacca) (MAR). Materials and Methods. The sugar, starch, amylose, and amylopectin contents and glycemic index (GI) of the three banana cultivars were determined. Furthermore, total phenol and vitamin C contents and α-amylase and α-glucosidase inhibitory effects of banana samples were also determined. Results. MAC and MAR had the highest starch, amylose, and amylopectin contents and estimated glycemic index (eGI) with no significant different while MSL had the lowest. Furthermore, MAR (1.07 mg GAE/g) had a higher total phenol content than MAC (0.94 mg GAE/g) and MSL (0.96 mg GAE/g), while there was no significant difference in the vitamin C content. Furthermore, MAR had the highest α-amylase (IC50 = 3.95 mg/mL) inhibitory activity while MAC had the least (IC50 = 4.27 mg/mL). Moreover, MAC and MAR inhibited glucosidase activity better than MSL (IC50 3.47 mg/mL). Conclusion. The low sugar, GI, amylose, and amylopectin contents of the three banana cultivars as well as their α-amylase and α-glucosidase inhibitory activities could be possible mechanisms and justification for their recommendation in the management of type-2 diabetes. PMID:27872791

  14. Preharvest temperature affects chilling injury in dessert bananas during storage.

    PubMed

    Bugaud, Christophe; Joannès-Dumec, Charlène; Louisor, Jacques; Tixier, Philippe; Salmon, Frédéric

    2016-05-01

    The effect of temperature on chilling injury during fruit growth was studied in a new banana hybrid CIRAD925 in which seasonal variability in chilling susceptibility was observed when fruits were stored at 13 °C. The relationship between the response to chilling (presence/absence) and the temperature during banana fruit growth was examined with a logistic regression model. An explanatory variable XN , P was defined as the mean temperature during a period, expressed in weeks, which began N week(s) after flowering and lasted P week(s). The model was calibrated with 143 bunches with a green life of 30 ± 5 days and validated with 156 bunches grown in six plots under different growing conditions. Chilling injury was best predicted by the mean temperature during the period beginning 1 week after flowering and lasting 5 weeks (X1,5 ). Above a mean temperature of 24.1 °C in the period concerned, banana fruits had a 95% probability of chilling injury at 13 °C. Below a temperature of 23.4 °C, banana fruits only had a 5% probability of chilling injury. The results provide a tool to predict chilling susceptibility in banana fruit whatever the thermal conditions in tropical regions. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Antioxidant and Antihyperglycemic Properties of Three Banana Cultivars (Musa spp.).

    PubMed

    Adedayo, Bukola C; Oboh, Ganiyu; Oyeleye, Sunday I; Olasehinde, Tosin A

    2016-01-01

    Background . This study sought to investigate the antioxidant and antihyperglycemic properties of Musa sapientum (Latundan banana) (MSL), Musa acuminata (Cavendish banana) (MAC), and Musa acuminate (Red Dacca) (MAR). Materials and Methods. The sugar, starch, amylose, and amylopectin contents and glycemic index (GI) of the three banana cultivars were determined. Furthermore, total phenol and vitamin C contents and α -amylase and α -glucosidase inhibitory effects of banana samples were also determined. Results . MAC and MAR had the highest starch, amylose, and amylopectin contents and estimated glycemic index (eGI) with no significant different while MSL had the lowest. Furthermore, MAR (1.07 mg GAE/g) had a higher total phenol content than MAC (0.94 mg GAE/g) and MSL (0.96 mg GAE/g), while there was no significant difference in the vitamin C content. Furthermore, MAR had the highest α -amylase (IC 50 = 3.95 mg/mL) inhibitory activity while MAC had the least (IC 50 = 4.27 mg/mL). Moreover, MAC and MAR inhibited glucosidase activity better than MSL (IC 50 3.47 mg/mL). Conclusion . The low sugar, GI, amylose, and amylopectin contents of the three banana cultivars as well as their α -amylase and α -glucosidase inhibitory activities could be possible mechanisms and justification for their recommendation in the management of type-2 diabetes.

  16. Artificial Ripening of Sweetgum Seeds

    Treesearch

    F. T. Bonner

    1969-01-01

    Untrained collectors of hardwood seeds often start picking the seeds too early in the year. The immature seeds germinate poorly, if at all, and nursery production suffers. In the study reported here, sweetgum (Liquidambar styraciflua L.) seeds collected in central Mississippi in mid-August were ripe. Seeds collected as early as July 19 were artificially ripened by...

  17. Evaluation of chemical parameters in soft mold-ripened cheese during ripening by mid-infrared spectroscopy.

    PubMed

    Martín-del-Campo, S T; Picque, D; Cosío-Ramírez, R; Corrieu, G

    2007-06-01

    The suitability of mid-infrared spectroscopy (MIR) to follow the evolution throughout ripening of specific physicochemical parameters in Camembert-type cheeses was evaluated. The infrared spectra were obtained directly from raw cheese samples deposited on an attenuated total reflectance crystal. Significant correlations were observed between physicochemical data, pH, acid-soluble nitrogen, nonprotein nitrogen, ammonia (NH4+), lactose, and lactic acid. Dry matter showed significant correlation only with lactose and nonprotein nitrogen. Principal components analysis factorial maps of physicochemical data showed a ripening evolution in 2 steps, from d 1 to d 7 and from d 8 to d 27, similar to that observed previously from infrared spectral data. Partial least squares regressions made it possible to obtain good prediction models for dry matter, acid-soluble nitrogen, nonprotein nitrogen, lactose, lactic acid, and NH4+ values from spectral data of raw cheese. The values of 3 statistical parameters (coefficient of determination, root mean square error of cross validation, and ratio prediction deviation) are satisfactory. Less precise models were obtained for pH.

  18. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    PubMed

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  19. Camembert-type cheese ripening dynamics are changed by the properties of wrapping films.

    PubMed

    Picque, D; Leclercq-Perlat, M N; Guillemin, H; Perret, B; Cattenoz, T; Provost, J J; Corrieu, G

    2010-12-01

    Four gas-permeable wrapping films exhibiting different degrees of water permeability (ranging from 1.6 to 500 g/m(2) per d) were tested to study their effect on soft-mold (Camembert-type) cheese-ripening dynamics compared with unwrapped cheeses. Twenty-three-day trials were performed in 2 laboratory-size (18L) respiratory-ripening cells under controlled temperature (6 ± 0.5°C), relative humidity (75 ± 2%), and carbon dioxide content (0.5 to 1%). The films allowed for a high degree of respiratory activity; no limitation in gas permeability was observed. The wide range of water permeability of the films led to considerable differences in cheese water loss (from 0.5 to 12% on d 23, compared with 15% for unwrapped cheeses), which appeared to be a key factor in controlling cheese-ripening progress. A new relationship between 2 important cheese-ripening descriptors (increase of the cheese core pH and increase of the cheese's creamy underrind thickness) was shown in relation to the water permeability of the wrapping film. High water losses (more than 10 to 12% on d 23) also were observed for unwrapped cheeses, leading to Camembert cheeses that were too dry and poorly ripened. On the other hand, low water losses (from 0.5 to 1% on d 23) led to over-ripening in the cheese underrind, which became runny as a result. Finally, water losses from around 3 to 6% on d 23 led to good ripening dynamics and the best cheese quality. This level of water loss appeared to be ideal in terms of cheese-wrapping film design. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Dynamic changes in the date palm fruit proteome during development and ripening

    PubMed Central

    Marondedze, Claudius; Gehring, Christoph; Thomas, Ludivine

    2014-01-01

    Date palm (Phoenix dactylifera) is an economically important fruit tree in the Middle East and North Africa and is characterized by large cultivar diversity, making it a good model for studies on fruit development and other important traits. Here in gel comparative proteomics combined with tandem mass spectrometry were used to study date fruit development and ripening. Total proteins were extracted using a phenol-based protocol. A total of 189 protein spots were differentially regulated (p≤0.05). The identified proteins were classified into 14 functional categories. The categories with the most proteins were ‘disease and defense’ (16.5%) and ‘metabolism’ (15.4%). Twenty-nine proteins have not previously been identified in other fleshy fruits and 64 showed contrasting expression patterns in other fruits. Abundance of most proteins with a role in abiotic stress responses increased during ripening with the exception of heat shock proteins. Proteins with a role in anthocyanin biosynthesis, glycolysis, tricarboxylic acid cycle and cell wall degradation were upregulated particularly from the onset of ripening and during ripening. In contrast, expression of pentose phosphate- and photosynthesis-related proteins decreased during fruit maturation. Although date palm is considered a climacteric species, the analysis revealed downregulation of two enzymes involved in ethylene biosynthesis, suggesting an ethylene-independent ripening of ‘Barhi’ fruits. In summary, this proteomics study provides insights into physiological processes during date fruit development and ripening at the systems level and offers a reference proteome for the study of regulatory mechanisms that can inform molecular and biotechnological approaches to further improvements of horticultural traits including fruit quality and yield. PMID:26504545

  1. Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense

    PubMed Central

    Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

  2. Influence of ripening stages on antioxidant properties of papaya fruit (Carica papaya L.)

    NASA Astrophysics Data System (ADS)

    Addai, Zuhair Radhi; Abdullah, Aminah; Mutalib, Sahilah Abd.

    2013-11-01

    Papaya (Carica papaya L. cv Eksotika) is one of the most commonly consumed tropical fruits by humans, especially Malaysians. The objective of this study was to determine the phenolic compounds and antioxidants activity in different ripening stages of papaya fruit. The fruits were harvested at five different, stages RS1, RS2, RS3, RS4, and RS5 corresponding to 12, 14, 16, 18, and 20 weeks after anthesis, respectively. Papayas fruit at five different stage of ripening were obtained from farms at Pusat Flora Cheras, JabatanPertanian and Hulu Langat Semenyih, Selangor, Malaysia. The antioxidants activity were analyzed using the total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The analyses were conducted in triplicate and the data were subjected to statistical analysis using SPSS. The results showed significant differences (P< 0.05) were found at different stages of ripening. The total phenol content TPC, TFC, FRAP and DPPH values increased significantly (P<0.05) with the ripening process. The results showed the important role of the ripening stage in increasing the antioxidant content of papaya fruits.

  3. Chemical compositions and glycemic responses to banana varieties.

    PubMed

    Hettiaratchi, U P K; Ekanayake, S; Welihinda, J

    2011-06-01

    Chemical compositions and glycemic indices of four varieties of banana (Musa spp.) (kolikuttu-Silk AAB, embul-Mysore AAB, anamalu-Gros Michel AAA, seeni kesel-Pisang Awak ABB) were determined. Silk, Gros Michel, Pisang Awak and Mysore contained the highest percentages of starch (14%), sucrose (38%), free glucose (29%) and fructose (58%) as a percentage of the total available carbohydrate content respectively. Total dietary fiber contents of four varieties ranged from 2.7 to 5.3%. Glycemic indices of Silk, Mysore, Gros Michel and Pisang Awak were 61 ± 5, 61 ± 6, 67 ± 7, 69 ± 9 and can be categorized as low against white bread as the standard. A single banana of the four varieties elicited a low glycemic load. Thus, consumption of a banana from any of these varieties can be recommended as a snack for healthy or diabetic patients who are under dietary management or pharmacological drugs to regulate blood glucose responses in between meals.

  4. Vomiting, abdominal distention and early feeding of banana (Musa paradisiaca) in neonates.

    PubMed

    Wiryo, Hananto; Hakimi, M; Wahab, A Samik; Soeparto, Pitono

    2003-09-01

    The objective of this cohort study was to assess the relationship between banana given as early solid food with the symptoms of intestinal obstruction (SIO) among neonates, in a rural community in West Lombok District, West Nusa Tenggara Province, Indonesia. Mothers having newborn infants were interviewed and 3,420 neonates were followed for 28 days. Compared with infants who were not given solid food, the relative risk (RR) for infants given food other than banana as early solid food was 1.87, 95% CI 0.48-8.24, p=0.4, while for infants given banana only as early solid food the RR was 9.15, 95% CI 1.96-42.58, p 0.0005. After adjustment for birthweight, colostrum, and breastfeeding, the odds ratio for infants given banana and the appearance of SIO was 2.99, 95% CI 2.65-5.14; p=0.0012. These data indicate that banana given as early solid food is an important risk factor for the appearance of SIO in neonates.

  5. Prototheca associated with banana.

    PubMed

    Pore, R S

    1985-06-01

    Prototheca stagnora was found to be a habitant of older harvested banana (Musa sapientum) and plantain (M. paradisiaca) stumps while P. wickerhamii colonized fresh Musa sp. stumps and flower bract water of Heliconia sp. While Prototheca sp. were known to habituate woody plants, this is the first evidence that herbaceous plants also serve as habitats.

  6. BANANAS: providing child care services to a multi-ethnic community.

    PubMed

    Vu, Catherine M; Schwartz, Sara L; Austin, Michael J

    2011-01-01

    BANANAS, Inc. is a nonprofit organization that has provided child care resource and referral services for over 35 years. BANANAS emerged as a grassroots effort initiated by a group of female volunteers who sought to build a network of women with children who needed childcare. As the organization developed, its leaders recognized and responded to additional needs, including resource and information sharing, workshops and classes, and political advocacy. Beginning as a collective, BANANAS has grown into a multifaceted service delivery and advocacy nonprofit operating with an annual budget of $12 million. This history of the agency reflects the development of a unique community-based effort, its challenges and rewards, and the multiple successes that this pioneering nonprofit has experienced.

  7. Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.).

    PubMed

    Hailu, M; Seyoum Workneh, T; Belew, D

    2014-11-01

    This study was carried out to evaluate the effect of packaging materials on the shelf life of three banana cultivars. Four packaging materials, namely, perforated low density polyethylene bag, perforated high density polyethylene bag, dried banana leaf, teff straw and no packaging materials (control) were used with three banana cultivars, locally known as, Poyo, Giant Cavendish and Williams I. The experiment was carried out in Randomized Complete Block Design in a factorial combination with three replications. Physical parameters including weight loss, peel colour, peel thickness, pulp thickness, pulp to peel ratio, pulp firmness, pulp dry matter, decay, loss percent of marketability were assessed every 3 days. Banana remained marketable for 36 days in the high density polyethylene and low density polyethylene bags, and for 18 days in banana leaf and teff straw packaging treatments. Unpackaged fruits remained marketable for 15 days only. Fruits that were not packaged lost their weight by 24.0 % whereas fruits packaged in banana leaf and teff straw became unmarketable with final weight loss of 19.8 % and 20.9 %, respectively. Packaged fruits remained well until 36th days of storage with final weight loss of only 8.2 % and 9.20 %, respectively. Starting from green mature stage, the colour of the banana peel changed to yellow and this process was found to be fast for unpackaged fruits. Packaging maintained the peel and the pulp thickness, firmness, dry matter and pulp to peel ratio was kept lower. Decay loss for unpackaged banana fruits was16 % at the end of date 15, whereas the decay loss of fruits packaged using high density and low density polyethylene bags were 43.0 % and 41.2 %, respectively at the end of the 36th day of the experiment. It can, thus, be concluded that packaging of banana fruits in high density and low density polyethylene bags resulted in longer shelf life and improved quality of the produce followed by packaging in dried banana leaf

  8. How chemical ripeners of sugarcane affect the starch and color quality of juices

    USDA-ARS?s Scientific Manuscript database

    The application of chemical ripeners is an important component of sugarcane cultivation management to increase sucrose concentrations. Unfortunately, very little information is available concerning the effects of ripener on quality parameters which are critical to both factory and refinery processi...

  9. Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1

    PubMed Central

    Rose, Jocelyn K.C.; Hadfield, Kristen A.; Labavitch, John M.; Bennett, Alan B.

    1998-01-01

    The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon. PMID:9625688

  10. Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq.

    PubMed

    Shen, Yan Hong; Lu, Bing Guo; Feng, Li; Yang, Fei Ying; Geng, Jiao Jiao; Ming, Ray; Chen, Xiao Jing

    2017-08-31

    Since papaya is a typical climacteric fruit, exogenous ethylene (ETH) applications can induce premature and quicker ripening, while 1-methylcyclopropene (1-MCP) slows down the ripening processes. Differential gene expression in ETH or 1-MCP-treated papaya fruits accounts for the ripening processes. To isolate the key ripening-related genes and better understand fruit ripening mechanisms, transcriptomes of ETH or 1-MCP-treated, and non-treated (Control Group, CG) papaya fruits were sequenced using Illumina Hiseq2500. A total of 18,648 (1-MCP), 19,093 (CG), and 15,321 (ETH) genes were detected, with the genes detected in the ETH-treatment being the least. This suggests that ETH may inhibit the expression of some genes. Based on the differential gene expression (DGE) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, 53 fruit ripening-related genes were selected: 20 cell wall-related genes, 18 chlorophyll and carotenoid metabolism-related genes, four proteinases and their inhibitors, six plant hormone signal transduction pathway genes, four transcription factors, and one senescence-associated gene. Reverse transcription quantitative PCR (RT-qPCR) analyses confirmed the results of RNA-seq and verified that the expression pattern of six genes is consistent with the fruit senescence process. Based on the expression profiling of genes in carbohydrate metabolic process, chlorophyll metabolism pathway, and carotenoid metabolism pathway, the mechanism of pulp softening and coloration of papaya was deduced and discussed. We illustrate that papaya fruit softening is a complex process with significant cell wall hydrolases, such as pectinases, cellulases, and hemicellulases involved in the process. Exogenous ethylene accelerates the coloration of papaya changing from green to yellow. This is likely due to the inhibition of chlorophyll biosynthesis and the α-branch of carotenoid metabolism. Chy-b may play an important role in the yellow color of papaya

  11. Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango

    PubMed Central

    Singh, Rajesh K.; Ali, Sharique A.; Nath, Pravendra; Sane, Vidhu A.

    2011-01-01

    Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit. PMID:21430290

  12. Domestication, Genomics and the Future for Banana

    PubMed Central

    Heslop-Harrison, J. S.; Schwarzacher, Trude

    2007-01-01

    Background Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n = 3x = 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. Scope There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of genetics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. Conclusions There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield. Within the genepool of cultivars and wild species there are genetic resistances to many stresses. Genomic approaches are now rapidly advancing in Musa and have the prospect of helping enable banana to maintain and increase its importance as a staple food and cash crop through integration of genetical, evolutionary and structural data, allowing targeted breeding, transformation and efficient use of Musa biodiversity in the future. PMID:17766312

  13. Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene.

    PubMed

    Paul, Jean-Yves; Khanna, Harjeet; Kleidon, Jennifer; Hoang, Phuong; Geijskes, Jason; Daniells, Jeff; Zaplin, Ella; Rosenberg, Yvonne; James, Anthony; Mlalazi, Bulukani; Deo, Pradeep; Arinaitwe, Geofrey; Namanya, Priver; Becker, Douglas; Tindamanyire, James; Tushemereirwe, Wilberforce; Harding, Robert; Dale, James

    2017-04-01

    Vitamin A deficiency remains one of the world's major public health problems despite food fortification and supplements strategies. Biofortification of staple crops with enhanced levels of pro-vitamin A (PVA) offers a sustainable alternative strategy to both food fortification and supplementation. As a proof of concept, PVA-biofortified transgenic Cavendish bananas were generated and field trialed in Australia with the aim of achieving a target level of 20 μg/g of dry weight (dw) β-carotene equivalent (β-CE) in the fruit. Expression of a Fe'i banana-derived phytoene synthase 2a (MtPsy2a) gene resulted in the generation of lines with PVA levels exceeding the target level with one line reaching 55 μg/g dw β-CE. Expression of the maize phytoene synthase 1 (ZmPsy1) gene, used to develop 'Golden Rice 2', also resulted in increased fruit PVA levels although many lines displayed undesirable phenotypes. Constitutive expression of either transgene with the maize polyubiquitin promoter increased PVA accumulation from the earliest stage of fruit development. In contrast, PVA accumulation was restricted to the late stages of fruit development when either the banana 1-aminocyclopropane-1-carboxylate oxidase or the expansin 1 promoters were used to drive the same transgenes. Wild-type plants with the longest fruit development time had also the highest fruit PVA concentrations. The results from this study suggest that early activation of the rate-limiting enzyme in the carotenoid biosynthetic pathway and extended fruit maturation time are essential factors to achieve optimal PVA concentrations in banana fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid*

    PubMed Central

    Kang, Guo-zhang; Wang, Zheng-xun; Xia, Kuai-fei; Sun, Gu-chou

    2007-01-01

    Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 °C) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 °C could be a type of stress. During 3 d of exposure to 7 °C chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion: SA could provide some protection for cell structure of chilling-stressed banana seedling. PMID:17444604

  15. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4.

    PubMed

    Dale, James; James, Anthony; Paul, Jean-Yves; Khanna, Harjeet; Smith, Mark; Peraza-Echeverria, Santy; Garcia-Bastidas, Fernando; Kema, Gert; Waterhouse, Peter; Mengersen, Kerrie; Harding, Robert

    2017-11-14

    Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.

  16. Optimization of extraction parameters on the antioxidant properties of banana waste.

    PubMed

    Toh, Pui Yee; Leong, Fei Shan; Chang, Sui Kiat; Khoo, Hock Eng; Yim, Hip Seng

    2016-01-01

    Banana is grown worldwide and consumed as ripe fruit or used for culinary purposes. Peels form about 18-33% of the whole fruit and are discarded as a waste product. With a view to exploiting banana peel as a source of valuable compounds, this study was undertaken to evaluate the effect of different extraction parameters on the antioxidant activities of the industrial by-product of banana waste (peel). Influence of different extraction parameters such as types of solvent, percentages of solvent, and extraction times on total phenolic content (TPC) and antioxidant activity of mature and green peels of Pisang Abu (PA), Pisang Berangan (PB), and Pisang Mas (PM) were investigated. The best extraction parameters were initially selected based on different percentages of ethanol (0-100% v/v), extraction time (1-5 hr), and extraction temperature (25-60°C) for extraction of antioxidants in the banana peels. Total phenolic content (TPC) was evaluated using Folin-Ciocalteu reagent assay while antioxidant activities (AA) of banana peel were accessed by DPPH, ABTS, and β-carotene bleaching (BCB) assays at optimum extraction conditions. Based on different extraction solvents and percentages of solvents used, 70% and 90% of acetone had yielded the highest TPC for the mature and green PA peels, respectively; 90% of ethanol and methanol has yielded the highest TPC for the mature and green PB peels, respectively; while 90% ethanol for the mature and green PM peels. Similar extraction conditions were found for the antioxidant activities for the banana peel assessed using DPPH assay except for green PB peel, which 70% methanol had contributed to the highest AA. Highest TPC and AA were obtained by applying 4, 1, and 2 hrs extraction for the peels of PA, PB and PM, respectively. The best extraction conditions were also used for determination of AAs using ABTS and β-carotene bleaching assays. Therefore, the best extraction conditions used have given the highest TPC and AAs. By

  17. Impact of vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening.

    PubMed

    Batool, Maryam; Nadeem, Muhammad; Imran, Muhammad; Gulzar, Nabila; Shahid, Muhammad Qamar; Shahbaz, Muhammad; Ajmal, Muhammad; Khan, Imran Taj

    2018-04-11

    Ripening of cheddar cheese is a time taking process, duration of the ripening may be as long as one year. Long ripening time is a big hindrance in the popularity of cheese in developing countries. Further, energy resources in these countries are either insufficient or very expensive. Therefore, those methods of cheese ripening should be discovered which can significantly reduce the ripening time without compromising the quality characteristics of cheddar cheese. In accelerated ripening, cheese is usually ripened at higher temperature than traditional ripening temperatures. Ripening of cheddar cheese at high temperature with the addition of vitamin E and selenium is not previously studied. This investigation aimed to study the antioxidant activity of selenium and vitamin E in accelerated ripening using cheddar cheese as an oxidation substrate. The ripening of cheddar cheese was performed at 18 °C and to prevent lipid oxidation, vitamin E and selenium were used alone and in combination. The treatments were as: cheddar cheese without any addition of vitamin E and selenium (T1), cheddar cheese added with 100 mg/kg vitamin E (T 2 ), 200 mg/kg vitamin E (T 3 ), 800 μg/kg selenium (T 4 ), 1200 μg/kg selenium (T 5 ), vitamin E 100 mg/kg + 800 μg/kg selenium (T 6 ) and vitamin E 200 mg/kg + 1200 μg/kg selenium (T 7 ). Traditional cheddar cheese ripne ripened at 4-6 °C for 9 months was used as positive control. Cheese samples were ripened at 18 °C for a period of 12 weeks and analyzed for chemical and oxidative stability characteristics at 0, 6 and 12 weeks of storage. All these treatments were compared with a cheddar cheese without vitamin E, selenium and ripened at 4 °C or 12 weeks. Vacuum packaged cheddar cheese was ripened 18 °C for a period of 12 weeks and analyzed for chemical and oxidative stability characteristics at 0, 4 and 8 weeks of storage period. Addition of Vitamin E and selenium did not have any effect on moisture, fat and

  18. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early

  19. Ripe Banana Flour as a Source of Antioxidants in Layer and Sponge Cakes.

    PubMed

    Segundo, Cristina; Román, Laura; Lobo, Manuel; Martinez, Mario M; Gómez, Manuel

    2017-12-01

    About one-fifth of all bananas harvested become culls that are normally disposed of improperly. However, ripe banana pulp contains significant amounts of fibre and polyphenol compounds as well as a high content of simple sugars (61.06 g/100 g), making it suitable for sucrose replacement in bakery products. This work studied the feasibility of incorporating ripe banana flour (20 and 40% of replacement) in cake formulation. Physical, nutritional and sensory attributes of sponge and layer cakes were evaluated. The inclusion of ripe banana flour generally led to an increased batter consistency that hindered cake expansion, resulting in a slightly lower specific volume and higher hardness. This effect was minimised in layer cakes where differences in volume were only evident with the higher level of replacement. The lower volume and higher hardness contributed to the decline of the acceptability observed in the sensory test. Unlike physical attributes, the banana flour inclusion significantly improved the nutritional properties of the cakes, bringing about an enhancement in dietary fibre, polyphenols and antioxidant capacity (up to a three-fold improvement in antioxidant capacity performance). Therefore, results showed that sugar replacement by ripe banana flour enhanced the nutritional properties of cakes, but attention should be paid to its inclusion level.

  20. Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus.

    PubMed

    Kiggundu, Andrew; Muchwezi, Josephine; Van der Vyver, Christell; Viljoen, Altus; Vorster, Juan; Schlüter, Urte; Kunert, Karl; Michaud, Dominique

    2010-02-01

    The general potential of plant cystatins for the development of insect-resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin-infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC-I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z-Phe-Arg-MCA-hydrolyzing (cathepsin L-like) and Z-Arg-Arg-MCA-hydrolyzing (cathepsin B-like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E-64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin-infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B-like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera. 2009 Wiley Periodicals, Inc.

  1. Traditional Banana Diversity in Oceania: An Endangered Heritage

    PubMed Central

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the

  2. Synthesis and analysis of acou-physical properties of banana biocomposite

    NASA Astrophysics Data System (ADS)

    Mishra, S. P.; Bhanupriya; Nath, G.

    2018-02-01

    The sound absorbing materials have been developed using various natural fibres which are renewable, biodegradable, recyclable and economic in nature. After the cultivation of banana fruit as its stem which is fibrous in nature has no use, it may use in various scientific applications as like as the preparation of sound absorbing materials. The suitable and proper mixture of the epoxy resin with the banana fibre gives rise to formation of the biocomposite material which is mechanically firm and tough. The EDS and SEM analysis of the sample gives an idea about the formation of closed chain in between banana fibre and epoxy in the molecular level and porous quality. The thermal conductivity gradually decreases with the increase of particle concentration and the electrical conductivity increases in the order of 10-5 which demonstrates the insulating behaviour of the prepared sample. At the higher frequencies there is a reduction of dielectric constant due to the interfacial and orientation polarisation. The intensity of sound decreases in presence of the material and the absorption coefficient rise with increase of frequency. Thus the banana fibre biocomposite material can be used as a sound absorber which behaves as thermally and electrically insulator.

  3. Strategy to increase Barangan Banana production in Kabupaten Deli Serdang

    NASA Astrophysics Data System (ADS)

    Adhany, I.; Chalil, D.; Ginting, R.

    2018-02-01

    This study was conducted to analyze internal and external factors in increasing Barangan Banana production in Kabupaten Deli Serdang. Samples were determined by snowball sampling technique and purposive sampling method. Using SWOT analysis method, this study found that there were 6 internal strategic factors and 9 external strategic factors. Among that strategic factors, support for production facilities appears as the most important internal strategic factor, while the demand for Barangan Banana. as the most important external strategic factor. Based on the importance and existing condition of these strategic factors, using support for production facilities and realization of supporting facilities with farming experience are the strategies covering strength-opportunity (SO), organizing mentoring to meet the demand for Barangan Banana are the strategies covering weakness-opportunity (WO), making use of funding support and subsidies to widen the land, using tissue culture seeds and facilities and infrastructures are the strategies covering strength-threat (ST), increas the funding support to widen the land, the use of tissue culture seeds and facilities and infrastructures are the strategies covering weakness-threat (WT) are discussed and proposed to increase Barangan Banana productivity in Kabupaten Deli Serdang.

  4. Sheep fed with banana leaf hay reduce ruminal protozoa population.

    PubMed

    Freitas, Cláudio Eduardo Silva; Duarte, Eduardo Robson; Alves, Dorismar David; Martinele, Isabel; D'Agosto, Marta; Cedrola, Franciane; de Moura Freitas, Angélica Alves; Dos Santos Soares, Franklin Delano; Beltran, Makenzi

    2017-04-01

    A ciliate protozoa suppression can reduce methane production increasing the energy efficiency utilization by ruminants. The physicochemical characteristics of rumen fluid and the profile of the rumen protozoa populations were evaluated for sheep fed banana leaf hay in replacement of the Cynodon dactylon cv. vaqueiro hay. A total of 30 male sheep were raised in intensive system during 15 days of adaptation and 63 days of experimental period. The animals were distributed in a completely randomized design that included six replicates of five treatments with replacement levels (0, 25, 50, 75, and 100%) of the grass vaquero for the banana leaf hay. Samples of fluid were collected directly from the rumen with sterile catheters. Color, odor, viscosity, and the methylene blue reduction potential (MBRP) were evaluated and pH estimated using a digital potentiometer. After decimal dilutions, counts of genus protozoa were performed in Sedgewick Rafter chambers. The averages of pH, MBRP, color, odor, and viscosity were not influenced by the inclusion of the banana leaf hay. However, the total number of protozoa and Entodinium spp. population significantly decreased at 75 and 100% inclusions of banana leaf hay as roughage.

  5. Green banana pasta: an alternative for gluten-free diets.

    PubMed

    Zandonadi, Renata Puppin; Botelho, Raquel Braz Assunção; Gandolfi, Lenora; Ginani, Janini Selva; Montenegro, Flávio Martins; Pratesi, Riccardo

    2012-07-01

    The objective of this study was to develop and analyze a gluten-free pasta made with green banana flour. The study was divided into five steps: preparation/selection, chemical, sensory, technological, and statistical analysis. The modified sample presented greater acceptance (84.5% for celiac individuals and 61.2% for nonceliac) than standard samples (53.6% for nonceliac individuals). There was no significant difference between the modified and the standard samples in terms of appearance, aroma, flavor, and overall quality. The modified pastas presented approximately 98% less lipids. Green bananas are considered a subproduct of low commercial value with little industrial use. The possibility of developing gluten-free products with green banana flour can expand the product supply for people with celiac disease and contribute to a more diverse diet. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  6. Formation of early and advanced Maillard reaction products correlates to the ripening of cheese.

    PubMed

    Spanneberg, Robert; Salzwedel, Grit; Glomb, Marcus A

    2012-01-18

    The present study deals with the characterization of the ripening of cheese. A traditional German acid curd cheese was ripened under defined conditions at elevated temperature, and protein and amino acid modifications were investigated. Degree of proteolysis and analysis of early [Amadori compound furosine (6)] and advanced [N(ε)-carboxymethyllysine (4), N(ε)-carboxyethyllysine (5)] Maillard reaction products confirmed the maturation to proceed from the rind to the core of the cheese. Whereas 6 was decreased, 4 and 5 increased over time. Deeper insight into the Maillard reaction during the ripening of cheese was achieved by the determination of selected α-dicarbonyl compounds. Especially methylglyoxal (2) showed a characteristic behavior during storage of the acid curd cheese. Decrease of this reactive structure was directly correlated to the formation of 5. To extend the results of experimental ripening to commercial cheeses, different aged Gouda types were investigated. Maturation times of the samples ranged from 6 to 8 weeks (young) to more than 1 year (aged). Again, increase of 5 and decrease of 2 were able to describe the ripening of this rennet coagulated cheese. Therefore, both chemical parameters are potent markers to characterize the degree of maturation, independent of coagulation.

  7. Resistant starch in Micronesian banana cultivars offers health benefits.

    PubMed

    Thakorlal, J; Perera, C O; Smith, B; Englberger, L; Lorens, A

    2010-04-01

    Resistant Starch (RS) is a type of starch that is resistant to starch hydrolyzing enzymes in the stomach and thus behaves more like dietary fibre. RS has been shown to have beneficial effects in disease prevention including modulation of glycaemic index diabetes, cholesterol lowering capability and weight management, which are critically important for many people in the Federated States of Micronesia. Green bananas are known to contain substantial concentrations of RS and are a common part of the Micronesian diet. Therefore the aim of this study was to determine the RS content in banana cultivars from Pohnpei, Micronesia: Daiwang, Inahsio, Karat, Utin Kerenis and Utin Ruk, for which no such information was available. Utin Kerenis, Inahsio and Utin Ruk were found to contain the highest amounts of RS. The fate of RS after incorporation into a food product (i.e., pancakes) was also studied and a significant reduction in the RS content was found for each cultivar after cooking. Microscopy of the banana samples indicated that the overall morphology of the cultivars was similar. In conclusion, green banana, including these varieties, should be promoted in Micronesia and other places for their rich RS content and related health benefits including diabetes control. Further research is needed to more clearly determine the effects of cooking and food processing on RS.

  8. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.

    PubMed

    Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J

    2015-11-05

    Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Iron absorption in raw and cooked bananas: A field study using stable isotopes in women

    USDA-ARS?s Scientific Manuscript database

    Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Thirty women (34.9 +/- 6.6 years...

  10. Determination of thiamethoxam residues in banana stem and fruit through LC-MS/MS.

    PubMed

    Suganthi, A; Nikita, S A; Kousika, J; Bhuvaneswari, K; Sridharan, S

    2018-04-18

    An analytical method based on liquid chromatography coupled with mass spectroscopy/mass spectroscopy was developed and validated for the determination of thiamethoxam residues in banana fruit and stem tissue samples. In this study, Waters Alliance LC and Acquity TQD were used with an electrospray ionization interface in the positive ion mode. An isocratic flow of 0.5% HCOOH in water and 0.05% HCOOH in CH 3 CN was used for separation. Thiamethoxam residue was extracted from the samples using CH 3 CN and a dispersive solid-phase extraction method was used for subsequent cleanup. Linearity studies were conducted between 0.001 and 0.1 μg mL -1 of standard solution with three replicates for each concentration. Satisfactory recoveries (107.21 to 115.16% and 90.94 to 109.22%) and high precision (relative standard deviations of 3.71 to 12.83% and 3.24 to 10.78%) were obtained for the banana stem and banana fruit matrix, respectively. The lower limits of detection and quantification achieved were 0.002 and 0.008 μg g -1 for banana stem and 0.001and 0.005 μg g -1 for banana fruit, respectively. The developed method was used to analyze the banana stem and fruit samples collected from thiamethoxam-treated fields and stems from the local market.

  11. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    PubMed

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own

  12. A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite

    NASA Astrophysics Data System (ADS)

    Kumari, Sanju; Rai, Bhuvneshwar; Kumar, Gulshan

    2018-02-01

    Fiber reinforced polymer composites are used for building and structural applications due to their high strength. In conventional composites both the binder and the reinforcing fibers are synthetic or either one of the material is natural. In the present study coagulum of Euphorbia royleana has been used for replacing polyester resinas binder in polyester banana composite. Euphorbia coagulum (driedlatex) is rich in resinous mass (60-80%), which are terpenes and polyisoprene (10-20%). Effect of varying percentage of coagulum content on various physico-mechanical properties of polyester-banana composites has been studied. Since banana fiber is sensitive to water due to presence of polar group, banana composite undergoes delamination and deterioration under humid condition. Alkali treated banana fiber along with coagulum content has improved overall mechanical properties and reduction in water absorption. The best physico-mechanical properties have been achieved on replacing 40% of polyester resin by coagulum. An increase of 50% in bending strength, 30% bending modulus and 45% impact strength as well as 68% decrease in water absorption was observed. Incorporation of 20% ATH as flame retardant in coagulum modified banana polyester composite enhanced limiting oxygen index from 20.6 to 26.8% and smoke density reduced up to 40%. This study presents the possibility of utilization of renewable materials for environmental friendly composite development as well as to find out alternative feedstock for petroleum products. Developed Euphorbia latex modified banana polyester composites can have potential utility in hardboard, partition panel, plywood and automotive etc.

  13. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana.

    PubMed

    Tripathi, Jaindra N; Oduor, Richard O; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.

  14. Molecular characterization of Banana streak virus isolate from Musa Acuminata in China.

    PubMed

    Zhuang, Jun; Wang, Jian-Hua; Zhang, Xin; Liu, Zhi-Xin

    2011-12-01

    Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and -95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.

  15. Phosphate fertilization changes the characteristics of 'Maçã' banana starch.

    PubMed

    Mesquita, Camila de Barros; Garcia, Émerson Loli; Bolfarini, Ana Carolina Batista; Leonel, Sarita; Franco, Célia Maria L; Leonel, Magali

    2018-06-01

    The unripe banana has been studied as a potential source of starch for use in various applications. Considering the importance of phosphorus in the biosynthesis of the starch and also the interference of this mineral in starch properties, in this study it was evaluated the effect of rates of phosphate fertilizer applied in the cultivation of 'Maçã' banana on the characteristics of the starch. Starches extracted from fruits from different treatments were analyzed for morphological characteristics, X-ray diffraction pattern, relative crystallinity, granule size, amylose, resistant starch and phosphorus levels, as well as, for pasting and thermal properties. Results showed that the phosphate fertilization has interference on the characteristics of the banana starch led to increase of phosphorus content and size of the granules, reduction of crystallinity and resistant starch content, decrease of viscosity peak, breakdown, final viscosity, setback, transitions temperatures and enthalpy. These changes caused by phosphate fertilizer conditions can be increase the applications of the 'Maçã' banana starch. Copyright © 2018. Published by Elsevier B.V.

  16. Nanocomposites of rice and banana flours blend with montmorillonite: partial characterization.

    PubMed

    Rodríguez-Marín, María L; Bello-Pérez, Luis A; Yee-Madeira, Hernani; Zhong, Qixin; González-Soto, Rosalía A

    2013-10-01

    Rice and banana flours are inexpensive starchy materials that can form films with more improved properties than those made with their starch because flour and starch present different hydrophobicity. Montmorillonite (MMT) can be used to further improve the properties of starch-based films, which has not received much research attention for starchy flours. The aim of this work was to evaluate the mechanical and barrier properties of nanocomposite films of banana and rice flours as matrix material with addition of MMT as a nanofiller. MMT was modified using citric acid to produce intercalated structures, as verified by the X-ray diffraction pattern. The intercalated MMT was blended with flour slurries, and films were prepared by casting. Nanocomposite films of banana and rice flours presented an increase in the tensile at break and elongation percentage, respectively, more than their respective control films without MMT. This study showed that banana and rice flours could be alternative raw materials to use in making nanocomposite films. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effects of Green Banana Flour on the Physical, Chemical and Sensory Properties of Ice Cream.

    PubMed

    Yangılar, Filiz

    2015-09-01

    In the present study, possible effects of the addition of banana flour at different mass fractions (1 and 2%) are investigated on physical (overrun, viscosity), chemical (dry matter, fat and ash content, acidity, pH, water and oil holding capacity and colour), mineral content (Ca, K, Na, P, S, Mg, Fe, Mn, Zn and Ni) and sensory properties of ice cream. Fibre--rich banana pieces were found to contain 66.8 g per 100 g of total dietary fibre, 58.6 g per 100 g of which were insoluble dietary fibre, while 8.2 g per 100 g were soluble dietary fibre. It can be concluded from these results that banana is a valuable dietary fibre source which can be used in food production. Flour obtained from green banana pulp and peel was found to have significant (p<0.05) effect on the chemical composition of ice creams. Sulphur content increased while calcium content decreased in ice cream depending on banana flour content. Sensory results indicated that ice cream sample containing 2% of green banana pulp flour received the highest score from panellists.

  18. Hyperkalemia and hyperdopaminemia induced by an obsessive eating of banana in an anorexia nervosa adolescent.

    PubMed

    Tazoe, Mami; Narita, Masaaki; Sakuta, Ryoichi; Nagai, Toshiro; Narita, Naoko

    2007-07-01

    Banana is known as a dopamine-rich and potassium-rich food, however no previous data regarding biochemical or psychological alteration induced by excess intake of banana has been reported. We have experienced an adolescent female case of Anorexia nervosa (AN) who denied eating anything but maximum 20 bananas and less than 500 ml mineral water per day for more than two years. During the period of massive banana eating habit, she showed increase of serum potassium (from 4.7 mEq/l to 6.1 mEq/l) and whole blood dopamine (from 11 ng/ml to 210 ng/ml; normal range 0.5-6.2 ng/ml), and obvious dysthymia that is inexplicable only by the pathology of AN. When the patient resumed other food ingestion after 26 months of obsessive and restricted eating of banana, the abnormalities in her blood data and her psychological state were all corrected toward normal. We conclude that in this case, the obsessive and restricted habit of banana ingestion resulted in hyperkalemia, hyperdopaminemia, and psychological change.

  19. Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit

    PubMed Central

    Liu, Weixin; Xu, Biyu; Jin, Zhiqiang

    2014-01-01

    Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384

  20. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    PubMed

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis).

    PubMed

    Yu, Keqin; Xu, Qiang; Da, Xinlei; Guo, Fei; Ding, Yuduan; Deng, Xiuxin

    2012-01-10

    The transcriptome of the fruit pulp of the sweet orange variety Anliu (WT) and that of its red fleshed mutant Hong Anliu (MT) were compared to understand the dynamics and differential expression of genes expressed during fruit development and ripening. The transcriptomes of WT and MT were sampled at four developmental stages using an Illumina sequencing platform. A total of 19,440 and 18,829 genes were detected in MT and WT, respectively. Hierarchical clustering analysis revealed 24 expression patterns for the set of all genes detected, of which 20 were in common between MT and WT. Over 89% of the genes showed differential expression during fruit development and ripening in the WT. Functional categorization of the differentially expressed genes revealed that cell wall biosynthesis, carbohydrate and citric acid metabolism, carotenoid metabolism, and the response to stress were the most differentially regulated processes occurring during fruit development and ripening. A description of the transcriptomic changes occurring during fruit development and ripening was obtained in sweet orange, along with a dynamic view of the gene expression differences between the wild type and a red fleshed mutant. © 2012 Yu et al; licensee BioMed Central Ltd.

  2. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  3. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    PubMed

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.

    PubMed

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R

    2017-03-01

    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.

  5. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels.

    PubMed

    Pelissari, Franciele Maria; Andrade-Mahecha, Margarita María; Sobral, Paulo José do Amaral; Menegalli, Florencia Cecilia

    2017-11-01

    Cellulose nanofibers were isolated from banana peel using a combination of chemical and mechanical treatments with different number of passages through the high-pressure homogenizer (0, 3, 5, and 7 passages). New nanocomposites were then prepared from a mixed suspension of banana starch and cellulose nanofibers using the casting method and the effect of the addition of these nanofibers on the properties of the resulting nanocomposites was investigated. The cellulose nanofibers homogeneously dispersed in the starch matrix increased the glass transition temperature, due to the strong intermolecular interactions occurring between the starch and cellulose. The nanocomposites exhibited significantly increased the tensile strength, Young's modulus, water-resistance, opacity, and crystallinity as the number of passages through the homogenizer augmented. However, a more drastic mechanical treatment (seven passages) caused defects in nanofibers, deteriorating the nanocomposite properties. The most suitable mechanical treatment condition for the preparation of cellulose nanofibers and the corresponding nanocomposite was five passages through the high-pressure homogenizer. In general, the cellulose nanofibers improved the features of the starch-based material and are potentially applicable as reinforcing elements in a variety of polymer composites. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Bacterial Diseases of Bananas and Enset: Current State of Knowledge and Integrated Approaches Toward Sustainable Management

    PubMed Central

    Blomme, Guy; Dita, Miguel; Jacobsen, Kim Sarah; Pérez Vicente, Luis; Molina, Agustin; Ocimati, Walter; Poussier, Stephane; Prior, Philippe

    2017-01-01

    Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis) and Fusarium wilt (Fusarium oxysporum f. sp. cubense). However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1) Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis); (2) Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3) Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi), bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca). Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed). This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset. PMID:28785275

  7. Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening.

    PubMed

    Duru, Ilhan Cem; Laine, Pia; Andreevskaya, Margarita; Paulin, Lars; Kananen, Soila; Tynkkynen, Soile; Auvinen, Petri; Smolander, Olli-Pekka

    2018-05-19

    In Swiss-type cheeses, characteristic nut-like and sweet flavor develops during the cheese ripening due to the metabolic activities of cheese microbiota. Temperature changes during warm and cold room ripening, and duration of ripening can significantly change the gene expression of the cheese microbiota, which can affect the flavor formation. In this study, a metagenomic and metatranscriptomic analysis of Swiss-type Maasdam cheese was performed on samples obtained during ripening in the warm and cold rooms. We reconstructed four different bacterial genomes (Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus helveticus, and Propionibacterium freudenreichii subsp. shermanii strain JS) from the Maasdam cheese to near completeness. Based on the DNA and RNA mean coverage, Lc. lactis strongly dominated (~80-90%) within the cheese microbial community. Genome annotation showed the potential for the presence of several flavor forming pathways in these species, such as production of methanethiol, free fatty acids, acetoin, diacetyl, acetate, ethanol, and propionate. Using the metatranscriptomic data, we showed that, with the exception of Lc. lactis, the central metabolism of the microbiota was downregulated during cold room ripening suggesting that fewer flavor compounds such as acetoin and propionate were produced. In contrast, Lc. lactis genes related to the central metabolism, including the vitamin biosynthesis and homolactic fermentation, were upregulated during cold room ripening. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    PubMed

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as

  9. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    PubMed Central

    2010-01-01

    Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric

  10. Hypoxia and PGE2 Regulate MiTF-CX During Cervical Ripening

    PubMed Central

    Hari Kishore, Annavarapu; Li, Xiang-Hong

    2012-01-01

    The mechanisms by which the cervix remains closed during the massive uterine expansion of pregnancy are unknown. IL-8 is important for recruitment of immune cells into the cervical stroma, matrix remodeling, and dilation of the cervix during labor. Previously, we have shown that several cytokine genes transcriptionally repressed in the cervix during gestation are activated during cervical ripening and dilation. IL-8 gene expression is repressed in cervical stromal cells during pregnancy by the transcription factor microphthalmia-associated transcription factor (MiTF-CX). Here, we tested the hypothesis that hypoxia and the transcription factor hypoxia inducible factor-1α (HIF-1α) may regulate MiTF-CX and cervical ripening. Using tissues from women during pregnancy before and after cervical ripening, we show that, during cervical ripening, HIF-1α was stabilized and relocalized to the nucleus. Further, we found that hypoxia and two hypoxia mimetics that stabilize HIF-1α activated the transcriptional repressor differentiated embryo chondrocyte-expressed gene 1, which bound to sites in the MiTF-CX promoter crucial for its positive autoregulation. Ectopic overexpression of MiTF-CX abrogated hypoxia-induced up-regulation of IL-8 gene expression. We also show that activation of HIF-1α induced cyclooxygenase-2 and that prostaglandin E2 repressed MiTF-CX. We conclude that hypoxia and stabilization of the transcription factor HIF-1α result in up-regulation of differentiated embryo chondrocyte-expressed gene 1, loss of MiTF, and absence of MiTF binding to the IL-8 promoter, which in turn leads to up-regulation of IL-8 gene expression. Hypoxia also up-regulated cyclooxygenase-2, leading to prostaglandin E2-mediated loss of MiTF in cervical stromal cells. The results support a pivotal role for hypoxia and HIF-1α in the cervical ripening process during pregnancy. PMID:23144021

  11. Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene

    PubMed Central

    Johnston, Jason W.; Gunaseelan, Kularajathaven; Pidakala, Paul; Wang, Mindy; Schaffer, Robert J.

    2009-01-01

    In this study, it is shown that anti-sense suppression of Malus domestica 1-AMINO-CYCLOPROPANE-CARBOXYLASE OXIDASE (MdACO1) resulted in fruit with an ethylene production sufficiently low to be able to assess ripening in the absence of ethylene. Exposure of these fruit to different concentrations of exogenous ethylene showed that flesh softening, volatile biosynthesis, and starch degradation, had differing ethylene sensitivity and dependency. Early ripening events such as the conversion of starch to sugars showed a low dependency for ethylene, but a high sensitivity to low concentrations of ethylene (0.01 μl l−1). By contrast, later ripening events such as flesh softening and ester volatile production showed a high dependency for ethylene but were less sensitive to low concentrations (needing 0.1 μl l−1 for a response). A sustained exposure to ethylene was required to maintain ripening, indicating that the role of ethylene may go beyond that of ripening initiation. These results suggest a conceptual model for the control of individual ripening characters in apple, based on both ethylene dependency and sensitivity. PMID:19429839

  12. The effect of ripening stages on the antioxidant potential of melon (Cucumis melo L.) cultivar Hikapel

    NASA Astrophysics Data System (ADS)

    Wulandari, Puji; Daryono, Budi Setiadi; Supriyadi

    2017-06-01

    Melon (Cucumis melo L.) cultivar Hikapel, a new cultivar of melon, is one of non-netted orange-fleshed melon. Non-netted orange-fleshed melon is known as source of several phytochemicals such as phenolics, flavonoids, ascorbic acid, and carotenoids. During the ripening stages there are chemical changes of the fruit including antioxidant properties. The aims of this research were to study the changes of antioxidant activity and antioxidant compound during ripening stages of melon cv. Hikapel. Melon with three ripening stages (27 DAA, 29 DAA, and 32 DAA) were harvested and analyzed their antioxidant activity, ascorbic acid, total-phenolic, -flavonoid, and -carotenoid content. The results showed that ascorbic acid and carotenoid content increased during ripening stages, whereas total phenolic and antioxidant activity decreased. The ripening stages affected antioxidant activity of Cucumis melo L. cv. Hikapel. Antioxidant activity positively correlated with ascorbic acid, total-phenolic, and -flavonoid content. On the other hand, total carotenoid negatively correlated with antioxidant activity.

  13. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  14. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening

    PubMed Central

    2012-01-01

    Background Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. Results Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. Conclusions This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions. PMID:22330838

  15. Changes in polysaccharide and protein composition of cell walls in grape berry skin (Cv. Shiraz) during ripening and over-ripening.

    PubMed

    Vicens, Anysia; Fournand, David; Williams, Pascale; Sidhoum, Louise; Moutounet, Michel; Doco, Thierry

    2009-04-08

    Polysaccharide modification is the most fundamental factor that affects firmness of fruit during ripening. In grape, because of the lack of information on the modifications occurring in cell wall polysaccharides in skins, but also because this tissue contains large amounts of organoleptic compounds for winemaking, a study was performed on the evolution and extractability of polysaccharides from grape skins of Shiraz cultivar throughout ripening. A HEPES/phenol extraction technique was used to analyze Shiraz grape cell wall material isolated from skins of berries harvested from one to ten weeks after veraison. Total amounts in cell wall polysaccharides remained constant during ripening (4.2 mg/berry). A slight decrease in galactose content of insoluble polysaccharides was observed, as well as a significant de-esterification of methoxylated uronic acids, indicating that some modifications occur in cell wall polysaccharides. The water-soluble fraction represented a very small fraction of the whole polysaccharides, but its amounts increased more than 2-fold between the first and the last sample. Isolated cell walls were also analyzed for their protein composition. Last, hydroalcoholic extractions in model-wine solution were also performed on fresh skins. This extracted fraction was very similar to the water-soluble one, and increased during the entire period. By comparison with polysaccharide modifications described in flesh cell wall in previous works, it can be assumed that the moderate skin polysaccharide degradation highlights the protective role of that tissue.

  16. Banana-Associated Microbial Communities in Uganda Are Highly Diverse but Dominated by Enterobacteriaceae

    PubMed Central

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles

    2012-01-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 109 gene copy numbers g−1). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations. PMID:22562988

  17. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana

    PubMed Central

    Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849

  18. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.

    PubMed

    Keller, Markus; Zhang, Yun; Shrestha, Pradeep M; Biondi, Marco; Bondada, Bhaskar R

    2015-06-01

    We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink-driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought-induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink-driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow. © 2014 John Wiley & Sons Ltd.

  19. Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese.

    PubMed

    Cakmakci, Songul; Gurses, Mustafa; Hayaloglu, A Adnan; Cetin, Bulent; Sekerci, Pinar; Dagdemir, Elif

    2015-01-01

    Mould-ripened civil is a traditional cheese produced mainly in eastern Turkey. The cheese is produced with a mixture of civil and whey curd cheeses (lor). This mixture is pressed into goat skins or plastic bags and is ripened for more than three months. Naturally occurring moulds grow on the surface and inside of the cheese during ripening. In this research, 140 Penicillium roqueforti strains were isolated from 41 samples of mould-ripened civil cheese collected from Erzurum and around towns in eastern Turkey. All strains were capable of mycotoxin production and were analysed using an HPLC method. It was established that all the strains (albeit at very low levels) produced roquefortine C, penicillic acid, mycophenolic acid and patulin. The amounts of toxins were in the ranges 0.4-47.0, 0.2-43.6, 0.1-23.1 and 0.1-2.3 mg kg(-1), respectively. Patulin levels of the samples were lower than the others. The lowest level and highest total mycotoxin levels were determined as 1.2 and 70.1 mg kg(-1) respectively. The results of this preliminary study may help in the choice of secondary cultures for mould-ripened civil cheese and other mould-ripened cheeses.

  20. Effects of Green Banana Flour on the Physical, Chemical and Sensory Properties of Ice Cream

    PubMed Central

    2015-01-01

    Summary In the present study, possible effects of the addition of banana flour at different mass fractions (1 and 2%) are investigated on physical (overrun, viscosity), chemical (dry matter, fat and ash content, acidity, pH, water and oil holding capacity and colour), mineral content (Ca, K, Na, P, S, Mg, Fe, Mn, Zn and Ni) and sensory properties of ice cream. Fibre--rich banana pieces were found to contain 66.8 g per 100 g of total dietary fibre, 58.6 g per 100 g of which were insoluble dietary fibre, while 8.2 g per 100 g were soluble dietary fibre. It can be concluded from these results that banana is a valuable dietary fibre source which can be used in food production. Flour obtained from green banana pulp and peel was found to have significant (p<0.05) effect on the chemical composition of ice creams. Sulphur content increased while calcium content decreased in ice cream depending on banana flour content. Sensory results indicated that ice cream sample containing 2% of green banana pulp flour received the highest score from panellists. PMID:27904363

  1. [Latex and banana allergies in children with myelomeningocele in the city of Rio de Janeiro].

    PubMed

    Machado, Marta; Sant'anna, Clemax; Aires, Vera; Rodrigues, Pedro Paulo; Pinheiro, Maria Fernanda; Teixeira, Marisa

    2004-01-01

    Recently, latex type I hypersensibility reactions were frequently described, mainly in children with myelomeningocele (MMC), which maintain earlier intimate and frequent contact with latex products. Allergic food cross-reactions are well known for many years. Nowadays, latex allergy is frequently associated with food allergies to avocado, banana, kiwi, grapefruit, papaya, chestnut and peach. The objective of this study consisted in identifying the number of patients with myelomeningocele (MMC) and banana-latex clinico-laboratorial sensitization. Questionnaires were applied to 33 children with MMC and blood was collected from 30 to perform latex IgE (RAST Pharmacia), and from 29 to banana IgE. Specific IgE equal or above class I was considered positive. Four children related histories of latex contact urticaria, and one child related a history of urticaria and diarrhea with banana. 14/30 (46.6%) were latex IgE positive, and 4/29 (13.7%) to banana. There was no statistically significant association between variables. We identified high prevalence of latex and banana allergies in patients with MMC and we need more studies to analyze the prevalence of food-latex allergic cross-reactions in children with MMC.

  2. Antioxidant activity of banana flavonoids.

    PubMed

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2008-06-01

    The antioxidant activity of flavonoids from banana (Musa paradisiaca) was studied in rats fed normal as well as high fat diets. Concentrations of peroxidation products namely malondialdehyde, hydroperoxides and conjugated diens were significantly decreased whereas the activities of catalase and superoxide dismutase were enhanced significantly. Concentrations of glutathione were also elevated in the treated animals.

  3. Electronic eye for the prediction of parameters related to grape ripening.

    PubMed

    Orlandi, G; Calvini, R; Pigani, L; Foca, G; Vasile Simone, G; Antonelli, A; Ulrici, A

    2018-08-15

    An electronic eye (EE) for fast and easy evaluation of grape phenolic ripening has been developed. For this purpose, berries of different grape varieties were collected at different harvest times from veraison to maturity, then an amount of the derived must was deposited on a white sheet of absorbent paper to obtain a sort of paper chromatography. Thus, RGB images of the must spots were collected using a flatbed scanner and converted into one-dimensional signals, named colourgrams, which codify the colour properties of the images. The dataset of colourgrams was used to build calibration models to relate the colour of the images with the phenolic composition of the samples - determined by reference analytical methods - and therefore to follow the ripening trend. Satisfactory calibration models were obtained for the prediction of the most important parameters related to phenolic ripening of grapes, such as colour index, tonality, total anthocyanins content, malvidin-3-O-glucoside and petunidin-3-O-glucoside. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    PubMed

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.

  5. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. “Hayward”] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this “dilemma,” kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L−1, 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general. PMID:26913040

  6. Evaluation of Information and Communication Technology Utilization by Small Holder Banana Farmers in Gatanga District, Kenya

    ERIC Educational Resources Information Center

    Mwombe, Simon O. L.; Mugivane, Fred I.; Adolwa, Ivan S.; Nderitu, John H.

    2014-01-01

    Purpose: The study was carried out to identify information communication technologies (ICTs) used in production and marketing of bananas, to determine factors influencing intensity of use of ICT tools and to assess whether use of ICT has a significant influence on adoption of tissue culture bananas by small-scale banana farmers in Gatanga…

  7. Changes in sugars, acids, and volatiles during ripening of koubo [Cereus peruvianus (L.) Miller] fruits.

    PubMed

    Ninio, Racheli; Lewinsohn, Efraim; Mizrahi, Yosef; Sitrit, Yaron

    2003-01-29

    The columnar cactus Cereus peruvianus (L.) Miller, Cactaceae (koubo), is grown commercially in Israel. The unripe fruits are green, and the color changes to violet and then to red when the fruit is fully ripe. The content of soluble sugars was found to increase 5-fold during ripening. Glucose and fructose were the main sugars accumulated in the fruit pulp, and each increased from 0.5 to 5.5 g/100 g fresh weight during ripening. The polysaccharides content decreased during ripening from 1.4 to 0.4 g/100 g fresh weight. The titratable acidity decreased and the pH increased during ripening. The major organic acid found in the fruit was malic acid, which decreased from 0.75 g/100 g fresh weight at the mature green stage to 0.355 g/100 g fresh weight in ripe fruits. Citric, succinic, and oxalic acids were found in concentrations lower than 0.07 g/100 g fresh weight. Prominent accumulation of aroma volatiles occurred toward the end of the ripening process. The main volatile found in the ripe fruit was linalool, reaching concentrations of 1.5-3.5 microg/g fresh weight.

  8. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening

    PubMed Central

    Cunha, Camila P.; Roberto, Guilherme G.; Vicentini, Renato; Lembke, Carolina G.; Souza, Glaucia M.; Ribeiro, Rafael V.; Machado, Eduardo C.; Lagôa, Ana M. M. A.; Menossi, Marcelo

    2017-01-01

    The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed. PMID:28266527

  9. Soluble Starch Synthase III-1 in Amylopectin Metabolism of Banana Fruit: Characterization, Expression, Enzyme Activity, and Functional Analyses

    PubMed Central

    Miao, Hongxia; Sun, Peiguang; Liu, Qing; Jia, Caihong; Liu, Juhua; Hu, Wei; Jin, Zhiqiang; Xu, Biyu

    2017-01-01

    Soluble starch synthase (SS) is one of the key enzymes involved in amylopectin biosynthesis in plants. However, no information is currently available about this gene family in the important fruit crop banana. Herein, we characterized the function of MaSSIII-1 in amylopectin metabolism of banana fruit and described the putative role of the other MaSS family members. Firstly, starch granules, starch and amylopectin content were found to increase during banana fruit development, but decline during storage. The SS activity started to increase later than amylopectin and starch content. Secondly, four putative SS genes were cloned and characterized from banana fruit. Among them, MaSSIII-1 showed the highest expression in banana pulp during fruit development at transcriptional levels. Further Western blot analysis suggested that the protein was gradually increased during banana fruit development, but drastically reduced during storage. This expression pattern was highly consistent with changes in starch granules, amylopectin content, and SS activity at the late phase of banana fruit development. Lastly, overexpression of MaSSIII-1 in tomato plants distinctly changed the morphology of starch granules and significantly increased the total starch accumulation, amylopectin content, and SS activity at mature-green stage in comparison to wild-type. The findings demonstrated that MaSSIII-1 is a key gene expressed in banana fruit and responsible for the active amylopectin biosynthesis, this is the first report in a fresh fruit species. Such a finding may enable the development of molecular markers for banana breeding and genetic improvement of nutritional value and functional properties of banana fruit. PMID:28424724

  10. Socioeconomic Importance of the Banana Tree (Musa Spp.) in the Guinean Highland Savannah Agroforests

    PubMed Central

    Mapongmetsem, Pierre Marie; Nkongmeneck, Bernard Aloys; Gubbuk, Hamide

    2012-01-01

    Home gardens are defined as less complex agroforests which look like and function as natural forest ecosystems but are integrated into agricultural management systems located around houses. Investigations were carried out in 187 households. The aim of the study was to identify the different types of banana home gardens existing in the periurban zone of Ngaoundere town. The results showed that the majority of home gardens in the area were very young (less than 15 years old) and very small in size (less than 1 ha). Eleven types of home gardens were found in the periurban area of Ngaoundere town. The different home garden types showed important variations in all their structural characteristics. Two local species of banana are cultivated in the systems, Musa sinensis and Musa paradisiaca. The total banana production is 3.57 tons per year. The total quantity of banana consumed in the periurban zone was 3.54 tons (93.5%) whereas 1.01 tons were sold in local or urban markets. The main banana producers belonged to home gardens 2, 4, 7, and 9. The quantity of banana offered to relatives was more than what the farmers received from others. Farmers, rely on agroforests because the flow of their products helps them consolidate friendship and conserve biodiversity at the same time. PMID:22629136

  11. Socioeconomic importance of the banana tree (Musa spp.) in the Guinean Highland Savannah agroforests.

    PubMed

    Mapongmetsem, Pierre Marie; Nkongmeneck, Bernard Aloys; Gubbuk, Hamide

    2012-01-01

    Home gardens are defined as less complex agroforests which look like and function as natural forest ecosystems but are integrated into agricultural management systems located around houses. Investigations were carried out in 187 households. The aim of the study was to identify the different types of banana home gardens existing in the periurban zone of Ngaoundere town. The results showed that the majority of home gardens in the area were very young (less than 15 years old) and very small in size (less than 1 ha). Eleven types of home gardens were found in the periurban area of Ngaoundere town. The different home garden types showed important variations in all their structural characteristics. Two local species of banana are cultivated in the systems, Musa sinensis and Musa paradisiaca. The total banana production is 3.57 tons per year. The total quantity of banana consumed in the periurban zone was 3.54 tons (93.5%) whereas 1.01 tons were sold in local or urban markets. The main banana producers belonged to home gardens 2, 4, 7, and 9. The quantity of banana offered to relatives was more than what the farmers received from others. Farmers, rely on agroforests because the flow of their products helps them consolidate friendship and conserve biodiversity at the same time.

  12. Space Curvature and the "Heavy Banana 'Paradox.'"

    ERIC Educational Resources Information Center

    Gruber, Ronald P.; And Others

    1991-01-01

    Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)

  13. The Draft Genome Sequence of Mycosphaerella fijiensis, the Black Sigatoka Pathogen of Banana

    USDA-ARS?s Scientific Manuscript database

    Mycosphaerella fijiensis is a fungal pathogen of banana and the causal agent of the devastating Black Sigatoka or black leaf streak disease. Its control requires weekly fungicide applications when bananas are grown under disease-conducive conditions, which mostly represent precarious tropical enviro...

  14. Use of Banana (Musa acuminata Colla AAA) Peel Extract as an Antioxidant Source in Orange Juices.

    PubMed

    Ortiz, Lucía; Dorta, Eva; Gloria Lobo, M; González-Mendoza, L Antonio; Díaz, Carlos; González, Mónica

    2017-03-01

    Using banana peel extract as an antioxidant in freshly squeezed orange juices and juices from concentrate was evaluated. Free radical scavenging capacity increased by adding banana peel extracts to both types of orange juice. In addition, remarkable increases in antioxidant capacity using 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical were observed when equal or greater than 5 mg of banana peel extract per ml of freshly squeezed juice was added. No clear effects were observed in the capacity to inhibit lipid peroxidation. Adding 5 mg banana peel extract per ml of orange juice did not substantially modify the physicochemical and sensory characteristics of either type of juice. However, undesirable changes in the sensory characteristics (in-mouth sensations and colour) were detected when equal or greater than 10 mg banana peel extract per ml of orange juice was added. These results confirm that banana peel is a promising natural additive that increases the capacity to scavenge free radicals of orange juice with acceptable sensory and physicochemical characteristics for the consumer.

  15. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing.

    PubMed

    Hribová, Eva; Neumann, Pavel; Matsumoto, Takashi; Roux, Nicolas; Macas, Jirí; Dolezel, Jaroslav

    2010-09-16

    Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic

  16. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing

    PubMed Central

    2010-01-01

    Background Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. Results In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. Conclusion A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA

  17. Tocopherols in rose hips (Rosa spp.) during ripening.

    PubMed

    Andersson, Staffan C; Olsson, Marie E; Gustavsson, Karl-Erik; Johansson, Eva; Rumpunen, Kimmo

    2012-08-15

    Rose hips are used as a food ingredient and in health products. They are rich in various bioactive compounds such as carotenoids and vitamin C, but data on their vitamin E content (tocopherols and tocotrienols) are limited. In this study, four different species of Rosa were analysed for tocopherol and tocotrienol content during ripening in three different years. Only α- and γ-tocopherol were found in the fleshy parts of the rose hips, and the tocopherol content and vitamin E activity varied depending on date of harvesting, species and year. The amount of vitamin E activity differed between species of Rosa and years, whereas the changes during ripening were relatively small. The choice of species must be considered if tocopherol content is to be optimised when rose hips are used as a food ingredient. Copyright © 2012 Society of Chemical Industry.

  18. Direct observation of small cluster mobility and ripening

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1976-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single-crystalline thin graphite substrates have been studied by in situ transmission electron microscopy (TEM) under controlled environmental conditions in the temperature range from 25 to 450 C. It was possible to monitor all stages of the experiments by TEM observation of the same specimen area. Slow Ostwald ripening was found to occur over the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility. This was concluded from in situ observations of individual particles during annealing and from measurements of cluster size distributions, cluster number densities, area coverages, and mean cluster diameters.

  19. Extrusion and characterization of thermoplastic starch sheets from "macho" banana.

    PubMed

    Alanís-López, P; Pérez-González, J; Rendón-Villalobos, R; Jiménez-Pérez, A; Solorza-Feria, J

    2011-08-01

    Starch isolated from macho banana was oxidized by using 2.5% and 3.5% (w/w) of sodium hypochlorite. Native and oxidized starches with glycerol were processed using a conical twin screw extruder to obtain thermoplastic laminates or sheets, which were partially characterized. Oxidized banana starches presented higher moisture and total starch but lower ash, protein, lipids, and apparent amylose content than the native starch. Micrographs of sheets from oxidized starches showed wrinkles and cavities presumably caused by the plasticizer, but with less free glycerol and unplasticized starch granules than those from native starch. Sheets from oxidized starch showed a notorious increase in all thermal parameters (To, Tp, and ΔH), mechanical properties (tensile strength, elongation at break, and elasticity), and solubility. Banana starch X-ray diffraction patterns corresponded to a mixture of the A- and B-type polymorphs, with apparently slightly higher crystallinity in oxidized specimens than in native starch. A similar trend was observed in the corresponding sheets. Due to the pollution problem caused by the conventional plastics, there has been a renewed interest in biodegradable sheets, because they may have the potential to replace conventional packaging materials. Banana starch might be an interesting raw material to be used as edible sheet, coating or in food packaging, and preservation, because it is biodegradable, cheap, innocuous, and abundant. © 2011 Institute of Food Technologists®

  20. Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment

    NASA Astrophysics Data System (ADS)

    Danish, Mohammed; Ahmad, Tanweer; Nadhari, W. N. A. W.; Ahmad, Mehraj; Khanday, Waheed Ahmad; Ziyang, Lou; Pin, Zhou

    2018-03-01

    This experiment was run to characterize the banana trunk-activated carbon through methylene blue dye adsorption property. The H3PO4 chemical activating agent was used to produce activated carbons from the banana trunk. A small rotatable central composite design of response surface methodology was adopted to prepare chemically (H3PO4) activated carbon from banana trunk. Three operating variables such as activation time (50-120 min), activation temperature (450-850 °C), and activating agent concentration (1.5-7.0 mol/L) play a significant role in the adsorption capacities ( q) of activated carbons against methylene blue dye. The results implied that the maximum adsorption capacity of fixed dosage (4.0 g/L) banana trunk-activated carbon was achieved at the activation time of 51 min, the activation temperature of 774 °C, and H3PO4 concentration of 5.09 mol/L. At optimum conditions of preparation, the obtained banana trunk-activated carbon has adsorption capacity 64.66 mg/g against methylene blue. Among the prepared activated carbons run number 3 (prepared with central values of the operating variables) was characterized through Fourier transform infrared spectroscopy, field emission scanning microscopy, and powder X-ray diffraction.

  1. Kinetic study on ferulic acid production from banana stem waste via mechanical extraction

    NASA Astrophysics Data System (ADS)

    Zainol, Norazwina; Masngut, Nasratun; Khairi Jusup, Muhamad

    2018-04-01

    Banana is the tropical plants associated with lots of medicinal properties. It has been reported to be a potential source of phenolic compounds such as ferulic acid (FA). FA has excellent antioxidant properties higher than vitamin C and E. FA also have a wide range of biological activities, such as antioxidant activities and anti-microbial activities. This paper presents an experimental and kinetic study on ferulic acid (FA) production from banana stem waste (BSW) via mechanical extraction. The objective of this research is to determine the kinetic parameters in the ferulic acid production. The banana stem waste was randomly collected from the local banana plantation in Felda Lepar Hilir, Pahang. The banana stem juice was mechanically extracted by using sugarcane press machine (KR3176) and further analyzed in high performance liquid chromatography. The differential and integral method was applied to determine the kinetic parameter of the extraction process and the data obtained were fitted into the 0th, 1st and 2nd order of extraction process. Based on the results, the kinetic parameter and R2 value from were 0.05 and 0.93, respectively. It was determined that the 0th kinetic order fitted the reaction processes to best represent the mechanical extraction.

  2. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    USGS Publications Warehouse

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  3. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening.

    PubMed

    Palma, José M; Corpas, Francisco J; del Río, Luís A

    2011-08-12

    Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Antioxidant compounds of kiwifruit during post-ripening process at ambient temperature

    NASA Astrophysics Data System (ADS)

    Liang, D.; Lv, X. L.; Wang, J.; Xia, H.; Xie, Y.; Li, M. Z.; Wang, Y. Z.

    2017-09-01

    Kiwifruit is well-known for an excellent source of antioxidants. In this study, contents of total phenolics (TPC), total flavonoids (TFC), total flavanols (TFAC) and vitamin C were investigated in different fruit tissues during post-ripening process at ambient temperature. The results explored that TPC and TFC showed declining trend with the increase in storage interval in different tissues. TFAC raised with the increase in storage interval in different fruit tissues, while was followed a decrease in later process. Vitamin C content was stable in outer and inner pericarp in prometaphase of post-ripening.

  5. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit.

    PubMed

    Asiche, William O; Mitalo, Oscar W; Kasahara, Yuka; Tosa, Yasuaki; Mworia, Eric G; Owino, Willis O; Ushijima, Koichiro; Nakano, Ryohei; Yano, Kentaro; Kubo, Yasutaka

    2018-03-21

    Kiwifruit are classified as climacteric since exogenous ethylene (or its analogue propylene) induces rapid ripening accompanied by ethylene production under positive feedback regulation. However, most of the ripening-associated changes (Phase 1 ripening) in kiwifruit during storage and on-vine occur largely in the absence of any detectable ethylene. This ripening behavior is often attributed to basal levels of system I ethylene, although it is suggested to be modulated by low temperature. To elucidate the mechanisms regulating Phase 1 ripening in kiwifruit, a comparative transcriptome analysis using fruit continuously exposed to propylene (at 20 °C), and during storage at 5 °C and 20 °C was conducted. Propylene exposure induced kiwifruit softening, reduction of titratable acidity (TA), increase in soluble solids content (SSC) and ethylene production within 5 days. During storage, softening and reduction of TA occurred faster in fruit at 5 °C compared to 20 °C although no endogenous ethylene production was detected. Transcriptome analysis revealed 3761 ripening-related differentially expressed genes (DEGs), of which 2742 were up-regulated by propylene while 1058 were up-regulated by low temperature. Propylene exclusively up-regulated 2112 DEGs including those associated with ethylene biosynthesis and ripening such as AcACS1, AcACO2, AcPL1, AcXET1, Acβ-GAL, AcAAT, AcERF6 and AcNAC7. Similarly, low temperature exclusively up-regulated 467 DEGS including AcACO3, AcPL2, AcPMEi, AcADH, Acβ-AMY2, AcGA2ox2, AcNAC5 and AcbZIP2 among others. A considerable number of DEGs such as AcPG, AcEXP1, AcXET2, Acβ-AMY1, AcGA2ox1, AcNAC6, AcMADS1 and AcbZIP1 were up-regulated by either propylene or low temperature. Frequent 1-MCP treatments failed to inhibit the accelerated ripening and up-regulation of associated DEGs by low temperature indicating that the changes were independent of ethylene. On-vine kiwifruit ripening proceeded in the absence of any detectable

  6. Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation

    PubMed Central

    2011-01-01

    Background Corynebacterium variabile is part of the complex microflora on the surface of smear-ripened cheeses and contributes to the development of flavor and textural properties during cheese ripening. Still little is known about the metabolic processes and microbial interactions during the production of smear-ripened cheeses. Therefore, the gene repertoire contributing to the lifestyle of the cheese isolate C. variabile DSM 44702 was deduced from the complete genome sequence to get a better understanding of this industrial process. Results The chromosome of C. variabile DSM 44702 is composed of 3, 433, 007 bp and contains 3, 071 protein-coding regions. A comparative analysis of this gene repertoire with that of other corynebacteria detected 1, 534 predicted genes to be specific for the cheese isolate. These genes might contribute to distinct metabolic capabilities of C. variabile, as several of them are associated with metabolic functions in cheese habitats by playing roles in the utilization of alternative carbon and sulphur sources, in amino acid metabolism, and fatty acid degradation. Relevant C. variabile genes confer the capability to catabolize gluconate, lactate, propionate, taurine, and gamma-aminobutyric acid and to utilize external caseins. In addition, C. variabile is equipped with several siderophore biosynthesis gene clusters for iron acquisition and an exceptional repertoire of AraC-regulated iron uptake systems. Moreover, C. variabile can produce acetoin, butanediol, and methanethiol, which are important flavor compounds in smear-ripened cheeses. Conclusions The genome sequence of C. variabile provides detailed insights into the distinct metabolic features of this bacterium, implying a strong adaption to the iron-depleted cheese surface habitat. By combining in silico data obtained from the genome annotation with previous experimental knowledge, occasional observations on genes that are involved in the complex metabolic capacity of C. variabile

  7. [Banana peel: a possible source of infection in the treatment of nipple fissures].

    PubMed

    Novak, Franz Reis; de Almeida, João Aprígio Guerra; de Souza e Silva, Rosana

    2003-01-01

    To study the microbiology of banana peel being sold in the city of Rio de Janeiro, in an attempt to determine the possibility that the peel may represent a source of infection for women who use it to treat nipple fissures. The following microorganisms were studied in 20 banana peel samples: mesophiles, total coliforms, fecal coliforms, Pseudomonas aeruginosa, lipolytic and proteolytic microorganisms, molds and yeasts, lactic bacteria, and coagulase-positive staphylococcus. The microbiological analyses revealed the occurrence of several typical groups of microorganisms, with the following distribution of positive results being detected in banana peel samples: mesophiles, 100%; total coliforms, 20%; coagulase-positive staphylococcus, 25%; molds and yeasts, 30%; proteolytic microorganisms, 70%; lipolytic microorganisms, 30%, and lactic bacteria, 95%. Fecal coliforms and Pseudomonas aeruginosa were not isolated. The results show the presence of potentially pathogenic microorganisms in levels which could compromise the microbiological quality of the banana peel. Its use for the treatment of nipple fissures can initiate an infectious process.

  8. The role of prostaglandins E1 and E2, dinoprostone, and misoprostol in cervical ripening and the induction of labor: a mechanistic approach.

    PubMed

    Bakker, Ronan; Pierce, Stephanie; Myers, Dean

    2017-08-01

    Prostaglandins play a critical role in cervical ripening by increasing inflammatory mediators in the cervix and inducing cervical remodeling. Prostaglandin E1 (PGE1) and prostaglandin E2 (PGE2) exert different effects on these processes and on myometrial contractility. These mechanistic differences may affect outcomes in women treated with dinoprostone, a formulation identical to endogenous PGE2, compared with misoprostol, a PGE1 analog. The objective of this review is to evaluate existing evidence regarding mechanistic differences between PGE1 and PGE2, and consider the clinical implications of these differences in patients requiring cervical ripening for labor induction. We conducted a critical narrative review of peer-reviewed articles identified using PubMed and other online databases. While both dinoprostone and misoprostol are effective in cervical ripening and labor induction, they differ in their clinical and pharmacological profiles. PGE2 has been shown to stimulate interleukin-8, an inflammatory cytokine that promotes the influx of neutrophils and induces remodeling of the cervical extracellular matrix, and to induce functional progesterone withdrawal. Misoprostol has been shown to elicit a dose-dependent effect on myometrial contractility, which may affect rates of uterine tachysystole in clinical practice. Differences in the mechanism of action between misoprostol and PGE2 may contribute to their variable effects in the cervix and myometrium, and should be considered to optimize outcomes.

  9. Physicochemical properties of flakes made from three varieties of banana

    NASA Astrophysics Data System (ADS)

    Ratnawati, Lia; Afifah, Nok

    2017-11-01

    Ripe and unripe banana flour from three varieties of banana (Kepok, Raja and Ambon) were used to make a flake. This study aims to determine the physicochemical properties of flakes made from three types of banana varieties. The moisture, ash, protein, fat and carbohydrate content of flakes ranged from 1.01 to 4.40%, 2.40 to 2.99%, 7.38 to 9.19%, 4.71 to 8.32 % and 77.78 to 82.65%, respectively. WAI, WSI and TDF values of flakes ranged from 1.81 to 2.11 g/g, 34.54 to 52.64% and 8.64 to 10.04%, respectively. Values of hardness and fracturability were ranging from 346.65 to 563.50 g and 15.16 to 17.62 mm. The colour parameter values are lightness (L*), redness (a*) and yellowness (b*) of flakes ranged from 42.56 to 55.82, 3.34 to 6.60 and 3.99 to 13.09, respectively.

  10. Effect of banana pulp and peel flour on physicochemical properties and in vitro starch digestibility of yellow alkaline noodles.

    PubMed

    Ramli, Saifullah; Alkarkhi, Abbas F M; Shin Yong, Yeoh; Min-Tze, Liong; Easa, Azhar Mat

    2009-01-01

    The present study describes the utilization of banana--Cavendish (Musa acuminata L., cv cavendshii) and Dream (Musa acuminata colla. AAA, cv 'Berangan')--pulp and peel flours as functional ingredients in yellow alkaline noodles. Noodles were prepared by partial substitution of wheat flour with ripe banana pulp or peel flours. In most cases, the starch hydrolysis index, predicted glycaemic index (pGI) and physicochemical properties of cooked noodles were affected by banana flour addition. In general, the pGI values of cooked noodles were in the order; banana peel noodles < banana pulp noodles < control noodles. Since the peel flour was higher in total dietary fibre but lower in resistant starch contents than the pulp flour, the low pGI of banana peel noodles was mainly due to its high dietary fibre content. In conclusion, banana pulp and peel flour could be useful for controlling starch hydrolysis of yellow noodles, even though some physicochemical properties of the noodles were altered.

  11. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    PubMed Central

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-01-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation. PMID:27306096

  12. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-06-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation.

  13. Love Is Like a Squished Banana

    ERIC Educational Resources Information Center

    Brown, Stephen

    1976-01-01

    An unemployed poet obtained a CETA public service job as a teacher's aide in Marin County, California, where he has guided elementary children's imaginative projects. His experiences are described. He has published a volume of the children's verse under the title "Love Is Like a Squished Banana." (AJ)

  14. Pineapple juice and its fractions in enzymatic browning inhibition of banana [Musa (AAA group) Gros Michel].

    PubMed

    Chaisakdanugull, Chitsuda; Theerakulkait, Chockchai; Wrolstad, Ronald E

    2007-05-16

    The effectiveness of pineapple juice in enzymatic browning inhibition was evaluated on the cut surface of banana slices. After storage of banana slices at 15 degrees C for 3 days, pineapple juice showed browning inhibition to a similar extent as 8 mM ascorbic acid but less than 4 mM sodium metabisulfite. Fractionation of pineapple juice by a solid-phase C18 cartridge revealed that the directly eluted fraction (DE fraction) inhibited banana polyphenol oxidase (PPO) about 100% when compared to the control. The DE fraction also showed more inhibitory effect than 8 mM ascorbic acid in enzymatic browning inhibition of banana puree during storage at 5 degrees C for 24 h. Further identification of the DE fraction by fractionation with ion exchange chromatography and confirmation using model systems indicated that malic acid and citric acid play an important role in the enzymatic browning inhibition of banana PPO.

  15. Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening

    PubMed Central

    Xi, Wanpeng; Zheng, Huiwen; Zhang, Qiuyun; Li, Wenhui

    2016-01-01

    Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers’ evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS), sorbitol oxidase (SO) and sorbitol dehydrogenase (SDH) are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV) of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR) results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD) may be involved in β-ionone formation in apricot fruit. PMID:27347931

  16. Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition.

    PubMed

    Diboun, Ilhame; Mathew, Sweety; Al-Rayyashi, Maryam; Elrayess, Mohamed; Torres, Maria; Halama, Anna; Méret, Michaël; Mohney, Robert P; Karoly, Edward D; Malek, Joel; Suhre, Karsten

    2015-12-16

    Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates' countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and

  17. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion.

    PubMed

    Ryu, Victor; McClements, David J; Corradini, Maria G; McLandsborough, Lynne

    2018-04-15

    The objective of this research was to study the impact of ripening inhibitor level and type on the formation, stability, and activity of antimicrobial thyme oil nanoemulsions formed by spontaneous emulsification. Oil-in-water antimicrobial nanoemulsions (10 wt%) were formed by titrating a mixture of essential oil, ripening inhibitor, and surfactant (Tween 80) into 5 mM sodium citrate buffer (pH 3.5). Stable nanoemulsions containing small droplets (d < 70 nm) were formed. The antimicrobial activity of the nanoemulsions decreased with increasing ripening inhibitor concentration which was attributed to a reduction in the amount of hydrophobic antimicrobial constituents transferred to the separated hydrophobic domain, mimicking bacterial cell membranes, by using dialysis and chromatography. The antimicrobial activity of the nanoemulsions also depended on the nature of the ripening inhibitor used: palm ≈ corn > canola > coconut which also depended on their ability to transfer hydrophobic antimicrobial constituents to the separated hydrophobic domain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression.

    PubMed

    Daminato, Margherita; Guzzo, Flavia; Casadoro, Giorgio

    2013-09-01

    Strawberries (Fragaria×ananassa) are false fruits the ripening of which follows the non-climacteric pathway. The role played by a C-type MADS-box gene [SHATTERPROOF-like (FaSHP)] in the ripening of strawberries has been studied by transiently modifying gene expression through either over-expression or RNA-interference-mediated down-regulation. The altered expression of the FaSHP gene caused a change in the time taken by the over-expressing and the down- regulated fruits to attain the pink stage, which was slightly shorter and much longer, respectively, compared to controls. In parallel with the modified ripening times, the metabolome components and the expression of ripening-related genes also appeared different in the transiently modified fruits. Differences in the response time of the analysed genes suggest that FaSHP can control the expression of ripening genes either directly or indirectly through other transcription factor-encoding genes. Because fleshy strawberries are false fruits these results indicate that C-type MADS-box genes like SHATTERPROOF may act as modulators of ripening in fleshy fruit-like structures independently of their anatomical origin. Treatment of strawberries with either auxin or abscisic acid had antagonistic impacts on both the expression of FaSHP and the expression of ripening-related genes and metabolome components.

  19. Effects of atmospheric composition on respiratory behavior, weight loss, and appearance of Camembert-type cheeses during chamber ripening.

    PubMed

    Picque, D; Leclercq-Perlat, M-N; Corrieu, G

    2006-08-01

    Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses.

  20. Effect of different ripening stages on walnut kernel quality: antioxidant activities, lipid characterization and antibacterial properties.

    PubMed

    Amin, Furheen; Masoodi, F A; Baba, Waqas N; Khan, Asma Ashraf; Ganie, Bashir Ahmad

    2017-11-01

    Packing tissue between and around the kernel halves just turning brown (PTB) is a phenological indicator of kernel ripening at harvest in walnuts. The effect of three ripening stages (Pre-PTB, PTB and Post-PTB) on kernel quality characteristics, mineral composition, lipid characterization, sensory analysis, antioxidant and antibacterial activity were investigated in fresh kernels of indigenous numbered walnut selection of Kashmir valley "SKAU-02". Proximate composition, physical properties and sensory analysis of walnut kernels showed better results for Pre-PTB and PTB while higher mineral content was seen for kernels at Post-PTB stage in comparison to other stages of ripening. Kernels showed significantly higher levels of Omega-3 PUFA (C18:3 n3 ) and low n6/n3 ratio when harvested at Pre-PTB and PTB stages. The highest phenolic content and antioxidant activity was observed at the first stage of ripening and a steady decrease was observed at later stages. TBARS values increased as ripening advanced but did not show any significant difference in malonaldehyde formation during early ripening stages whereas it showed marked increase in walnut kernels at post-PTB stage. Walnut extracts inhibited growth of Gram-positive bacteria ( B. cereus, B. subtilis, and S. aureus ) with respective MICs of 1, 1 and 5 mg/mL and gram negative bacteria ( E. coli, P. and K. pneumonia ) with MIC of 100 mg/mL. Zone of inhibition obtained against all the bacterial strains from walnut kernel extracts increased with increase in the stage of ripening. It is concluded that Pre-PTB harvest stage with higher antioxidant activities, better fatty acid profile and consumer acceptability could be preferred harvesting stage for obtaining functionally superior walnut kernels.

  1. Ripening-Related Gene from Avocado Fruit 1

    PubMed Central

    McGarvey, Douglas J.; Sirevåg, Reidun; Christoffersen, Rolf E.

    1992-01-01

    Fruit ripening involves a series of changes in gene expression regulated by the phytohormone ethylene. AVOe3, a ripening-related gene in avocado fruit (Persea americana Mill. cv Hass), was characterized with regard to its ethylene-regulated expression. The AVOe3 mRNA and immunopositive protein were induced in mature fruit within 12 hours of propylene treatment. The AVOe3 mRNA levels reached a maximum 1 to 2 days before the ethylene climacteric, whereas the immunopositive protein continued to accumulate. RNA selected by the pAVOe3 cDNA clone encoded a polypeptide with molecular mass of 34 kilodaltons, corresponding to the molecular mass of the AVOe3 protein determined by immunoblots. The protein was soluble, remaining in solution at 100,000 gravity and eluted as a monomer on gel filtration. Because of its pattern of induction and relationship to an ethylene-related gene of tomato, the possible involvement of AVOe3 in ethylene biosynthesis is discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:16668676

  2. "The Rotten Banana" Fires Back: The Story of a Danish Discourse of "Inclusive" Rurality in the Making

    ERIC Educational Resources Information Center

    Winther, Malene Brandt; Svendsen, Gunnar Lind Haase

    2012-01-01

    The popularity of a particular term--the Rotten Banana--has paralleled the one-sided centralisation of public services since the Danish Municipal Reform of 2007. The Rotten Banana denotes peripheral Denmark, which takes a geographically curved form that resembles a banana, and it symbolises the belief that rural areas are backward and (too)…

  3. Detection of artificially ripened mango using spectrometric analysis

    NASA Astrophysics Data System (ADS)

    Mithun, B. S.; Mondal, Milton; Vishwakarma, Harsh; Shinde, Sujit; Kimbahune, Sanjay

    2017-05-01

    Hyperspectral sensing has been proven to be useful to determine the quality of food in general. It has also been used to distinguish naturally and artificially ripened mangoes by analyzing the spectral signature. However the focus has been on improving the accuracy of classification after performing dimensionality reduction, optimum feature selection and using suitable learning algorithm on the complete visible and NIR spectrum range data, namely 350nm to 1050nm. In this paper we focus on, (i) the use of low wavelength resolution and low cost multispectral sensor to reliably identify artificially ripened mango by selectively using the spectral information so that classification accuracy is not hampered at the cost of low resolution spectral data and (ii) use of visible spectrum i.e. 390nm to 700 nm data to accurately discriminate artificially ripened mangoes. Our results show that on a low resolution spectral data, the use of logistic regression produces an accuracy of 98.83% and outperforms other methods like classification tree, random forest significantly. And this is achieved by analyzing only 36 spectral reflectance data points instead of the complete 216 data points available in visual and NIR range. Another interesting experimental observation is that we are able to achieve more than 98% classification accuracy by selecting only 15 irradiance values in the visible spectrum. Even the number of data needs to be collected using hyper-spectral or multi-spectral sensor can be reduced by a factor of 24 for classification with high degree of confidence

  4. A Study on the Morphological and PhysicoChemical Characteristics of Five Cooking Bananas

    USDA-ARS?s Scientific Manuscript database

    Field evaluation of five banana clones was carried out at the National Germplasm Repository in Miami, Florida, USA from July 2006 to July 2008. Bananas (Musa acuminata Colla [AA, AAA]; Musa x paradisiaca Colla (ABB, AAAB, AABB), are one of the worlds most important food crops. Five clones of cookin...

  5. (2R,5S)-Theaspirane Identified as the Kairomone for the Banana Weevil, Cosmopolites sordidus, from Attractive Senesced Leaves of the Host Banana, Musa spp.

    PubMed

    Abagale, Samson A; Woodcock, Christine M; Hooper, Antony M; Caulfield, John C; Withall, David; Chamberlain, Keith; Acquaah, Samuel O; Van Emden, Helmut; Braimah, Haruna; Pickett, John A; Birkett, Michael A

    2018-04-12

    The principal active component produced by highly attractive senesced host banana leaves, Musa spp., for the banana weevil, Cosmopolites sordidus, is shown by coupled gas chromatography-electroantennography (GC-EAG), coupled GC-mass spectrometry (GC-MS), chemical synthesis and coupled enantioselective (chiral) GC-EAG to be (2R,5S)-theaspirane. In laboratory behaviour tests, the synthetic compound is as attractive as natural host leaf material and presents a new opportunity for pest control. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain.

    PubMed

    Vishnevetsky, Jane; White, Thomas L; Palmateer, Aaron J; Flaishman, Moshe; Cohen, Yuval; Elad, Yigal; Velcheva, Margarita; Hanania, Uri; Sahar, Nachman; Dgani, Oded; Perl, Avihai

    2011-02-01

    The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays.

  7. Tomato Fruit Chromoplasts Behave as Respiratory Bioenergetic Organelles during Ripening1[W][OPEN

    PubMed Central

    Renato, Marta; Pateraki, Irini; Boronat, Albert; Azcón-Bieto, Joaquín

    2014-01-01

    During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages. PMID:25125503

  8. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription.

    PubMed

    Li, Tong; Jiang, Zhongyu; Zhang, Lichao; Tan, Dongmei; Wei, Yun; Yuan, Hui; Li, Tianlai; Wang, Aide

    2016-12-01

    Ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negatively affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for biosynthesis of ripening-related ethylene. Expression of MdERF2 was suppressed by ethylene during ripening of apple fruit, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription. Moreover, MdERF2 suppressed the activity of the promoter of MdERF3, a transcription factor that we found to bind to the MdACS1 promoter, thereby increasing MdACS1 transcription. We determined that the MdERF2 and MdERF3 proteins directly interact, and this interaction suppresses the binding of MdERF3 to the MdACS1 promoter. Moreover, apple fruit with transiently downregulated MdERF2 expression showed higher ethylene production and faster ripening. Our results indicate that MdERF2 negatively affects ethylene biosynthesis and fruit ripening in apple by suppressing the transcription of MdACS1 via multiple mechanisms, thereby acting as an antagonist of positive ripening regulators. Our findings offer a deep understanding of the transcriptional regulation of ethylene biosynthesis during climacteric fruit ripening. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. Co-extrusion of food grains-banana pulp for nutritious snacks: optimization of process variables.

    PubMed

    Mridula, D; Sethi, Swati; Tushir, Surya; Bhadwal, Sheetal; Gupta, R K; Nanda, S K

    2017-08-01

    Present study was undertaken to optimize the process conditions for development of food grains (maize, defatted soy flour, sesame seed)-banana based nutritious expanded snacks using extrusion processing. Experiments were designed using Box-Behnken design with banana pulp (8-24 g), screw speed (300-350 rpm) and feed moisture (14-16% w.b.). Seven responses viz. expansion ratio (ER), bulk density (BD), water absorption index (WAI), protein, minerals, iron and sensory acceptability were considered for optimizing independent parameters. ER, BD, WAI, protein content, total minerals, iron content, and overall acceptability ranged 2.69-3.36, 153.43-238.83 kg/m 3 , 4.56-4.88 g/g, 15.19-15.52%, 2.06-2.27%, 4.39-4.67 mg/100 g (w.b.) and 6.76-7.36, respectively. ER was significantly affected by all three process variables while BD was influenced by banana pulp and screw speed only. Studied process variables did not affected colour quality except 'a' value with banana pulp and screw speed. Banana pulp had positive correlation with water solubility index, total minerals and iron content and negative with WAI, protein and overall acceptability. Based upon multiple response analysis, optimized conditions were 8 g banana pulp, 350 rpm screw speed and 14% feed moisture indicating the protein, calorie, iron content and overall sensory acceptability in sample as 15.46%, 401 kcal/100 g, 4.48 mg/100 g and 7.6 respectively.

  10. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Opogona sacchari (Bojen)) by an inspector before or after undergoing irradiation treatment; or (2) The... irradiation treatment. (3) Untreated bananas from Hawaii may be moved interstate for treatment on the mainland...

  11. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (Opogona sacchari (Bojen)) by an inspector before or after undergoing irradiation treatment; or (2) The... irradiation treatment. (3) Untreated bananas from Hawaii may be moved interstate for treatment on the mainland...

  12. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Opogona sacchari (Bojen)) by an inspector before or after undergoing irradiation treatment; or (2) The... irradiation treatment. (3) Untreated bananas from Hawaii may be moved interstate for treatment on the mainland...

  13. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Opogona sacchari (Bojen)) by an inspector before or after undergoing irradiation treatment; or (2) The... irradiation treatment. (3) Untreated bananas from Hawaii may be moved interstate for treatment on the mainland...

  14. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    PubMed Central

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  15. Investigation into the role of endogenous abscisic acid during ripening of imported avocado cv. Hass.

    PubMed

    Meyer, Marjolaine D; Chope, Gemma A; Terry, Leon A

    2017-08-01

    The importance of ethylene in avocado ripening has been extensively studied. In contrast, little is known about the possible role of abscisic acid (ABA). The present work studied the effect of 1-methylcyclopropene (1-MCP) (0.3 μL L -1 ), e+® Ethylene Remover and the combination thereof on the quality of imported avocado cv. Hass fruit stored for 7 days at 12 °C. Ethylene production, respiration, firmness, colour, heptose (C7) sugars and ABA concentrations in mesocarp tissue were measured throughout storage. Treatment with e+® Ethylene Remover reduced ethylene production, respiration rate and physiological ripening compared with controls. Fruit treated with 1-MCP + e+® Ethylene Remover and, to a lesser extent 1-MCP alone, had the lowest ethylene production and respiration rate and hence the best quality. Major sugars measured in mesocarp tissue were mannoheptulose and perseitol, and their content was not correlated with ripening parameters. Mesocarp ABA concentration, as determined by mass spectrometry, increased as fruit ripened and was negatively correlated with fruit firmness. Results suggest a relationship between ABA and ethylene metabolism since blocking ethylene, and to a larger extent blocking and removing ethylene, resulted in lower ABA concentrations. Whether ABA influences avocado fruit ripening needs to be determined in future research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    PubMed Central

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  17. Banana fluxes in the plateau regime for a nonaxisymmetrically confined plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Fantechi, S.

    1990-09-01

    The banana (or banana-plateau) fluxes, related to the generalized stresses {l angle}{bold B}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle}, {l angle}{bold B}{sub {ital T}}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle} have been determined in the plateau regime, for a plasma confined by a toroidal magnetic field of arbitrary geometry. The complete set of transport coefficients for both the parallel'' (ambipolar) and toroidal'' (nonambipolar) banana fluxes was obtained in the 13-moment (13M) approximation, going beyond the previously known expressions in the nonaxisymmetric case. The main emphasis is laid on the structure of the transport matrix and of its coefficients. It is shown thatmore » the Onsager symmetry of this matrix partly breaks down (for the mixed electron--ion coefficients) in a nonaxisymmetrically confined plasma.« less

  18. Production of haploids from anther culture of banana [Musa balbisiana (BB)].

    PubMed

    Assani, A; Bakry, F; Kerbellec, F; Haïcour, R; Wenzel, G; Foroughi-Wehr, B

    2003-02-01

    We report here, for the first time, the production of haploid plants of banana Musa balbisiana (BB). Callus was induced from anthers in which the majority of the microspores were at the uninucleate stage. The frequency of callus induction was 77%. Callus proliferation usually preceded embryo formation. About 8% of the anthers developed androgenic embryos. Of the 147 plantlets obtained, 41 were haploids (n=x=11). The frequency of haploid production depended on genotypes used: 18 haploid plants were produced from genotype Pisang klutuk, 12 from Pisang batu, seven from Pisang klutuk wulung and four from Tani. The frequency of regeneration was 1.1%, which was based on the total number of anthers cultured. Diploid plants (2n=2x=22) were also observed in the regenerated plants. The haploid banana plants that were developed will be important material for the improvement of banana through breeding programmes.

  19. Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese.

    PubMed

    Le Boucher, Clémentine; Gagnaire, Valérie; Briard-Bion, Valérie; Jardin, Julien; Maillard, Marie-Bernadette; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Lortal, Sylvie; Jeanson, Sophie; Thierry, Anne

    2016-01-01

    In cheese, lactic acid bacteria are immobilized at the coagulation step and grow as colonies. The spatial distribution of bacterial colonies is characterized by the size and number of colonies for a given bacterial population within cheese. Our objective was to demonstrate that different spatial distributions, which lead to differences in the exchange surface between the colonies and the cheese matrix, can influence the ripening process. The strategy was to generate cheeses with the same growth and acidification of a Lactococcus lactis strain with two different spatial distributions, big and small colonies, to monitor the production of the major ripening metabolites, including sugars, organic acids, peptides, free amino acids, and volatile metabolites, over 1 month of ripening. The monitored metabolites were qualitatively the same for both cheeses, but many of them were more abundant in the small-colony cheeses than in the big-colony cheeses over 1 month of ripening. Therefore, the results obtained showed that two different spatial distributions of L. lactis modulated the ripening time course by generating moderate but significant differences in the rates of production or consumption for many of the metabolites commonly monitored throughout ripening. The present work further explores the immobilization of bacteria as colonies within cheese and highlights the consequences of this immobilization on cheese ripening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.).

    PubMed

    Wang, Wei; Hu, Yulin; Sun, Dequan; Staehelin, Christian; Xin, Dawei; Xie, Jianghui

    2012-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4) results in vascular tissue damage and ultimately death of banana (Musa spp.) plants. Somaclonal variants of in vitro micropropagated banana can hamper success in propagation of genotypes resistant to FOC4. Early identification of FOC4 resistance in micropropagated banana plantlets is difficult, however. In this study, we identified sequence-characterized amplified region (SCAR) markers of banana associated with resistance to FOC4. Using pooled DNA from resistant or susceptible genotypes and 500 arbitrary 10-mer oligonucleotide primers, 24 random amplified polymorphic DNA (RAPD) products were identified. Two of these RAPD markers were successfully converted to SCAR markers, called ScaU1001 (GenBank accession number HQ613949) and ScaS0901 (GenBank accession number HQ613950). ScaS0901 and ScaU1001 could be amplified in FOC4-resistant banana genotypes ("Williams 8818-1" and Goldfinger), but not in five tested banana cultivars susceptible to FOC4. The two SCAR markers were then used to identify a somaclonal variant of the genotype "Williams 8818-1", which lost resistance to FOC4. Hence, the identified SCAR markers can be applied for a rapid quality control of FOC4-resistant banana plantlets immediately after the in vitro micropropagation stage. Furthermore, ScaU1001 and ScaS0901 will facilitate marker-assisted selection of new banana cultivars resistant to FOC4.

  1. Role of the Tomato Non-Ripening Mutation in Regulating Fruit Quality Elucidated Using iTRAQ Protein Profile Analysis

    PubMed Central

    Yuan, Xin-Yu; Wang, Rui-Heng; Zhao, Xiao-Dan; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit’s resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato. PMID:27732677

  2. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

    PubMed

    D'Hont, Angélique; Denoeud, France; Aury, Jean-Marc; Baurens, Franc-Christophe; Carreel, Françoise; Garsmeur, Olivier; Noel, Benjamin; Bocs, Stéphanie; Droc, Gaëtan; Rouard, Mathieu; Da Silva, Corinne; Jabbari, Kamel; Cardi, Céline; Poulain, Julie; Souquet, Marlène; Labadie, Karine; Jourda, Cyril; Lengellé, Juliette; Rodier-Goud, Marguerite; Alberti, Adriana; Bernard, Maria; Correa, Margot; Ayyampalayam, Saravanaraj; Mckain, Michael R; Leebens-Mack, Jim; Burgess, Diane; Freeling, Mike; Mbéguié-A-Mbéguié, Didier; Chabannes, Matthieu; Wicker, Thomas; Panaud, Olivier; Barbosa, Jose; Hribova, Eva; Heslop-Harrison, Pat; Habas, Rémy; Rivallan, Ronan; Francois, Philippe; Poiron, Claire; Kilian, Andrzej; Burthia, Dheema; Jenny, Christophe; Bakry, Frédéric; Brown, Spencer; Guignon, Valentin; Kema, Gert; Dita, Miguel; Waalwijk, Cees; Joseph, Steeve; Dievart, Anne; Jaillon, Olivier; Leclercq, Julie; Argout, Xavier; Lyons, Eric; Almeida, Ana; Jeridi, Mouna; Dolezel, Jaroslav; Roux, Nicolas; Risterucci, Ange-Marie; Weissenbach, Jean; Ruiz, Manuel; Glaszmann, Jean-Christophe; Quétier, Francis; Yahiaoui, Nabila; Wincker, Patrick

    2012-08-09

    Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.

  3. Evidence for the presence of a female produced sex pheromone in the banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae)

    USDA-ARS?s Scientific Manuscript database

    Behavior-modifying chemicals such as pheromones and kairomones have great potential in pest management. Studies reported here investigated chemical cues involved in mating and aggregation behavior of banana weevil, Cosmopolites sordidus, a major insect pest of banana in every country where bananas a...

  4. Climatic Forcing on Black Sigatoka Disease of Banana Crops in Urabá, Colombia

    NASA Astrophysics Data System (ADS)

    Ochoa, A.; Álvarez, P.; Poveda, G.; Buriticá, P.; Mira, J.

    2012-12-01

    Bananas are widely the most consumed fruit in the world and Colombia is one of the major producers and exporters of bananas worldwide. We analyzed the climatic forcing agents on banana crops in the Urabá region, the largest banana producer in Colombia. Although this crop is harvested continuously throughout the entire year, it exhibits climate driven seasonality. Black Sigatoka Disease (BSD) has been the most important threat for banana production worldwide. BSD attacks plant leaves producing small spots of dead material. When BSD is not treated, it can grow enough to damage the entire leaf, reducing both growth and developmental rates which may result in the loss of the plant. BSD is caused by Mycosphaerella fijiensis. This fungus is dispersed by wind with its inoculation occurring when there is water on the leaf. Thus, climatic variables such as wind, relative humidity of air (RH) and leaf wetness duration (LWD) all affect phenological phases of the banana crop (suckering, growing, flowering and harvesting). This study was carried out at the Cenibanano Experimental Plot located in Carepa (Urabá, Colombia) during 2007-2012. We used phytopathologic and weather data from the Cenibanano database along with climatic data from the North American Regional Reanalysis (NARR). BSD was diagnosed using the Biological Forecasting method. Results show that rainfall drives both plant and disease development rate. During wet periods the Foliar Emission Rate exceeds rates measured during dry periods. Although wetness is a positive factor for fungal reproduction (and BSD), it also heightens the chance for the plant to create more foliar tissue to fight against BSD. Hence, during wet periods the Severity Index of BSD is reduced in relation to dry periods. This effect was also observed at the inter-annual scale of the El Niño - South Oscillation (ENSO) phenomenon. During the ENSO warm/cold phase (El Niño/La Niña) rainfall anomalies in Colombia were observed as negative

  5. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Belghazi, Maya; Job, Dominique; Manganaris, George A.; Molassiotis, Athanassios; Vasilakakis, Miltiadis

    2012-01-01

    Post-harvest ozone application has recently been shown to inhibit the onset of senescence symptoms on fleshy fruit and vegetables; however, the exact mechanism of action is yet unknown. To characterize the impact of ozone on the post-harvest performance of kiwifruit (Actinidia deliciosa cv. ‘Hayward’), fruits were cold stored (0 °C, 95% relative humidity) in a commercial ethylene-free room for 1, 3, or 5 months in the absence (control) or presence of ozone (0.3 μl l−1) and subsequently were allowed to ripen at a higher temperature (20 °C), herein defined as the shelf-life period, for up to 12 days. Ozone blocked ethylene production, delayed ripening, and stimulated antioxidant and anti-radical activities of fruits. Proteomic analysis using 1D-SDS-PAGE and mass spectrometry identified 102 kiwifruit proteins during ripening, which are mainly involved in energy, protein metabolism, defence, and cell structure. Ripening induced protein carbonylation in kiwifruit but this effect was depressed by ozone. A set of candidate kiwifruit proteins that are sensitive to carbonylation was also discovered. Overall, the present data indicate that ozone improved kiwifruit post-harvest behaviour, thus providing a first step towards understanding the active role of this molecule in fruit ripening. PMID:22268155

  6. An infrared based sensor system for the detection of ethylene for the discrimination of fruit ripening

    NASA Astrophysics Data System (ADS)

    Kathirvelan, J.; Vijayaraghavan, R.

    2017-09-01

    We report the fabrication and testing of a prototype ethylene sensing device for use in fruit ripening applications. A sensor based on infrared (IR) thermal emission was developed and used to detect the ethylene level released during the fruit ripening process. An IR thermal source tuned to the 10.6 μm wavelength was linked to a high-sensitivity silicon temperature detector. When introduced into the wave path between the IR source and temperature detector, ethylene absorbs the 10.6 μm IR waves and decreases the surface temperature of the detector. The output is then converted to an electrical signal (in mV), which gives a direct measurement of the ethylene level. Using this sensor, ethylene concentration measured from a fruit sample continuously decreased from 59 to 5 ppm during the natural ripening process. The sensor exhibited a sensitivity of 3.3 ± 0.2% (change in detector output (mV)/ppm × 100) and could measure concentrations as low as 5 ppm with rise and recovery times of 1 and 3 s, respectively. The system demonstrated good reproducibility. Devices employing this sensor system may be used for fruit ripening applications on site and in the field and for screening artificially ripened fruits, therefore contributing to ensure food safety.

  7. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  8. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted.

  9. The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum.

    PubMed

    Zhuang, Jun; Coates, Christopher J; Mao, Qianzhuo; Wu, Zujian; Xie, Lianhui

    2016-06-01

    The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  10. ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor.

    PubMed

    Ríos, Pablo; Argyris, Jason; Vegas, Juan; Leida, Carmen; Kenigswald, Merav; Tzuri, Galil; Troadec, Christelle; Bendahmane, Abdelhafid; Katzir, Nurit; Picó, Belén; Monforte, Antonio J; Garcia-Mas, Jordi

    2017-08-01

    Fruit ripening is divided into climacteric and non-climacteric types depending on the presence or absence of a transient rise in respiration rate and the production of autocatalytic ethylene. Melon is ideal for the study of fruit ripening, as both climacteric and non-climacteric varieties exist. Two introgressions of the non-climacteric accession PI 161375, encompassed in the QTLs ETHQB3.5 and ETHQV6.3, into the non-climacteric 'Piel de Sapo' background are able to induce climacteric ripening independently. We report that the gene underlying ETHQV6.3 is MELO3C016540 (CmNAC-NOR), encoding a NAC (NAM, ATAF1,2, CUC2) transcription factor that is closely related to the tomato NOR (non-ripening) gene. CmNAC-NOR was functionally validated through the identification of two TILLING lines carrying non-synonymous mutations in the conserved NAC domain region. In an otherwise highly climacteric genetic background, both mutations provoked a significant delay in the onset of fruit ripening and in the biosynthesis of ethylene. The PI 161375 allele of ETHQV6.3 is similar to that of climacteric lines of the cantalupensis type and, when introgressed into the non-climacteric 'Piel de Sapo', partially restores its climacteric ripening capacity. CmNAC-NOR is expressed in fruit flesh of both climacteric and non-climacteric lines, suggesting that the causal mutation may not be acting at the transcriptional level. The use of a comparative genetic approach in a species with both climacteric and non-climacteric ripening is a powerful strategy to dissect the complex mechanisms regulating the onset of fruit ripening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless.

    PubMed

    Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.

  12. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health.

    PubMed

    Pereira, Aline; Maraschin, Marcelo

    2015-02-03

    Banana is a fruit with nutritional properties and also with acclaimed therapeutic uses, cultivated widely throughout the tropics as source of food and income for people. Banana peel is known by its local and traditional use to promote wound healing mainly from burns and to help overcome or prevent a substantial number of illnesses, as depression. This review critically assessed the phytochemical properties and biological activities of Musa spp fruit pulp and peel. A survey on the literature on banana (Musa spp, Musaceae) covering its botanical classification and nomenclature, as well as the local and traditional use of its pulp and peel was performed. Besides, the current state of art on banana fruit pulp and peel as interesting complex matrices sources of high-value compounds from secondary metabolism was also approached. Dessert bananas and plantains are systematic classified into four sections, Eumusa, Rhodochlamys, Australimusa, and Callimusa, according to the number of chromosomes. The fruits differ only in their ploidy arrangement and a single scientific name can be given to all the edible bananas, i.e., Musa spp. The chemical composition of banana's peel and pulp comprise mostly carotenoids, phenolic compounds, and biogenic amines. The biological potential of those biomasses is directly related to their chemical composition, particularly as pro-vitamin A supplementation, as potential antioxidants attributed to their phenolic constituents, as well as in the treatment of Parkinson's disease considering their contents in l-dopa and dopamine. Banana's pulp and peel can be used as natural sources of antioxidants and pro-vitamin A due to their contents in carotenoids, phenolics, and amine compounds, for instance. For the development of a phytomedicine or even an allopathic medicine, e.g., banana fruit pulp and peel could be of interest as raw materials riches in beneficial bioactive compounds. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits.

    PubMed

    Han, Sang Eun; Seo, Young Sam; Kim, Daeil; Sung, Soon-Kee; Kim, Woo Taek

    2007-08-01

    Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is beta-cyanoalanine synthase (beta-CAS). As little is known about the molecular function of beta-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple beta-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as beta-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, beta-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.

  14. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  15. Optimisation of low temperature extraction of banana juice using commercial pectinase.

    PubMed

    Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Karmakar, Sankha; De, Sirshendu

    2014-05-15

    The objective of this work was to develop a process with optimum conditions for banana juice. The procedure involves hydrolyzing the banana pulp by commercial pectinase followed by cloth filtration. Response surface methodology with Doehlert design was utilised to optimize the process parameters. The temperature of incubation (30-60 °C), time of reaction (20-120 min) and concentration of pectinase (0.01-0.05% v/w) were the independent variables and viscosity, clarity, alcohol insoluble solids (AIS), total polyphenol and protein concentration were the responses. Total soluble sugar, pH, conductivity, calcium, sodium and potassium concentration in the juice were also evaluated. The results showed reduction of AIS and viscosity with reaction time and pectinase concentration and reduction of polyphenol and protein concentration with temperature. Using numerical optimization, the optimum conditions for the enzymatic extraction of banana juice were estimated. Depectinization kinetics was also studied at optimum temperature and variation of kinetic constants with enzyme dose was evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration

    PubMed Central

    Chaki, Mounira; Álvarez de Morales, Paz; Ruiz, Carmelo; Begara-Morales, Juan C.; Barroso, Juan B.; Corpas, Francisco J.; Palma, José M.

    2015-01-01

    Background and Aims Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. Methods The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. Key Results Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. Conclusions The RNS profile reported here indicates that ripening of

  17. The bioactive compounds and antioxidant activity of ethanol and ethyl ecetate extracts of Candi Banana (Musa paradisiaca)

    NASA Astrophysics Data System (ADS)

    Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.

    2018-03-01

    Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.

  18. Plasma glucose and insulin responses to bananas of varying ripeness in persons with noninsulin-dependent diabetes mellitus.

    PubMed

    Ercan, N; Nuttall, F Q; Gannon, M C; Lane, J T; Burmeister, L A; Westphal, S A

    1993-12-01

    With progressive ripeness there is a decrease in starch and an increase in free sugar content of bananas. The starch also is considered to be poorly digestible. Therefore, we decided to study plasma glucose, serum insulin, C-peptide, and plasma glucagon responses to bananas with increasing degrees of ripeness. Seven male subjects with untreated noninsulin-dependent diabetes mellitus ingested 50 g carbohydrate as bananas of stage 4 (more yellow than green), 5 (yellow with green tip), 6 (all yellow), and 7 (yellow flecked with brown) ripeness. They also received 50 glucose on two occasions for comparative purposes. On a separate occasion water only was given as a control. The area responses were quantified by determining incremental areas using the water control as baseline. The mean glucose area following the 50 g glucose meals was 15.1 +/- 1.9 mM.h. After the ingestion of bananas of 4, 5, 6 and 7 ripeness the glucose area response was 42, 41, 51 and 48% of that after glucose ingestion, respectively. The insulin area response following glucose meals was 888 pM.h. Responses to 4, 5, 6 and 7 bananas were 85, 70, 61, 85%, respectively, of that following glucose ingestion. C-peptide data were similar to the insulin data. The glucagon area response was negative after glucose ingestion but was positive following banana ingestion. In summary, the glucose, insulin, C-peptide, and glucagon area responses varied little with ripeness of the bananas.

  19. Physicochemical and Microbial Properties of the Korean Traditional Rice Wine, Makgeolli, Supplemented with Banana during Fermentation.

    PubMed

    Kim, Eunkyung; Chang, Yoon Hyuk; Ko, Jae Youn; Jeong, Yoonhwa

    2013-09-01

    The objective of the present study was to evaluate the physicochemical and microbial properties of the Korean traditional rice wine Makgeolli, supplemented with banana during 6 day fermentation. The alcohol contents of the control and banana Makgeolli were 17.0 and 16.5%, respectively. The pH values decreased while total acidity, total soluble solids, and color values increased throughout the fermentation process. An increase in microorganism counts throughout the 6-day fermentation period was noted in all samples. The major free sugar and organic acid detected in all samples were glucose and succinic acid, respectively. There were 39 volatile compounds detected in the control and banana Makgeolli. The major ester detected was ethyl acetate (20.037 and 22.604% for the control and banana Makgeolli, respectively). The major alcohol compounds detected were 3-methylbutanol (20.933%) and 3-methyl-1-butanol (34.325%) in the control. 2-mtehyl-1-propanol (22.289%) and 3-methyl-1-butanol (39.851%) were the highest alcohol compounds detected in the banana Makgeolli.

  20. Optimization of orodispersible and conventional tablets using simplex lattice design: Relationship among excipients and banana extract.

    PubMed

    Duangjit, Sureewan; Kraisit, Pakorn

    2018-08-01

    The objective of this study was focused on the optimization of the pharmaceutical excipients and banana extract in the preparation of orally disintegrating banana extract tablets (OD-BET) and conventional banana extract tablets (CO-BET) using a simplex lattice design. Various ratios of banana extract (BE), dibasic calcium phosphate (DCP) and microcrystalline cellulose (MCC) were used to prepare banana extract tablets (BET). The results indicated that the optimal OD-BET and CO-BET consisted of BE: DCP: MCC at 10.0, 88.8, 1.2, 10.0, 83.8: and 6.2, respectively. AFM demonstrated that the surface of BET with BE + MCC was smooth and compacted when compared to BET with BE + DCP + MCC and BE + DCP. FTIR and XRD showed a correlation in the results and indicated that no interaction of each ingredient occurred in the process of BET formulation. Therefore, the experimental design is potentially useful in formulated OD-BET and CO-BET by using only one design simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Physicochemical and Microbial Properties of the Korean Traditional Rice Wine, Makgeolli, Supplemented with Banana during Fermentation

    PubMed Central

    Kim, Eunkyung; Chang, Yoon Hyuk; Ko, Jae Youn; Jeong, Yoonhwa

    2013-01-01

    The objective of the present study was to evaluate the physicochemical and microbial properties of the Korean traditional rice wine Makgeolli, supplemented with banana during 6 day fermentation. The alcohol contents of the control and banana Makgeolli were 17.0 and 16.5%, respectively. The pH values decreased while total acidity, total soluble solids, and color values increased throughout the fermentation process. An increase in microorganism counts throughout the 6-day fermentation period was noted in all samples. The major free sugar and organic acid detected in all samples were glucose and succinic acid, respectively. There were 39 volatile compounds detected in the control and banana Makgeolli. The major ester detected was ethyl acetate (20.037 and 22.604% for the control and banana Makgeolli, respectively). The major alcohol compounds detected were 3-methylbutanol (20.933%) and 3-methyl-1-butanol (34.325%) in the control. 2-mtehyl-1-propanol (22.289%) and 3-methyl-1-butanol (39.851%) were the highest alcohol compounds detected in the banana Makgeolli. PMID:24471133

  2. Functional genomics provides insights into the role of Propionibacterium freudenreichii ssp. shermanii JS in cheese ripening.

    PubMed

    Ojala, Teija; Laine, Pia K S; Ahlroos, Terhi; Tanskanen, Jarna; Pitkänen, Saara; Salusjärvi, Tuomas; Kankainen, Matti; Tynkkynen, Soile; Paulin, Lars; Auvinen, Petri

    2017-01-16

    Propionibacterium freudenreichii is a commercially important bacterium that is essential for the development of the characteristic eyes and flavor of Swiss-type cheeses. These bacteria grow actively and produce large quantities of flavor compounds during cheese ripening at warm temperatures but also appear to contribute to the aroma development during the subsequent cold storage of cheese. Here, we advance our understanding of the role of P. freudenreichii in cheese ripening by presenting the 2.68-Mbp annotated genome sequence of P. freudenreichii ssp. shermanii JS and determining its global transcriptional profiles during industrial cheese-making using transcriptome sequencing. The annotation of the genome identified a total of 2377 protein-coding genes and revealed the presence of enzymes and pathways for formation of several flavor compounds. Based on transcriptome profiling, the expression of 348 protein-coding genes was altered between the warm and cold room ripening of cheese. Several propionate, acetate, and diacetyl/acetoin production related genes had higher expression levels in the warm room, whereas a general slowing down of the metabolism and an activation of mobile genetic elements was seen in the cold room. A few ripening-related and amino acid catabolism involved genes were induced or remained active in cold room, indicating that strain JS contributes to the aroma development also during cold room ripening. In addition, we performed a comparative genomic analysis of strain JS and 29 other Propionibacterium strains of 10 different species, including an isolate of both P. freudenreichii subspecies freudenreichii and shermanii. Ortholog grouping of the predicted protein sequences revealed that close to 86% of the ortholog groups of strain JS, including a variety of ripening-related ortholog groups, were conserved across the P. freudenreichii isolates. Taken together, this study contributes to the understanding of the genomic basis of P. freudenreichii

  3. Performance of two alternative methods for Listeria detection throughout Serro Minas cheese ripening.

    PubMed

    Mata, Gardênia Márcia Silva Campos; Martins, Evandro; Machado, Solimar Gonçalves; Pinto, Maximiliano Soares; de Carvalho, Antônio Fernandes; Vanetti, Maria Cristina Dantas

    2016-01-01

    The ability of pathogens to survive cheese ripening is a food-security concern. Therefore, this study aimed to evaluate the performance of two alternative methods of analysis of Listeria during the ripening of artisanal Minas cheese. These methods were tested and compared with the conventional method: Lateral Flow System™, in cheeses produced on laboratory scale using raw milk collected from different farms and inoculated with Listeria innocua; and VIDAS(®)-LMO, in cheese samples collected from different manufacturers in Serro, Minas Gerais, Brazil. These samples were also characterized in terms of lactic acid bacteria, coliforms and physical-chemical analysis. In the inoculated samples, L. innocua was detected by Lateral Flow System™ method with 33% false-negative and 68% accuracy results. L. innocua was only detected in the inoculated samples by the conventional method at 60-days of cheese ripening. L. monocytogenes was not detected by the conventional and the VIDAS(®)-LMO methods in cheese samples collected from different manufacturers, which impairs evaluating the performance of this alternative method. We concluded that the conventional method provided a better recovery of L. innocua throughout cheese ripening, being able to detect L. innocua at 60-day, aging period which is required by the current legislation. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study.

    PubMed

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S; Shivanaikar, Sachin

    2015-01-01

    Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans.

  5. Development of native and modified banana starch nanoparticles as vehicles for curcumin.

    PubMed

    Acevedo-Guevara, Leonardo; Nieto-Suaza, Leonardo; Sanchez, Leidy T; Pinzon, Magda I; Villa, Cristian C

    2018-05-01

    In recent years, starch nanoparticles have been of great interest for drug delivery due to their relatively easy synthesis, biocompatibility, and vast amount of botanical sources. Native and acetylated starch obtained from green bananas were used for synthesis of curcumin-loaded starch nanoparticles. Mean particle size, encapsulation efficiency, and curcumin release in simulated gastric and intestinal fluids were studied. Both nanosystems showed sizes lower than 250 nm and encapsulation efficiency above 80%, with acetylated banana starch nanoparticles having the capacity to encapsulate more curcumin molecules. Both FTIR and XRD analyses showed that starch acetylation allows stronger hydrogen bond interaction between curcumin and the starch matrix, thus, higher encapsulation efficiency. Finally, curcumin release studies showed that acetylated banana starch nanoparticles allowed more controlled release, probably due to their stronger hydrogen bond interaction with curcumin. Copyright © 2018. Published by Elsevier B.V.

  6. Differentiation between cooking bananas and dessert bananas. 1. Morphological and compositional characterization of cultivated Colombian Musaceae (Musa sp.) in relation to consumer preferences.

    PubMed

    Gibert, Olivier; Dufour, Dominique; Giraldo, Andrés; Sánchez, Teresa; Reynes, Max; Pain, Jean-Pierre; González, Alonso; Fernández, Alejandro; Díaz, Alberto

    2009-09-09

    The morphological, physical, and chemical characteristics of 23 unripe cultivated varieties of Colombian Musaceae were assessed. Fresh pulp dry matter helped to discriminate the following consumption subgroups: FHIA dessert hybrids (hydes: 24.6%) < dessert bananas (des: 29.4%) < nonplantain cooking bananas (cook: 32.0%) < FHIA cooking hybrids (hycook: 34.2%) < plantains (pl: 41.1%). Banana flour starch content on dry basis (db) varied from 74.2 to 88.2% among the varieties, with: pl: 86.5% > cook and hycook: 84% > des: 81.9% > hydes: 79.7% (p banana and FHIA groups with 7.9, 13.6, and 15.6 mEq H(+)/100 g db, respectively (p

  7. A theory of the helical ripple-induced stochastic behavior of fast toroidal bananas in torsatrons and heliotrons

    NASA Astrophysics Data System (ADS)

    Smirnova, M. S.

    2001-05-01

    A theory of the helical ripple-induced stochastic behavior of fast toroidal bananas in torsatrons and heliotrons [K. Uo, J. Phys. Soc. Jpn. 16, 1380 (1961)] is developed. It is supplemented by an analysis of the structure of the secondary magnetic wells along field lines. Conditions, under which these wells are suppressed in torsatrons-heliotrons by poloidally modulated helical field ripple, are found. It is shown that inside the secondary magnetic well-free region, favorable conditions exist for a transition of fast toroidal bananas to stochastic trajectories. The analytical estimation for the value of an additional radial jump of a banana particle near its turning point, induced by the helical field ripple effect, is derived. It is found to be similar to the corresponding banana radial jump in a tokamak with the toroidal field ripple. Critical values of the helical field ripple dangerous from the viewpoint of a banana transition to stochastic behavior are estimated.

  8. Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques.

    PubMed

    Ryssel, Mia; Johansen, Pernille; Al-Soud, Waleed Abu; Sørensen, Søren; Arneborg, Nils; Jespersen, Lene

    2015-12-23

    Microbial successions on the surface and in the interior of surface ripened semi-hard Danish Danbo cheeses were investigated by culture-dependent and -independent techniques. Culture-independent detection of microorganisms was obtained by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing, using amplicons of 16S and 26S rRNA genes for prokaryotes and eukaryotes, respectively. With minor exceptions, the results from the culture-independent analyses correlated to the culture-dependent plating results. Even though the predominant microorganisms detected with the two culture-independent techniques correlated, a higher number of genera were detected by pyrosequencing compared to DGGE. Additionally, minor parts of the microbiota, i.e. comprising <10.0% of the operational taxonomic units (OTUs), were detected by pyrosequencing, resulting in more detailed information on the microbial succession. As expected, microbial profiles of the surface and the interior of the cheeses diverged. During cheese production pyrosequencing determined Lactococcus as the dominating genus on cheese surfaces, representing on average 94.7%±2.1% of the OTUs. At day 6 Lactococcus spp. declined to 10.0% of the OTUs, whereas Staphylococcus spp. went from 0.0% during cheese production to 75.5% of the OTUs at smearing. During ripening, i.e. from 4 to 18 weeks, Corynebacterium was the dominant genus on the cheese surface (55.1%±9.8% of the OTUs), with Staphylococcus (17.9%±11.2% of the OTUs) and Brevibacterium (10.4%±8.3% of the OTUs) being the second and third most abundant genera. Other detected bacterial genera included Clostridiisalibacter (5.0%±4.0% of the OTUs), as well as Pseudoclavibacter, Alkalibacterium and Marinilactibacillus, which represented <2% of the OTUs. At smearing, yeast counts were low with Debaryomyces being the dominant genus accounting for 46.5% of the OTUs. During ripening the yeast counts increased significantly with Debaryomyces being the predominant genus

  9. Predicting the Benefits of Banana Bunchy Top Virus Exclusion from Commercial Plantations in Australia

    PubMed Central

    Cook, David C.; Liu, Shuang; Edwards, Jacqueline; Villalta, Oscar N.; Aurambout, Jean-Philippe; Kriticos, Darren J.; Drenth, Andre; De Barro, Paul J.

    2012-01-01

    Benefit cost analysis is a tried and tested analytical framework that can clearly communicate likely net changes in producer welfare from investment decisions to diverse stakeholder audiences. However, in a plant biosecurity context, it is often difficult to predict policy benefits over time due to complex biophysical interactions between invasive species, their hosts, and the environment. In this paper, we demonstrate how a break-even style benefit cost analysis remains highly relevant to biosecurity decision-makers using the example of banana bunchy top virus, a plant pathogen targeted for eradication from banana growing regions of Australia. We develop an analytical approach using a stratified diffusion spread model to simulate the likely benefits of exclusion of this virus from commercial banana plantations over time relative to a nil management scenario in which no surveillance or containment activities take place. Using Monte Carlo simulation to generate a range of possible future incursion scenarios, we predict the exclusion benefits of the disease will avoid Aus$15.9-27.0 million in annual losses for the banana industry. For these exclusion benefits to be reduced to zero would require a bunchy top re-establishment event in commercial banana plantations three years in every four. Sensitivity analysis indicates that exclusion benefits can be greatly enhanced through improvements in disease surveillance and incursion response. PMID:22879960

  10. In vitro colonic fermentation and glycemic response of different kinds of unripe banana flour.

    PubMed

    Menezes, Elizabete Wenzel; Dan, Milana C T; Cardenette, Giselli H L; Goñi, Isabel; Bello-Pérez, Luis Arturo; Lajolo, Franco M

    2010-12-01

    This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanicão variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefit effects of the fermentation on intestinal health.

  11. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP).

    PubMed

    Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.

    2001-07-01

    The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.

  12. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River at Patrick Air Force Base, Fla.; restricted area. 334.560 Section 334.560 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.560 Banana...

  13. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.

    PubMed

    Shah, Punit; Powell, Ann L T; Orlando, Ron; Bergmann, Carl; Gutierrez-Sanchez, Gerardo

    2012-04-06

    Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.

  14. Sexual intercourse for cervical ripening and induction of labour.

    PubMed

    Kavanagh, J; Kelly, A J; Thomas, J

    2001-01-01

    The role of prostaglandins for cervical ripening and induction of labour has been examined extensively. Human semen is the biological source that is presumed to contain the highest prostaglandin concentration. The role of sexual intercourse in the initiation of labour is uncertain. The action of sexual intercourse in stimulating labour is unclear, it may in part be due to the physical stimulation of the lower uterine segment, or endogenous release of oxytocin as a result of orgasm or from the direct action of prostaglandins in semen. Furthermore nipple stimulation may be part of the process of initiation. This is one of a series of reviews of methods of cervical ripening and labour induction using standardised methodology. To determine the effects of sexual intercourse for third trimester cervical ripening or induction of labour in comparison with other methods of induction. The Cochrane Pregnancy and Childbirth Group trials register, the Cochrane Controlled Trials Register and bibliographies of relevant papers. Last searched: November 2000. (1) clinical trials comparing sexual intercourse for third trimester cervical ripening or labour induction with placebo/no treatment or other methods listed above it on a predefined list of labour induction methods; (2) random allocation to the treatment or control group; (3) adequate allocation concealment; (4) violations of allocated management not sufficient to materially affect conclusions; (5) clinically meaningful outcome measures reported; (6) data available for analysis according to the random allocation; (7) missing data insufficient to materially affect the conclusion. A strategy has been developed to deal with the large volume and complexity of trial data relating to labour induction. This involves a two-stage method of data extraction. There was one included study of 28 women which reported very limited data, from which no meaningful conclusions can be drawn. The role of sexual intercourse as a method of induction

  15. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    PubMed Central

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This

  16. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    NASA Astrophysics Data System (ADS)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji

    2017-07-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  17. Biochemistry and Cell Wall Changes Associated with Noni (Morinda citrifolia L.) Fruit Ripening.

    PubMed

    Cárdenas-Coronel, Wendy G; Carrillo-López, Armando; Vélez de la Rocha, Rosabel; Labavitch, John M; Báez-Sañudo, Manuel A; Heredia, José B; Zazueta-Morales, José J; Vega-García, Misael O; Sañudo-Barajas, J Adriana

    2016-01-13

    Quality and compositional changes were determined in noni fruit harvested at five ripening stages, from dark-green to thaslucent-grayish. Fruit ripening was accompanied by acidity and soluble solids accumulation but pH diminution, whereas the softening profile presented three differential steps named early (no significant softening), intermediate (significant softening), and final (dramatic softening). At early step the extensive depolymerization of hydrosoluble pectins and the significantly increment of pectinase activities did not correlate with the slight reduction in firmness. The intermediate step showed an increment of pectinases and hemicellulases activities. The final step was accompanied by the most significant reduction in the yield of alcohol-insoluble solids as well as in the composition of uronic acids and neutral sugars; pectinases increased their activity and depolymerization of hemicellulosic fractions occurred. Noni ripening is a process conducted by the coordinated action of pectinases and hemicellulases that promote the differential dissasembly of cell wall polymers.

  18. Application of Nutrient Enriched Biochar to Grow Bananas at the Plantation Scale

    NASA Astrophysics Data System (ADS)

    Nzengung, Valentine

    2017-04-01

    The majority of soils in Cameroon consist of varying laterites derived from granites. The lateritic soils are generally depleted in nutrients. The most fertile soils in Cameroon are young soils that have formed from volcanic rocks of the Cameroon volcanic line (CVL). The richer volcanic soils which are found in the southwest region and the western regions are used to grow the major cash crops, including cocoa, coffee, rubber, banana, tea, and palm fruits. The government owned Cameroon Development Corporation (CDC) and private commercial farmers in the country have resorted to the heavy use of imported agrochemicals to mitigate the serious and persistent soil fertility challenges. Cameroon is the third largest biomass producer in Africa. This means that Cameroon has a high biomass production potential. Among the many types of biomass available for biochar production in Cameroon, empty fruit bunches (EFB) from the many palm oil plantations offer one of the largest concentration of biomass. CDC alone produces over 200,000 tons of EFB biomass each year. The corporation uses less than half of the EFB it produces in its palm oil processing mills for mulching. The remaining EFB are disposed by open burning leading to significant air pollution. In 2015, we entered into a collaborative understanding with CDC to dispose some of its EFB by pyrolysis to produce biochar. The produced biochar is enriched with natural plant nutrients obtained from animal waste (poultry chicken manure) and volcanic lava dust from the 2001 eruption of Mount Cameroon. The biochar, chicken litter and volcanic rock dust is aged for 14 - 21 days to produce a 100% natural soil enhancer commercialized under the name "QwikGro". The QwikGro is undergoing field evaluation on three hectares of banana plantation owned by CDC. The field trial began in June 2016. Of the three hectares, one hectare of the bananas was planted using 100% (only) QwikGro, the second hectare was planted with 50% QwikGro and received

  19. Studies on mould growth and biomass production using waste banana peel.

    PubMed

    Essien, J P; Akpan, E J; Essien, E P

    2005-09-01

    Hyphomycetous (Aspergillus fumigatus) and Phycomycetous (Mucor hiemalis) moulds were cultivated in vitro at room temperature (28 + 20 degrees C) to examined their growth and biomass production on waste banana peel agar (BPA) and broth (BPB) using commercial malt extract agar (MEA) and broth (MEB) as control. The moulds grew comparatively well on banana peel substrates. No significant difference (p > 0.05) in radial growth rates was observed between moulds cultivated on PBA and MEA, although growth rates on MEA were slightly better. Slight variations in sizes of asexual spores and reproductive hyphae were also observed between moulds grown on MEA and BPA. Smaller conidia and sporangiospores, and shorter aerial hyphae (conidiophores and sporangiophores) were noticed in moulds grown on BPA than on MEA. The biomass weight of the test moulds obtained after one month of incubation with BPB were only about 1.8 mg and 1.4 mg less than values recorded for A. fumigatus and M. hiemalis respectively, grown on MEB. The impressive performance of the moulds on banana peel substrate may be attributed to the rich nutrient (particularly the crude protein 7.8% and crude fat 11.6% contents) composition of banana peels. The value of this agricultural waste can therefore be increased by its use not only in the manufacture of mycological medium but also in the production of valuable microfungal biomass which is rich in protein and fatty acids.

  20. Methods for assessing pre-induction cervical ripening

    PubMed Central

    Ezebialu, Ifeanyichukwu U; Eke, Ahizechukwu C; Eleje, George U; Nwachukwu, Chukwuemeka E

    2015-01-01

    Background Induction of labour is the artificial initiation of labour in a pregnant woman after the age of fetal viability but without any objective evidence of active phase labour and with intact fetal membranes. The need for induction of labour may arise due to a problem in the mother, her fetus or both, and the procedure may be carried out at or before term. Obstetricians have long known that for this to be successful, it is important that the uterine cervix (the neck of the womb) has favourable characteristics in terms of readiness to go into the labour state. Objectives To compare Bishop score with any other method for assessing pre-induction cervical ripening in women admitted for induction of labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 March 2015) and reference lists of retrieved studies to identify randomised controlled trials (RCTs). Selection criteria All RCTs comparing Bishop score with any other methods of pre-induction cervical assessment in women admitted for induction of labour. Cluster-RCTs were eligible for inclusion but none were identified. Quasi-RCTs and studies using a cross-over design were not eligible for inclusion. Studies published in abstract form were eligible for inclusion if they provided sufficient information. Comparisons could include the following. Bishop score versus transvaginal ultrasound (TVUS). Bishop score versus Insulin-like growth factor binding protein-1 (IGFBP-1). Bishop score versus vaginal fetal fibronectin (fFN). However, we only identified data for a comparison of Bishop score versus TVUS. Data collection and analysis Two review authors independently assessed the trials for inclusion, extracted the data and assessed trial quality. Data were checked for accuracy. Main results We included two trials that recruited a total of 234 women. The overall risk of bias was low for the two studies. Both studies compared Bishop score withTVUS. The two included studies did

  1. Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter.

    PubMed

    Iriarte, Alfredo; Almeida, Maria Gabriela; Villalobos, Pablo

    2014-02-15

    Nowadays, the new international market demands challenge the food producing countries to include the measurement of the environmental impact generated along the production process for their products. In order to comply with the environmentally responsible market requests the measurement of the greenhouse gas emissions of Ecuadorian agricultural goods has been promoted employing the carbon footprint concept. Ecuador is the largest exporter of bananas in the world. Within this context, this study is a first assessment of the carbon footprint of the Ecuadorian premium export banana (Musa AAA) using a considerable amount of field data. The system boundaries considered from agricultural production to delivery in a European destination port. The data collected over three years permitted identifying the hot spot stages. For the calculation, the CCaLC V3.0 software developed by the University of Manchester is used. The carbon footprint of the Ecuadorian export banana ranged from 0.45 to 1.04 kg CO2-equivalent/kg banana depending on the international overseas transport employed. The principal contributors to the carbon footprint are the on farm production and overseas transport stages. Mitigation and reduction strategies were suggested for the main emission sources in order to achieve sustainable banana production. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening

    PubMed Central

    Priem, Bernard; Gross, Kenneth C.

    1992-01-01

    The oligosaccharide glycans mannosylα1-6(mannosylα1-3)mannosylα1-6(mannosylα1-3) mannosylβ1-4-N-acetylglucosamine and mannosylα1-6(mannosylα1-3)(xylosylβ1-2) mannosylβ1-4-N-acetylglucosaminyl(fucosylα1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production. PMID:16668644

  3. Status of biological control of banana poka, P. mollissima (aka P. tarminiana) in Hawaii

    Treesearch

    R. D. Friesen; C. E. Causton; G. P. Markin

    2008-01-01

    Surveys were conducted between 1982 and 1995 on banana poka, Passiflora mollissima Bailey (also known as P. tarminiana, subgenus Tacsonia) and related species in the Andes Mountains of South America. The objective was to identify potential biocontrol agents for control of banana poka in Hawaii, USA. Host-related insect diversity was greatest in Colombia,...

  4. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S.; Shivanaikar, Sachin

    2015-01-01

    Introduction and Aim: Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Material and Methods: Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. Results: In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. Conclusion: From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans. PMID:26681854

  5. Banana peel extract suppressed prostate gland enlargement in testosterone-treated mice.

    PubMed

    Akamine, Kiichiro; Koyama, Tomoyuki; Yazawa, Kazunaga

    2009-09-01

    A methanol extract of banana peel (BPEx, 200 mg/kg, p.o.) significantly suppressed the regrowth of ventral prostates and seminal vesicles induced by testosterone in castrated mice. Further studies in the androgen-responsive LNCaP human prostate cancer cell line showed that BPEx inhibited dose-dependently testosterone-induced cell growth, while the inhibitory activities of BPEx did not appear against dehydrotestosterone-induced cell growth. These results indicate that methanol extract of banana peel can inhibit 5alpha-reductase and might be useful in the treatment of benign prostate hyperplasia.

  6. Structural properties and digestion of green banana flour as a functional ingredient in pasta.

    PubMed

    Zheng, Zeqi; Stanley, Roger; Gidley, Michael J; Dhital, Sushil

    2016-02-01

    Gluten free pasta was made from raw banana flour in combination with vegetable gums and protein for comparison to pasta similarly made from wheat flour. After cooking, it was found that the banana flour pasta was less susceptible to alpha-amylase digestion compared to conventional wheat flour pasta. Release of glucose by alpha-amylase digestion followed first order kinetics with an initial rapid rate of digestion and a subsequent second slower phase. The structure of green banana pasta starch at the inner and outer pasta surfaces was observed under confocal laser scanning microscopy (CLSM) and the viscosities of the flour mixtures were measured by a Rapid Visco Analyser (RVA). The digestibility of banana flour pasta was found to be related, not only to the properties of the starch granules, but also to the protein network of the surrounding food matrix. The effects of gums and proteins on pasta formation and digestibility are discussed in the context of its potential use as a gluten free lower glycaemic alternative to conventional wheat based pastas.

  7. Did backcrossing contribute to the origin of hybrid edible bananas?

    PubMed Central

    De Langhe, Edmond; Hřibová, Eva; Carpentier, Sebastien; Doležel, Jaroslav; Swennen, Rony

    2010-01-01

    Background Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae. Scope On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies. PMID:20858591

  8. Nitric oxide donors for cervical ripening and induction of labour.

    PubMed

    Kelly, Anthony J; Munson, Christopher; Minden, Lucy

    2011-06-15

    Sometimes it is necessary to bring on labour artificially because of safety concerns for the mother or baby. This review is one of a series of reviews of methods of labour induction using a standardised protocol.Induction of labour occurs in approximately 20% of pregnancies in the UK. The ideal agent for induction of labour would induce cervical ripening without causing uterine contractions. Currently most commonly used cervical ripening or induction agents result in uterine activity or contractions, or both. Cervical ripening without uterine contractility could occur safely in an outpatient setting and it may be expected that this would result in greater maternal satisfaction and lower costs. To determine the effects of nitric oxide (NO) donors for third trimester cervical ripening or induction of labour, in comparison with placebo or no treatment or other treatments from a predefined hierarchy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 December 2010) and the reference lists of trial reports and reviews. Clinical trials comparing NO donors for cervical ripening or labour induction to other methods listed above it on a predefined list of methods of labour induction. The trials include some form of random allocation to either group; and report one or more of the prestated outcomes. NO donors (isosorbide mononitrate, nitroglycerin and sodium nitroprusside) are compared to other methods listed above it on a predefined list of methods of labour induction. This review is part of a series of reviews focusing on methods of induction of labour. Three review authors independently assessed trials for inclusion, assessed risk of bias and extracted data. We considered 19 trials; we included 10 (including a total of 1889 women) trials, excluded eight trials and one trial report is awaiting classification. Included studies compared NO donors to placebo, vaginal prostaglandin E2, intracervical PGE2 and vaginal misoprostol. All included studies

  9. Pinning Stabilizes Neighboring Surface Nanobubbles against Ostwald Ripening.

    PubMed

    Dollet, Benjamin; Lohse, Detlef

    2016-11-01

    Pinning of the contact line and gas oversaturation explain the stability of single surface nanobubbles. In this article, we theoretically show that the pinning also suppresses the Ostwald ripening process between neighboring surface nanobubbles, thus explaining why in a population of neighboring surface nanobubbles different radii of curvature of the nanobubbles can be observed.

  10. Trait variation and genetic diversity in a banana genomic selection training population

    PubMed Central

    Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim

    2017-01-01

    Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31–35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents. PMID:28586365

  11. Trait variation and genetic diversity in a banana genomic selection training population.

    PubMed

    Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim; Doležel, Jaroslav

    2017-01-01

    Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.

  12. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.).

    PubMed

    Bombai, Giuseppe; Pasini, Federica; Verardo, Vito; Sevindik, Onur; Di Foggia, Michele; Tessarin, Paola; Bregoli, Anna Maria; Caboni, Maria F; Rombolà, Adamo D

    2017-07-01

    Seed oil and flours have been attracting the interest of researchers and industry, since they contain various bioactive components. We monitored the effects of ripening on lipids, monomeric flavan-3-ols, proanthocyanidins and tocols concentration in seed extracts from organically cultivated cv. Sangiovese vines. Linoleic acid was the most abundant fatty acid, followed by oleic, palmitic and stearic acids. The tocols detected were α-tocopherol, α-tocotrienol and γ-tocotrienol. The proanthocyanidins degree of polymerisation ranged from dimers to dodecamers; moreover, monomeric flavan-3-ols and polymeric proanthocyanidins were detected. Total flavan-3-ols (monomers, oligomers and polymers) concentration in grape seeds decreased during ripening. Fatty acids reached the highest level in post-veraison. The concentration of these compounds varied considerably during ripening. Capric acid has been found for the first time in grape seeds. α-Tocopherol and γ-tocotrienol decreased during ripening, while α-tocotrienol increased. The HPLC analysis with fluorimetric detection, conducted for the first time on cv. Sangiovese, revealed that the concentration of flavan-3-ols monomers, oligomeric proanthocyanidins and polymers greatly changed during ripening. These results suggest that the timing of bunch harvest plays a crucial role in the valorisation of grape seed flour. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda.

    PubMed

    Kikulwe, Enoch M; Wesseler, Justus; Falck-Zepeda, Jose

    2011-10-01

    Genetically modified (GM) crops and food are still controversial. This paper analyzes consumers' perceptions and institutional awareness and trust toward GM banana regulation in Uganda. Results are based on a study conducted among 421 banana-consuming households between July and August 2007. Results show a high willingness to purchase GM banana among consumers. An explanatory factor analysis is conducted to identify the perceptions toward genetic modification. The identified factors are used in a cluster analysis that grouped consumers into segments of GM skepticism, government trust, health safety concern, and food and environmental safety concern. Socioeconomic characteristics differed significantly across segments. Consumer characteristics and perception factors influence consumers' willingness to purchase GM banana. The institutional awareness and trust varied significantly across segments as well. The findings would be essential to policy makers when designing risk-communication strategies targeting different consumer segments to ensure proper discussion and addressing potential concerns about GM technology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless

    PubMed Central

    Balic, Iván; Vizoso, Paula; Nilo-Poyanco, Ricardo; Sanhueza, Dayan; Olmedo, Patricio; Sepúlveda, Pablo; Arriagada, Cesar; Defilippi, Bruno G.; Meneses, Claudio

    2018-01-01

    Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening. PMID:29320527

  15. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage.

    PubMed

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Wu, Weijie; Fang, Xiangjun

    2018-03-21

    Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.

  16. Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana 'Huanxi' (Musa itinerans).

    PubMed

    Liu, Weihua; Cheng, Chunzhen; Lai, Gongti; Lin, Yuling; Lai, Zhongxiong

    2015-01-01

    Banana cultivars may experience chilling or freezing injury in some of their cultivated regions, where wild banana can still grow very well. The clarification of the cold-resistant mechanism of wild banana is vital for cold-resistant banana breeding. In this study, the central stress integrator gene KIN10 and some cold-acclimation related genes (HOS1 and ICE1s) from the cold-resistant wild banana 'Huanxi' (Musa itinerans) were cloned and their expression patterns under different temperature treatments were analyzed. Thirteen full-length cDNA transcripts including 6 KIN10s, 1 HOS1 and 6 ICE1s were successfully cloned. Quantitative real-time PCR (qRT-PCR) results showed that all these genes had the highest expression levels at the critical temperature of banana (13 °C). Under chilling temperature (4 °C), the expression level of KIN10 reduced significantly but the expression of HOS1 was still higher than that at the optimal temperature (28 °C, control). Both KIN10 and HOS1 showed the lowest expression levels at 0 °C, the expression level of ICE1, however, was higher than control. As sucrose plays role in plant cold-acclimation and in regulation of KIN10 and HOS1 bioactivities, the sucrose contents of wild banana under different temperatures were detected. Results showed that the sucrose content increased as temperature lowered. Our result suggested that KIN10 may participate in cold stress response via regulating sucrose biosynthesis, which is helpful in regulating cold acclimation pathway in wild banana.

  17. Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening

    PubMed Central

    Negri, Alfredo S; Prinsi, Bhakti; Rossoni, Mara; Failla, Osvaldo; Scienza, Attilio; Cocucci, Maurizio; Espen, Luca

    2008-01-01

    Background Grape ripening represents the third phase of the double sigmoidal curve of berry development and is characterized by deep changes in the organoleptic characteristics. In this process, the skin plays a central role in the synthesis of many compounds of interest (e.g. anthocyanins and aroma volatiles) and represents a fundamental protective barrier against damage by physical injuries and pathogen attacks. In order to improve the knowledge on the role of this tissue during ripening, changes in the protein expression in the skin of the red cultivar Barbera at five different stages from véraison to full maturation were studied by performing a comparative 2-DE analysis. Results The proteomic analysis revealed that 80 spots were differentially expressed throughout berry ripening. Applying a two-way hierarchical clustering analysis to these variations, a clear difference between the first two samplings (up to 14 days after véraison) and the following three (from 28 to 49 days after véraison) emerged, thus suggesting that the most relevant changes in protein expression occurred in the first weeks of ripening. By means of LC-ESI-MS/MS analysis, 69 proteins were characterized. Many of these variations were related to proteins involved in responses to stress (38%), glycolysis and gluconeogenesis (13%), C-compounds and carbohydrate metabolism (13%) and amino acid metabolism (10%). Conclusion These results give new insights to the skin proteome evolution during ripening, thus underlining some interesting traits of this tissue. In this view, we observed the ripening-related induction of many enzymes involved in primary metabolism, including those of the last five steps of the glycolytic pathway, which had been described as down-regulated in previous studies performed on whole fruit. Moreover, these data emphasize the relevance of this tissue as a physical barrier exerting an important part in berry protection. In fact, the level of many proteins involved in (a

  18. Differentially expressed genes during the imbibition of dormant and after-ripened seeds - a reverse genetics approach.

    PubMed

    Yazdanpanah, Farzaneh; Hanson, Johannes; Hilhorst, Henk W M; Bentsink, Leónie

    2017-09-11

    Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain unanswered, likely due to its genetic complexity and the large environmental effects which are characteristic of these quantitative traits. To boost research towards revealing mechanisms in the control of seed dormancy and germination we depend on the identification of genes controlling those traits. We used transcriptome analysis combined with a reverse genetics approach to identify genes that are prominent for dormancy maintenance and germination in imbibed seeds of Arabidopsis thaliana. Comparative transcriptomics analysis was employed on freshly harvested (dormant) and after-ripened (AR; non-dormant) 24-h imbibed seeds of four different DELAY OF GERMINATION near isogenic lines (DOGNILs) and the Landsberg erecta (Ler) wild type with varying levels of primary dormancy. T-DNA knock-out lines of the identified genes were phenotypically investigated for their effect on dormancy and AR. We identified conserved sets of 46 and 25 genes which displayed higher expression in seeds of all dormant and all after-ripened DOGNILs and Ler, respectively. Knock-out mutants in these genes showed dormancy and germination related phenotypes. Most of the identified genes had not been implicated in seed dormancy or germination. This research will be useful to further decipher the molecular mechanisms by which these important ecological and commercial traits are regulated.

  19. Removal efficiency of methylene blue using activated carbon from waste banana stem: Study on pH influence

    NASA Astrophysics Data System (ADS)

    Misran, E.; Bani, O.; Situmeang, E. M.; Purba, A. S.

    2018-02-01

    The effort to remove methylene blue in artificial solution had been conducted using adsorption process. The abundant banana stem waste was utilized as activated carbon precursor. This study aimed to analyse the influence of solution pH to removal efficiency of methylene blue using activated carbon from banana stem as adsorbent. Activated carbon from banana stem was obtained by chemical activation using H3PO4 solution. Proximate analysis result showed that the activated carbon has 47.22% of fixed carbon. This value exhibited that banana stem was a potential adsorbent precursor. Methylene blue solutions were prepared at initial concentration of 50 ppm. The influence of solution pH was investigated with the use of 0.2 g adsorbent for 100 mL dye solution. The adsorption was conducted using shaker with at a constant rate of 100 rpm at room temperature for 90 minutes. The results showed that solution pH influenced the adsorption. The activated carbon from banana stem demonstrated satisfying performance since removal efficiencies of methylene blue were higher than 99%.

  20. Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening.

    PubMed

    Sidira, Marianthi; Kandylis, Panagiotis; Kanellaki, Maria; Kourkoutas, Yiannis

    2015-02-01

    The effect of immobilized Lactobacillus casei ATCC 393 on wheat grains on the generation of volatile compounds in probiotic dry-fermented sausages during ripening was investigated. For comparison reasons, sausages containing free L. casei cells or no starter culture were also included in the study. Samples were collected after 1, 28 and 45days of ripening and subjected to SPME GC/MS analysis. Both the probiotic culture and the ripening process affected significantly the concentration of all volatile compounds. The significantly highest content of total volatiles, esters, alcohols and miscellaneous compounds was observed in sausages containing the highest amount of immobilized culture (300g/kg of stuffing mixture) ripened for 45days. Principal component analysis of the semi-quantitative data revealed that primarily the concentration of the immobilized probiotic culture affected the volatile composition. Copyright © 2014 Elsevier Ltd. All rights reserved.