Forage quantity estimation from MERIS using band depth parameters
NASA Astrophysics Data System (ADS)
Ullah, Saleem; Yali, Si; Schlerf, Martin
Saleem Ullah1 , Si Yali1 , Martin Schlerf1 Forage quantity is an important factor influencing feeding pattern and distribution of wildlife. The main objective of this study was to evaluate the predictive performance of vegetation indices and band depth analysis parameters for estimation of green biomass using MERIS data. Green biomass was best predicted by NBDI (normalized band depth index) and yielded a calibration R2 of 0.73 and an accuracy (independent validation dataset, n=30) of 136.2 g/m2 (47 % of the measured mean) compared to a much lower accuracy obtained by soil adjusted vegetation index SAVI (444.6 g/m2, 154 % of the mean) and by other vegetation indices. This study will contribute to map and monitor foliar biomass over the year at regional scale which intern can aid the understanding of bird migration pattern. Keywords: Biomass, Nitrogen density, Nitrogen concentration, Vegetation indices, Band depth analysis parameters 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands
NASA Astrophysics Data System (ADS)
Niroumand-Jadidi, M.; Vitti, A.
2016-06-01
The Optimal Band Ratio Analysis (OBRA) could be considered as an efficient technique for bathymetry from optical imagery due to its robustness on substrate variability. This point receives more attention for very shallow rivers where different substrate types can contribute remarkably into total at-sensor radiance. The OBRA examines the total possible pairs of spectral bands in order to identify the optimal two-band ratio that its log transformation yields a strong linear relation with field measured water depths. This paper aims at investigating the effectiveness of additional spectral bands of newly launched WorldView-3 (WV-3) imagery in the visible and NIR spectrum through OBRA for retrieving water depths in shallow rivers. In this regard, the OBRA is performed on a WV-3 image as well as a GeoEye image of a small Alpine river in Italy. In-situ depths are gathered in two river reaches using a precise GPS device. In each testing scenario, 50% of the field data is used for calibration of the model and the remained as independent check points for accuracy assessment. In general, the effect of changes in water depth is highly pronounced in longer wavelengths (i.e. NIR) due to high and rapid absorption of light in this spectrum as long as it is not saturated. As the studied river is shallow, NIR portion of the spectrum has not been reduced so much not to reach the riverbed; making use of the observed radiance over this spectral range as denominator has shown a strong correlation through OBRA. More specifically, tightly focused channels of red-edge, NIR-1 and NIR-2 provide a wealth of choices for OBRA rather than a single NIR band of conventional 4-band images (e.g. GeoEye). This advantage of WV-3 images is outstanding as well for choosing the optimal numerator of the ratio model. Coastal-blue and yellow bands of WV-3 are identified as proper numerators while only green band of the GeoEye image contributed to a reliable correlation of image derived values and field measured depths. According to the results, the additional and narrow spectral bands of WV-3 image lead to an average determination coefficient of 67% in two river segments, which is 10% higher than that of obtained from the 4-band GeoEye image. In addition, RMSEs of depth estimations are calculated as 4 cm and 6 cm respectively for WV-3 and GeoEye images, considering the optimal band ratio.
Oxygen Isotope Variability within Nautilus Shell Growth Bands
2016-01-01
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183
Oxygen isotope variability within Nautilus shell growth bands
Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; ...
2016-04-21
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis ofmore » oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ 18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ 18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ 18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.« less
NASA Technical Reports Server (NTRS)
Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.
1987-01-01
Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luczkovich, J.J.; Wagner, T.W.; Michalek, J.L.
In order to monitor changes caused by local and global human actions to a coral reef ecosystem, we sea-truthed a natural color Landsat TM image prepared for a coastal region of the northwestern Dominican Republic and recorded average water depth, precise geographical positions, and bottom types (seagrass, 15 sites; coral reef, ten sites; and sand, six sites). There were no significant differences in depth for the bottom type groups. The depths ranged from 0 to 16.1 m. Mean digital counts of seagrass and coral reef sites did not differ significantly in any band. A multivariate analysis of variance using allmore » three bands gave similar results. A ratio of the green/blue bands (TM 2/TM 1) showed there was a spectral shift associated with increasing depth, but not bottom type. Due to small-scale patchiness, seagrass and coral areas were difficult to distinguish, but sandy areas can be distinguished using Landsat TM imagery and our methods. 12 refs.« less
Bathymetric analysis of in-water upwelling-radiance data
NASA Astrophysics Data System (ADS)
Fay, Temple H.; Miller, H. V.; Clark, R. K.
1990-09-01
In June 1988, the Naval Ocean Research and Development Activity (NORDA) collected some "in-water" data using its Towed Underwater Pumping System (TUPS) in the near-shore waters off St. Andrews State Park, Shell Island, Florida. These in situ data include latitude; longitude; depth in meters; narrow-band upwelling at 465 nm, 507 nm, and 532 nm; broad-band downwelling collected at the surface; temperature; salinity; atid transmissivity. In this paper, we investigate the relationship between depth and the normalized upwelling irradiance (upwelling divided by downwelling) in the three bands. Algorithms used to calculate water depth from remotely sensed airborne and satellite multispectral data are applied to the TUPS data and results compared. The TEJPS data have the advantage over most aircraft- and satellite-collected data because they were collected over an essentially uniform bottom type (smooth sandy bottom with steady slope) and have no atmospheric contamination. A new algorithm for depth calculation is proposed.
Mineralogical Mapping of the Av-5 Floronia Quadrangle of Asteroid 4 Vesta
NASA Astrophysics Data System (ADS)
Combe, J.-Ph.; Fulchinioni, M.; McCord, T. B.; Ammannito, E.; De Sanctis, M. C.; Nathues, A.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Palomba, E.; Preusker, F.; Reddy, V.; Stephan, K.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.
2012-04-01
Asteroid 4 Vesta is currently under investigation by NASA's Dawn orbiter. The Dawn Science Team is conducting mineralogical mapping of Vesta's surface in the form of 15 quadrangle maps, and here we report results from the mapping of Floronia quadrangle Av-5. The maps are based on the data acquired by the Visible and Infrared Mapping Spectrometer (VIR-MS) and the Framing Camera (FC) (De Sanctis et al., this meeting). This abstract is focused on the analysis of band ratios, as well as the depth and position of the 2-µm absorption band of pyroxenes, but additional information will be presented. Absorption band depth is sensitive to abundance, texture and multiple scattering effects. Absorption band position is controlled by composition, shorter wavelength positions indicate less Calcium (and more Magnesium) in pyroxenes. The inferred composition is compared with that of Howardite, Eucite and Diogenite meteorites (HEDs). Diogenites are Mg-rich with large orthopyroxene crystals suggesting formation in depth; Eucrites are Ca-poor pyroxene, with smaller crystals. Av-5 Floronia Quadrangle is located between ~20-66˚N and 270˚-360˚E. It covers a portion of the heavily-cratered northern hemisphere of Vesta, and part of it is in permanent night, until August 2012. Long shadows make the visualization of albedo variations difficult, because of limited effectiveness of photometric corrections. Most of the variations of the band depth at 2 µm are partly affected by illumination geometry in this area. Only regional tendencies are meaningful at this time of the analysis. The 2-µm absorption band depth seems to be deeper towards the south of the quadrangle, in particular to the south of Floronia crater. It is not possible to interpret the value of the band depth in the floor the craters because of the absence of direct sunlight. However, the illuminated rims seem to have a deeper 2-µm absorption band, as does the ejecta from an unnamed crater located further south, within quadrangle Av-10 (Tosi et al., 2010, this meeting). The absorption band seems slightly shifted towards shorter wavelengths in the neighborhood of the same crater, which may indicate a more diogenitic composition, consistent with materials of the deeper crust. Relationships between craters, ejecta and composition will be investigated further. The authors acknowledge the support of the Dawn Science, Instrument and Operations Teams. This work was supported by the NASA Dawn Project under contract from UCLA and by the NASA Dawn at Vesta Participating Scientist program.
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, Reginald
2017-04-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik
2015-06-29
To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less
Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume
NASA Astrophysics Data System (ADS)
Mainali, Laxman; Hyde, James S.; Subczynski, Witold K.
2013-01-01
Conventional and saturation-recovery (SR) EPR at W-band (94 GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T1-1) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R⊥ and R||) and order parameters (S0). Spectral analysis at X-band provided one rotational diffusion coefficient, R⊥. T1-1, R⊥, and R|| profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T1-1, R⊥, and R||, one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S0, shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ˜30 nL, compared with a representative sample volume of ˜3 μL at X-band.
L-band InSAR Penetration Depth Experiment, North Slope Alaska
NASA Astrophysics Data System (ADS)
Muskett, R. R.
2017-12-01
Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.
Quantitative subsurface analysis using frequency modulated thermal wave imaging
NASA Astrophysics Data System (ADS)
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick
2015-01-01
UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R2-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R2-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications. PMID:26437410
Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick
2015-09-30
UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA findings. A 10% error was achieved under sub-optimal data collection conditions, which indicates that the method could be suitable for many SAV mapping applications.
Depth dependence of defect evolution and TED during annealing
NASA Astrophysics Data System (ADS)
Colombeau, B.; Cowern, N. E. B.; Cristiano, F.; Calvo, P.; Lamrani, Y.; Cherkashin, N.; Lampin, E.; Claverie, A.
2004-02-01
A quantitative transmission electron microscopy (TEM) study on the depth profile of extended defects, formed after Si implantation, has been carried out. Two different Si + implant conditions have been considered. TEM analysis for the highest energy/dose shows that {1 1 3} defects evolve into dislocation loops whilst the defect depth distribution remains unchanged as a function of annealing time. For the lowest energy/dose, {1 1 3} defects grow and dissolve while the defect band shrinks preferentially on the surface side. At the same time, extraction of boron transient enhanced diffusion (TED) as a function of depth shows a decrease of the supersaturation towards the surface, starting at the location of the defect band. The study clearly shows that in these systems the silicon surface is the principal sink for interstitials. The results provide a critical test of the ability of physical models to simulate defect evolution and TED.
Depth of cure of proximal composite resin restorations using a new perforated metal matrix.
Nguyen, Duke P; Motyka, Nancy C; Meyers, Erik J; Vandewalle, Kraig S
2018-01-01
The purpose of this study was to compare the depths of cure of a proximal box preparation filled in bulk with various approaches: filled with a bulk-fill or conventional composite; placed with a new perforated metal matrix, a traditional metal matrix, or a clear matrix; and polymerized with either occlusal-only or tri-sited light curing. After tri-sited curing, the use of the new perforated metal matrix band resulted in a depth of cure that was not significantly different from that achieved with the use of metal bands (removed during curing) or transparent matrix bands. Adequate polymerization was obtained at depths of more than 5.0 mm for the bulk-fill composite and more than 4.0 mm for the conventional composite when tri-sited light curing was used. Tri-sited light curing resulted in a significantly greater depth of cure than occlusal-only curing. The perforated metal band may be used as an alternative to the use of solid metal bands or transparent matrix bands to provide similar depths of cure for composite resins, with the possible benefits of malleability and the ability to leave the band in place during tri-sited light curing.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-04-06
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-01-01
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542
Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierwirth, P.N.; Lee, T.J.; Burne, R.V.
1993-03-01
A major problem for mapping shallow water zones by the analysis of remotely sensed data is that contrast effects due to water depth obscure and distort the special nature of the substrate. This paper outlines a new method which unmixes the exponential influence of depth in each pixel by employing a mathematical constraint. This leaves a multispectral residual which represents relative substrate reflectance. Input to the process are the raw multispectral data and water attenuation coefficients derived by the co-analysis of known bathymetry and remotely sensed data. Outputs are substrate-reflectance images corresponding to the input bands and a greyscale depthmore » image. The method has been applied in the analysis of Landsat TM data at Hamelin Pool in Shark Bay, Western Australia. Algorithm derived substrate reflectance images for Landsat TM bands 1, 2, and 3 combined in color represent the optimum enhancement for mapping or classifying substrate types. As a result, this color image successfully delineated features, which were obscured in the raw data, such as the distributions of sea-grasses, microbial mats, and sandy area. 19 refs.« less
NASA Astrophysics Data System (ADS)
Zhou, Lu; Xu, Shiming; Liu, Jiping; Wang, Bin
2018-03-01
The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, is key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave remote sensing, although the sea ice thickness and the snow depth are closely related, the retrieval of one parameter is usually carried out under assumptions over the other. For example, climatological snow depth data or as derived from reanalyses contain large or unconstrained uncertainty, which result in large uncertainty in the derived sea ice thickness and volume. In this study, we explore the potential of combined retrieval of both sea ice thickness and snow depth using the concurrent active altimetry and passive microwave remote sensing of the sea ice cover. Specifically, laser altimetry and L-band passive remote sensing data are combined using two forward models: the L-band radiation model and the isostatic relationship based on buoyancy model. Since the laser altimetry usually features much higher spatial resolution than L-band data from the Soil Moisture Ocean Salinity (SMOS) satellite, there is potentially covariability between the observed snow freeboard by altimetry and the retrieval target of snow depth on the spatial scale of altimetry samples. Statistically significant correlation is discovered based on high-resolution observations from Operation IceBridge (OIB), and with a nonlinear fitting the covariability is incorporated in the retrieval algorithm. By using fitting parameters derived from large-scale surveys, the retrievability is greatly improved compared with the retrieval that assumes flat snow cover (i.e., no covariability). Verifications with OIB data show good match between the observed and the retrieved parameters, including both sea ice thickness and snow depth. With detailed analysis, we show that the error of the retrieval mainly arises from the difference between the modeled and the observed (SMOS) L-band brightness temperature (TB). The narrow swath and the limited coverage of the sea ice cover by altimetry is the potential source of error associated with the modeling of L-band TB and retrieval. The proposed retrieval methodology can be applied to the basin-scale retrieval of sea ice thickness and snow depth, using concurrent passive remote sensing and active laser altimetry based on satellites such as ICESat-2 and WCOM.
An efficient ionoluminescence analysis of turquoise gemstone as a weakly luminescent mineral.
Nikbakht, T; Kakuee, O; Lamehi-Rachti, M
2017-05-15
The unique ionization pattern of MeV-energy ion beam is applied for efficient luminescence analysis of a collection of natural turquoise samples. The considerable penetration depth of tens of micrometer and enhancement of energy deposition with depth, suggests ionoluminescence as an appropriate technique for studying weakly luminescent minerals. Herein, the luminescence induced in deeper parts of turquoise samples is extracted through their relatively transparent adjacent host stones. The resulting intense spectra reveal the vibrational structure of the broad green luminescence band of turquoise which probably originates from O 2 - centers. Moreover, owing to the applied ionoluminescence approach, red and blue luminescence bands of turquoise were observed which can be ascribed to Fe 3+ ions and UO 2 2+ centers respectively. The elemental information of the samples is provided using micro-PIXE analysis technique. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takabe, Ryota; Du, Weijie; Takeuchi, Hiroki
Undoped n-type BaSi{sub 2} films were grown on Si(111) by molecular beam epitaxy, and the valence band (VB) offset at the interface between the BaSi{sub 2} and its native oxide was measured by hard x-ray photoelectron spectroscopy (HAXPES) at room temperature. HAXPES enabled us to investigate the electronic states of the buried BaSi{sub 2} layer non-destructively thanks to its large analysis depth. We performed the depth-analysis by varying the take-off angle (TOA) of photoelectrons as 15°, 30°, and 90° with respect to the sample surface and succeeded to obtain the VB spectra of the BaSi{sub 2} and the native oxidemore » separately. The VB maximum was located at −1.0 eV from the Fermi energy for the BaSi{sub 2} and −4.9 eV for the native oxide. We found that the band bending did not occur near the native oxide/BaSi{sub 2} interface. This result was clarified by the fact that the core-level emission peaks did not shift regardless of TOA (i.e., analysis depth). Thus, the barrier height of the native oxide for the minority-carriers in the undoped n-BaSi{sub 2} (holes) was determined to be 3.9 eV. No band bending in the BaSi{sub 2} close to the interface also suggests that the large minority-carrier lifetime in undoped n-BaSi{sub 2} films capped with native oxide is attributed not to the band bending in the BaSi{sub 2}, which pushes away photogenerated minority carriers from the defective surface region, but to the decrease of defective states by the native oxide.« less
Compositional studies of Mare Moscoviense: New perspectives from Chandrayaan-1 VIS-NIR data
NASA Astrophysics Data System (ADS)
Bhatt, Megha; Wöhler, Christian; Dhingra, Deepak; Thangjam, Guneshwar; Rommel, Daniela; Mall, Urs; Bhardwaj, Anil; Grumpe, Arne
2018-03-01
Moscoviense is one of the prominent mare-filled basin on the lunar far side holding key insights about volcanic activity on the far side. Here, we present spectral and elemental maps of mare Moscoviense, using the Moon Mineralogy Mapper (M3) and Infrared Spectrometer-2 (SIR-2) data-sets. The different mare units are mapped based on their spectral properties analyzing both quantitatively (band center, band depth) and qualitatively (Integrated Band Depth composite images), and also using their elemental compositions. We find a total of five distinct spectral units from the basin floor based on the spectral properties. Our analysis suggests that the northern part which was mapped as Iltm unit (Imbrian low Ti, low Fe) by earlier researchers is actually a distinct unit, which is different in composition and age, named as Ivltm unit (Imbrian very low Ti and very low Fe). We obtain the absolute model age of 3.2 Ga with uncertainties of +0.2/ -0.5 Ga for the unit Ivltm. The newly identified basalt unit Ivltm is compositionally intermediate to the units Im and Iltm in FeO and TiO2 abundances. We find a total of five distinct spectral units from the basin floor based on the spectral properties. The units Im (Imbrian very low Ti) from southern and northern regions of the basin floor are spectrally distinct in terms of band center position and corresponding band depths but considered a single unit based on the elemental abundance analysis. The units Ivltm and Im are consistent with a high-Al basalt composition. Our detailed analysis of the entire Moscoviense basin indicates that the concentrations of orthopyroxene, olivine, and Mg-rich spinel, named as OOS rock family are widespread and dominant at the western and southern side of the middle ring of the basin with one isolated area found on the northern side of the peak ring.
Compositional characterization of asteroid (16) Psyche
NASA Astrophysics Data System (ADS)
Sanchez, Juan; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward
2016-10-01
We present near-infrared spectra (0.7-2.5 microns) of asteroid (16) Psyche obtained with the NASA Infrared Telescope Facility. Rotationally-resolved spectra were obtained during three nights between December 2015 and February 2016. These data have been combined with three-dimensional shape models of Psyche generated with the SHAPE software package (Magri et al. 2007). From each spectrum, the band center, band depth and spectral slope were measured. We found that the band center varies from 0.92 to 0.94 microns with rotation phase, with an average value of 0.932±0.006 microns. The band depth was found to vary from 1.0 to 1.5±0.1%. Spectral slope values range from 0.25 to 0.35±0.01 microns-1, with rotation phase. We observed a possible anti-correlation between band depth and radar albedo. Using the band depth along with a new laboratory spectral calibration we estimated that Psyche has an average orthopyroxene abundance of 6±1%. The mass-deficit region of Psyche (longitudes ~ 0°-40°), characterized by having the highest radar albedo of the asteroid, also shows the highest value for the spectral slope and the minimum band depth, while the antipode of this region (longitudes ~ 180°-230°), where the radar albedo reaches its lowest value, shows a maximum in band depth and less steep spectral slopes. These results could suggest that the metal-poor antipode region has thicker regolith rich in pyroxene compared to the mass-deficit region.
Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David
2009-05-01
We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.
2010-08-01
We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133{sup +0.018}{sub -0.016}% in the Ks band (8{sigma})-a result that is in sharp contrast to the eclipse depth reported by de Mooij and Snellen. We do not detect its thermal emission in the H band, but place a 3{sigma} limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistributionmore » of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3{sigma} upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets.« less
Space Weathering of Silicate Asteroids: An Observational Investigation
NASA Astrophysics Data System (ADS)
MacLennan, Eric M.; Emery, Joshua; Lindsay, Sean S.
2017-10-01
Solar wind exposure and micrometeoroid bombardment are known to cause mineralogical changes in the upper few microns of silicate grains (by forming amorphous “composition” rims with embedded nano-phase Fe0). These processes, jointly called space weathering (SW), affect the light-scattering properties and subsequently the geometric albedo and spectral parameters (spectral slope and band depth). Earth’s Moon exhibits the well known “lunar-style” of SW: albedo decrease, spectral slope increase, and absorption band suppression. However, space mission images of (243) Ida and (433) Eros suggest that different SW “styles” exist among the silicate-bearing (olivine and pyroxene) S-complex asteroids, which exhibit diagnostic absorption features near 1 & 2 μm. While Eros generally shows only albedo differences between younger and older locations, Ida’s surface only shows changes in spectral slope and band depth. It is not clear if these SW styles are unique to Ida and Eros or if they can be observed throughout the entire asteroid population.We hypothesize that the SW styles seen on Eros and Ida also exist on other asteroid surfaces. Additionally, we hypothesize that increased solar wind exposure, smaller regolith particles, higher olivine abundance, and older asteroid surfaces will increase the observed degree of SW. Our dataset includes publicly available Visible (0.4-0.8 μm) and Near Infrared (~0.7-2.5 μm) reflectance spectra of silicate-bearing asteroids (those with 1 & 2 μm bands) from the PDS and the SMASS, S3OS2 and MIT-UH-IRTF spectral surveys. We have also conducted a spectral survey with the IRTF/SpeX targeting 52 silicate asteroids for which we have constraints for regolith grain sizes from interpretation of thermal-IR data. The relevant band parameters to SW and to interpreting mineralogical properties are calculated using the band analysis code, SARA. Geometric albedos are calculated using thermal-IR data from WISE/NEOWISE. Using these derived parameters, we search for potential SW styles among different spectral classes and for correlations with the factors listed above. Analysis on a subset of S-types suggests that heliocentric distance correlates with spectral slope and band depth but not albedo.
Water ice and sub-micron ice particles on Tethys and Mimas
NASA Astrophysics Data System (ADS)
Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.
2017-10-01
IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side.References[1] Clark, R., et al., 2013. Observed ices in the solar system. In: Gudipati, M. S., Castillo-Rogez, J. (Eds.), The Science of Solar System Ices. Vol. 356. Astrophysics and Space Science Library, Springer Science+Business Media New York, p. 3.
The Pan-STARRS1 Small Area Survey 2
NASA Astrophysics Data System (ADS)
Metcalfe, N.; Farrow, D. J.; Cole, S.; Draper, P. W.; Norberg, P.; Burgett, W. S.; Chambers, K. C.; Denneau, L.; Flewelling, H.; Kaiser, N.; Kudritzki, R.; Magnier, E. A.; Morgan, J. S.; Price, P. A.; Sweeney, W.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2013-11-01
The Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) survey is acquiring multi-epoch imaging in five bands (gP1, rP1, iP1, zP1, yP1) over the entire sky north of declination -30° (the 3π survey). In 2011 July a test area of about 70 deg2 was observed to the expected final depth of the main survey. In this, the first of a series of papers targeting the galaxy count and clustering properties of the combined multi-epoch test area data, we present a detailed investigation into the depth of the survey and the reliability of the Pan-STARRS1 analysis software. We show that the Pan-STARRS1 reduction software can recover the properties of fake sources, and show good agreement between the magnitudes measured by Pan-STARRS1 and those from Sloan Digital Sky Survey. We also examine the number of false detections apparent in the Pan-STARRS1 data. Our comparisons show that the test area survey is somewhat deeper than the Sloan Digital Sky Survey in all bands, and, in particular, the z band approaches the depth of the stacked Sloan Stripe 82 data.
Effect of Probe Tube Insertion Depth on Spectral Measures of Speech
Caldwell, Marc; Souza, Pamela E.; Tremblay, Kelly L.
2006-01-01
This study investigated how depth variations in the tip of the probe tube affected spectral measures of speech recorded in the external ear canal. Consonant-vowel nonsense syllables were recorded with a probe tube microphone system in 10 adult participants with normal middle ear function. Recordings were made with the probe tube tip placed 1 mm, 5 mm, and 10 mm beyond the medial tip of a custom earmold. The effect of probe depth was evaluated on spectral levels (one-third octave and one-twelfth octave band). Extending the probe tube 10 mm past the medial tip of the earmold gave the most accurate results, with relatively lower sound levels for either the 1-mm or 5-mm insertion depth. In general, the effect of insertion depth was minimal at frequencies below 3 to 4 kHz, although this varied with the specific phoneme and the width of the analysis bands. The authors found no significant difference between 1- and 5-mm insertion depths, suggesting that as long as the tip of the probe tube is sufficiently close to the tympanic membrane to capture the highest frequency of interest, it makes little difference if it is less than 5 mm beyond the earmold tip. PMID:16959735
NASA Astrophysics Data System (ADS)
Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; López-Morales, Mercedes; Birkby, Jayne; Fortney, Jonathan J.; Hodgkin, Simon
2017-10-01
The Calar Alto Secondary Eclipse study was a program dedicated to observe secondary eclipses in the near-IR of two known close-orbiting exoplanets around K-dwarfs: WASP-10b and Qatar-1b. Such observations reveal hints on the orbital configuration of the system and on the thermal emission of the exoplanet, which allows the study of the brightness temperature of its atmosphere. The observations were performed at the Calar Alto Observatory (Spain). We used the OMEGA2000 instrument (Ks band) at the 3.5m telescope. The data was acquired with the telescope strongly defocused. The differential light curve was corrected from systematic effects using the Principal Component Analysis (PCA) technique. The final light curve was fitted using an occultation model to find the eclipse depth and a possible phase shift by performing a MCMC analysis. The observations have revealed a secondary eclipse of WASP-10b with depth of 0.137%, and a depth of 0.196% for Qatar-1b. The observed phase offset from expected mid-eclipse was of -0.0028 for WASP-10b, and of -0.0079 for Qatar-1b. These measured offsets led to a value for |ecosω| of 0.0044 for the WASP-10b system, leading to a derived eccentricity which was too small to be of any significance. For Qatar-1b, we have derived a |ecosω| of 0.0123, however, this last result needs to be confirmed with more data. The estimated Ks-band brightness temperatures are of 1647 K and 1885 K for WASP-10b and Qatar-1b, respectively. We also found an empirical correlation between the (R'HK) activity index of planet hosts and the Ks-band brightness temperature of exoplanets, considering a small number of systems.
Kokaly, R.F.; Clark, R.N.
1999-01-01
We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.301 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.
NASA Technical Reports Server (NTRS)
1982-01-01
Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.
NASA Astrophysics Data System (ADS)
Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.; Lafrenière, David; Albert, Loic
2010-08-01
We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133+0.018 -0.016% in the Ks band (8σ)—a result that is in sharp contrast to the eclipse depth reported by de Mooij & Snellen. We do not detect its thermal emission in the H band, but place a 3σ limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistribution of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3σ upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Film depth and concentration banding in free-surface Couette flow of a suspension.
Timberlake, Brian D; Morris, Jeffrey F
2003-05-15
The film depth of a free-surface suspension flowing in a partially filled horizontal concentric-cylinder, or Couette, device has been studied in order to assess its role in the axial concentration banding observed in this flow. The flow is driven by rotation of the inner cylinder. The banding phenomenon is characterized by particle-rich bands which under flow appear as elevated regions at the free surface separated axially by regions dilute relative to the mean concentration. The concentric cylinders studied had outer radius R(o) = 2.22 cm and inner radii R(i) = 0.64, 0.95 and 1.27 cm; the suspension, of bulk particle volume fraction phi = 0.2 in all experiments described, was composed of particles of either 250-300 microm diameter or less than 106 microm diameter, with the suspending fluid an equal density liquid of viscosity 160 P. The ratio of the maximum to the minimum particle volume fraction along the axis in the segregated condition varies from O(1) to infinite. The latter case implies complete segregation, with bands of clear fluid separating the concentrated bands. The film depth has been varied through variation of the filled fraction, f, of the annular gap between the cylinders and through the rotation rate. Film depth was analysed by edge detection of video images of the free surface under flow, and the time required for band formation was determined for all conditions at which film depth was studied. The film depth increases roughly as the square root of rotation speed for f = 0.5. Band formation is more rapid for thicker films associated with more rapid rotation rates at f = 0.5, whereas slower formation rates are observed with thicker films caused by large f, f > 0.65. It is observed that the film depth over the inner cylinder grows prior to onset of banding, for as yet unknown reasons. A mechanism for segregation of particles and liquid in film flows based upon 'differential drainage' of the particle and liquid phase in the gravity-driven flow within the film over the inner cylinder is formulated to describe the onset of concentration fluctuations. This model predicts that suspension drainage flows lead to growth of fluctuations in phi under regions of negative surface curvature.
Optical depth measurements by shadow-band radiometers and their uncertainties.
Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A
2007-11-20
Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.
Terai, C. R.; Klein, S. A.; Zelinka, M. D.
2016-08-26
The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terai, C. R.; Klein, S. A.; Zelinka, M. D.
The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less
Infrared fiber optic probes for evaluation of musculoskeletal tissue pathology
NASA Astrophysics Data System (ADS)
Padalkar, Mugdha; McGoverin, Cushla; Onigbanjo, Quam; Spencer, Richard; Barbash, Scott; Kropf, Eric; Pleshko, Nancy
2014-03-01
Musculoskeletal pathology of the knee commonly occurs with aging and as a result of injury. The incidence of anterior cruciate ligament (ACL) injuries continues to increase annually, and may precede the eventual onset of osteoarthritis (OA), a debilitating and prevalent disease characterized by cartilage degeneration. Early detection of OA remains elusive, with current imaging methods lacking adequate sensitivity to detect early pathologic cartilage changes. We used mid- and near- infrared (IR) spectroscopy through arthroscopic-based fiber-optic devices to assess cartilage damage and differentiate tendon from ligament. Mid-IR spectroscopy is characterized by distinct bands and low penetration depth (< 10 μm) and near-IR spectroscopy is characterized by complex overlapping bands and greater penetration depths (< 1 cm). We have found that combined mid- and near-IR analysis greatly extends the information available through either in the analysis of soft tissues, including cartilage, ligaments and tendons. We discuss here basic science studies and the potential for translation to clinical research with novel arthroscopic probes.
Finite element analysis of the failure mechanism of gentle slopes in weak disturbed clays
NASA Astrophysics Data System (ADS)
Lollino, Piernicola; Mezzina, Giuseppe; Cotecchia, Federica
2014-05-01
Italian south-eastern Apennines are affected by a large number of deep slow active landslide processes that interact with urban structures and infrastructures throughout the region, thus causing damages and economic losses. For most landslide processes in the region, the main predisposing factors for instability are represented by the piezometric regime and the extremely poor mechanical properties of the weak disturbed clays in the lower and central portions of the slopes that are overlaid in some cases by a stiffer cap layer, formed of rocky flysch, e.g. alternations of rock and soil strata. Based on phenomenological approaches, landslide processes are deemed to be triggered within the weaker clay layer and later on to develop upward to the stiffer cap, with the shear bands reaching also high depths. The paper presents the results of two-dimensional numerical analyses of the failure mechanisms developing in the unstable slopes of the region, carried out by means of the finite element method (Plaxis 2011) applied to slope conditions representative for the region. In particular, the effects of slope inclination, along with the thickness and the strength of the material forming the caprock at the top of the slope, on the depth of the sliding surface, the mobilised strengths, the evolution of the landslide process and the predisposing factors of landsliding have been explored by means of the finite element analysis of an ideal case study representative of the typical geomechanical context of the region. In particular, the increase of slope inclination is shown to raise the depth of the shear band as well as to extend landslide scarp upwards, in accordance with the field evidence. Moreover, the numerical results indicate how the increase of the caprock thickness tends to confine the development of the shear band to the underlying weaker clay layer, so that the depth of the shear band is also observed to reduce, and when the stiffer top stratum becomes involved in the retrogression of the failure process. The numerical results allow also for the investigation of the variation in seepage conditions that combine with the variations in litostratigraphy in determining the variations of the features of the failure mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Jayawardhana, Ray; Albert, Loic
We use the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope to observe four transits of the super-Earth planet GJ 1214b in the near-infrared. For each transit, we observe GJ 1214 in two bands nearly simultaneously by rapidly switching the WIRCam filter wheel back and forth for the duration of the observations. By combining all our J-band ({approx}1.25 {mu}m) observations we find a transit depth, analogous to the planet-to-star radius ratio squared, in this band of (R{sub PJ} /R{sub *}){sup 2} = (1.338 {+-} 0.013)%-a value consistent with the optical transit depth reported by Charbonneau and collaborators. However, our best-fitmore » combined K{sub s}-band ({approx}2.15 {mu}m) transit depth is deeper: (R{sub PKs} /R{sub *}){sup 2} = (1.438 {+-} 0.019)%. Formally, our K{sub s}-band transits are deeper than the J-band transits observed simultaneously by a factor of (R{sub PKs} /R{sub PJ}){sup 2} = 1.072 {+-} 0.018-a 4{sigma} discrepancy. The most straightforward explanation for our deeper K{sub s}-band transit depth is a spectral absorption feature from the limb of the atmosphere of the planet; for the spectral absorption feature to be this prominent, the atmosphere of GJ 1214b must have a large-scale height and a low mean molecular weight. That is, its atmosphere would have to be hydrogen/helium dominated and this planet would be better described as a mini-Neptune. However, recently published observations from 0.78 to 1.0 {mu}m, by Bean and collaborators, show a lack of spectral features and transit depths consistent with those obtained by Charbonneau and collaborators. The most likely atmospheric composition for GJ 1214b that arises from combining all these observations is less clear; if the atmosphere of GJ 1214b is hydrogen/helium dominated, then it must have either a haze layer that is obscuring transit-depth differences at shorter wavelengths or significantly different spectral features from what current models predict. Our observations disfavor a water-world composition, but such a composition will remain a possibility for GJ 1214b until observations reconfirm our deeper K{sub s}-band transit depth or detect features at other wavelengths.« less
Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth
Grose, John
2018-01-01
The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125–8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of sensitivity to spectral modulation than spectral modulation detection with a flat standard. PMID:29621338
Cróquer, Aldo; Weil, Ernesto
2009-02-25
Geographic assessments of coral/octocoral diseases affecting major reef-building genera and abundant reef species are important to understand their local and geographic spatial-temporal variability and their impact. The status and spatial variability of major Caribbean coral/octocoral diseases affecting important reef-building coral (Montastraea, Diploria, Siderastrea, Stephanocoenia, Porites, and Agaricia) and common, widespread octocoral genera (Gorgonia and Pseudopterogorgia) was assessed along 4 permanent 10 x 2 m band-transects in each of 3 depth habitats (<4, 5-12 and >15 m) on 2 reefs in 6 countries across the wider Caribbean during the summer and fall of 2005. A permutational multivariate analysis of variance was used to test the spatial variability (countries, reef sites and depth habitats) in prevalence of major diseases in these genera. We found a significant interaction of disease prevalence in the different coral and octocoral genera between reef sites and habitats (depth intervals). Montastraea was primarily affected by both white plague (WP-II) and yellow band disease in deep (16.9 +/- SE 16% and 16.9 +/- SE 2.3%) and intermediate (8.1 +/- SE 1.6% and 15.5 +/- SE 2.3%) depth habitats of Culebrita (Puerto Rico) and Chub Cut (Bermuda), respectively. Prevalence of multiple diseases simultaneously and other compromised-health problems affecting Montastraea colonies varied between 0.2 to 2% and 0.2 to 1.8%, respectively. Agaricia and Diploria were mostly affected by WP-II (0.5 to 16%), black band disease (0.4 to 5%) and Caribbean ciliate infections (0.2 to 12%). Siderastrea and Stephanocoenia were mainly affected by dark spots disease in Curaçao, with higher prevalence in intermediate (40.5 +/- SE 6.2%) and deep (26.6 +/- SE 4.2%) habitats. Aspergillosis and other compromised-health conditions affected Gorgonia ventalina (0.2 to 8%) and other common and widespread octocoral genera (1 to 14%), respectively.
Quantitative operando visualization of the energy band depth profile in solar cells.
Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei
2015-07-13
The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.
Quantitative operando visualization of the energy band depth profile in solar cells
Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei
2015-01-01
The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2015-03-01
We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera
The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less
Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; ...
2015-03-18
The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less
Kerr Reservoir LANDSAT experiment analysis for March 1981
NASA Technical Reports Server (NTRS)
Lecroy, S. R. (Principal Investigator)
1982-01-01
LANDSAT radiance data were used in an experiment conducted on the waters of Kerr Reservoir to determine if reliable algorithms could be developed that relate water quality parameters to remotely sensed data. A mix of different types of algorithms using the LANDSAT bands was generated to provide a thorough understanding of the relationships among the data involved. Except for secchi depth, the study demonstrated that for the ranges measured, the algorithms that satisfactorily represented the data encompass a mix of linear and nonlinear forms using only one LANDSAT band. Ratioing techniques did not improve the results since the initial design of the experiment minimized the errors against which this procedure is effective. Good correlations were found for total suspended solids, iron, turbidity, and secchi depth. Marginal correlations were discovered for nitrate and tannin + lignin. Quantification maps of Kerr Reservoir are presented for many of the water quality parameters using the developed algorithms.
NASA Astrophysics Data System (ADS)
Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Miller-Ricci Kempton, Eliza; Fortney, Jonathan J.; Murray, Norman; Neilson, Hilding
2011-08-01
We use the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope to observe four transits of the super-Earth planet GJ 1214b in the near-infrared. For each transit, we observe GJ 1214 in two bands nearly simultaneously by rapidly switching the WIRCam filter wheel back and forth for the duration of the observations. By combining all our J-band (~1.25 μm) observations we find a transit depth, analogous to the planet-to-star radius ratio squared, in this band of (RPJ /R *)2 = (1.338 ± 0.013)%—a value consistent with the optical transit depth reported by Charbonneau and collaborators. However, our best-fit combined K s-band (~2.15 μm) transit depth is deeper: (RPKs /R *)2 = (1.438 ± 0.019)%. Formally, our K s-band transits are deeper than the J-band transits observed simultaneously by a factor of (RPKs /RPJ )2 = 1.072 ± 0.018—a 4σ discrepancy. The most straightforward explanation for our deeper K s-band transit depth is a spectral absorption feature from the limb of the atmosphere of the planet; for the spectral absorption feature to be this prominent, the atmosphere of GJ 1214b must have a large-scale height and a low mean molecular weight. That is, its atmosphere would have to be hydrogen/helium dominated and this planet would be better described as a mini-Neptune. However, recently published observations from 0.78 to 1.0 μm, by Bean and collaborators, show a lack of spectral features and transit depths consistent with those obtained by Charbonneau and collaborators. The most likely atmospheric composition for GJ 1214b that arises from combining all these observations is less clear; if the atmosphere of GJ 1214b is hydrogen/helium dominated, then it must have either a haze layer that is obscuring transit-depth differences at shorter wavelengths or significantly different spectral features from what current models predict. Our observations disfavor a water-world composition, but such a composition will remain a possibility for GJ 1214b until observations reconfirm our deeper K s-band transit depth or detect features at other wavelengths. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Le Mouelic, S.; Langevin, Y.; Erard, S.; Pinet, P.; Daydou, Y.; Chevrel, S.
1999-01-01
The Clementine UV-VIS dataset has greatly improved our understanding of the Moon. The UV-VIS camera was limited to five spectral channels from 415 to 1000 nm. The Clementine near-infrared (NIR) camera was designed to complement this spectral coverage. The NIR filter at 2000 run allows the discrimination between olivine and pyroxene within identified mare basalts. In addition, we will show that the integration of Clementine UV-VIS and NIR datasets allows a better evaluation of the ferrous 1-micron absorption band depth and gives access to the slope of the continuum. The discrimination between maturity and FeO composition can be achieved by a principal component analysis performed on spectral parameters. We selected 952 Clementine UV-VIS and NIR images to compute a multispectral cube covering the Aristarchus Plateau. Aristarchus Plateau is one of the most heterogeneous areas on the Moon. Highland-type materials, mare basalts, and dark mantle deposits have previously been mentioned. The mosaic represents a set of about 500 x 600 nine-channel spectra. UV-VIS filters at 415, 750, 900, 950, and 1000 run were calibrated using the ISIS software. We applied the reduction method described elsewhere to reduce the NIR filters at 1100, 1250, 1500 and 2000 nm. Absolute gain and offset values were refined for the NIR images by using eight telescopic spectra acquired as references. With this calibration test, we were able to reproduce the eight telescopic spectra with a maximum error of 1.8%. The integration of UV-VIS and NIR spectral channels allows the visualization of complete low-resolution spectra. In order to investigate the spectral effects of the space-weathering processes, we focused our analysis on a small mare crater and its immediate surroundings. According to the small size of the crater (about 2-km) and its location on an homogeneous mare area, we can reasonably assume that the content in FeO is homogeneous. The impact event has induced a variation of the maturity of the soil by excavating fresh material. Graphs displays five absolute reflectance spectra extracted from this area. One graph displays the same spectra divided by a continuum, which is considered to be a right line fitting the spectra at 0.75 and 1.5 micron. Spectrum 1 is extracted from the brightest part of the crater interior, and spectrum 5 is extracted from the surrounding mare material. Spectra 2, 3, and 4 are extracted from intermediate distances between the two areas. The 1-and-2 micron absorption band depths and the overall reflectance increase from spectrum 5 (corresponding to a mature area) to spectrum 1 (the most immature area). Conversely, the continuum slope decreases from spectrum 5 to spectrum 1. These three spectral effects of maturity have also been identified on laboratory spectra of lunar samples. Most of the lunar soils exhibit a signature near 1 micron. This absorption band is due to the presence of Fe2+ in mafic minerals such as orthopyroxene, clinopyroxene, and olivine. In the case of Clementine UV-VIS data alone, the depth of the 1-micron feature is evaluated by the 950/750-nm reflectance ratio. This ratio combined to the reflectance at 750nm has been used to evaluate the global content in FeO of the lunar surface. Near-infrared data makes a more precise evaluation of the 1 micron band depth possible by providing the right side of the band. The continuum in the vicinity of the band can be evaluated by an arithmetic mean or a geometric interpolation of both sides of the band, which are taken at 750 and 1500nm. The geometric interpolation is less sensitive to residual calibration uncertainties. With this method, the 1-micron absorption band depth for the Aristarchus; Plateau can be refined by as much as 10%. The difference is maximum on Fe-poor, highland-type materials. Similarly, the NIR data provide the possibility to investigate the continuum slope of the spectra. The continuum slope is a key parameter in any spectral analysis. The continuum slope variations seem to be mainly dominated by maturity effects, as suggested by the high correlation with the independent evaluation of maturity (OMAT parameter). We have also found a good correlation between the continuum slope and the OMAT parameter on laboratory spectra of lunar samples of the J. B. Adams collection. The discrimination between maturity effects and composition effects can be achieved by using a principal component analysis (PCA) on three spectral parameters, which are the reflectance at 0.75 micron the depth of the 1-micron feature, and the continuum slope. These parameters are mostly affected by maturity and FeO content. The effects of various glass content are assimilated to maturity. The aim of the PCA is to decorrelate the FeO content and maturity effects in the three input parameters. The integration of UV-VIS and NIR datasets allows for a better understanding of the spectral properties of the lunar surface by giving access to key parameters such as the 1 and 2-micron band depths and the continuum slope. The continuum slope can be combined with the depth of the mafic 1-micron absorption feature and the reflectance at 750 nm to discriminate between maturity and composition. NIR images of the sample return stations will be very interesting to refine absolute FeO content and maturity evaluations. Additional information is available in original.
Multiscale rescaled range analysis of EEG recordings in sevoflurane anesthesia.
Liang, Zhenhu; Li, Duan; Ouyang, Gaoxiang; Wang, Yinghua; Voss, Logan J; Sleigh, Jamie W; Li, Xiaoli
2012-04-01
The Hurst exponent (HE) is a nonlinear method measuring the smoothness of a fractal time series. In this study we applied the HE index, extracted from electroencephalographic (EEG) recordings, as a measure of anesthetic drug effects on brain activity. In 19 adult patients undergoing sevoflurane general anesthesia, we calculated the HE of the raw EEG; comparing the maximal overlap discrete wavelet transform (MODWT) with the traditional rescaled range (R/S) analysis techniques, and with a commercial index of depth of anesthesia - the response entropy (RE). We analyzed each wavelet-decomposed sub-band as well as the combined low frequency bands (HEOLFBs). The methods were compared in regard to pharmacokinetic/pharmacodynamic (PK/PD) modeling, and prediction probability. All the low frequency band HE indices decreased when anesthesia deepened. However the HEOLFB was the best index because: it was less sensitive to artifacts, most closely tracked the exact point of loss of consciousness, showed a better prediction probability in separating the awake and unconscious states, and tracked sevoflurane concentration better - as estimated by the PK/PD models. The HE is a useful measure for estimating the depth of anesthesia. It was noted that HEOLFB showed the best performance for tracking drug effect. The HEOLFB could be used as an index for accurately estimating the effect of anesthesia on brain activity. Copyright © 2011 International Federation of Clinical Neurophysiology. All rights reserved.
Composition and properties of the so-called 'diamond-like' amorphous carbon films
NASA Technical Reports Server (NTRS)
Angus, J. C.; Stultz, J. E.; Shiller, P. J.; Macdonald, J. R.; Mirtich, M. J.
1984-01-01
The composition of amorphous 'diamond-like' films made by direct low energy ion beam deposition, R.F. discharge and sputtering was determined by nuclear reaction analysis, IR spectroscopy and microcombustion chemical analysis. The nuclear reaction analysis showed very similar hydrogen depth profiles for all three types of samples. The atomic ratio of hydrogen to carbon was approximately 0.2 at the film surface and rose to approximately 1.0 at a depth of 500 A. The integrated intensity of the C-H stretching band at about 2900 per cm indicates that the amount of chemically bonded hydrogen is less than the total hydrogen content. Combustion analysis confirmed the overall atomic ratio of hydrogen to carbon determined by nuclear reaction analysis. The chemical state of the non-bonded hydrogen was not determined; however, the effective diffusion coefficient computed from the hydrogen depth profile was extremely low. This indicates either that the films are exceedingly impermeable or that the non-bonded hydrogen requires an additional activated step to leave the films, e.g., desorption or chemical reaction.
Differential NICMOS Spectrophotometry at High S/N
NASA Technical Reports Server (NTRS)
Gilliland, Ronald L.
2006-01-01
Transiting extrasolar planets present an opportunity for probing atmospheric conditions and constituents by taking advantage of different apparent radii, hence transit depth as a function of wavelength. Strong near-IR bands should support detection of water vapor via G141 spectroscopy of the bright star HD 209458 (H=6.13) by comparing in- and out-of-transit ratios of in- and out-of-band spectral intensity ratios. The reduction and analysis of science observations in which the goal is to support 1 part in 10,000, or better, development of spectral diagnostics using NICMOS grism-based spectroscopy is discussed.
Towards Snowpack Characterization using C-band Synthetic Aperture Radar (SAR)
NASA Astrophysics Data System (ADS)
Park, J.; Forman, B. A.
2017-12-01
Sentinel 1A and 1B, operated by the European Space Agency (ESA), carries a C-band synthetic aperture radar (SAR) sensor that can be used to monitor terrestrial snow properties. This study explores the relationship between terrestrial snow-covered area, snow depth, and snow water equivalent with Sentinel 1 backscatter observations in order to better characterize snow mass. Ground-based observations collected by the National Oceanic and Atmospheric Administration - Cooperative Remote Sensing Science and Technology Center (NOAA-CREST) in Caribou, Maine in the United States are also used in the comparative analysis. Sentinel 1 Ground Range Detected (GRD) imagery with Interferometric Wide swath (IW) were preprocessed through a series of steps accounting for thermal noise, sensor orbit, radiometric calibration, speckle filtering, and terrain correction using ESA's Sentinel Application Platform (SNAP) software package, which is an open-source module written in Python. Comparisons of dual-polarized backscatter coefficients (i.e., σVV and σVH) with in-situ measurements of snow depth and SWE suggest that cross-polarized backscatter observations exhibit a modest correlation between both snow depth and SWE. In the case of the snow-covered area, a multi-temporal change detection method was used. Results using Sentinel 1 yield similar spatial patterns as when using hyperspectral observations collected by the MODerate Resolution Imaging Spectroradiometer (MODIS). These preliminary results suggest the potential application of Sentinel 1A/1B backscatter coefficients towards improved discrimination of snow cover, snow depth, and SWE. One goal of this research is to eventually merge C-band SAR backscatter observations with other snow information (e.g., passive microwave brightness temperatures) as part of a multi-sensor snow assimilation framework.
NASA Astrophysics Data System (ADS)
Jansen, D.; Llorens, M.-G.; Westhoff, J.; Steinbach, F.; Kipfstuhl, S.; Bons, P. D.; Griera, A.; Weikusat, I.
2016-02-01
Disturbances on the centimetre scale in the stratigraphy of the North Greenland Eemian Ice Drilling (NEEM) ice core (North Greenland) can be mapped by an optical line scanner as long as the ice has visual layering, such as, for example, cloudy bands. Different focal depths allow, to a certain extent, a three-dimensional view of the structures. In this study we present a detailed analysis of the visible folds, discuss their characteristics and frequency, and present examples of typical fold structures. We also analyse the structures with regard to the deformation boundary conditions under which they formed. The structures evolve from gentle waves at about 1500 m to overturned z folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their similar fold shape indicates that they are passive features and are probably not initiated by rheology differences between alternating layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. C axes orientation distributions for the corresponding core sections were analysed, where available, in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c axis orientations that deviate from that of the matrix, which shows a single maximum fabric at the depth where the folding occurs. Numerical modelling of crystal viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures during deformation. The modelling reproduces the development of bands of grains with a tilted-lattice orientation relative to the single maximum fabric of the matrix, and also the associated local deformation. We conclude from these results that the observed folding can be explained by formation of these tilted-lattice bands.
Multipolarization P-, L-, and C-band radar for coastal zone mapping - The Louisiana example
NASA Technical Reports Server (NTRS)
Wu, Shih-Tseng
1989-01-01
Multipolarization P-, L-, and C-band airborne SAR data sets were acquired over a coastal zone and a forested wetland of southern Louisiana. The data sets were used with field-collected surface-parameter data in order to determine the value of SAR systems in assessing and mapping coastal-zone surface features. The coastal-zone surface features in this study are sediments, sediment distribution, and the formation of new isles and banks. Results of the data analysis indicate that the P-band radar with 68-cm wavelength is capable of detecting the submerged sediment if the area is very shallow (i.e., a water depth of less than one meter). The penetration capability of P-band radar is also demonstrated in the forested wetland area. The composition and condition of the ground surface can be detected, as well as the standing water beneath dense tree leaves.
A millimeter-wave reflectometer for whole-body hydration sensing
NASA Astrophysics Data System (ADS)
Zhang, W.-D.; Brown, E. R.
2016-05-01
This paper demonstrates a non-invasive method to determine the hydration level of human skin by measuring the reflectance of W-band (75-110 GHz) and Ka-band (26-40 GHz) radiation. Ka-band provides higher hydration accuracy (<1%) and greater depth of penetration (> 1 mm), thereby allowing access to the important dermis layer of skin. W-band provides less depth of penetration but finer spatial resolution (~2 mm). Both the hydration sensing concept and experimental results are presented here. The goal is to make a human hydration sensor that is 1% accurate or better, operable by mechanically scanning, and fast enough to measure large areas of the human body in seconds.
Kalita, J M; Wary, G
2014-05-05
Thermoluminescence (TL) of natural light-orange color calcite (CaCO3) mineral in micro-grain powder form was studied at room temperature X-ray and UV irradiation under various irradiation times. TL was recorded in linear heating rate (2 K/s) from room temperature (300 K) to 523 K. Trapping parameters such as activation energy, order of kinetics, frequency factor have been evaluated by Computerized Glow Curve Deconvolution technique. Three electron trap centers had been estimated at depth 0.70, 1.30 and 1.49 eV from the conduction band. Investigation of emission spectra recorded at various temperatures showed single recombination center at depth 2.74 eV from the conduction band. Due to thermally assisted tunneling of electron and subsequent center-to-center recombination, a distinct peak of lower activation energy (0.60 eV) was observed at relatively higher temperature (~360 K) for X-ray irradiated sample. In UV excitation, there was an indication of photo-transfer phenomenon, where low TL intensity might have been observed; but due to simultaneous excitation of electrons from valence band to the trap level, TL intensity was found to increase with UV irradiation time. The results obtained within temperature range 300-523 K were explained by considering a band diagram. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation of remote sensing to detect near-surface groundwater on irrigated lands
NASA Technical Reports Server (NTRS)
Ryland, D. W.; Schmer, F. A.; Moore, D. G.
1975-01-01
The application of remote sensing techniques was studied for detecting areas with high water tables in irrigated agricultural lands. Aerial data were collected by the LANDSAT-1 satellite and aircraft over the Kansas/Bostwick Irrigation District in Republic and Jewell Counties, Kansas. LANDSAT-1 data for May 12 and August 10, 1973, and aircraft flights (midday and predawn) on August 10 and 11, 1973, and June 25 and 26, 1974, were obtained. Surface and water table contour maps and active observation well hydrographs were obtained from the Bureau of Reclamation for use in the analysis. Results of the study reveal that LANDSAT-1 data (May MSS band 6 and August MSS band 7) correlate significantly (0.01 level) with water table depth for 144 active observation wells located throughout the Kansas/Bostwick Irrigation District. However, a map of water table depths of less than 1.83 meters prepared from the LANDSAT-1 data did not compare favorably with a map of seeped lands of less than 1.22 m (4 feet) to the water table. Field evaluation of the map is necessary for a complete analysis. Analysis of three fields on a within or single-field basis for the 1973 LANDSAT-1 data also showed significant correlation results.
Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.
2007-01-01
Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results also show that there are no significant differences between modeled and laboratory-measured grain size values. Hyperspectral grain size modeling can help to determine dynamic processes shaping the formation of the dunes such as wind directions, and the relative strengths of winds through time. This has implications for studying such processes on other planetary landforms that have mineralogy with unique absorption bands in VNIR-SWIR hyperspectral data. ?? 2006 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bogan, Margaret B.
2011-01-01
This paper is in part, a reflective analysis of 15 years living with the state-recognized Florida Creek Indians of the Central Florida Muskogee Creek Tribe and the Pasco Band of Creek Indians, formally of Lacoochee, FL and currently in Brooksville, FL, respectively. It addresses the power structures within tribal organizations. Selected Creek…
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu
2018-05-01
Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope, and general decreases in visible region reflectance, and absorption band depths. The highest albedos and larger band depths are generally seen in the lowest phase angle backscattering geometry spectra. The reddest spectra are generally seen in the lowest phase angle backscatter geometry spectra. For the same phase angle, spectra acquired in forward scatter geometry are generally redder and darker and have shallower absorption bands than those acquired in backscatter geometry. Overall, backscatter geometry-acquired spectra are flatter, brighter, and have deeper 0.7 μm region absorption band depths than forward scatter geometry-acquired spectra. It was also found that the 0.7, 0.9, and 1.1 μm absorption bands in Murchison spectra, which are attributable to various Fe electronic processes, are ubiquitous and can be used to recognize CM2 chondrites regardless of the physical properties of the meteorite and viewing geometry.
Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.
2011-01-01
This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes. ?? 2011 by the American Geophysical Union.
Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.
2011-01-01
This study examined the possibility of mapping depth from optical image data in turbid, sediment-laden channels. Analysis of hyperspectral images from the Platte River indicated that depth retrieval in these environments is feasible, but might not be highly accurate. Four methods of calibrating image-derived depth estimates were evaluated. The first involved extracting image spectra at survey point locations throughout the reach. These paired observations of depth and reflectance were subjected to optimal band ratio analysis (OBRA) to relate (R2 = 0.596) a spectrally based quantity to flow depth. Two other methods were based on OBRA of data from individual cross sections. A fourth strategy used ground-based reflectance measurements to derive an OBRA relation (R2 = 0.944) that was then applied to the image. Depth retrieval accuracy was assessed by visually inspecting cross sections and calculating various error metrics. Calibration via field spectroscopy resulted in a shallow bias but provided relative accuracies similar to image-based methods. Reach-aggregated OBRA was marginally superior to calibrations based on individual cross sections, and depth retrieval accuracy varied considerably along each reach. Errors were lower and observed versus predicted regression R2 values higher for a relatively simple, deeper site than a shallower, braided reach; errors were 1/3 and 1/2 the mean depth for the two reaches. Bathymetric maps were coherent and hydraulically reasonable, however, and might be more reliable than implied by numerical metrics. As an example application, linear discriminant analysis was used to produce a series of depth threshold maps for characterizing shallow-water habitat for roosting cranes.
An in-depth analysis and modelling of the Shuttle to MILA S-band telemetry link
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Pellerano, Fernando A.; Shama, Dale D.
1993-01-01
The S-Band radio frequency (RF) link between the Merritt Island (MILA) Tracking Station and the Space Shuttle launch pads is a critical communication path for prelaunch and launch operations. The proposed siting of the Center for Space Education (CSE) at the Visitor Center required a study to avoid RF line-of-sight blockage and reflection paths. The study revealed the trees near MILA's 9-meter (9-M) antennas are obstructing the optical line-of-sight. The studies found diffraction is the main propagation mechanism. This paper describes a link model based on the Geometric Theory of Diffraction.
NASA Astrophysics Data System (ADS)
Yanti, Apriwida; Susilo, Bowo; Wicaksono, Pramaditya
2016-11-01
Gajahmungkur reservoir is administratively located in Wonogiri Regency, Central Java, with the main function as a flood control in the upstream of Bengawan Solo River. Other functions of the reservoir are as hydroelectric power plant (PLTA), water supply, irrigation, fisheries and tourism. Economic utilization of the reservoir is estimated until 100 years, but it is begun to be threatened by the silting of the reservoir. Eroded materials entering water body will be suspended and accumulated. Suspended Material or TSS (Total Suspended Solid) will increase the turbidity of water, which can affect the quality of water and silting the reservoir. Remote sensing technology can be used to determine the spatial distribution of TSS. The purposes of this study were to 1) utilize and compare the accuracy of single band Landsat 8 OLI for mapping the spatial distribution of TSS and 2) estimate the TSS on Gajahmungkur reservoir surface waters up to the depth of 30 cm. The method used for modelling the TSS spatial distribution is the empirical modelling that integrates image pixel values and field data using correlation analysis and regression analysis. The data used in the empirical modelling are single band of visible, NIR, and SWIR of Landsat 8 OLI, which was acquired on 8 May 2016, and field-measured TSS values based on the field data collection conducted on 12 April 2016. The results revealed that mapping the distribution and the estimated value of TSS in Reservoir Gajahmungkur can be performed more accurately using band 4 (red band). The determinant coefficient between TSS field and TSS value of image using band 4 is 0.5431. The Standard Error (SE) of the predicted TSS value is 16.16 mg/L. The results also showed that the estimated total TSS of May 2016 according to band 4 is 1.087,56 tons. The average estimation of TSS value in up to the depth of 30 cm is 61.61 mg/L. The highest TSS distribution is in the northern parts, which was dominated by eroded materials from Keduang River.
Estimating terrestrial snow depth with the Topex-Poseidon altimeter and radiometer
Papa, F.; Legresy, B.; Mognard, N.M.; Josberger, E.G.; Remy, F.
2002-01-01
Active and passive microwave measurements obtained by the dual-frequency Topex-Poseidon radar altimeter from the Northern Great Plains of the United States are used to develop a snow pack radar backscatter model. The model results are compared with daily time series of surface snow observations made by the U.S. National Weather Service. The model results show that Ku-band provides more accurate snow depth determinations than does C-band. Comparing the snow depth determinations derived from the Topex-Poseidon nadir-looking passive microwave radiometers with the oblique-looking Satellite Sensor Microwave Imager (SSM/I) passive microwave observations and surface observations shows that both instruments accurately portray the temporal characteristics of the snow depth time series. While both retrievals consistently underestimate the actual snow depths, the Topex-Poseidon results are more accurate.
NASA Astrophysics Data System (ADS)
Fernandez, L.; Toffoli, A.; Monbaliu, J.
2012-04-01
In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Computer techniques were developed for mapping water quality parameters from LANDSAT data, using surface samples collected in an ongoing survey of water quality in Saginaw Bay. Chemical and biological parameters were measured on 31 July 1975 at 16 bay stations in concert with the LANDSAT overflight. Application of stepwise linear regression bands to nine of these parameters and corresponding LANDSAT measurements for bands 4 and 5 only resulted in regression correlation coefficients that varied from 0.94 for temperature to 0.73 for Secchi depth. Regression equations expressed with the pair of bands 4 and 5, rather than the ratio band 4/band 5, provided higher correlation coefficients for all the water quality parameters studied (temperature, Secchi depth, chloride, conductivity, total kjeldahl nitrogen, total phosphorus, chlorophyll a, total solids, and suspended solids).
NASA Astrophysics Data System (ADS)
Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.
2018-02-01
Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is much better than CFT frequency band adjustment filter.
Spatial characterization of acid rain stress in Canadian Shield Lakes
NASA Technical Reports Server (NTRS)
Tanis, Fred J.
1987-01-01
An analysis was performed to interpret the spatial aspects of lake acidification. Three types of relationships were investigated based upon the August to May seasonal scene pairing. In the first type of analysis ANOVA was used to examine the mean Thematic Mapper band one count by ecophysical strata. The primary difference in the two ecophysical strata is the soil type and depth over the underlying bedrock. Examination of the August to May difference values for TM band one produced similar results. Group A and B strata were the same as above. The third type of analysis examined the relationship between values of the August to May difference from polygons which have similar ecophysical properties with the exception of sulfate deposition. For this case lakes were selected from units with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/sq m/yr.
NASA Astrophysics Data System (ADS)
Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio
2017-04-01
In this work we describe the genetic processes and the microstructural evolution of phylossilicate deformation bands developed in poorly lithified, high porosity sandstones of the Rio do Peixe Basin, Northeast Brazil. The studied deformation bands occur in damage zones of NE-SW and NW-SE transtensional faults that exhibit well developed anastomosed clusters, with a thickness varying from tens of centimeters to 1 meter. The Host rocks are arkosic to lithic arkosic coarse sandstones to fine conglomerate and with less than 1% of clay content in the matrix. Based on (i) field observations, (ii) clay amount in deformation band cores and (iii) clay mineral arrangements in deformation bands cores, we identified two types of phyllosilicate deformation bands: (1) clay smearing deformation bands and (2) phyllosilicate deformation bands formed by clay authigenesis. The former occur only in fault zones that cut across clay-rich layers and are characterized by 45-50% of clay content. Single element chemical analysis indicates that the composition of clay minerals in clay smearing deformation bands is similar to that of clay-rich layers in the host rocks. The dominant deformation mechanism is particulate flow, which produces preferential alignments of grains and clay minerals. Only subordinate cataclasis occurs. Based on microstructural fabrics, three evolutionary stages can be identified for phyllosilicate deformation bands formed by clay authigenesis. The first one is characterized by preferentially cataclasis and weathering of feldspars. Clay concentration is relatively low, reaching 15-20%, with preferential concentration where crushed feldspar abundance is higher. The second stage is characterized by clay migration within deformation bands, to form continuous films with more than 20-25% of clay concentration. In the last stage clay mineral fabric re-organization occurs, forming well a developed S-C foliation. Clay concentration exceeds 35%. Single element chemical analysis indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.
Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada
NASA Technical Reports Server (NTRS)
Felzer, Benjamin; Hauff, Phoebe; Goetz, Alexander F. H.
1994-01-01
Buddingtonite, an ammonium-bearing feldspar diagnostic of volcanic-hosted alteration, can be identified and, in some cases, quantitatively measured using short-wave infrared (SWIR) reflectance spectroscopy. In this study over 200 samples from Cuprite, Nevada, were evaluated by X ray diffraction, chemical analysis, scanning electron microscopy, and SWIR reflectance spectroscopy with the objective of developing a quantitative remote-sensing technique for rapid determination of the amount of ammonium or buddingtonite present, and its distribution across the site. Based upon the Hapke theory of radiative transfer from particulate surfaces, spectra from quantitative, physical mixtures were compared with computed mixture spectra. We hypothesized that the concentration of ammonium in each sample is related to the size and shape of the ammonium absorption bands and tested this hypothesis for samples of relatively pure buddingtonite. We found that the band depth of the 2.12-micron NH4 feature is linearly related to the NH4 concentration for the Cuprite buddingtonite, and that the relationship is approximately exponential for a larger range of NH4 concentrations. Associated minerals such as smectite and jarosite suppress the depth of the 2.12-micron NH4 absorption band. Quantitative reflectance spectroscopy is possible when the effects of these associated minerals are also considered.
Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band
NASA Technical Reports Server (NTRS)
Singhroy, Vernon H.; Kruse, Fred A.
1991-01-01
Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.
Spacecraft Doppler tracking with a VLBI antenna
NASA Technical Reports Server (NTRS)
Comoretto, G.; Iess, L.; Bertotti, B.; Brenkle, J. P.; Horton, T.
1990-01-01
Preliminary results are reported from Doppler-shift measurements to the Voyager-2 spacecraft at a distance of 26 AU, obtained using the 32-m VLBI antenna at Medicina (Italy) during July and August 1988. The apparatus comprises the el-az antenna, an S-X-band receiver, a hydrogen maser to generate the reference signal, a Mark III VLBI terminal, and a digital tone extractor capable of isolating a tone of known frequency from a noisy signal and giving its phase and amplitude. A signal transmitted in S-band from the NASA Deep Space Network (DSN) station in Australia and retransmitted coherently in X-band by Voyager, was received 7 h 6 min later at Medicina and at the DSN station in Madrid. Sample data are presented graphically and shown to be of generally high quality; further in-depth analysis is under way.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi
2012-06-01
Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
Schaber, G.G.
1999-01-01
Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also Compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).Synthetic Aperture Radar (SAR) images acquired over part of the Yuma Desert in southwestern Arizona demonstrate the ability of C-band (5.7-cm wavelength), L-band (24.5 cm), and P-band (68 cm) AIRSAR signals to backscatter from increasingly greater depths reaching several meters in blow sand and sandy alluvium. AIRSAR images obtained within the Barry M. Goldwater Bombing and Gunnery Range near Yuma, Arizona, show a total reversal of C- and P-band backscatter contrast (image tone) for three distinct geologic units. This phenomenon results from an increasingly greater depth of radar imaging with increasing radar wavelength. In the case of sandy- and small pebble-alluvium surfaces mantled by up to several meters of blow sand, backscatter increases directly with SAR wavelength as a result of volume scattering from a calcic soil horizon at shallow depth and by volume scattering from the root mounds of healthy desert vegetation that locally stabilize blow sand. AIRSAR images obtained within the military range are also shown to be useful for detecting metallic military ordnance debris that is located either at the surface or covered by tens of centimeters to several meters of blow sand. The degree of detectability of this ordnance increases with SAR wavelength and is clearly maximized on P-band images that are processed in the cross-polarized mode (HV). This effect is attributed to maximum signal penetration at P-band and the enhanced PHV image contrast between the radar-bright ordnance debris and the radar-dark sandy desert. This article focuses on the interpretation of high resolution AIRSAR images but also compares these airborne SAR images with those acquired from spacecraft sensors such as ERS-SAR and Space Radar Laboratory (SIR-C/X-SAR).
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.
1977-01-01
By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.
NASA Technical Reports Server (NTRS)
Hammer, Philip D.; Valero, Francisco P. J.; Kinne, Stefan
1991-01-01
Infrared radiance measurements were acquired from a narrow-field nadir-viewing radiometer based on the NASA ER-2 aircraft during a coincident Landsat 5 overpass on October 28, 1986 as part of the FIRE Cirrus IFO in the vicinity of Lake Michigan. The spectral bandpasses are 9.90-10.87 microns for the ER-2-based radiometer and 10.40-12.50 microns for the Landsat thematic mapper band. After adjusting for spatial and temporal differences, a comparative study using data from these two instruments is undertaken in order to retrieve cirrus cloud ice-crystal sizes and optical depths. Retrieval is achieved by analysis of measurement correlations between the two spectral bands and comparison to multistream radiative transfer model calculations. The results indicate that the equivalent sphere radii of the cirrus ice crystals were typically less than 30 microns. Such particles were too small to be measured by the available in situ instrumentation. Cloud optical depths at a reference wavelength of 11.4 microns ranged from 0.3 to 2.0 for this case study. Supplemental results in support of this study are described using radiation measurements from the King Air aircraft, which was also in near coincidence with the Landsat overpass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkin, Andrew S.; Thomas, Cristina A.; Howell, Ellen S.
Asteroids belonging to the Ch spectral taxonomic class are defined by the presence of an absorption near 0.7 μm, which is interpreted as due to Fe-bearing phyllosilicates. Phyllosilicates also cause strong absorptions in the 3 μm region, as do other hydrated and hydroxylated minerals and H{sub 2}O ice. Over the past decade, spectral observations have revealed different 3 μm band shapes in the asteroid population. Although a formal taxonomy is yet to be fully established, the “Pallas-type” spectral group is most consistent with the presence of phyllosilicates. If Ch class and Pallas type are both indicative of phyllosilicates, then allmore » Ch-class asteroids should also be Pallas-type. In order to test this hypothesis, we obtained 42 observations of 36 Ch-class asteroids in the 2 to 4 μm spectral region. We found that 88% of the spectra have 3 μm band shapes most consistent with the Pallas-type group. This is the first asteroid class for which such a strong correlation has been found. Because the Ch class is defined by the presence of an absorption near 0.7 μm, this demonstrates that the 0.7 μm band serves not only as a proxy for the presence of a band in the 3 μm region, but specifically for the presence of Pallas-type bands. There is some evidence for a correlation between band depth at 2.95 μm and absolute magnitude and/or albedo. However, we find only weak correlations between 2.95 μm band depth and semimajor axis. The connection between band depths in the 0.7 and 3 μm regions is complex and in need of further investigation.« less
J- AND H-BAND IMAGING OF AKARI NORTH ECLIPTIC POLE SURVEY FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Yiseul; Im, Myungshin; Kang, Eugene
2014-10-01
We present the J- and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguous wavelength coverage from optical to MIR. For the J- and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg{sup 2} area down to a 5σ depth of ∼21.6 mag and ∼21.3 mag (AB) for the J and H bands with an astrometric accuracy of 0.''14 and 0.''17more » for 1σ in R.A. and decl. directions, respectively. We detected 208,020 sources for the J band and 203,832 sources for the H band. This NIR data is being used for studies including the analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable data set for various future missions.« less
NASA Astrophysics Data System (ADS)
Pande-Chhetri, Roshan
High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification. The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results. The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water surface reflectance and water depths was conducted and non-parametric classifiers such as ANN, SVM and SAM were tested and compared. Quality assessment indicated better classification and detection when non-parametric classifiers were applied to normalized or depth invariant transform images. Best classification accuracy of 73% was achieved when ANN is applied on normalized image and best detection accuracy of around 92% was obtained when SVM or SAM was applied on depth invariant images.
Continuum definition for Ceres absorption bands at 3.1, 3.4 and 4.0 μm
NASA Astrophysics Data System (ADS)
Galiano, A.; Palomba, E.; Longobardo, A.; Zinzi, A.; De Sanctis, M. C.; Raponi, A.; Carrozzo, F. G.; Ciarniello, M.; Dirri, F.
2017-09-01
The images and hyperspectral data acquired during various Dawn mission phases (e.g. Survey, HAMO and LAMO) allowed identifying regions of different albedo on Ceres surface, where absorption bands located at 3.4 and 4.0 μm can assume different shapes. The 3.1 μm feature is observed on the entire Ceres surface except on Cerealia Facula, the brightest spot located on the dome of Occator crater. To perform a mineralogical investigation, absorption bands in reflectance spectra should be properly isolated by removing spectral continuum; hence, parameters as band centers and band depths must be estimated. The problem in the defining the continuum is in the VIR spectral range, which ends at 5.1 μm even though the reliable data, where the thermal contribution is properly removed, stops at 4.2 μm. Band shoulders located at longer wavelengths cannot be estimated. We defined different continua, with the aim to find the most appropriate to isolate the three spectral bands, whatever the region and the spatial resolution of hyperspectral images. The linear continuum seems to be the most suitable definition for our goals. Then, we performed an error evaluation on band depths and band centers introduced by this continuum definition.
Effect of thermal stresses on frequency band structures of elastic metamaterial plates
NASA Astrophysics Data System (ADS)
Wu, Ying; Yu, Kaiping; Yang, Linyun; Zhao, Rui; Shi, Xiaotian; Tian, Kuo
2018-01-01
We investigate the effect of thermal stresses on the band structure of elastic metamaterial plates by developing a useful finite-element based method. The thermal field is assumed to be uniform throughout the whole plate. Specifically, we find that the stiffness matrix of plate element is comprised of elastic and thermal stresses parts, which can be regarded as a linear function of temperature difference. We additionally demonstrate that the relative magnitudes between elastic properties and thermal stresses will lead to nonlinear effects on frequency band structures based on two different types of metamaterial plates made of single and double inclusions of square plates, respectively. Then, we validate the proposed approach by comparing the band structures with the frequency response curves obtained in finite periodic structures. We conduct sensitivity analysis and discuss in-depth the sensitivities of band structures with respect to temperature difference to quantitatively investigate the effect of thermal stresses on each band. In addition, the coupled effects of thermal stresses and temperature-dependent material properties on the band structure of Aluminum/silicone rubber plate have also been discussed. The proposed method and new findings in this paper extends the ability of existing metamaterial plates by enabling tunability over a wide range of frequencies in thermal environments.
Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates
NASA Astrophysics Data System (ADS)
Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo
2016-06-01
We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.
Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis
NASA Astrophysics Data System (ADS)
Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel
2017-01-01
An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.
Crustal Structure Beneath Taiwan Using Frequency-band Inversion of Receiver Function Waveforms
NASA Astrophysics Data System (ADS)
Tomfohrde, D. A.; Nowack, R. L.
Receiver function analysis is used to determine local crustal structure beneath Taiwan. We have performed preliminary data processing and polarization analysis for the selection of stations and events and to increase overall data quality. Receiver function analysis is then applied to data from the Taiwan Seismic Network to obtain radial and transverse receiver functions. Due to the limited azimuthal coverage, only the radial receiver functions are analyzed in terms of horizontally layered crustal structure for each station. In order to improve convergence of the receiver function inversion, frequency-band inversion (FBI) is implemented, in which an iterative inversion procedure with sequentially higher low-pass corner frequencies is used to stabilize the waveform inversion. Frequency-band inversion is applied to receiver functions at six stations of the Taiwan Seismic Network. Initial 20-layer crustal models are inverted for using prior tomographic results for the initial models. The resulting 20-1ayer models are then simplified to 4 to 5 layer models and input into an alternating depth and velocity frequency-band inversion. For the six stations investigated, the resulting simplified models provide an average estimate of 38 km for the Moho thickness surrounding the Central Range of Taiwan. Also, the individual station estimates compare well with the recent tomographic model of and the refraction results of Rau and Wu (1995) and the refraction results of Ma and Song (1997).
Wei, Yanpeng; Xu, Guangyue; Zhang, Kun; Yang, Zhe; Guo, Yacong; Huang, Chenguang; Wei, Bingchen
2017-03-07
The effects of nanosecond laser peening on Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 metallic glass were investigated in this study. The peening treatment produced an extra-deep shock-affected zone compared to crystal metal. As opposed to the conventional shear bands, numerous arc shear bands appeared and aggregated in the vertical direction of the laser beam, forming basic units for accommodating plastic deformation. The arc shear bands exhibited short and discrete features near the surface of the material, then grew longer and fewer at deeper peened layer depths, which was closely related to the laser shock wave attenuation. An energy dissipation model was established based on Hugoniot Elastic Limit and shear band characteristics to represent the formation of an extra-deep shock-affected zone. The results presented here suggest that the bulk modification of metallic glass with a considerable affected depth is feasible. Further, they reveal that nanosecond laser peening is promising as an effective approach to tuning shear bands for improved MGs ductility.
NASA Astrophysics Data System (ADS)
Déau, Estelle; Dones, Luke; Mishchenko, Michael I.; West, Robert A.; Helfenstein, Paul; Hedman, Matt M.; Porco, Carolyn C.
2018-05-01
In this paper, we continue our analysis of the saturnian ring opposition effect seen by Cassini ISS. The ring opposition effect is a peak in the rings' reflectivity caused as the directions from a spot on the rings to the observer and to the light source, respectively, converge toward zero degrees. So far, the exact origin of the ring's opposition effect is still a matter of debate. In our previous work (Déau, et al., 2013, Icarus, 226, 591-603), we compared the opposition effect morphology with the rings' optical depth and found that only the slope of the linear part of the rings' phase curves was strongly correlated with the optical depth. We interpreted this as an indication of the predominant role of interparticle shadowing at moderate phase angles (α ∼ 10-40o). More recently (Déau, 2015, Icarus, 253, 311-345), we showed that interparticle shadowing cannot explain the behavior at low phase angles (α < 1o), indirectly confirming our 2013 result. These findings led to the idea that coherent backscattering is preponderant at the smallest phase angles. Coherent backscattering depends on the microscopic scale of the regolith, and there is a growing body of evidence that regolith grain size, porosity, roughness, and composition control the opposition surge behavior for α < 1o. To test this hypothesis, we compare the opposition surge morphology to the regolith albedo and other spectral properties related to the regolith, such as water ice band depths and spectral slopes derived from Cassini VIMS data (Hedman et al., 2013, Icarus, 223, 105-130). Indeed, it has been recently proven that coherent backscattering affects the water ice band depth variations with phase angle for icy saturnian regoliths (Kolokolova et al., 2010, The Astrophysical Journal Letters, 711, L71-L74). We find that the opposition surge morphology is strongly correlated with the water ice band depth and the regolith albedo. We interpret this finding as an indication that coherent backscattering plays a role in affecting both the water ice band depths and the opposition surge at low phase angles (α < 1o). As the regolith albedo and spectral properties are related to the grain size, porosity, roughness, and composition, we try to assess which of these regolith properties are preponderant in coherent backscattering. Our study is able to narrow down the parameter space of these properties, whose values allow a good match between the angular width predicted by models of coherent backscattering and the width of the observed peak.
NASA Technical Reports Server (NTRS)
Clark, R. N.
1981-01-01
The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.
On the bandwidth of the plenoptic function.
Do, Minh N; Marchand-Maillet, Davy; Vetterli, Martin
2012-02-01
The plenoptic function (POF) provides a powerful conceptual tool for describing a number of problems in image/video processing, vision, and graphics. For example, image-based rendering is shown as sampling and interpolation of the POF. In such applications, it is important to characterize the bandwidth of the POF. We study a simple but representative model of the scene where band-limited signals (e.g., texture images) are "painted" on smooth surfaces (e.g., of objects or walls). We show that, in general, the POF is not band limited unless the surfaces are flat. We then derive simple rules to estimate the essential bandwidth of the POF for this model. Our analysis reveals that, in addition to the maximum and minimum depths and the maximum frequency of painted signals, the bandwidth of the POF also depends on the maximum surface slope. With a unifying formalism based on multidimensional signal processing, we can verify several key results in POF processing, such as induced filtering in space and depth-corrected interpolation, and quantify the necessary sampling rates. © 2011 IEEE
Al-Anezi, Saud A.
2015-01-01
Introduction Orthodontic bands cause periodontal inflammation. In theory, the use of a buccal tube (bond) instead of a band should prevent or minimize periodontal changes because the bonds are positioned away from the gingival margins. Objective The primary aim of this study was to investigate the periodontal status of orthodontic bands compared with bonds in the first three months of orthodontic treatment. Materials and methods Twenty-four orthodontic patients (mean age = 12.6 years) were enrolled in this Randomized Controlled Trial (RCT). Using the cross-mouth technique, bands and bonds were used in opposite quadrants. Periodontal parameters including the presence or absence of Bleeding On Probing (BOP) and Probing Depths (PDs) were taken at the start and three months into treatment. Results Bands caused a statistically significant change in the Bleeding On Probing (BOP) (P = 0.001 and 0.021) and bonds displayed a statistically insignificant change in the Bleeding On Probing (BOP) (P = 0.125 and 1.00) for the upper and lower arch. The difference in Probing Depths (PDs) between bands and bonds was also statistically significant (P = 0.001). Conclusion Molar bands are associated with greater periodontal inflammation compared with molar bonds in the first three months of fixed orthodontic treatment. PMID:26236124
Characterization of Mineralogy Across Vesta
NASA Technical Reports Server (NTRS)
De Sanctis, M. C.; Ammannito, E.; Capria, M. T.; Capaccioni, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Marchi, S.; Palomba, E.;
2012-01-01
Dawn VIR spectra are characterized by pyroxene absorptions and no clear evidence for abundant other minerals are observed at the scale of the present measurements. Even though Vesta spectra are dominated by pyroxenes, spectral variation at regional and local scales are evident and distinct color units are identified. Although almost all of the surface materials exhibit spectra like those of howardites, some large units can be interpreted to be material richer in diogenite (based on pyroxenes band depths and band centers) and some others like eucrite-rich howardite units. VIR data strongly indicate that the south polar region (Rheasilvia) has its own spectral characteristics, indicating the presence of Mg-pyroxene-rich terrains (diogenite-like), while the equatorial areas have swallower band depths and average band centers at slightly longer wavelengths, consistent with more eucrite rich materials. Vesta surface shows considerable diversity at smaller scales (tens of km), in terms of spectral reflectance and emission, band depths and slopes. Many bright and dark spots are present on Vesta. Dark spots have low reflectance at visible wavelengths and are spectrally characterized by shallower 1 and 2 micron bands with respect the surrounding terrains. Bright materials have high reflectance and are often spectrally characterized by deep pyroxenes absorption bands. Vesta presents complex geology/topography and the mineral distribution is often correlated with geological and topographical structures. Ejecta from large craters have distinct spectral behaviors, and materials exposed in the craters show distinct spectra on floors and rims. VIR reveals the mineralogical variation of Vesta s crustal stratigraphy on local and global scales. Maps of spectral parameters show surface and subsurface unit compositions in their stratigraphic context. The hypothesis that Vesta is the HED parent body is consistent with, and strengthened by, the geologic and spectral context for pyroxene distribution provided by Dawn.
Coarse-sediment bands on the inner shelf of southern Monterey Bay, California
Hunter, R.E.; Dingler, J.R.; Anima, R.J.; Richmond, B.M.
1988-01-01
Bands of coarse sand that trend parallel to the shore, unlike the approximately shore-normal bands found in many inner shelf areas, occur in southern Monterey Bay at water depths of 10-20 m, less than 1 km from the shore. The bands are 20-100 m wide and alternate with bands of fine sand that are of similar width. The coarse-sand bands are as much as 1 m lower than the adjacent fine-sand bands, which have margins inclined at angles of about 20??. The mean grain sizes of the coarse and fine sand are in the range of 0.354-1.0 mm and 0.125-0.354 mm, respectively. Wave ripples that average about 1 m in spacing always occur in the coarse-sand bands. Over a period of 3 yrs, the individual bands moved irregularly and changed in shape, as demonstrated by repeated sidescan sonar surveys and by the monitoring of rods jetted into the sea floor. However, the overall pattern and distribution of the bands remained essentially unchanged. Cores, 0.5-1.0 m long, taken in coarse-sand bands contain 0.2-0.5 m of coarse sand overlying fine sand or interbedded fine and coarse sand. Cores from fine-sand bands have at least one thin coarse sand layer at about the depth of the adjacent coarse-sand band. None of the cores revealed a thick deposit of coarse sand. The shore-parallel bands are of unknown origin. Their origin is especially puzzling because approximately shore-normal bands are present in parts of the study area and immediately to the north. ?? 1988.
A comparison of high-frequency noise levels on Cascadia Initiative ocean-bottom seismometers
NASA Astrophysics Data System (ADS)
Hilmo, R.; Wilcock, W. S. D.; Roland, E. C.; Bodin, P.; Connolly, J.
2017-12-01
The Cascadia Initiative (CI) included a four-year deployment of 70 ocean bottom seismometers (OBSs) on the Cascadia subduction zone and the Juan de Fuca plate for the purposes of characterizing seismicity and imaging the Earth's interior. The Cascadia subduction zone megathrust exhibits very low rates of seismicity relative to most other subduction zones, and there is great motivation to understand deformation on the megathrust because of its potential to produce a catastrophic M9 earthquake. An understanding of earthquake detectability of the CI network, based on knowledge of noise levels, could contribute to the interpretation of earthquake catalogs derived from the experiment and aid in the design of future networks. This project is aimed at estimating these thresholds of local earthquake detectability and how they change across the array both geographically and temporally. We characterize background noise levels recorded from 0.1 to 20 Hz with an emphasis on the frequency band used to detect local seismicity ( 3-15 Hz) to understand how noise levels depend on instrument design and environmental parameters including seafloor depth, season and oceanographic conditions. Our initial analysis of 3 weeks of vertical channel data in September, January, and May 2012-2013 shows that noise increase significantly moving from the continental shelf to deeper water. Noise levels at a given depth vary with instrument type but further analysis is required to determine whether this reflects variations in instrumental noise and ground coupling noise or errors in the scaling of the instrument response. There is also a strong seasonality in recorded noise levels at some frequencies, with winter noise levels exceeding spring and fall noise levels by up to 10 decibels in both the microseism band and in the fin whale calling band (15-20 Hz). In contrast, the seasonal noise level in the local seismicity band for a given instrument type and location shows smaller noise variation seasonally. We will extend our analysis to the full four-year data set and consider how variations in noise affect the threshold of earthquake detectability by comparing noise levels with expected body wave amplitudes and seismic catalogues.
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Pieters, Carle M.
1995-01-01
Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micrometers and 2.27 micrometers remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Pieters, Carle M.
1995-01-01
Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micron and 2.75 microns remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.
Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements
Jaumann, R.; Stephan, K.; Hansen, G.B.; Clark, R.N.; Buratti, B.J.; Brown, R.H.; Baines, K.H.; Newman, S.F.; Bellucci, G.; Filacchione, G.; Coradini, A.; Cruikshank, D.P.; Griffith, C.A.; Hibbitts, C.A.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sotin, Christophe; Wagner, R.
2008-01-01
The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 ??m. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 ??m and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively "fresh" surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (???0.2 mm) are concentrated in the so called "tiger stripes" at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening. ?? 2007 Elsevier Inc. All rights reserved.
Depth-Profiling Electronic and Structural Properties of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cell.
Chiang, Ching-Yu; Hsiao, Sheng-Wei; Wu, Pin-Jiun; Yang, Chu-Shou; Chen, Chia-Hao; Chou, Wu-Ching
2016-09-14
Utilizing a scanning photoelectron microscope (SPEM) and grazing-incidence X-ray powder diffraction (GIXRD), we studied the electronic band structure and the crystalline properties of the pentanary Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell as a function of sample depth on measuring the thickness-gradient sample. A novel approach is proposed for studying the depth-dependent information on thin films, which can provide a gradient thickness and a wide cross-section of the sample by polishing process. The results exhibit that the CIGSSe absorber layer possesses four distinct stoichiometries. The growth mechanism of this distinctive compositional distribution formed by a two-stage process is described according to the thermodynamic reaction and the manufacturing process. On the basis of the depth-profiling results, the gradient profiles of the conduction and valence bands were constructed to elucidate the performance of the electrical properties (in this case, Voc = 620 mV, Jsc = 34.6 mA/cm(2), and η = 14.04%); the valence-band maxima (VBM) measured with a SPEM in the spectroscopic mode coincide with this band-structure model, except for a lowering of the VBM observed in the surface region of the absorber layer due to the ordered defect compound (ODC). In addition, the depth-dependent texturing X-ray diffraction pattern presents the crystalline quality and the residual stress for each depth of a thin-film device. We find that the randomly oriented grains in the bottom region of the absorber layer and the different residual stress between the underlying Mo and the absorber interface, which can deteriorate the electrical performance due to peeling-off effect. An anion interstitial defect can be observed on comparing the anion concentration of the elemental distribution with crystalline composition; a few excess sulfur atoms insert in interstitial sites at the front side of the absorber layer, whereas the interstitial selenium atoms insert at the back side.
NASA Astrophysics Data System (ADS)
Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin
2017-12-01
In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.
Contractional deformation of porous sandstone: Insights from the Aztec Sandstone, SE Nevada, USA
NASA Astrophysics Data System (ADS)
Fossen, Haakon; Zuluaga, Luisa F.; Ballas, Gregory; Soliva, Roger; Rotevatn, Atle
2015-05-01
Contractional deformation of highly porous sandstones is poorly explored, as compared to extensional deformation of such sedimentary rocks. In this work we explore the highly porous Aztec Sandstone in the footwall to the Muddy Mountain thrust in SE Nevada, which contains several types of deformation bands in the Buffington tectonic window: 1) Distributed centimeter-thick shear-enhanced compaction bands (SECBs) and 2) rare pure compaction bands (PCBs) in the most porous parts of the sandstone, cut by 3) thin cataclastic shear-dominated bands (CSBs) with local slip surfaces. Geometric and kinematic analysis of the SECBs, the PCBs and most of the CSBs shows that they formed during ∼E-W (∼100) shortening, consistent with thrusting related to the Cretaceous to early Paleogene Sevier orogeny of the North American Cordilleran thrust system. Based on stress path modeling, we suggest that the compactional bands (PCBs and SECBs) formed during contraction at relatively shallow burial depths, before or at early stages of emplacement of the Muddy Mountains thrust sheet. The younger cataclastic shear bands (CSBs, category 3), also related to E-W Sevier thrusting, are thinner and show larger shear offsets and thus more intense cataclasis, consistent with the initiation of cataclastic shear bands in somewhat less porous materials. Observations made in this work support earlier suggestions that contraction lead to more distributed band populations than what is commonly found in the extensional regime, and that shear-enhanced compaction bands are widespread only where porosity (and permeability) is high.
NASA Astrophysics Data System (ADS)
Yoon, Mijin; Jee, Myungkook James; Tyson, Tony
2018-01-01
The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As
NASA Astrophysics Data System (ADS)
Souma, S.; Chen, L.; Oszwałdowski, R.; Sato, T.; Matsukura, F.; Dietl, T.; Ohno, H.; Takahashi, T.
2016-06-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry.
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As
Souma, S.; Chen, L.; Oszwałdowski, R.; Sato, T.; Matsukura, F.; Dietl, T.; Ohno, H.; Takahashi, T.
2016-01-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry. PMID:27265402
NASA/Cousteau ocean bathymetry experiment. Remote bathymetry using high gain LANDSAT data
NASA Technical Reports Server (NTRS)
Polcyn, F. C.
1976-01-01
Satellite remote bathymetry was varified to 22 m depths where water clarity was defined by alpha = .058 1/m and bottom reflection, r(b), was 26%. High gain band 4 and band 5 CCT data from LANDSAT 1 was used for a test site in the Bahama Islands and near Florida. Near Florida where alpha = .11 1/m and r(b) = 20%, depths to 10 m were verified. Depth accuracies within 10% rms were achieved. Position accuracies within one LANDSAT pixel were obtained by reference to the Transit navigation satellites. The Calypso and the Beayondan, two ships, were at anchor on each of the seven days during LANDSAT 1 and 2 overpasses: LORAN C position information was used when the ships were underway making depth transects. Results are expected to be useful for updating charts showing shoals hazardous to navigation or in monitoring changes in nearshore topography.
NASA Astrophysics Data System (ADS)
Kaur, Prabhjot; Bhattacharya, Satadru; Chauhan, Prakash; Ajai; Kiran Kumar, A. S.
2013-01-01
Spectral analysis of Mare Serenitatis has been carried out using Chandrayaan-1 Moon Mineralogy Mapper (M3) data in order to map the compositional diversity of the basaltic units that exist in the basin. Mare Serenitatis is characterized by multiple basaltic flows of different ages indicating a prolonged volcanism subsequent to the basin formation event. Reflectance spectra of fresh craters from the Mare Serenitatis have been analyzed to study the nature and location of the spectral absorption features around 1- and 2-μm respectively, arising due to the electronic charge transition of Fe2+ in the crystal lattice of pyroxenes and/or olivine. Chandrayaan-1 M3 data have been utilized to obtain an Integrated Band Depth (IBD) mosaic of the Serenitatis basin. Based on the spectral variations observed in the IBD mosaic, 13 spectral units have been mapped in the Mare Serenitatis. In the present study, we have also derived spectral band parameters, namely, band center, band strength, band area and band area ratio from the M3 data to study the mineralogical and compositional variations amongst the basaltic units of the studied basin. On the basis of spectral band parameter analysis, the pyroxene compositions of the basaltic units have been determined, which vary from low to intermediate end of the high-Ca pyroxene and probably represent a sub-calcic to calcic augite compositional range. Detailed spectral analyses reveal little variations in the mafic mineralogy of the mare basalts in terms of pyroxene chemistry. The uniformity in pyroxene composition across the basaltic units of Mare Serenitatis, therefore, suggest a probably stable basaltic source region, which might not have experienced large-scale fractionation during the prolonged volcanism that resulted in filling of the large Serenitatis basin.
Newer views of the Moon: Comparing spectra from Clementine and the Moon Mineralogy Mapper
Kramer, G.Y.; Besse, S.; Nettles, J.; Combe, J.-P.; Clark, R.N.; Pieters, C.M.; Staid, M.; Malaret, E.; Boardman, J.; Green, R.O.; Head, J.W.; McCord, T.B.
2011-01-01
The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 m absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 m band depths than M 3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions. Copyright 2011 by the American Geophysical Union.
Newer views of the Moon: Comparing spectra from Clementineand the Moon Mineralogy Mapper
Georgiana Y. Kramer,; Sebastian Besse,; Nettles, Jeff; Jean-Philippe Combe,; Clark, Roger N.; Pieters, Carle M.; Matthew Staid,; Joseph Boardman,; Robert Green,; McCord, Thomas B.; Malaret, Erik; Head, James W.
2011-01-01
The Moon Mineralogy Mapper (M3) provided the first global hyperspectral data of the lunar surface in 85 bands from 460 to 2980 nm. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the ultraviolet-visible (UV-VIS) and near-infrared (NIR). In an effort to understand how M3 improves our ability to analyze and interpret lunar data, we compare M3 spectra with those from Clementine's UV-VIS and NIR cameras. The Clementine mission provided the first global multispectral maps the lunar surface in 11 spectral bands across the UV-VIS and NIR. We have found that M3 reflectance values are lower across all wavelengths compared with albedos from both of Clementine's UV-VIS and NIR cameras. M3 spectra show the Moon to be redder, that is, have a steeper continuum slope, than indicated by Clementine. The 1 μm absorption band depths may be comparable between the instruments, but Clementine data consistently exhibit shallower 2 μm band depths than M3. Absorption band minimums are difficult to compare due to the significantly different spectral resolutions.
NASA Astrophysics Data System (ADS)
Ballas, Gregory; Soliva, Roger; Sizun, Jean-Pierre; Fossen, Haakon; Benedicto, Antonio; Skurtveit, Elin
2013-02-01
Field observations of highly porous and permeable sandstone in the Orange area (S-E Basin, France) show that networks of shear-enhanced compaction bands can form in a contractional regime at burial depths of about 400 m ± 100 m. These bands show equal compaction and shear displacements, are organized in conjugate and densely distributed networks, and are restricted to the coarse-grained (mean grain diameter of 0.6 ± 0.1 mm) and less porous (porosity of 26 ± 2%) sand layers. The bands are crush microbreccia with limited grain comminution and high grain microfracture density. They show reductions of permeability (mD) ranging from 0 to little more than 1 order of magnitude. They show no control on the alteration products related to meteoric water flow, which suggests that these shear-enhanced compaction bands have no or only negligible influence on subsurface fluid flow. Their selective occurrence and small (20%) reduction in transmissibility in densely populated layers prevented them from compartmentalizing the sandstone reservoirs. A comparison with compaction-band populations in the Navajo and Aztec sandtsones (western U.S.) emphasizes the role of burial depth and the presence of chemical compaction processes for the sealing potential of deformation bands.
Exploitation of ERTS-1 imagery utilizing snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J.; Martin, K. R.
1973-01-01
Photogeological analysis of ERTS-simulation and ERTS-1 imagery of snowcovered terrain within the ERAP Feather River site and within the New England (ERTS) test area provided new fracture detail which does not appear on available geological maps. Comparative analysis of snowfree ERTS-1 images has demonstrated that MSS Bands 5 and 7 supply the greatest amount of geological fracture detail. Interpretation of the first snow-covered ERTS-1 images in correlation with ground snow depth data indicates that a heavy blanket of snow (more than 9 inches) accentuates major structural features while a light "dusting", (less than 1 inch) accentuates more subtle topographic expressions. An effective mail-based method for acquiring timely ground-truth (snowdepth) information was established and provides a ready correlation of fracture detail with snow depth so as to establish the working limits of the technique. The method is both efficient and inexpensive compared with the cost of similarly scaled direct field observations.
Weil, Ernesto; Cróquer, Aldo
2009-02-25
Geographic assessments of coral diseases are needed to understand their local and geographic spatial-temporal variability. Coral and octocoral diseases and their prevalence were assessed along 4 permanent 10 x 2 m band-transects in each of 3 depth habitats (<4, 5-12 and >15 m) in each of 2 reefs in each of 6 countries across the wider Caribbean during the summer and fall of 2005. A permutational multivariate analysis of variance was used to test variability of major diseases and community level disease prevalence in corals and octocorals among habitats, reefs and countries. The most common and damaging diseases reported for the region were found in most reefs surveyed, but prevalence at the community level was generally low (ca. 2%) increasing from northern to southern latitudes. A significant interaction between sites (nested within country) and depth habitats was found (F = 2.1, df = 12, p = 0.02), with higher prevalence of coral diseases in deep habitats of Culebrita, Puerto Rico (14.8 +/- SE 6.5%) and in shallow habitats of Roldán, Panama (10.2 +/- SE 3.5%). The relative importance of each particular disease was dependent on site and habitat (depth intervals) (F = 1.7, df = 12, p = 0.001), with black band disease more prevalent in shallow habitats of Rita's, Bermuda (1.7 +/- SE 0.4%) and yellow band disease (YBD) more prevalent in deeper habitats of Chub Cut, Bermuda (3.7 +/- SE 0.5%). There was a significant interaction of total octocoral diseases with country and habitat (F = 2.8, df = 10, p = 0.04) with higher prevalence in deeper habitats of Curaçao (25.9 +/- SE 4.2%). Our results indicate that patterns of prevalence of coral and octocoral diseases were not consistent across the different spatial scales, showing differences produced by particular diseases and community composition present. There were no widespread epizootics, but local white plague-II and YBD epizootics were observed in Puerto Rico and other localities.
Classification of river water pollution using Hyperion data
NASA Astrophysics Data System (ADS)
Kar, Soumyashree; Rathore, V. S.; Champati ray, P. K.; Sharma, Richa; Swain, S. K.
2016-06-01
A novel attempt is made to use hyperspectral remote sensing to identify the spatial variability of metal pollutants present in river water. It was also attempted to classify the hyperspectral image - Earth Observation-1 (EO-1) Hyperion data of an 8 km stretch of the river Yamuna, near Allahabad city in India depending on its chemical composition. For validating image analysis results, a total of 10 water samples were collected and chemically analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Two different spectral libraries from field and image data were generated for the 10 sample locations. Advanced per-pixel supervised classifications such as Spectral Angle Mapper (SAM), SAM target finder using BandMax and Support Vector Machine (SVM) were carried out along with the unsupervised clustering procedure - Iterative Self-Organizing Data Analysis Technique (ISODATA). The results were compared and assessed with respect to ground data. Analytical Spectral Devices (ASD), Inc. spectroradiometer, FieldSpec 4 was used to generate the spectra of the water samples which were compiled into a spectral library and used for Spectral Absorption Depth (SAD) analysis. The spectral depth pattern of image and field spectral libraries was found to be highly correlated (correlation coefficient, R2 = 0.99) which validated the image analysis results with respect to the ground data. Further, we carried out a multivariate regression analysis to assess the varying concentrations of metal ions present in water based on the spectral depth of the corresponding absorption feature. Spectral Absorption Depth (SAD) analysis along with metal analysis of field data revealed the order in which the metals affected the river pollution, which was in conformity with the findings of Central Pollution Control Board (CPCB). Therefore, it is concluded that hyperspectral imaging provides opportunity that can be used for satellite based remote monitoring of water quality from space.
Electrophoresis gel image processing and analysis using the KODAK 1D software.
Pizzonia, J
2001-06-01
The present article reports on the performance of the KODAK 1D Image Analysis Software for the acquisition of information from electrophoresis experiments and highlights the utility of several mathematical functions for subsequent image processing, analysis, and presentation. Digital images of Coomassie-stained polyacrylamide protein gels containing molecular weight standards and ethidium bromide stained agarose gels containing DNA mass standards are acquired using the KODAK Electrophoresis Documentation and Analysis System 290 (EDAS 290). The KODAK 1D software is used to optimize lane and band identification using features such as isomolecular weight lines. Mathematical functions for mass standard representation are presented, and two methods for estimation of unknown band mass are compared. Given the progressive transition of electrophoresis data acquisition and daily reporting in peer-reviewed journals to digital formats ranging from 8-bit systems such as EDAS 290 to more expensive 16-bit systems, the utility of algorithms such as Gaussian modeling, which can correct geometric aberrations such as clipping due to signal saturation common at lower bit depth levels, is discussed. Finally, image-processing tools that can facilitate image preparation for presentation are demonstrated.
Hyperspectral analysis of seagrass in Redfish Bay, Texas
NASA Astrophysics Data System (ADS)
Wood, John S.
Remote sensing using multi- and hyperspectral imaging and analysis has been used in resource management for quite some time, and for a variety of purposes. In the studies to follow, hyperspectral imagery of Redfish Bay is used to discriminate between species of seagrasses found below the water surface. Water attenuates and reflects light and energy from the electromagnetic spectrum, and as a result, subsurface analysis can be more complex than that performed in the terrestrial world. In the following studies, an iterative process is developed, using ENVI image processing software and ArcGIS software. Band selection was based on recommendations developed empirically in conjunction with ongoing research into depth corrections, which were applied to the imagery bands (a default depth of 65 cm was used). Polygons generated, classified and aggregated within ENVI are reclassified in ArcGIS using field site data that was randomly selected for that purpose. After the first iteration, polygons that remain classified as 'Mixed' are subjected to another iteration of classification in ENVI, then brought into ArcGIS and reclassified. Finally, when that classification scheme is exhausted, a supervised classification is performed, using a 'Maximum Likelihood' classification technique, which assigned the remaining polygons to the classification that was most like the training polygons, by digital number value. Producer's Accuracy by classification ranged from 23.33 % for the 'MixedMono' class to 66.67% for the 'Bare' class; User's Accuracy by classification ranged from 22.58% for the 'MixedMono' class to 69.57% for the 'Bare' classification. An overall accuracy of 37.93% was achieved. Producers and Users Accuracies for Halodule were 29% and 39%, respectively; for Thalassia, they were 46% and 40%. Cohen's Kappa Coefficient was calculated at .2988. We then returned to the field and collected spectral signatures of monotypic stands of seagrass at varying depths and at three sensor levels: above the water surface, just below the air/water interface, and at the canopy position, when it differed from the subsurface position. Analysis of plots of these spectral curves, after applying depth corrections and Multiplicative Scatter Correction, indicates that there are detectable spectral differences between Halodule and Thalassia species at all three positions. Further analysis indicated that only above-surface spectral signals could reliably be used to discriminate between species, because there was an overlap of the standard deviations in the other two positions. A recommendation for wavelengths that would produce increased accuracy in hyperspectral image analysis was made, based on areas where there is a significant amount of difference between the mean spectral signatures, and no overlap of the standard deviations in our samples. The original hyperspectral imagery was reprocessed, using the bands recommended from the research above (approximately 535, 600, 620, 638, and 656 nm). A depth raster was developed from various available sources, which was resampled and reclassified to reflect values for water absorption and water scattering, which were then applied to each band using the depth correction algorithm. Processing followed the iterative classification methods described above. Accuracy for this round of processing improved; overall accuracy increased from 38% to 57%. Improvements were noted in Producer's Accuracy, with the 'Bare' vi classification increasing from 67% to 73%, Halodule increasing from 29% to 63%, Thalassia increasing slightly, from 46% to 50%, and 'MixedMono' improving from 23% to 42%. User's Accuracy also improved, with the 'Bare' class increasing from 69% to 70%, Halodule increasing from 39% to 67%, Thalassia increasing from 40% to 7%, and 'MixedMono' increasing from 22.5% to 35%. A very recent report shows the mean percent cover of seagrasses in Redfish Bay and Corpus Christi Bay combined for all species at 68.6%, and individually by species: Halodule 39.8%, Thalassia 23.7%, Syringodium 4%, Ruppia 1% and Halophila 0.1%. Our study classifies 15% as 'Bare', 23% Halodule, 18% Thalassia, and 2% Ruppia. In addition, we classify 5% as 'Mixed', 22% as 'MixedMono', 12% as 'Bare/Halodule Mix', and 3% 'Bare/Thalassia Mix'. Aggregating the 'Bare' and 'Bare/species' classes would equate to approximately 30%, very close to what this new study produces. Other classes are quite similar, when considering that their study includes no 'Mixed' classifications. This series of research studies illustrates the application and utility of hyperspectral imagery and associated processing to mapping shallow benthic habitats. It also demonstrates that the technology is rapidly changing and adapting, which will lead to even further increases in accuracy. Future studies with hyperspectral imaging should include extensive spectral field collection, and the application of a depth correction.
Nakano, Arihiro; Hirooka, Yoshiki; Yamamura, Takeshi; Watanabe, Osamu; Nakamura, Masanao; Funasaka, Kohei; Ohno, Eizaburo; Kawashima, Hiroki; Miyahara, Ryoji; Goto, Hidemi
2017-04-01
Background and study aims There have been few evaluations of the diagnostic ability of new narrow band light observation blue laser imaging (BLI). The present prospective study compared the diagnostic ability of BLI magnification and pit pattern analysis for colorectal polyps. Patients and methods We collected lesions prospectively, and the analysis of images was made by two endoscopists, retrospectively. A total of 799 colorectal polyps were examined by BLI magnification and pit pattern analysis at Nagoya University Hospital. The Hiroshima narrow-band imaging classification was used for BLI. Differentiation of neoplastic from non-neoplastic lesions and diagnosis of deeply invasive submucosal cancer (dSM) were compared between BLI magnification and pit pattern analysis. Type C2 in the Hiroshima classification was evaluated separately, because application of this category as an index of the depth of cancer invasion was considered difficult. Results We analyzed 748 colorectal polyps, excluding 51 polyps that were inflammatory polyps, sessile serrated adenoma/polyps, serrated adenomas, advanced colorectal cancers, or other lesions. The accuracy of differential diagnosis between neoplastic and non-neoplastic lesions was 98.4 % using BLI magnification and 98.7 % with pit pattern analysis. In addition, the diagnostic accuracy of BLI magnification and pit pattern analysis for dSM for cancer was 89.5 % and 92.1 %, respectively. When type C2 lesions were excluded, the diagnostic accuracy of BLI for dSM was 95.9 %. The 18 type C2 lesions comprised 1 adenoma, 9 intramucosal or slightly invasive submucosal cancers, and 8 dSM. Pit pattern analysis allowed accurate diagnosis of the depth of invasion in 13 lesions (72.2 %). Conclusions Most colorectal polyps could be diagnosed accurately by BLI magnification without pit pattern analysis, but we should add pit pattern analysis for type C2 lesions in the Hiroshima classification.
NASA Astrophysics Data System (ADS)
Semmler, Robert F.; Hoot, Whitney C.; Reaka, Marjorie L.
2017-06-01
We analyzed an extensive dataset of over 9000 benthic and suprabenthic species found throughout the Gulf of Mexico (GoMx) to assess whether mesophotic coral ecosystems represent distinct assemblages and evaluate their potential to serve as refugia for shallow reef communities. We assessed community structure of the overall benthic community from 0 to 300 m via non-metric multidimensional scaling (NMDS) of species presence across depth bands. We used the Jaccard index of similarity to calculate the proportion of shared species between adjacent depth bands, measure species turnover with depth, and assess taxonomic overlap between shallow reefs versus progressively deeper depth bands. NMDS ordinations showed that the traditionally defined mesophotic range (30-150 m) as a whole is not a distinct community. In contrast, taxonomically distinct communities, determined by hierarchical clustering, were found at 0-70, 60-120, 110-200, and 190-300 m. Clustering highlighted an important separation in the benthic community at 60 m, which was especially important for actinopterygian fishes. Species turnover between adjacent depths decreased with depth for all taxa combined and individual taxa, with peaks at 60, 90-120, and 190-200 m. Fishes showed lower turnover from shallow to upper mesophotic depths (0-50 m) than all taxa combined, a substantial peak at 60 m, followed by a precipitous and continued decline in turnover thereafter. Taxonomic overlap between shallow (0-20 m) and progressively deeper zones declined steadily with depth in all taxa and individual taxa, suggesting that mid- and lower mesophotic habitats have less (but not inconsequential) potential to serve as refugia (60-150 m, 15-25% overlap with shallow habitats) than upper mesophotic zones (30-60 m, 30-45% overlap with shallow habitats) for all taxa combined. We conclude that the traditional mesophotic zone is home to three ecological communities in the GoMx, one that is confluent with shallow reefs, a distinct mesophotic assemblage spanning 60-120 m, and a third that extends onto the outer continental shelf.
Calvin, Wendy M.
1997-01-01
A new approach for calibration of the shortest wavelength channel (1.8 to 6.0 μm) of the Mariner 6 infrared spectrometer was derived. This calibration provides a new description of the instrument response function from 1.8 to 3.7 μm and accounts for the thermal contribution to the signal at longer wavelengths. This allows the two segments from 1.8 to 6 μm to be merged into a single spectrum. The broad water of hydration absorption spans these two segments and is examined in these merged spectra using a method of band integration. Unlike previous analyses which rely on ratios at two wavelengths, the integration method can assess the band strength independently from the albedo in the near infrared. Spectra taken over the eastern end of the Valles Marineris are examined for variations of the band-integrated value, and three distinct clusters are found. Within the estimated uncertainty, two clusters (both low and high albedo) have approximately the same integrated band depth. The third cluster (medium albedo) has an integrated band depth about 10% higher. This difference cannot be systematically attributed to either surface or atmospheric parameters and suggests variation in the amount of water either chemically or physically bound in surface materials. Approximately one-half of the high integrated band depth cluster is associated with chaotic terrain at the source of outflow channels, the other half occurs over lower inertia plains adjacent to chasmata. This suggests both surface physical properties and mineralogy as well as water in exchange with the atmosphere contribute to the 3-μm bound water absorption.
NASA Technical Reports Server (NTRS)
Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent
2005-01-01
The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.
Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection
NASA Astrophysics Data System (ADS)
Wang, Jinjin; Ma, Yi; Zhang, Jingyu
2018-03-01
Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.
Hsu, Kai-Lan; Chang, Wei-Lun; Yang, Chyun-Yu; Yeh, Ming-Long; Chang, Chih-Wei
2017-12-01
Modified tension band wiring has been widely used to treat transverse patellar fractures. However, few studies have evaluated the clinical outcomes using different methods of Kirschner wire bending, location of the tension band, and depths of Kirschner wires. Thus, we tried to clarify these factors according to our clinical outcomes. This retrospective cohort study recruited consecutive patients underwent surgical fixation for patellar fractures using modified tension band technique between January 2010 and December 2015. Different factors in this procedure, including the bending manner of the Kirschner wires, their depth, and location of the tension band with respect to the superior and inferior border of the patella were recorded and analysed. The primary outcome was early loss of fixation. The secondary outcomes were minor loss of reduction, implant breakage, deep infection, and the need for implant removal. This study included 170 patients with patellar fractures. Regarding the bending method, similar results were obtained with bilaterally or proximally bent Kirschner wires. Regarding length, the tension band was placed closely (within 25% of the patella length) in 124 patients and distantly in 46 patients. The rates of loss of reduction and implant breakage were significantly higher in the distantly placed tension bands. Regarding depth, 37 patellar fractures were fixed with the Kirschner wires at the superficial one third of the patellae while the K- wires at the middle layer of patella were used in the remaining 133 patellar fractures. A significantly higher rate of minor loss of reduction was obtained using the superficial Kirschner wires. The modified tension band technique for transverse patella fractures provides favourable clinical outcomes, with low failure (5%) and infection (2%) rates. Implant irritation is the major complication, and almost half of cases require implant removal. The location of the tension band with respect to the superior and inferior border of the patella plays an important role in clinical outcomes. Placing the wire close to the patella may prevent major loss of reduction and implant breakage. Superficially placed Kirschner wires also affect clinical outcomes by increasing the rate of minor loss of reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Dilbone, Elizabeth; Legleiter, Carl; Alexander, Jason S.; McElroy, Brandon
2018-01-01
Methods for spectrally based mapping of river bathymetry have been developed and tested in clear‐flowing, gravel‐bed channels, with limited application to turbid, sand‐bed rivers. This study used hyperspectral images and field surveys from the dynamic, sandy Niobrara River to evaluate three depth retrieval methods. The first regression‐based approach, optimal band ratio analysis (OBRA), paired in situ depth measurements with image pixel values to estimate depth. The second approach used ground‐based field spectra to calibrate an OBRA relationship. The third technique, image‐to‐depth quantile transformation (IDQT), estimated depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image‐derived variable. OBRA yielded the lowest depth retrieval mean error (0.005 m) and highest observed versus predicted R2 (0.817). Although misalignment between field and image data did not compromise the performance of OBRA in this study, poor georeferencing could limit regression‐based approaches such as OBRA in dynamic, sand‐bedded rivers. Field spectroscopy‐based depth maps exhibited a mean error with a slight shallow bias (0.068 m) but provided reliable estimates for most of the study reach. IDQT had a strong deep bias but provided informative relative depth maps. Overprediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the depth CDF. Although each of the techniques we tested demonstrated potential to provide accurate depth estimates in sand‐bed rivers, each method also was subject to certain constraints and limitations.
Sampling strategies to improve passive optical remote sensing of river bathymetry
Legleiter, Carl; Overstreet, Brandon; Kinzel, Paul J.
2018-01-01
Passive optical remote sensing of river bathymetry involves establishing a relation between depth and reflectance that can be applied throughout an image to produce a depth map. Building upon the Optimal Band Ratio Analysis (OBRA) framework, we introduce sampling strategies for constructing calibration data sets that lead to strong relationships between an image-derived quantity and depth across a range of depths. Progressively excluding observations that exceed a series of cutoff depths from the calibration process improved the accuracy of depth estimates and allowed the maximum detectable depth ($d_{max}$) to be inferred directly from an image. Depth retrieval in two distinct rivers also was enhanced by a stratified version of OBRA that partitions field measurements into a series of depth bins to avoid biases associated with under-representation of shallow areas in typical field data sets. In the shallower, clearer of the two rivers, including the deepest field observations in the calibration data set did not compromise depth retrieval accuracy, suggesting that $d_{max}$ was not exceeded and the reach could be mapped without gaps. Conversely, in the deeper and more turbid stream, progressive truncation of input depths yielded a plausible estimate of $d_{max}$ consistent with theoretical calculations based on field measurements of light attenuation by the water column. This result implied that the entire channel, including pools, could not be mapped remotely. However, truncation improved the accuracy of depth estimates in areas shallower than $d_{max}$, which comprise the majority of the channel and are of primary interest for many habitat-oriented applications.
A study on multifrequency scintillations near the EIA crest of the Indian zone
NASA Astrophysics Data System (ADS)
Chakraborty, S. K.; Chatterjee, S.; Jana, Debasis
2017-10-01
Occurrence features of ionospheric scintillations at S band (2492.028 MHz) are reported for the first time. The same have been explored in the context of scintillations at VHF (250.650 MHz) and L5 (1176.45 MHz) bands. Observations were carried out during the period April-December, 2015 at Raja Peary Mohan College Centre (RPMC: 22.66° N, 88.4° E), located near the equatorial ionization anomaly (EIA) crest of the Indian longitude zone. Mostly weak (<10 dB), short duration, slow fading rate with shallower slope power spectra characterize the S band scintillations compared to VHF and L5 band. In the severe scintillation conditions of VHF frequent loss of lock in L5 channel is reflected. Fade depth of 4.2 ± 1.3 dB and fade rate ∼9 fades/minute at S band mostly precede the loss of lock at L5 channel. A good correspondence between fade rates at multi frequency band is reflected irrespective of phases of scintillation. Spectral analysis reveals weak scattering is the dominating mechanism for scintillation at S band while VHF and L5 band scintillations are mostly attributed to multiple scattering. The estimated threshold coherence length of <23 m at VHF may be suggested to be a good indicator for occurrence of L5 and S band scintillations. Occurrence of simultaneous multi-satellite multi-frequency scintillations leads to speculation over the failsafe navigation using available IRNSS constellation. The results are discussed in terms of existing theory of evolution, structure and dynamics of electron density irregularities in the low latitude region.
NASA Astrophysics Data System (ADS)
Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald
2017-04-01
This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
NASA Astrophysics Data System (ADS)
Richardson, Mark; Stephens, Graeme L.
2018-03-01
Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5-764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.
NASA Astrophysics Data System (ADS)
Beck, Pierre; Maturilli, A.; Garenne, A.; Vernazza, P.; Helbert, J.; Quirico, E.; Schmitt, B.
2018-10-01
In order to determine the controls on the reflectance spectra of hydrated carbonaceous chondrites, reflectance spectra were measured for a series of samples with well-determined mineralogy, water-content, and thermal history. This includes 5 CR chondrites, 11 CM chondrites, and 7 thermally metamorphosed CM chondrites. These samples were characterized over the 0.35-150 μm range by reflectance spectroscopy in order to cover the full spectral range accessible from ground based observation, and that will be determined in the near-future by the Hayabusa-2 and Osiris-REx missions. While spectra show absorption features shortward of 35 μm, no strong absorption bands were identified in this suite of samples longward of 35 μm. This work shows that the 0.7-μm band observed in hydrated carbonaceous chondrites is correlated with the total water content as well as with the band depth at 2.7 μm, confirming the suggestion that they are related to Mg-rich, Fe-bearing phyllosilicates. A feature at 2.3 μm, diagnostic of such phyllosilicates was found for all samples with a detectable 0.7-μm band, also indicative of Mg-rich phyllosilicates. A strong variability is found in the shape of the 3-μm band among CM chondrites, and between CM, CR and thermally metamorphosed CM chondrites. Heavily altered CM chondrites show a single strong band around 2.72 μm while more thermally metamorphosed CM samples show an absorption band at higher wavelength. The CR chondrite GRO 95577 has a 3-μm feature very similar to those of extensively altered CM chondrites while other CR chondrite rather shows goethite-like signatures (possibly due to terrestrial weathering of metals). Thermally metamorphosed CM chondrites all have 3-μm features, which are not purely due to terrestrial adsorbed water. The band shape ranges from heavily altered CM-like to goethite-like. The overall reflectance was found to be significantly higher for CR chondrites than for CM chondrites. This is also true for the hydrated CR chondrite GRO 95577 whose reflectance spectrum is almost identical to spectra obtained for CM chondrites except that it is brighter by about 40% in the visible. Another possibility to distinguish hydrated CM from hydrated CR chondrites is to use the combination of band depths at 0.7 and 2.3 μm. When comparing the spectra obtained with Cg and Cgh spectral end member, it is found that the band depth determined for hydrated chondrites (0.7 and 2.3 μm) are always higher than calculated for these spectral endmembers. If one considers only asteroids with unambiguous hydration detection, band depth at 0.7 μm is of similar value to those measured for hydrated carbonaceous chondrites.
Ultra-deep K S-band Imaging of the Hubble Frontier Fields
NASA Astrophysics Data System (ADS)
Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.
2016-09-01
We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.
NASA Astrophysics Data System (ADS)
De Angelis, Simone; De Sanctis, Maria Cristina; Ammannito, Eleonora; Carli, Cristian; Di Iorio, Tatiana; Altieri, Francesca
2015-11-01
The Ma_Miss instrument (Mars Multispectral Imager for Subsurface Studies, Coradini et al. (2001)) is a Visible and Near Infrared miniaturized spectrometer that will observe the Martian subsurface in the 0.4-2.2 μm spectral range. The instrument will be entirely hosted within the Drill of the ExoMars-2018 Pasteur Rover: it will allow analyzing the borehole wall excavated by the Drill, at different depths, down to 2 m. The aim will be to investigate and characterize the mineralogy and stratigraphy of the shallow Martian subsurface. A series of spectroscopic measurements have been performed in order to characterize the spectral performances of the laboratory model of the instrument (breadboard). A set of six samples have been analyzed. Each sample (four volcanic rocks, a micritic limestone and a calcite) has been reduced in particulate form, ground, sieved and divided into nine different grain sizes in the range d<0.02÷0.8 mm. Spectroscopic measurements have been performed on all samples using two distinct experimental setup: (a) the Ma_Miss breadboard, and (b) the Spectro-Goniometer setup, both in use in the laboratory at INAF - IAPS. In a previous paper spectral parameters such as the continuum slope and the reflectance level of the spectra have been discussed (De Angelis et al., 2014). In this work we focus our discussion on absorption band parameters (position, depth, area, band slope and asymmetry). We analyzed/investigated the absorption features at 1 μm for the volcanic samples and at 1.4, 1.9 and 2.2 μm for the two carbonate samples. Band parameters have been retrieved from spectra measured with both experimental setup and then compared. The comparison shows that band parameters are mutually consistent: band centers (for carbonate samples) are similar within few percent, and band depth and area values (for carbonates) show consistent trends vs. grain size (decreasing towards coarser grains) for most of samples.
Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie
2016-01-01
Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3
Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; ...
2015-04-01
The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions ( 84Kr 22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x10 10 ions/cm 2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO 3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less
Ammonia volatilization and nitrogen retention: how deep to incorporate urea?
Rochette, Philippe; Angers, Denis A; Chantigny, Martin H; Gasser, Marc-Olivier; MacDonald, J Douglas; Pelster, David E; Bertrand, Normand
2013-11-01
Incorporation of urea decreases ammonia (NH) volatilization, but field measurements are needed to better quantify the impact of placement depth. In this study, we measured the volatilization losses after banding of urea at depths of 0, 2.5, 5, 7.5, and 10 cm in a slightly acidic (pH 6) silt loam soil using wind tunnels. Mineral nitrogen (N) concentration and pH were measured in the top 2 cm of soil to determine the extent of urea N migration and the influence of placement depth on the availability of ammoniacal N for volatilization near the soil surface. Ammonia volatilization losses were 50% of applied N when urea was banded at the surface, and incorporation of the band decreased emissions by an average of 7% cm (14% cm when expressed as a percentage of losses after surface banding). Incorporating urea at depths >7.5 cm therefore resulted in negligible NH emissions and maximum N retention. Cumulative losses increased exponentially with increasing maximum NH-N and pH values measured in the surface soil during the experiment. However, temporal variations in these soil properties were poorly related to the temporal variations in NH emission rates, likely as a result of interactions with other factors (e.g., water content and NH-N adsorption) on, and fixation by, soil particles. Laboratory and field volatilization data from the literature were summarized and used to determine a relationship between NH losses and depth of urea incorporation. When emissions were expressed as a percentage of losses for a surface application, the mean reduction after urea incorporation was approximately 12.5% cm. Although we agree that the efficiency of urea incorporation to reduce NH losses varies depending on several soil properties, management practices, and climatic conditions, we propose that this value represents an estimate of the mean impact of incorporation depth that could be used when site-specific information is unavailable. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Siregar, V. P.; Agus, S. B.; Subarno, T.; Prabowo, N. W.
2018-05-01
The availability of satellite imagery with a variety of spatial resolution, both free access and commercial become as an option in utilizing the remote sensing technology. Variability of the water column is one of the factors affecting the interpretation results when mapping marine shallow waters. This study aimed to evaluate the influence of water column correction (depth-invariant index) on the accuracy of shallow water habitat classification results using OBIA. This study was conducted in North of Kepulauan Seribu, precisely in Harapan Island and its surrounding areas. Habitat class schemes were based on field observations, which were then used to build habitat classes on satellite imagery. The water column correction was applied to the three pairs of SPOT-7 multispectral bands, which were subsequently used in object-based classification. Satellite image classification was performed with four different approaches, namely (i) using DII transformed bands with single pair band input (B1B2), (ii) multi pairs bands (B1B2, B1B3, and B2B3), (iii) combination of multi pairs band and initial bands, and (iv) only using initial bands. The accuracy test results of the four inputs show the values of Overall Accuracy and Kappa Statistics, respectively 55.84 and 0.48; 68.53 and 0.64; 78.68 and 0.76; 77.66 and 0.74. It shows that the best results when using DII and initial band combination for shallow water benthic classification in this study site.
Development of a Novel Hybrid Multi-Junction Architecture for Silicon Solar Cells
2015-03-26
W Watts KOH Potassium Hydroxide xj Junction depth k Thermal conductivity z Normal distance l Conductor length σ Stefan...outermost orbit [9]. A material conducts electricity when its valence electrons move into the conduction band and become conductor electrons. Conductor ...become a conductor , it must absorb enough energy to overcome the band gap, which is the energy difference between the valence band and the conduction
Varley, J. B.; Conway, A. M.; Voss, L. F.; ...
2015-02-09
Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less
NASA Astrophysics Data System (ADS)
Zhou, L.; Xu, S.; Liu, J.
2017-12-01
The retrieval of sea ice thickness mainly relies on satellite altimetry, and the freeboard measurements are converted to sea ice thickness (hi) under certain assumptions over snow loading. The uncertain in snow depth (hs) is a major source of uncertainty in the retrieved sea ice thickness and total volume for both radar and laser altimetry. In this study, novel algorithms for the simultaneous retrieval of hi and hs are proposed for the data synergy of L-band (1.4 GHz) passive remote sensing and both types of active altimetry: (1) L-band (1.4GHz) brightness temperature (TB) from Soil Moisture Ocean Salinity (SMOS) satellite and sea ice freeboard (FBice) from radar altimetry, (2) L-band TB data and snow freeboard (FBsnow) from laser altimetry. Two physical models serve as the forward models for the retrieval: L-band radiation model, and the hydrostatic equilibrium model. Verification with SMOS and Operational IceBridge (OIB) data is carried out, showing overall good retrieval accuracy for both sea ice parameters. Specifically, we show that the covariability between hs and FBsnow is crucial for the synergy between TB and FBsnow. Comparison with existing algorithms shows lower uncertainty in both sea ice parameters, and that the uncertainty in the retrieved sea ice thickness as caused by that of snow depth is spatially uncorrelated, with the potential reduction of the volume uncertainty through spatial sampling. The proposed algorithms can be applied to the retrieval of sea ice parameters at basin-scale, using concurrent active and passive remote sensing data based on satellites.
Yutaka Kataoka; Makoto Kiguchi; R. Sam Williams; Philip D. Evans
2006-01-01
FT-IR microscopy was used to depth profile the photodegradation of Japanese cedar earlywood exposed to monochromatic light in the UV and visible ranges (band pass: 20nm). Parallel experiments assessed the transmission of the light through thin sections of Japanese cedar. The depth of photodegradation increased with wavelength up to and including the violet region of...
Out-of-Plane Seismic Reflections Beneath the Pacific and Their Geophysical Implications
NASA Astrophysics Data System (ADS)
Schumacher, Lina; Thomas, Christine; Abreu, Rafael
2018-03-01
We detect seismic P wave arrivals that reach the surface from a different horizontal direction than the theoretical back azimuth of the earthquake. Slowness, back azimuth, and traveltime of observed out-of-plane signals are measured with array methods in relation to the main phases that travel along the great circle path. This directivity information is used to back trace the wave through a 1-D velocity model to its scattering or reflection location. The focus of this study lies on out-of-plane signals reflected once beneath the Pacific at a depth greater than 800 km. Data analysis is carried out for a broad frequency range (band-pass filter with corner periods of 0.5-5 s up to 5-50 s) to enable the detection of different structures and heterogeneities. In addition to mapping seismic heterogeneities in the lower mantle, we also qualitatively analyze waveforms and polarities of these signals to understand the nature of the structure. The observed 21 reflections with a reflection depth between 800 and 2,200 km illuminate heterogeneities in the mid- and lower mantle. Back-traced locations show shallowest depths around Hawaii and increase in depth to the north and southwest. Analysis of the polarities indicates low velocities for the imaged structure, and complexity of waveforms argues for a likely thermochemical origin. Additional 11 deep reflections/scatterers with depth larger than 2,200 km suggest internal heterogeneities or a presence of the D'' reflector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Linhua; Fan, Xiaohui; McGreer, Ian D.
We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ∼300 deg{sup 2} on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. Themore » depths of the co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ∼1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ∼90 deg{sup 2} of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Linhua; Fan, Xiaohui; Bian, Fuyan
We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ~300 deg(2) on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of themore » co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ~1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ~90 deg(2) of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources).« less
Perception of stochastic envelopes by normal-hearing and cochlear-implant listeners
Gomersall, Philip A.; Turner, Richard E.; Baguley, David M.; Deeks, John M.; Gockel, Hedwig E.; Carlyon, Robert P.
2016-01-01
We assessed auditory sensitivity to three classes of temporal-envelope statistics (modulation depth, modulation rate, and comodulation) that are important for the perception of ‘sound textures’. The textures were generated by a probabilistic model that prescribes the temporal statistics of a selected number of modulation envelopes, superimposed onto noise carriers. Discrimination thresholds were measured for normal-hearing (NH) listeners and users of a MED-EL pulsar cochlear implant (CI), for separate manipulations of the average rate and modulation depth of the envelope in each frequency band of the stimulus, and of the co-modulation between bands. Normal-hearing (NH) listeners' discrimination of envelope rate was similar for baseline modulation rates of 5 and 34 Hz, and much poorer than previously reported for sinusoidally amplitude-modulated sounds. In contrast, discrimination of model parameters that controlled modulation depth was poorer at the lower baseline rate, consistent with the idea that, at the lower rate, subjects get fewer ‘looks’ at the relevant information when comparing stimuli differing in modulation depth. NH listeners could discriminate differences in co-modulation across bands; a multidimensional scaling study revealed that this was likely due to genuine across-frequency processing, rather than within-channel cues. CI users' discrimination performance was worse overall than for NH listeners, but showed a similar dependence on stimulus parameters. PMID:26706708
NASA Technical Reports Server (NTRS)
Moussavi, Mahsa S.; Abdalati, Waleed; Pope, Allen; Scambos, Ted; Tedesco, Marco; MacFerrin, Michael; Grigsby, Shane
2016-01-01
Supraglacial meltwater lakes on the western Greenland Ice Sheet (GrIS) are critical components of its surface hydrology and surface mass balance, and they also affect its ice dynamics. Estimates of lake volume, however, are limited by the availability of in situ measurements of water depth,which in turn also limits the assessment of remotely sensed lake depths. Given the logistical difficulty of collecting physical bathymetric measurements, methods relying upon in situ data are generally restricted to small areas and thus their application to largescale studies is difficult to validate. Here, we produce and validate spaceborne estimates of supraglacial lake volumes across a relatively large area (1250 km(exp 2) of west Greenland's ablation region using data acquired by the WorldView-2 (WV-2) sensor, making use of both its stereo-imaging capability and its meter-scale resolution. We employ spectrally-derived depth retrieval models, which are either based on absolute reflectance (single-channel model) or a ratio of spectral reflectances in two bands (dual-channel model). These models are calibrated by usingWV-2multispectral imagery acquired early in the melt season and depth measurements from a high resolutionWV-2 DEM over the same lake basins when devoid of water. The calibrated models are then validated with different lakes in the area, for which we determined depths. Lake depth estimates based on measurements recorded in WV-2's blue (450-510 nm), green (510-580 nm), and red (630-690 nm) bands and dual-channel modes (blue/green, blue/red, and green/red band combinations) had near-zero bias, an average root-mean-squared deviation of 0.4 m (relative to post-drainage DEMs), and an average volumetric error of b1%. The approach outlined in this study - image-based calibration of depth-retrieval models - significantly improves spaceborne supraglacial bathymetry retrievals, which are completely independent from in situ measurements.
Constraints on the Opening Rate of Bands on Europa
NASA Technical Reports Server (NTRS)
Stempel, M. M.; Barr, A. C.; Pappalardo, R. T.
2004-01-01
The opening rates of two bands on Europa, inferred to be sites of spreading of the icy lithosphere, are constrained based on a mid-ocean ridge analog model. Estimates of brittle-ductile transition depth combined with a conductive cooling model limit active band lifetimes to 0.24 - 35 Myr and strain rates of 8.1 x 10(exp -13) - 8.2 x 10(exp -15)/s. These values suggest tensile strengths for ice on Europa of 0.46 - 2.3 MPa, consistent with nonsynchronous rotation as the dominant driving mechanism for band opening.
Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy
NASA Technical Reports Server (NTRS)
Cloutis, Edward A.; Smith, Dorian G. W.; Lambert, Richard St. J.; Gaffey, Michael J.
1990-01-01
The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal are experimentally studied, and the obtained variations in spectral properties are used to constrain the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak-to-peak and peak-to-minimum reflectance ratios, and band widths. Band width and band areas are useful for determining metal abundance in olivine and metal and orthopyroxene and metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. An application of these parameters to the S-class asteroid Flora is presented.
Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty.
Monson, Brian B; Lotto, Andrew J; Story, Brad H
2012-09-01
The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.
Spectral evidence of size dependent space weathering processes on asteroid surfaces
NASA Technical Reports Server (NTRS)
Gaffey, M. J.; Bell, J. F.; Brown, R. H.; Burbine, T. H.; Piatek, J. L.; Reed, K. L.; Chaky, D. A.
1993-01-01
Most compositional characterizations of the minor planets are derived from analysis of visible and near-infrared reflectance spectra. However, such spectra are derived from light which has only interacted with a very thin surface layer. Although regolith processes are assumed to mix all near-surface lithologic units into this layer, it has been proposed that space weathering processes can alter this surface layer to obscure the spectral signature of the bedrock lithology. It has been proposed that these spectral alteration processes are much less pronounced on asteroid surfaces than on the lunar surface, but the possibility of major spectral alteration of asteroidal optical surfaces has been invoked to reconcile S-asteroids with ordinary chondrites. The reflectance spectra of a large subset of the S-asteroid population have been analyzed in a systematic investigation of the mineralogical diversity within the S-class. In this sample, absorption band depth is a strong function of asteroid diameter. The S-asteroid band depths are relatively constant for objects larger than 100 km and increase linearly by factor of two toward smaller sizes (approximately 40 km). Although the S-asteroid surface materials includes a diverse variety of silicate assemblages, ranging from dunites to basalts, all compositional subtypes of the S-asteroids conform to this trend. The A-, R-, and V-type asteroids which are primarily silicate assemblages (as opposed to the metal-silicate mixtures of most S-asteroids) follow a parallel but displaced trend. Some sort of textural or regolith equilibrium appears to have been attained in the optical surfaces of asteroids larger than about 100 km diameter but not on bodies below this size. The relationships between absorption band depth, spectral slope, surface albedo and body size provide an intriguing insight into the nature of the optical surfaces of the S-asteroids and space weathering on these objects.
VizieR Online Data Catalog: Merging galaxies with tidal tails in COSMOS to z=1 (Wen+, 2016)
NASA Astrophysics Data System (ADS)
Wen, Z. Z.; Zheng, X. Z.
2017-02-01
Our study utilizes the public data and catalogs from multi-band deep surveys of the COSMOS field. The UltraVISTA survey (McCracken+ 2012, J/A+A/544/A156) provides ultra-deep near-IR imaging observations of this field in the Y,J,H, and Ks-band, as well as a narrow band (NB118). The HST/ACS I-band imaging data are publicly available, allowing us to measure morphologies in the rest-frame optical for galaxies at z<=1. The HST/ACS I-band images reach a 5σ depth of 27.2 magnitude for point sources. (1 data file).
NASA Astrophysics Data System (ADS)
Filacchione, G.; Ammannito, E.; Coradini, A.; De sanctis, M.; Capaccioni, F.; Tosi, F.; Capria, M. T.; Palomba, E.; Magni, G.; Fonte, S.; Carraro, F.; McSween, H. Y.; Raymond, C. A.; Russell, C. T.; McCord, T. B.; Pieters, C. M.; Sunshine, J. M.; Titus, T. N.; Combe, J.; Dawn Science Team
2011-12-01
In July 2011, VIR-MS, Visible and Infrared Mapping Spectrometer, aboard the Dawn mission has started a systematic exploration of minor planet Vesta from a 5000 km polar orbit (approach phase). Since then, the instrument has returned hyperspectral cubes in the 0.25-5 μm range with both global and regional views of Vesta's surface. Thanks to the high spatial (250 μrad IFOV, corresponding to a 1.25 km/pixel scale from a 5000 km altitude orbit) and spectral resolution (2 nm/band between 0.25-1 μm and 10 nm/band in the 1-5 μm range), VIR has the capabilities to infer the mineralogical composition of the crust, to discriminate among the very different compositional units, to map their distribution across the surface and to correlate composition with geological features. Since the amount of information provided by each VIR pixel is very large (864 channels), we have developed the VIR Mineralogical Tool (VMT) with the scope of measuring some specific spectral quantities which are tuned to identify the different howarditic, eucritic and diogenitic (HED) components of the crust, thanks to laboratory measurements and ground-based observations of HED meteorites. Continuum levels, VIS-IR band ratios, band I-II properties (center, depth, width, asymmetry), spectral slopes and their mutual correlations are among the principal spectral indicators used to infer the crustal basaltic composition. As a general rule for basaltic materials: 1) the ratio of band I/II areas gives the Band Area Ratio (BAR) which is function of the relative abundance of olivine/orthopyroxene; 2) the value of the I Vs. II band depths is an indicator of the composition, allowing to discriminate among HEDs. An alternative method is based on the correlation between band I width and 0.7-1.3 μm slope or the band I depth Vs. the 0.67-0.95 μm slope; 3) the amount of Fs, Wo and Mg is retrieved from the band I center and band II minima wavelengths; 4) the alteration of the surface, induced by weathering processes, is recognizable through the changes on visible and near infrared slopes. Finally, we report about preliminary compositional maps to show the distribution of the different spectral indicators across the surface of Vesta. Dawn's VIR, Visible and Infrared Mapping Spectrometer was provided by ASI, the Italian Space Agency and is managed by INAF, Italy's National Institute for Astrophysics, in collaboration with Selex Galileo, where it was designed and built. Italian coauthors are supported by an ASI grant.
An X-band phase-locked relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.
2015-08-15
For the purpose of coherent high power microwave combining at high frequency band, an X-band phase-locked relativistic backward wave oscillator is presented and investigated. The phase-locking of the oscillator is accomplished by modulation of the electron beam before it reaches the oscillator. To produce a bunched beam with an acceptable injected RF power requirement, an overmoded input cavity is employed to provide initial density modulation. And a buncher cavity is introduced to further increase the modulation depth. When the beam enters the oscillator, the modulation depth is enough to lock the frequency and phase of the output microwave generated bymore » the oscillator. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with locking bandwidth of 60 MHz.« less
Spitzer Observations of the North Ecliptic Pole
NASA Astrophysics Data System (ADS)
Nayyeri, H.; Ghotbi, N.; Cooray, A.; Bock, J.; Clements, D. L.; Im, M.; Kim, M. G.; Korngut, P.; Lanz, A.; Lee, H. M.; Lee, D. H.; Malkan, M.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Pearson, C.; Serjeant, S.; Smidt, J.; Tsumura, K.; Wada, T.; Zemcov, M.
2018-02-01
We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at R.A. = 18h00m00s, decl. = 66d33m38.ˢ552). The observations are conducted with IRAC in the 3.6 and 4.5 μm bands over an area of 7.04 deg2, reaching 1σ depths of 1.29 μJy and 0.79 μJy in the 3.6 μm and 4.5 μm bands, respectively. The photometric catalog contains 380,858 sources with 3.6 and 4.5 μm band photometry over the full-depth NEP mosaic. Point-source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be used for constraining the physical properties of extragalactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extragalactic infrared background light.
Monte Carlo modeling of light-tissue interactions in narrow band imaging.
Le, Du V N; Wang, Quanzeng; Ramella-Roman, Jessica C; Pfefer, T Joshua
2013-01-01
Light-tissue interactions that influence vascular contrast enhancement in narrow band imaging (NBI) have not been the subject of extensive theoretical study. In order to elucidate relevant mechanisms in a systematic and quantitative manner we have developed and validated a Monte Carlo model of NBI and used it to study the effect of device and tissue parameters, specifically, imaging wavelength (415 versus 540 nm) and vessel diameter and depth. Simulations provided quantitative predictions of contrast-including up to 125% improvement in small, superficial vessel contrast for 415 over 540 nm. Our findings indicated that absorption rather than scattering-the mechanism often cited in prior studies-was the dominant factor behind spectral variations in vessel depth-selectivity. Narrow-band images of a tissue-simulating phantom showed good agreement in terms of trends and quantitative values. Numerical modeling represents a powerful tool for elucidating the factors that affect the performance of spectral imaging approaches such as NBI.
z'-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, J. R.; Watson, C. A.; Pollacco, D.
2012-08-01
We present the ground-based detection of the secondary eclipse of the transiting exoplanet WASP-19b. The observations were made in the Sloan z' band using the ULTRACAM triple-beam CCD camera mounted on the New Technology Telescope. The measurement shows a 0.088% {+-} 0.019% eclipse depth, matching previous predictions based on H- and K-band measurements. We discuss in detail our approach to the removal of errors arising due to systematics in the data set, in addition to fitting a model transit to our data. This fit returns an eclipse center, T{sub 0}, of 2455578.7676 HJD, consistent with a circular orbit. Our measurementmore » of the secondary eclipse depth is also compared to model atmospheres of WASP-19b and is found to be consistent with previous measurements at longer wavelengths for the model atmospheres we investigated.« less
NASA Astrophysics Data System (ADS)
Fujisawa, Takeshi; Arai, Masakazu; Kano, Fumiyoshi
2010-05-01
Electroabsorption in highly strained GaInAs and GaInNAs quantum wells (QWs) grown on GaInAs or quasi-GaInAs substrates is investigated by using microscopic many-body theory. The effects of various parameters, such as strain, barrier height, substrate composition, and temperature are thoroughly examined. It is shown that the value of the absorption coefficient strongly depends on the depth of the QWs under large bias electric field due to the small overlap integral of wave functions between the conduction and valence bands. The use of GaInNAs QWs makes the strain in the well layer very small. Further, the effective quantum-well depth is increased in GaInNAs QWs due to the anticrossing interaction between the conduction and N-resonant bands, making it possible to obtain larger absorption coefficient under large bias electric fields without using wide-band gap materials for barriers.
The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
NASA Astrophysics Data System (ADS)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
2017-06-01
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.
VizieR Online Data Catalog: New planetary nebulae in LMC (Reid+, 2006)
NASA Astrophysics Data System (ADS)
Reid, W. A.; Parker, Q. A.
2006-05-01
Over the last few years, we have specially constructed additional deep, homogeneous, narrow-band H and matching broad-band 'SR' (Short Red) maps of the entire central 25deg2 of the LMC. These unique maps were obtained from co-adding 12 well-matched UKST 2-h Hα exposures and six 15-min equivalent SR-band exposures on the same field using high-resolution Tech-Pan film. The 'SuperCOSMOS' plate-measuring machine at the Royal Observatory Edinburgh (Hambly et al., 2001MNRAS.326.1279) has scanned, co-added and pixel-matched these exposures, creating 10-m (0.67-arcsec) pixel data which goes 1.35 and 1mag deeper than individual exposures, achieving the full canonical Poissonian depth gain, e.g. Bland-Hawthorn, Shopbell & Malin (1993AJ....106.2154B). This gives a depth ~21.5 for the SR images and Requiv~22 for Hα (4.5x10-17erg/cm2/s/{AA}) which is at least 1-mag deeper than the best wide-field narrow-band LMC images currently available. (2 data files).
Facilitating the exploitation of ERTS imagery using snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.
1973-01-01
The author has identified the following significant results. New fracture detail within New England test area has been interpreted from ERTS-1 images. Comparative analysis of snow-free imagery (1096-15065 and 1096-15072) has demonstrated that MSS bands 5 and 7 supply the greatest amount of geological fracture detail. Interpretation of the first snow-covered ERTS-1 images (1132-15074 and 1168-15065) in correlation with ground snow depth data indicates that a heavy blanket of snow (less than 9 inches) accentuates major structural features while a light dusting (greater than 1 inch) accentuates more subtle topographic expressions. Snow cover was found to accentuate drainage patterns which are indicative of lithological and/or structural variations. Snow cover provided added enhancement for viewing and detecting topographically expressed fractures and faults. A recent field investigation was conducted within the New England test area to field check lineaments observed from analysis of ERTS-1 imagery, collect snow depth readings, and obtain structural joint readings at key locations in the test area.
Anisotropy of band gap absorption in TlGaSe2 semiconductor by ferroelectric phase transformation
NASA Astrophysics Data System (ADS)
Gulbinas, Karolis; Grivickas, Vytautas; Gavryushin, Vladimir
2014-12-01
The depth-resolved free-carrier absorption and the photo-acoustic response are used to examine the band-gap absorption in 2D-TlGaSe2 layered semiconductor after its transformation into the ferroelectric F-phase below 107 K. The absorption exhibits unusual behavior with a biaxial character in respect to the light polarization on the layer plane. A spectral analysis shows that the anisotropy is associated to the lowest Γ-direct optical transition. The Γ-absorption and the localized exciton at 2.11 eV are dipole-prohibited or partially allowed in two nearly perpendicular polarization directions. The shift of anisotropy axis in respect to crystallographic a- and b-directions demonstrates the non-equivalent zigzag rearrangement of the interlayer connecting Tl+ ions, which is responsible for occurrence of the F-phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Albert, Loic; Lafreniere, David
We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so asmore » to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.« less
Spectroscopy as a tool for geochemical modeling
NASA Astrophysics Data System (ADS)
Kopacková, Veronika; Chevrel, Stephane; Bourguignon, Anna
2011-11-01
This study focused on testing the feasibility of up-scaling ground-spectra-derived parameters to HyMap spectral and spatial resolution and whether they could be further used for a quantitative determination of the following geochemical parameters: As, pH and Clignite content. The study was carried on the Sokolov lignite mine as it represents a site with extreme material heterogeneity and high heavy-metal gradients. A new segmentation method based on the unique spectral properties of acid materials was developed and applied to the multi-line HyMap image data corrected for BRDF and atmospheric effects. The quantitative parameters were calculated for multiple absorption features identified within the VIS/VNIR/SWIR regions (simple band ratios, absorption band depth and quantitative spectral feature parameters calculated dynamically for each spectral measurement (centre of the absorption band (λ), depth of the absorption band (D), width of the absorption band (Width), and asymmetry of the absorption band (S)). The degree of spectral similarity between the ground and image spectra was assessed. The linear models for pH, As and the Clignite content of the whole and segmented images were cross-validated on the selected homogenous areas defined in the HS images using ground truth. For the segmented images, reliable results were achieved as follows: As: R2=0.84, Clignite: R2=0.88 and R2 pH: R2= 0.57.
Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty. ?? 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Zoghi, Milad; Yazdanpanah Goharrizi, Arash; Mirjalili, Seyed Mohammad; Kabir, M. Z.
2018-06-01
Electronic and transport properties of Carbon nanotubes (CNTs) are affected by the presence of physical or chemical defects in their structures. In this paper, we present novel platforms of defected zigzag CNTs (Z-CNTs) in which two topologies of antidot and Boron/Nitride (BN) doping defects are periodically imposed throughout the length of perfect tubes. Using the tight binding model and the non-equilibrium Green’s function method, it is realized that the quantum confinement of Z-CNTs is modified by the presence of such defects. This new quantum confinement results in the appearance of mini bands and mini gaps in the transmission spectra, as well as a modified band structure and band gap size. The modified band gap could be either larger or smaller than the intrinsic band gap of a perfect tube, which is determined by the category of Z-CNT. The in-depth analysis shows that the size of the modified band gap is the function of several factors consisting of: the radii of tube (D r), the distance between adjacent defects (d d), the utilized defect topology, and the kind of defect (antidot or BN doping). Furthermore, taking advantage of the tunable band gap size of Z-CNT with the presence of periodical defects, new platforms of defect-based Z-CNT resonant tunneling diode (RTD) are proposed for the first time. Our calculations demonstrate the apparition of resonances in transmission spectra and the negative differential resistance in the I-V characteristics for such RTD platforms.
AKARI and Spinning Dust: A look at microwave dust emission via the Infrared
NASA Astrophysics Data System (ADS)
Bell, Aaron Christopher; Onaka, Takashi; Wu, Ronin; Doi, Yasuo
2015-08-01
Rapidly spinning dust particles having a permanent electric dipole moment have been shown to be a likely carrier of the anomalous microwave emission (AME), a continuous excess of microwave flux in the 10 to 90 GHz range. Small grains, possibly polycyclic aromatic hydrocarbons (PAHs), are a leading suspect. Due to the overlap frequency overlap with the CMB, the AME is requiring cosmologists to consider the ISM with more care. ISM astronomers are also needing to consider the contribution of cosmological radiation to large-scale dust investigations. We present data from AKARI/Infrared Camera (IRC) due to the effective PAH band coverage of its 9 um survey to investigate PAH emission within 98 AME candidate regions identified by Planck Collaboration et al. (2014). We supplement AKARI data with the four Infrared Astronomical Satellite (IRAS) all-sky maps and complement with the Planck High Frequency Instrument (HFI) bands at 857 and 545GHz to constrain the full dust SED. We sample analyse the SEDs of all 98 regions. We utilize all 7 AKARI photometric bands, as well as the 4 IRAS bands and 2 HFI. We carry out a modified blackbody fitting, and estimate the optical depth of thermal dust at 250 um, and compare this to AME parameters. We also show plots of each band's average intensity for all 98 regions vs. AME parameters. We find a positive trend between the optical depth and AME. In the band-by-band comparison the AKARI 9 um intensity shows a weaker trend with AME. In general, the MIR correlates less strongly with AME than the FIR. The optical depth vs. AME trend improves slightly when looking only at significant AME regions. Scaling the IR intensities by the ISRF strength G0 does not improve the correlations. We cannot offer strong support of a spinning dust model. The results highlight the need for full dust SED modelling, and for a better understanding of the role that magnetic dipole emission from dust grains could play in producing the AME.
Point-defect energies in the nitrides of aluminum, gallium, and indium
NASA Astrophysics Data System (ADS)
Tansley, T. L.; Egan, R. J.
1992-05-01
Experimental data on the nature and energetic location of levels associated with native point defects in the group-III metal nitrides are critically reviewed and compared with theoretical estimates. All three show strong evidence of the existence of a triplet of donorlike states associated with the nitrogen vacancy. Ground states are at about 150, 400, and 900 meV from the conduction-band edge in InN, GaN, and AlN, respectively, with their charged derivatives lying closer to the band edge. These values agree with both modified-hydrogenic and deep-level calculations, surprisingly well in view of the inherent approximations in each in this depth range. The InN donor ground state is both optically active and usually occupied, showing a distinctive absorption band which is very well described by quantum-defect analysis. Variation of threshold with electron concentration shows a Moss-Burstein shift commensurate with that observed in band-to-band absorption. In both GaN and AlN, levels have been identified at about 1/4EG and about 3/4EG, which correlate well with predictions for the antisite defects NM and MN, respectively, while similar behavior in InN is at odds with theory. The metal-vacancy defect appears to generate a level somewhat below midgap in AlN and close to the valence-band edge in GaN, but has not been located experimentally in InN, where it is predicted to lie very close to the valence-band edge. A tentative scheme for the participation of two of the native defects in GaN, namely VN and NGa, in the four broad emission bands found in Zn-compensated and undoped GaN is offered.
NASA Astrophysics Data System (ADS)
Bharti, Rishikesh; Ramakrishnan, D.; Singh, K. D.
2014-02-01
This study investigated the potential of Moon Mineralogy Mapper (M3) data for studying compositional variation in the near-, far-side transition zone of the lunar surface. For this purpose, the radiance values of the M3 data were corrected for illumination and emission related effects and converted to apparent reflectance. Dimensionality of the calibrated reflectance image cube was reduced using Independent Component Analysis (ICA) and endmembers were extracted by using Pixel Purity Index (PPI) algorithm. The selected endmembers were linearly unmixed and resolved for mineralogy using United States Geological Survey (USGS) library spectra of minerals. These mineralogically resolved endmembers were used to map the compositional variability within, and outside craters using Spectral Angle Mapper (SAM) algorithm. Cross validation for certain litho types was attempted using band ratios like Optical Maturity (OMAT), Color Ratio Composite and Integrated Band Depth ratio (IBD). The identified lithologies for highland and basin areas match well with published works and strongly support depth related magmatic differentiation. Prevalence of pigeonite-basalt, pigeonite-norite and pyroxenite in crater peaks and floors are unique to the investigated area and are attributed to local, lateral compositional variability in magma composition due to pressure, temperature, and rate of cooling.
NASA Astrophysics Data System (ADS)
Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.
2017-09-01
The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.
NASA Astrophysics Data System (ADS)
van Veen, A.; van Huis, M. A.; Fedorov, A. V.; Schut, H.; Labohm, F.; Kooi, B. J.; De Hosson, J. Th. M.
2002-05-01
In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10 16 cm -2, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {1 0 0} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO.
Computer Mapping of Water Quality in Saginaw Bay with LANDSAT Digital Data
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator); Shah, N. J.; Smith, V. E.; Mckeon, J. B.
1976-01-01
The author has identified the following significant results. LANDSAT digital data and ground truth measurements for Saginaw Bay (Lake Huron), Michigan, for 31 July 1975 were correlated by stepwise linear regression and the resulting equations used to estimate invisible water quality parameters in nonsampled areas. Chloride, conductivity, total Kjeldahl nitrogen, total phosphorus, and chlorophyll a were best correlated with the ratio of LANDSAT Band 4 to Band 5. Temperature and Secchi depth correlate best with Band 5.
Yearly report, Yucca Mountain project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brune, J.N.
1992-09-30
We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, Anton; Vyvenko, Oleg
2014-02-21
Dislocation network (DN) at hydrophilically bonded Si wafers interface is placed in space charge region (SCR) of a Schottky diode at a depth of about 150 nm from Schottky electrode for simultaneous investigation of its electrical and luminescent properties. Our recently proposed pulsed traps refilling enhanced luminescence (Pulsed-TREL) technique based on the effect of transient luminescence induced by refilling of charge carrier traps with electrical pulses is further developed and used as a tool to establish DN energy levels responsible for D1 band of dislocation-related luminescence in Si (DRL). In present work we do theoretical analysis and simulation of trapsmore » refilling kinetics dependence on refilling pulse magnitude (Vp) in two levels model: shallow and deep. The influence of initial charge state of deep level on shallow level occupation-Vp dependence is discussed. Characteristic features predicted by simulations are used for Pulsed-TREL experimental results interpretation. We conclude that only shallow (∼0.1 eV from conduction and valence band) energetic levels in the band gap participate in D1 DRL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Conway, A. M.; Voss, L. F.
Thallium bromide (TlBr) crystals subjected to hydrochloric acid (HCl) chemical treatments have been shown to advantageously affect device performance and longevity in TlBr-based room temperature radiation detectors, yet the exact mechanisms of the improvements remain poorly understood. Here in this paper, we investigate the influence of several HCl chemical treatments on device-grade TlBr and describe the changes in the composition and electronic structure of the surface. Composition analysis and depth profiles obtained from secondary ion mass spectrometry (SIMS) identify the extent to which each HCl etch condition affects the detector surface region and forms of a graded TlBr/TlBr 1-xCL xmore » surface heterojunction. Using a combination of X-ray photoemission spectroscopy (XPS) and hybrid density functional calculations, we are able to determine the valence band offsets, band gaps, and conduction band offsets as a function of Cl content over the entire composition range of TIBr 1-xC1 X. This study establishes a strong correlation between device process conditions, surface chemistry, and electronic structure with the goal of further optimizing the long-term stability and radiation response of TlBr-based detectors.« less
Abd-Elsalam, Heba-Alla H; Al-Ghobashy, Medhat A; Zaazaa, Hala E; Ibrahim, Mohamed A
2014-08-01
Epigallocatechin gallate (EGCG) is a powerful antioxidant and commonly used nutraceutical. Accelerated stability of EGCG in tablet formulations was investigated. LLE and SPE were employed for sample clean-up and enrichment of EGCG over caffeine. Samples were analysed after spiking with fixed concentration of gallic acid (GA), in order to verify reproducibility of analysis. A TLC-densitometric assay was developed and validated for determination of % loss EGCG. EGCG, GA and caffeine were resolved with Rf values 0.54, 0.69 and 0.80, respectively. LC-MS/MS was used to verify identity and purity of the EGCG band. Determination was carried out over a concentration range of 0.50-5.00μg/band and 0.20-2.40μg/band for GA and caffeine, respectively. Results showed significant reduction in EGCG content after one, three and six months: 24.00%, 28.00% and 52.00% respectively. Results continue to demonstrate that stability of nutraceutical products should be investigated in-depth using industry-oriented protocols before granting marketing authorisation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Poppenga, Sandra K.; Palaseanu-Lovejoy, Monica; Gesch, Dean B.; Danielson, Jeffrey J.; Tyler, Dean J.
2018-04-16
Satellite-derived near-shore bathymetry (SDB) is becoming an increasingly important method for assessing vulnerability to climate change and natural hazards in low-lying atolls of the northern tropical Pacific Ocean. Satellite imagery has become a cost-effective means for mapping near-shore bathymetry because ships cannot collect soundings safely while operating close to the shore. Also, green laser light detection and ranging (lidar) acquisitions are expensive in remote locations. Previous research has demonstrated that spectral band ratio-based techniques, commonly called the natural logarithm approach, may lead to more precise measurements and modeling of bathymetry because of the phenomenon that different substrates at the same depth have approximately equal ratio values. The goal of this research was to apply the band ratio technique to Landsat 8 at-sensor radiance imagery and WorldView-3 atmospherically corrected imagery in the coastal waters surrounding the Majuro Atoll, Republic of the Marshall Islands, to derive near-shore bathymetry that could be incorporated into a seamless topobathymetric digital elevation model of Majuro. Attenuation of light within the water column was characterized by measuring at-sensor radiance and reflectance at different depths and calculating an attenuation coefficient. Bathymetric lidar data, collected by the U.S. Naval Oceanographic Office in 2006, were used to calibrate the SDB results. The bathymetric lidar yielded a strong linear relation with water depths. The Landsat 8-derived SDB estimates derived from the blue/green band ratio exhibited a water attenuation extinction depth of 6 meters with a coefficient of determination R2=0.9324. Estimates derived from the coastal/red band ratio had an R2=0.9597. At the same extinction depth, SDB estimates derived from WorldView-3 imagery exhibited an R2=0.9574. Because highly dynamic coastal shorelines can be affected by erosion, wetland loss, hurricanes, sea-level rise, urban development, and population growth, consistent bathymetric data are needed to better understand sensitive coastal land/water interfaces in areas subject to coastal disasters.
Deciphering sub-micron ice particles on Enceladus surface
NASA Astrophysics Data System (ADS)
Scipioni, F.; Schenk, P.; Tosi, F.; D'Aversa, E.; Clark, R.; Combe, J.-Ph.; Ore, C. M. Dalle
2017-07-01
The surface of Saturn's moon Enceladus is composed primarily by pure water ice. The Cassini spacecraft has observed present-day geologic activity at the moon's South Polar Region, related with the formation and feeding of Saturn's E-ring. Plumes of micron-sized particles, composed of water ice and other non-ice contaminants (e.g., CO2, NH3, CH4), erupt from four terrain's fractures named Tiger Stripes. Some of this material falls back on Enceladus' surface to form deposits that extend to the North at ∼40°W and ∼220°W, with the highest concentration found at the South Pole. In this work we analyzed VIMS-IR data to identify plumes deposits across Enceladus' surface through the variation in band depth of the main water ice spectral features. To characterize the global variation of water ice band depths across Enceladus, the entire surface was sampled with an angular resolution of 1° in both latitude and longitude, and for each angular bin we averaged the value of all spectral indices as retrieved by VIMS. The position of the plumes' deposits predicted by theoretical models display a good match with water ice band depths' maps on the trailing hemisphere, whereas they diverge significantly on the leading side. Space weathering processes acting on Enceladus' surface ionize and break up water ice molecules, resulting in the formation of particles smaller than one micron. We also mapped the spectral indices for sub-micron particles and we compared the results with the plumes deposits models. Again, a satisfactory match is observed on the trailing hemisphere only. Finally, we investigated the variation of the depth of the water ice absorption bands as a function of the phase angle. In the visible range, some terrains surrounding the Tiger Stripes show a decrease in albedo when the phase angle is smaller than 10°. This unusual effect cannot be confirmed by near infrared data, since observations with a phase angle lower than 10° are not available. For phase angle values greater than 10°, the depth of the water ice features remains quite constant within a broad range of phase angle values.
Teleseismic P-wave polarization analysis at the Gräfenberg array
NASA Astrophysics Data System (ADS)
Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.
2016-12-01
P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.
NASA Astrophysics Data System (ADS)
Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.
2016-05-01
An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
High-precision multiwavelength eclipse photometry of the ultra-hot gas giant exoplanet WASP-103 b
NASA Astrophysics Data System (ADS)
Delrez, L.; Madhusudhan, N.; Lendl, M.; Gillon, M.; Anderson, D. R.; Neveu-VanMalle, M.; Bouchy, F.; Burdanov, A.; Collier-Cameron, A.; Demory, B.-O.; Hellier, C.; Jehin, E.; Magain, P.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.
2018-02-01
We present 16 occultation and three transit light curves for the ultra-short period hot Jupiter WASP-103b, in addition to five new radial velocity measurements. We combine these observations with archival data and perform a global analysis of the resulting extensive data set, accounting for the contamination from a nearby star. We detect the thermal emission of the planet in both the z΄ and KS bands, the measured occultation depths being 699±110 ppm (6.4σ) and 3567_{-350}^{+400} ppm (10.2σ), respectively. We use these two measurements, together with recently published HST/WFC3 data, to derive joint constraints on the properties of WASP-103b's dayside atmosphere. On one hand, we find that the z΄ band and WFC3 data are best fit by an isothermal atmosphere at 2900 K or an atmosphere with a low H2O abundance. On the other hand, we find an unexpected excess in the KS band measured flux compared to these models, which requires confirmation with additional observations before any interpretation can be given. From our global data analysis, we also derive a broad-band optical transmission spectrum that shows a minimum around 700 nm and increasing values towards both shorter and longer wavelengths. This is in agreement with a previous study based on a large fraction of the archival transit light curves used in our analysis. The unusual profile of this transmission spectrum is poorly matched by theoretical spectra and is not confirmed by more recent observations at higher spectral resolution. Additional data, in both emission and transmission, are required to better constrain the atmospheric properties of WASP-103b.
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Kuze, A.; Bruegge, C. J.; Shiomi, K.; Kataoka, F.; Kikuchi, N.; Arai, T.; Kasai, K.; Nakajima, T.
2016-12-01
The GOSAT (Greenhouse Gases Observing Satellite) / TANSO-CAI (Cloud and Aerosol Imager, CAI) is an imaging sensor to measure cloud and aerosol properties and observes reflected sunlight from the atmosphere and surface of the ground. The sensor has four bands from near ultraviolet (near-UV) to shortwave infrared, 380, 674, 870 and 1600nm. The field of view size is 0.5 km for band-1 through band-3, and 1.5km for band-4. Band-1 (380nm) is one of unique function of the CAI. The near-UV observation offers several advantages for the remote sensing of aerosols over land: Low reflectance of most surfaces; Sensitivity to absorbing aerosols; Absorption of trace gases is weak (Höller et al., 2004). CAI UV-band is useful to distinguish absorbing aerosol (smoke) from cloud. GOSAT-2/TANSO-CAI-2 that will be launched in the future also has UV-bands, 340 and 380nm. We carried out an experiment to calibrate CAI UV-band radiance using data taken in a field campaign of OCO-2 and GOSAT at Railroad Valley in 2016. The campaign period is June 27 to July 3 in 2016. We measured surface reflectance by using USB4000 Spectrometer with 74-UV collimating lens (Ocean Optics) and Spectralon (Labsphere). USB4000 is a UV spectrometer, and its measurement range from 300 to 520nm. We simulated CAI UV-band radiance using a vector type of radiation transfer code, i.e. including polarization calculation, pstar3 (Ota et al., 2010) using measured surface reflectance and atmospheric data, pressure and relative humidity by radiosonde in the same campaign, and aerosol optical depth by AERONET, etc. Then, we evaluated measured UV radiances with the simulated data. We show the result of vicarious calibration of CAI UV-band in the campaign, and discuss about this method for future sensor, CAI-2. Around the campaign period, there was wildfire around Los Angeles, and aerosol optical thickness (AOT) observed by AERONET at Rail Road valley and Caltech sites is also high. We tried to detect and retrieve aerosol properties using CAI data around campaign region by the multi-wavelength and multi-pixel method (MWPM) (Hashimoto AGU Fall meeting, 2014) using CAI UV-band. In the analysis, we use CAI four bands to retrieve aerosol optical properties including cloud optical characteristics. We also like to introduce the analysis result of aerosol optical properties during wildfire.
Vacancy defect and defect cluster energetics in ion-implanted ZnO
NASA Astrophysics Data System (ADS)
Dong, Yufeng; Tuomisto, F.; Svensson, B. G.; Kuznetsov, A. Yu.; Brillson, Leonard J.
2010-02-01
We have used depth-resolved cathodoluminescence, positron annihilation, and surface photovoltage spectroscopies to determine the energy levels of Zn vacancies and vacancy clusters in bulk ZnO crystals. Doppler broadening-measured transformation of Zn vacancies to vacancy clusters with annealing shifts defect energies significantly lower in the ZnO band gap. Zn and corresponding O vacancy-related depth distributions provide a consistent explanation of depth-dependent resistivity and carrier-concentration changes induced by ion implantation.
The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( ηmore » < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.« less
Emirates eXploration Imager (EXI) Overview from the Emirates Mars Mission
NASA Astrophysics Data System (ADS)
Al Shamsi, M. R.; Wolff, M. J.; Jones, A. R.; Khoory, M. A.; Osterloo, M. M.; AlMheiri, S.; Reed, H.; Drake, G.
2017-12-01
The Emirates eXploration Imager (EXI) instrument is one of three scientific instruments abroad the Emirate Mars Mission (EMM) spacecraft, "Hope". The planned launch window opens in the summer of 2020, with the goal of this United Arab Emirates (UAE) mission to explore the dynamics of the Martian atmosphere through global spatial sampling which includes both diurnal and seasonal timescales. A particular focus of the mission is the improvement of our understanding of the global circulation in the lower atmosphere and the connections to the upward transport of energy of the escaping atmospheric particles from the upper atmosphere. This will be accomplished using three unique and complementary scientific instruments. The subject of this presentation, EXI, is a multi-band, camera capable of taking 12 megapixel images, which translates to a spatial resolution of better than 8 km with a well calibrated radiometric performance. EXI uses a selector wheel mechanism consisting of 6 discrete bandpass filters to sample the optical spectral region: 3 UV bands and 3 visible (RGB) bands. Atmospheric characterization will involve the retrieval of the ice optical depth using the 300-340 nm band, the dust optical depth in the 205-235nm range, and the column abundance of ozone with a band covering 245-275 nm. Radiometric fidelity is optimized while simplifying the optical design by separating the UV and VIS optical paths. The instrument is being developed jointly by the Laboratory for Atmospheric and Space Physics (LASP), University of California, Boulder, USA, and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. The development of analysis software (reduction and retrieval) is being enabled through an EXI Observation Simulator. This package will produce EXI-like images using a combination of realistic viewing geometry (NAIF and a "reference trajectory") and simulated radiance values that include relevant atmospheric conditions and properties (Global Climate Model, DISORT). These noiseless images can then have instrument effects added (e.g., read-noise, dark current, pixel sensitivity, etc) to allow for the direct testing of data compression schemes, calibration pipeline processing, and atmospheric retrievals.
NASA Astrophysics Data System (ADS)
Farrand, William H.; Bell, James F.; Johnson, Jeffrey R.; Rice, Melissa S.; Hurowitz, Joel A.
2013-07-01
From its arrival at the portion of the rim of Endeavour crater known informally as Cape York, the Mars Exploration Rover Opportunity has made numerous visible and near infrared (VNIR) multispectral observations of rock surfaces. This paper describes multispectral observations from Opportunity's arrival at Cape York to its winter-over location at Greeley Haven. Averages of pixels from the Pancam's left and right eyes were joined to form 11 point spectra from numerous observations and were examined via a number of techniques. These included principal components analysis, a sequential maximum angle convex cone approach, examination of spectral parameters, and a hierarchical clustering approach. The end result of these analyses was the determination of six primary spectral (PS) classes describing spectrally unique materials observed on Cape York. These classes consisted of a "standard" outcrop spectrum that was observed on the clasts and matrix comprising the upper unit of the Shoemaker formation, a class representing rock surfaces exposed around Odyssey crater and typified by the rocks of the Tisdale series, pebbles occurring in and weathered out of the upper unit of the Shoemaker formation that appear red in 1009, 904, 754 nm color composites, patches on Tisdale rocks exhibiting a 864 nm band minimum that were spectrally anomalous in root mean square error images derived from spectral mixture analyses, clasts with a high 904 nm band depth occurring in the Greeley Haven location, and gypsum veins typified by the vein Homestake. Comparisons of three of these classes that had well defined band minima between 800 and 1009 nm with spectral library spectra of ferrous silicates and ferric oxide, oxyhydroxide and ferric sulfate minerals indicated tentative matches of the "red" pebbles with orthopyroxenes, of the spectrally anomalous 864 nm band minimum material with hematite or ferric sulfates, and of the high 904 nm band depth material with an orthopyroxene-clinopyroxene mixture. The spectral properties of rock surfaces on Cape York are distinct from those of Burns Formation outcrops observed on the Meridiani Plains. The Cape York outcrop is Noachian in age and study of these materials provides insight into less acidic environmental conditions extant before the formation of the Burns Formation.
First Retrieval of Surface Lambert Albedos From Mars Reconnaissance Orbiter CRISM Data
NASA Astrophysics Data System (ADS)
McGuire, P. C.; Arvidson, R. E.; Murchie, S. L.; Wolff, M. J.; Smith, M. D.; Martin, T. Z.; Milliken, R. E.; Mustard, J. F.; Pelkey, S. M.; Lichtenberg, K. A.; Cavender, P. J.; Humm, D. C.; Titus, T. N.; Malaret, E. R.
2006-12-01
We have developed a pipeline-processing software system to convert radiance-on-sensor for each of 72 out of 544 CRISM spectral bands used in global mapping to the corresponding surface Lambert albedo, accounting for atmospheric, thermal, and photoclinometric effects. We will present and interpret first results from this software system for the retrieval of Lambert albedos from CRISM data. For the multispectral mapping modes, these pipeline-processed 72 spectral bands constitute all of the available bands, for wavelengths from 0.362-3.920 μm, at 100-200 m/pixel spatial resolution, and ~ 0.006\\spaceμm spectral resolution. For the hyperspectral targeted modes, these pipeline-processed 72 spectral bands are only a selection of all of the 544 spectral bands, but at a resolution of 15-38 m/pixel. The pipeline processing for both types of observing modes (multispectral and hyperspectral) will use climatology, based on data from MGS/TES, in order to estimate ice- and dust-aerosol optical depths, prior to the atmospheric correction with lookup tables based upon radiative-transport calculations via DISORT. There is one DISORT atmospheric-correction lookup table for converting radiance-on-sensor to Lambert albedo for each of the 72 spectral bands. The measurements of the Emission Phase Function (EPF) during targeting will not be employed in this pipeline processing system. We are developing a separate system for extracting more accurate aerosol optical depths and surface scattering properties. This separate system will use direct calls (instead of lookup tables) to the DISORT code for all 544 bands, and it will use the EPF data directly, bootstrapping from the climatology data for the aerosol optical depths. The pipeline processing will thermally correct the albedos for the spectral bands above ~ 2.6 μm, by a choice between 4 different techniques for determining surface temperature: 1) climatology, 2) empirical estimation of the albedo at 3.9 μm from the measured albedo at 2.5 μm, 3) a physical thermal model (PTM) based upon maps of thermal inertia from TES and coarse-resolution surface slopes (SS) from MOLA, and 4) a photoclinometric extension to the PTM that uses CRISM albedos at 0.41 μm to compute the SS at CRISM spatial resolution. For the thermal correction, we expect that each of these 4 different techniques will be valuable for some fraction of the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takir, D.; Reddy, V.; Sanchez, J. A.
Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorptionmore » band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.« less
CANDELS Visual Classifications: Scheme, Data Release, and First Results
NASA Technical Reports Server (NTRS)
Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Henry; Koo, David; Bassett, Robert;
2014-01-01
We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H <24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed - GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and restframe colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.
Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P
2018-01-01
The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.
Normal mode analysis of isotopic shifts in Raman spectrum of TNT-d5
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Tzeng, Nianfeng; Liu, Yucheng; Junk, Thomas
2017-09-01
A combined experimental-computational study was conducted on the Raman spectrum of TNT-d5 in the present study. It was found that among the 24 hybrid density functional theory (DFT) methods, O3LYP, tHCTHhyb, and B3LYP simulations yielded the strongest Raman bands which were closest to those measured from experiments. Simulations of hybrid DFT methods did not show that deuterium replacements alter orientations of 2- and 6-nitro with respect to phenyl ring, considering a larger size of the methyl group. However, the deuterium replacements apparently changed the reduced masses for all deuterium related vibrations. Although no difference of structural parameters was shown between TNT and its deuterated analogue, discrepancy was indicated in vibrational zero energy from our simulations. O3LYP simulation exhibited 24 deuterium involved vibrations, which were coupled into seven Raman bands of TNT-d5. This phenomenon can account for the experimental Raman band shifts or split of TNT-d5 when compared with the corresponding bands of TNT. The present study and its outcomes provide in-depth microchemical insights of Raman characteristics of TNT and may facilitate the design of nano-structures of SERS substrates for detection of TNT and its degradation products. All intensities displayed in this study were calculated from numerical simulations.
Fluorine-doping in titanium dioxide by ion implantation technique
NASA Astrophysics Data System (ADS)
Yamaki, T.; Umebayashi, T.; Sumita, T.; Yamamoto, S.; Maekawa, M.; Kawasuso, A.; Itoh, H.
2003-05-01
We implanted 200 keV F + in single crystalline titanium dioxide (TiO 2) rutile at a nominal fluence of 1 × 10 16 to 1 × 10 17 ions cm -2 and then thermally annealed the implanted sample in air. The radiation damage and its recovery process during the annealing were analyzed by Rutherford backscattering spectrometry in channeling geometry and variable-energy positron annihilation spectroscopy. The lattice disorder was completely recovered at 1200 °C by the migration of point defects to the surface. According to secondary ion mass spectrometry analysis, the F depth profile was shifted to a shallower region along with the damage recovery and this resulted in the formation of an F-doped layer where the impurity concentration steadily increased toward the surface. The F doping proved to provide a modification to the conduction-band edge of TiO 2, as assessed by theoretical band calculations.
NASA Astrophysics Data System (ADS)
Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Nicholson, P. D.; Clark, R. N.; Cuzzi, J. N.; Buratti, B. B.; Cruikshank, D. P.; Brown, R. H.
2017-01-01
Despite water ice being the most abundant species on Saturn satellites' surfaces and ring particles, remarkable spectral differences in the 0.35-5.0 μm range are observed among these objects. Here we report about the results of a comprehensive analysis of more than 3000 disk-integrated observations of regular satellites and small moons acquired by VIMS aboard Cassini mission between 2004 and 2016. These observations, taken from very different illumination and viewing geometries, allow us to classify satellites' and rings' compositions by means of spectral indicators, e.g. 350-550 nm - 550-950 nm spectral slopes and water ice band parameters [1,2,3]. Spectral classification is further supported by indirect retrieval of temperature by means of the 3.6 μm I/F peak wavelength [4,5]. The comparison with syntethic spectra modeled by means of Hapke's theory point to different compositional classes where water ice, amorphous carbon, tholins and CO2 ice in different quantities and mixing modalities are the principal endmembers [3, 6]. When compared to satellites, rings appear much more red at visible wavelengths and show more intense 1.5-2.0 μm band depths [7]. Our analysis shows that spectral classes are detected among the principal satellites with Enceladus and Tethys the ones with stronger water ice band depths and more neutral spectral slopes while Rhea evidences less intense band depths and more red visible spectra. Even more intense reddening in the 0.55-0.95 μm range is observed on Iapetus leading hemisphere [8] and on Hyperion [9]. With an intermediate reddening, the minor moons seems to be the spectral link between the principal satellites and main rings [10]: Prometheus and Pandora appear similar to Cassini Division ring particles. Epimetheus shows more intense water ice bands than Janus. Epimetheus' visible colors are similar to water ice rich moons while Janus is more similar to C ring particles. Finally, Dione and Tethys lagrangian satellites show a very flat reflectance in the visible, making them remarkably different with respect to the other small moons. Moreover, we have observed that the two Tethys' lagrangian moons appear spectrally different, with Calypso characterized by more intense water ice bands than Telesto. Conversely, at visible wavelengths Polydeuces, Telesto and Methone are in absolute the more blue objects in the Saturn's system. The red slopes measured in the visible range on disk-integrated spectral data, showing varying degrees on all of the satellites, could be caused more by exogenic processes than by geologic and endogenic events which are operating on more localized scales. The principal exogenic processes active in the Saturn's system [11] which alter the satellites and rings surfaces are the E ring particles bombardment, the interaction with corotating plasma and energetic particles, the bombardment of exogenic dark material [12] and the water ice photolysis. A discussion about the correlations between these processes and the o bserved spectral classes is given. With the approaching of the Cassini "Gran Finale" orbits, VIMS will unveil with unprecedented spatial resolution the spectral properties of many small moons and rings. These data will be extremely valuable to improve our classification of the Saturn's satellites and rings.
NASA Astrophysics Data System (ADS)
Dilbone, Elizabeth K.
Methods for spectrally-based bathymetric mapping of rivers mainly have been developed and tested on clear-flowing, gravel bedded channels, with limited application to turbid, sand-bedded rivers. Using hyperspectral images of the Niobrara River, Nebraska, and field-surveyed depth data, this study evaluated three methods of retrieving depth from remotely sensed data in a dynamic, sand-bedded channel. The first regression-based approach paired in situ depth measurements and image pixel values to predict depth via Optimal Band Ratio Analysis (OBRA). The second approach used ground-based reflectance measurements to calibrate an OBRA relationship. For this approach, CASI images were atmospherically corrected to units of apparent surface reflectance using an empirical line calibration. For the final technique, we used Image-to-Depth Quantile Transformation (IDQT) to predict depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image derived variable. OBRA yielded the lowest overall depth retrieval error (0.0047 m) and highest observed versus predicted R2 (0.81). Although misalignment between field and image data were not problematic to OBRA's performance in this study, such issues present potential limitations to standard regression-based approaches like OBRA in dynamic, sand-bedded rivers. Field spectroscopy-based maps exhibited a slight shallow bias (0.0652 m) but provided reliable depth estimates for most of the study reach. IDQT had a strong deep bias, but still provided informative relative depth maps that portrayed general patterns of shallow and deep areas of the channel. The over-prediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the CDF of depth. While each of the techniques tested in this study demonstrated the potential to provide accurate depth estimates in sand-bedded rivers, each method also was subject to certain constraints and limitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tantawy, Hesham Ramzy; Aston, D. Eric, E-mail: aston@uidaho.edu; Kengne, Blaise-Alexis F.
2015-11-07
An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested.more » They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)« less
ERIC Educational Resources Information Center
Wetsel, Grover C., Jr.
1978-01-01
Calculates the energy-band structure of noninteracting electrons in a one-dimensional crystal using exact and approximate methods for a rectangular-well atomic potential. A comparison of the two solutions as a function of potential-well depth and ratio of lattice spacing to well width is presented. (Author/GA)
NASA Astrophysics Data System (ADS)
Miller, S. D.; Combs, C.; Wagner, S.; Viticchiè, B.; Walther, A.; Solbrig, J.
2014-12-01
The VIIRS Day-Night Band provides the first calibrated observations of nocturnal low-light visible/near-infrared (~500-900 nm response, 710 nm central wavelength) radiances, including reflected moonlight down to values of 3 × 10-5 W·m-2·sr-1. These novel measurements afford the first opportunity to attempt nighttime retrievals of optical depth for optically thick clouds when moonlight is available, thereby advancing our ability to observe the diurnal cycle of such structures as marine stratocumuli which are thought to play an important role in determining climate and climate feedbacks. In order to leverage the Day-Night Band measurements in this capacity, we must first convert the upwelling top-of-atmosphere radiances to equivalent values of reflectance. Doing so requires a detailed knowledge of the down-welling top-of-atmosphere lunar spectral irradiance which, unlike sunlight, varies significantly over the course of the ~29.5 day lunar cycle. This research summarizes the ongoing development, validation, and refinement of a lunar irradiance model designed to convert Day-Night Band radiances to equivalent lunar reflectance. Comparisons between daytime and nighttime Day-Night Band reflectance for vicarious calibration targets offering radiometric stability (e.g., White Sands, Salar de Uyuni, Dome-C, and snow fields) confirms the model's performance to within an expected ~10% uncertainty. An observed lunar-phase-dependent trend associated with the model's assumption of a disk-averaged albedo was addressed via analysis of a version of the model adapted for comparison against Meteosat Second Generation SEVIRI lunar measurements. The analysis resulted in a phase-dependent 6th order polynomial correction to the model and expected model uncertainty improvements to within ~5%. Examples of lunar reflectance imagery for operational applications and the provisional quantitative application of Day-Night Band lunar reflectance to nighttime cloud optical property retrievals, bearing relevance to the diurnally resolved global climate data record, are shown.
Properties of the superconducting state in a two-band model
NASA Astrophysics Data System (ADS)
Nicol, E. J.; Carbotte, J. P.
2005-02-01
Eliashberg theory is used to investigate the range of thermodynamic properties possible within a two-band model for s -wave superconductivity and to identify signatures of its two-band nature. We emphasize dimensionless BCS ratios [those for the energy gaps, the specific heat jump, and the negative of its slope near Tc , the thermodynamic critical field Hc(0) , and the normalized slopes of the critical field and the penetration depth near Tc ], which are no longer universal even in weak coupling. We also give results for temperature-dependent quantities, such as the penetration depth and the energy gap. Results are presented both for microscopic parameters appropriate to MgB2 and for variations away from these. Strong coupling corrections are identified and found to be significant. Analytic formulas are provided that show the role played by the anisotropy in coupling in some special limits. Particular emphasis is placed on small interband coupling and on the opposite limit of no diagonal coupling. The effect of impurity scattering is considered, particularly for the interband case.
NASA Astrophysics Data System (ADS)
Sebastiani, M.; di Gaspare, L.; Capellini, G.; Bittencourt, C.; Evangelisti, F.
1995-10-01
We present a new experimental method for determining band lineups at the semiconductor heterojunctions and apply it to the c-Si100/a-Si:H heterostructure. This method uses a modern version of an old spectroscopy: the photoelectric yield spectroscopy excited with photons in the near UV range. It is shown that both substrate and overlayer valence-band tops can be identified in the yield spectrum due to the high escape depth and the high dynamical range of the technique, thus allowing a direct and precise determination of the band lineup. A value of ΔEV = 0.44+/-0.02 eV was found for the valence band discontinuity.
NASA Astrophysics Data System (ADS)
Sayers, Jack; Zemcov, Michael; Glenn, Jason; Golwala, Sunil R.; Maloney, Philip R.; Siegel, Seth R.; Wheeler, Jordan; Bockstiegel, Clint; Brugger, Spencer; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Hollister, Matthew I.; Lam, Albert; LeDuc, Henry G.; Mazin, Benjamin A.; McHugh, Sean G.; Miller, David A.; Mroczkowski, Tony K.; Noroozian, Omid; Nguyen, Hien T.; Radford, Simon J. E.; Schlaerth, James A.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas
2016-04-01
We present Sunyaev-Zel’dovich (SZ) effect measurements from wide-field images toward the galaxy cluster RX J1347.5-1145 obtained from the Caltech Submillimeter Observatory with the Multiwavelength Submillimeter Inductance Camera at 147, 213, 281, and 337 GHz and with Bolocam at 140 GHz. As part of our analysis, we have used higher frequency data from Herschel-SPIRE and previously published lower frequency radio data to subtract the signal from the brightest dusty star-forming galaxies behind RX J1347.5-1145 and from the AGN in RX J1347.5-1145’s BCG. Using these five-band SZ effect images, combined with X-ray spectroscopic measurements of the temperature of the intra-cluster medium (ICM) from Chandra, we constrain the ICM optical depth to be {τ }{{e}}={7.33}-0.97+0.96× {10}-3 and the ICM line of sight peculiar velocity to be {v}{pec}=-{1040}-840+870 km s-1. The errors for both quantities are limited by measurement noise rather than calibration uncertainties or astrophysical contamination, and significant improvements are possible with deeper observations. Our best-fit velocity is in good agreement with one previously published SZ effect analysis and in mild tension with the other, although some or all of that tension may be because that measurement samples a much smaller cluster volume. Furthermore, our best-fit optical depth implies a gas mass slightly larger than the Chandra-derived value, implying the cluster is elongated along the line of sight.
A Spitzer five-band analysis of the Jupiter-sized planet TrES-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.
2014-12-10
With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16more » μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.« less
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.
2002-01-01
With the increasing pressures to allow wireless devices on aircraft, the susceptibility of aircraft receivers to interference from Portable Electronic Devices (PEDs) becomes an increasing concern. Many investigations were conducted in the past, with limited success, to quantify device emissions, path loss, and receiver interference susceptibility thresholds. This paper outlines the recent effort in determining the receiver susceptibility thresholds for ILS, VOR and GPS systems. The effort primarily consists of analysis of data available openly as reported in many RTCA and ICAO documents as well as manufacturers data on receiver sensitivity. Shortcomings with the susceptibility threshold data reported in the RTCA documents are presented, and an approach for an in-depth study is suggested. In addition, intermodulation products were observed and demonstrated in a laboratory experiment when multiple PEDs were in the proximity of each other. These intermodulation effects generate spurious frequencies that may fall within aircraft communication or navigation bands causing undesirable effects. Results from a preliminary analysis are presented that show possible harmful combinations of PEDs and the potentially affected aircraft bands.
Kerr Reservoir LANDSAT experiment analysis for November 1980
NASA Technical Reports Server (NTRS)
Lecroy, S. R.
1982-01-01
An experiment was conducted on the waters of Kerr Reservoir to determine if reliable algorithms could be developed that relate water quality parameters to remotely sensed data. LANDSAT radiance data was used in the analysis since it is readily available and covers the area of interest on a regular basis. By properly designing the experiment, many of the unwanted variations due to atmosphere, solar, and hydraulic changes were minimized. The algorithms developed were constrained to satisfy rigorous statistical criteria before they could be considered dependable in predicting water quality parameters. A complete mix of different types of algorithms using the LANDSAT bands was generated to provide a thorough understanding of the relationships among the data involved. The study demonstrated that for the ranges measured, the algorithms that satisfactorily represented the data are mostly linear and only require a maximum of one or two LANDSAT bands. Rationing techniques did not improve the results since the initial design of the experiment minimized the errors that this procedure is effective against. Good correlations were established for inorganic suspended solids, iron, turbidity, and secchi depth.
Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.
2012-01-01
The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech. PMID:22978902
Cloud and aerosol optical depths
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Ackerman, Thomas P.; Colburn, D. C.; Wrigley, R. C.; Spanner, M. A.; Livingston, J. M.
1988-01-01
An airborne Sun photometer was used to measure optical depths in clear atmospheres between the appearances of broken stratus clouds, and the optical depths in the vicinity of smokes. Results show that (human) activities can alter the chemical and optical properties of background atmospheres to affect their spectral optical depths. Effects of water vapor adsorption on aerosol optical depths are apparent, based on data of the water vapor absorption band centered around 940 nm. Smoke optical depths show increases above the background atmosphere by up to two orders of magnitude. When the total optical depths measured through clouds were corrected for molecular scattering and gaseous absorption by subtracting the total optical depths measured through the background atmosphere, the resultant values are lower than those of the background aerosol at short wavelengths. The spectral dependence of these cloud optical depths is neutral, however, in contrast to that of the background aerosol or the molecular atmosphere.
Bathymetric mapping of shallow water surrounding Dongsha Island using QuickBird image
NASA Astrophysics Data System (ADS)
Li, Dongling; Zhang, Huaguo; Lou, Xiulin
2018-03-01
This article presents an experiment of water depth inversion using the band ratio method in Dongsha Island shallow water. The remote sensing data is from QuickBird satellite on April 19, 2004. The bathymetry result shows an extensive agreement with the charted depths. 129 points from the chart depth data were chosen to evaluate the accuracy of the inversion depth. The results show that when the water depth is less than 20m, the inversion depth is accord with the chart, while the water depth is more than 20m, the inversion depth is still among 15- 25m. Therefore, the remote sensing methods can only be effective with the inversion of 20m in Dongsha Island shallow water, rather than in deep water area. The total of 109 depth points less than 20m were used to evaluate the accuracy, the root mean square error is 2.2m.
NASA Astrophysics Data System (ADS)
Basuyau, C.; Tiberi, C.; Leroy, S.; Stuart, G.; Al-Lazki, A.; Al-Toubi, K.; Ebinger, C.
2010-02-01
Gravity data and P-wave teleseismic traveltime residuals from 29 temporary broad-band stations spread over the northern margin of the Gulf of Aden (Dhofar region, Oman) were used to image lithospheric structure. We apply a linear relationship between density and velocity to provide consistent density and velocity models from mid-crust down to about 250 km depth. The accuracy of the resulting models is investigated through a series of synthetic tests. The analysis of our resulting models shows: (1) crustal heterogeneities that match the main geological features at the surface; (2) the gravity edge effect and disparity in anomaly depth locations for layers at 20 and 50 km; (3) two low-velocity anomalies along the continuation of Socotra-Hadbeen and Alula-Fartak fracture zones between 60 and 200 km depth; and (4) evidence for partial melting (3-6 per cent) within these two negative anomalies. We discuss the presence of partial melting in terms of interaction between the Sheba ridge melts and its along-axis segmentation.
NASA Technical Reports Server (NTRS)
Santee, M.; Crisp, D.
1992-01-01
The temperature structure and dust loading of the Martian atmosphere are investigated using thermal emission spectra recorded in 1972 by the Mariner 9 infrared interferometer spectrometer (IRIS). The analysis focuses on a subset of data consisting of approximately 2400 spectra obtained near the end of the southern summer season (L(sub s) equal to 343 deg to 348 deg), after the global dust storm had largely abated and airborne dust amounts were subsiding to background values. Simultaneous retrieval of the vertical distribution of both atmospheric temperature and dust optical depth is accomplished through an iterative procedure which is performed on each individual spectrum. The atmospheric transmittances are calculated using a Voigt quasi-random band model, which includes absorption by CO2 and dust, but neglects the effects of multiple scattering. Vertical profiles of temperature and dust optical depth are obtained using modified algorithms. These profiles are used to construct global maps of temperature and dust optical depth as functions of latitude (+/- 90 deg), altitude (approximately 0-50 km), and local time of day.
The Atlas of Vesta Spectral Parameters derived from Dawn/VIR data
NASA Astrophysics Data System (ADS)
Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Tosi, F.; Zambon, F.; Capaccioni, F.; Capria, M. T.; Palomba, E.; Longobardo, A.; Fonte, S.; Giardino, M.; Magni, G.; Jaumann, R.; Raymond, C. A.; Russell, C. T.
2013-09-01
The Dawn mission mapped Vesta from three different orbital heights during Survey orbit (2700 km altitude), HAMO (High Altitude Mapping Orbit, 700 km altitude), and LAMO (Low Altitude Mapping Orbit, 210 km altitude) [1]. From these orbits the Dawn's Visible and Infrared Mapping Spectrometer (VIR) acquired infrared and visible spectra from 0.2 to 5 microns, sampled in 864 channels with a spatial resolution reaching about 150 m/pixel. Studies of the comparison of spectra from remote sensed data and spectra from laboratory allows to synthesize spectral parameters, which can be combined to identify specific physical and compositional states. VIR spectra of Vesta, stored in about 4300 Planetary Data System (PDS) cubes, have been analyzed to derive spectral parameters, each of which is diagnostic of the associated mineralogy on the surface of the asteroid being observed [2]. Maps of spectral parameters show terrain units compositions in their stratigraphic context. Band centers and band depths are among the most important diagnostic parameters of the mineralogy in a spectrum. In most pyroxenes and in the basaltic achondrites there is a strong correlation between the position of BI center and BII center and the associated mineralogy. For example, orthopyroxene bands shift towards longer wavelengths with increasing amounts of iron, whereas clinopyroxene bands shift towards longer wavelengths with increasing calcium content. Band depth is related to scattering effects, thus can be related to the physical state of the material.
Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data
Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri
2013-01-01
Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).
Clark, R.N.; Lucey, P.G.
1984-01-01
The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors
NASA Technical Reports Server (NTRS)
Steele, A.; Clark, R. N.; Brown, R. H.; Owensby, P. D.
1984-01-01
Water ice absorptions at 2.0, 1.5, and 1.25 microns are noted in near-IR spectra of Tethys, Dione, Rhea, Iapetus, and Hyperion, and the weak 1.04-micron ice absorption, which is detected for Rhea and Dione, is studied to establish band depth upper limits. The leading-trailing side 1.04-micron ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are obtained for the amounts of particulates, trapped gases, and ammonium hydroxide on the surface. With the exception of the dark side of Iapetus, the surfaces of all of Saturn's satellites are nearly pure ice water.
Upper crustal structure of Madeira Island revealed from ambient noise tomography
NASA Astrophysics Data System (ADS)
Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo
2015-06-01
We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.
NASA Astrophysics Data System (ADS)
Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.
2017-11-01
We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.
Goettsche, Zachary S; Ettinger, Ronald L; Wefel, James S; Hogan, Mary M; Harless, Jeffery D; Qian, Fang
2014-11-01
Caries development under overdentures has been a continuing problem and requires the daily use of fluoride to prevent demineralization. The purpose of this in vitro study was to compare the effectiveness of dentifrices containing tricalcium phosphate or calcium phosphosilicate in combination with fluoride to prevent the demineralization of overdenture abutments and root surfaces. A total of 56 caries-free extracted teeth were prepared as overdenture abutments. The teeth were painted with acid-resistant varnish, leaving one 1×4-mm window on occlusal and root surfaces. The teeth were randomly divided into 4 groups: a control group treated with distilled/deionized water only, a group treated with ClinPro 5000, a group treated with ReNew, and a group treated with Prevident 5000 gel. Each tooth was subjected to a demineralizing/remineralizing cycling protocol for 12 days with the appropriate treatment products. The teeth were sectioned longitudinally through both windows. Photomicrographs were made of 3 representative sections from each tooth. A representative section was defined as one that included both windows and was cut from the part of the tooth that had the flattest surface to reduce the edge effect. The depths of the lesions were measured on representative sections from each group. A 1-way MANOVA and a 1-way ANOVA with the post hoc Tukey-Kramer test were used to evaluate the treatment effects on the criterion variables (α=.05). The total lesion depths of the control teeth on the occlusal surface were not statistically significantly deeper than for the 3 dentifrices (P=.7705). However, all 3 dentifrices had narrower cavitation depths than the control (mean cavitation band depth, 43.59 [ReNew] versus 37.99 [Prevident 5000 gel] versus 36.70 [ClinPro 5000] versus 246.86 [control]) (P<.001). The mean remineralization band depth for ClinPro 5000 was significantly greater than for the other 2 treatment groups (118.03 [ClinPro 5000] versus 107.80 [ReNew] versus 102.28 [Prevident 5000 gel]) (P<.001). On root surfaces, the total lesion depth for the control group was statistically significantly deeper than for the 3 dentifrices (mean total lesion depth, 150.31 [control] versus 82.05 [ReNew] versus 68.10 [ClinPro 5000] versus 56.97 [Prevident 5000 gel]) (P<.001). The data indicated that teeth treated with Prevident 5000 gel had the shallowest total lesion depth and were statistically significantly different from those treated with ReNew and ClinPro 5000. Moreover, teeth treated with ReNew were found to have the largest remineralization band depth, which was statistically significantly different compared with ClinPro 5000 and Prevident 5000 gel (mean remineralization band depth, 49.66 [ReNew] versus 36.14 [ClinPro 5000] versus 23.27 [Prevident 5000 gel]) (P<.001), but no difference was found in cavitation depth of the root lesions between the 3 dentifrices. The addition of tricalcium phosphate or calcium phosphosilicate to fluoride-containing dentifrices (5000 ppm) does not significantly improve their ability to prevent demineralization of the cut dentin surface of overdenture abutments. However, on root surfaces, ReNew, which contains calcium phosphosilicate, was found to improve remineralization of the lesions compared with Prevident 5000 gel or ClinPro 5000. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Analysis of the Biceps Brachii Muscle by Varying the Arm Movement Level and Load Resistance Band
Abdullah, Shahrum Shah; Jali, Mohd Hafiz
2017-01-01
Biceps brachii muscle illness is one of the common physical disabilities that requires rehabilitation exercises in order to build up the strength of the muscle after surgery. It is also important to monitor the condition of the muscle during the rehabilitation exercise through electromyography (EMG) signals. The purpose of this study was to analyse and investigate the selection of the best mother wavelet (MWT) function and depth of the decomposition level in the wavelet denoising EMG signals through the discrete wavelet transform (DWT) method at each decomposition level. In this experimental work, six healthy subjects comprised of males and females (26 ± 3.0 years and BMI of 22 ± 2.0) were selected as a reference for persons with the illness. The experiment was conducted for three sets of resistance band loads, namely, 5 kg, 9 kg, and 16 kg, as a force during the biceps brachii muscle contraction. Each subject was required to perform three levels of the arm angle positions (30°, 90°, and 150°) for each set of resistance band load. The experimental results showed that the Daubechies5 (db5) was the most appropriate DWT method together with a 6-level decomposition with a soft heursure threshold for the biceps brachii EMG signal analysis. PMID:29138687
Analysis of the Biceps Brachii Muscle by Varying the Arm Movement Level and Load Resistance Band.
Burhan, Nuradebah; Kasno, Mohammad 'Afif; Ghazali, Rozaimi; Said, Md Radzai; Abdullah, Shahrum Shah; Jali, Mohd Hafiz
2017-01-01
Biceps brachii muscle illness is one of the common physical disabilities that requires rehabilitation exercises in order to build up the strength of the muscle after surgery. It is also important to monitor the condition of the muscle during the rehabilitation exercise through electromyography (EMG) signals. The purpose of this study was to analyse and investigate the selection of the best mother wavelet (MWT) function and depth of the decomposition level in the wavelet denoising EMG signals through the discrete wavelet transform (DWT) method at each decomposition level. In this experimental work, six healthy subjects comprised of males and females (26 ± 3.0 years and BMI of 22 ± 2.0) were selected as a reference for persons with the illness. The experiment was conducted for three sets of resistance band loads, namely, 5 kg, 9 kg, and 16 kg, as a force during the biceps brachii muscle contraction. Each subject was required to perform three levels of the arm angle positions (30°, 90°, and 150°) for each set of resistance band load. The experimental results showed that the Daubechies5 (db5) was the most appropriate DWT method together with a 6-level decomposition with a soft heursure threshold for the biceps brachii EMG signal analysis.
AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods
NASA Technical Reports Server (NTRS)
Crowley, J. K.; Clark, R. N.
1992-01-01
Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.
NASA Astrophysics Data System (ADS)
Kabiri, K.
2017-09-01
The capabilities of Sentinel-2A imagery to determine bathymetric information in shallow coastal waters were examined. In this regard, two Sentinel-2A images (acquired on February and March 2016 in calm weather and relatively low turbidity) were selected from Nayband Bay, located in the northern Persian Gulf. In addition, a precise and accurate bathymetric map for the study area were obtained and used for both calibrating the models and validating the results. Traditional linear and ratio transform techniques, as well as a novel integrated method, were employed to determine depth values. All possible combinations of the three bands (Band 2: blue (458-523 nm), Band 3: green (543-578 nm), and Band 4: red (650-680 nm), spatial resolution: 10 m) have been considered (11 options) using the traditional linear and ratio transform techniques, together with 10 model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The correlation coefficients (R2), and root mean square errors (RMSE) for validation points were calculated for all models and for two satellite images. When compared with the linear transform method, the method employing ratio transformation with a combination of all three bands yielded more accurate results (R2Mac = 0.795, R2Feb = 0.777, RMSEMac = 1.889 m, and RMSEFeb =2.039 m). Although most of the integrated transform methods (specifically the method including all bands and band ratios) have yielded the highest accuracy, these increments were not significant, hence the ratio transformation has selected as optimum method.
NASA Astrophysics Data System (ADS)
Parente, M.; Bishop, J. L.
2008-12-01
Mapping of Mars by MRO has revealed the presence of numerous small phyllosilicate outcrops. These are typically identified in CRISM images using "summary products" (Pelkey, 2007) that consist of band ratios, depths and spectral slopes around diagnostic wavelengths. The summary products are designed to capture spectral features related to both surface mineralogy and atmospheric gases and aerosols. Such products, as an analysis tool to characterize composition as well as a targeting tool to identify areas of mineralogical interest, have been successful in capturing the known diversity of the Martian surface, and in highlighting locations with strong spectral signatures. Here we present alternative mineral mapping technique that 1) aims to increase the robustness of mineral detections with respect to the specific CRISM artifacts, 2) takes advantage of the spatial context of each pixel and 3) develops new parameters for the discrimination of species in the phyllosilicates family. We include spatial context by evaluating spectral shapes, band depths and spectral slopes for the current pixel based on its spatial neighbors within the same geological unit. Furthermore, the parameters are based on estimates that are more robust to CRISM speckling noise that might alter the parameters and potentially the mineral interpretation. As an effort to distinguish between phyllosilicates species, we are augmenting the suite of existent parameters with a set of mineral parameters that involve the position, number and shapes of diagnostic phyllosilicate absorptions. We are comparing the effectiveness of this new approach to the summary product procedure. The study shows that homogeneous mineral maps and diagnostic spectral identifications are possible as a result of the application of such new parameters. We applied the technique to the discrimination of kaolinite in Mawrth Vallis. The experiments show several small kaolinite outcrops dispersed within the more extensive Al-rich phyllosilicates in regions around the MSL landing sites. Another test was the discrimination of montmorillonite and nontronite in Mawrth Vallis that can be successfully accomplished by band depths summary products near 2.2 and 2.3 μm. The new technique produces improved maps with lower noise levels and lower percentage of false detections.
Source process and tectonic implication of the January 20, 2007 Odaesan earthquake, South Korea
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Ali K.; Kim, K. Y.; Fnais, M. S.; Al-Amri, A. M.
2014-04-01
The source process for the 20th of January 2007, Mw 4.5 Odaesan earthquake in South Korea is investigated in the low- and high-frequency bands, using velocity and acceleration waveform data recorded by the Korea Meteorological Administration Seismographic Network at distances less than 70 km from the epicenter. Synthetic Green functions are adopted for the low-frequency band of 0.1-0.3 Hz by using the wave-number integration technique and the one dimensional velocity model beneath the epicentral area. An iterative technique was performed by a grid search across the strike, dip, rake, and focal depth of rupture nucleation parameters to find the best-fit double-couple mechanism. To resolve the nodal plane ambiguity, the spatiotemporal slip distribution on the fault surface was recovered using a non-negative least-square algorithm for each set of the grid-searched parameters. The focal depth of 10 km was determined through the grid search for depths in the range of 6-14 km. The best-fit double-couple mechanism obtained from the finite-source model indicates a vertical strike-slip faulting mechanism. The NW faulting plane gives comparatively smaller root-mean-squares (RMS) error than its auxiliary plane. Slip pattern event provides simple source process due to the effect of Low-frequency that acted as a point source model. Three empirical Green functions are adopted to investigate the source process in the high-frequency band. A set of slip models was recovered on both nodal planes of the focal mechanism with various rupture velocities in the range of 2.0-4.0 km/s. Although there is a small difference between the RMS errors produced by the two orthogonal nodal planes, the SW dipping plane gives a smaller RMS error than its auxiliary plane. The slip distribution is relatively assessable by the oblique pattern recovered around the hypocenter in the high-frequency analysis; indicating a complex rupture scenario for such moderate-sized earthquake, similar to those reported for large earthquakes.
Broadband seismic noise attenuation versus depth at the Albuquerque Seismological Laboratory
Hutt, Charles R.; Ringler, Adam; Gee, Lind
2017-01-01
Seismic noise induced by atmospheric processes such as wind and pressure changes can be a major contributor to the background noise observed in many seismograph stations, especially those installed at or near the surface. Cultural noise such as vehicle traffic or nearby buildings with air handling equipment also contributes to seismic background noise. Such noise sources fundamentally limit our ability to resolve earthquake‐generated signals. Many previous seismic noise versus depth studies focused separately on either high‐frequency (>1 Hz">>1 Hz) or low‐frequency (<0.05 Hz"><0.05 Hz) bands. In this study, we use modern high‐quality broadband (BB) and very broadband (VBB) seismometers installed at depths ranging from 1.5 to 188 m at the Albuquerque Seismological Laboratory to evaluate noise attenuation as a function of depth over a broad range of frequencies (0.002–50 Hz). Many modern seismometer deployments use BB or VBB seismometers installed at various depths, depending on the application. These depths range from one‐half meter or less in aftershock study deployments, to one or two meters in the Incorporated Research Institutions for Seismology Transportable Array (TA), to a few meters (shallow surface vaults) up to 100 m or more (boreholes) in the permanent observatories of the Global Seismographic Network (GSN). It is important for managers and planners of these and similar arrays and networks of seismograph stations to understand the attenuation of surface‐generated noise versus depth so that they can achieve desired performance goals within their budgets as well as their frequency band of focus. The results of this study will assist in decisions regarding BB and VBB seismometer installation depths. In general, we find that greater installation depths are better and seismometer emplacement in hard rock is better than in soil. Attenuation for any given depth varies with frequency. More specifically, we find that the dependence of depth will be application dependent based on the frequency band and sensitive axes of interest. For quick deployments (like aftershock studies), 1 m may be deep enough to produce good data, especially when the focus is on vertical data where temperature stability fundamentally limits the low‐frequency noise levels and little low‐frequency data will be used. For temporary (medium‐term) deployments (e.g., TA) where low cost can be very important, 2–3 m should be sufficient, but such shallow installations will limit the ability to resolve low‐frequency signals, especially on horizontal components. Of course, one should try for maximum burial depth within the budget when there is interest in using the data for low‐frequency applications. For long‐term deployments like the permanent observatories of the GSN and similar networks, 100–200 m depth in hard rock is desirable to achieve lowest noise, although 30–60 m may be acceptable.
Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers
NASA Astrophysics Data System (ADS)
Varshney, R. K.; Singh, A.; Pande, K.; Pal, B. P.
2007-03-01
A simple and accurate novel normal mode analysis has been developed to take into account the effect of the non-uniform depth of polishing in the study of the transmission characteristics of optical waveguide devices based on loading of a side-polished fiber half-coupler with a multimode planar waveguide. We apply the same to design and fabricate a gain-flattening filter suitable for fiber amplifiers. The wavelength dependent filtering action of the overall device could demonstrate flattening of an EDFA gain spectrum within ±0.7 dB over a bandwidth of 30 nm in the C-band. Results obtained by the present analysis agree very well with our experimental results. This present analysis should be very useful in the accurate design and analysis of any SPF-MMOW device/component including side-polished fiber based sensors.
Atmospheric characterization of the hot Jupiter Kepler-13Ab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shporer, Avi; O'Rourke, Joseph G.; Knutson, Heather A.
Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler data allows us to measure the planet's occultation (secondary eclipse) and phase curve in the optical, which we combine with occultations observed by warm Spitzer at 4.5 μm and 3.6 μm and a ground-based occultation observation in the K{sub s} band (2.1 μm). We derive a day-side hemisphere temperature of 2750 ± 160 K as the effective temperature of a black body showing themore » same occultation depths. Comparing the occultation depths with one-dimensional planetary atmosphere models suggests the presence of an atmospheric temperature inversion. Our analysis shows evidence for a relatively high geometric albedo, A {sub g} = 0.33{sub −0.06}{sup +0.04}. While measured with a simplistic method, a high A {sub g} is supported also by the fact that the one-dimensional atmosphere models underestimate the occultation depth in the optical. We use stellar spectra to determine the dilution, in the four wide bands where occultation was measured, due to the visual stellar binary companion 1.''15 ± 0.''05 away. The revised stellar parameters measured using these spectra are combined with other measurements, leading to revised planetary mass and radius estimates of M{sub p} = 4.94-8.09 M {sub J} and R{sub p} = 1.406 ± 0.038 R {sub J}. Finally, we measure a Kepler midoccultation time that is 34.0 ± 6.9 s earlier than expected based on the midtransit time and the delay due to light-travel time and discuss possible scenarios.« less
Spatiotemporal Characteristics for the Depth from Luminance Contrast
Matsubara, Kazuya; Matsumiya, Kazumichi; Shioiri, Satoshi; Takahashi, Shuichi; Hyodo, Yasuhide; Ohashi, Isao
2011-01-01
Images with higher luminance contrast tend to be perceived closer in depth. To investigate a spatiotemporal characteristic of this effect, we evaluated subjective depth of a test stimulus with various spatial and temporal frequencies. For the purpose, the depth of a reference stimulus was matched to that of the test stimulus by changing the binocular disparity. The results showed that the test stimulus was perceived closer with higher luminance contrast for all conditions. Contrast efficiency was obtained from the contrast that provided the subjective depth for each spatiotemporal frequency. The shape of the contrast efficiency function was spatially low-pass and temporally band-pass. This characteristic is different from the one measure for a detection task. This suggests that only subset of contrast signals are used for depth from contrast.
Limitations and potential of satellite imagery to monitor environmental response to coastal flooding
Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong
2012-01-01
Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.
Near-infrared Characterization of the Atmospheres of Alien Worlds
NASA Astrophysics Data System (ADS)
Croll, Bryce
In this thesis I present near-infrared detections of the thermal emission of a number of hot Jupiters and likely transit depth differences from different wavelength observations of a super-Earth. I have pioneered "Staring Mode" using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope to achieve the most accurate photometry to-date in the near- infrared from the ground. I also discuss avenues that should allow one to achieve even more accurate photometry in the future. Using WIRCam on CFHT my collaborators and I have detected the thermal emission of the following hot Jupiters: TrES-2b and TrES-3b in Ks-band, WASP-12b in the J, H & Ks-bands, and WASP-3b in the Ks-band on two occasions. Near- infrared detections of the thermal emission of hot Jupiters are important, because the majority of these planets' blackbodies peak in this wavelength range; near-infrared detections allow us to obtain the most model-independent constraints on these planets' atmospheric characteristics, their temperature-pressure profiles with depth and an estimate of their bolometric luminosities. With these detections we are able to answer such questions as: how efficiently these planets redistribute heat to their nightsides, if they're being inflated by tidal heating, whether there's any evidence that one of these planets is precessing, and whether another experiences extreme weather and violent storms? My collaborators and I have also observed several transits of the super-Earth GJ 1214b. We find a deeper transit depth in one of our near-infrared bands than the other. This is likely indicative of a spectral absorption feature. For the differences in the transit depth to be as large as we observed, the atmosphere of GJ 1214b must have a large scale height, low mean molecular weight and thus have a hydrogen/helium dominated atmosphere. Given that other researchers have not found similar transit depth differences, we also discuss the most likely atmospheric makeup for this planet that results from a combination of all the observations to date. Lastly, by searching for long-term linear trends in radial velocity data, I constrain the theory that most hot Jupiters migrated to their present positions via the Kozai mechanism with tidal heating.
NASA Astrophysics Data System (ADS)
Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria
2015-07-01
Among the techniques to detect planet's mineralogical composition remote sensing, visible and near-infrared (VNIR) reflectance spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine (OL) or pyroxene (PX). Although OL, PX and their mixtures have been widely studied, plagioclase (PL), considered a spectroscopically transparent mineral, has been poorly analyzed. In this work we quantitatively investigate the influence of plagioclase absorption band on the absorption bands of Fe, Mg minerals using the Modified Gaussian Model - MGM (Sunshine, J.M. et al. [1990]. J. Geophys. Res. 95, 6955-6966). We consider three plagioclase compositions of varying FeO wt.% contents and five mafic end-members (1) 56% orthopyroxene and 44% clinopyroxene, (2) 28% olivine and 72% orthopyroxene, (3) 30% orthopyroxene and 70% olivine, (4) 100% olivine and (5) 100% orthopyroxene, at two different particle sizes. The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). In particular, we show the variation of the plagioclase and composite (plagioclase-olivine) band spectral parameters versus the volumetric iron content related to the plagioclase abundance in mixtures. Generally, increasing the vol. FeO% due to the PL: (1) 1250 nm band deepens with linear trend in mixtures with pyroxenes, while it decreases in mixtures with olivine, with trend shifting from parabolic to linear increasing the olivine content in end-member; (2) 1250 nm band center moves towards longer wavelengths with linear trend in pyroxene-rich mixtures and parabolic trend in olivine-rich mixtures; and (3) 1250 nm band clearly widens with linear trend in olivine-free mixtures, while the widening is only slight in olivine-rich mixtures. We also outline how spectral parameters can be ambiguous leading to an incorrect mineralogical interpretation. Furthermore, we show the presence of an asymmetry of the plagioclase band towards the IR region, resolvable adding a Gaussian in the 1600-1800 nm spectral region.
Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm
NASA Technical Reports Server (NTRS)
Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey
2013-01-01
A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.
A minimal cost function method for optimizing the age-Depth relation of deep-sea sediment cores
NASA Astrophysics Data System (ADS)
Brüggemann, Wolfgang
1992-08-01
The question of an optimal age-depth relation for deep-sea sediment cores has been raised frequently. The data from such cores (e.g., δ18O values) are used to test the astronomical theory of ice ages as established by Milankovitch in 1938. In this work, we use a minimal cost function approach to find simultaneously an optimal age-depth relation and a linear model that optimally links solar insolation or other model input with global ice volume. Thus a general tool for the calibration of deep-sea cores to arbitrary tuning targets is presented. In this inverse modeling type approach, an objective function is minimized that penalizes: (1) the deviation of the data from the theoretical linear model (whose transfer function can be computed analytically for a given age-depth relation) and (2) the violation of a set of plausible assumptions about the model, the data and the obtained correction of a first guess age-depth function. These assumptions have been suggested before but are now quantified and incorporated explicitly into the objective function as penalty terms. We formulate an optimization problem that is solved numerically by conjugate gradient type methods. Using this direct approach, we obtain high coherences in the Milankovitch frequency bands (over 90%). Not only the data time series but also the the derived correction to a first guess linear age-depth function (and therefore the sedimentation rate) itself contains significant energy in a broad frequency band around 100 kyr. The use of a sedimentation rate which varies continuously on ice age time scales results in a shift of energy from 100 kyr in the original data spectrum to 41, 23, and 19 kyr in the spectrum of the corrected data. However, a large proportion of the data variance remains unexplained, particularly in the 100 kyr frequency band, where there is no significant input by orbital forcing. The presented method is applied to a real sediment core and to the SPECMAP stack, and results are compared with those obtained in earlier investigations.
Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus
Sayles, Mark; Füllgrabe, Christian; Winter, Ian M
2013-01-01
Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation frequency are (95% CI) 11.6% (10.0–13.1) for PL units, 9.8% (8.2–11.5) for CT units, and 10.8% (8.4–13.2) for CS units. The most sensitive guinea-pig VCN single unit AM detection thresholds are similar to human psychophysical performance (∼3% AM), while the mean neurometric thresholds approach whole animal behavioural performance (∼10% AM). PMID:23629508
W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.
Reginsson, Gunnar W; Hunter, Robert I; Cruickshank, Paul A S; Bolton, David R; Sigurdsson, Snorri Th; Smith, Graham M; Schiemann, Olav
2012-03-01
A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orientation selectivity is weak. In contrast, working at higher frequencies increases the orientation selection but usually at the expense of decreased microwave power and PELDOR modulation depth. Here it is shown that a home-built high-power pulsed W-band EPR spectrometer (HiPER) with a large instantaneous bandwidth enables one to achieve PELDOR data with a high degree of orientation selectivity and large modulation depths. We demonstrate a measurement methodology that gives a set of PELDOR time traces that yield highly constrained data sets. Simulating the resulting time traces provides a deeper insight into the conformational flexibility and exchange coupling of three bisnitroxide model systems. These measurements provide strong evidence that W-band PELDOR may prove to be an accurate and quantitative tool in assessing the relative orientations of nitroxide spin labels and to correlate those orientations to the underlying biological structure and dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.
Ade, P A R; Ahmed, Z; Aikin, R W; Alexander, K D; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Bowens-Rubin, R; Brevik, J A; Buder, I; Bullock, E; Buza, V; Connors, J; Crill, B P; Duband, L; Dvorkin, C; Filippini, J P; Fliescher, S; Grayson, J; Halpern, M; Harrison, S; Hilton, G C; Hui, H; Irwin, K D; Karkare, K S; Karpel, E; Kaufman, J P; Keating, B G; Kefeli, S; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leitch, E M; Lueker, M; Megerian, K G; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Richter, S; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Steinbach, B; Sudiwala, R V; Teply, G P; Thompson, K L; Tolan, J E; Tucker, C; Turner, A D; Vieregg, A G; Weber, A C; Wiebe, D V; Willmert, J; Wong, C L; Wu, W L K; Yoon, K W
2016-01-22
We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.
Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu
2004-01-01
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less
NASA Astrophysics Data System (ADS)
Richardson, R.; Legleiter, C. J.; Harrison, L.
2015-12-01
Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.
High-resolution reflectance spectra of Mars in the 2.3-μm region: evidence for the mineral scapolite
Clark, Roger N.; Swayze, Gregg A.; Singer, Robert B.; Pollack, James B.
1990-01-01
patially resolved reflectance spectra of Mars in the 2.2- to 2.4-μm spectral region were obtained in August 1988 using the NASA 3-m Infrared Telescope Facility. The spectra show weak absorption features due to Martian atmospheric carbon monoxide and a surface mineral. Both CO and the mineral absorptions are composed of overlapping narrow features, but in many locations, such as Hellas, Chryse, Eden, and Moab, the mineral absorptions are quite strong, at least 3 times stronger than at the most absorbing wavelengths of CO near 2.33 μm. Therefore CO complicates the analysis of the surface mineral but does not always overwhelm its signature. Model removal of the Martian atmospheric CO has been performed, and the remaining absorption bands are identified as scapolite. Relatively strong absorptions that match bands in the spectrum of scapolite and have little or no CO absorption interference are seen near 2.41, 2.39, and 2.29 μm. Absorption also occurs at the scapolite bands at 2.36 and 2.33 μm, but the analysis is complicated by uncertainty in the atmospheric CO removal at these wavelengths. Weaker scapolite bands are seen at 2.44 and 2.23 μm where there is virtually no atmospheric interference. The scapolite bands observed on Mars are due to HCO3− and HSO4− ions in the scapolite structure. The bicarbonate and bisulfate contents appear to vary with location: the scapolite in Hellas is more bisulfate-rich relative to that in the Chryse/Moab/Eden area. Other locations contain little (Arabia, Syrtis Major, Hellespontica, and Isidis) or no scapolite (e.g., Margaritifer, Ausonia, and Erythraeum). The calculated abundances are unconstrained because the amounts of HCO3− and HSO4− in the Martian scapolites as well as their grain sizes are not known. If the scapolites contain about 3 wt % of each, near the maximum possible, the scapolite abundances probably range from about 5 wt % scapolite at Eden and Hellas; 3–5% at Chryse, Moab, and Oxia Palus; 2–3% at Arabia, Syrtis Major, and Isidis; to less than 2% at Hellespontica, Syrtis Minor, and Margaritifer, assuming a relatively large grain size of 50–100 μm. If the characteristic grain sizes are smaller or the HCO3− and HSO4− contents are lower, the scapolite abundances required to match the observed band depths would be higher. The mineral bands are apparent in many of the Mars spectra measured, so it appears to be widely but not uniformly distributed. The newly observed fine structure also varies greatly in both depth and spectral detail with location on Mars. Thus there appears to be regional variations in composition. The mineral phases appear to reflect local or regional geology and are not primarily contained in the homogeneous, globally redistributed aeolian dust. Higher spectral resolution Martian spectra in the 2.3-μm region as well as at 3.9 μm are needed to confirm the scapolite identification and to constrain its abundance.
Klaus, James S; Janse, Ingmar; Heikoop, Jeffrey M; Sanford, Robert A; Fouke, Bruce W
2007-05-01
The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Curaçao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.
Manufacturing and alignment tolerance analysis through Montecarlo approach for PLATO
NASA Astrophysics Data System (ADS)
Magrin, Demetrio; Ragazzoni, Roberto; Bergomi, Maria; Biondi, Federico; Chinellato, Simonetta; Dima, Marco; Farinato, Jacopo; Greggio, Davide; Gullieuszik, Marco; Marafatto, Luca; Viotto, Valentina; Munari, Matteo; Pagano, Isabella; Sicilia, Daniela; Basso, Stefano; Borsa, Francesco; Ghigo, Mauro; Spiga, Daniele; Bandy, Timothy; Brändli, Mathias; Benz, Willy; Bruno, Giordano; De Roche, Thierry; Piazza, Daniele; Rieder, Martin; Brandeker, Alexis; Klebor, Maximilian; Mogulsky, Valery; Schweitzer, Mario; Wieser, Matthias; Erikson, Anders; Rauer, Heike
2016-07-01
The project PLAnetary Transits and Oscillations of stars (PLATO) is one of the selected medium class (M class) missions in the framework of the ESA Cosmic Vision 2015-2025 program. The main scientific goal of PLATO is the discovery and study of extrasolar planetary systems by means of planetary transits detection. According to the current baseline, the scientific payload consists of 34 all refractive telescopes having small aperture (120mm) and wide field of view (diameter greater than 37 degrees) observing over 0.5-1 micron wavelength band. The telescopes are mounted on a common optical bench and are divided in four families of eight telescopes with an overlapping line-of-sight in order to maximize the science return. Remaining two telescopes will be dedicated to support on-board star-tracking system and will be specialized on two different photometric bands for science purposes. The performance requirement, adopted as merit function during the analysis, is specified as 90% enclosed energy contained in a square having size 2 pixels over the whole field of view with a depth of focus of +/-20 micron. Given the complexity of the system, we have followed a Montecarlo analysis approach for manufacturing and alignment tolerances. We will describe here the tolerance method and the preliminary results, speculating on the assumed risks and expected performances.
Mineralogical Mapping of Quadrangle Av-2 (belicia) and Av-3 (caparronia) on 4 Vesta.
NASA Astrophysics Data System (ADS)
Stephan, K.; Frigeri, A.; Barucci, M. A.; Sunshine, J.; Jaumann, R.; Palomba, E.; Blewett, D. T.; Yingst, A.; Marchi, S.; De Sanctis, C. M.; Matz, K.-D.; Roatsch, Th.; Preusker, F.; Le Corre, L.; Reddy, V.; Russell, C. T.; Raymond, C. A.
2012-04-01
Since the arrival of the Dawn spacecraft at 4 Vesta on July 16, 2011 the Visible and InfraRed Imaging Spectrometer (VIR) has acquired hyperspectral images of Vesta's surface, which enable to characterize Vesta's mineralogical composition in the wavelength range from 0.25 to 5.1µm. As part of the analysis of Vesta's surface composition the science team is preparing a series of 15 quadrangle maps showing the results derived from the spectroscopic analysis of the VIR and FC color data. We present preliminary results of the spectroscopic analysis achieved for the quadrangles Av-2 (Belicia) and Av-3 (Caparronia), which show Vesta's surface between 21°N - 66° N°, 0° - 90°E and 90° - 180° E, respectively. These results are based on the analysis of the combination of the visible albedo, spectral parameters including the position, depth of the pyroxene absorptions, as well as color ratio composites using the VIR channels centering at 749nm/438nm (Red), 749nm/917nm (Green) and 438nm/749nm (Blue). Vesta's rotation axis, however, is tilted ~29° with respect to its orbital plane. Since Dawn arrived during northern winter, portions of Vesta north of ~45° N are dominated by extended shadows or have not yet been imaged due to permanent night. Thus, limited FC color or VIR hyperspectral data have been available for the quadrangles Av-2 and Av-3. The illuminated parts are dominated by a heavily-cratered northern terrain with ancient troughs and grooves and named after the prominent relatively large impact craters Belicia (~37°N/48°E) and Caparronia (~36°N/167°E). Numerous impact craters of different size, morphology, and state of surface degradation are apparent. Most spectral variations are strongly affected by the extreme illumination conditions, making the analysis of albedo variations and spectral signatures rather difficult. Their interpretation thus remains. Nevertheless, VIR spectra show clear evidence of Vesta's surface composition similar to those of HED (howardite, eucrite and diogenite) meteorites. The prominent pyroxene absorptions near 0.9 and 1.9µm show different band depths and band centers, which are associated with the presence and abundance of the mafic minerals as well as grain size. Within the quadrangles Av-2 and Av3, band centers appear to shift slightly to shorter wavelength from W to E following the trend of the equatorial region. A similar trend can be observed with respect to the depth of the pyroxene absorptions with the absorption deepening eastward. Locally, bright material associated with strong pyroxene absorptions is observed on crater walls of a few relatively large impact craters with pronounced topography. Either these impact craters are relatively young or fresh material became exposed due mass wasting processes. The effects of photometry for under these illumination conditions are being assessed. The authors gratefully acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work is supported by NASA through the Dawn project and the German Space Agency (DLR).
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Schlaffer, Stefan
2015-04-01
The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and summer mean water table depth. Using the boosted regression tree model of Bechtold et al., we evaluate whether the ASAR data can improve prediction accuracy and/or replace parts of ancillary data that is often not available in other countries. In the temporal domain primary results often show a better dependency between backscatter and water table depths compared to the spatial domain. For a variety of vegetation covers the temporal monitoring potential of ASAR data is evaluated at the level of annual water table depth statistics. Bechtold, M., Tiemeyer, B., Laggner, A., Leppelt, T., Frahm, E., and Belting, S., 2014. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling, Hydrol. Earth Syst. Sci., 18, 3319-3339. Dettmann, U., Bechtold, M., Frahm, E., Tiemeyer, B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. Journal of Hydrology, 515, 103-115. Reschke, J., Bartsch, A., Schlaffer, S., Schepaschenko, D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 4, 2923-2943.
A simple method of obtaining concentration depth-profiles from X-ray diffraction
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Unnam, J.
1984-01-01
The construction of composition profiles from X-ray intensity bands was investigated. The intensity band-to-composition profile transformation utilizes a solution which can be easily evaluated. The technique can be applied to thin films and thick speciments for which the variation of lattice parameters, linear absorption coefficient, and reflectivity with composition are known. A deconvolution scheme with corrections for the instrumental broadening and ak-alfadoublet is discussed.
NASA Astrophysics Data System (ADS)
Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan
2015-03-01
We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi; Wetzel, Hans-Ulrich; Teshebaeva, Kanayim
2017-04-01
The active deformation in Kyrgyzstan results from the collision between Indian and Asia tectonic plates at a rate of 29 ± 1 mm/yr. This collision is accommodated by deformation on prominent faults, which can be ruptured coseismically and trigger other hazards like landslides. Many earthquake and earthquake-induced landslides in Kyrgyzstan occur in mountainous areas, where limited accessibility makes ground-based measurements for the assessment of their impact a challenging task. In this context, remote sensing measurements are extraordinary useful as they improve our knowledge about coseismic rupture process and provide information on other types of hazards that are triggered during and/or after the earthquakes. This investigation aims to use L-band ALOS/PALSAR, C-band Sentinel-1, Sentinel-2 data to evaluate fault slip model and coseismic-induced landslides related to 26 June 2016 Sary-Tash earthquake, southwest Kyrgyzstan. First we implement three methods to measure coseismic surface motion using radar data including Interferometric SAR (InSAR) analysis, SAR tracking technique and multiple aperture InSAR (MAI), followed by using Genetic Algorithm (GA) to invert the final displacement field to infer combination of orientation, location and slip on rectangular uniform slip fault plane. Slip distribution analysis is done by applying Tikhonov regularization to solve the constrained least-square method with Laplacian smoothing approach. The estimated coseismic slip model suggests a nearly W-E thrusting fault ruptured during the earthquake event in which the main rupture occurred at a depth between 11 and 14 km. Second, the local phase shifts related to landslides are inferred by detailed analysis pre-seismic, coseismic and postseismic C-band and L-band interferograms and the results are compared with the interpretations derived from Sentinel-2 data acquired before and after the earthquake.
NASA Astrophysics Data System (ADS)
Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia
2016-06-01
As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.
Li, Wen-Di; Chou, Stephen Y
2010-01-18
We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.
Bubble propagation on a rail: a concept for sorting bubbles by size
NASA Astrophysics Data System (ADS)
Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne
We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.
CANDELS Visual Classifications: Scheme, Data Release, and First Results
NASA Astrophysics Data System (ADS)
Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Harry; Koo, David; Bassett, Robert; Bernyk, Maksym; Blancato, Kirsten; Bournaud, Frederic; Cassata, Paolo; Castellano, Marco; Cheung, Edmond; Conselice, Christopher J.; Croton, Darren; Dahlen, Tomas; de Mello, Duilia F.; DeGroot, Laura; Donley, Jennifer; Guedes, Javiera; Grogin, Norman; Hathi, Nimish; Hilton, Matt; Hollon, Brett; Koekemoer, Anton; Liu, Nick; Lucas, Ray A.; Martig, Marie; McGrath, Elizabeth; McPartland, Conor; Mobasher, Bahram; Morlock, Alice; O'Leary, Erin; Peth, Mike; Pforr, Janine; Pillepich, Annalisa; Rosario, David; Soto, Emmaris; Straughn, Amber; Telford, Olivia; Sunnquist, Ben; Trump, Jonathan; Weiner, Benjamin; Wuyts, Stijn; Inami, Hanae; Kassin, Susan; Lani, Caterina; Poole, Gregory B.; Rizer, Zachary
2015-11-01
We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed—GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sérsic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sérsic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.
NASA Astrophysics Data System (ADS)
Matsui, T. N.; Suzuki, K.; Nakajima, T. Y.; Matsumae, Y.
2011-12-01
Clouds play an import role in energy balance and climate changes of the Earth. IPCC AR4, however, pointed out that cloud feedback is still the large source of uncertainty in climate estimates. In the recent decade, the new satellites with the active instruments (e.g. Cloudsat) represented a new epoch in earth observations. The active remote sensing is powerful for illustrating the vertical structures of clouds, but the passive remote sensing from satellite images also contribute to better understating of cloud system. For instance, Nakajima et al. (2010a) and Suzuki et al. (2010) illustrated transition of cloud growth, from cloud droplet to drizzle to rain, using the combine analysis of the cloud droplet size retrieved from passive images (MODIS) and the reflectivity profiles from Cloudsat. Furthermore, EarthCARE that is a new satellite launched years later is composed of not only the active but also passive instruments for the combined analysis. On the other hands, the methods to retrieve the advanced information of cloud properties are also required because many imagers have been operated and are now planned (e.g. GCOM-C/SGLI), and have the advantages such as wide observation width and more observation channels. Cloud droplet effective radius (CDR) and cloud optical thickness (COT) can be retrieved using a non-water-absorbing band (e.g. 0.86μm) and a water-absorbing band (1.6, 2.1, 3.7μm) of imagers under the assumptions such as the log-normal droplet size distribution and the plane-parallel cloud structure. However, the differences between three retrieved CDRs using 1.6, 2.1 or 3.7μm (R16, R21 and R37) are found in the satellite observations. Several studies pointed out that vertical/horizontal inhomogeneity of cloud structure, difference of penetration depth of water-absorbing bands, multi-modal droplet distribution and/or 3-D radiative transfer effect cause the CDR differences. In other words, the advanced information of clouds may lie hidden in the differences. Nakajima et al. (2010b) investigated the impact of the differences sensitivities to particle size and the penetration depth in an attempt to explain the CDR differences found in by using a simple two-layer cloud model with the bi-modal size distribution functions. Their results showed the sensitivity differences between 1.6, 2.1 and 3.7μm bands to droplet sizes and their vertical stratification. In this study, we further investigate the impact of the vertical inhomogeneity structure including the drizzle by using a spectral-bin microphysics cloud model. We apply the 1-D radiative transfer computation to the numerical cloud fields generated by the cloud model, and retrieve the CDRs from the reflectances thus simulated at each band. We then compare the statistics of these retrieved CDRs with the CDRs obtained from MODIS observations and derive the sensitivity functions of the retrieved CDRs to the particle size and the optical depth from the sets of the droplet distribution functions predicted by the model and the retrieved CDRs. This study is an attempt to interpret the CDR differences in terms of the cloud vertical structure and the cloud particle growth processes.
Effects of Particle Size on the Attenuated Total Reflection Spectrum of Minerals.
Udvardi, Beatrix; Kovács, István J; Fancsik, Tamás; Kónya, Péter; Bátori, Miklósné; Stercel, Ferenc; Falus, György; Szalai, Zoltán
2017-06-01
This study focuses on particle size effect on monomineralic powders recorded using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Six particle size fractions of quartz, feldspar, calcite, and dolomite were prepared (<2, 2-4, 4-8, 8-16, 16-32, and 32-63 µm). It is found that the width, intensity, and area of bands in the ATR FT-IR spectra of minerals have explicit dependence on the particle size. As particle size increases, the intensity and area of IR bands usually decrease while the width of bands increases. The band positions usually shifted to higher wavenumbers with decreasing particle size. Infrared spectra of minerals are the most intensive in the particle size fraction of 2-4 µm. However, if the particle size is very small (<2 µm), due to the wavelength and penetration depth of the IR light, intensity decreases. Therefore, the quantity of very fine-grained minerals may be underestimated compared to the coarser phases. A nonlinear regression analysis of the data indicated that the average coefficients and indices of the power trend line equation imply a very simplistic relationship between median particle diameter and absorbance at a given wavenumber. It is concluded that when powder samples with substantially different particle size are compared, as in regression analysis for modal predictions using ATR FT-IR, it is also important to report the grain size distribution or surface area of samples. The band area of water (3000-3620 cm -1 ) is similar in each mineral fraction, except for the particles below 2 µm. It indicates that the finest particles could have disproportionately more water adsorbed on their larger surface area. Thus, these higher wavenumbers of the ATR FT-IR spectra may be more sensitive to this spectral interference if the number of particles below 2 µm is considerable. It is also concluded that at least a proportion of the moisture could be very adhesive to the particles due to the band shift towards lower wavenumbers in the IR range of 3000-3620 cm -1 .
MacKinnon, D.J.; Chavez, P.S.; Fraser, R. S.; Niemeyer, T.C.; Gillette, Dale A.
1996-01-01
As part of a joint Russian/American dust-storm experiment, GOES-VISSR (Geostationary Operational Environmental Satellite, Visible-Infrared Spin-Scan Radiometer), data from a visible-band satellite image of a large dust storm emanating from Owens Lake, California were acquired on March 10 and 11, 1993. The satellite data were calibrated to targets of known ground reflectance factors and processed with radiative transfer techniques to yield aerosol (dust) optical depth at those stages of the dust storm when concurrent ground-based measurements of optical depth were made. Calibration of the satellite data is crucial for comparing surficial changes in remotely sensed data acquired over a period of time from the same area and for determining accurate concentrations of atmospheric aerosols using radiative transfer techniques. The calibration procedure forces the distribution of visible-band, DN (digital number) values, acquired on July 1, 1992, at 1731 GMT from the GOES-VISSR sensor over a large test area, to match the distribution of visible-band, DN values concurrently acquired from a Landsat MSS (Multispectral Scanner) sensor over the same test area; the Landsat MSS DN values were directly associated with reflectance factors measured from ground targets. The calibrated GOES-VISSR data for July 1, 1992, were then used to calibrate other GOES-VISSR data acquired on March 10 and 11, 1993, during the dust storm. Uncertainties in location of ground targets, bi-directional reflectance and atmospheric attenuation contribute an error of approximately ??0.02 in the satellite-inferred ground reflectance factors. On March 11 at 1031 PST the satellite-received radiances during the peak of the storm were 3 times larger than predicted by our radiative transfer model for a pure clay dust plume of infinite optical depth. This result supported ground-based measurements that the plume at that time was composed primarily of large salt grains, probably sodium sulfate, which could not be properly characterized in our radiative transfer model. Further, the satellite data showed that the salt fell out of the plume within 35 km from the source. Finer-grained, clay dust was observed to extend beyond the salt-laden plume and was the major component of the dust plume after 1131 PST, when erosion of the salt crust on Owens Lake ceased. By 1331 and 1401 PST satellite-inferred, optical depths compared favorably with measurements concurrently acquired at the ground. Uncertainties in bi-directional reflectance, atmospheric attenuation, and locating ground points in the satellite data manifest errors between the inferred and measured optical depths in the range of 20 to 50%; these errors would be much greater without the calibration of the GOES-VISSR data. Changes in satellite-inferred reflectance factors over the lake bed during the course of the storm showed that 76 km2 of the surface was disrupted during the March 11 storm, suggesting as much as 76 ?? 103 m3 of crustal material were displaced for each millimeter of several estimated to have been moved during the storm; an unknown fraction of the displaced material was suspended. The satellite data also showed dust fallout on mountain snowfields. Whereas fallout may have removed most of the salt, satellite data acquired at 1631 PST, when the plume had a large brightness contrast with the ground, showed that it covered over 2500 km2 and contained at least 1.6 ?? 109 g of sediment. For such a small source area, the dust represents a substantial contribution to the regional and global load of aerosols.
The potentially hazardous Asteroid (214869) 2007 PA8: An unweathered L chondrite analog surface
NASA Astrophysics Data System (ADS)
Fornasier, S.; Belskaya, I. N.; Perna, D.
2015-04-01
In this paper we present the results on the polarimetric and spectroscopic observations of the potentially hazardous Asteroid (214869) 2007 PA8 obtained during its favorable apparition in October-November 2012, when it approached the Earth at the minimal distance of 0.043 AU. Polarimetry was carried out at the NOT in the B, V, R, and I bands covering both low (12-23°) and large phase angles (88-99°). Spectroscopy in the visible and near infrared range was obtained at the TNG telescope. The spectrum of 2007 PA8 shows silicates absorption features and a behavior consistent with a Q-type classification. The olivine and pyroxene BI band is centered at 0.9578 ± 0.0042 μm, with a band depth of 16.5%, the BII band is centered at 1.95 ± 0.01 μm, and it has a band depth of about 3.9%. The 2007 PA8 spectral parameters are consistent with those of L chondrites. Also the spectral comparison with meteorites gives the L-type chondrites, and L6 in particular, as best match. The NEA (214869) 2007 PA8 is the forth moderate albedo asteroid and the first Q-type asteroid for which the value of the polarization maximum is determined. The inversion angle of the polarization curve in the V filter is 19.0 ± 1.1°, the corresponding slope parameter (h) is of 0.078 ± 0.010%/°, the maximum value of polarization is 5.99 ± 0.16%, and the extreme value of negative polarization is estimated to be lower than -0.52%. Using the polarimetric slope we derive a geometric albedo of 0.29 ± 0.08 in the V band, that gives an estimated diameter of 1.4 ± 0.2 km, assuming an absolute Hv magnitude of 16.2 mag. We find a strong dependence of the polarization in the B, V, R, and I bands with wavelength, and the polarimetric albedo in the four bands is strongly correlated with the asteroid's spectrum. The 2007 PA8 polarimetric properties resemble those of other 2 NEAs, 1566 Icarus and 25143 Itokawa, which are both S(IV)/Q type. Our spectral and polarimetric analysis indicate that 2007 PA8 has a young and fresh surface almost unweathered, similar to L-type chondrites. These results, together with dynamical simulations made by Nedelcu et al. (Nedelcu, D. A., Birlan, M., Popescu, M., Badescu, O., Pricopi, D. [2014]. Astron. Astrophys. 567, L7, 5pp.) and Nesvorny et al. (Nesvorny, D., Vokrouhlicky, D., Morbidelli, A., Bottke, W. F. [2009]. Icarus 200, 698-701), indicate that 2007 PA8 may be a member of the Gefion family recently ejected from the 5:2 resonance and a potential source of L chondrites.
Nucleation of shear bands in amorphous alloys
Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio
2014-01-01
The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599
Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.
Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan
2014-08-11
A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.
Modeling Multi-Bunch X-band Photoinjector Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, R A; Anderson, S G; Gibson, D J
An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray technology at LLNL. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Of critical import to the functioning of the LLNL X-band system with multiple electron bunches is the performance of the photoinjector. In depth modeling of the Mark 1 LLNL/SLAC X-band rf photoinjector performance will be presented addressing important challenges that must be addressed in order to fabricate a multi-bunch Mark 2 photoinjector. Emittance performance is evaluated under different nominal electronmore » bunch parameters using electrostatic codes such as PARMELA. Wake potential is analyzed using electromagnetic time domain simulations using the ACE3P code T3P. Plans for multi-bunch experiments and implementation of photoinjector advances for the Mark 2 design will also be discussed.« less
Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee
2015-10-01
Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.
NASA Astrophysics Data System (ADS)
Patadia, Falguni; Levy, Robert C.; Mattoo, Shana
2018-06-01
Retrieving aerosol optical depth (AOD) from top-of-atmosphere (TOA) satellite-measured radiance requires separating the aerosol signal from the total observed signal. Total TOA radiance includes signal from the underlying surface and from atmospheric constituents such as aerosols, clouds and gases. Multispectral retrieval algorithms, such as the dark-target (DT) algorithm that operates upon the Moderate Resolution Imaging Spectroradiometer (MODIS, on board Terra and Aqua satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS, on board Suomi-NPP) sensors, use wavelength bands in window
regions. However, while small, the gas absorptions in these bands are non-negligible and require correction. In this paper, we use the High-resolution TRANsmission (HITRAN) database and Line-By-Line Radiative Transfer Model (LBLRTM) to derive consistent gas corrections for both MODIS and VIIRS wavelength bands. Absorptions from H2O, CO2 and O3 are considered, as well as other trace gases. Even though MODIS and VIIRS bands are similar
, they are different enough that applying MODIS-specific gas corrections to VIIRS observations results in an underestimate of global mean AOD (by 0.01), but with much larger regional AOD biases of up to 0.07. As recent studies have been attempting to create a long-term data record by joining multiple satellite data sets, including MODIS and VIIRS, the consistency of gas correction has become even more crucial.
The K-Band Quasar Luminosity Function from an SDSS and UKIDSS Matched Catalog
NASA Astrophysics Data System (ADS)
Peth, Michael; Ross, N. P.; Schneider, D. P.
2010-01-01
We match the 1,015,082 quasars from the Sloan Digital Sky Survey (SDSS) DR6 Photometric Quasar catalog to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) DR3 to produce a catalog of 130,827 objects with optical (ugriz) and infrared (YJHK) measurements over an area of 1,200 sq. deg. A matching radius of 1'’ is used; the positional standard deviations of SDSS DR6 quasars and UKIDSS LAS is δRA = 0.137'’ and δDec = 0.131''. The catalog contains 74,351 K-band detections and 42,133 objects have coverage in all four NIR bands. In addition to the catalog, we present optical and NIR color-redshift and color-color plots. The photometric vs. spectroscopic redshift plots demonstrate how unreliable high reported photometric redshifts can be. This forces us to focus on z4.6 quasars are compared to our highest redshift objects. The giK color-color plot demonstrates that stellar contamination only affects a small sample of the objects. Distributions for Y,J,H,K and i-bands reveal insights into the flux limits in each magnitude. We investigate the distribution of redshifts from different data sets and investigate the legitimacy of certain measured photometric redshift regions. For in-depth analysis, we focus on the 300 sq. deg area equatorial SDSS region designated as Stripe 82. We measure the observed K-band quasar luminosity function (QLF) for a subset of 9,872, z<2.2 objects. We find the shape of the K-band QLF is very similar to that of the optical QLF, over the considered redshift ranges. Our calculated K-Band QLFs broadly match previous optical QLFs calculated from the SDSS and 2SLAQ QSO surveys and should provide important constraints linking unobscured optical quasars to Mid-Infrared detected, dusty and obscured AGNs at high-redshift.
Emirates eXploration Imager (EXI) Overview from the Emirates Mars Mission
NASA Astrophysics Data System (ADS)
AlShamsi, Maryam; Wolff, Michael; Khoory, Mohammad; AlMheiri, Suhail; Jones, Andrew; Drake, Ginger; Osterloo, Mikki; Reed, Heather
2017-04-01
The Emirates eXploration Imager (EXI) instrument is one of three scientific instruments abroad the Emirate Mars Mission (EMM) spacecraft, "Hope". The planned launch window opens in the summer of 2020, with the goal of this United Arab Emirates (UAE) mission to explore the dynamics of the Martian atmosphere through global spatial sampling which includes both diurnal and seasonal timescales. A particular focus of the mission is the improvement of our understanding of the global circulation in the lower atmosphere and the connections to the upward transport of energy of the escaping atmospheric particles from the upper atmosphere. This will be accomplished using three unique and complementary scientific instruments. The subject of this presentation, EXI, is a multi-band camera capable of taking 12 megapixel images, which translates to a spatial resolution of better than 8 km with a well calibrated radiometric performance. EXI uses a selector wheel mechanism consisting of 6 discrete bandpass filters to sample the optical spectral region: 3 UV bands and 3 visible (RGB) bands. Atmospheric characterization will involve the retrieval of the ice optical depth using the 300-340 nm band, the dust optical depth in the 205-235nm range, and the column abundance of ozone with a band covering 245-275 nm. Radiometric fidelity is optimized while simplifying the optical design by separating the UV and VIS optical paths. The instrument is being developed jointly by the Laboratory for Atmospheric and Space Physics (LASP), University of California, Boulder, USA, and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE.
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.
2018-02-01
Spatio-temporal localization of deformation and the rupture of the aluminum-magnesium AlMg6 alloy, initiated by a geometrical stress concentrator, are studied in situ by video recording at a speed of 500 to 20000 frames/s. It is established that a stress concentrator in the form of a small notch with a depth about 1% of the width of a flat specimen is an attractor of bands of macrolocalized plastic deformation, starting from a Lüders band and ending with the start of the main crack. The key role of intersecting deformation macrobands in the development of the main crack is revealed. Possible micromechanisms of viscous destruction associated with the dynamics of the intersection of deformation bands are discussed.
NASA Astrophysics Data System (ADS)
Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.
2017-12-01
The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive cross-correlation stacking. At last, we will model the stacked Pms signals within different frequency bands to obtain the final sharpness of crust-mantle boundary, which may shed new lights on understanding the mechanism of cratonic reactivation and destruction in the NCC.
NASA Astrophysics Data System (ADS)
Taniguchi, Daisuke; Matsunaga, Noriyuki; Kobayashi, Naoto; Fukue, Kei; Hamano, Satoshi; Ikeda, Yuji; Kawakita, Hideyo; Kondo, Sohei; Sameshima, Hiroaki; Yasui, Chikako
2018-02-01
The effective temperature, one of the most fundamental atmospheric parameters of a star, can be estimated using various methods; here, we focus on a method using line-depth ratios (LDRs). This method combines low- and high-excitation lines and makes use of relations between LDRs of these line pairs and the effective temperature. It has an advantage, for example, of being minimally affected by interstellar reddening, which changes stellar colours. We report 81 relations between LDRs and effective temperature established with high-resolution, λ/Δλ ∼ 28 000, spectra of nine G- to M-type giants in the Y and J bands. Our analysis gives the first comprehensive set of LDR relations for this wavelength range. The combination of all these relations can be used to determine the effective temperatures of stars that have 3700 < Teff < 5400 K and -0.5 < [Fe/H] < +0.3 dex, to a precision of ±10 K in the best cases.
The results of initial analysis of OSTA-1/Ocean Color Experiment (OCE) imagery
NASA Technical Reports Server (NTRS)
Kim, H. H.; Hart, W. D.
1982-01-01
Ocean view images from the Ocean Color Experiment (OCE) were produced at three widely separated locations on the Earth. Digital computer enhancement and band ratioing techniques were applied to radiometrically corrected OCE spectral data to emphasize patterns of chlorophyll distribution and, in one shallow, clear water case, bottom topography. The chlorophyll pattern in the Yellow Sea between China and Korea was evident in a scene produced from Shuttle Orbit 24. The effects of the discharge from the Yangtze and other rivers were also observed. Two scenes from orbits 30 and 32 revealed the movement of patches of plankton in the Gulf of Cadiz. Geometrical corrections to these images permitted the existing ocean current velocities in the vicinity to be deduced. The variability in water depth over the Grand Bahama Bank was estimated by using the blue-green OCE channel. The very clear water conditions in the area caused bottom reflected sunlight to produce a sensor signal which was related inversely to the depth of the water.
Ch'ng, Huck-Ywih; Ahmed, Osumanu Haruna; Ab. Majid, Nik Muhamad
2011-01-01
Logging and poor shifting cultivation negatively affect initial soil carbon (C) storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR) spectroscopy. The relatively high E4/E6 values of humic acids (HAs) in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH) and phenolic (-OH) of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA) regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0–20 to 40–60 cm were observed, suggesting C buildup from the lowest depths 20–40 and 40–60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages. PMID:21403973
NASA Astrophysics Data System (ADS)
Kazama, Yoriko; Yamamoto, Tomonori
2017-10-01
Bathymetry at shallow water especially shallower than 15m is an important area for environmental monitoring and national defense. Because the depth of shallow water is changeable by the sediment deposition and the ocean waves, the periodic monitoring at shoe area is needed. Utilization of satellite images are well matched for widely and repeatedly monitoring at sea area. Sea bottom terrain model using by remote sensing data have been developed and these methods based on the radiative transfer model of the sun irradiance which is affected by the atmosphere, water, and sea bottom. We adopted that general method of the sea depth extraction to the satellite imagery, WorldView-2; which has very fine spatial resolution (50cm/pix) and eight bands at visible to near-infrared wavelengths. From high-spatial resolution satellite images, there is possibility to know the coral reefs and the rock area's detail terrain model which offers important information for the amphibious landing. In addition, the WorldView-2 satellite sensor has the band at near the ultraviolet wavelength that is transmitted through the water. On the other hand, the previous study showed that the estimation error by the satellite imagery was related to the sea bottom materials such as sand, coral reef, sea alga, and rocks. Therefore, in this study, we focused on sea bottom materials, and tried to improve the depth estimation accuracy. First, we classified the sea bottom materials by the SVM method, which used the depth data acquired by multi-beam sonar as supervised data. Then correction values in the depth estimation equation were calculated applying the classification results. As a result, the classification accuracy of sea bottom materials was 93%, and the depth estimation error using the correction by the classification result was within 1.2m.
Compact light-emitting-diode sun photometer for atmospheric optical depth measurements.
Acharya, Y B; Jayaraman, A; Ramachandran, S; Subbaraya, B H
1995-03-01
A new compact light-emitting diode (LED) sun photometer, in which a LED is used as a spectrally selective photodetector as well as a nonlinear feedback element in the operational amplifier, has been developed. The output voltage that is proportional to the logarithm of the incident solar intensity permits the direct measurement of atmospheric optical depths in selected spectral bands. Measurements made over Ahmedabad, India, show good agreement, within a few percent, of optical depths derived with a LED as a photodetector in a linear mode and with a LED as both a photodetector and a feedback element in an operational amplifier in log mode. The optical depths are also found to compare well with those obtained simultaneously with a conventional filter photometer.
Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies
NASA Astrophysics Data System (ADS)
Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.
2009-10-01
We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.
Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu
2004-01-01
This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and ɛ-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments. PMID:14711668
NASA Astrophysics Data System (ADS)
Diez, S.; Rein, S.; Roth, T.; Glunz, S. W.
2007-02-01
Temperature- and injection-dependent lifetime spectroscopy (TIDLS) as a method to characterize point defects in silicon with several energy levels is demonstrated. An intentionally cobalt-contaminated p-type wafer was investigated by means of lifetime measurements performed at different temperatures up to 151°C. Two defect energy levels were required to model the lifetime curves on basis of the Shockley-Read-Hall statistics. The detailed analysis is based on the determination of the recently introduced defect parameter solution surface (DPSS) in order to extract the underlying defect parameters. A unique solution has been found for a deep defect level located in the upper band gap half with an energy depth of EC-Et=0.38±0.01eV, with a corresponding ratio of capture cross sections k =σn/σp=0.16 within the interval of uncertainty of 0.06-0.69. Additionally, a deep donor level in the lower band gap half known from the literature could be assigned to a second energy level within the DPSS analysis at Et-EV=0.41±0.02eV with a corresponding ratio of capture cross sections k =σn/σp=16±3. An investigation of the temperature dependence of the capture cross section for electrons suggests that the underlying recombination process of the defect in the lower band gap half is driven by a two stage cascade capture with an activation energy of ΔE =52±2meV. These results show that TIDLS in combination with DPSS analysis is a powerful method to characterize even multiple defect levels that are affecting carrier recombination lifetime in parallel.
NASA Astrophysics Data System (ADS)
Richardson, Ryan T.
This study builds upon recent research in the field of fluvial remote sensing by applying techniques for mapping physical attributes of rivers. Depth, velocity, and grain size are primary controls on the types of habitat present in fluvial ecosystems. This thesis focuses on expanding fluvial remote sensing to larger spatial extents and sub-meter resolutions, which will increase our ability to capture the spatial heterogeneity of habitat at a resolution relevant to individual salmonids and an extent relevant to species. This thesis consists of two chapters, one focusing on expanding the spatial extent over which depth can be mapped using Optimal Band Ratio Analysis (OBRA) and the other developing general relations for mapping grain size from three-dimensional topographic point clouds. The two chapters are independent but connected by the overarching goal of providing scientists and managers more useful tools for quantifying the amount and quality of salmonid habitat via remote sensing. The OBRA chapter highlights the true power of remote sensing to map depths from hyperspectral images as a central component of watershed scale analysis, while also acknowledging the great challenges involved with increasing spatial extent. The grain size mapping chapter establishes the first general relations for mapping grain size from roughness using point clouds. These relations will significantly reduce the time needed in the field by eliminating the need for independent measurements of grain size for calibrating the roughness-grain size relationship and thus making grain size mapping with SFM more cost effective for river restoration and monitoring. More data from future studies are needed to refine these relations and establish their validity and generality. In conclusion, this study adds to the rapidly growing field of fluvial remote sensing and could facilitate river research and restoration.
[Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].
You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue
2015-04-01
Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific basis for rapid estimation of oil content in oil sands in future.
NASA Astrophysics Data System (ADS)
Barui, Ananya; Banerjee, Provas; Patra, Rusha; Das, Raunak Kumar; Dhara, Santanu; Dutta, Pranab K.; Chatterjee, Jyotirmoy
2011-02-01
Direct noninvasive visualization of wound bed with depth information is important to understand the tissue repair. We correlate skin swept-source-optical coherence tomography (OCT) with histopathological and immunohistochemical evaluation on traumatic lower limb wounds under honey dressing to compare and assess the tissue repair features acquired noninvasively and invasively. Analysis of optical biopsy identifies an uppermost brighter band for stratum corneum with region specific thickness (p < 0.0001) and gray-level intensity (p < 0.0001) variation. Below the stratum corneum, variation in optical intensities is remarkable in different regions of the wound bed. Correlation between OCT and microscopic observations are explored especially in respect to progressive growth and maturation of the epithelial and subepithelial components. Characteristic transition of uniform hypolucid band in OCT image for depigmented zone to wavy highly lucid band in the pigmented zone could be directly correlated with the microscopic findings. The transformation of prematured epithelium of depigmented area, with low expression of E-cadherin, to matured epithelium with higher E-cadherin expression in pigmented zone, implicated plausible change in their optical properties as depicted in OCT. This correlated evaluation of multimodal images demonstrates applicability of swept-source-OCT in wound research and importance of integrated approach in validation of new technology.
ERIM progress report on use of ERTS-1 data: Summary report of work on ten tasks
NASA Technical Reports Server (NTRS)
Thomson, F. J. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Several of the tasks have produced significant results which are summarized: (1) Absolute water depth can be calculated from a ratio of signals from bands MSS 4 and MSS 5. (2) A 13 category terrain feature classification map of Yellowstone National Park has been produced using supervised pattern recognition techniques. (3) ERTS-1 data has been shown to provide a detection and monitoring capability for a number of water quality problems associated with off-shore ocean dumping sites and inland lakes. (4) A corrected ratio of bands MSS-5 and MSS-7 signals has been formed. (5) A concise format has been devised for storing the ratio signatures of geologic rock and mineral materials determined from laboratory reflectance spectra. (6) Results of work in information extraction demonstrate: signal variability exists among ERTS-1 detectors in any one spectral band that will impact users doing quantitative analysis on successive ERTS-1 images; a newly developed computer-aided procedure for correlating ERTS-1 pixels to ground features; the strong influence of atmospheric effects in ERTS-1 data; and area estimation accuracies are better using the ERIM proportion estimation algorithm than for conventional recognition techniques.
Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands
NASA Technical Reports Server (NTRS)
Kuze, Akihiko; Chance, Kelly V.
1994-01-01
Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.
OPTICAL IMAGES AND SOURCE CATALOG OF AKARI NORTH ECLIPTIC POLE WIDE SURVEY FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Yiseul; Im, Myungshin; Lee, Induk
2010-09-15
We present the source catalog and the properties of the B-, R-, and I-band images obtained to support the AKARI North Ecliptic Pole Wide (NEP-Wide) survey. The NEP-Wide is an AKARI infrared imaging survey of the north ecliptic pole covering a 5.8 deg{sup 2} area over 2.5-6 {mu}m wavelengths. The optical imaging data were obtained at the Maidanak Observatory in Uzbekistan using the Seoul National University 4k x 4k Camera on the 1.5 m telescope. These images cover 4.9 deg{sup 2} where no deep optical imaging data are available. Our B-, R-, and I-band data reach the depths of {approx}23.4,more » {approx}23.1, and {approx}22.3 mag (AB) at 5{sigma}, respectively. The source catalog contains 96,460 objects in the R band, and the astrometric accuracy is about 0.''15 at 1{sigma} in each R.A. and decl. direction. These photometric data will be useful for many studies including identification of optical counterparts of the infrared sources detected by AKARI, analysis of their spectral energy distributions from optical through infrared, and the selection of interesting objects to understand the obscured galaxy evolution.« less
NASA Astrophysics Data System (ADS)
Bradu, Adrian; Marques, Manuel J.; Bouchal, Petr; Podoleanu, Adrian Gh.
2013-03-01
The purpose of this study was to show how to favorably mix two e_ects to improve the sensitivity with depth in Fourier domain optical coherence tomography (OCT): Talbot bands (TB) and Gabor-based fusion (GF) technique. TB operation is achieved by directing the two beams, from the object arm and from the reference arm in the OCT interferometer, along parallel separate paths towards the spectrometer. By changing the lateral gap between the two beams in their path towards the spectrometer, the position for the maximum sensitivity versus the optical path difference in the interferometer is adjusted. For five values of the focus position, the gap between the two beams is readjusted to reach maximum sensitivity. Then, similar to the procedure employed in the GF technique, a composite image is formed by edging together the parts of the five images that exhibited maximum brightness. The combined procedure, TB/GF is examined for four different values of the beam diameters of the two beams. Also we demonstrate volumetric FD-OCT images with mirror term attenuation and sensitivity profile shifted towards higher OPD values by applying a Talbot bands configuration.
Reflectance measurements for the detection and mapping of soil limitations
NASA Technical Reports Server (NTRS)
Benson, L. A.; Frazee, C. J.
1973-01-01
During 1971 and 1972 research was conducted on two fallow fields in the proposed Oahe Irrigation Project to investigate the relationship between the tonal variations observed on aerial photographs and the principal soil limitations of the area. A grid sampling procedure was used to collected detailed field data during the 1972 growing season. The field data was compared to imagery collected on May 14, 1971 at 3050 meters altitude. The imagery and field data were initially evaluated by a visual analysis. Correlation and regression analysis revealed a highly significant correlation and regression analysis revealed a highly significant correlation between the digitized color infrared film data and soil properties such as organic matter content, color, depth to carbonates, bulk density and reflectivity. Computer classification of the multiemulsion film data resulted in maps delineating the areas containing claypan and erosion limitations. Reflectance data from the red spectral band provided the best results.
A New Satellite Aerosol Retrieval Using High Spectral Resolution Oxygen A-Band Measurements
NASA Astrophysics Data System (ADS)
Winker, D. M.; Zhai, P.
2014-12-01
Efforts to advance current satellite aerosol retrieval capabilities have mostly focused on polarimetric techniques. While there has been much interest in recent decades in the use of the oxygen A-band for retrievals of cloud height or surface pressure, these techniques are mostly based on A-band measurements with relatively low spectral resolution. We report here on a new aerosol retrieval technique based on high-resolution A-band spectra. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers. The OCO-2 satellite, launched in July this year and now flying in formation with the CALIPSO satellite, carries an oxygen A-band spectrometer with a spectral resolution of 21,000:1. This is sufficient to resolve the A-band line structure, which contains information on atmospheric photon path lengths. Combining channels with oxygen absorption ranging from weak to strong allows the separation of atmospheric and surface scattering. An optimal estimation algorithm for simultaneous retrieval of aerosol optical depth, aerosol absorption, and surface albedo has been developed. Lidar profile data is used for scene identification and to provide constraints on the vertical distribution of scatterers. As calibrated OCO-2 data is not expected until the end of this year, the algorithm has been developed and tested using simulated OCO-2 spectra. The simulations show that AOD and surface albedo can be retrieved with high accuracy. Retrievals of aerosol single scatter albedo are encouraging, showing good performance when AOD is larger than about 0.15. Retrieval performance improves as the albedo of the underlying surface increases. Thus, the technique shows great promise for retrieving the absorption optical depth of aerosols located above clouds. This presentation will discuss the basis of the approach and results of the A-band/lidar retrievals based on simulated data.
NASA Astrophysics Data System (ADS)
Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.
2018-05-01
We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.
The Dark Energy Survey Image Processing Pipeline
NASA Astrophysics Data System (ADS)
Morganson, E.; Gruendl, R. A.; Menanteau, F.; Carrasco Kind, M.; Chen, Y.-C.; Daues, G.; Drlica-Wagner, A.; Friedel, D. N.; Gower, M.; Johnson, M. W. G.; Johnson, M. D.; Kessler, R.; Paz-Chinchón, F.; Petravick, D.; Pond, C.; Yanny, B.; Allam, S.; Armstrong, R.; Barkhouse, W.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Buckley-Geer, E.; Covarrubias, R.; Desai, S.; Diehl, H. T.; Goldstein, D. A.; Gruen, D.; Li, T. S.; Lin, H.; Marriner, J.; Mohr, J. J.; Neilsen, E.; Ngeow, C.-C.; Paech, K.; Rykoff, E. S.; Sako, M.; Sevilla-Noarbe, I.; Sheldon, E.; Sobreira, F.; Tucker, D. L.; Wester, W.; DES Collaboration
2018-07-01
The Dark Energy Survey (DES) is a five-year optical imaging campaign with the goal of understanding the origin of cosmic acceleration. DES performs a ∼5000 deg2 survey of the southern sky in five optical bands (g, r, i, z, Y) to a depth of ∼24th magnitude. Contemporaneously, DES performs a deep, time-domain survey in four optical bands (g, r, i, z) over ∼27 deg2. DES exposures are processed nightly with an evolving data reduction pipeline and evaluated for image quality to determine if they need to be retaken. Difference imaging and transient source detection are also performed in the time domain component nightly. On a bi-annual basis, DES exposures are reprocessed with a refined pipeline and coadded to maximize imaging depth. Here we describe the DES image processing pipeline in support of DES science, as a reference for users of archival DES data, and as a guide for future astronomical surveys.
In-plane magnetic penetration depth of superconducting CaKFe4As4
NASA Astrophysics Data System (ADS)
Khasanov, Rustem; Meier, William R.; Wu, Yun; Mou, Daixiang; Bud'ko, Sergey L.; Eremin, Ilya; Luetkens, Hubertus; Kaminski, Adam; Canfield, Paul C.; Amato, Alex
2018-04-01
The temperature dependence of the in-plane magnetic penetration depth (λa b) in an extensively characterized sample of superconducting CaKFe4As4(Tc≃35 K ) was investigated using muon-spin rotation (μ SR ). A comparison of λab -2(T ) measured by μ SR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μ SR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ0=2.4 (2 ) meV . Our data suggest that in CaKFe4As4 the s± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.
NASA Astrophysics Data System (ADS)
Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong
2016-02-01
The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.
SAR Tomography for Terrestrial Snow Stratigraphy
NASA Astrophysics Data System (ADS)
Lei, Y.; Xu, X.; Baldi, C.; Bleser, J. W. D.; Yueh, S. H.; Elder, K.
2017-12-01
Traditional microwave observation of snowpack includes brightness temperature and backscatter. The single baseline configuration and loss of phase information hinders the retrieval of snow stratigraphy information from microwave observations. In this paper, we are investigating the tomography of polarimetric SAR to measure snow stratigraphy. In the past two years, we have developed a homodyne frequency modulated continuous wave radar (FMCW), operation at three earth exploration satellite bands within the X-band and Ku-band spectrums (centered at 9.6 GHz, 13.5 GHz, and 17.2 GHz) at Jet Propulsion Laboratory. The transceiver is mounted to a dual-axis planar scanner (60cm in each direction), which translates the antenna beams across the target area creating a tomographic baseline in two directions. Dual-antenna architecture was implemented to improve the isolation between the transmitter and receiver. This technique offers a 50 dB improvement in signal-to-noise ratio versus conventional single-antenna FMCW radar systems. With current setting, we could have around 30cm vertical resolution. The system was deployed on a ground based tower at the Fraser Experimental Forest (FEF) Headquarters, near Fraser, CO, USA (39.847°N, 105.912°W) from February 1 to April 30, 2017 and run continuously with some gaps for required optional supports. FEF is a 93-km2 research watershed in the heart of the central Rocky Mountains approximately 80-km West of Denver. During the campaign, in situ measurements of snow depth and other snowpack properties were performed every week for comparison with the remotely sensed data. A network of soil moisture sensors, time-lapse cameras, acoustic depth sensors, laser depth sensor and meteorological instruments was installed next to the site to collect in situ measurements of snow, weather, and soil conditions. Preliminary tomographic processing of ground based SAR data of snowpack at X- and Ku- band has revealed the presence of multiple layers within the snowpack and clear melting/refrozen cycle, which is consistant with the in-situ measurement.
A Three - Dimensional Receiver Function Study of the Western United States
NASA Astrophysics Data System (ADS)
Lindsey, C.; Gurrola, H.
2008-12-01
The western United States has a complex geologic history and has been the focus of many regional scale PASSCAL seismic studies that investigate depth variations to the Moho, the 410 km discontinuity, and the 660 km discontinuities. Analysis of depth variations to the Moho in relation to topography is important in understanding the isostatic compensation depth, the thermal state of the upper mantle and boundaries between tectonic provinces. Analysis of the 410 and 660 km discontinuities allow us to determine variations in mantle temperature at these depths and facilitates comparison with tectonic boundaries. This abstract summarizes results from stacking Pds phases throughout the western US using data from all available previous PASSCAL studies in the western U.S. together with data from the EarthScope Transportable array. These data sets enable us to produce an image over the entire western US from the Pacific coast to the Rocky mountain front. Common conversion point stacking of Pds phases was performed by back projecting the data through a 3-D seismic velocity model (surface wave tomography model NA04 by Van der Lee). The images produced show large variations in Moho topography with an average depth of 39.6 kilometer over the western US with ± 7.2 km standard deviation in depth. As would be expected the Moho appears to be deepest beneath the Colorado Plateau and central Montana and shallowest throughout the Basin and Raange. The Moho also appears very shallow beneath eastern Washington. There is a band oof thick crust along the Yellowstone hot spot track. The 410 km discontinuity appears to have a mean depth of 427 km with a standard deviation in depth of ± 10.2 km. At this time the images are still very noisy but in a regional sense the 410 appears deepest beneath the southern part of the image and shallower to the north. Depths to the 660 km discontinuity appear to average 675 km with standard deviation of ± 9.8 km. The 660 does not appear to have a north-south change in depth but appears deepest to the Eastern part of the image and shallower to the west. This relationship may indicate that the thermal state of the 410 is controlled by high temperatures to the south associated with the Basin and Range and cooler to the north were subduction is present. The 660 may be controlled by the transition from warm oceanic and transitional lithosphere to the west and cooler continental lithosphere to the east.
The Impact of a New Speckle Holography Analysis on the Galactic Center Orbits Initiative
NASA Astrophysics Data System (ADS)
Mangian, John; Ghez, Andrea; Gautam, Abhimat; Gallego, Laly; Schödel, Rainer; Lu, Jessica; Chen, Zhuo; UCLA Galactic Center Group; W.M. Keck Observatory Staff
2018-01-01
The Galactic Center Orbit Initiative has used two decades of high angular resolution imaging data from the W. M. Keck Observatory to make astrometric measurements of stellar motion around our Galaxy's central supermassive black hole. We present an analysis of a new approach to ten years of speckle imaging data (1995 - 2005) that has been processed with a new holography analysis. This analysis has (1) improved the image quality near the edge of the combined speckle frame and (2) increased the depth of the images and therefore increased the number of sources detected throughout the entire image. By directly comparing each holography analysis, we find a 41% increase in total detected sources and a 81% increase in sources further than 3" from the central black hole (SgrA*). Further, we find a 49% increase in sources of K-band magnitude greater than the old holography limiting magnitude due to the reduction of light halos surrounding bright sources.
NASA Astrophysics Data System (ADS)
Purohit, Geetanjali; Pattanaik, Anup; Nayak, Pratibindhya
2018-05-01
Anisotropic properties of Sommerfeld coefficient and penetration depth for single crystal NdFeAsO1-xFx has been studied by using modified phenomenological Ginzburg-Landau (GL) theory. In the above two-band superconducting system, the calculated value of Sommerfeld coefficient shows very close proximity with the experimental result as reported by Welp. Further, anisotropic ratio of penetration depth also calculated and reported for this system. The results of anisotropic properties of the above superconducting system implied that modified GL-theory in the form presented here can be applicable to the above superconducting system.
Enabling recruitment success in bariatric surgical trials: pilot phase of the By-Band-Sleeve study.
Paramasivan, S; Rogers, C A; Welbourn, R; Byrne, J P; Salter, N; Mahon, D; Noble, H; Kelly, J; Mazza, G; Whybrow, P; Andrews, R C; Wilson, C; Blazeby, J M; Donovan, J L
2017-11-01
Randomized controlled trials (RCTs) involving surgical procedures are challenging for recruitment and infrequent in the specialty of bariatrics. The pilot phase of the By-Band-Sleeve study (gastric bypass versus gastric band versus sleeve gastrectomy) provided the opportunity for an investigation of recruitment using a qualitative research integrated in trials (QuinteT) recruitment intervention (QRI). The QRI investigated recruitment in two centers in the pilot phase comparing bypass and banding, through the analysis of 12 in-depth staff interviews, 84 audio recordings of patient consultations, 19 non-participant observations of consultations and patient screening data. QRI findings were developed into a plan of action and fed back to centers to improve information provision and recruitment organization. Recruitment proved to be extremely difficult with only two patients recruited during the first 2 months. The pivotal issue in Center A was that an effective and established clinical service could not easily adapt to the needs of the RCT. There was little scope to present RCT details or ensure efficient eligibility assessment, and recruiters struggled to convey equipoise. Following presentation of QRI findings, recruitment in Center A increased from 9% in the first 2 months (2/22) to 40% (26/65) in the 4 months thereafter. Center B, commencing recruitment 3 months after Center A, learnt from the emerging issues in Center A and set up a special clinic for trial recruitment. The trial successfully completed pilot recruitment and progressed to the main phase across 11 centers. The QRI identified key issues that enabled the integration of the trial into the clinical setting. This contributed to successful recruitment in the By-Band-Sleeve trial-currently the largest in bariatric practice-and offers opportunities to optimize recruitment in other trials in bariatrics.
NASA Astrophysics Data System (ADS)
Grosset, L.; Rouan, D.; Gratadour, D.; Pelat, D.; Orkisz, J.; Marin, F.; Goosmann, R.
2018-04-01
Aims: In this paper we aim to constrain the properties of dust structures in the central first parsecs of active galactic nuclei (AGN). Our goal is to study the required optical depth and composition of different dusty and ionised structures. Methods: We developed a radiative transfer code called Monte Carlo for Active Galactic Nuclei (MontAGN), which is optimised for polarimetric observations in the infrared. With both this code and STOKES, designed to be relevant from the hard X-ray band to near-infrared wavelengths, we investigate the polarisation emerging from a characteristic model of the AGN environment. For this purpose, we compare predictions of our models with previous infrared observations of NGC 1068, and try to reproduce several key polarisation patterns revealed by polarisation mapping. Results: We constrain the required dust structures and their densities. More precisely, we find that the electron density inside the ionisation cone is about 2.0 × 109 m-3. With structures constituted of spherical grains of constant density, we also highlight that the torus should be thicker than 20 in term of K-band optical depth to block direct light from the centre. It should also have a stratification in density: a less dense outer rim with an optical depth at 2.2 μm typically between 0.8 and 4 for observing the double scattering effect previously proposed. Conclusions: We bring constraints on the dust structures in the inner parsecs of an AGN model supposed to describe NGC 1068. When compared to observations, this leads to an optical depth of at least 20 in the Ks band for the torus of NGC 1068, corresponding to τV ≈ 170, which is within the range of current estimation based on observations. In the future, we will improve our study by including non-uniform dust structures and aligned elongated grains to constrain other possible interpretations of the observations.
Spitzer secondary eclipses of Qatar-1b
NASA Astrophysics Data System (ADS)
Garhart, Emily; Deming, Drake; Mandell, Avi; Knutson, Heather; Fortney, Jonathan J.
2018-02-01
Aims: Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slightly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. Methods: We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 μm wavelengths. We used pixel-level decorrelation to correct for Spitzer's intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Results: Our 3.6 μm eclipse depth is 0.149 ± 0.051% and the 4.5 μm depth is 0.273 ± 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 ± 71 K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day-side only. The day side temperature of the planet is unlikely to be as high (1885 K) as indicated by the ground-based eclipses in the Ks band, unless the planet's emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 ± 0.0017, yielding e cos ω = -0.0028 ± 0.0027. Our results are consistent with a circular orbit, and we constrain e cos ω much more strongly than has been possible with previous observations. Tables of the lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A55
Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations
NASA Astrophysics Data System (ADS)
Becker, G.; Knapmeyer-Endrun, B.
2018-02-01
We derive autocorrelations from ambient seismic noise to image the reflectivity of the subsurface and to extract the Moho depth beneath the stations for two different data sets in Central Europe. The autocorrelations are calculated by smoothing the spectrum of the data in order to suppress high amplitude, narrow-band signals of industrial origin, applying a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking. The stacked autocorrelation results are filtered and analysed predominantly in the frequency range of 1-2 Hz. Moho depth is automatically picked inside uncertainty windows obtained from prior information. The processing scheme we developed is applied to data from permanent seismic stations located in different geological provinces across Europe, with varying Moho depths between 25 and 50 km, and to the mainly short period temporary PASSEQ stations along seismic profile POLONAISE P4. The autocorrelation results are spatially and temporarily stable, but show a clear correlation with the existence of cultural noise. On average, a minimum of six months of data is needed to obtain stable results. The obtained Moho depth results are in good agreement with the subsurface model provided by seismic profiling, receiver function estimates and the European Moho depth map. In addition to extracting the Moho depth, it is possible to identify an intracrustal layer along the profile, again closely matching the seismic model. For more than half of the broad-band stations, another change in reflectivity within the mantle is observed and can be correlated with the lithosphere-asthenosphere boundary to the west and a mid-lithospheric discontinuity beneath the East European Craton. With the application of the developed autocorrelation processing scheme to different stations with varying crustal thicknesses, it is shown that Moho depth can be extracted independent of subsurface structure, when station coverage is low, when no strong seismic sources are present, and when only limited amounts of data are available.
NASA Astrophysics Data System (ADS)
Libby, E.; Azofeifa, D. E.; Hernández-Jiménez, M.; Barboza-Aguilar, C.; Solís, A.; García-Aguilar, I.; Arce-Marenco, L.; Hernández, A.; Vargas, W. E.
2014-08-01
Measured reflection spectra from elytra of Chrysina aurigans scarabs are reported. They show a broad reflection band for wavelengths from 0.525 to 1.0 μm with a sequence of maxima and minima reflection values superimposed on a mean value of around 40% for the high reflection band. Different mechanisms contributing to the reflection spectra have been considered, with the dominant effect, reflection of left handed circularly polarized light, being produced by a laminated left handed twisted structure whose pitch changes with depth through the procuticle in a more complex way than that characterizing broad band circular polarizers based on cholesteric liquid crystals.
Observations of banding in first-year Arctic sea ice
NASA Astrophysics Data System (ADS)
Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.
2004-08-01
Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.
A methodology to estimate uncertainty for emission projections through sensitivity analysis.
Lumbreras, Julio; de Andrés, Juan Manuel; Pérez, Javier; Borge, Rafael; de la Paz, David; Rodríguez, María Encarnación
2015-04-01
Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the "with measures" scenario for Spain, concretely over the 12 highest emitting sectors regarding greenhouse gas and air pollutants emissions. Examples of methodology application for two important sectors (power plants, and agriculture and livestock) are shown and explained in depth. Uncertainty bands were obtained up to 2020 by modifying the driving factors of the 12 selected sectors and the methodology was tested against a recomputed emission trend in a low economic-growth perspective and official figures for 2010, showing a very good performance. A solid understanding and quantification of uncertainties related to atmospheric emission inventories and projections provide useful information for policy negotiations. However, as many of those uncertainties are irreducible, there is an interest on how they could be managed in order to derive robust policy conclusions. Taking this into account, a method developed to use sensitivity analysis as a source of information to derive nonstatistical uncertainty bands for emission projections is presented and applied to Spain. This method simplifies uncertainty assessment and allows other countries to take advantage of their sensitivity analyses.
Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids
Tao, Z.; Chen, C.; Szilvasi, T.; ...
2016-06-01
Attosecond spectroscopic techniques have made it possible to measure differences in transport times for photoelectrons from localized core levels and delocalized valence bands in solids. Here, we report the application of attosecond pulse trains to directly and unambiguously measure the difference in lifetimes between photoelectrons born into free electron–like states and those excited into unoccupied excited states in the band structure of nickel (111). An enormous increase in lifetime of 212 ± 30 attoseconds occurs when the final state coincides with a short-lived excited state. Moreover, a strong dependence of this lifetime on emission angle is directly related to themore » final-state band dispersion as a function of electron transverse momentum. Our finding underscores the importance of the material band structure in determining photoelectron lifetimes and corresponding electron escape depths.« less
Unipolar Barrier Dual-Band Infrared Detectors
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)
2017-01-01
Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.
Photoluminescence and Band Alignment of Strained GaAsSb/GaAs QW Structures Grown by MBE on GaAs
Sadofyev, Yuri G.; Samal, Nigamananda
2010-01-01
An in-depth optimization of growth conditions and investigation of optical properties including discussions on band alignment of GaAsSb/GaAs quantum well (QW) on GaAs by molecular beam epitaxy (MBE) are reported. Optimal MBE growth temperature of GaAsSb QW is found to be 470 ± 10 °C. GaAsSb/GaAs QW with Sb content ~0.36 has a weak type-II band alignment with valence band offset ratio QV ~1.06. A full width at half maximum (FWHM) of ~60 meV in room temperature (RT) photoluminescence (PL) indicates fluctuation in electrostatic potential to be less than 20 meV. Samples grown under optimal conditions do not exhibit any blue shift of peak in RT PL spectra under varying excitation.
Combined Raman and SEM study on CaF2 formed on/in enamel by APF treatments.
Tsuda, H; Jongebloed, W L; Stokroos, I; Arends, J
1993-01-01
Raman spectra containing the distinct band at 322 cm-1 due to CaF2 or CaF2-like material formed in/on fluoridated bovine enamel were recorded using a micro-Raman spectrograph. Due to increasing levels of background fluorescence with increasing thickness of enamel, the Raman measurements were carried out on thin regions of wedged enamel sections. The distribution of the CaF2 or CaF2-like material was estimated using a simple model. The results indicate that 1/3 of the total CaF2 was concentrated within the narrow depth < 2 microns with high CaF2 concentrations (> 10 wt%), and that the majority of the CaF2 was distributed over the depths up to 26 microns (1 wt% CaF2). SEM observations on fractured fluoridated enamel confirmed that morphological changes were present in the depth range comparable to that of the high CaF2 concentration region expected from the Raman analysis. In deeper regions where lower concentration (< 10%) but a large amount of CaF2 was still expected, the SEM images failed to distinguish between the normal and fluoridated enamel. After KOH treatment, the Raman spectra did not show evidence of the CaF2 peak and the SEM micrographs also confirmed the removal of globules. The peak position of the Raman band of the CaF2 formed by the fluoridation was identical to that of pure CaF2. However, the linewidth was 23 cm-1 (FWHM) and a factor of 2 broader than that of pure CaF2 (12 cm-1). This implies that the lattice dynamics of the CaF2 formed by fluoridation is different from of pure CaF2, and that the material formed is 'CaF2-like' or 'disordered CaF2'.
NASA Technical Reports Server (NTRS)
Bregman, Jesse D.; Rank, David; Temi, Pasquale; Hudgins, Doug; Kay, Laura
1993-01-01
Images of HD 44179 (the Red Rectangle) obtained in the 3.3 and 11.3 micron emission bands show two different spatial distributions. The 3.3 micron band image is centrally peaked and slightly extended N-S while the 11.3 micron image shows a N-S bipolar shape with no central peak. If the 3.3 micron band image shows the intrinsic emission of the 11.3 micron band, then the data suggest absorption of the 11.3 micron emission near the center of HD 44179 by a disk with an optical depth of about one, making HD 44179 the first object in which the IR emission bands have been observed to be optically thick. Since there is no evidence of absorption of the 3.3 micron emission band by the disk, the absorption cross section of the 3.3 micron band must be substantially less than for the 11.3 micron band. Since the 3.3 and 11.3 micron bands are thought to arise from different size PAHs, the similar N-S extents of the two images implies that the ratio of small to large PAHs does not change substantially with distance from the center.
Chondrites, S asteroids, and space weathering: Thumping noises from the coffin?
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Clark, B. E.
1993-01-01
Most of the spectral characteristics of ordinary chondrites and S-asteroids in the visible and infrared can be reduced to three numerical values. These values represent the depth of the absorption band resulting from octahedrally coordinated Fe(sup 2+), the reflectance at 0.56 microns and the slope of the continuum (as measured according to convention). By plotting these three characteristics, it is possible to immediately compare the spectral characteristics of large numbers of ordinary chondrites and S-asteroids. Commonality of spectral characteristics between these populations can thus be evaluated on the basis of overlap in position on three two-coordinate systems: albedo vs. band depth, band depth vs. slope, and slope vs. albedo. In order to establish identity, members of the two populations must overlap on all three of these independent parameter spaces. In this coordinate system, spectra of 23 ordinary chondrites (representing all metamorphic grades), and 39 S-asteroids were compared. It was found that there was no overlap between the two populations in terms of the slope vs. band depth parameters, nor were most chondrites identical to the S-asteroids with respect to the other criteria. However, the controversial question remains: Where are the parent bodies of the chondrites? Perhaps an even more critical question is: Where are our samples of the S-asteroids? Considering the geography of the asteroid belt and the theory that early solar-system electromagnetic induction heating differentiated protoasteroids in the inner portion of the main belt, it was suggested that although S-asteroids and ordinary chondrites have very similar mineralogy, the S-asteroids are mixtures of metallic nickel iron and silicates which resulted from magmatism induced by electromagnetic heating whereas chondrites were only slightly metamorphosed nebular condensates. In this scenario chondrites would have been derived from a population of bodies with thermal lag times so short that they were not subjected to melting during the phase of the electromagnetic induction heating event but only to various degrees of pervasive metamorphism. Furthermore, these objects would then have been too small to be observed and systematically included in the library of asteroidal spectra. It was also suggested that the parametric distribution of S-asteroid spectra could be reproduced by mixing various proportions of NiFe meteorite and achondritic materials. This has also been demonstrated in the laboratory.
Hyperspectral Data Processing and Mapping of Soil Parameters: Preliminary Data from Tuscany (Italy)
NASA Astrophysics Data System (ADS)
Garfagnoli, F.; Moretti, S.; Catani, F.; Innocenti, L.; Chiarantini, L.
2010-12-01
Hyperspectral imaging has become a very powerful remote sensing tool for its capability of performing chemical and physical analysis of the observed areas. The objective of this study is to retrieve and characterize clay mineral content of the cultivated layer of soils, from both airborne hyperspectral and field spectrometry surveys in the 400-2500 nm spectral range. Correlation analysis is used to examine the possibility to predict the selected property using high-resolution reflectance spectra and images. The study area is located in the Mugello basin, about 30 km north of Firenze (Tuscany, Italy). Agriculturally suitable terrains are assigned mainly to annual crops, marginally to olive groves, vineyards and orchards. Soils mostly belong to Regosols and Cambisols orders. About 80 topsoil samples scattered all over the area were collected simultaneously with the flight of SIM.GA hyperspectral camera from Selex Galileo. The quantitative determination of clay minerals content in soil samples was performed by means of XRD and Rietveld refinement. An ASD FieldSpec spectroradiometer was used to obtain reflectance spectra from dried, crushed and sieved samples under controlled laboratory conditions. Different chemometric techniques (multiple linear regression, vertex component analysis, partial least squares regression and band depth analysis) were preliminarily tested to correlate mineralogical records with reflectance data. A one component partial least squares regression model yielded a preliminary R2 value of 0.65. A similar result was achieved by plotting the absorption peak depth at 2210 versus total clay mineral content (band-depth analysis). A complete hyperspectral geocoded reflectance dataset was collected using SIM.GA hyperspectral image sensor from Selex-Galileo, mounted on board of the University of Firenze ultra light aircraft. The approximate pixel resolution was 0.6 m (VNIR) and 1.2 m (SWIR). Airborne SIM.GA row data were firstly transformed into at-sensor radiance values, where calibration coefficients and parameters from laboratory measurements are applied to non-georeferred VNIR/SWIR DN values. Then, geocoded products are retrieved for each flight line by using a procedure developed in IDL Language and PARGE (PARametric Geocoding) software. When all compensation parameters are applied to hyperspectral data or to the final thematic map, orthorectified, georeferred and coregistered VNIR to SWIR images or maps are available for GIS application and 3D view. Airborne imagery has to be corrected for the influence of the atmosphere, solar illumination, sensor viewing geometry and terrain geometry information, for the retrieval of inherent surface reflectance properties. Then, different geophysical parameters can be investigated and retrieved by means of inversion algorithms. The experimental fitting of laboratory data on mineral content is used for airborne data inversion, whose results are in agreement with laboratory records, demonstrating the possibility to use this methodology for digital mapping of soil properties.
NASA Astrophysics Data System (ADS)
Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind
2016-02-01
Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.
Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone
NASA Astrophysics Data System (ADS)
Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.
2013-02-01
Chemical pretreatment has been the prevailing sample preparation procedure for infrared (IR) spectroscopic studies on bone. However, experiments have indicated that chemical pretreatment can potentially affect the interactions between the components. Typically the IR techniques have involved transmission experiments. Here we report experimental studies using photoacoustic Fourier transform infrared spectroscopy (PA-FTIR). As a nondestructive technique, PA-FTIR can detect absorbance spectrum from a sample at controllable sampling depth and with little or no sample preparation. Additionally, the coupling inert gas, helium, which is utilized in the PA-FTIR system, can inhibit bacteria growth of bone by displacing oxygen. Therefore, we used this technique to study the undisturbed human cortical bone. It is found that photoacoustic mode (linear-scan, LS-PA-FTIR) can obtain basically similar spectra of bone as compared to the traditional transmission mode, but it seems more sensitive to amide III and ν2 carbonate bands. The ν3 phosphate band is indicative of detailed mineral structure and symmetry of native bone. The PA-FTIR depth profiling experiments on human cortical bone also indicate the influence of water on OH band and the cutting effects on amide I and mineral bands. Our results indicate that phosphate ion geometry appears less symmetric in its undisturbed state as detected by the PA-FTIR as compared to higher symmetry observed using transmission techniques on disturbed samples. Moreover, the PA-FTIR spectra indicate a band at 1747 cm-1 possibly resulting from Cdbnd O stretching of lipids, cholesterol esters, and triglycerides from the arteries. Comparison of the spectra in transverse and longitudinal cross-sections demonstrates that, the surface area of the longitudinal section bone appears to have more organic matrix exposed and with higher mineral stoichiometry.
Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II
NASA Technical Reports Server (NTRS)
Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.
2006-01-01
The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.
NASA Astrophysics Data System (ADS)
Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria
2016-07-01
Anorthositic rocks are widespread on the lunar surface and have probably been formed by flotation of PL over a magma ocean. A large portion of pristine rocks are characterized by a low Mg/(Mg+Fe) ratio, and have been classified as ferroan anorthosite, and recently, after observation from SELENE Spectral Profiler,pure anorthosites regions with more than 98% PL have been recognized. In this paper, we analyze a set of mixtures with PL content similar to the ferroan anorthosites and to the pure anorthosite regions, using the Origin Software and the Modified Gaussian Model. We consider three plagioclases with varying FeOwt% contents (PL1, PL2 and PL3)andthree mafic end-members (1) 100% orthopyroxene, (2) 56% orthopyroxene and 44% clinopyroxene, and (3) 100% olivine (OL). The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). Here we have shown that in pyroxene (PX)-bearing mixtures, the PX is distinguishable even in mixtures with only 1% PX and that PX band at ca. 900 nm is always deeper than PL1 band while PL2 and PL3 are deeperthan OPX 900 nm band from 95, 96% PL. In OL-bearing mixtures, OL detection limit is 2% when mixed with PL1, and 3% and 4% if mixed with PL2 and PL3. We also demonstrated how spectral parameters vary with PL%, and, generally, increasing the PL content: (1) 1250 nm band depth decreases when mixed with OL, while it deepens in mixtures with PX; (2) 1250 nm band centers generally move towards longer wavelength for PL1-bearing mixtures, while do not show significant variations considering PL2/PL3-mixtures; (3) 1250 nm band width of PL1 in E1 and E5-mixtures substantially widens while in other mixtures it only slightly varies. Here we also proposed an application to a real case, from Proclus crater, revealing how studying terrestrial analogues is fundamental to infer hypothesis on the mineralogical composition of a planetary surface, but also how the spectral convergence of spectra characterized by different compositions can led to misleading interpretations.
NASA Astrophysics Data System (ADS)
Mohammadpour, Raheleh
2017-12-01
Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.
Crowley, J.K.; Brickey, D.W.; Rowan, L.C.
1989-01-01
Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.
NASA Astrophysics Data System (ADS)
Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven
2016-07-01
Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.
NASA Astrophysics Data System (ADS)
Sun, Yi; Cai, Haoyuan; Wang, Xiaoping
2017-12-01
A metamaterial-gold multilayer sensing structure designed using the particle swarm optimization (PSO) algorithm with an auxiliary grating is proposed for using in a surface plasmon resonance (SPR) sensor system based on the polarization control method. After numerical calculations and simulation analysis, it was found that the metamaterial sensing structure significantly improves the sensitivity of the SPR signal with intensity singularity. The metamaterial sensing structure also increases the penetration depth of evanescent wave, making it possible to detect low-molecular-weight biomolecules and larger cells such as bacteria. The auxiliary grating structure was designed to identify the refractive index of the sensing region on both sides of intensity singularity. The stability of recognition and the electric field intensity of the visible light band were also studied.
Observation and Analysis of Secondary Eclipses of WASP-32b
NASA Astrophysics Data System (ADS)
Garland, Justin; Harrington, Joseph; Cubillos, Patricio E.; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver; Maxted, Pierre F. L.
2015-11-01
We report two Spitzer secondary eclipses of the exoplanet WASP-32b. Discovered in 2010 by Maxted et al, this hot-Jupiter planet has a mass of 3.6 ± 0.07 Mj, a radius of 1.18 ± 0.07 Rj, an equilibrium temperature of 1560 ± 50 K, and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 µm and 4.5 µm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth estimates of 0.0013 ± 0.00023 in the 4.5 µm band and inconclusive results in the 3.6 µm band. We also report an infrared brightness temperature of 1538 ± 110 in the 4.5 µm channel and refinements of orbital parameters for WASP-32b from our eclipse measurement as well as amatuer and professional data that closely match previous results. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Secondary Eclipse Observations and Orbital Analysis of WASP-32b
NASA Astrophysics Data System (ADS)
Garland, Justin; Harrington, Joseph; Cubillos, Patricio; Blecic, Jasmina; Foster, Andrew S.; Bowman, Oliver; Maxted, Pierre F. L.
2016-01-01
We report two Spitzer secondary eclipses of the exoplanet WASP-32b. Discovered by Maxted et al. (2010), this hot-Jupiter planet has a mass of 3.6 ± 0.07 MJ a radius of 1.18 ± 0.07 RJ and an orbital period of 2.71865 ± 0.00008 days around a G-type star. We observed two secondary eclipses in the 3.6 μm and 4.5 μm channels using the Spitzer Space Telescope in 2010 as a part of the Spitzer Exoplanet Target of Opportunity program (program 60003). We present eclipse depth estimates of 0.0013 ± 0.00023 in the 4.5 μm band and inconclusive results in the 3.6 μm band. We also report an infrared brightness temperature of 1538 ± 110 in the 4.5 μm channel and refinements of orbital parameters for WASP-32b from our eclipse measurement as well as amatuer and professional data that closely match previous results. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jifei; Lu, Xiangyang, E-mail: xylu@pku.edu.cn; Yang, Ziqin
As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. Themore » self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.« less
Photoluminescence and lasing properties of MAPbBr3 single crystals grown from solution
NASA Astrophysics Data System (ADS)
Aryal, Sandip; Lafalce, Evan; Zhang, Chuang; Zhai, Yaxin; Vardeny, Z. Valy
Recent studies of solution-grown single crystals of inorganic-organic hybrid lead-trihalide perovskites have suggested that surface traps may play a significant role in their photophysics. We study electron-hole recombination in single crystal MAPbBr3 through such trap states using cw photoluminescence (PL) and ps transient photoinduced absorption (PA) spectroscopies. By varying the depth of the collecting optics we examined the contributions from surface and bulk radiative recombination. We found a surface dominated PL band at the band-edge that is similar to that observed from polycrystalline thin films, as well as a weaker red-shifted emission band that originates from the bulk crystal. The two PL bands are distinguished in their temperature, excitation intensity and polarization dependencies, as well as their ps dynamics. Additionally, amplified spontaneous emission and crystal-related cavity lasing modes were observed in the same spectral range as the PL band assigned to the surface recombination. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.
STS studies of the pi-band superconductivity in MgB2 in a transverse field
NASA Astrophysics Data System (ADS)
Griggs, C.; Eskildsen, M. R.; Zhigadlo, N. D.; Karpinski, J.
2012-02-01
Since being discovered MgB2 has become the paradigm for two-band/two-gap superconductivity. Early scanning tunneling spectroscopy (STS) measurements, showed a rapid suppression of the superconductivty in the isotropic π-band for modest applied fields H c. These measurements were performed with the tunnel current (It) parallel to the crystalline c-axis which couple, almost exclusively, to the π-band, and with the suppression attributed to vortex core overlap. Here we report STS measurements performed in a transverse field, such that Itc H. In this configuration no vortices are cutting through the image plane, and instead the superconducting phase is affected by the Meissner currents running within one penetration depth of the sample surface. Within this field orientation we observe far less suppression of the superconducting state in the π-band compared to the earlier measurements with H c. A clear gap is seen up to H= 0.9 T.
Shuttle orbiter KU-band radar/communications system design evaluation
NASA Technical Reports Server (NTRS)
1979-01-01
An expanded introduction is presented which addresses the in-depth nature of the tasks and indicates continuity of the reported effort and results with previous work and related contracts, and the two major modes of operation which exist in the Ku-band system, namely, the radar mode and the communication mode, are described. The Ku-band radar system is designed to search for a target in a designated or undesignated mode, then track the detected target, which might be cooperative (active) or passive, providing accurate, estimates of the target range, range rate, angle and angle rate to enable the orbiter to rendezvous with this target. The radar mode is described along with a summary of its predicted performance. The principal sub-unit that implements the radar function is the electronics assembly 2(EA-2). The relationship of EA-2 to the remainder of the Ku-band system is shown. A block diagram of EA-2 is presented including the main command and status signals between EA-2 and the other Ku-band units.
NASA Astrophysics Data System (ADS)
Hand, K. P.; Calrson, R.; Sun, H.; Anderson, M.; Wynn, W.; Levy, R.
2005-12-01
We have analyzed both the surface expression and depth profile of cryptoendolithic microbial communities at Battleship Promontory, in the Dry Valleys of Antarctica. Data was collected on site with an active mid-infrared Fourier transform microspectrometer (2.6 - 15 um), a near-infrared spectrometer (0.9-1.8 um), and a visible spectrometer (0.4-1 um). The trio of instruments are connected to microscopes that yield ~1 mm2 spatial resolution on the sample and they are mounted on two perpendicular motorized stages that allow for spatial scanning over an area of ~2cm2. Here we present results on the surface expression of the subsurface microbes in these three spectral regions and we present results on the analysis of a colonized sample examined in cross section. The former case has direct application to the remote, robotic detection of life within the rocks of Mars and the later case provides fundamental insights into the geological and biological interactions that make the Antarctic cryptoendolithic ecosystems possible. Non-invasive surface detection of cyanobacterial dominated communities was possible through the observation of several distinct bands: the carbon-hydrogen stretching modes (symmetric and asymmetric) for CH, CH2, and CH3 in the regions of 3.3-3.6 um and 3.6-3.7 um; the NH2 scissoring and C=O stretch near 6.0 um; the amide I of beta-pleated structures at ~6.1 um; and the 6.4 um - 6.6 um bands of N-H in plane bend of the amide II functional group. In combination, these bands make a strong case for carbohydrates and proteins associated with life. Not surprisingly, as the integrity of the amorphous silica surface varnish improved, our ability to detected the subsurface biosignature decreased. We note, however, that by utilizing the JPL rock crusher in Antarctica, a device designed to fly on the Mars Science Laboratory mission, the mid-infrared biosignature was easily detected. In the cross-section analysis the mid-infrared data provide a depth profile tracking the presence of hydrocarbons, amide bonds, and the mineralogical transition from amorphous quartz to crystalline sandstone. Mapped onto this are the changes in the oxidation states of iron, as recorded by the visible and near-infrared spectrometers. Together, this data set allows us to track the role of biologically produced compounds, such as oxalic acid, in the chelation and leaching of iron compounds from the surface through the rock and into the deposition zone below the colonized subsurface region.
Operational Observation of Australian Bioregions with Bands 8-19 of Modis
NASA Astrophysics Data System (ADS)
McAtee, B. K.; Gray, M.; Broomhall, M.; Lynch, M.; Fearns, P.
2012-07-01
Data from bands 1-7 are the most common bands of the MODIS instrument used for near-real time terrestrial earth observation operations in Australia. However, many of Australia's bioregions present unique scenarios which constitute a challenge for quantitative environmental remote sensing. We believe that data from MODIS bands 8-19 may provide significant benefit to Earth observation over particular bioregions of the Australian continent. Examples here include the use of band 8 in characterising aerosol optical depth over typically bright land surfaces and accounting for anomalous retrievals of atmospheric water vapour obtained using MOD05 based on the abundance of Australia's 'red dirt', which exhibits absorption features in the near infrared bands 17-19 of MODIS. Bioregion-focused applications such as those mentioned above have driven the development of automated processing, infrastructure for the atmospheric and BRDF correction of the first 19 bands of MODIS rather than only the first 7, which is more often the case. This work has been facilitated by the AusCover project which is the remote sensing component of the Terrestrial Ecosystem Research Network (TERN), itself a program designed to create a new generation of infrastructure for ecological study of the Australian landscape.
Soil Production, Landscape Evolution and Vegetation Dynamics in the Blue Mountains, Australia.
NASA Astrophysics Data System (ADS)
Wilkinson, M. T.; Humphreys, G. S.; Chappell, J.; Fifield, K.; Smith, B. L.; Hesse, P.
2004-12-01
Soil production is thought to relate to overlying soil depth by an inverse exponential function, as empirically derived using terrestrial in situ cosmogenic nuclides (TCN) at several study areas. This contrasts with a long held assumption that soil production is maximised under a thin soil cover, dm (Gilbert, 1877). Many sites in the Blue Mountains, Australia, display prima facie morphologic evidence for a `humped' soil production function. A sharp soil depth change occurs between proximal and distal spur extremities that accord with a change from forest to treeless heath, and shallow discontinuous soils are found on spur noses. Either of these features may indicate unstable conditions at depths less than dm implicit in a humped soil production function. We attempt to constrain the soil production function at our site using the TCN Be-10 from sandstone bedrock and saprolite, and morphometric analysis at Marrangaroo Creek. Although the soil depth change from forest to heath may be related to regional curvature not soil production, the peak in soil production under shallow mantles may explain alternating bands of soil and outcrop on spur noses. Soil production rates are mildly influenced by overlying soil thickness, suggesting that although thin layers of iron cemented sandstone only comprise a small percentage of the catchment bedrock, its resistance to weathering sets the pace of surface lowering. Furthermore, we present evidence that Marrangaroo Creek is a result of post-Miocene incision, similar to adjacent catchments in the region.
NASA Technical Reports Server (NTRS)
Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.
1989-01-01
Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.
NASA Technical Reports Server (NTRS)
Mcfadden, L. A.; Combe, Jean-Philippe; Ammannito, Eleonora; Frigeri, Alessandro; Stephan, Katrin; Longobardo, Andrea; Palomba, Ernesto; Tosi, Federico; Zambon, Francesca; Krohn, Katrin;
2015-01-01
Analysis of data from the Dawn mission shows that the Pinaria region of Vesta spanning a portion of the rim of the Rheasilvia basin is bright and anhydrous. Reflectance spectra, absorption band centers, and their variations, cover the range of pyroxenes from diogenite-rich to howardite and eucrite compositions, with no evidence of olivine in this region. By examining band centers and depths of the floor, walls and rims of six major craters in the region, we find a lane of diogenite-rich material next to howardite-eucrite material that does not follow the local topography. The source of this material is not clear and is probably ejecta from post-Rheasilvia impacts. Material of a howardite-eucrite composition originating from beyond the Rheasilvia basin is evident on the western edge of the region. Overall, the Pinaria region exposes the complete range of basaltic achondrite parent body material, with little evidence of contamination of non-basaltic achondrite material. With both high reflectance and low abundance of hydrated material, this region of Vesta may be considered the "Pinaria desert".
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
Effects of volcano topography on seismic broad-band waveforms
NASA Astrophysics Data System (ADS)
Neuberg, Jürgen; Pointer, Tim
2000-10-01
Volcano seismology often deals with rather shallow seismic sources and seismic stations deployed in their near field. The complex stratigraphy on volcanoes and near-field source effects have a strong impact on the seismic wavefield, complicating the interpretation techniques that are usually employed in earthquake seismology. In addition, as most volcanoes have a pronounced topography, the interference of the seismic wavefield with the stress-free surface results in severe waveform perturbations that affect seismic interpretation methods. In this study we deal predominantly with the surface effects, but take into account the impact of a typical volcano stratigraphy as well as near-field source effects. We derive a correction term for plane seismic waves and a plane-free surface such that for smooth topographies the effect of the free surface can be totally removed. Seismo-volcanic sources radiate energy in a broad frequency range with a correspondingly wide range of different Fresnel zones. A 2-D boundary element method is employed to study how the size of the Fresnel zone is dependent on source depth, dominant wavelength and topography in order to estimate the limits of the plane wave approximation. This approximation remains valid if the dominant wavelength does not exceed twice the source depth. Further aspects of this study concern particle motion analysis to locate point sources and the influence of the stratigraphy on particle motions. Furthermore, the deployment strategy of seismic instruments on volcanoes, as well as the direct interpretation of the broad-band waveforms in terms of pressure fluctuations in the volcanic plumbing system, are discussed.
NASA Astrophysics Data System (ADS)
Combe, Jean-Philippe; Ammannito, Eleonora; Tosi, Federico; De Sanctis, Maria Cristina; McCord, Thomas B.; Raymond, Carol A.; Russell, Christopher T.
2015-10-01
Vesta's surface albedo variations and hydrated material content share similar spatial distribution. This observation is consistent with carbonaceous chondrite meteorites as a likely source material for dark surface units observed by the Dawn spacecraft, as presented by numerous publications. While these deposits have been studied extensively by analysis of data from the Framing Camera (FC) and the Visible and Infrared Spectrometer (VIR), we performed a new analysis based on an improved calibration of VIR. First we identified instrument and calibration artifacts, and we therefore developed corrections of the VIR flat field and response function. Then we developed a photometric correction for Vesta based on the lunar model by Shkuratov et al. (Shkuratov, Yu.G. et al. [1999]. Icarus 141, 132-155. http://dx.doi.org/10.1006/icar.1999.6154), and a semi-analytical inversion of the photometric parameters. This photometric model combines minimization of the scattering effects due to the topography (a disk function) and variations of multiple-scattering with phase angle (the phase function) caused by microscopic physical properties of the regolith. The improved calibration and photometric correction enable more accurate analysis of the spectral properties of Vesta's surface material, especially the reflectance at 1.4 μm and the 2.8 μm hydroxyl absorption band depth. We produced global and quadrangle maps that are used as a common dataset for this Icarus special issue on Vesta's surface composition. The joint interpretation of both the 1.4 μm reflectance and the 2.8 μm absorption band depth reveals unusual spectral properties for a number of impact craters and ejecta compared to the rest of Vesta. An area including the Bellicia, Arruntia and Pomponia craters, where olivine might be present, has relatively high reflectance and a strong hydroxyl absorption band. Another area in the vicinity of Capparonia crater has a high content of hydrated materials, although with moderate reflectance and typical pyroxene-rich composition. Ejecta blankets west of Oppia crater have a spectral behavior similar to Capparonia, except for the wider and more complex shape of the hydroxyl absorption band. On the other hand, some low-hydrated areas associated to crater floors and ejecta have higher reflectance and steeper spectral slope than most low-hydrated terrains Vesta. A broad lane that extends from Rheasilvia rim at Matronalia Rupes to the northern regions hosts little to no hydrated materials and exhibits a moderate spectral slope, similar to Rheasilvia's basin floor. These properties reinforce the hypothesis that the lane is composed of ejecta from Rheasilvia, as indicated by the distribution of pyroxene compositions by previous results from Dawn. A few small and fresh craters exhibit an association between low-reflectance, little to no hydrated materials and a strong positive spectral slope, suggesting optical effects by opaque coatings, as opposed to carbonaceous chondrite deposits, and possible coarser grains.
NASA Astrophysics Data System (ADS)
Monteys, Xavier; Harris, Paul; Caloca, Silvia
2014-05-01
The coastal shallow water zone can be a challenging and expensive environment within which to acquire bathymetry and other oceanographic data using traditional survey methods. Dangers and limited swath coverage make some of these areas unfeasible to survey using ship borne systems, and turbidity can preclude marine LIDAR. As a result, an extensive part of the coastline worldwide remains completely unmapped. Satellite EO multispectral data, after processing, allows timely, cost efficient and quality controlled information to be used for planning, monitoring, and regulating coastal environments. It has the potential to deliver repetitive derivation of medium resolution bathymetry, coastal water properties and seafloor characteristics in shallow waters. Over the last 30 years satellite passive imaging methods for bathymetry extraction, implementing analytical or empirical methods, have had a limited success predicting water depths. Different wavelengths of the solar light penetrate the water column to varying depths. They can provide acceptable results up to 20 m but become less accurate in deeper waters. The study area is located in the inner part of Dublin Bay, on the East coast of Ireland. The region investigated is a C-shaped inlet covering an area of 10 km long and 5 km wide with water depths ranging from 0 to 10 m. The methodology employed on this research uses a ratio of reflectance from SPOT 5 satellite bands, differing to standard linear transform algorithms. High accuracy water depths were derived using multibeam data. The final empirical model uses spatially weighted geographical tools to retrieve predicted depths. The results of this paper confirm that SPOT satellite scenes are suitable to predict depths using empirical models in very shallow embayments. Spatial regression models show better adjustments in the predictions over non-spatial models. The spatial regression equation used provides realistic results down to 6 m below the water surface, with reliable and error controlled depths. Bathymetric extraction approaches involving satellite imagery data are regarded as a fast, successful and economically advantageous solution to automatic water depth calculation in shallow and complex environments.
Observation of Possible Lava Tube Skylights by SELENE cameras
NASA Astrophysics Data System (ADS)
Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn
We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.
Leon, L.A.; Christofferson, S.A.; Dolan, J.F.; Shaw, J.H.; Pratt, T.L.
2007-01-01
Boreholes and high-resolution seismic reflection data collected across the forelimb growth triangle above the central segment of the Puente Hills thrust fault (PHT) beneath Los Angeles, California, provide a detailed record of incremental fold growth during large earthquakes on this major blind thrust fault. These data document fold growth within a discrete kink band that narrows upward from ???460 m at the base of the Quaternary section (200-250 m depth) to 82% at 250 m depth) folding and uplift occur within discrete kink bands, thereby enabling us to develop a paleoseismic history of the underlying blind thrust fault. The borehole data reveal that the youngest part of the growth triangle in the uppermost 20 m comprises three stratigraphically discrete growth intervals marked by southward thickening sedimentary strata that are separated by intervals in which sediments do not change thickness across the site. We interpret the intervals of growth as occurring after the formation of now-buried paleofold scarps during three large PHT earthquakes in the past 8 kyr. The intervening intervals of no growth record periods of structural quiescence and deposition at the regional, near-horizontal stream gradient at the study site. Minimum uplift in each of the scarp-forming events, which occurred at 0.2-2.2 ka (event Y), 3.0-6.3 ka (event X), and 6.6-8.1 ka (event W), ranged from ???1.1 to ???1.6 m, indicating minimum thrust displacements of ???2.5 to 4.5 m. Such large displacements are consistent with the occurrence of large-magnitude earthquakes (Mw > 7). Cumulative, minimum uplift in the past three events was 3.3 to 4.7 m, suggesting cumulative thrust displacement of ???7 to 10.5 m. These values yield a minimum Holocene slip rate for the PHT of ???0.9 to 1.6 mm/yr. The borehole and seismic reflection data demonstrate that dip within the kink band is acquired incrementally, such that older strata that have been deformed by more earthquakes dip more steeply than younger strata. Specifically, strata dip 0.4?? at 4 m depth, 0.7?? at 20 m depth, 8?? at 90 m, 16?? at 110 m, and 17?? at 200 m. Moreover, structural restorations of the borehole data show that the locus of active folding (the anticlinal active axial surface) does not extend to the surface in exactly the same location from earthquake to earthquake. Rather, that the axial surfaces migrate from earthquake to earthquake, reflecting a component of fold growth by kink band migration. The incremental acquisition of bed dip in the growth triangle may reflect some combination of fold growth by limb rotation in addition to kink band migration, possibly through a component of trishear or shear fault bend folding. Alternatively, the component of limb rotation may result from curved hinge fault bend folding, and/or the mechanical response of loosely consolidated granular sediments in the shallow subsurface to folding at depth. Copyright 2007 by the American Geophysical Union.
Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone
Schultz, Richard A.; Okubo, Chris H.; Fossen, Haakon
2010-01-01
Determining the rock properties that permit or impede the growth of compaction bands in sedimentary sequences is a critical problem of importance to studies of strain localization and characterization of subsurface geologic reservoirs. We determine the porosity and average grain size of a sequence of stratigraphic layers of Navajo Sandstone that are then used in a critical state model to infer plastic yield envelopes for the layers. Pure compaction bands are formed in layers having the largest average grain sizes (0.42–0.45 mm) and porosities (28%), and correspondingly the smallest values of critical pressure (-22 MPa) in the sequence. The results suggest that compaction bands formed in these layers after burial to -1.5 km depth in association with thrust faulting beneath the nearby East Kaibab monocline, and that hardening of the yield caps accompanied compactional deformation of the layers.
Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations
NASA Astrophysics Data System (ADS)
Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.
2015-12-01
Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil Moisture, AMSR2, SMAP, L-Band.
Seismicity Structure of the Downgoing Nazca Slab in Northern Chile
NASA Astrophysics Data System (ADS)
Sippl, C.; Schurr, B.
2017-12-01
We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.
NASA Astrophysics Data System (ADS)
Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru
2018-01-01
Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.
Receiver function structure beneath a broad-band seismic station in south Sumatra
NASA Astrophysics Data System (ADS)
MacPherson, K. A.; Hidayat, D.; Goh, S.
2010-12-01
We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver functions. General features of those velocity models providing a good fit to the waveform include an approximately one kilometer thick near-surface low-velocity zone, a high-velocity layer over a velocity inversion at mid-crustal depths, and a crust-mantle transition at depths between 30 km and 34 km.
NASA Astrophysics Data System (ADS)
Mochinaga, H.; Aoki, N.; Mouri, T.
2017-12-01
We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.
NASA Technical Reports Server (NTRS)
Joseph, A. T.; Deshpande, M.; O'Neill, P. E.; Miles, L.
2017-01-01
A goal of this research is to test deployable VHF antennas for 6U Cubesat platforms to enable validation of root zone soil moisture (RZSM) estimation algorithms for signal of opportunity (SoOp) remote sensing over the 240-270 MHz frequency band. The proposed work provides a strong foundation for establishing a technology development path for maturing a global direct surface soil moisture (SM) and RZSM measurement system over a variety of land covers. Knowledge of RZSM up to a depth of 1 meter and surface SM up to a depth of 0.05 meter on a global scale, at a spatial resolution of 1-10 km through moderate-to-heavy vegetation, is critical to understanding global water resources and the vertical moisture gradient in the Earths surface layer which controls moisture interactions between the soil, vegetation, and atmosphere. Current observations of surface SM from space by L-band radiometers (1.4 GHz) and radars (1.26 GHz) are limited to measurements of surface SM up to a depth of 0.05 meter through moderate amounts of vegetation. This limitation is mainly due to the inability of L-band signals to penetrate through dense vegetation and deep into the soil column. Satellite observations of the surface moisture conditions are coupled to sophisticated models which extrapolate the surface SM into the root zone, thus providing an indirect estimate rather than a direct measurement of RZSM. To overcome this limitation, low-frequency airborne radars operating at 435 MHz and 118 MHz have been investigated, since these lower frequencies should penetrate denser vegetation and respond to conditions deeper in the soil.
Calculations and measurements of contact resistance of semi-transparent Ni/Pd contacts to p-GaN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crofton, John; Bogart, Katherine Huderle Andersen
2005-06-01
Calculations of specific contact resistance as a function of doping and barrier height were performed for p-type GaN. These calculations took into account two valence bands, each with different effective masses, and show that at low doping, the heavy hole band accounts for most of the conduction, whereas at heavier doping, the light hole band dominates conduction. These calculations also indicate the barrier height for typical contacts to p-GaN is between 0.75 eV and 1 eV. Specific contact resistance measurements were made for oxidized Ni/Au, Pd, and oxidized Ni/Pd ohmic contact metal schemes to p-GaN. The Ni/Pd contact had themore » lowest specific contact resistance, 6 x 10{sup -4} {Omega} cm{sup 2}. Auger sputter depth profile analysis showed some Ni diffused away from the GaN surface to the contact surface with the bulk of the Pd located in between two areas of Ni. Both Ni and Pd interdiffused with the GaN at the semiconductor surface. The majority of the oxygen observed was with the Ni as NiO. Angle-resolved-x-ray photoelectron spectroscopy (AR-XPS) analyses showed the formation of predominantly NiO and PdO species, with higher Ni and Pd oxides at the contact surface.« less
Discovery of small-scale-structure in the large molecule/dust distribution in the diffuse ISM
NASA Astrophysics Data System (ADS)
Cordiner, Martin A.; Fossey, Stephen J.; Sarre, Peter J.
There is mounting evidence that far from being homogeneously distributed, interstellar matter can have a clumpy or filamentary structure on the scale of 10s to a few 1000s of AU and which is commonly described as small scale structure (SSS). Initially confined to VLBI HI observations and HI observations of high-velocity pulsars, evidence for SSS has also come indirectly from molecular radio studies of e.g. HCO+ and infrared absorption by H3+. Much of the recent data on SSS has been obtained through optical/UV detection of atomic and diatomic molecular lines. Is there small scale structure in the large molecule/dust distribution? While this question could in principle be explored by measuring differences in the interstellar extinction towards the components of binary stars, in practice this would be difficult. Rather we chose to investigate this by recording very high signal-to-noise spectra of diffuse interstellar absorption bands. Although the carriers remain unidentified, the diffuse bands are generally considered to be tracers of the large molecule/dust distribution and scale well with reddening. Using the Anglo-Australian Telescope we have made UCLES observations of pairs of stars with separations ranging between 500 and 30000 AU. The signal-to-noise achieved was up to 2000, thus allowing variations in central depth of less than a few tenths of a percent to be discernible. Striking differences in diffuse band strengths for closely spaced lines of sight are found showing clearly that there exists small-scale-structure in the large molecule/dust distribution. For example, in the Ophiuchus star-formation region the central depths for the λ6614 diffuse band towards the ρ Oph stars A, B, C and D/E all differ and range between 0.966 and 0.930. Further interesting behaviour is found when comparing the relative strengths of diffuse bands between closely parallel lines of sight. Taking again the ρ Oph group, for λ5797 the strengths follow the order DE > B > C > A whereas the λ5850 band, which has been associated with λ5797 as a member of the same 'family', follows a very different intensity pattern with C > B > A > DE. This opens a new avenue of diffuse band research in its own right and provides a rigorous test for models and theories of diffuse band carrier structure and behaviour.
COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment
Paloscia, Simonetta; Pettinato, Simone; Santi, Emanuele; Valt, Mauro
2017-01-01
In this work, X band images acquired by COSMO-SkyMed (CSK) on alpine environment have been analyzed for investigating snow characteristics and their effect on backscattering variations. Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar (SAR) images (Landsat-8 and CSK) in separating snow/no-snow areas and in detecting wet snow. The sensitivity of backscattering to snow depth has not always been confirmed, depending on snow characteristics related to the season. A model based on Dense Media Radiative Transfer theory (DMRT-QMS) was applied for simulating the backscattering response on the X band from snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and snow density, beside snow depth and snow water equivalent, was pointed out, showing that the snow features affect the backscatter in different and sometimes opposite ways. Experimental values of backscattering were correctly simulated by using this model and selected intervals of ground parameters. The relationship between simulated and measured backscattering for the entire dataset shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB, with p-value <0.05. PMID:28054962
Proceedings of the 11th Annual DARPA/AFGL Seismic Research symposium
NASA Astrophysics Data System (ADS)
Lewkowicz, James F.; McPhetres, Jeanne M.
1990-11-01
The following subjects are covered: near source observations of quarry explosions; small explosion discrimination and yield estimation; Rg as a depth discriminant for earthquakes and explosions: a case study in New England; a comparative study of high frequency seismic noise at selected sites in the USSR and USA; chemical explosions and the discrimination problem; application of simulated annealing to joint hypocenter determination; frequency dependence of Q(sub Lg) and Q in the continental crust; statistical approaches to testing for compliance with a threshold test ban treaty; broad-band studies of seismic sources at regional and teleseismic distances using advanced time series analysis methods; effects of depth of burial and tectonic release on regional and teleseismic explosion waveforms; finite difference simulations of seismic wave excitation at Soviet test sites with deterministic structures; stochastic geologic effects on near-field ground motions; the damage mechanics of porous rock; nonlinear attenuation mechanism in salt at moderate strain; compressional- and shear-wave polarizations at the Anza seismic array; and a generalized beamforming approach to real time network detection and phase association.
Detection of concealed explosives at stand-off distances using wide band swept millimetre waves
NASA Astrophysics Data System (ADS)
Andrews, David A.; Rezgui, Nacer D.; Smith, Sarah E.; Bowring, Nicholas; Southgate, Matthew; Baker, John G.
2008-10-01
Millimetre waves in the range 20 to 110 GHz have been used to detect the presence and thickness of dielectric materials, such as explosives, by measuring the frequency response of the return signal. Interference between the reflected signals from the front and back surfaces of the dielectric provides a characteristic frequency variation in the return signal, which may be processed to yield its optical depth [Bowring et al, Meas. Sci. Technol. 19, 024004 (2008)]. The depth resolution depends on the sweep bandwidth, which is typically 10 to 30 GHz. By using super-heterodyne detection the range of the object can also be determined, which enables a signal from a target, such as a suicide bomber to be extracted from background clutter. Using millimetre wave optics only a small area of the target is illuminated at a time, thus reducing interference from different parts of a human target. Results are presented for simulated explosive materials with water or human backing at stand-off distances. A method of data analysis that involves pattern recognition enables effective differentiation of target types.
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Halaszova, Sona; Prochazka, Michal; Hasko, Daniel; Velic, Dusan; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Buhanuz; Rajaram, Poolla
2018-05-01
Nanocrystalline thin films of Cu2ZnSnS4 (CZTS) were grown on the glass substrates using the spray pyrolysis technique. The films were grown at a substrate temperature of 300 °C after which they were annealed at 350 °C in vacuum. X-ray diffraction (XRD) studies showed that the films crystallized in the kesterite structure. Energy dispersive analysis of X-rays (EDAX) studies showed that the films possess the desired stoichiometry i.e. the proportion of Cu:Zn:Sn:S in the CZTS solid solution is close to 2:1:1:4. Secondary Ions Mass Spectroscopy (SIMS) depth profiling confirmed the uniformity in elemental composition along the depth of the films. SEM studies showed that the films are covered with CZTS particles forming sheet like structures. AFM studies show that the size of the particles on the surface of the films is around 10-15 nm. UV-VIS-NIR transmission spectra were used to determine the optical band gap of the CZTS films which was found to be around 1.55eV.
In-plane magnetic penetration depth of superconducting CaKFe 4 As 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khasanov, Rustem; Meier, William R.; Wu, Yun
Here, the temperature dependence of the in-plane magnetic penetration depth (λ ab) in an extensively characterized sample of superconducting CaKFe 4As 4(T c≃35K) was investigated using muon-spin rotation (μSR). A comparison of λ –2 ab(T) measured by μSR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μSR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ 0=2.4(2)meV. Our data suggest that in CaKFe 4Asmore » 4 the s ± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.« less
NASA Astrophysics Data System (ADS)
Yeom, Jong-Min
2016-09-01
In this study, we performed the vicarious radiometric calibration of KOMPSAT-3A multispectral bands by using 6S radiative transfer model, radiometric tarps, MFRSR measurements. Furthermore, to prepare the accurate input parameter, we also did experiment work to measure the BRDF of radiometric tarps based on hyperspectral gonioradiometer to compensate the observation geometry difference between satellite and ASD Fieldspec 3. Also, we measured point spread function (PSF) by using the bright star and corrected multispectral bands based on the Wiener filter. For accurate atmospheric constituent effects such as aerosol optical depth, column water, and total ozone, we used MFRSR instrument and estimated related optical depth of each gases. Based on input parameters for 6S radiative transfer model, we simulated top of atmosphere (TOA) radiance by observed by KOMPSAT-3A and matched-up the digital number. Consequently, DN to radiance coefficients was determined based on aforementioned methods and showed reasonable statistics results.
The Dark Energy Survey Image Processing Pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morganson, E.; et al.
The Dark Energy Survey (DES) is a five-year optical imaging campaign with the goal of understanding the origin of cosmic acceleration. DES performs a 5000 square degree survey of the southern sky in five optical bands (g,r,i,z,Y) to a depth of ~24th magnitude. Contemporaneously, DES performs a deep, time-domain survey in four optical bands (g,r,i,z) over 27 square degrees. DES exposures are processed nightly with an evolving data reduction pipeline and evaluated for image quality to determine if they need to be retaken. Difference imaging and transient source detection are also performed in the time domain component nightly. On amore » bi-annual basis, DES exposures are reprocessed with a refined pipeline and coadded to maximize imaging depth. Here we describe the DES image processing pipeline in support of DES science, as a reference for users of archival DES data, and as a guide for future astronomical surveys.« less
In-plane magnetic penetration depth of superconducting CaKFe 4 As 4
Khasanov, Rustem; Meier, William R.; Wu, Yun; ...
2018-04-09
Here, the temperature dependence of the in-plane magnetic penetration depth (λ ab) in an extensively characterized sample of superconducting CaKFe 4As 4(T c≃35K) was investigated using muon-spin rotation (μSR). A comparison of λ –2 ab(T) measured by μSR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μSR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ 0=2.4(2)meV. Our data suggest that in CaKFe 4Asmore » 4 the s ± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.« less
Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice
NASA Astrophysics Data System (ADS)
Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.
2017-12-01
The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use model simulations along these trajectories made with a sea ice version of SNOWPACK, a 1D multi-layer thermodynamic snow model driven by reanalysis data. These simulations are especially helpful for indicating the occurrence of snow-ice-transformation, which cannot be identified in the buoy data and contributes to the measured snow height.
NASA Astrophysics Data System (ADS)
Harada, Y.; Igarashi, M.; Hashiguchi, Y.; Ogasawara, Y.
2011-12-01
Mysterious Raman bands at 1430-1480 cm-1 suggesting carbon (or carbon-bearing) species have been discovered in UHP metamorphic microdiamonds entirely enclosed in dolomite marble from Kokchetav Massif (Igarashi et al., 2011). Such Raman bands first discovered at some domains in a T-type (see Ishida et al., 2003) diamond in dolomite marble in 2005, but we have not reported this because of the possibility of misidentification by contamination. Later, similar bands were also found in the rim and the core of S-type and R-type. The relative intensities of these Raman bands to diamond (at 1332 cm-1) were 10-40 % in average (max. 90-110 %) and FWHMs are broad (25-45 cm-1). The possibility of the appearance of these Raman bands was low. As we used ordinary polished thin sections (thickness: 25 μm) and the organic materials used in thin section making have Raman bands at ca. 1450 cm-1, we carefully examined observed Raman spectra and the positions of the source materials of these bands to exclude the possibility of contaminations. Examined microdiamond grains are entirely enclosed in the host garnet, and no crack was observed in the host. We conducted 2D Raman mappings at different depths with 2 μm intervals. The result showed that the domains having these Raman bands were located within diamond grains and limited area (1-3 μm). These bands were never detected from outside diamond grains (e.g., host garnet). Thus, the unknown Raman bands at 1430-1480 cm-1 were attributed to some materials inside microdiamonds entirely included in the host garnet. The possibility of contamination was denied. Recently, we found similar Raman bands in the microdiamonds in garnet in Grt-Bt gneiss. Examined microdiamonds are entirely enclosed in garnet grain and no extra phase observed near laser spots in these microdiamond grains under an optical microscope. The Raman bands at 1430-1480 cm-1 were found from 4 microdiamond grains. The peak positions and FWHMs of these bands were as follows: (a) 1433, 31 (b) 1456, 35 (b) 1458, 41 (c) 1461, 31 (e) 1462 cm-1, 44 cm-1. Their intensities to the host diamond were 10-20 % in average. The mappings at different depths also showed very limited source space inside microdiamond grains. Although it is difficult to identify the source materials only by Raman spectroscopy, we considered that the Raman bands could be attributed to some carbon or carbon-bearing species which were relicts as metastable intermediate phases for microdiamond formation under UHP. Fullerenes are speculated as possible carbon materials for those bands. The band at 1470 cm-1 is similar to Ag (2) band of C60 fullerene. The large FWHM and the variation of peak positions at 1430-1480 cm-1 may be caused by aggregations of several species of fullerenes. If our speculation is correct, metamorphic diamond could have the possibility of preservation of intermediate carbon phases in diamond because the duration for diamond growth was much shorter than kimberlitic diamonds. We should pay attentions to such extra materials inside diamonds in order to clarify the real image of the diamond formation.
NASA Astrophysics Data System (ADS)
Antoniou, Antonia Maki
2006-12-01
Bulk metallic glasses (BMGs), or amorphous metal alloys, have a unique combination of properties such as high strength, large elastic strain limit (up to 2%), corrosion resistance and formability. These unique properties make them candidates for precision mechanical elements, hinge supports, contact surfaces as well as miniaturized systems (MEMS). However, their limited ductility hinders further realizations of their industrial potential. Under uniaxial tension tests, metallic glass fails in a brittle manner with unstable propagation of a single shear band. There is a need to understand the conditions for shear band nucleation and propagation in order to achieve a superior material system with adequate toughness to ensure in-service reliability. This dissertation focuses on understanding the nucleation and propagation mechanisms of shear bands in BMGs under constrained deformation. The nature of the work is primarily experimental with integrated finite element simulations to elucidate the observed trends. Wedge indentation with a circular profile of different radii is used to provide a stable loading path for in situ monitoring of shear band nucleation, propagation in Vitreloy-1. Detailed analyses of the in-plane finite deformation fields are carried out using digital image correlation. The incremental surface analysis showed that multiple shear bands are developed beneath the indenter. The observed pattern closely follow the traces of slip line field for a pressure sensitive material. The first shear bands initiate in the bulk beneath the indenter when a critical level of mean pressure is achieved. Two distinct shear band patterns are developed, that conform to either the alpha or beta lines for each sector. The deformation zones developed under indenters with different radii were found to be self-similar. The evolution of shear bands beneath the indenter is also characterized into two different categories. A set of primary bands is identified to evolve with the process zone front and presents an included angle of 78°-80°. The other set of bands evolves at a later stage of loading within the originally formed ones but with consistently higher included angle of around 87°. The band spacing is found to scale with the local average of maximum in-plane shear strain such that the local strain energy is minimized. The measurements shed light on the critical shear strain needed to initiate these bands. The richness of the shear band network establishes a basis for calibration of constitutive models. Experimental in-plane deformation maps show the amount of total strain that builds prior to the initiation of localized deformation. Furthermore, the maps help examine the change imposed on the surrounding strain field by the appearance of shear bands. It was verified that shear bands relax the asymptotic field by changing the order of singularity. Finally, it was seen that the shear bands are not the only accumulation of permanent deformation but that the surrounding material can accrue relatively high level of inelastic deformation (up to 5%). To rationalize these findings, the Johnson cavity expansion model is adapted and modified to account for pressure-dependent yielding conditions. The elasto-plastic boundary from such analysis is used to scale the experimental measurements for all indenter radii, loading level and spatial position beneath the indenter. The continuum finite element simulations have shown that the macroscopic measurements of force-depth indentation curves would predict a lower value of the pressure sensitivity than those observed from the detailed microscopic measurements. Moreover, a transition from pressure insensitive response to progressive pressure sensitivity is observed by decreasing the indenter radius, or in effect by increasing the level of hydrostatic pressure under the indenter. This leads to the belief that the BMG's pressure sensitivity parameter is in itself dependent on the level of the applied pressure. These observations give detailed insight on the post-yield behavior of BMGs, which cannot be obtained from macroscopic uniaxial tension or compression tests. Despite the richness of the shear band details, the current framework has provided several notable results. First, the macroscopic trends, force-indentation depth response and the extent of deformation zones are well captured for this constrained deformation mode by continuum models that address only the onset of yielding. Second, the apparent pressure dependence of the shear band angle on the macroscopic measurements is minimal. Third, the initiation point, and not the shear band development is of critical importance. These findings would formulate the basis for simulation of shear band nucleation, propagation and interactions. They would also elucidate the role of secondary particle inclusion for toughening. Another form of inhomogeneous deformation in the form of shear bands is also studied in constrained layer of ductile metal subjected to shearing deformation. The material system utilized was comprised of a ductile layer of tin based solder, encapsulated within relatively hard copper shoulders. The experimental configuration provides pure shear state within the constrained solder layer. Different Pb/Sn compositions are tested with grain size approaching the film thickness. The in-plane strain distribution within the joint thickness is measured by a microscopic digital image correlation system. The toughness evolution within such highly gradient deformation field is monitored qualitatively through a 2D surface scan with a nanoindenter. The measurements showed a highly inhomogeneous deformation field within the film with discreet shear bands of concentrated strain. The localized shear bands showed long-range correlations of the order of 2-3 grain diameter. A size-dependent macroscopic response on the layer thickness is observed. However, the corresponding film thickness is approximately 100-1000 times larger than those predicted by non-local continuum theories and discreet dislocation.
2015-09-30
observations collected by the NASA Operation IceBridge (OIB) project, including high-resolution visible-band imagery (Onana et al., 2013), snow depth ( Newman et...2014; Farrell et al., 2015; Hutchings et al., 2015; Richter-Menge and Farrell, 2014), snow depth ( Newman et al., 2014; Webster et al., 2014), sea ice...with A. Mahoney , H. Eicken and C. Haas on an ONR-funded project "Mass balance of multi-year sea ice in the southern Beaufort Sea". This effort
Selen, L. P. J.; Medendorp, W. P.
2014-01-01
Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108
NASA Astrophysics Data System (ADS)
Blom, R. G.; Chapman, B. D.; Deese, R.; Dokka, R. K.; Fielding, E. J.; Hawkins, B.; Hensley, S.; Ivins, E. R.; Jones, C. E.; Kent, J. D.; Liu, Z.; Lohman, R.; Zheng, Y.
2012-12-01
The vulnerability of the US Gulf Coast has received increased attention in the years since hurricanes Katrina and Rita. Agencies responsible for the long-term protection of lives and infrastructure require precise estimates of future subsidence and sea level rise. A quantitative, geophysically based methodology can provide such estimates by incorporating geological data, geodetic measurements, geophysical models of non-elastic mechanical behavior at depth, and geographically comprehensive deformation monitoring made possible with measurements from Interferometric Synthetic Aperture Radar (InSAR). To be effective, results must be available to user agencies in a format suitable for integration within existing decision-support processes. Work to date has included analysis of historical and continuing ground-based geodetic measurements. These reveal a surprising degree of complexity, including regions that are subsiding at rates faster than those considered for hurricane protection planning of New Orleans and other coastal communities (http://www.mvn.usace.army.mil/pdf/hps_verticalsettlement.pdf) as well as Louisiana's coastal restoration strategies (http://www.coast2050.gov/2050reports.htm) (Dokka, 2011, J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008). Traditional geodetic measurements provide precise information at single points, while InSAR observations provide geographically comprehensive measurements of surface deformation at lower vertical precision. Available InSAR data sources include X-, C- and L-band satellite, and NASA/JPL airborne UAVSAR L-band data. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. For example, the shorter wavelength C-band data decorrelates over short time periods requiring more elaborate time-series analysis techniques, with which we've had some success. Meanwhile, preliminary analysis of limited L-Band ALOS/PALSAR satellite data show promise; unfortunately this Japanese satellite system failed in April 2011. We now have multiple airborne UAVSAR repeat pass interferometry data sets under analysis (http://uavsar.jpl.nasa.gov/) . UAVSAR interferogram processing has proven problematic in this environment, and new acquisitions are planned at shorter temporal intervals to yield improved results. Combining the geodetic and InSAR data can constrain geophysical models of crustal behavior, leading to quantitative predictions of future subsidence. Model results to date show good agreement between geodetic measurements and geophysically reasonable parameters including sediment load and ~130 m post-glacial sea level rise. We review work to date and present newly acquired UAVSAR data.
Transmission-enabled fiber Fabry-Perot cavity based on a deeply etched slotted micromirror.
Othman, Muhammad A; Sabry, Yasser M; Sadek, Mohamed; Nassar, Ismail M; Khalil, Diaa A
2018-06-01
In this work, we report the analysis, fabrication, and characterization of an optical cavity built using a Bragg-coated fiber (BCF) mirror and a metal-coated microelectromechanical systems (MEMS) slotted micromirror, where the latter allows transmission output from the cavity. Theoretical modeling, using Fourier optics analysis for the cavity response based on tracing the propagation of light back and forth between the mirrors, is presented. Detailed simulation analysis is carried out for the spectral response of the cavity under different design conditions. MEMS chips of the slotted micromirror are fabricated using deep reactive ion etching of a silicon-on-insulator substrate with different device-etching depths of 150 μm and 80 μm with aluminum and gold metal coating, respectively. The cavity is characterized as an optical filter using a BCF with reflectivity that is larger than 95% in a 300 nm range across the E-band and the L-band. Versatile filter characteristics were obtained for different values of the MEMS micromirror slit width and cavity length. A free spectral range (FSR) of about 33 nm and a quality factor of about 196 were obtained for a 5.5 μm width aluminum slit, while an FSR of about 148 nm and a quality factor of about 148 were obtained for a 1.5 μm width gold slit. The presented structure opens the door for wide spectral response transmission-type MEMS filters.
METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.
We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in ourmore » laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.« less
Detection of the secondary eclipse of Qatar-1b in the Ks band
NASA Astrophysics Data System (ADS)
Cruz, Patricia; Barrado, David; Lillo-Box, Jorge; Diaz, Marcos; Birkby, Jayne; López-Morales, Mercedes; Fortney, Jonathan J.
2016-10-01
Aims: Qatar-1b is a close-orbiting hot Jupiter (Rp ≃ 1.18 RJ, Mp ≃ 1.33 MJ) around a metal-rich K-dwarf, with orbital separation and period of 0.023 AU and 1.42 days. We have observed the secondary eclipse of this exoplanet in the Ks band with the objective of deriving a brightness temperature for the planet and providing further constraints to the orbital configuration of the system. Methods: We obtained near-infrared photometric data from the ground by using the OMEGA2000 instrument at the 3.5 m telescope at Calar Alto (Spain) in staring mode, with the telescope defocused. We have used principal component analysis (PCA) to identify correlated systematic trends in the data. A Markov chain Monte Carlo analysis was performed to model the correlated systematics and fit for the secondary eclipse of Qatar-1b using a previously developed occultation model. We adopted the prayer bead method to assess the effect of red noise on the derived parameters. Results: We measured a secondary eclipse depth of 0.196%+ 0.071%-0.051%, which indicates a brightness temperature in the Ks band for the planet of 1885+ 212-168 K. We also measured a small deviation in the central phase of the secondary eclipse of -0.0079+ 0.0162-0.0043, which leads to a value for ecosω of -0.0123+ 0.0252-0.0067. However, this last result needs to be confirmed with more data. Based on observations collected at the Calar Alto Observatory, Almería, Spain.Lightcurve data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A61
Ji, Yun; Zhang, Zi-Hui; Tan, Swee Tiam; Ju, Zhen Gang; Kyaw, Zabu; Hasanov, Namig; Liu, Wei; Sun, Xiao Wei; Demir, Hilmi Volkan
2013-01-15
We study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure.
Interband coupling and transport interband scattering in s ± superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, Vladimir; Prozorov, Ruslan
A two-band model with repulsive interband coupling and interband transport (potential) scattering is considered to elucidate their effects on material properties. In agreement with previous work, we find that the bands order parameters Δ 1,2 differ and the large is at the band with a smaller normal density of states (DOS), N n2 < N n1. However, the bands energy gaps, as determined by the energy dependence of the DOS, are equal due to scattering. For each temperature, the gaps turn zero at a certain critical interband scattering rate, i.e. for strong enough scattering the model material becomes gappless. Inmore » the gapless state, the DOS at the band 2 is close to the normal state value, whereas at the band 1 it has a V-shape with non-zero minimum. When the normal bands DOS' are mismatched, N n1 6= N n2, the critical temperature T c is suppressed even in the absence of interband scattering, T c(N n1) has a dome-like shape. With increasing interband scattering, the London penetration depth at low temperatures evolves from being exponentially at to the powerlaw and even to near linear behavior in the gapless state, the latter being easily misinterpreted as caused by order parameter nodes.« less
An ultraviolet investigation of the unusual eclipsing binary system FF AQR
NASA Technical Reports Server (NTRS)
Dorren, J. D.; Guinan, E. F.; Sion, E. M.
1982-01-01
A series of seven low dispersion IUE exposures in ultraviolet and wavelength regions obtained on December 6, 1981 during the eclipse of the subdwarf, during egress, and out of eclipse is analyzed. These observations and the binary phase at which they were made are shown on a schematic representation of the V-band light curve obtained in 1975. The depth in V is 0.15 mag. The circles are IUE V magnitudes from FES measures obtained during the observing run. They indicate an eclipse depth some 0.05 mag lower than expected, possibly due to difficulties with the color term in the FES calibration. The eclipse depths of Dworetsky in U, B and V were assumed in the calculations.
NASA Astrophysics Data System (ADS)
Gluba, Lukasz; Sagan, Joanna; Lukowski, Mateusz; Szlazak, Radoslaw; Usowicz, Boguslaw
2017-04-01
Microwave radiometry has become the main tool for investigating soil moisture (SM) with remote sensing methods. ESA - SMOS (Soil Moisture and Ocean Salinity) satellite operating at L-band provides global distribution of soil moisture. An integral part of SMOS mission are calibration and validation activities involving measurements with ELBARA III which is an L-band microwave passive radiometer. It is done in order to improve soil moisture retrievals - make them more time-effective and accurate. The instrument is located at Bubnow test-site, on the border of cultivated field, fallow, meadow and natural wetland being a part of Polesie National Park (Poland). We obtain both temporal and spatial dependences of brightness temperatures for varied types of land covers with the ELBARA III directed at different azimuths. Soil moisture is retrieved from brightness temperature using L-band Microwave Emission of the Biosphere (L-MEB) model, the same as currently used radiative transfer model for SMOS. Parametrization of L-MEB, as well as input values are still under debate. We discuss the results of SM retrievals basing on data obtained during first year of the radiometer's operation. We analyze temporal dependences of retrieved SM for one-parameter (SM), two-parameter (SM, τ - optical depth) and three-parameter (SM, τ, Hr - roughness parameter) retrievals, as well as spatial dependences for specific dates. Special case of Simplified Roughness Parametrization, combining the roughness parameter and optical depth, is considered. L-MEB processing is supported by the continuous measurements of soil moisture and temperature obtained from nearby agrometeorological station, as well as studies on the soil granulometric composition of the Bubnow test-site area. Furthermore, for better estimation of optical depth, the satellite-derived Normalized Difference Vegetation Index (NDVI) was employed, supported by measured in situ vegetation parameters (such as Leaf Area Index and Vegetation Water Content) obtained during the field campaigns. The values of NDVI around ELBARA III radiometer are provided by Sentinel-2 satellite with approximately 10 m spatial resolution and average 10 days of time interval within studied period of time. The work was partially funded under two ESA projects: 1) "ELBARA_PD (Penetration Depth)" No. 4000107897/13/NL/KML, funded by the Government of Poland through an ESA-PECS contract (Plan for European Cooperating States). 2) "Technical Support for the fabrication and deployment of the radiometer ELBARA-III in Bubnow, Poland" No. 4000113360/15/NL/FF/gp.
NASA Astrophysics Data System (ADS)
Kehoe, A. E.; Shaw, C.; Kehoe, T. J. J.
2017-12-01
Zodiacal dust bands are a fine-structure feature of the mid-IR emission profile of the zodiacal cloud. The dust bands have been studied for many years dating back to the InfraRed Astronomical Satellite (IRAS) data of the 1980's. The recent discovery and modeling (Espy et al., 2009; 2010; Espy Kehoe et al., 2015) of a very young, still-forming dust band structure has shown that, in the early stages following an asteroid disruption, much information on the dust parameters of the original disruption is retained in the band. Partial dust bands allow a never-before-seen observational look at the size distribution and cross-sectional area of dust produced in an asteroidal disruption, before it has been lost or significantly altered by orbital and collisional decay. The study of these partial band structures reveals information on the way asteroids disrupt and allow us to reconstruct the surface properties of the parent asteroid, including the depth of the surface regolith and the size distribution of particles composing the regolith. Using the greatly increased sensitivity of the Wide-field Infrared Survey Explorer (WISE), we can now detect much fainter (and thus younger) dust bands. The WISE data also reveals much better longitudinal resolution of the bands, allowing a better constraint on the source and age of the disruption. We will present our newest results from the WISE dataset, including detection of faint partial dust bands, improved models of more prominent bands, and our constraints on the asteroid surface properties from modeling these structures.
The ZH ratio Analysis of Global Seismic Data
NASA Astrophysics Data System (ADS)
Yano, T.; Shikato, S.; Rivera, L.; Tanimoto, T.
2007-12-01
The ZH ratio, the ratio of vertical to horizontal component of the fundamental Rayleigh wave as a function of frequency, is an alternative approach to phase/group velocity analysis for constructing the S-wave velocity structure. In this study, teleseismic Rayleigh wave data for the frequency range between 0.004Hz to 0.04Hz is used to investigate the interior structure. We have analyzed most of the GEOSCOPE network data and some IRIS GSN stations using a technique developed by Tanimoto and Rivera (2007). Stable estimates of the ZH ratios were obtained for the frequency range for most stations. We have performed the inversion of the measured ZH ratios for the structure in the crust and mantle by using nonlinear iterative scheme. The depth sensitivity kernels for inversion are numerically calculated. Depth sensitivity of the lowest frequency extends to depths beyond 500 km but the sensitivity of the overall data for the frequency band extends down to about 300km. We found that an appropriate selection of an initial model, particularly the depth of Mohorovicic discontinuity, is important for this inversion. The inversion result depends on the initial model and turned out to be non-unique. We have constructed the initial model from the CRUST 2.0. Inversion with equal weighting to each data point tends to reduce variance of certain frequency range only. Therefore, we have developed a scheme to increase weighting to data points that do not fit well after the fifth iteration. This occurs more often for low frequency range, 0.004-0.007Hz. After fitting the lower frequency region, the low velocity zone around a depth of 100km is observed under some stations such as KIP (Kipapa, Hawaii) and ATD (Arta Cave, Djibouti). We have also carried out an analysis on the resolving power of data by examining the eigenvalues-eigenvectors of the least-squares problem. Unfortunately, the normal matrix usually has 1-2 very large eigenvalues, followed by much smaller eigenvalues. The third one is often an order of magnitude smaller. The largest eigenvalue is always dominated by an eigenfunction that has the peak at the surface. It indicates that the ZH ratio is sensitive to shallow structure but it has limited form in resolving power for underlying structure. We will report on the details on the resolving capabilities of the ZH ratios.
Fry, John C; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Parkes, R John
2006-10-01
The aim of this work was to relate depth profiles of prokaryotic community composition with geochemical processes in the deep subseafloor biosphere at two shallow-water sites on the Peru Margin in the Pacific Ocean (ODP Leg 201, sites 1228 and 1229). Principal component analysis of denaturing gradient gel electrophoresis banding patterns of deep-sediment Bacteria, Archaea, Euryarchaeota and the novel candidate division JS1, followed by multiple regression, showed strong relationships with prokaryotic activity and geochemistry (R(2)=55-100%). Further correlation analysis, at one site, between the principal components from the community composition profiles for Bacteria and 12 other variables quantitatively confirmed their relationship with activity and geochemistry, which had previously only been implied. Comparison with previously published cell counts enumerated by fluorescent in situ hybridization with rRNA-targeted probes confirmed that these denaturing gradient gel electrophoresis profiles described an active prokaryotic community.
Systems implications of L-band fade data statistics for LEO mobile systems
NASA Technical Reports Server (NTRS)
Devieux, Carrie L.
1993-01-01
This paper examines and analyzes research data on the role of foliage attenuation in signal fading between a satellite transmitter and a terrestrial vehicle-mounted receiver. The frequency band of measurement, called L-Band, includes the region 1610.0 to 1626.5 MHz. Data from tests involving various combinations of foliage and vehicle movement conditions clearly show evidence of fast fading (in excess of 0.5 dB per millisecond) and fade depths as great or greater than 16 dB. As a result, the design of a communications link power control that provides the level of accuracy necessary for power sensitive systems could be significantly impacted. Specific examples of this include the communications links that employ Code Division Multiple Access (CDMA) as a modulation technique.
Systems implications of L-band fade data statistics for LEO mobile systems
NASA Astrophysics Data System (ADS)
Devieux, Carrie L.
This paper examines and analyzes research data on the role of foliage attenuation in signal fading between a satellite transmitter and a terrestrial vehicle-mounted receiver. The frequency band of measurement, called L-Band, includes the region 1610.0 to 1626.5 MHz. Data from tests involving various combinations of foliage and vehicle movement conditions clearly show evidence of fast fading (in excess of 0.5 dB per millisecond) and fade depths as great or greater than 16 dB. As a result, the design of a communications link power control that provides the level of accuracy necessary for power sensitive systems could be significantly impacted. Specific examples of this include the communications links that employ Code Division Multiple Access (CDMA) as a modulation technique.
Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone
NASA Astrophysics Data System (ADS)
Verma, Devendra; Katti, Kalpana; Katti, Dinesh
2006-07-01
In this work, photoacoustic Fourier transform infrared (PA-FTIR) spectroscopy has been utilized to study interfacial interactions of undisturbed nacre and nacre powder from red abalone shell. The spectra of both undisturbed nacre and nacre powder showed characteristic bands of aragonite and proteins. Although nacre powder and undisturbed nacre are chemically identical, PA-FTIR spectrum of undisturbed nacre is found to be significantly different from that of nacre powder. A broad and strong band is observed at around 1485 cm -1 in nacre powder. The intensity of this band is notably reduced in undisturbed nacre. This result is explained on the basis of interfacial interactions between aragonite platelets and acidic proteins. It is also observed that band at around 1788 cm -1 originates from three overlapping bands 1797, 1787 and 1778 cm -1. The band at around 1787 cm -1 is assigned to C dbnd O stretching of carboxylate groups of acidic proteins. The other two bands at 1797 and 1778 cm -1, originate from aragonite and have been assigned to combination bands, ν 3 + ν 4a and ν 3 + ν 4b, respectively. For the study of stratification in undisturbed nacre, PA-FTIR spectra have been collected in step scan mode. The variation in spectra with depth can be attributed to changes in conformation of proteins as well as interfacial interactions.
NASA Astrophysics Data System (ADS)
Robert, Romain; Robion, Philippe; Souloumiac, Pauline; David, Christian; Saillet, Elodie
2018-05-01
Strain localization in a porous calcarenite facies of the Aren formation in the Tremp basin was studied. This Maastrichtian syn-tectonic formation exposed in front of the Boixols thrust, in the Central South Pyrenean Zone, hosts bedding perpendicular deformation bands. These bands are organized in two major band sets, striking East-West and N-020 respectively. Both populations formed during early deformation stages linked to the growth of the fold and thrust. A magnetic fabric study (Anisotropy of Magnetic Susceptibility, AMS) was carried out to constrain the shortening direction responsible for the deformation bands development during the upper Cretaceous-Paleocene N-S contraction in the region, which allowed us to define populations of Pure Compaction Bands (PCB) and Shear Enhanced Compaction Bands (SECB) regarding their orientations compared to the shortening direction. Both sets are formed by cataclastic deformation, but more intense in the case of SECBs, which are also thinner than PCBs. The initial pore space is both mechanically reduced and chemically filled by several cementation phases. We propose a geomechanical model based on the regional context of layer parallel shortening, thrusting and strike-slip tectonics considering the burial history of the formation, in order to explain the development of both types of bands at remarkably shallow depths.
Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion
NASA Astrophysics Data System (ADS)
Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak
2018-02-01
The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.
Investigating the physical properties of transiting hot Jupiters with the 1.5-m Kuiper Telescope
NASA Astrophysics Data System (ADS)
Turner, Jake D.; Leiter, Robin M.; Biddle, Lauren I.; Pearson, Kyle A.; Hardegree-Ullman, Kevin K.; Thompson, Robert M.; Teske, Johanna K.; Cates, Ian T.; Cook, Kendall L.; Berube, Michael P.; Nieberding, Megan N.; Jones, Christen K.; Raphael, Brandon; Wallace, Spencer; Watson, Zachary T.; Johnson, Robert E.
2017-12-01
We present new photometric data of 11 hot Jupiter transiting exoplanets (CoRoT-12b, HAT-P-5b, HAT-P-12b, HAT-P-33b, HAT-P-37b, WASP-2b, WASP-24b, WASP-60b, WASP-80b, WASP-103b and XO-3b) in order to update their planetary parameters and to constrain information about their atmospheres. These observations of CoRoT-12b, HAT-P-37b and WASP-60b are the first follow-up data since their discovery. Additionally, the first near-UV transits of WASP-80b and WASP-103b are presented. We compare the results of our analysis with previous work to search for transit timing variations (TTVs) and a wavelength dependence in the transit depth. TTVs may be evidence of a third body in the system, and variations in planetary radius with wavelength can help constrain the properties of the exoplanet's atmosphere. For WASP-103b and XO-3b, we find a possible variation in the transit depths which may be evidence of scattering in their atmospheres. The B-band transit depth of HAT-P-37b is found to be smaller than its near-IR transit depth and such a variation may indicate TiO/VO absorption. These variations are detected from 2-4.6σ, so follow-up observations are needed to confirm these results. Additionally, a flat spectrum across optical wavelengths is found for five of the planets (HAT-P-5b, HAT-P-12b, WASP-2b, WASP-24b and WASP-80b), suggestive that clouds may be present in their atmospheres. We calculate a refined orbital period and ephemeris for all the targets, which will help with future observations. No TTVs are seen in our analysis with the exception of WASP-80b and follow-up observations are needed to confirm this possible detection.
Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data
NASA Astrophysics Data System (ADS)
Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.
2017-12-01
On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.
NASA Astrophysics Data System (ADS)
Licciardi, A.; Piana Agostinetti, N.
2016-06-01
Information about seismic anisotropy is embedded in the variation of the amplitude of the Ps pulses as a function of the azimuth, on both the Radial and the Transverse components of teleseismic receiver functions (RF). We develop a semi-automatic method to constrain the presence and the depth of anisotropic layers beneath a single seismic broad-band station. An algorithm is specifically designed to avoid trial and error methods and subjective crustal parametrizations in RF inversions, providing a suitable tool for large-size data set analysis. The algorithm couples together information extracted from a 1-D VS profile and from a harmonic decomposition analysis of the RF data set. This information is used to determine the number of anisotropic layers and their approximate position at depth, which, in turn, can be used to, for example, narrow the search boundaries for layer thickness and S-wave velocity in a subsequent parameter space search. Here, the output of the algorithm is used to invert an RF data set by means of the Neighbourhood Algorithm (NA). To test our methodology, we apply the algorithm to both synthetic and observed data. We make use of synthetic RF with correlated Gaussian noise to investigate the resolution power for multiple and thin (1-3 km) anisotropic layers in the crust. The algorithm successfully identifies the number and position of anisotropic layers at depth prior the NA inversion step. In the NA inversion, strength of anisotropy and orientation of the symmetry axis are correctly retrieved. Then, the method is applied to field measurement from station BUDO in the Tibetan Plateau. Two consecutive layers of anisotropy are automatically identified with our method in the first 25-30 km of the crust. The data are then inverted with the retrieved parametrization. The direction of the anisotropic axis in the uppermost layer correlates well with the orientation of the major planar structure in the area. The deeper anisotropic layer is associated with an older phase of crustal deformation. Our results are compared with previous anisotropic RF studies at the same station, showing strong similarities.
NASA Astrophysics Data System (ADS)
Gernez, Pierre; Stramski, Dariusz; Darecki, Miroslaw
2011-07-01
Time series measurements of fluctuations in underwater downward irradiance, Ed, within the green spectral band (532 nm) show that the probability distribution of instantaneous irradiance varies greatly as a function of depth within the near-surface ocean under sunny conditions. Because of intense light flashes caused by surface wave focusing, the near-surface probability distributions are highly skewed to the right and are heavy tailed. The coefficients of skewness and excess kurtosis at depths smaller than 1 m can exceed 3 and 20, respectively. We tested several probability models, such as lognormal, Gumbel, Fréchet, log-logistic, and Pareto, which are potentially suited to describe the highly skewed heavy-tailed distributions. We found that the models cannot approximate with consistently good accuracy the high irradiance values within the right tail of the experimental distribution where the probability of these values is less than 10%. This portion of the distribution corresponds approximately to light flashes with Ed > 1.5?, where ? is the time-averaged downward irradiance. However, the remaining part of the probability distribution covering all irradiance values smaller than the 90th percentile can be described with a reasonable accuracy (i.e., within 20%) with a lognormal model for all 86 measurements from the top 10 m of the ocean included in this analysis. As the intensity of irradiance fluctuations decreases with depth, the probability distribution tends toward a function symmetrical around the mean like the normal distribution. For the examined data set, the skewness and excess kurtosis assumed values very close to zero at a depth of about 10 m.
Datasets, Technologies and Products from the NASA/NOAA Electronic Theater 2002
NASA Technical Reports Server (NTRS)
Hasler, A. Fritz; Starr, David (Technical Monitor)
2001-01-01
An in depth look at the Earth Science datasets used in the Etheater Visualizations will be presented. This will include the satellite orbits, platforms, scan patterns, the size, temporal and spatial resolution, and compositing techniques used to obtain the datasets as well as the spectral bands utilized.
Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates
Williams, D.J.; Bigham, J.M.; Cravotta, C.A.; Traina, S.J.; Anderson, J.E.; Lyon, J.G.
2002-01-01
The pH of mine impacted waters was estimated from the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pennsylvania, representing acid to near neutral pH. Sediments occurring in acidic waters contained primarily schwertmannite and goethite while near neutral waters produced ferrihydrite. The minerals comprising the sediments occurring at each pH mode were spectrally separable. Spectral angle difference mapping was used to correlate sediment color with stream water pH (r2=0.76). Band-center and band-depth analysis of spectral absorption features were also used to discriminate ferrihydrite and goethite and/or schwertmannite by analyzing the 4T1??? 6A1 crystal field transition (900-1000 nm). The presence of these minerals accurately predicted stream water pH (r2=0.87) and provided a qualitative estimate of dissolved SO4 concentrations. Spectral analysis results were used to analyze airborne digital multispectral video (DMSV) imagery for several sites in the region. The high spatial resolution of the DMSV sensor allowed for precise mapping of the mine drainage sediments. The results from this study indicate that airborne and space-borne imaging spectrometers may be used to accurately classify streams impacted by acid vs. neutral-to-alkaline mine drainage after appropriate spectral libraries are developed.
Inferring river bathymetry via Image-to-Depth Quantile Transformation (IDQT)
Legleiter, Carl
2016-01-01
Conventional, regression-based methods of inferring depth from passive optical image data undermine the advantages of remote sensing for characterizing river systems. This study introduces and evaluates a more flexible framework, Image-to-Depth Quantile Transformation (IDQT), that involves linking the frequency distribution of pixel values to that of depth. In addition, a new image processing workflow involving deep water correction and Minimum Noise Fraction (MNF) transformation can reduce a hyperspectral data set to a single variable related to depth and thus suitable for input to IDQT. Applied to a gravel bed river, IDQT avoided negative depth estimates along channel margins and underpredictions of pool depth. Depth retrieval accuracy (R25 0.79) and precision (0.27 m) were comparable to an established band ratio-based method, although a small shallow bias (0.04 m) was observed. Several ways of specifying distributions of pixel values and depths were evaluated but had negligible impact on the resulting depth estimates, implying that IDQT was robust to these implementation details. In essence, IDQT uses frequency distributions of pixel values and depths to achieve an aspatial calibration; the image itself provides information on the spatial distribution of depths. The approach thus reduces sensitivity to misalignment between field and image data sets and allows greater flexibility in the timing of field data collection relative to image acquisition, a significant advantage in dynamic channels. IDQT also creates new possibilities for depth retrieval in the absence of field data if a model could be used to predict the distribution of depths within a reach.
The NuSTAR Extragalactic Surveys: Source Catalog and the Compton-thick Fraction in the UDS Field
NASA Astrophysics Data System (ADS)
Masini, A.; Civano, F.; Comastri, A.; Fornasini, F.; Ballantyne, D. R.; Lansbury, G. B.; Treister, E.; Alexander, D. M.; Boorman, P. G.; Brandt, W. N.; Farrah, D.; Gandhi, P.; Harrison, F. A.; Hickox, R. C.; Kocevski, D. D.; Lanz, L.; Marchesi, S.; Puccetti, S.; Ricci, C.; Saez, C.; Stern, D.; Zappacosta, L.
2018-03-01
We present the results and the source catalog of the NuSTAR survey in the UKIDSS Ultra Deep Survey (UDS) field, bridging the gap in depth and area between NuSTAR’s ECDFS and COSMOS surveys. The survey covers a ∼0.6 deg2 area of the field for a total observing time of ∼1.75 Ms, to a half-area depth of ∼155 ks corrected for vignetting at 3–24 keV, and reaching sensitivity limits at half-area in the full (3–24 keV), soft (3–8 keV), and hard (8–24 keV) bands of 2.2 × 10‑14 erg cm‑2 s‑1, 1.0 × 10‑14 erg cm‑2 s‑1, and 2.7 × 10‑14 erg cm‑2 s‑1, respectively. A total of 67 sources are detected in at least one of the three bands, 56 of which have a robust optical redshift with a median of < z> ∼ 1.1. Through a broadband (0.5–24 keV) spectral analysis of the whole sample combined with the NuSTAR hardness ratios, we compute the observed Compton-thick (CT; NH > 1024 cm‑2) fraction. Taking into account the uncertainties on each NH measurement, the final number of CT sources is 6.8 ± 1.2. This corresponds to an observed CT fraction of 11.5% ± 2.0%, providing a robust lower limit to the intrinsic fraction of CT active galactic nuclei and placing constraints on cosmic X-ray background synthesis models.
NASA Astrophysics Data System (ADS)
Schirmer, Mischa; Garrel, Vincent; Sivo, Gaetano; Marin, Eduardo; Carrasco, Eleazar R.
2017-11-01
Multi-conjugated adaptive optics (MCAO) yield nearly diffraction-limited images at 2 μm wavelengths. Currently, Gemini Multi-Conjugate Adaptive Optics System (GeMS)/Gemini South Adaptive Optics Imager (GSAOI) at Gemini South is the only MCAO facility instrument at an 8-m telescope. Using real data, and for the first time, we investigate the gain in depth and signal-to-noise ratios (S/N) when MCAO is employed for Ks-band observations of distant galaxies. Our analysis is based on the Frontier Fields cluster MACS J0416.1-2403, observed with GeMS/GSAOI (near diffraction-limited) and compared against Very Large Telescope/HAWK-I (natural seeing) data. Using galaxy number counts, we show that the substantially increased thermal background and lower optical throughput of the MCAO unit are fully compensated for by the wavefront correction because the galaxy images can be measured in smaller apertures with less sky noise. We also performed a direct comparison of the S/N of sources detected in both data sets. For objects with intrinsic angular sizes corresponding to half the HAWK-I image seeing, the gain in S/N is 40 per cent. Even smaller objects experience a boost in S/N by up to a factor of 2.5 despite our suboptimal natural guide star configuration. The depth of the near diffraction limited images is more difficult to quantify than that of seeing limited images, due to a strong dependence on the intrinsic source profiles. Our results emphasize the importance of cooled MCAO systems for Ks-band observations with future, extremely large telescopes.
NASA Astrophysics Data System (ADS)
Lorenzi, V.; Pinilla-Alonso, N.; Licandro, J.; Cruikshank, D. P.; Grundy, W. M.; Binzel, R. P.; Emery, J. P.
2016-01-01
Context. During the past 30 years the surface of Pluto has been characterized and its variability monitored through continuous near-infrared spectroscopic observations. But in the visible range only a few data are available. Aims: The aim of this work is to define Pluto's relative reflectance in the visible range to characterize the different components of its surface, and to provide ground based observations in support of the New Horizons mission. Methods: We observed Pluto on six nights between May and July 2014 with the imager/spectrograph ACAM at the William Herschel Telescope (La Palma, Spain). The six spectra obtained cover a whole rotation of Pluto (Prot = 6.4 days). For all the spectra, we computed the spectral slope and the depth of the absorption bands of methane ice between 0.62 and 0.90 μm. To search for shifts in the center of the methane bands, which are associated with dilution of CH4 in N2, we compared the bands with reflectances of pure methane ice. Results: All the new spectra show the methane ice absorption bands between 0.62 and 0.90 μm. Computation of the depth of the band at 0.62 μm in the new spectra of Pluto and in the spectra of Makemake and Eris from the literature, allowed us to estimate the Lambert coefficient at this wavelength at temperatures of 30 K and 40 K, which has never been measured before. All the detected bands are blueshifted with respect to the position for pure methane ice, with minimum shifts correlated to the regions where the abundance of methane is higher. This could be indicative of a dilution of CH4:N2 that is more saturated in CH4. The longitudinal and secular variations in the parameters measured in the spectra are in accordance with results previously reported in the literature and with the distribution of the dark and bright materials that show the Pluto's color maps from New Horizons.
Search for Olivine Spectral Signatures on the Surface of Vesta
NASA Technical Reports Server (NTRS)
Palomba, E.; De Sanctis, M. C.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Farina, M.; Frigeri, A.; Longobardo, A.; Tosi, F.; Zambon, F.;
2012-01-01
The occurrence of olivines on Vesta were first postulated from traditional petrogenetic models which suggest the formation of olivine as lower crustal cumulates. An indirect confirmation is given by their presence as a minor component in some samples of diogenite meteorites, the harzburgitic diogenites and the dunitic diogenites, and as olivine mineral clasts in howardites. Another indication for this mineral was given by interpretations of groundbased and Hubble Space Telescope observations that suggested the presence of local olivine-bearing units on the surface of Vesta. The VIR instrument onboard the DAWN mission has been mapping Vesta since July 2011. VIR acquired hyperspectral images of Vesta s surface in the wavelength range from 0.25 to 5.1 m during Approach, Survey and High Altitude Mapping (HAMO) orbits that allowed a 2/3 of the entire asteroid surface to be mapped. The VIR operative spectral interval, resolution and coverage is suitable for the detection and mapping of any olivine rich regions that may occur on the Vesta surface. The abundance of olivine in diogenites is typically lower than 10% but some samples richer in olivine are known. However, we do not expect to have extensive exposures of olivine-rich material on Vesta. Moreover, the partial overlap of olivine and pyroxene spectral signatures will make olivine difficult to detect. Different spectral parameters have been used to map olivine on extraterrestrial bodies, and here we discuss the different approaches used, and develop new ones specifically for Vesta. Our new methods are based on combinations of the spectral parameters relative to the 1 and 2 micron bands (the most prominent spectral features of Vesta surface in the visible and the infrared), such as band center locations, band depths, band areas, band area ratios. Before the direct application to the VIR data, the efficiency of each approach is evaluated by means of analysis of laboratory spectra of HED meteorites, pyroxenes, olivines and their mixtures.
Spectroscopic Characterization of Mineralogy Across Vesta: Evidence of Different Lithologies
NASA Technical Reports Server (NTRS)
De Sanotis, M. C.; Ammannito, E.; Filacchione, G.; Capria, M. T.; Tosi, F.; Capaccioni, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.;
2012-01-01
The average spectrum of Vesta, obtained by VIR in the range 0.25-5.1 microns, shows clear evidence of absorption bands due to pyroxenes and thermal emissions beyond 3.5 11m. Vesta shows considerable variability across its surface in terms of spectral reflectance and emission, band depths, bands widths and bands centers, reflecting a complex geological history. Vesta's average spectrum and inferred mineralogy resemble those of howardite meteorites. On a regional scale, significant deviations are seen: the south polar 500km Rheasilvia impact crater has a higher diogenitic component, and equatorial regions show a higher eucritic component. This lithologic distribution, with a concentration of Mg-pyroxenes in the Rheasilvia area, reinforces the hypothesis of a deeper diogenitic crust excavated by the impact that formed the Rheasilvia crater, and an upper eucritic crust, whose remnants are seen in the equatorial region. This scenario has implications for Vesta differentiation, consistent with magma ocean models. However, serial magmatism models could also have concentrated pyroxene cumulates in plutons emplaced within the lower crust,
Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu
2014-12-28
The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.
Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange
NASA Astrophysics Data System (ADS)
Gillen, Roland; Robertson, John
2011-07-01
We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.
Transient enhanced diffusion in preamorphized silicon: the role of the surface
NASA Astrophysics Data System (ADS)
Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.
1999-01-01
Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.
Pichard, Hélène; Richoux, Olivier; Groby, Jean-Philippe
2012-10-01
The propagation of audible acoustic waves in two-dimensional square lattice tunable sonic crystals (SC) made of square cross-section infinitely rigid rods embedded in air is investigated experimentally. The band structure is calculated with the plane wave expansion (PWE) method and compared with experimental measurements carried out on a finite extend structure of 200 cm width, 70 cm depth and 15 cm height. The structure is made of square inclusions of 5 cm side with a periodicity of L = 7.5 cm placed inbetween two rigid plates. The existence of tunable complete band gaps in the audible frequency range is demonstrated experimentally by rotating the scatterers around their vertical axis. Negative refraction is then analyzed by use of the anisotropy of the equi-frequency surface (EFS) in the first band and of a finite difference time domain (FDTD) method. Experimental results finally show negative refraction in the audible frequency range.
Origin of multiple band gap values in single width nanoribbons
Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh
2016-01-01
Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172
The Cellular Origins of the Outer Retinal Bands in Optical Coherence Tomography Images
Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Lee, Sang-Hyuck; Werner, John S.; Miller, Donald T.
2014-01-01
Purpose. To test the recently proposed hypothesis that the second outer retinal band, observed in clinical OCT images, originates from the inner segment ellipsoid, by measuring: (1) the thickness of this band within single cone photoreceptors, and (2) its respective distance from the putative external limiting membrane (band 1) and cone outer segment tips (band 3). Methods. Adaptive optics-optical coherence tomography images were acquired from four subjects without known retinal disease. Images were obtained at foveal (2°) and perifoveal (5°) locations. Cone photoreceptors (n = 9593) were identified and segmented in three dimensions using custom software. Features corresponding to bands 1, 2, and 3 were automatically identified. The thickness of band 2 was assessed in each cell by fitting the longitudinal reflectance profile of the band with a Gaussian function. Distances between bands 1 and 2, and between 2 and 3, respectively, were also measured in each cell. Two independent calibration techniques were employed to determine the depth scale (physical length per pixel) of the imaging system. Results. When resolved within single cells, the thickness of band 2 is a factor of three to four times narrower than in corresponding clinical OCT images. The distribution of band 2 thickness across subjects and eccentricities had a modal value of 4.7 μm, with 48% of the cones falling between 4.1 and 5.2 μm. No significant differences were found between cells in the fovea and perifovea. The distance separating bands 1 and 2 was found to be larger than the distance between bands 2 and 3, across subjects and eccentricities, with a significantly larger difference at 5° than 2°. Conclusions. On the basis of these findings, we suggest that ascription of the outer retinal band 2 to the inner segment ellipsoid is unjustified, because the ellipsoid is both too thick and proximally located to produce the band. PMID:25324288
NASA Astrophysics Data System (ADS)
Gao, Jin-gui; Zhao, Hong-gang; Luo, Lai-peng
2017-04-01
In this paper, MJ3310A band saw machine as the research object, through the Beijing VIBSYS vibration signal acquisition and analysis software illumination value analysis, analysis of different circumstances to find good and crack band saw blade illumination value of the law. The results show that the illuminance of the cracked band saw blade is significantly higher than that of the complete band saw blade illumination value. Under the optimum working conditions, if the band saw blade illumination value exceeds 286 Lux, it can be determined that the band saw blade has at least one crack length greater than 1.68 mm Of the defects, the need for timely replacement band saw blade. So as to rational use of band saw blade, band saw blade on-line fault diagnosis provides a technical basis.
Detection of Deuterium in Icy Surfaces and the D/H Ratio of Icy Objects
NASA Astrophysics Data System (ADS)
Clark, Roger Nelson; Brown, Robert H.; Swayze, Gregg A.; Cruikshank, Dale P.
2017-10-01
Water ice in crystalline or amorphous form is orientationally disordered, which results in very broad absorptions. Deuterium in trace amounts goes into an ordered position, so is not broadened like H2O absorptions. The D-O stretch is located at 4.13 microns with a width of 0.027 micron. Laboratory spectral measurements on natural H2O and deuterium doped ice show the absorption is slightly asymmetric and in reflectance the band shifts from 4.132 to 4.137 microns as abundance decreases. We derive a preliminary absorption coefficient of ~ 80,000 cm^-1 for the D-O stretch compared to about 560 cm^-1 in H2O ice at 4.13 microns, enabling the detection of deuterium at levels less than Vienna Standard Mean Ocean Water (VSMOW), depending on S/N. How accurate the D/H ratios can be derived will require additional lab work and radiative transfer modeling to simultaneously derive the grain size distribution, the abundance of any contaminants, and deuterium abundance. To first order, the grain size distribution can be compensated by computing the D-O stretch band depth to 2-micron H2O ice band depth ratio, which we call Dratio. Colorado fresh water (~80% of VSMOW) has a Dratio of 0.036, at a D/H = 0.0005, the Dratio = 0.15, and at a D/H = 0.0025, the Dratio = 0.42. The VSMOW Dratio is ~ 0.045.We have used VIMS data from the Cassini spacecraft to compute large spectral averages to detect the deuterium in the rings and on the icy satellite surfaces. A B-ring, 21,882 pixel average, at 640 ms/pixel, or 3.89 hours of integration time, shows a 3.5% O-D stretch band depth and a Dratio = 0.045, indicating deuterium abundance equal to VSMOW. Rhea, using 1.89 hours of integration time shows Dratio = 0.052, or slightly higher than VSMOW. Phoebe has an unusually deep O-D stretch band of 1.85% considering the high abundance of dark material suppressing the ice absorptions. We measure a Dratio = 0.11, an enhancement of ~2.4 over VSMOW, but detailed radiative transfer modeling is needed to derive a more accurate ratio. The enhancement is consistent with previous studies that suggest Phoebe's origin might be external to the Saturn system. More satellites and radiative transfer modeling results will be shown at the meeting.
NASA Astrophysics Data System (ADS)
Augustine, John A.; Cornwall, Christopher R.; Hodges, Gary B.; Long, Charles N.; Medina, Carlos I.; Deluisi, John J.
2003-02-01
Over the past decade, networks of Multifilter Rotating Shadowband Radiometers (MFRSR) and automated sun photometers have been established in the United States to monitor aerosol properties. The MFRSR alternately measures diffuse and global irradiance in six narrow spectral bands and a broadband channel of the solar spectrum, from which the direct normal component for each may be inferred. Its 500-nm channel mimics sun photometer measurements and thus is a source of aerosol optical depth information. Automatic data reduction methods are needed because of the high volume of data produced by the MFRSR. In addition, these instruments are often not calibrated for absolute irradiance and must be periodically calibrated for optical depth analysis using the Langley method. This process involves extrapolation to the signal the MFRSR would measure at the top of the atmosphere (I0). Here, an automated clear-sky identification algorithm is used to screen MFRSR 500-nm measurements for suitable calibration data. The clear-sky MFRSR measurements are subsequently used to construct a set of calibration Langley plots from which a mean I0 is computed. This calibration I0 may be subsequently applied to any MFRSR 500-nm measurement within the calibration period to retrieve aerosol optical depth. This method is tested on a 2-month MFRSR dataset from the Table Mountain NOAA Surface Radiation Budget Network (SURFRAD) station near Boulder, Colorado. The resultant I0 is applied to two Asian dust-related high air pollution episodes that occurred within the calibration period on 13 and 17 April 2001. Computed aerosol optical depths for 17 April range from approximately 0.30 to 0.40, and those for 13 April vary from background levels to >0.30. Errors in these retrievals were estimated to range from ±0.01 to ±0.05, depending on the solar zenith angle. The calculations are compared with independent MFRSR-based aerosol optical depth retrievals at the Pawnee National Grasslands, 85 km to the northeast of Table Mountain, and to sun-photometer-derived aerosol optical depths at the National Renewable Energy Laboratory in Golden, Colorado, 50 km to the south. Both the Table Mountain and Golden stations are situated within a few kilometers of the Front Range of the Rocky Mountains, whereas the Pawnee station is on the eastern plains of Colorado. Time series of aerosol optical depth from Pawnee and Table Mountain stations compare well for 13 April when, according to the Naval Aerosol Analysis and Prediction System, an upper-level Asian dust plume enveloped most of Colorado. Aerosol optical depths at the Golden station for that event are generally greater than those at Table Mountain and Pawnee, possibly because of the proximity of Golden to Denver's urban aerosol plume. The dust over Colorado was primarily surface based on 17 April. On that day, aerosol optical depths at Table Mountain and Golden are similar but are 2 times the magnitude of those at Pawnee. This difference is attributed to meteorological conditions that favored air stagnation in the planetary boundary layer along the Front Range, and a west-to-east gradient in aerosol concentration. The magnitude and timing of the aerosol optical depth measurements at Table Mountain for these events are found to be consistent with independent measurements made at NASA Aerosol Robotic Network (AERONET) stations at Missoula, Montana, and at Bondville, Illinois.
Enhanced decoding for the Galileo S-band mission
NASA Technical Reports Server (NTRS)
Dolinar, S.; Belongie, M.
1993-01-01
A coding system under consideration for the Galileo S-band low-gain antenna mission is a concatenated system using a variable redundancy Reed-Solomon outer code and a (14,1/4) convolutional inner code. The 8-bit Reed-Solomon symbols are interleaved to depth 8, and the eight 255-symbol codewords in each interleaved block have redundancies 64, 20, 20, 20, 64, 20, 20, and 20, respectively (or equivalently, the codewords have 191, 235, 235, 235, 191, 235, 235, and 235 8-bit information symbols, respectively). This concatenated code is to be decoded by an enhanced decoder that utilizes a maximum likelihood (Viterbi) convolutional decoder; a Reed Solomon decoder capable of processing erasures; an algorithm for declaring erasures in undecoded codewords based on known erroneous symbols in neighboring decodable words; a second Viterbi decoding operation (redecoding) constrained to follow only paths consistent with the known symbols from previously decodable Reed-Solomon codewords; and a second Reed-Solomon decoding operation using the output from the Viterbi redecoder and additional erasure declarations to the extent possible. It is estimated that this code and decoder can achieve a decoded bit error rate of 1 x 10(exp 7) at a concatenated code signal-to-noise ratio of 0.76 dB. By comparison, a threshold of 1.17 dB is required for a baseline coding system consisting of the same (14,1/4) convolutional code, a (255,223) Reed-Solomon code with constant redundancy 32 also interleaved to depth 8, a one-pass Viterbi decoder, and a Reed Solomon decoder incapable of declaring or utilizing erasures. The relative gain of the enhanced system is thus 0.41 dB. It is predicted from analysis based on an assumption of infinite interleaving that the coding gain could be further improved by approximately 0.2 dB if four stages of Viterbi decoding and four levels of Reed-Solomon redundancy are permitted. Confirmation of this effect and specification of the optimum four-level redundancy profile for depth-8 interleaving is currently being done.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Wilson; Julian Dann; Robert Bolton
The in-situ soil moisture and thaw depth measurements provided in this dataset were collected coincident with airborne overflights of L- and P-band SAR instruments at the NGEE Arctic study site near Barrow, on the North Slope, and at the three study sites on the Seward Peninsula, Alaska. Field measurements and flights were conducted during the summer of 2017 as a collaboration between the NASA ABoVE Project's Airborne SAR Campaign and the NGEE Arctic Project. ABoVE protocols for establishing field measurement plots were followed.
Mechanical properties of multilayered films using different nanoindenters.
Fang, Te-Hua; Wang, Tong Hong; Wu, Jia-Hung
2010-07-01
The effects of interface, contact hardness, deformation, and adhesion of Al/Ni multilayered films under nanoindentation were investigated using molecular dynamics (MD) simulations. The results show that the indentation force of the sphere indenter is the largest among nanoindentations using sphere, cone, Vickers, or Berkovich type indenters at the same penetration depth. Force increasing, relaxation and adhesion took place during loading, holding depth and unloading, respectively. The interface occurred along the {111} (110) slip systems and the maximum width of the glide bands was about 1 nm. The reaction force and plastic energy of the indented films are also discussed.
VizieR Online Data Catalog: ALMA submm galaxies multi-wavelength data (Simpson+, 2017)
NASA Astrophysics Data System (ADS)
Simpson, J. M.; Smail, I.; Swinbank, A. M.; Ivison, R. J.; Dunlop, J. S.; Geach, J. E.; Almaini, O.; Arumugam, V.; Bremer, M. N.; Chen, C.-C.; Conselice, C.; Coppin, K. E. K.; Farrah, D.; Ibar, E.; Hartley, W. G.; Ma, C. J.; Michalowski, M. J.; Scott, D.; Spaans, M.; Thomson, A. P.; van der Werf, P. P.
2017-11-01
In previous work, we presented the source catalog, number counts, and far-infrared morphologies of the 52 SMGs that were detected in 30 ALMA maps (see Simpson+ 2015ApJ...799...81S, 2015ApJ...807..128S). The UKIDSS observations of the ~0.8deg2 UDS comprise four Wide-Field Camera (WFCAM) pointings in the J-, H-, and K-bands. In this paper, we use the images and catalogs released as part of the UKIDSS data release 8 (DR8). The DR8 release contains data taken between 2005 and 2010, and the final J-, H-, and K-band mosaics have a median 5σ depth (2" apertures) of J=24.9, H=24.2, and K=24.6, respectively. Deep observations of the UDS have also been taken in the U-band with Megacam at the Canada-France-Hawaii Telescope (CFHT) and in the B, V, R, i', and z' bands with Suprime-cam at the Subaru telescope. Furthermore, deep Spitzer data, obtained as part of the SpUDS program (PI: J. Dunlop) provides imaging reaching a 5σ depth of m3.6=24.2 and m4.5=24.0 at 3.6um and 4.5um, respectively. The UDS field was observed at 250, 350, and 500um with the Spectral and Photometric Imaging Receiver (SPIRE) onboard the Herschel Space Observatory as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). The UDS field was observed by the VLA at 1.4GHz as part of the project UDS20 (V. Arumugam et al. 2017, in preparation). A total of 14 pointings were used to mosaic an area of ~1.3deg2 centered on the UDS field. (2 data files).
The Next Generation Virgo Cluster Survey. XX. RedGOLD Background Galaxy Cluster Detections
NASA Astrophysics Data System (ADS)
Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik; Muñoz, Roberto P.; Van Waerbeke, Ludovic; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Huertas-Company, Marc; Lançon, Ariane; Parroni, Carolina; Puzia, Thomas H.
2016-09-01
We build a background cluster candidate catalog from the Next Generation Virgo Cluster Survey (NGVS) using our detection algorithm RedGOLD. The NGVS covers 104 deg2 of the Virgo cluster in the {u}* ,g,r,I,z-bandpasses to a depth of g ˜ 25.7 mag (5σ). Part of the survey was not covered or has shallow observations in the r band. We build two cluster catalogs: one using all bandpasses, for the fields with deep r-band observations (˜20 deg2), and the other using four bandpasses ({u}* ,g,I,z) for the entire NGVS area. Based on our previous Canada-France-Hawaii Telescope Legacy Survey W1 studies, we estimate that both of our catalogs are ˜100% (˜70%) complete and ˜80% pure, at z ≤ 0.6 (z ≲ 1), for galaxy clusters with masses of M ≳ 1014 M ⊙. We show that when using four bandpasses, though the photometric redshift accuracy is lower, RedGOLD detects massive galaxy clusters up to z ˜ 1 with completeness and purity similar to the five-band case. This is achieved when taking into account the bias in the richness estimation, which is ˜40% lower at 0.5 ≤ z < 0.6 and ˜20% higher at 0.6 < z < 0.8, with respect to the five-band case. RedGOLD recovers all the X-ray clusters in the area with mass M 500 > 1.4 × 1014 M ⊙ and 0.08 < z < 0.5. Because of our different cluster richness limits and the NGVS depth, our catalogs reach lower masses than the published redMaPPer cluster catalog over the area, and we recover ˜90%-100% of its detections.
SWEAT: Snow Water Equivalent with AlTimetry
NASA Astrophysics Data System (ADS)
Agten, Dries; Benninga, Harm-Jan; Diaz Schümmer, Carlos; Donnerer, Julia; Fischer, Georg; Henriksen, Marie; Hippert Ferrer, Alexandre; Jamali, Maryam; Marinaci, Stefano; Mould, Toby JD; Phelan, Liam; Rosker, Stephanie; Schrenker, Caroline; Schulze, Kerstin; Emanuel Telo Bordalo Monteiro, Jorge
2017-04-01
To study how the water cycle changes over time, satellite and airborne remote sensing missions are typically employed. Over the last 40 years of satellite missions, the measurement of true water inventories stored in sea and land ice within the cryosphere have been significantly hindered by uncertainties introduced by snow cover. Being able to determine the thickness of this snow cover would act to reduce such error, improving current estimations of hydrological and climate models, Earth's energy balance (albedo) calculations and flood predictions. Therefore, the target of the SWEAT (Snow Water Equivalent with AlTimetry) mission is to directly measure the surface Snow Water Equivalent (SWE) on sea and land ice within the polar regions above 60°and below -60° latitude. There are no other satellite missions currently capable of directly measuring SWE. In order to achieve this, the proposed mission will implement a novel combination of Ka- and Ku-band radioaltimeters (active microwave sensors), capable of penetrating into the snow microstructure. The Ka-band altimeter (λ ≈ 0.8 cm) provides a low maximum snow pack penetration depth of up to 20 cm for dry snow at 37 GHz, since the volume scattering of snow dominates over the scattering caused by the underlying ice surface. In contrast, the Ku-band altimeter (λ ≈ 2 cm) provides a high maximum snowpack penetration depth of up to 15 m in high latitudes regions with dry snow, as volume scattering is decreased by a factor of 55. The combined difference in Ka- and Ku-band signal penetration results will provide more accurate and direct determination of SWE. Therefore, the SWEAT mission aims to improve estimations of global SWE interpreted from passive microwave products, and improve the reliability of numerical snow and climate models.
NASA Technical Reports Server (NTRS)
Boyd, R. K.; Brumfield, J. O.; Campbell, W. J.
1984-01-01
Three feature extraction methods, canonical analysis (CA), principal component analysis (PCA), and band selection, have been applied to Thematic Mapper Simulator (TMS) data in order to evaluate the relative performance of the methods. The results obtained show that CA is capable of providing a transformation of TMS data which leads to better classification results than provided by all seven bands, by PCA, or by band selection. A second conclusion drawn from the study is that TMS bands 2, 3, 4, and 7 (thermal) are most important for landcover classification.
Comparison of fundamental, second harmonic, and superharmonic imaging: a simulation study.
van Neer, Paul L M J; Danilouchkine, Mikhail G; Verweij, Martin D; Demi, Libertario; Voormolen, Marco M; van der Steen, Anton F W; de Jong, Nico
2011-11-01
In medical ultrasound, fundamental imaging (FI) uses the reflected echoes from the same spectral band as that of the emitted pulse. The transmission frequency determines the trade-off between penetration depth and spatial resolution. Tissue harmonic imaging (THI) employs the second harmonic of the emitted frequency band to construct images. Recently, superharmonic imaging (SHI) has been introduced, which uses the third to the fifth (super) harmonics. The harmonic level is determined by two competing phenomena: nonlinear propagation and frequency dependent attenuation. Thus, the transmission frequency yielding the optimal trade-off between the spatial resolution and the penetration depth differs for THI and SHI. This paper quantitatively compares the concepts of fundamental, second harmonic, and superharmonic echocardiography at their optimal transmission frequencies. Forward propagation is modeled using a 3D-KZK implementation and the iterative nonlinear contrast source (INCS) method. Backpropagation is assumed to be linear. Results show that the fundamental lateral beamwidth is the narrowest at focus, while the superharmonic one is narrower outside the focus. The lateral superharmonic roll-off exceeds the fundamental and second harmonic roll-off. Also, the axial resolution of SHI exceeds that of FI and THI. The far-field pulse-echo superharmonic pressure is lower than that of the fundamental and second harmonic. SHI appears suited for echocardiography and is expected to improve its image quality at the cost of a slight reduction in depth-of-field.
Propagation of a finite bubble in a Hele-Shaw channel of variable depth
NASA Astrophysics Data System (ADS)
Juel, Anne; Franco-Gomez, Andres; Thompson, Alice; Hazel, Andrew
2017-11-01
We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred rail is introduced to provide a small axially-uniform depth constriction. We demonstrate experimentally that this channel geometry can be used as a passive sorting device. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes on the order of the rail width can propagate over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a depth-averaged theory which reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions. In contrast, for larger bubbles and sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady state of changed topology. The financial support of CONICYT and the Leverhulme Trust are gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Zinzi, Angelo; Scully, Jennifer E. C.; Capaccioni, Fabrizio; Tosi, Federico; Zambon, Francesca; Ammannito, Eleonora; Combe, Jean-Philippe; Raymond, Carol A.; Russell, Cristopher T.
2015-10-01
This work is aimed at developing and interpreting infrared albedo, pyroxene and OH band depths, and pyroxene band center maps of Vesta's Gegania and Lucaria quadrangles, obtained from data provided by the Visible and InfraRed (VIR) mapper spectrometer on board NASA's Dawn spacecraft. The Gegania and Lucaria quadrangles span latitudes from 22°S to 22°N and longitudes from 0°E to 144°E. The mineralogical and spectral maps identify two large-scale units on this area of Vesta, which extend eastwards and westward of about 60°E, respectively. The two regions are not associated to large-scale geological units, which have a latitudinal distribution rather than longitudinal, but are defined by different contents of carbonaceous chondrites (CC): the eastern region, poor in CCs, is brighter and OH-depleted, whereas the western one, rich in CCs, is darker and OH-enriched. A detailed analysis of the small-scale units in these quadrangles is also performed. Almost all the units show the typical correspondence between high albedo, deep pyroxene bands, short band centers and absence of OH and vice versa. Only a few exceptions occur, such as the ejecta from the Aelia crater, where dark and bright materials are intimately mixed. The most characteristic features of these quadrangles are the equatorial troughs and the Lucaria tholus. The equatorial troughs consist of graben, i.e. a depression limited by two conjugate faults. The graben do not present their own spectral signatures, but spectral parameters similar to their surroundings, in agreement to their structural origin. This is observed also in graben outside the Gegania and Lucaria quadrangles. However, it is possible to observe other structural features, such as tectonic grooves, characterized by a changing composition and hence an albedo variation. This result is confirmed not only by mineralogical maps of Vesta, but also by analyzing the VIRTIS-Rosetta observations of Lutetia. The albedo change is instead a typical behavior of geomorphic grooves. Finally, ridges are characterized by a bluer color and, in some cases, shorter band centers than their surroundings, suggesting that they are composed of fresher materials. We also performed a comparative analysis between the three tholi of Vesta, i.e. Lucaria (which gives the name to its quadrangle), Aricia (in the Marcia quadrangle) and Brumalia (Numisia quadrangle). Whereas Brumalia tholus is a young magmatic intrusion, the absence of diogenites, the low albedo, and the orientation of Aricia and Lucaria tholi suggest that they are older features, which are covered by dark materials and therefore experienced a different geological history than Brumalia.
Stock, Ann-Kathrin; Wascher, Edmund; Beste, Christian
2013-01-01
It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response. PMID:23658624
NASA Technical Reports Server (NTRS)
Varosi, F.; Gezari, D.; Dwek, E.; Telesco, C.
2016-01-01
We have analyzed multi-wavelength mid-infrared images of the central parsec of the Galactic Center using a two-temperature line-of-sight (LOS) radiative transfer model at each pixel of the images, giving maps of temperatures, luminosities and opacities of the hot, warm, cold (dark)dust components. The data consists of images at nine wavelengths in the mid-infrared (N-band and Q-band) from the Thermal Region Camera and Spectrograph (T-ReCS) instrument operating at the Gemini South Observatory. The results of the LOS modeling indicate that the extinction optical depth is quite large and varies substantially over the FOV. The high-resolution images of the central parsec of the Galactic center region were obtained with T-ReCS at Gemini South in January 2004. These images provide nearly diffraction-limited resolution (approx. 0.5) of the central parsec. The T-ReCS images were taken with nine filters (3.8, 4.7, 7.7, 8.7, 9.7, 10.3, 12.3, 18.3 and 24.5m), over a field-of-view (FOV) of 20 x 20 arcsec.
Zhou, Gaochao; Dai, Penghui; Wu, Jingbo; Jin, Biaobing; Wen, Qiye; Zhu, Guanghao; Shen, Ze; Zhang, Caihong; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng
2017-07-24
An active vanadium dioxide integrated metasurface offering broadband transmitted terahertz wave modulation with large modulation-depth under electrical control is demonstrated. The device consists of metal bias-lines arranged with grid-structure patterned vanadium dioxide (VO 2 ) film on sapphire substrate. Amplitude transmission is continuously tuned from more than 78% to 28% or lower in the frequency range from 0.3 THz to 1.0 THz, by means of electrical bias at temperature of 68 °C. The physical mechanism underlying the device's electrical tunability is investigated and found to be attributed to the ohmic heating. The developed device possessing over 87% modulation depth with 0.7 THz frequency band is expected to have many potential applications in THz regime such as tunable THz attenuator.
Capture and Emission of Charge Carriers by Quantum Well
NASA Astrophysics Data System (ADS)
Davydov, V. N.; Karankevich, O. A.
2018-06-01
The interaction of electrons from the conduction band of the barrier layer of a LED heterostructure with the quantum well size-quantization level described by the capture time and emission time of charge carriers is considered. Relaxation of an excess energy upon capture and emission of charge carriers occurs as a result of their collisions with phonons of the quantum well substance and the "barrier layer-quantum well" interface. Analytical expressions are obtained for the interaction times, taking into account the depth of the sizequantization level, involved in the interaction with electrons, and the width of the well. Numerical estimates show that in real conditions, the capture time is shorter than the emission time, and this difference increases with increasing depth of the level. At shallow depths, the capture and emission times are comparable.
VizieR Online Data Catalog: CGS. V. Statistical study of bars and buckled bars (Li+, 2017)
NASA Astrophysics Data System (ADS)
Li, Z.-Y.; Ho, L. C.; Barth, A. J.
2018-04-01
Images in B-, V-, R-, and I-band filters were taken with the du Pont 2.5m telescope at Las Campanas Observatory, with a field of view (FOV) of 8.9'x8.9'. The typical depths of the B-, V-, R-, and I-band images are 27.5, 26.9, 26.4, and 25.3mag/arcsec2, respectively. More information about the Carnegie-Irvine Galaxy Survey (CGS) design, data reduction, and photometric measurements can be found in Papers I (Ho+, 2011, J/ApJS/197/21) and II (Li+, 2011, J/ApJS/197/22). In this work, we use the CGS I-band images to minimize the effect of dust extinction. The selected sample contains 376 disk galaxies with 264 disks hosting bars. (1 data file).
Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal
NASA Astrophysics Data System (ADS)
Mohammadimasoudi, Mohammad; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan; Beeckman, Jeroen
2015-04-01
A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.
Multi-Frequency Investigation into Scattering from Vegetation over the Growth Cycle
NASA Technical Reports Server (NTRS)
Lang, R. H.; Kurum, M.; O'Neill, P. E.; Joseph, A. T.; Deshpande, M. D.; Cosh, M. H.
2016-01-01
In this investigation, we aim to collect and use time-series multi-frequency microwave data over winter wheat during entire growth cycle to characterize vegetation dynamics and to quantify its effects on soil moisture retrievals. We plan to incorporate C-band radar and VHF receiver within the existing L-band radarradiometer system called ComRAD (SMAPs ground based simulator). With C-bands ability to sense vegetation details and VHFs root-zone soil moisture within ComRADs footprint, we will be able to test our discrete scatterer vegetation models and parameters at various surface conditions. The purpose of this study is to determine optical depth and effective scattering albedo of vegetation of a given type (i.e. winter wheat) at various stages of growth that are need to refine soil moisture retrieval algorithms being developed for the SMAP mission.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.
1991-01-01
The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.
iPSC-Derived MSCs that Are Genetically Engineered for Systemic Bone Augmentation
2013-08-01
cloned into a pJET1.2 vector (Fermentas, Glen Burnie, MD) and sequenced by MCLAB (San Francisco, CA). Karyotyping and G-banding. GTG -banding chromosome...publication [25]. Karyotyping and G-banding Giemsa ( GTG )-banding chromosome analysis was carried out in the LLU Radiation Research Laboratories. Standard...banding GTG -banding chromosome analysis was carried out in the LLU Radiation Research Laboratories. Standard DNA spectral karyo- typing procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mennella, Vito, E-mail: mennella@na.astro.i
2010-08-01
We present the results of experiments aimed at studying the interaction of hydrogen atoms at 80 K with carbon grains covered with a water ice layer at 12 K. The effects of H processing have been analyzed, using IR spectroscopy, as a function of the water ice layer. The results confirm that exposure of the samples to H atoms induces the activation of the band at 3.47 {mu}m with no evidence for the formation of aromatic and aliphatic C-H bonds in the CH{sub 2} and CH{sub 3} functional groups. The formation cross section of the 3.47 {mu}m band has beenmore » estimated from the increase of its integrated optical depth as a function of the H atom fluence. The cross section decreases with increasing thickness of the water ice layer, indicating an increase of adsorption of H atoms in the water ice layer. A penetration depth of 100 nm has been estimated for H atoms in the porous water ice covering carbon grains. Sample warm-up at room temperature causes the activation of the IR features due to the vibrations of the CH{sub 2} and CH{sub 3} aliphatic functional groups. The evolution of the 3.47 {mu}m band carrier has been evaluated for dense and diffuse interstellar clouds, using the estimated formation cross section and assuming that the destruction cross section by energetic processing is the same as that derived for the 3.4 {mu}m band. In both environments, the presence of the 3.47 {mu}m band carrier is compatible with the evolutionary timescale limit imposed by fast cycling of materials between dense and diffuse regions of the interstellar medium. In diffuse regions the formation of the CH{sub 2} and CH{sub 3} aliphatic bands, inhibited in dense regions, takes place, masking the 3.47 {mu}m band. The activation of the CH{sub 2} and CH{sub 3} aliphatic vibrational modes at the end of H processing after sample warm-up represents the first experimental evidence supporting an evolutionary connection between the interstellar carbon grain population, which is responsible for the 3.4 {mu}m band (diffuse regions) and contributes to the absorption at 3.47 {mu}m (dense regions), and the organics observed in interplanetary dust particles and cometary Stardust grains.« less
Surface wave inversion of central Texas quarry blasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonner, J.L.; Goforth, T.T.
1993-02-01
Compressional and shear wave models of the upper crust in central Texas were obtained by inverting Rayleigh and Love waves recorded at the new W.M. Keck Foundation Seismological Observatory at Baylor University. The Keck Observatory, which became operational in April 1992, consists of a three-component, broadband Geotech seismometer located at a depth of 130 feet in a borehole 17 miles from the Baylor campus. The field station is solar powered, and the 140-dB dynamic range digital data are transmitted to the Baylor analysis lab via radio, where they are analyzed and archived. Limestone quarries located in all directions from themore » Keck Observatory detonate two to four tons of explosives per blast several times a week. Recordings of these blasts show sharp onsets of P and S waves, as well as dispersed Rayleigh and Love waves in the period band 1 to 3 seconds. Multiple filter analysis and phase matched filtering techniques were used to obtain high quality dispersion curves for the surface waves, and inversion techniques were applied to produce shear velocity models of the upper crust. A rapid increase in shear velocity at a depth of about 1.5 km is associated with the Ouachita Overthrust Belt. Portable seismic recording systems were placed at the quarries to monitor start times and initial wave forms. These data were combined with the Keck recordings to produce attenuation and compressional velocity models.« less
On the Widths of Bands in the Infrared Spectra of Oxyanions.
Griffiths, Peter R; Eastman Fries, Brandy; Weakley, Andrew T
2018-01-01
It is well known that the antisymmetric stretching (ν 3 ) band in the mid-infrared spectra of oxyanion salts is usually very broad, whereas all the other fundamental bands are narrow. In this paper, we propose that the underlying cause of the increased width is the effect of the very high absorption index of this band for samples prepared with a range of particle sizes. When oxyanion salts are ground, the diameter of the resulting particles usually varies from less than 100 nm to about 2 µm. While the peak absorbance of the ν 3 band of the smaller particles (diameter < 200 nm) is less than 1, that of the larger particles can be as high as 6. We show that the average transmittance of these particles leads to a significant band broadening, especially when there are small voids in the resulting sample. Although the effect is always seen in the spectra of alkali halide disks and mineral oil mulls, it is also seen in diffuse reflection and attenuated total reflection (ATR) spectra. Because the depth of penetration of infrared radiation below 1500 cm -1 is less than 1 µm for ATR spectra measured with a germanium internal reflection element (IRE), the width of the ν 3 band is lower than that of ATR spectra measured with an IRE of lower refractive index such as diamond on zinc selenide.
NASA Astrophysics Data System (ADS)
Levander, A.; Masy, J.; Niu, F.
2013-05-01
The Caribbean (CAR)-South American (SA) plate boundary in Venezuela is a broad zone of faulting and diffuse deformation. GPS measurements show the CAR moving approximately 2 cm/yr relative to SA, parallel to the strike slip fault system in the east, with more oblique convergence in the west (Weber et al., 2001) causing the southern edge of the Caribbean to subduct beneath northwestern South America. The west is further complicated by the motion of the triangular Maracaibo block, which is escaping northeastward relative to SA along the Bocono and Santa Marta Faults. In central and eastern Venezuela, plate motion is accommodated by transpression and transtension along the right lateral San Sebastian- El Pilar strike-slip fault system. The strike-slip system marks the northern edge of coastal thrust belts and their associated foreland basins. The Archean-Proterozoic Guayana Shield, part of the Amazonian Craton, underlies southeastern and south-central Venezuela. We used the 87 station Venezuela-U.S. BOLIVAR array (Levander et al., 2006) to investigate lithospheric structure in northern South America. We combined finite-frequency Rayleigh wave tomography with Ps and Sp receiver functions to determine lithosphere-asthenosphere boundary (LAB) depth. We measured Rayleigh phase velocities from 45 earthquakes in the period band 20-100s. The phase velocities were inverted for 1D shear velocity structure on a 0.5 by 0.5 degree grid. Crustal thickness for the starting model was determined from active seismic experiments and receiver function analysis. The resulting 3D shear velocity model was then used to determine the depth of the LAB, and to CCP stack Ps and Sp receiver functions from ~45 earthquakes. The receiver functions were calculated in several frequency bands using iterative deconvolution and inverse filtering. Lithospheric thickness varies by more a factor of 2.5 across Venezuela. We can divide the lithosphere into several distinct provinces, with LAB depth reflecting the signatures of the Precambrian craton in the south, Mesozoic rifting in central Venezuela, and Neogene subduction and orogenesis in both the northeast and northwest. Specifically, LAB depth varies from 110-130 km beneath the Guayana Shield, in agreement with finite-frequency body wave tomography (Bezada et al., 2010b). To the north beneath the Serrania del Interior and Maturin Basin the Rayleigh waves image two high velocity features to depths of 200 km. The northernmost, beneath the Serrania, corresponds to the top of the subducting Atlantic plate, in agreement with P-wave tomography that images the Atlantic plate to transition zone depths. Another localized high velocity feature extending to ~200 km depth lies to the south. We speculate that this is a lithospheric drip caused by destabilization of the SA lithospheric caused by Atlantic subduction. Immediately to the west beneath the Cariaco basin the LAB is at ~50 km, marking the top of a pronounced low velocity zone. The thin lithosphere extends southwestward from the Cariaco Basin beneath the Mesozoic Espino Graben to the craton. To the west the LAB deepens to ~80 km beneath the Barinas Apure Basin and then to ~90 km beneath the Neogene Merida Andes and Maracaibo block.
NASA Astrophysics Data System (ADS)
Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Vang, T.; Patten, E. A.; Radford, W. A.; Johnson, S. M.
2010-07-01
This paper describes molecular-beam epitaxy growth of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) dual-band device structures on large-area (6 cm × 6 cm) CdZnTe substrates. Wafer-level composition and defect mapping techniques were used to investigate the limiting mechanisms in improving the cutoff wavelength ( λ c) uniformity and reducing the defect density. Structural quality of epitaxial layers was monitored using etch pit density (EPD) measurements at various depths in the epitaxial layers. Finally, 640 × 480, 20- μm-pixel-pitch dual-band focal-plane arrays (FPAs) were fabricated to demonstrate the overall maturity of growth and fabrication processes of epitaxial layers. The MWIR/LWIR dual-band layers, at optimized growth conditions, show a λ c variation of ±0.15 μm across a 6 cm × 6 cm CdZnTe substrate, a uniform low macrodefect density with an average of 1000 cm-2, and an average EPD of 1.5 × 105 cm-2. FPAs fabricated using these layers show band 1 (MWIR) noise equivalent temperature difference (NETD) operability of 99.94% and band 2 (LWIR) NETD operability of 99.2%, which are among the highest reported to date.
Almendros, J.; Chouet, B.; Dawson, P.; Bond, T.
2002-01-01
We analyzed 16 seismic events recorded by the Hawaiian broad-band seismic network at Kilauca Volcano during the period September 9-26, 1999. Two distinct types of event are identified based on their spectral content, very-long-period (VLP) waveform, amplitude decay pattern and particle motion. We locate the VLP signals with a method based on analyses of semblance and particle motion. Different source regions are identified for the two event types. One source region is located at depths of ~1 km beneath the northeast edge of the Halemaumau pit crater. A second region is located at depths of ~8 km below the northwest quadrant of Kilauea caldera. Our study represents the first time that such deep sources have been identified in VLP data at Kilauea. This discovery opens the possibility of obtaining a detailed image of the location and geometry of the magma plumbing system beneath this volcano based on source locations and moment tensor inversions of VLP signals recorded by a permanent, large-aperture broad-band network.
Intermittent carbonate sedimentation in the equatoral Indian Ocean: fluctuations of the Eocene CCD?
NASA Astrophysics Data System (ADS)
Mitchison, F.; Kachovich, S.; Backman, J.; Pike, J.
2017-12-01
IODP Expedition 362 recently drilled from the sea floor to oceanic basement in the eastern equatorial Indian Ocean at Site U1480G (3°N, 91°E, water depth 4148 m). Beneath the thick ( 1250 m) predominantly siliciclastic Nicobar Fan succession, a condensed ( 10 m) middle Eocene pelagic interval displayed striking decimetre-scale banding, alternating between calcareous oozes and darker clays. We investigate whether deposition of the calcareous sediments was associated with periodic global carbonate accumulation events previously documented in the Equatorial Pacific and Atlantic Oceans, linked to oscillations of the carbonate compensation depth (CCD). We present high-resolution geochemical records (carbonate, organic carbon, bulk carbonate stable isotopes) and scanning electron microscope micro-element maps through several of the calcareous to clay transitions, as well as microfossil assemblages and new biostratigraphic constraints for the interval. Our data will reveal whether the banded sediments represent fluctuations of the CCD, and whether the CCD was likely responding to global (e.g. changes in pCO2) or local (e.g. local changes in calcareous plankton productivity) processes.
NASA Astrophysics Data System (ADS)
Xu, Xiaoguang; Wang, Jun; Wang, Yi; Zeng, Jing; Torres, Omar; Yang, Yuekui; Marshak, Alexander; Reid, Jeffrey; Miller, Steve
2017-07-01
We presented an algorithm for inferring aerosol layer height (ALH) and optical depth (AOD) over ocean surface from radiances in oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) orbiting at Lagrangian-1 point. The algorithm was applied to EPIC imagery of a 2 day dust outbreak over the North Atlantic Ocean. Retrieved ALHs and AODs were evaluated against counterparts observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer, and Aerosol Robotic Network. The comparisons showed 71.5% of EPIC-retrieved ALHs were within ±0.5 km of those determined from CALIOP and 74.4% of EPIC AOD retrievals fell within a ± (0.1 + 10%) envelope of MODIS retrievals. This study demonstrates the potential of EPIC measurements for retrieving global aerosol height multiple times daily, which are essential for evaluating aerosol profile simulated in climate models and for better estimating aerosol radiative effects.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
Spectral feature characterization methods for blood stain detection in crime scene backgrounds
NASA Astrophysics Data System (ADS)
Yang, Jie; Mathew, Jobin J.; Dube, Roger R.; Messinger, David W.
2016-05-01
Blood stains are one of the most important types of evidence for forensic investigation. They contain valuable DNA information, and the pattern of the stains can suggest specifics about the nature of the violence that transpired at the scene. Blood spectral signatures containing unique reflectance or absorption features are important both for forensic on-site investigation and laboratory testing. They can be used for target detection and identification applied to crime scene hyperspectral imagery, and also be utilized to analyze the spectral variation of blood on various backgrounds. Non-blood stains often mislead the detection and can generate false alarms at a real crime scene, especially for dark and red backgrounds. This paper measured the reflectance of liquid blood and 9 kinds of non-blood samples in the range of 350 nm - 2500 nm in various crime scene backgrounds, such as pure samples contained in petri dish with various thicknesses, mixed samples with different colors and materials of fabrics, and mixed samples with wood, all of which are examined to provide sub-visual evidence for detecting and recognizing blood from non-blood samples in a realistic crime scene. The spectral difference between blood and non-blood samples are examined and spectral features such as "peaks" and "depths" of reflectance are selected. Two blood stain detection methods are proposed in this paper. The first method uses index to denote the ratio of "depth" minus "peak" over"depth" add"peak" within a wavelength range of the reflectance spectrum. The second method uses relative band depth of the selected wavelength ranges of the reflectance spectrum. Results show that the index method is able to discriminate blood from non-blood samples in most tested crime scene backgrounds, but is not able to detect it from black felt. Whereas the relative band depth method is able to discriminate blood from non-blood samples on all of the tested background material types and colors.
The Wire Flyer Towed Profiling System
NASA Astrophysics Data System (ADS)
Roman, C.; Ullman, D. S.; Hebert, D.
2016-02-01
The Wire Flyer is an autonomous profiling vehicle that slides up and down a standard towed cable in a controlled manner using the lift created by wing foils. The vehicle is able to create high resolution water-column sections within a specified depth band in an automated manner. The Wire Flyer is different than standard undulating tow bodies in that it decouples the vehicle's motion from the tow cable dynamics. Due to this separation the vehicle is able to profile with nearly 1:1 horizontal to vertical motion. A heavy depressor weight is fixed to the end of the cable and the cable shape remains relatively static during operation. The vehicle uses a closed loop wing angle controller to achieve desired vertical velocities between 0 and 2.5 m/s for ship speeds between 1.5 and 2.5 m/s. During typical operations, updated commands and condensed data samples can be sent to and from the vehicle via an acoustic modem to adjust the profiling pattern to ensure the desired coverage. The current 1000 meter rated vehicle is equipped with a SBE 49 FastCAT CTD, and can carry additional sensors for oxygen, Chlorophyll fluorescence and acoustic echosounding. Results showing the vehicle performance as well as the quality of the processed CTD data will be presented from three test cruises to the New England Shelf Break Front. Many shallow and deep sections were obtained with horizontal resolution that is not otherwise achievable with undulating tow bodies, underway CTDs, standard CTD tow-yos, gliders or free swimming AUVs. A typical survey at ship speeds of 3-4 knots can profile over a depth band between 200 and 600 meters depth with a repeat cycle length of less than 1 km. The vehicle concept is depth independent and could work with a full ocean depth design. Application areas for the system include sub-meso scale observations of fronts, vent and seep plumes, oxygen minimum layers, mixing and mid-water bioacoustics.
LANDSAT-4 image data quality analysis
NASA Technical Reports Server (NTRS)
Anuta, P. E. (Principal Investigator)
1982-01-01
Work done on evaluating the geometric and radiometric quality of early LANDSAT-4 sensor data is described. Band to band and channel to channel registration evaluations were carried out using a line correlator. Visual blink comparisons were run on an image display to observe band to band registration over 512 x 512 pixel blocks. The results indicate a .5 pixel line misregistration between the 1.55 to 1.75, 2.08 to 2.35 micrometer bands and the first four bands. Also a four 30M line and column misregistration of the thermal IR band was observed. Radiometric evaluation included mean and variance analysis of individual detectors and principal components analysis. Results indicate that detector bias for all bands is very close or within tolerance. Bright spots were observed in the thermal IR band on an 18 line by 128 pixel grid. No explanation for this was pursued. The general overall quality of the TM was judged to be very high.
Radio Detection of Cosmic Rays-Achievements and Future Potential
NASA Astrophysics Data System (ADS)
Huege, Tim
When modern efforts for radio detection of cosmic rays started about a decade ago, hopes were high but the true potential was unknown. Since then, we have achieved a detailed understanding of the radio emission physics and have consequently succeeded in developing sophisticated detection schemes and analysis approaches. In particular, we have demonstrated that the important air-shower parameters arrival direction, particle energy and depth of shower maximum can be reconstructed reliably from radio measurements, with a precision that is comparable with that of other detection techniques. At the same time, limitations inherent to the radio-emission mechanisms have become apparent. In this article, I shortly review the capabilities of radio detection in the very high-frequency band, and discuss the potential for future application in existing and new experiments for cosmic-ray detection.
Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.
Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli
2016-03-15
A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.
1993-01-01
Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.
FCS Technology Investigation Overview
NASA Technical Reports Server (NTRS)
Budinger, James; Gilbert, Tricia
2007-01-01
This working paper provides an overview of the Future Communication Study (FCS) technology investigation progress. It includes a description of the methodology applied to technology evaluation; evaluation criteria; and technology screening (down select) results. A comparison of screening results with other similar technology screening activities is provided. Additional information included in this working paper is a description of in-depth studies (including characterization of the L-band aeronautical channel; L-band deployment cost assessment; and performance assessments of candidate technologies in the applicable aeronautical channel) that have been conducted to support technology evaluations. The paper concludes with a description on-going activities leading to conclusion of the technology investigation and the development of technology recommendations.
Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber.
Londero, Pablo; Venkataraman, Vivek; Bhagwat, Amar R; Slepkov, Aaron D; Gaeta, Alexander L
2009-07-24
We demonstrate extremely efficient four-wave mixing with gains greater than 100 at microwatt pump powers and signal-to-idler conversion of 50% in Rb vapor confined to a hollow-core photonic band-gap fiber. We present a theoretical model that demonstrates such efficiency is consistent with the dimensions of the fiber and the optical depths attained. This is, to our knowledge, the largest four-wave mixing gain observed at such low total pump powers and the first demonstrated example of four-wave mixing in an alkali-metal vapor system with a large (approximately 30 MHz) ground state decoherence rate.
Estimation of wave phase speed and nearshore bathymetry from video imagery
Stockdon, H.F.; Holman, R.A.
2000-01-01
A new remote sensing technique based on video image processing has been developed for the estimation of nearshore bathymetry. The shoreward propagation of waves is measured using pixel intensity time series collected at a cross-shore array of locations using remotely operated video cameras. The incident band is identified, and the cross-spectral matrix is calculated for this band. The cross-shore component of wavenumber is found as the gradient in phase of the first complex empirical orthogonal function of this matrix. Water depth is then inferred from linear wave theory's dispersion relationship. Full bathymetry maps may be measured by collecting data in a large array composed of both cross-shore and longshore lines. Data are collected hourly throughout the day, and a stable, daily estimate of bathymetry is calculated from the median of the hourly estimates. The technique was tested using 30 days of hourly data collected at the SandyDuck experiment in Duck, North Carolina, in October 1997. Errors calculated as the difference between estimated depth and ground truth data show a mean bias of -35 cm (rms error = 91 cm). Expressed as a fraction of the true water depth, the mean percent error was 13% (rms error = 34%). Excluding the region of known wave nonlinearities over the bar crest, the accuracy of the technique improved, and the mean (rms) error was -20 cm (75 cm). Additionally, under low-amplitude swells (wave height H ???1 m), the performance of the technique across the entire profile improved to 6% (29%) of the true water depth with a mean (rms) error of -12 cm (71 cm). Copyright 2000 by the American Geophysical Union.
Proclus crater: what a fresh, small crater can tell about the composition of lunar Highlands
NASA Astrophysics Data System (ADS)
Serventi, Giovanna; Carli, Cristian; Giacomini, Lorenza; Sgavetti, Maria
2016-04-01
Proclus crater is a Copernican age (Apollo 15 PSR), simple and fresh crater, with a diameter of 28 km. It is located on the northwest rim of Crisium basin and east of Palus Somni (16.1° N, 47.0° E). Here, we have analyzed a M3 (onboard Chandrayaan-1 mission) image (m3g20090202t024131 image) to study the composition of Proclus crater. We first classified the crater in different spectral regions applying the Spectral Angle Mapper (Kruse et al., 1993) method and using image-driven end-members; subsequently, the spectra representative of each region have been deconvolved applying the Modified Gaussian Model (Sunshine et al., 1990) algorithm and compared to spectral libraries consisting of well characterized terrestrial analogues, both mafic (olivine, OL, and pyroxenes, PX) and plagioclase (PL)-bearing. We recognized 5 spectral units into the crater: 1) spectral unit A, characterized by an absorption band at 1250 nm, is interpreted as dominated by PL; 2) spectral unit B, with three absorption bands at ca. 900, 1250 and 1800 nm, where the band depth ratio between the 900 and 1250 nm bands decreases from spectral sub-unit B5 to B1, can be compared with mixtures composed with high PL content (>90%) and PX; 3) spectral unit C, characterized by two absorption bands at 900 and 1800 nm, can be interpreted as PX affected from space weathering (the band depth is less deep than band depth in PX analyzed in the laboratory) or as a mixture of 90% PL and 10% PX; 4) spectral unit D shows a broad absorption centered at 1050 nm with a shoulder at ca. 1600 nm and can be compared with OL affected from space weathering or with a mixture of 90% PL and 10% OL; 5) spectral unit E, characterized by a broad absorption with a shoulder at shorter wavelengths than in the previous unit, can be compared to the spectrum of a mixture composed of PL, OL, PX and Mg-spinel (from Gross et al., 2104). Moreover, spectral unit F has been recognized widespread into the crater; this unit shows flat, red spectra with a shallow absorption at ca. 2000 nm, but will not be discussed here. Concluding, Proclus crater evidenced a PL-rich mineralogy comparable with what expected for lunar Highland materials. Anorthositic regions, with very high abundance of PL, have been discovered on N-NW crater walls, whereas outcrops enriched with mafic mineralogy, PX (associated with PL), have been observed on the east side walls and in a delimited, west region. Few outcrops of OL-bearing material are present on wall and floor. A unit with mafic mineralogy and spinel-like phase was also detected in a S-E area on the crater floor. Proclus could therefore evidence the presence of a PL-rich crust crystallized during the Magma Ocean, with the possible formation of pockets with more mafic composition entrapped into the PL floating material.
Empirical relationship of ultraviolet extinction and the interstellar diffuse bands
NASA Astrophysics Data System (ADS)
Wu, C.-C.; York, D. G.; Snow, T. P.
1981-05-01
New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.
Empirical relationship of ultraviolet extinction and the interstellar diffuse bands
NASA Technical Reports Server (NTRS)
Wu, C.-C.; York, D. G.; Snow, T. P.
1981-01-01
New ultraviolet colors are presented for 110 hot stars. These data are combined with infrared colors and diffuse-band measurements to study the relationship of diffuse interstellar bands (4430, 5780, 6284 A) to the overall extinction curve. Equivalent widths of 5780 A and 6284 A are not well correlated with infrared, visible, or ultraviolet extinction measurements for stars in this sample. The central depth of 4430 A is well correlated with visible and infrared extinction, but less well correlated with UV extinction at 1800 A. The wavelength 4430 A is strongly correlated with the strength of the 2200-A bump. The data suggest that if small grains account for the general rise in UV extinction, the diffuse bands are not formed in these grains. The wavelength 4430 A may well arise in large grains and/or in the material responsible for the 2200-A bump. Correlations with UV extinctions derived by other authors are discussed in detail. It is suggested that definitions of extinction parameters and band shapes, as well as selection effects in small samples of stars, may still compromise conclusions based on correlation studies such as are being attempted.
Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; ...
2015-09-22
The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observationmore » is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4d xz and 4d yz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.« less
Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications
NASA Astrophysics Data System (ADS)
Campbell, E. K.; Holz, M.; Maier, J. P.
2017-02-01
The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10-15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm-2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ˜200 Å for the band near 3250 Å, make them unsuitable for DIB detection.
NASA Astrophysics Data System (ADS)
Dong, Li-Ming; Ni, Chen-Yin; Shen, Zhong-Hua; Ni, Xiao-Wu
2011-09-01
Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.
NASA Astrophysics Data System (ADS)
Kutser, Tiit; Vahtmäe, Ele; Martin, Georg
2006-04-01
One of the objectives of monitoring benthic algal cover is to observe short- and long-term changes in species distribution and structure of coastal benthic habitats as indicators of ecological state. Mapping benthic algal cover with conventional methods (diving) provides great accuracy and high resolution, yet is very expensive and is limited by the time and manpower necessary. We measured reflectance spectra of three indicator species for the Baltic Sea: Cladophora glomerata (green macroalgae), Furcellaria lumbricalis (red macroalgae), and Fucus vesiculosus (brown macroalgae) and used a bio-optical model in an attempt to estimate whether these algae are separable from each other and sandy bottom or deep water by means of satellite remote sensing. Our modelling results indicate that to some extent it is possible to map the studied species with multispectral satellite sensors in turbid waters. However, the depths where the macroalgae can be detected are often shallower than the maximum depths where the studied species usually grow. In waters deeper than just a few meters, the differences between the studied bottom types are seen only in band 2 (green) of the multispectral sensors under investigation. It means that multispectral sensors are capable of detecting difference in brightness only in one band which is insufficient for recognition of different bottom types in waters where no or few in situ data are available. Configuration of MERIS spectral bands allows the recognition of red, green and brown macroalgae based on their spectral signatures provided the algal belts are wider than MERIS spatial resolution. Commercial stock of F. lumbricalis in West-Estonian Archipelago covers area where MERIS 300 m spatial resolution is adequate. However, strong attenuation of light in the water column and signal to noise ratio of the sensor do not allow mapping of Furcellaria down to maximum depths where it occurs.
Decorrelation of L-band and C-band interferometry to volcanic risk prevention
NASA Astrophysics Data System (ADS)
Malinverni, E. S.; Sandwell, D.; Tassetti, A. N.; Cappelletti, L.
2013-10-01
SAR has several strong key features: fine spatial resolution/precision and high temporal pass frequency. Moreover, the InSAR technique allows the accurate detection of ground deformations. This high potential technology can be invaluable to study volcanoes: it provides important information on pre-eruption surface deformation, improving the understanding of volcanic processes and the ability to predict eruptions. As a downside, SAR measurements are influenced by artifacts such as atmospheric effects or bad topographic data. Correlation gives a measure of these interferences, quantifying the similarity of the phase of two SAR images. Different approaches exists to reduce these errors but the main concern remain the possibility to correlate images with different acquisition times: snow-covered or heavily-vegetated areas produce seasonal changes on the surface. Minimizing the time between passes partly limits decorrelation. Though, images with a short temporal baseline aren't always available and some artifacts affecting correlation are timeindependent. This work studies correlation of pairs of SAR images focusing on the influence of surface and climate conditions, especially snow coverage and temperature. Furthermore, the effects of the acquisition band on correlation are taken into account, comparing L-band and C-band images. All the chosen images cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated. To isolate temporal decorrelation, pairs of images with the shortest baseline are chosen. Correlation maps are analyzed in relation to snow depth and temperature. Results obtained with ENVISAT and ERS satellites (C-band) are compared with the ones from ALOS (L-band). Results show a good performance during winter and a bad attitude towards wet snow (spring and fall). During summer both L-band and C-band maintain a good coherence with L-band performing better over vegetation.
All-silicon nanorod-based Dammann gratings.
Li, Zile; Zheng, Guoxing; He, Ping'An; Li, Song; Deng, Qiling; Zhao, Jiangnan; Ai, Yong
2015-09-15
Established diffractive optical elements (DOEs), such as Dammann gratings, whose phase profile is controlled by etching different depths into a transparent dielectric substrate, suffer from a contradiction between the complexity of fabrication procedures and the performance of such gratings. In this Letter, we combine the concept of geometric phase and phase modulation in depth, and prove by theoretical analysis and numerical simulation that nanorod arrays etched on a silicon substrate have a characteristic of strong polarization conversion between two circularly polarized states and can act as a highly efficient half-wave plate. More importantly, only by changing the orientation angles of each nanorod can the arrays control the phase of a circularly polarized light, cell by cell. With the above principle, we report the realization of nanorod-based Dammann gratings reaching diffraction efficiencies of 50%-52% in the C-band fiber telecommunications window (1530-1565 nm). In this design, uniform 4×4 spot arrays with an extending angle of 59°×59° can be obtained in the far field. Because of these advantages of the single-step fabrication procedure, accurate phase controlling, and strong polarization conversion, nanorod-based Dammann gratings could be utilized for various practical applications in a range of fields.
Correlation induced localization of lattice trapped bosons coupled to a Bose–Einstein condensate
NASA Astrophysics Data System (ADS)
Keiler, Kevin; Krönke, Sven; Schmelcher, Peter
2018-03-01
We investigate the ground state properties of a lattice trapped bosonic system coupled to a Lieb–Liniger type gas. Our main goal is the description and in depth exploration and analysis of the two-species many-body quantum system including all relevant correlations beyond the standard mean-field approach. To achieve this, we use the multi-configuration time-dependent Hartree method for mixtures (ML-MCTDHX). Increasing the lattice depth and the interspecies interaction strength, the wave function undergoes a transition from an uncorrelated to a highly correlated state, which manifests itself in the localization of the lattice atoms in the latter regime. For small interspecies couplings, we identify the process responsible for this cross-over in a single-particle-like picture. Moreover, we give a full characterization of the wave function’s structure in both regimes, using Bloch and Wannier states of the lowest band, and we find an order parameter, which can be exploited as a corresponding experimental signature. To deepen the understanding, we use an effective Hamiltonian approach, which introduces an induced interaction and is valid for small interspecies interaction. We finally compare the ansatz of the effective Hamiltonian with the results of the ML-MCTDHX simulations.
NASA Astrophysics Data System (ADS)
Béal, D.; Piégay, H.; Arnaud, F.; Rollet, A.; Schmitt, L.
2011-12-01
Aerial high resolution visible imagery allows producing large river bathymetry assuming that water depth is related to water colour (Beer-Bouguer-Lambert law). In this paper we aim at monitoring Rhine River geometry changes for a diachronic study as well as sediment transport after an artificial injection (25.000 m3 restoration operation). For that a consequent data base of ground measurements of river depth is used, built on 3 different sources: (i) differential GPS acquisitions, (ii) sounder data and (iii) lateral profiles realized by experts. Water depth is estimated using a multi linear regression over neo channels built on a principal component analysis over red, green and blue bands and previously cited depth data. The study site is a 12 km long reach of the by-passed section of the Rhine River that draws French and German border. This section has been heavily impacted by engineering works during the last two centuries: channelization since 1842 for navigation purposes and the construction of a 45 km long lateral canal and 4 consecutive hydroelectric power plants of since 1932. Several bathymetric models are produced based on 3 different spatial resolutions (6, 13 and 20 cm) and 5 acquisitions (January, March, April, August and October) since 2008. Objectives are to find the optimal spatial resolution and to characterize seasonal effects. Best performances according to the 13 cm resolution show a 18 cm accuracy when suspended matters impacted less water transparency. Discussions are oriented to the monitoring of the artificial reload after 2 flood events during winter 2010-2011. Bathymetric models produced are also useful to build 2D hydraulic model's mesh.
Three-dimensional P-wave velocity structure of Mt. Etna, Italy
Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.
1998-01-01
The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.
Classification of bottom composition and bathymetry of shallow waters by passive remote sensing
NASA Astrophysics Data System (ADS)
Spitzer, D.; Dirks, R. W. J.
The use of remote sensing data in the development of algorithms to remove the influence of the watercolumn on upwelling optical signals when mapping the bottom depth and composition in shallow waters. Calculations relating the reflectance spectra to the parameters of the watercolumn and the diverse bottom types are performed and measurements of the underwater reflection coefficient of sandy, mud, and vegetation-type seabottoms are taken. The two-flow radiative transfer model is used. Reflectances within the spectral bands of the Landsat MSS, the Landsat TM, SPOT HVR, and the TIROS-N series AVHRR were computed in order to develop appropriate algorithms suitable for the bottom depth and type mapping. Bottom depth and features appear to be observable down to 3-20 m depending on the water composition and bottom type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rader, D.; Dresen, L.; Ruter, H.
We present dispersion curves, and amplitude-depth distributions of the fundamental and first higher mode of Love seam waves for two characteristic seam models. The first model consists of four layers, representing a coal seam underlain by a root clay of variable thickness. The second model consists of five layers, representing coal seams containing a dirt band with variable position and thickness. The simple three-layer model is used for reference. It is shown that at higher frequencies, depending on the thickness of the root clay and the dirt band, the coal layers alone act as a wave guide, whereas at lowmore » frequencies all layers act together as a channel. Depending on the thickness, and position of the dirt band and the root clay, in the dispersion curves of the group velocity, secondary minima grow in addition to the absolute minima. Furthermore, the dispersion curves of the group velocity of the two modes can overlap. In all these cases, wave groups in addition to the Airy phase of the fundamental mode (propagating with minimum group velocity) occur on the seismograms recorded in in-seam seismic surveys, thus impeding their interpretation. Hence, we suggest the estimation of the dispersion characteristics of Love seam waves in coal seams under investigation preceding actual field surveys. All numerical calculations were performed using a fast and stable phase recursion algorithm.« less
Ghijselings, E; Coucke, W; Verdonck, A; Teughels, W; Quirynen, M; Pauwels, M; Carels, C; van Gastel, J
2014-02-01
The aim of this prospective study was to monitor patients' microbiological and clinical periodontal parameters prior and up to 2 years after orthodontic treatment. Twenty-four adolescents were treated with brackets. Fourteen of them received bands on upper first molars for extra-oral force application before bonding brackets to the remaining teeth. Microbiology, periodontal probing depth, bleeding on probing (BOP), and gingival crevicular fluid (GCF) flow were assessed at baseline (T1), bracket removal (T2), and 2 years post-treatment (T3). A statistical comparison was made over time and between bands and brackets. A significant increase from T1 to T2 and a decrease from T2 to T3 in pathogenicity of plaque were noted. No significant difference was observed concerning supragingival colony-forming units (CFU) ratio (aerobe/anaerobe) between T3 and T1. However, the subgingival CFU ratio (aerobe/anaerobe) at T3 did significantly differ from the ratio at T1. Periodontal probing depth, BOP and GCF flow showed a significant increase between T1 and T2 and a reduction between T2 and T3, resulting in the absence of significant differences between T3 and T1, except for BOP at banded sites. Placement of fixed appliances has an impact on periodontal parameters. The results showed that not all parameters were normalized at T3, indicating that the changes are only partially reversible. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Characterization and optimization for detector systems of IGRINS
NASA Astrophysics Data System (ADS)
Jeong, Ueejeong; Chun, Moo-Young; Oh, Jae Sok; Park, Chan; Yuk, In-Soo; Oh, Heeyoung; Kim, Kang-Min; Ko, Kyeong Yeon; Pavel, Michael D.; Yu, Young Sam; Jaffe, Daniel T.
2014-07-01
IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras and a slit viewing camera, all three of which use Teledyne's λc~2.5μm 2k×2k HgCdTe HAWAII-2RG CMOS detectors. The two spectrograph cameras employ science grade detectors, while the slit viewing camera includes an engineering grade detector. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control those detectors. We performed experiments to characterize and optimize the detector systems in the IGRINS cryostat. We present measurements and optimization of noise, dark current, and referencelevel stability obtained under dark conditions. We also discuss well depth, linearity and conversion gain measurements obtained using an external light source.
Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadimasoudi, Mohammad, E-mail: Mohammad.Mohammadimasoudi@elis.ugent.be; Neyts, Kristiaan; Beeckman, Jeroen
2015-04-15
A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containingmore » a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.« less
Effects of the equatorial ionosphere on L-band Earth-space transmissions
NASA Technical Reports Server (NTRS)
Smith, Ernest K.; Flock, Warren L.
1993-01-01
Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.
Electrical and material properties of hydrothermally grown single crystal (111) UO2
NASA Astrophysics Data System (ADS)
Dugan, Christina L.; Peterson, George Glenn; Mock, Alyssa; Young, Christopher; Mann, J. Matthew; Nastasi, Michael; Schubert, Mathias; Wang, Lu; Mei, Wai-Ning; Tanabe, Iori; Dowben, Peter A.; Petrosky, James
2018-04-01
The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current-voltage I( V) and capacitance-voltage C( V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.
NASA Astrophysics Data System (ADS)
Liu, Zhen; Lundgren, Paul
2016-07-01
The San Andreas Fault (SAF) system is the primary plate boundary in California, with the central SAF (CSAF) lying adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The CSAF displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where the fault transitions to being fully locked. At least six Mw ~6.0 events since 1857 have occurred near the Parkfield transition, most recently in 2004. Large earthquakes also occurred on secondary faults parallel to the SAF, the result of distributed deformation across the plate boundary zone. Recent studies have revealed the complex interaction between anthropogenic related groundwater depletion and the seismic activity on adjacent faults through stress interaction. Despite recent progress, many questions regarding fault and anthropogenic processes in the region still remain. For example, how is the relative plate motion accommodated between the CSAF and off-fault deformation? What is the distribution of fault creep and slip deficit at shallow depths? What are the spatiotemporal variations of fault slip? What are the spatiotemporal characteristics of anthropogenic and lithospheric processes and how do they interact with each other? To address these, we combine satellite InSAR and NASA airborne UAVSAR data to image on and off-fault deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using ERS-1/2, Envisat, ALOS and UAVSAR interferograms. The combined C-band ERS-1/2 and Envisat data provide a long time interval of SAR data over the region, but are subject to severe decorrelation. The L-band ALOS and UAVSAR SAR sensors provide improved coherence compared to the shorter wavelength radar data. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. Modeling selected fault transects reveals a distinct change in surface creep and shallow slip deficit from the central creeping section towards the Parkfield transition. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. Groundwater related deformation is spatially and temporally variable and is composed of both recoverable elastic and non-recoverable inelastic components. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We are currently developing poroelastic finite element method models to assess the influence of anthropogenic processes on surface deformation and fault mechanics. Ongoing work is to better constrain both tectonic and non-tectonic processes and understand their interaction and implication for regional earthquake hazard.
Passive optical remote sensing of Congo River bathymetry using Landsat
NASA Astrophysics Data System (ADS)
Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.
2014-12-01
While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate estimate of depths from these methods will be of considerable value in its hydraulic characterisation.
2014-01-01
Introduction Intensive care unit (ICU) patients are known to experience severely disturbed sleep, with possible detrimental effects on short- and long- term outcomes. Investigation into the exact causes and effects of disturbed sleep has been hampered by cumbersome and time consuming methods of measuring and staging sleep. We introduce a novel method for ICU depth of sleep analysis, the ICU depth of sleep index (IDOS index), using single channel electroencephalography (EEG) and apply it to outpatient recordings. A proof of concept is shown in non-sedated ICU patients. Methods Polysomnographic (PSG) recordings of five ICU patients and 15 healthy outpatients were analyzed using the IDOS index, based on the ratio between gamma and delta band power. Manual selection of thresholds was used to classify data as either wake, sleep or slow wave sleep (SWS). This classification was compared to visual sleep scoring by Rechtschaffen & Kales criteria in normal outpatient recordings and ICU recordings to illustrate face validity of the IDOS index. Results When reduced to two or three classes, the scoring of sleep by IDOS index and manual scoring show high agreement for normal sleep recordings. The obtained overall agreements, as quantified by the kappa coefficient, were 0.84 for sleep/wake classification and 0.82 for classification into three classes (wake, non-SWS and SWS). Sensitivity and specificity were highest for the wake state (93% and 93%, respectively) and lowest for SWS (82% and 76%, respectively). For ICU recordings, agreement was similar to agreement between visual scorers previously reported in literature. Conclusions Besides the most satisfying visual resemblance with manually scored normal PSG recordings, the established face-validity of the IDOS index as an estimator of depth of sleep was excellent. This technique enables real-time, automated, single channel visualization of depth of sleep, facilitating the monitoring of sleep in the ICU. PMID:24716479
Reversed stereo depth and motion direction with anti-correlated stimuli.
Read, J C; Eagle, R A
2000-01-01
We used anti-correlated stimuli to compare the correspondence problem in stereo and motion. Subjects performed a two-interval forced-choice disparity/motion direction discrimination task for different displacements. For anti-correlated 1d band-pass noise, we found weak reversed depth and motion. With 2d anti-correlated stimuli, stereo performance was impaired, but the perception of reversed motion was enhanced. We can explain the main features of our data in terms of channels tuned to different spatial frequencies and orientation. We suggest that a key difference between the solution of the correspondence problem by the motion and stereo systems concerns the integration of information at different orientations.
The Connoisseurship of Conducting: A Qualitative Study of Exemplary Wind Band Conductors
ERIC Educational Resources Information Center
Barry, Nancy; Henry, Daniel
2015-01-01
This study aimed to gain an in-depth perspective through examining how the conducting pedagogy of three selected exemplary high school and college instrumental music conductors function within the context of an actual rehearsal. A typical rehearsal was video recorded, followed by a "think-aloud" session in which the conductor viewed the…
14 CFR 171.111 - Ground standards and tolerances.
Code of Federal Regulations, 2010 CFR
2010-01-01
... line. (2) The depth of modulation of the radio frequency carrier due to the 1020 Hz identification... approval and must be maintained during operation of the SDF. (a) Frequency. (1) The SDF must operate on odd tenths or odd tenths plus a twentieth MHz within the frequency band 108.1 MHz to 111.95 MHz. The...
Shuttle Ku-band and S-band communications implementations study
NASA Technical Reports Server (NTRS)
Huth, G. K.; Nessibou, T.; Nilsen, P. W.; Simon, M. K.; Weber, C. L.
1979-01-01
The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas.
NASA Astrophysics Data System (ADS)
Rendon Santillan, Jojene; Makinano-Santillan, Meriam
2018-04-01
We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.
2012-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.
Bayesian characterization of micro-perforated panels and multi-layer absorbers
NASA Astrophysics Data System (ADS)
Schmitt, Andrew Alexander Joseph
First described by the late acoustician Dah-You Maa, micro-perforated panel (MPP) absorbers produce extremely high acoustic absorption coefficients. This is done without the use of conventional fibrous or porous materials that are often used in acoustic treatments, meaning MPP absorbers are capable of being implemented and withstanding critical situations where traditional absorbers do not suffice. The absorption function of a micro-perforated panel yields high yet relatively narrow results at certain frequencies, although wide-band absorption can be designed by stacking multiple MPP absorbers comprised of different characteristic parameters. Using Bayesian analysis, the physical properties of panel thickness, pore diameter, perforation ratio, and air depth are estimated inversely from experimental data of acoustic absorption, based on theoretical models for design of micro-perforated panels. Furthermore, this analysis helps to understand the interdependence and uncertainties of the parameters and how each affects the performance of the panel. Various micro-perforated panels are manufactured and tested in single- and double-layer absorber constructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun
A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1 2 3) and Cu (0 0 1) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and backmore » surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal.« less
Strong Updraft Feature Associated with Hurricane Earl During Landfall
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Knupp, Kevin R.
2004-01-01
On 2-3 September 1998 hurricane Earl made landfall along the Gulf of Mexico coast, east of Panama City, FL. The University of Alabama in Huntsville Mobile Integrated Profiling System (MIPS) was located at the airport in Tallahassee, FL and made measurements of Earl with a 915 MHz Doppler wind profiler as the system moved across the Florida panhandle. As the center of Earl approached MIPS, a particularly strong updraft feature, having a magnitude of approx. 15 m/s within the lowest 3.0 km above ground level was associated with a rain band. An analysis of the changes hurricane Earl underwent as it made landfall are presented. Measurements used include surface thermodynamic and pressure observations, lightning data, National Weather Service Doppler Weather Surveillance Radar (WSR-88D) data, and Geostationary Earth Orbiting Satellite (GOES) data. Then an analysis focusing on the boundary layer properties and the updraft feature's depth, intensity and duration as measured by the MIPS 915 MHz Doppler wind profiler are presented.
Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b
NASA Technical Reports Server (NTRS)
Mandell, Avram Max; Haynes, Korey N.; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake
2013-01-01
We report an analysis of transit spectroscopy of the extrasolar planets WASP-12 b, WASP-17 b, and WASP-19 b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze the data for a single transit for each planet using a strategy similar, in certain aspects, to the techniques used by Berta et al., but we extend their methodology to allow us to correct for channel- or wavelength-dependent instrumental effects by utilizing the band-integrated time series and measurements of the drift of the spectrum on the detector over time. We achieve almost photon-limited results for individual spectral bins, but the uncertainties in the transit depth for the band-integrated data are exacerbated by the uneven sampling of the light curve imposed by the orbital phasing of HST's observations. Our final transit spectra for all three objects are consistent with the presence of a broad absorption feature at 1.4 nano meter most likely due to water. However, the amplitude of the absorption is less than that expected based on previous observations with Spitzer, possibly due to hazes absorbing in the NIR or non-solar compositions. The degeneracy of models with different compositions and temperature structures combined with the low amplitude of any features in the data preclude our ability to place unambiguous constraints on the atmospheric composition without additional observations with WFC3 to improve the signal-to-noise ratio and/or a comprehensive multi-wavelength analysis.
Six-state phase modulation for reduced crosstalk in a fiber optic gyroscope.
Zhang, Chunxi; Zhang, Shaobo; Pan, Xiong; Jin, Jing
2018-04-16
Electrical crosstalk in an interferometric fiber-optic gyroscope (IFOG) is regarded as the most significant factor influencing dead bands. Here, we present a six-state modulation (SSM) technique to reduce crosstalk. Compared to conventional four-state modulation (FSM) or square-wave modulation (SWM), the SSM reduces the correlation between modulation voltage and demodulation reference by separating their fundamental frequencies, and thus reduces the bias error induced by crosstalk. The measured dead band of a 1500-m IFOG is approximately 0.02 °/h using FSM and approximately 0.08 °/h using SWM, whereas there is no evidence of dead band using SSM. The IFOG using SSM also exhibits better angular random walk (ARW) and bias instability performance compared to the same IFOG using FSM or SWM. These results verify the crosstalk reduction effect of SSM. In theory, by using the relative intensity noise (RIN) suppressing technique with the optimal modulation depth of 2π/3, the SSM can eliminate the crosstalk, which offers the potential for a high-performance IFOG with low noise, high sensitivity, wide dynamic range, and no dead band.
Oxidation of basaltic tephras: Influence on reflectance in the 1 micron region
NASA Technical Reports Server (NTRS)
Farrand, William H.; Singer, Robert B.
1991-01-01
As part of a ongoing study into the products of hydrovolcanism, tuffs were examined from the Cerro Colorado and Pavant Butte tuff cones. The former resides in the northeastern corner of the Pinacate Volcanic Field in Sonara, Mexico and the latter is in the Black Rock Desert of southern Utah. Numerous samples were collected and many of these had their Vis/IR reflectance measured. It seems likely that in the palagonite tuffs there is a combination of nanocrystalline ferric oxide phases contributing to the UV absorption edge, but not to the 1 micron band, plus more crystalline ferric oxides which do contribute to that band as well as ferrous iron within unaltered sideromelane which is skewing the band center to longer wavelengths. This work has implications for the study of Mars. The present work indicates that when ferrous and ferric iron phases are both present, their combined spectral contribution is a single band in the vicinity of 1 micron. The center, depth, and width of that feature has potential to be used to gauge the relative proportions of ferrous and ferric iron phases.
Energy dependence of the band-limited noise in black hole X-ray binaries★
NASA Astrophysics Data System (ADS)
Stiele, H.; Yu, W.
2015-10-01
Black hole low-mass X-ray binaries show a variety of variability features, which manifest as narrow peak-like structures superposed on broad noise components in power density spectra in the hard X-ray emission. In this work, we study variability properties of the band-limited noise component during the low-hard state for a sample of black hole X-ray binaries. We investigate the characteristic frequency and amplitude of the band-limited noise component and study covariance spectra. For observations that show a noise component with a characteristic frequency above 1 Hz in the hard energy band (4-8 keV), we found this very same component at a lower frequency in the soft band (1-2 keV). This difference in characteristic frequency is an indication that while both the soft and the hard band photons contribute to the same band-limited noise component, which likely represents the modulation of the mass accretion rate, the origin of the soft photons is actually further away from the black hole than the hard photons. Thus, the soft photons are characterized by larger radii, lower frequencies and softer energies, and are probably associated with a smaller optical depth for Comptonization up-scattering from the outer layer of the corona, or suggest a temperature gradient of the corona. We interpret this energy dependence within the picture of energy-dependent power density states as a hint that the contribution of the up-scattered photons originating in the outskirts of the Comptonizing corona to the overall emission in the soft band is becoming significant.
Aqueous alteration on main-belt asteroids
NASA Astrophysics Data System (ADS)
Fornasier, S.; Lantz, C.; Barucci, M.; Lazzarin, M.
2014-07-01
The study of aqueous alteration is particularly important for unraveling the processes occurring during the earliest times in Solar System history, as it can give information both on the thermal processes and on the localization of water sources in the asteroid belt, and for the associated astrobiological implications. The aqueous alteration process produces the low temperature (< 320 K) chemical alteration of materials by liquid water which acts as a solvent and produces materials like phyllosilicates, sulphates, oxides, carbonates, and hydroxides. This means that liquid water was present in the primordial asteroids, produced by the melting of water ice by heating sources, very probably by ^{26}Al decay. Hydrated minerals have been found mainly on Mars surface, on primitive main-belt asteroids (C, G, B, F, and P-type, following the classification scheme by Tholen, 1984) and possibly also on few transneptunian objects. Reflectance spectroscopy of aqueous altered asteroids shows absorption features in the 0.6-0.9 and 2.5-3.5-micron regions, which are diagnostic of, or associated with, hydrated minerals. In this work, we investigate the aqueous alteration process on a large sample of 600 visible spectra of C-complex asteroids available in the literature. We analyzed all these spectra in a similar way to characterize the absorption-band parameters (band center, depth, and width) and spectral slope, and to look for possible correlations between the aqueous alteration process and the asteroids taxonomic classes, orbital elements, heliocentric distances, albedo, and sizes. We find that 4.6 % of P, 7.7 % of F, 9.8 % of B, 50.5 % of C, and 100 % of the G-type asteroids have absorption bands in the visible region due to hydrated silicates. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the P → F → B → C → G asteroids, these last being widely aqueously altered, strengthening thus the results previously obtained by Vilas (1994). We confirm the strong correlation between the 0.7-μm band and the 3-μ m band, the deepest feature associated with hydrated minerals, as 95 % of the asteroids showing the 0.7-μ m band have also the 3-μ m feature. 45 % of the asteroids belonging to the C-complex (the F, B, C, and G classes) have signatures of aqueously altered materials in the visible range. It must be noted that this percentage represents a lower limit in the number of hydrated asteroids, simply because the 3-μ m band, the main absorption feature produced by hydrated silicates, may be present in the spectra of primitive asteroids when no bands are detected in the visible range. All this considered, we estimate that 70 % of the C-complex asteroids might have the 3-μ m signature in the IR range and thus were affected by the aqueous alteration process in the past. We find that the aqueous alteration process dominates in primitive asteroids located between 2.3 and 3.1 au, that is, at smaller heliocentric distances than previously suggested by Vilas et al. (1993). The percentage of hydrated asteroids is strongly correlated with their size (Fornasier et al. 2014). The aqueous alteration process is less effective for bodies smaller than 50 km, while it dominates in the 50-240-km sized primitive asteroids. No correlation is found between the aqueous alteration process and the asteroid albedo or orbital elements. Aqueously altered asteroids are the plausible parent bodies of CM2 meteorites. Nevertheless, we see a systematic difference in the 0.7-μ m band center position, the CM2 meteorites having a band centered at longer wavelengths (0.71-0.75 μ m) compared to that of hydrated asteroids. Moreover, the hydrated asteroids are more clustered in spectral slope and band depth than the CM meteorites. All these spectral differences may be attributed to different mineral abundances (CM2 meteorites being more serpentine rich than the asteroids), and/or to grain-size effects, or simply to the fact the CM2 collected on the Earth might not be representative of the whole population of aqueously altered asteroids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croll, Bryce; Jayawardhana, Ray; Albert, Loic
2010-07-10
We present near-infrared Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-2b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect its thermal emission with an eclipse depth of 0.062{sup +0.013}{sub -0.011}% (5{sigma}). Our best-fit secondary eclipse is consistent with a circular orbit (a 3{sigma} upper limit on the eccentricity, e, and argument or periastron, {omega}, of |e cos {omega}| < 0.0090), in agreement with mid-infrared detections of the secondary eclipse of this planet. A secondary eclipse of this depth corresponds to a dayside Ks-band brightness temperature of T{sub B} = 1636{sup +79}{sub -88} K. Ourmore » thermal emission measurement, when combined with the thermal emission measurements using Spitzer/IRAC from O'Donovan and collaborators, suggests that this planet exhibits relatively efficient dayside to nightside redistribution of heat and a near isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. It is unclear if the atmosphere of TrES-2b requires a temperature inversion; if it does it is likely due to chemical species other than TiO/VO as the atmosphere of TrES-2b is too cool to allow TiO/VO to remain in gaseous form. Our secondary eclipse has the smallest depth of any detected from the ground, at around 2 {mu}m, to date.« less
Periodontal considerations in the use of bonds or bands on molars in adolescents and adults.
Boyd, R L; Baumrind, S
1992-01-01
This longitudinal study compared the periodontal status of bonded and banded molars in 20 adult and 40 adolescent patients before, during and after treatment with fixed orthodontic appliances. Plaque accumulation (measured by the Plaque Index), gingival inflammation (measured by the Gingival Index and the bleeding tendency), and pocket depth were assessed by one examiner at sites along the mesio-buccal line angle of the maxillary right first molar and the mandibular left first molar. Assessments were made immediately prior to the placement of fixed appliances (pretreatment), at 1, 3, 6, 9, 12 and 18 months after appliances were placed; and 3 months after appliances were removed (posttreatment). Loss of attachment between the pretreatment and posttreatment visits also was determined. At pretreatment, no significant differences were found in gingival inflammation between maxillary and mandibular banded and bonded molars. During treatment, both maxillary and mandibular banded molars showed significantly (p less than 0.05) greater gingival inflammation and plaque accumulation than did bonded molars. Three months after appliance removal, the maxillary molars that had been banded continued to show significantly more gingival inflammation and loss of attachment than did the maxillary molars that had been bonded. When all banded and bonded teeth were grouped by patient age, mean values for plaque accumulation and gingival inflammation in the maxillary molar regions were significantly greater for adolescents than for adults.
Calibrating the PAU Survey's 46 Filters
NASA Astrophysics Data System (ADS)
Bauer, A.; Castander, F.; Gaztañaga, E.; Serrano, S.; Sevilla, N.; Tonello, N.; PAU Team
2016-05-01
The Physics of the Accelerating Universe (PAU) Survey, being carried out by several Spanish institutions, will image an area of 100-200 square degrees in 6 broad and 40 narrow band optical filters. The team is building a camera (PAUCam) with 18 CCDs, which will be installed in the 4 meter William Herschel Telescope at La Palma in 2013. The narrow band filters will each cover 100Å, with the set spanning 4500-8500Å. The broad band set will consist of standard ugriZy filters. The narrow band filters will provide low-resolution (R˜50) photometric "spectra" for all objects observed in the survey, which will reach a depth of ˜24 mag in the broad bands and ˜22.5 mag (AB) in the narrow bands. Such precision will allow for galaxy photometric redshift errors of 0.0035(1+z), which will facilitate the measurement of cosmological parameters with precision comparable to much larger spectroscopic and photometric surveys. Accurate photometric calibration of the PAU data is vital to the survey's science goals, and is not straightforward due to the large and unusual filter set. We outline the data management pipelines being developed for the survey, both for nightly data reduction and coaddition of multiple epochs, with emphasis on the photometric calibration strategies. We also describe the tools we are developing to test the quality of the reduction and calibration.
NASA Astrophysics Data System (ADS)
Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo
2017-04-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.
Modelling Ground Based X- and Ku-Band Observations of Tundra Snow
NASA Astrophysics Data System (ADS)
Kasurak, A.; King, J. M.; Kelly, R. E.
2012-12-01
As part of a radar-based remote sensing field experiment in Churchill, Manitoba ground based Ku- and X-band scatterometers were deployed to observe changing tundra snowpack conditions from November 2010 to March 2011. The research is part of the validation effort for the Cold Regions Hydrology High-resolution Observatory (CoReH2O) mission, a candidate in the European Space Agency's Earth Explorer program. This paper focuses on the local validation of the semi-empirical radiative transfer (sRT) model proposed for use in snow property retrievals as part of the CoReH2O mission. In this validation experiment, sRT was executed in the forward mode, simulating backscatter to assess the ability of the model. This is a necessary precursor to any inversion attempt. Two experiments are considered, both conducted in a hummocky tundra environment with shallow snow cover. In both cases, scatterometer observations were acquired over a field of view of approximately 10 by 20 meters. In the first experiment, radar observations were made of a snow field and then repeated after the snow had been removed. A ground-based scanning LiDAR system was used to characterize the spatial variability of snow depth through measurements of the snow and ground surface. Snow properties were determined in the field of view from two snow pits, 12 density core measurements, and Magnaprobe snow depth measurements. In the second experiment, a site was non-destructively observed from November through March, with snow properties measured out-of-scene, to characterize the snow evolution response. The model results from sRT fit the form of the observations from the two scatterometer field experiments but do not capture the backscatter magnitude. A constant offset for the season of 5 dB for X-band co- and cross-polarization response was required to match observations, in addition to a 3 dB X- and Ku-band co-polarization offset after the 6th of December. To explain these offsets, it is recognized that the two main physical processes represented by the model are snow volume scattering and ground surface reflectance. With a larger correction needed for X-band, where the ground portion of backscatter is expected to be larger, the contribution from the underlying soil is explored first. The ground contribution in sRT is computed using the semi-empirical Oh et al. (1992) model using permittivity from a temperate mineral soil based model. The ground response is tested against two observations of snow-removed tundra, and one observation of snow free tundra. A secondary analysis is completed using a modified sRT ground model, incorporating recent work on frozen organic permittivity by Mironov et al. (2010). Multi-scale surface roughness resulting from superimposed microtopography on regularly distributed hummocks is also addressed. These results demonstrate the applicability of microwave scattering models to tundra snowpacks underlain with peat, and demonstrate the applicability of the CoReH2O sRT model.
Co-doping of CVD diamond with boron and sulfur
NASA Astrophysics Data System (ADS)
Eaton, Sally Catherine
Boron is well-established as a p-type dopant in diamond, but attempts to find a viable n-type dopant remain unsuccessful. In 1999, sulfur was reported to give n-type conductivity. However, later measurements indicated that the samples contained boron and were p-type. Recently, we showed that diamond co-doped with sulfur and small quantities of boron shows n-type conductivity, which was established by Mott-Schottky analyses, thermoelectric effect, Hall measurements, scanning tunneling spectroscopy (STS), and UV open-circuit photo-potential. At higher boron concentrations, a transition to p-type behavior is observed due to overcompensation. Experiments performed without boron in the feed gas or without residual boron in the reactor chamber showed no sulfur incorporation and no change in conductivity. There is evidence that the excess sulfur concentration in the near-surface region is not stable. At room temperature and below, the activation energies range from 0.06 to 0.12 eV. Above 400K there is an irreversible loss in conductivity and the activation energy increases to approximately 1.3 eV. Additionally, we observed by SIMS that there exists a concentration gradient in sulfur with film depth. This sulfur concentration gradient is also observed in our electrical measurements. STS shows a decrease in conductivity with film depth and Hall effect measurements show both p-type and n-type coefficients for samples which are n-type in the near-surface region. The flat-band potential obtained from the Mott-Schottky experiments is only 1 to 1.5 V more negative on the electrochemical scale than that for boron-doped diamond. This implies that the Fermi level is only 1 to 1.5 eV higher than the Fermi level in boron-doped diamond. This observation implies that the n-type conductivity is not by excitation of electrons to the conduction band, but by an alternate mechanism that occurs in the middle of the band gap. One such possibility is an acceptor impurity band. Electrons from individual donor states can be excited into this acceptor band where they are free to move. This mechanism would create n-type conductivity even if the Fermi level was low in the bandgap.
High-Power Radar Sounders for the Investigation of Jupiter Icy Moons
NASA Technical Reports Server (NTRS)
Safaeinili, A.; Ostro, S.; Rodriquez, E.; Blankenship, D.; Kurth, W.; Kirchner, D.
2005-01-01
The high power and high data rate capability made available by a Prometheus class spacecraft could significantly enhance our ability to probe the subsurface of the planets/moons and asteroid/comets. The main technology development driver for our radar is the proposed Jupiter Icy Moon Orbiter (or JIMO) mission due to its harsh radiation environment. We plan to develop a dual-band radar at 5 and 50 MHz in response to the two major science requirements identified by the JIMO Science Definition Team: studying the near subsurface (less than 2 km) at high resolution and detection of the ice/ocean interface for Europa (depth up to 30 km). The 50-MHz band is necessary to provide high spatial resolution (footprint and depth) as required by the JIMO mission science requirements as currently defined. Our preliminary assessment indicates that the 50-MHz system is not required to be as high-power as the 5-MHz system since it will be more limited by the surface clutter than the Jupiter or galactic background noise. The low frequency band (e.g. 5 MHz), which is the focus of this effort, would be necessary to mitigate the performance risks posed by the unknown subsurface structure both in terms of unknown attenuation due to volumetric scattering and also the detection of the interface through the attenuative transition region at the ice/ocean interface. Additionally, the 5-MHz band is less affected by the surface roughness that can cause loss of coherence and clutter noise. However, since the Signal-to-Noise-Ratio (SNR) of the 5-MHz radar band is reduced due to Jupiter noise when operating in the Jupiter side of the moon, it is necessary to increase the radiated power. Our challenge is to design a high-power HF radar that can hnction in Jupiter's high radiation environment, yet be able to fit into spacecraft resource constraints such as mass and thermal limits. Our effort to develop the JIMO radar sounder will rely on our team's experience with planetary radar sounder design gained during our participation in the MARSIS radar sounder implementation.
Water Ice on Kuiper Belt Object 1996 TO66
NASA Technical Reports Server (NTRS)
Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.
1999-01-01
The 1.40-2.40 micron spectrum of Kuiper Belt object (KBO) 1996 TO66 was measured at the Keck Observatory in September 1998. It's spectrum shows the strong absorptions near 1.5 and 2.0 micron characteristic of water ice--the first such detection on a Kuiper Belt object. The depth of the absorption bands and the continuum reflectance of 1996 TO66 also suggest the presence of a black to slightly blue-colored, spectrally featureless particulate material as a minority component mixed with the water ice. In addition, there is evidence that the intensity of the water bands in the spectrum of 1996 TO66 vary with rotational phase suggesting that it has a "patchy" surface.
NASA Astrophysics Data System (ADS)
Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.
2003-05-01
Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.
Hu, Rongwei; Mun, Eun Deok; Altarawneh, M. M.; ...
2012-02-13
The upper critical fields H c2(T) of single crystals of Sr 1-xEu x(Fe₀.₈₉Co₀.₁₁)₂As₂ (x=0.20 and 0.46) were determined by radio-frequency penetration depth measurements in pulsed magnetic fields. H c2(T) approaches the Pauli limiting field but shows an upward curvature with an enhancement from the orbital limited field, as inferred from the Werthamer-Helfand-Hohenberg theory. We discuss the temperature dependence of the upper critical fields and the decreasing anisotropy using a two-band BCS model.
NASA Astrophysics Data System (ADS)
Jerousek, R. G.; Colwell, J. E.; Hedman, M. M.; Marouf, E. A.; French, R. G.; Esposito, L. W.; Nicholson, P. D.
2017-12-01
The parameters of a simple power-law particle size distribution can be inferred from measurements of optical depth at multiple wavelengths (Marouf et al. 1982, 1983, Zebker et al. 1985) where the number of particles of radius between a and a+da is given by n(a)da = n0(a/a0)-qda with amin ≤ a ≤ amax. In the C ring and Cassini division where the surface mass density is low, the Toomre critical wavelength for gravitational collapse is comparable to the radii of the largest particles ( 1 m) and the effects of viewing geometry on measured normal optical depth can be ignored. In these regions, we fit optical depths measured by the Visual and Infrared Mapping Spectrometer (VIMS) at λ = 2.9μm, the Ultraviolet Imaging Spectrograph (UVIS) at λ = 0.15μm, and by the Radio Science Subsystem (RSS) at X band (λ = 3.6cm) and Ka band (λ = 9.4mm) to power-law derived optical depths and constrain the power-law parameters at 10km radial resolution. In the A and B rings where the Toomre critical wavelength is much larger than the radii of the largest particles, self-gravity wakes (ephemeral elongated particle aggregates canted to the direction of orbital motion by Keplerian shear) form. Occultations of these ring regions that occur at different viewing geometries measure different normal optical depths. We model and remove the geometric effects on the ring normal optical depth using the self-gravity wake model of Colwell et al. (2006, 2007) and fit wake model derived optical depths to power-law determined optical depths to constrain the parameters of the power-law particle size distribution. We find average values of amin 5 mm in the background C ring, the C ring plateaus, and in the Cassini Division. In the A and B ring and outside the strong density waves triggered by resonances with Janus and Mimas, we find amin 9 mm except in the trans-Encke region were the minimum particle radius drops to 5 mm and again to about 3.5 mm in the trans-Keeler region near the A ring outer edge. amax ranges from one to several meters throughout the main rings, and a positive correlation between amax and the measured optical depth except in the C ring plateaus. Over the various ring regions, average amin and q are consistent with determinations from previous studies by Harbison et al. (2013), Becker et al. (2016), Jerousek et al. (2016), and Marouf et al. (2008a) with average q 2.9-3.1.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1994-01-01
An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 1981 CCOPE case study indicates that there were two episodes of coherent internal gravity waves. One of the fundamental unanswered questions from this research, however, concerns the dynamical processes which generated the observed waves, all of which originated from the region encompassing the borders of Montana, Idaho, and Wyoming. While geostrophic adjustment, shearing instability, and terrain where all implicated separately or in concert as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to rigorously define the genesis processes from observations alone. In this report we employ a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed wave episode.
Teleseismic depth estimation of the 2015 Gorkha-Nepal aftershocks
NASA Astrophysics Data System (ADS)
Letort, Jean; Bollinger, Laurent; Lyon-Caen, Helene; Guilhem, Aurélie; Cano, Yoann; Baillard, Christian; Adhikari, Lok Bijaya
2016-12-01
The depth of 61 aftershocks of the 2015 April 25 Gorkha, Nepal earthquake, that occurred within the first 20 d following the main shock, is constrained using time delays between teleseismic P phases and depth phases (pP and sP). The detection and identification of these phases are automatically processed using the cepstral method developed by Letort et al., and are validated with computed radiation patterns from the most probable focal mechanisms. The events are found to be relatively shallow (13.1 ± 3.9 km). Because depth estimations could potentially be biased by the method, velocity model or selected data, we also evaluate the depth resolution of the events from local catalogues by extracting 138 events with assumed well-constrained depth estimations. Comparison between the teleseismic depths and the depths from local and regional catalogues helps decrease epistemic uncertainties, and shows that the seismicity is clustered in a narrow band between 10 and 15 km depth. Given the geometry and depth of the major tectonic structures, most aftershocks are probably located in the immediate vicinity of the Main Himalayan Thrust (MHT) shear zone. The mid-crustal ramp of the flat/ramp MHT system is not resolved indicating that its height is moderate (less than 5-10 km) in the trace of the sections that ruptured on April 25. However, the seismicity depth range widens and deepens through an adjacent section to the east, a region that failed on 2015 May 12 during an Mw 7.3 earthquake. This deeper seismicity could reflect a step-down of the basal detachment of the MHT, a lateral structural variation which probably acted as a barrier to the dynamic rupture propagation.
NASA Astrophysics Data System (ADS)
Toledo, D.; Arruego, I.; Apéstigue, V.; Jiménez, J. J.; Gómez, L.; Yela, M.; Rannou, P.; Pommereau, J.-P.
2017-04-01
The solar irradiance sensor (SIS) was included in the DREAMS package onboard the ExoMars 2016 Entry Descent and Landing Demonstrator Module, and has been selected in the METEO meteorological station onboard the ExoMars 2020 Lander. This instrument is designed to measure at different time intervals the scattered flux or the sum of direct flux and scattered flux in UVA (315-400 nm) and NIR (700-1100 nm) bands. For SIS'16, these measurements are performed by a total of 3 sensors per band placed at the faces of a truncated tetrahedron with face inclination angles of 60°. The principal goal of SIS'16 design is to perform measurements of the dust opacity in UVA and NIR wavelengths ranges, crucial parameters in the understanding of the Martian dust cycle. The retrieval procedure is based on the use of radiative transfer simulations to reproduce SIS observations acquired during daytime as a function of dust opacity. Based on different sensitivity analysis, the retrieval procedure also requires to include as free parameters (1) the dust effective radius; (2) the dust effective variance; and (3) the imaginary part of the refractive index of dust particles in UVA band. We found that the imaginary part of the refractive index of dust particles does not have a big impact on NIR signal, and hence we can kept constant this parameter in the retrieval of dust opacity at this channel. In addition to dust opacity measurements, this instrument is also capable to detect and characterize clouds by looking at the time variation of the color index (CI), defined as the ratio between the observations in NIR and UVA channels, during daytime or twilight. By simulating CI signals with a radiative transfer model, the cloud opacity and cloud altitude (only during twilight) can be retrieved. Here the different retrieval procedures that are used to analyze SIS measurements, as well as the results obtained in different sensitivity analysis, are presented and discussed.
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
Suthangkornkul, Rungarun; Sirichaiyakul, Phanthila; Sungvornyothin, Sungsit; Thepouyporn, Apanchanid; Svasti, Jisnuson; Arthan, Dumrongkiet
2015-06-01
Salivary α-glucosidases (MalI) have been much less characterized when compared with midgut α-glucosidases, which have been studied in depth. Few studies have been reported on the partial characterization of MalI, but no clear function has been ascribed. The aim of this study is to purify and characterize the recombinant Culex quinquefasciatus (CQ) α-glucosidase expressed in Pichia pastoris. The cDNA encoding mature Cx. quinquefasciatus α-glucosidase gene with polyhistidine tag (rCQMalIHis) was successfully cloned into the expression vector, pPICZαB, designated as pPICZαB/CQMalIHis. The activity of recombinant rCQMalIHis expressed in P. pastoris could be detected at 3.75U/ml, under optimal culture conditions. The purified rCQMalIHis showed a single band of molecular weight of approximately 92kDa on SDS-PAGE. After Endoglycosidase H digestion, a single band at 69kDa was found on SDS-PAGE analysis, suggesting that rCQMalIHis is a glycoprotein. Additionally, tryptic digestion and LC-MALDI MS/MS analysis suggested that the 69kDa band corresponds to the Cx. quinquefasciatus α-glucosidase. Thus, rCQMalIHis is a glycoprotein. The rCQMalIHis exhibited optimum pH and temperature at 5.5 and 35°C, respectively. The catalytic efficiency (kcat/Km) of the purified rCQMalIHis for maltotriose is higher than those for sucrose, maltotetraose, maltose and p-nitrophenyl-α-glucoside, indicating that the enzyme prefers maltotriose. Additionally, the rCQMalIHis is significantly inhibited by d-gluconic acid δ-lactone, but not by Mg(2+), Ca(2+) and EDTA. The rCQMalIHis is strongly inhibited by acarbose with IC50 67.8±5.6nM, but weakly inhibited by glucose with IC50 115.9±7.3mM. Copyright © 2015 Elsevier Inc. All rights reserved.
The January 2001, El Salvador Earthquake: A Multi-data Analysis
NASA Astrophysics Data System (ADS)
Vallee, M.; Bouchon, M.; Schwartz, S. Y.
On January 13, 2001, a large normal intermediate depth event (Mw=7.7) occured 40 km away from the Salvadorian coast (Central America). We analysed this earthquake with different sets of seismic data. Because teleseismic waves are the only data which offer a good azimuthal coverage, we first built a kinematic source model with P, SH and surface waves provided by the IRIS,GEOSCOPE and NCEDC networks. P and SH waves were used through a theoretical Green function approach whereas surface waves were used through an Empirical Green Function (EGF) approach. The ambigu- ity between the 30-dipping plane (plunging toward Pacific Ocean) and the 60-degree dipping plane (plunging toward Central America) lead us to do a parallel analysis of the two possible planes. After having relocated the hypocentral depth to 54 km, we tried to retrieve the kinematic features of the rupture. We allowed variable rupture ve- locity (through a finite difference scheme) and variable slip and solved this inverse problem with a combination of the Neighborhood algorithm of Sambridge (1999) and the Simplex method. We found for both planes an updip and northwest rupture prop- agation yielding a centroid depth around 48km. The teleseismic data give a slight preferrence for the 60-dipping plane. In the second part of the study, we tested the two possible fault models with other seismological data, that are (1) regional broad- band data and (2) near-field accelerometers provided by Universidad Centroameri- cana (UCA). Regional data do not allow to discriminate between the two models but near-field data confirm that the fault plane is the steeper one plunging toward Central America. This event initiated at a depth of about 54km on the 60-dipping plane, and rupture propagated mostly updip and to the northwest, breaking a surface of approx- imately 30km*50km with an average slip of about 3.5 m. The large amount of slip occurs updip from the hypocenter near the plate interface. This is better explained by the bending of the subducting plate rather than by a complete decoupling of the slab.
Trap depth and color variation of Ce3+-Cr3+ co-doped Gd3(Al,Ga)5O12 garnet persistent phosphors
NASA Astrophysics Data System (ADS)
Asami, Kazuki; Ueda, Jumpei; Tanabe, Setsuhisa
2016-12-01
Persistent luminescent properties in Ce3+-Cr3+ codoped Gd3Al5-xGaxO12 garnet (GAGG:Ce-Cr) solid solution have been investigated. The persistent luminescent color is shifted from orange to yellowish green with increasing Ga content because Ce3+: 5d level splitting becomes much weaker. The depth of electron trap introduced by Cr codoping was estimated from the intense thermoluminescence glow peak by the initial rise method. The trap depth decreases from 0.56 eV to 0.29 eV with increasing Ga content. The shift can be explained by downshift of bottom of conduction band. From the persistent luminescence decay curve measurement after ceasing 450 nm blue illumination, the samples with x = 2.5 exhibited the longest persistent luminescence for 405 min until the luminance becomes 2 mcd/m2 in GAGG:Ce-Cr phosphors.
Internal Wave Spectrum of Lake Baikal
NASA Astrophysics Data System (ADS)
Tsimitri, C.; Schmid, M.; Wuest, A.
2013-05-01
Lake Baikal is the most voluminous and deepest (over 1.6 Km) fresh water body on earth holding 80% of the world's fresh water supplies. The lake supports a remarkable biodiversity with a major deep-water fauna composed almost entirely of endemic species. Due to the lake's great depth only the top 250 m are experiencing the direct effects of the wind. The deeper part of the lake is barely stratified and has a constant temperature all year round. A distinct peak is observed in the temperature Fourier spectrum around the inertial frequency almost at all times and at all depths. Here we investigate the particularities of the internal wave spectrum using the wavelet transform. We focus on the inertial frequency band and study the propagation through time and depth. Our goal is to evaluate the importance of the internal oscillations to the mixing and to correlate them to external forcing.
32 CFR 701.58 - In-depth analysis of FOIA exemptions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false In-depth analysis of FOIA exemptions. 701.58... DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of FOIA exemptions. An in-depth analysis of the FOIA exemptions is addressed in the DOJ's annual publication...
32 CFR 701.58 - In-depth analysis of FOIA exemptions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false In-depth analysis of FOIA exemptions. 701.58... DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of FOIA exemptions. An in-depth analysis of the FOIA exemptions is addressed in the DOJ's annual publication...
32 CFR 701.58 - In-depth analysis of FOIA exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false In-depth analysis of FOIA exemptions. 701.58... DEPARTMENT OF THE NAVY DOCUMENTS AFFECTING THE PUBLIC FOIA Exemptions § 701.58 In-depth analysis of FOIA exemptions. An in-depth analysis of the FOIA exemptions is addressed in the DOJ's annual publication...
NASA Astrophysics Data System (ADS)
Tewksbury, Barbara J.; Mehrtens, Charlotte J.; Gohlke, Steven A.; Tarabees, Elhamy A.; Hogan, John P.
2017-12-01
In the southeast Western Desert of Egypt, a prominent set of E-W faults and co-located domes and basins involve sedimentary cover rock as young as the early Eocene. Although earlier Mesozoic slip on faults in southern Egypt has been widely mentioned in the literature and attributed to repeated reactivation of basement faults, evidence is indirect and based on the idea that regional stresses associated with tectonic events in the Syrian Arc would likely have reactivated basement faults in south Egypt in dextral strike slip during the Mesozoic as well as the Cenozoic. Here, we present direct evidence from the rock record for the sequence of development of features along these faults. Southwest of Aswan, a small structural dome in Mesozoic Nubia facies rocks occurs where the Seiyal Fault bends northward from west to east. The dome is cut by strands of the Seiyal Fault and a related set of cataclastic deformation bands showing dominantly right lateral strike slip, as well as by younger calcite veins with related patchy poikilotopic cement. High resolution satellite image analysis of the remote southwest Kharga Valley shows a similar sequence of events: older structural domes and basins located where E-W faults bend northward from west to east, right lateral offset of domes and basins along the E-W faults, and two sets of deformation band faults that lack co-located domes and basins. We suggest that field data, image analysis, and burial depth estimates are best explained by diachronous development of features along the E-W fault system. We propose that Late Mesozoic right lateral strike slip produced domes and basins in Nubia facies rocks in stepover regions above reactivated basement faults. We further suggest that the extensively linked segments of the E-W fault system in Nubia facies rocks, plus the deformation band systems, formed during the late Eocene when basement faults were again reactivated in dominantly right lateral strike slip.
A Q-Band Free-Space Characterization of Carbon Nanotube Composites
Hassan, Ahmed M.; Garboczi, Edward J.
2016-01-01
We present a free-space measurement technique for non-destructive non-contact electrical and dielectric characterization of nano-carbon composites in the Q-band frequency range of 30 GHz to 50 GHz. The experimental system and error correction model accurately reconstruct the conductivity of composite materials that are either thicker than the wave penetration depth, and therefore exhibit negligible microwave transmission (less than −40 dB), or thinner than the wave penetration depth and, therefore, exhibit significant microwave transmission. This error correction model implements a fixed wave propagation distance between antennas and corrects the complex scattering parameters of the specimen from two references, an air slab having geometrical propagation length equal to that of the specimen under test, and a metallic conductor, such as an aluminum plate. Experimental results were validated by reconstructing the relative dielectric permittivity of known dielectric materials and then used to determine the conductivity of nano-carbon composite laminates. This error correction model can simplify routine characterization of thin conducting laminates to just one measurement of scattering parameters, making the method attractive for research, development, and for quality control in the manufacturing environment. PMID:28057959
Mars atmosphere studies with the SPICAM IR emission phase function observations
NASA Astrophysics Data System (ADS)
Trokhimovskiy, Alexander; Fedorova, Anna; Montmessin, Franck; Korablev, Oleg; Bertaux, Jean-Loup
Emission Phase Function (EPF) observations is a powerful tool for characterization of atmosphere and surface. EPF sequence provides the extensive coverage of scattering angles above the targeted surface location which allow to separate the surface and aerosol scattering, study a vertical distribution of minor species and aerosol properties. SPICAM IR instrument on Mars Express mission provides continuous atmospheric observations in near IR (1-1.7 mu) in nadir and limb starting from 2004. For the first years of SPICAM operation only a very limited number of EPFs was performed. But from the mid 2013 (Ls=225, MY31) SPICAM EPF observations become rather regular. Based on the multiple-scattering radiative transfer model SHDOM, we analyze equivalent depths of carbon dioxide (1,43 mu) and water vapour (1,38 mu) absorption bands and their dependence on airmass during observation sequence to get aerosol optical depths and properties. The derived seasonal dust opacities from near IR can be used to retrieve the size distribution from comparison with simultaneous results of other instruments in different spectral ranges. Moreover, the EPF observations of water vapour band allow to access poorly known H2O vertical distribution for different season and locations.
Dielectric collapse at the LaAlO 3/SrTiO 3 (001) heterointerface under applied electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minohara, M.; Hikita, Y.; Bell, C.
The fascinating interfacial transport properties at the LaAlO 3/SrTiO 3 heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO 3 at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO 3/SrTiO 3 (001) heterointerface using soft andmore » hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO 3 reveals that a significant potential drop on the SrTiO 3 side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion.« less
Dielectric collapse at the LaAlO 3/SrTiO 3 (001) heterointerface under applied electric field
Minohara, M.; Hikita, Y.; Bell, C.; ...
2017-08-25
The fascinating interfacial transport properties at the LaAlO 3/SrTiO 3 heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO 3 at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO 3/SrTiO 3 (001) heterointerface using soft andmore » hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO 3 reveals that a significant potential drop on the SrTiO 3 side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion.« less
NASA Astrophysics Data System (ADS)
Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua
2012-06-01
Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.
Analysis of Mars surface hydration through the MEx/OMEGA observation of the 3 μm absorption band.
NASA Astrophysics Data System (ADS)
Jouglet, D.; Poulet, F.; Bibring, J. P.; Langevin, Y.; Gondet, B.; Milliken, R. E.; Mustard, J. F.
The near infrared Mars surface global mapping done by OMEGA gives the first opportunity to study the global and detailed characteristics of the 3µm hydration absorption band on Mars surface. This feature is indistinctly due to bending and stretching vibrations of water bound in minerals or adsorbed at their surface, and of hydroxyl groups (for a review, see e.g. [1] or [2]). Its study may give new elements to determine the geologic and climatic past of Mars, and may put new constrain about the current water cycle of Mars. OMEGA data are processed in a pipeline that converts raw data to radiance, removes atmospheric effects and gets I/F. Specific data reduction scheme has been developed to assess temperature of OMEGA spectra at 5 µm and to remove their thermal part so as to get the albedo from 1.µm to 5.1µm ([2]). Two methods, the Integrated Band Depth and the water content based on comparison with laboratory measures of Yen et al. ([3]), have been used to assess the 3µm band depth. These two methods where applied to OMEGA spectra acquired at a nominal calibration level and not exhibiting water ice features. This corresponds to approximately 35 million spectra ([2]). The data processed show the presence of this absorption feature overall the Martian surface, which could be explained by the presence of adsorbed water up to 1% water mass percentage ([4]) and by rinds or coating resulting from weathering (see e.g. [5] or [6]). A possible increase of hydration with albedo is discussed so as to discriminate between the albedo-dependence of the method and hydration variations. Terrains enriched in phyllosilicates ([7]), sulfates ([8]) or hydroxides exhibit an increased hydration at 3 µm. This terrains show that the 3 µm band can bring additional information about composition, for example by observing a variation in the shape of the band. A decrease of hydration with elevation is observed on the processed data independently of the value of albedo. This correlation may be explained by a decrease of pressure with altitude so that less water can adsorb on minerals. Study of global maps reveals a strong increase of hydration with high latitudes (over 60°N), maybe due to a change in composition [9]. Careful analysis also shows seasonal variations of the hydration of soils with the decrease of hydration between spring and summer for mid latitudes regions (from 40°N to 60°N). This hydration enrichment is not due to instrumental effect or to the presence of aerosols or water ice. It is associated to an increase of hydration with latitude in spring, increase that has disappeared in summer. This temporal variation may be explained by the presence of frost in winter. Frost is in contact with minerals and imposes a high water vapor pressure, which makes water to fix on minerals during winter. Then the hydration of the surface returns to equilibrium with the atmosphere by releasing water. These variations seem to confirm the important role of regolith on water cycle, which was predicted from numerical simulations (e.g. [10]). [1] Cooper C.D. and Mustard J.F. (1999) Icarus 142, 557-570. [2] Jouglet D.et al., article in preparation. [3] Yen A.S. et al (1998) JGR E5, 103, 11,125-11,133. [4] Zent A.P. and Quinn R.C.(1997) JGR E4, 102, 9085-9095. [5] Yen A.S. et al (2005), Nature 436, 49-54. [6] Hurowitz J.A. et al (2006) JGR, 111, E02S19, doi:10.1029/2005JE002515. [7] Poulet F. et al (2005) Nature 438, 623-627. [8] Gendrin A. et al. (2005) Science 307, 1587-1591. [9] Milliken et al, article in preparation. [10] Böttger H.M.et al. (2005) Icarus 177, 174-189. 2
Wet Pretreatment-Induced Modification of Cu(In,Ga)Se2/Cd-Free ZnTiO Buffer Interface.
Hwang, Suhwan; Larina, Liudmila; Lee, Hojin; Kim, Suncheul; Choi, Kyoung Soon; Jeon, Cheolho; Ahn, Byung Tae; Shin, Byungha
2018-06-20
We report a novel Cd-free ZnTiO buffer layer deposited by atomic layer deposition for Cu(In,Ga)Se 2 (CIGS) solar cells. Wet pretreatments of the CIGS absorbers with NH 4 OH, H 2 O, and/or aqueous solution of Cd 2+ ions were explored to improve the quality of the CIGS/ZnTiO interface, and their effects on the chemical state of the absorber and the final performance of Cd-free CIGS devices were investigated. X-ray photoelectron spectroscopy (XPS) analysis revealed that the aqueous solution etched away sodium compounds accumulated on the CIGS surface, which was found to be detrimental for solar cell operation. Wet treatment with NH 4 OH solution led to a reduced photocurrent, which was attributed to the thinning (or removal) of an ordered vacancy compound (OVC) layer on the CIGS surface as evidenced by an increased Cu XPS peak intensity after the NH 4 OH treatment. However, the addition of Cd 2+ ions to the NH 4 OH aqueous solution suppressed the etching of the OVC by NH 4 OH, explaining why such a negative effect of NH 4 OH is not present in the conventional chemical bath deposition of CdS. The band alignment at the CIGS/ZnTiO interface was quantified using XPS depth profile measurements. A small cliff-like conduction band offset of -0.11 eV was identified at the interface, which indicates room for further improvement of efficiency of the CIGS/ZnTiO solar cells once the band alignment is altered to a slight spike by inserting a passivation layer with a higher conduction band edge than ZnTiO. Combination of the small cliff conduction band offset at the interface, removal of the Na compound via water, and surface doping by Cd ions allowed the application of ZnTiO buffer to CIGS treated with Cd solutions, exhibiting an efficiency of 80% compared to that of a reference CIGS solar cell treated with the CdS.
NASA Astrophysics Data System (ADS)
Mattsson, Tobias; Burchardt, Steffi; Almqvist, Bjarne S. G.; Ronchin, Erika
2018-02-01
Felsic magma commonly pools within shallow mushroom-shaped magmatic intrusions, so-called laccoliths or cryptodomes, which can cause both explosive eruptions and collapse of the volcanic edifice. Deformation during laccolith emplacement is primarily considered to occur in the host rock. However, shallowly emplaced laccoliths (cryptodomes) show extensive internal deformation. While deformation of magma in volcanic conduits is an important process for regulating eruptive behavior, the effects of magma deformation on intrusion emplacement remain largely unexplored. In this study, we investigate the emplacement of the 0.57 km3 rhyolitic Sandfell laccolith, Iceland, which formed at a depth of 500 m in a single intrusive event. By combining field measurements, 3D modeling, anisotropy of magnetic susceptibility, microstructural analysis, and FEM modeling we examine deformation in the magma to constrain its influence on intrusion emplacement. Concentric flow bands and S-C fabrics reveal contact-parallel magma flow during the initial stages of laccolith inflation. The magma flow fabric is overprinted by strain-localization bands and more than one third of the volume of the Sandfell laccolith display concentric intensely fractured layers. A dominantly oblate magmatic fabric in the fractured areas and conjugate geometry of strain-localization bands, and fractures in the fracture layers demonstrate that the magma was deformed by intrusive stresses. This implies that a large volume of magma became viscously stalled and was unable to flow during intrusion. Fine-grained groundmass and vesicle-poor rock adjacent to the fracture layers point to that the interaction between the strain-localization bands and the flow bands at sub-solidus state caused the brittle-failure and led to decompression degassing and crystallization and rapid viscosity increase in the magma. The extent of syn-emplacement fracturing in the Sandfell laccolith further shows that strain-induced degassing limited the amount of eruptible magma by essentially solidifying the rim of the magma body. Our observations indicate that syn-emplacement changes in rheology, and the associated fracturing of intruding magma not only occur in volcanic conduits, but also play a major role in the emplacement of viscous magma intrusions in the upper kilometer of the crust.
Density Wave Signatures In VIMS Spectral Data
NASA Astrophysics Data System (ADS)
Nicholson, Philip D.; Hedman, M. M.; Cassini VIMS Team
2012-10-01
Spectral scans of Saturn's rings by the Cassini VIMS instrument have revealed both regional and local variations in the depths of the water ice bands at 1.5 and 2.0 microns, which have been interpreted in terms of variations in regolith grain size and the amount of non-icy "contaminants" (Filacchione et al. 2012; Hedman et al. 2012). Noteworthy among the local variations are distinctive patterns associated with the four strong density waves in the A ring. Within each wavetrain there is a peak in band strength relative to the surrounding material, while extending on both sides of the wave is a "halo" of reduced band strength. The typical width of these haloes is 400-500 km, about 2-3 times the visible extent of the density waves. The origin of these features is unknown, but may involve enhanced collisional erosion in the wave zones and transport of the smaller debris into nearby regions. A similar pattern of band depth variations is also seen at several locations in the more opaque B ring in association with the strong 3:2 ILRs of Janus, Pandora and Prometheus. The former shows a pattern just like its siblings in the A ring, while the latter two resonances show haloes, but without central peaks. In each case, the radial widths of the halo approaches 1000 km, but stellar occultation profiles show no detectable density wavetrain. We suggest that this spectral signature may be a useful diagnostic for the presence of strong density waves in regions where the rings are too opaque for occultations to reveal a typical wave profile. More speculatively, the displacement of the haloes' central radii from the calculated ILR locations of 600-700 km could imply a surface density in the central B ring in excess of 500 g/cm^2. This research was supported by the Cassini/Huygens project.
NASA Astrophysics Data System (ADS)
Traforti, Anna; Mari, Giovanna; Carli, Cristian; Demurtas, Matteo; Massironi, Matteo; Di Toro, Giulio
2017-04-01
Reflectance spectroscopy in the visible and near-infrared (VNIR) is a common technique used to study the mineral composition of Solar System bodies from remote sensed and in-situ robotic exploration. In the VNIR spectral range, both crystal field and vibrational overtone absorptions can be present with spectral characteristics (i.e. albedo, slopes, absorption band with different positions and depths) that vary depending on composition and texture (e.g. grain size, roughness) of the sensed materials. The characterization of the spectral variability related to the rock texture, especially in terms of grain size (i.e., both the size of rock components and the size of particulates), commonly allows to obtain a wide range of information about the different geological processes modifying the planetary surfaces. This work is aimed at characterizing how the grain size reduction associated to fault zone development produces reflectance variations in rock and mineral spectral signatures. To achieve this goal we present VNIR reflectance analysis of a set of fifteen rock samples collected at increasing distances from the fault core of the Vado di Corno fault zone (Campo Imperatore Fault System - Italian Central Apennines). The selected samples had similar content of calcite and dolomite but different grain size (X-Ray Powder Diffraction, optical and scanning electron microscopes analysis). Consequently, differences in the spectral signature of the fault rocks should not be ascribed to mineralogical composition. For each sample, bidirectional reflectance spectra were acquired with a Field-Pro Spectrometer mounted on a goniometer, on crushed rock slabs reduced to grain size <800, <200, <63, <10 μm and on intact fault zone rock slabs. The spectra were acquired on dry samples, at room temperature and normal atmospheric pressure. The source used was a Tungsten Halogen lamp with an illuminated spot area of ca. 0.5 cm2and incidence and emission angles of 30˚ and 0˚ respectively. The spectral analysis of the crushed and intact rock slabs in the VNIR spectral range revealed that in both cases, with increasing grain size: (i) the reflectance decreases (ii) VNIR spectrum slopes (i.e. calculated between wavelengths of 0.425 - 0.605 μm and 2.205 - 2.33 μm, respectively) and (iii) carbonate main absorption band depth (i.e. vibrational absorption band at wavelength of ˜2.3 μm) increase. In conclusion, grain size variations resulting from the fault zone evolution (e.g., cumulated slip or development of thick damage zones) produce reflectance variations in rocks and mineral spectral signatures. The remote sensing analysis in the VNIR spectral range can be applied to identify the spatial distribution and extent of fault core and damage zone domains for industrial and seismic hazard applications. Moreover, the spectral characterization of carbonate-built rocks can be of great interest for the surface investigation of inner planets (e.g. Earth and Mars) and outer bodies (e.g. Galilean icy satellites). On these surfaces, carbonate minerals at different grain sizes are common and usually related to water and carbon distribution, with direct implications for potential life outside Earth (e.g. Mars).
Mapping the sound field of an erupting submarine volcano using an acoustic glider.
Matsumoto, Haru; Haxel, Joseph H; Dziak, Robert P; Bohnenstiehl, Delwayne R; Embley, Robert W
2011-03-01
An underwater glider with an acoustic data logger flew toward a recently discovered erupting submarine volcano in the northern Lau basin. With the volcano providing a wide-band sound source, recordings from the two-day survey produced a two-dimensional sound level map spanning 1 km (depth) × 40 km(distance). The observed sound field shows depth- and range-dependence, with the first-order spatial pattern being consistent with the predictions of a range-dependent propagation model. The results allow constraining the acoustic source level of the volcanic activity and suggest that the glider provides an effective platform for monitoring natural and anthropogenic ocean sounds. © 2011 Acoustical Society of America
Brockmann, C.E.; Carter, William D.
1976-01-01
ERTS-1 digital data in the form of computer compatible tapes provide the geoscientist with an unusual opportunity to test the maximum flexibility of the satellite system using interactive computers, such as the General Electric Image 100 System. Approximately 9 hours of computer and operator time were used to analyze the Lake Titicaca image, 1443-14073, acquired 9 October 1973. The total area of the lake and associate wetlands was calculated and found to be within 3 percent of previous measurements. The area was subdivided by reflectance characteristics employing cluster analysis of all 4 bands and later compared with density values of band 4. Reflectance variations may be attributed to surface roughness, water depth and bottom characteristics, turbidity, and floating matter. Wetland marsh vegetation, vegetation related to ground-water effluents, natural grasses, and farm crops were separated by cluster analysis. Sandstone, limestone, sand dunes, and several volcanic rock types were similarly separated and displayed by assigned colors and extended through the entire scene. Waste dumps of the Matilde Zinc Mine and smaller mine workings were tentatively identified by signature analysis. Histograms of reflectance values and map printouts were automatically obtained as a record of each of the principal themes. These themes were also stored on a work tape for later display and photographic record as well as to serve in training. The Image 100 System is rapid, extremely flexible and very useful to the investigator in identifying subtle features that may not be noticed by conventional image analysis. The entire scene, which covers 34,225 km2, was analyzed at a scale of 1:600,000, and portions at 1:98,000 and 1:25,000, during a 9-hour period at a rental cost of $250 per hour. Costs to the user can be reduced by restricting its uses to specific areas, objectives, and procedures, rather than undertaking a complete analysis of a total scene.
Kruse, F.A.
1988-01-01
Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.
Observability of forming planets and their circumplanetary discs - I. Parameter study for ALMA
NASA Astrophysics Data System (ADS)
Szulágyi, J.; Plas, G. van der; Meyer, M. R.; Pohl, A.; Quanz, S. P.; Mayer, L.; Daemgen, S.; Tamburello, V.
2018-01-01
We present mock observations of forming planets with Atacama Large Millimeter Array (ALMA). The possible detections of circumplanetary discs (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 au from their star. The radiative, 3D hydrodynamic simulations were then post-processed with RADMC3D and the ALMA observation simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit; therefore, the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as band 9 (440 μm). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup gas-giant, due to temperature-weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disc leading to a less efficient cooling there. A test was made for a 52 au orbital separation, which showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>5 h). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; secondly, the beam convolution makes the gap shallower and at least 25 per cent narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.
High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations
NASA Astrophysics Data System (ADS)
Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas
2007-10-01
A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.
Ground-based K-band detection of thermal emission from the exoplanet TrES-3b
NASA Astrophysics Data System (ADS)
de Mooij, E. J. W.; Snellen, I. A. G.
2009-01-01
Context: Secondary eclipse measurements of transiting extrasolar planets with the Spitzer Space Telescope have yielded several direct detections of thermal exoplanet light. Since Spitzer operates at wavelengths longward of 3.6 μm, arguably one of the most interesting parts of the planet spectrum (from 1 to 3 μm) is inaccessible with this satellite. This region is at the peak of the planet's spectral energy distribution and is also the regime where molecular absorption bands can significantly influence the measured emission. Aims: So far, 2.2 μm K-band secondary eclipse measurements, which are possible from the ground, have not yet lead to secure detections. The aim of this paper is to measure the secondary eclipse of the very hot Jupiter TrES-3b in K-band, and in addition to observe its transit, to obtain an accurate planet radius in the near infrared. Methods: We have used the william herschell telescope (WHT) to observe the secondary eclipse, and the united kingdom infrared telescope (UKIRT) to observe the transit of TrES-3b. Both observations involved significant defocusing of the telescope, aimed to produce high-cadence time series of several thousand frames at high efficiency, with the starlight spread out over many pixels. Results: We detect the secondary eclipse of TrES-3b with a depth of -0.241 ± 0.043% (~6σ). This corresponds to a day-side brightness temperature of TB(2.2 μm) = 2040 ± 185 K, which is consistent with current models of the physical properties of this planet's upper atmosphere. The centre of the eclipse seems slightly offset from phase φ=0.5 by Δφ = -0.0042 ± 0.0027, which could indicate that the orbit of TrES-3b is non-circular. Analysis of the transit data shows that TrES-3b has a near-infrared radius of 1.338 ± 0.016 R_Jup, showing no significant deviation from optical measurements.
NASA Astrophysics Data System (ADS)
Regenauer-Lieb, K.; Veveakis, M.; Poulet, T.
2014-12-01
Unconventional energy and mineral resources are typically trapped in a low porosity/permeability environment and are difficult to produce. An extreme end-member is the shale gas reservoir in the Cooper Basin (Australia) that is located at 3500-4000 m depth and ambient temperature conditions around 200oC. Shales of lacustrine origin (with high clay content) are diagenetically altered. Diagenesis involves fluid release mineral reactions of the general type Asolid ↔ Bsolid +Cfluid and switches on suddenly in the diagenetic window between 100-200oC. Diagenetic reactions can involve concentrations of smectite, aqueous silica compound, illite, potassium ions, aqueous silica, quartz, feldspar, kerogen, water and gas . In classical petroleum engineering such interlayer water/gas release reactions are considered to cause cementation and significantly reduce porosity and permeability. Yet in contradiction to the expected permeability reduction gas is successfully being produced. We propose that the success is based on the ductile equivalent of classical compaction bands in solid mechanics. The difference being that that the rate of the volumetric compaction is controlled by the diagenetic reactions. Ductile compaction bands are forming high porosity fluid channels rather than low porosity crushed grains in the solid mechanical equivalent. We show that this new type of volumetric instability appears in rate-dependent heterogenous materials as Cnoidal waves. These are nonlinear and exact periodic stationary waves, well known in the shallow water theory of fluid mechanics. Their distance is a direct function of the hydromechanical diffusivities. These instabilities only emerge in low permeability environment where the fluid diffusivity is about an order of magnitude lower than the mechanical loading. The instabilities are expected to be of the type as shown in the image below. The image shows a CT-scan of a laboratory experiment kindly provided by Papamichos (pers.comm.). Periodic compaction bands are clearly detected by the CT analysis of a shale sample compressed under high confining pressure.
Secchi disk observation with spectral-selective glasses in blue and green waters.
Lee, Zhongping; Shang, Shaoling; Lin, Gong; Liu, Tongtong; Liu, Yangyang; Du, Keping; Luis, Kelly
2017-08-21
Radiative transfer modeling of Secchi disk observations has historically been based on conjugated signals of eye response and radiance, where water's attenuation in the entire visible band is included in the attenuation when deciding the Secchi disk depth in water. Aas et al. [Ocean Sci.10(2), 177 (2014)Remote Sens. Environ.169, 139 (2015)] hypothesized that it is actually the attenuation in water's transparent window that matters to the observation of a Secchi disk in water. To test this hypothesis, observations of Secchi disks in blue and green waters were conducted via naked eyes, blue-pass glasses, and green-pass glasses. Measurement results indicate that for blue waters, the observed Secchi depths via naked eyes match the depths obtained with blue-pass glasses and much deeper than the depths with green-pass glasses, although the green-pass glasses match the highest response of human eyes. These observations experimentally support the hypothesis that our eye-brain system uses the contrast information in the transparent window to make a judgement decision regarding sighting a Secchi disk in water.
NASA Astrophysics Data System (ADS)
Casey, J. A.; Beckers, J. F.; Brossier, E.; Haas, C.
2013-12-01
Operational ice information services rely heavily on space-borne synthetic aperture radar (SAR) data for the production of ice charts to meet their mandate of providing timely and accurate sea ice information to support safe and efficient marine operations. During the summer melt period, the usefulness of SAR data for sea ice monitoring is limited by the presence of wet snow and melt ponds on the ice surface, which can mask the signature of the underlying ice. This is a critical concern for ice services whose clients (e.g. commercial shipping, cruise tourism, resource exploration and extraction) are most active at this time of year when sea ice is at its minimum extent, concentration and thickness. As a result, there is a need to further quantify the loss of ice information in SAR data during the melt season and to identify what information can still be retrieved about ice surface conditions and melt pond evolution at this time of year. To date the majority of studies have been limited to analysis of single-polarization C-band SAR data. This study will investigate the potential complimentary and unique sea ice information that polarimetric C- and X-band SAR data can provide to supplement the information available from traditional single co-polarized C-band SAR data. A time-series of polarimetric C- and X-band SAR data was acquired over Jones Sound in the Canadian Arctic Archipelago, in the vicinity of the Grise Fiord, Nunavut. Five RADARSAT-2 Wide Fine Quad-pol images and 11 TerraSAR-X StripMap dual-pol (HH/VV) images were acquired. The time-series begins at the onset of melt in early June and extends through advanced melt conditions in late July. Over this period several ponding and drainage events and two snowfall events occurred. Field observations of sea ice properties were collected using an Ice Mass Balance (IMB) buoy, hourly photos from a time-lapse camera deployed on a coastal cliff, and manual in situ measurements of snow thickness and melt pond depth. Where available, clear-sky data from optical sensors (MODIS, Landsat-8, and WorldView) are also used to provide supplementary information on melt pond coverage and evolution. Meteorological data are available from an Environment Canada weather station in Grise Fiord. In this presentation we will discuss the sea ice information provided by each polarization and frequency and evaluate the impact of melt pond evolution on SAR backscatter. Results to date indicate that C- and X-band provide predominantly redundant information, and cross-polarized backscatter (only acquired at C-band) is often very low and near the system noise floor. Early in the melt season a thick wet snow pack is present and both frequencies provide very little ice information. This is attributed to the strong attenuation of the microwave signal by the wet snow. At this time the underlying ice is effectively obscured. During heavily ponded periods backscatter is highly variable, attributed to changing winds and thus variable melt pond surface roughness. In the final week of observations the fast ice in the region is breaking up and open water is present in some images. In these images C-band appears to provide greater contrast between the melting ice and open water than X-band. Analysis of polarimetric parameters is ongoing.
NASA Astrophysics Data System (ADS)
Bourgeau-Chavez, L. L.; Jenkins, L. K.; Kasischke, E. S.; Turetsky, M.; Benscoter, B.; Banda, E. J.; Boren, E. J.; Endres, S. L.; Billmire, M.
2013-12-01
North American boreal peatland sites of Alaska, Alberta Canada, and the southern limit of the boreal ecoregion (Michigan's Upper Peninsula) are the focus of an ongoing project to better understand the fire weather, hydrology, and climatic controls on boreal peatland fires. The overall goal of the research project is to reduce uncertainties of the role of northern high latitude ecosystems in the global carbon cycle and to improve carbon emission estimates from boreal fires. Boreal peatlands store tremendous reservoirs of soil carbon that are likely to become increasingly vulnerable to fire as climate change lowers water tables and exposes C-rich peat to burning. Increasing fire activity in peatlands could cause these ecosystems to become net sources of C to the atmosphere, which is likely to have large influences on atmospheric carbon concentrations through positive feedbacks that enhance climate warming. Remote sensing is key to monitoring, understanding and quantifying changes occurring in boreal peatlands. Remote sensing methods are being developed to: 1) map and classify peatland cover types; 2) characterize seasonal and inter-annual variations in the moisture content of surface peat (fuel) layers; 3) map the extent and seasonal timing of fires in peatlands; and 4) discriminate different levels of fuel consumption/burn severity in peat fires. A hybrid radar and optical infrared methodology has been developed to map peatland types (bog vs. fen) and level of biomass (open herbaceous, shrubby, forested). This methodology relies on multi-season data to detect phenological changes in hydrology which characterize the different ecosystem types. Landsat data are being used to discriminate burn severity classes in the peatland types using standard dNBR methods as well as individual bands. Cross referencing the peatland maps and burn severity maps will allow for assessment of the distribution of upland and peatland ecosystems affected by fire and quantitative analysis of emissions. Radar imagery from multiple platforms (L-band PALSAR, C-band ERS-2, Envisat, and Radarsat-2) is being used to develop soil moisture extraction algorithms to monitor changes (drying - wetting) through time and to develop a standard method for soil moisture assessment. Using data from the 1990s (ERS-1 and 2) through the present (Radarsat-2) will allow for determination of patterns of wetting and drying across the landscape. All the remote sensing analysis is supported with field work which has been coordinated with that of Canadian scientists. Field collection includes vegetation and hydrology data to validate peatland distribution maps, collection of water table depths and peat moisture content data to aid in algorithm development for radar organic soil moisture retrieval, and characterization of variations in depth of burning and carbon consumption during peatland fires to use in burn severity mapping and fire emissions modeling.
NASA Astrophysics Data System (ADS)
King, J. M.; Kasurak, A.; Kelly, R. E.; Duguay, C. R.; Derksen, C.; Rutter, N.; Sandells, M.; Watts, T.
2012-12-01
During the winter of 2010-2011 ground-based Ku- (17.2 GHz) and X-band (9.6 GHz) scatterometers were deployed near Churchill, Manitoba, Canada to evaluate the potential for dual-frequency observation of tundra snow properties. Field-based scatterometer observations when combined with in-situ snowpack properties and physically based models, provide the means necessary to develop and evaluate local scale property retrievals. To form meaningful analysis of the observed physical interaction space, potential sources of bias and error in the observed backscatter must be identified and quantified. This paper explores variation in observed Ku- and X-band backscatter in relation to the physical complexities of shallow tundra snow whose properties evolve at scales smaller than the observing instrument. The University of Waterloo scatterometer (UW-Scat) integrates observations over wide azimuth sweeps, several meters in length, to minimize errors resulting from radar fade and poor signal-to-noise ratios. Under ideal conditions, an assumption is made that the observed snow target is homogeneous. Despite an often-outward appearance of homogeneity, topographic elements of the Canadian open tundra produce significant local scale variability in snow properties, including snow water equivalent (SWE). Snow at open tundra sites observed during this campaign was found to vary by as much as 20 cm in depth and 40 mm in SWE within the scatterometer field of view. Previous studies suggest that changes in snow properties on this order will produce significant variation in backscatter, potentially introducing bias into products used for analysis. To assess the influence of sub-scan variability, extensive snow surveys were completed within the scatterometer field of view immediately after each scan at 32 sites. A standardized sampling protocol captured a grid of geo-located measurements, characterizing the horizontal variability of bulk properties including depth, density, and SWE. Based upon these measurements, continuous surfaces were generated to represent the observed snow target. Two snow pits were also completed within the field of view, quantifying vertical variability in density, permittivity, temperature, grain size, and stratigraphy. A new post-processing method is applied to divide the previously aggregated scatterometer observations into smaller sub-sets, which are then co-located with the physical snow observations. Sub-scan backscatter coefficients and their relationship to tundra snowpack parameters are then explored. The results presented here provide quantitative methods relevant to the radar observation science of snow and, therefore, to potential future space-borne missions such as the Cold Regions Hydrology High-resolution Observatory (CoReH2O), a candidate European Space Agency Earth Explorer mission. Moreover, this paper provides guidelines for future studies exploring ground-based scatterometer observations of tundra snow.
Davis, Philip A.; Grolier, Maurice J.
1984-01-01
Landsat multispectral scanner (MSS) band and band-ratio databases of two scenes covering the Midyan region of northwestern Saudi Arabia were examined quantitatively and qualitatively to determine which databases best discriminate the geologic units of this semi-arid and arid region. Unsupervised, linear-discriminant cluster-analysis was performed on these two band-ratio combinations and on the MSS bands for both scenes. The results for granitoid-rock discrimination indicated that the classification images using the MSS bands are superior to the band-ratio classification images for two reasons, discussed in the paper. Yet, the effects of topography and material type (including desert varnish) on the MSS-band data produced ambiguities in the MSS-band classification results. However, these ambiguities were clarified by using a simulated natural-color image in conjunction with the MSS-band classification image.