DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik
2015-06-29
To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less
The band gap properties of the three-component semi-infinite plate-like LRPC by using PWE/FE method
NASA Astrophysics Data System (ADS)
Qian, Denghui; Wang, Jianchun
2018-06-01
This paper applies coupled plane wave expansion and finite element (PWE/FE) method to calculate the band structure of the proposed three-component semi-infinite plate-like locally resonant phononic crystal (LRPC). In order to verify the accuracy of the result, the band structure calculated by PWE/FE method is compared to that calculated by the traditional finite element (FE) method, and the frequency range of the band gap in the band structure is compared to that of the attenuation in the transmission power spectrum. Numerical results and further analysis demonstrate that a band gap is opened by the coupling between the dominant vibrations of the rubber layer and the matrix modes. In addition, the influences of the geometry parameters on the band gap are studied and understood with the help of the simple “base-spring-mass” model, the influence of the viscidity of rubber layer on the band gap is also investigated.
Microwave emulations and tight-binding calculations of transport in polyacetylene
NASA Astrophysics Data System (ADS)
Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.
2017-01-01
A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.
Research on low-frequency band gap property of a hybrid phononic crystal
NASA Astrophysics Data System (ADS)
Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Chao, Ding; Wang, Benchi
2018-05-01
A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.
Sizable band gap in organometallic topological insulator
NASA Astrophysics Data System (ADS)
Derakhshan, V.; Ketabi, S. A.
2017-01-01
Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.
Pressure effects on band structures in dense lithium
NASA Astrophysics Data System (ADS)
Goto, Naoyuki; Nagara, Hitose
2012-07-01
We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.
Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry
NASA Astrophysics Data System (ADS)
Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong
2010-10-01
Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.
NASA Astrophysics Data System (ADS)
Yedukondalu, N.; Kunduru, Lavanya; Roshan, S. C. Rakesh; Sainath, M.
2018-04-01
Assessment of band gaps for nine alkaline-earth chalcogenides namely MX (M = Ca, Sr, Ba and X = S, Se Te) compounds are reported using Tran Blaha-modified Becke Johnson (TB-mBJ) potential and its new parameterization. From the computed electronic band structures at the equilibrium lattice constants, these materials are found to be indirect band gap semiconductors at ambient conditions. The calculated band gaps are improved using TB-mBJ and its new parameterization when compared to local density approximation (LDA) and Becke Johnson potentials. We also observe that TB-mBJ new parameterization for semiconductors below 7 eV reproduces the experimental trends very well for the small band gap semiconducting alkaline-earth chalcogenides. The calculated band profiles look similar for MX compounds (electronic band structures are provided for BaS for representation purpose) using LDA and new parameterization of TB-mBJ potentials.
Band gap and electronic structure of MgSiN2
NASA Astrophysics Data System (ADS)
Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.
2014-09-01
Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.
The quasiparticle band structure of zincblende and rocksalt ZnO.
Dixit, H; Saniz, R; Lamoen, D; Partoens, B
2010-03-31
We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.
Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice
NASA Astrophysics Data System (ADS)
Wu, Liang-Yu; Chen, Lien-Wen
2011-02-01
This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the Γ-X and Γ-X' directions are also presented. The calculated results are compared with the experimental results.
Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.
Knutson, Jeremy L; Martin, James D; Mitzi, David B
2005-06-27
Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.
Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Yang, Li; Park, Cheol-Hwan; Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.
2007-11-01
We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green’s function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5 3.0 eV for ribbons of width 2.4 0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.
NASA Astrophysics Data System (ADS)
Zacharias, Marios; Giustino, Feliciano
2016-08-01
Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.
Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun
2017-06-28
A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).
Density functional theory calculations of III-N based semiconductors with mBJLDA
NASA Astrophysics Data System (ADS)
Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi
2017-02-01
In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.
Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Ke, Xuezhi; Chen, Changfeng
2011-01-01
We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.
Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G., E-mail: agni@physics.du.ac.in, E-mail: agvedeshwar@gmail.com
2013-11-21
The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different sixmore » (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.« less
Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si
NASA Astrophysics Data System (ADS)
Persson, C.; Lindefelt, U.; Sernelius, B. E.
1999-10-01
Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B.; Sarkar, P.
2015-06-24
The multilayer structure of TiO{sub 2}/SiO{sub 2} (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Cheong, S.W.; Kim, Bog G., E-mail: boggikim@pusan.ac.kr
We have studied the properties of SnO{sub 6} octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO{sub 6} containing perovskites. We also have expended the hybrid density functional calculation to the ASnO{sub 3}/A'SnO{sub 3} system with different cation orderings. We propose an empirical relationshipmore » between the tolerance factor and the band gap of SnO{sub 6} containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO{sub 3} for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO{sub 6} octahedrons are plotted as polyhedron. (b) Band gap of ASnO{sub 3} as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO{sub 3}/A'SnO{sub 3} superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO{sub 3}, [001] ordered superlattices, and [111] ordered superlattices of ASnO{sub 3}/A'SnO{sub 3} as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO{sub 3} and ASnO{sub 3}/A'SnO{sub 3}. • The band gap of ASnO{sub 3} using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap.« less
Yang, Yanmin; Zhong, Kehua; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-07-31
The Electronic structure of PbPdO 2 with (002) and (211) preferred orientations were investigated using first-principles calculation. The calculated results indicate that, (002) and (211) orientations exhibit different electric field dependence of band-gap and carrier concentration. The small band gap and more sensitive electric field modulation of band gap were found in (002) orientation. Moreover, the electric field modulation of the resistivity up to 3-4 orders of magnitude is also observed in (002) slab, which reveals that origin of colossal electroresistance. Lastly, electric field modulation of band gap is well explained. This work should be significant for repeating the colossal electroresistance.
Band gap structures for 2D phononic crystals with composite scatterer
NASA Astrophysics Data System (ADS)
Qi, Xiao-qiao; Li, Tuan-jie; Zhang, Jia-long; Zhang, Zhen; Tang, Ya-qiong
2018-05-01
We investigated the band gap structures in two-dimensional phononic crystals with composite scatterer. The composite scatterers are composed of two materials (Bragg scattering type) or three materials (locally resonance type). The finite element method is used to calculate the band gap structure, eigenmodes and transmission spectrum. The variation of the location and width of band gap are also investigated as a function of material ratio in the scatterer. We have found that the change trends the widest band gap of the two phononic crystals are different as the material ratio changing. In addition to this, there are three complete band gaps at most for the Bragg-scattering-type phononic crystals in the first six bands; however, the locally resonance-type phononic crystals exist only two complete band gap at most in the first six bands. The gap-tuning effect can be controlled by the material ratio in the scatterer.
Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.
2015-01-01
The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075
Density-functional energy gaps of solids demystified
NASA Astrophysics Data System (ADS)
Perdew, John P.; Ruzsinszky, Adrienn
2018-06-01
The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?
NASA Astrophysics Data System (ADS)
Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu
2017-02-01
The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.
The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less
Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.; ...
2017-03-06
The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less
Determination of optical band gap of powder-form nanomaterials with improved accuracy
NASA Astrophysics Data System (ADS)
Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul
2017-10-01
Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.
Direct Band Gap Wurtzite Gallium Phosphide Nanowires
2013-01-01
The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761
Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.
Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P
2017-12-01
The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.
Optical band gap in a cholesteric elastomer doped by metallic nanospheres
NASA Astrophysics Data System (ADS)
Hernández, Julio C.; Reyes, J. Adrián
2017-12-01
We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system. These calculations verify the mentioned band structure and provide additional information about the polarization features of the radiation.
First principles investigation of GaNbO{sub 4} as a photocatalytic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Neelam, E-mail: sneelam@issc.unipune.ac.in; Verma, Mukta; Shah, Vaishali
We have performed first principles density functional total energy calculations on pure and doped GaNbO{sub 4} to investigate its applicability as a photo catalyst. Pure GaNbO{sub 4} is an indirect, wide band gap semiconductor similar to the widely investigated TiO{sub 2} which is known to be a photo catalyst in UV light [K. Yang et. al. Chem. Mater. 20, 6528 (2008)]. S atom doping of TiO{sub 2} reduces the band gap [F. Tian et. al. J. Phys. Chem. B 110, 17866 (2006)], and increases its efficiency in the visible light range. It has been experimentally reported that S doping ofmore » GaNbO{sub 4} at the O site, decreases its photo catalytic efficiency. Our band structure calculations show that both pure and doped GaNbO{sub 4} have indirect band gaps and S atom doping reduces the band gap in agreement with experiments. The decrease in the band gap is due to the lowering of the conduction band minimum towards the Fermi level. An unequal reduction in the band gap was observed at the four inequivalent O sites chosen for S doping. This suggests that the photo catalytic activity varies with the dopant site.« less
Reshak, Ali Hussain; Piasecki, M; Auluck, S; Kityk, I V; Khenata, R; Andriyevsky, B; Cobet, C; Esser, N; Majchrowski, A; Swirkowicz, M; Diduszko, R; Szyrski, W
2009-11-19
We have performed a density functional calculation for the centrosymmetric neodymium gallate using a full-potential linear augmented plane wave method with the LDA and LDA+U exchange correlation. In particular, we explored the influence of U on the band dispersion and optical transitions. Our calculations show that U = 0.55 Ry gives the best agreement with our ellipsometry data taken in the VUV spectral range with a synchrotron source. Our LDA+U (U = 0.55) calculation shows that the valence band maximum (VBM) is located at T and the conduction band minimum (CBM) is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.8 eV in excellent agreement with our experiment. The partial density of states show that the upper valence band originates predominantly from Nd-f and O-p states, with a small admixture of Nd-s/p and Ga-p B-p states, while the lower conduction band prevailingly originates from the Nd-f and Nd-d terms with a small contribution of O-p-Ga-s/p states. The Nd-f states in the upper valence band and lower conduction band have a significant influence on the energy band gap dispersion which is illustrated by our calculations. The calculated frequency dependent optical properties show a small positive uniaxial anisotropy.
Electronic structure in 1T-ZrS2 monolayer by strain
NASA Astrophysics Data System (ADS)
Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi
2017-09-01
We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.
First-principles study of direct and narrow band gap semiconducting β -CuGaO 2
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...
2015-04-16
Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less
Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S
2015-06-18
We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.
Zn(x)Cd(1-x)Se nanomultipods with tunable band gaps: synthesis and first-principles calculations.
Wei, Hao; Su, Yanjie; Han, Ziyi; Li, Tongtong; Ren, Xinglong; Yang, Zhi; Wei, Liangming; Cong, Fengsong; Zhang, Yafei
2013-06-14
In this paper, we demonstrate that ZnxCd1-xSe nanomultipods can be synthesized via a facile and nontoxic solution-based method. Interesting aspects of composition, morphology and optical properties were deeply explored. The value of Zn/(Zn+Cd) could be altered across the entire range from 0.08 to 0.86 by varying the ratio of cation precursor contents. The band gap energy could be linearly tuned from 1.88 to 2.48 eV with respect to the value of Zn/(Zn+Cd). The experiment also showed that oleylamine played a dominant role in the formation of multipod structure. A possible growth mechanism was further suggested. First-principles calculations of band gap energy and density of states in the Vienna ab initio simulation package code were performed to verify the experimental variation tendency of the band gap. Computational results indicated that dissimilarities of electronic band structures and orbital constitutions determined the tunable band gap of the as-synthesized nanomultipod, which might be promising for versatile applications in relevant areas of solar cells, biomedicine, sensors, catalysts and so on.
Tunable and sizable band gap in silicene by surface adsorption
Quhe, Ruge; Fei, Ruixiang; Liu, Qihang; Zheng, Jiaxin; Li, Hong; Xu, Chengyong; Ni, Zeyuan; Wang, Yangyang; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing
2012-01-01
Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 108. Therefore, a way is paved for silicene as the channel of a high-performance FET. PMID:23152944
Calculation of Vertical and Horizontal Mobilities in InAs/GaSb Superlattices (Postprint)
2011-10-13
width 2a and GaSb having width 2b, with the period = 2a + 2b. For energies near the band gap edges, the carrier wave function can be approximated by a...online) Electron energy bands along the growth direction for three combinations of InAs/ GaSb layer widths. For typical carrier densities, at low...Fermi energies , parallel masses, and band gaps from the 8×8 EFA model. Sheet carrier Calculated Measured Calculated InAs GaSb concentration per period
Tran, Fabien; Blaha, Peter
2017-05-04
Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.
Structural and electro-optical properties of bilayer graphyne like BN sheet
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-12-01
The structural, electronic and optical properties of bilayer graphyne like BN sheet (BNyne) with different stacking manners have been explored by the first-principles calculations. The stabilities of α-BNyne bilayers with different stacking manners are compared. The α-BNyne Bilayers have wide band gaps. Compared to the single α-BNyne, the numbers of energy bands are doubled due to the interlayer interactions and the band gap is reduced. The AB-I configuration has a direct band gap while the band gap becomes indirect for AA-II. The calculated ε2 (ω) of bilayer α-BNyne for (Eǁx) is similar to that of the monolayer α-BNyne, except for the small changes of peak positions and increasing of peak intensities. For (Eǁz), the first absorption peak occures at 3.86 eV, and the prominant peak of monolayer at 9.17 eV becomes broadened. These changes are related to the new transitions resulting from the band splitting.
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka
2011-05-01
We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. Our simulation shows that the valence band width calculated within the SIC is narrower than that calculated without the SIC because the SIC makes the d-band potential deeper. The energy gap calculated within the SIC expands and is close to experimental data.
From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach.
Baerends, E J
2017-06-21
It is often stated that the Kohn-Sham occupied-unoccupied gap in both molecules and solids is "wrong". We argue that this is not a correct statement. The KS theory does not allow to interpret the exact KS HOMO-LUMO gap as the fundamental gap (difference (I - A) of electron affinity (A) and ionization energy (I), twice the chemical hardness), from which it indeed differs, strongly in molecules and moderately in solids. The exact Kohn-Sham HOMO-LUMO gap in molecules is much below the fundamental gap and very close to the much smaller optical gap (first excitation energy), and LDA/GGA yield very similar gaps. In solids the situation is different: the excitation energy to delocalized excited states and the fundamental gap (I - A) are very similar, not so disparate as in molecules. Again the Kohn-Sham and LDA/GGA band gaps do not represent (I - A) but are significantly smaller. However, the special properties of an extended system like a solid make it very easy to calculate the fundamental gap from the ground state (neutral system) band structure calculations entirely within a density functional framework. The correction Δ from the KS gap to the fundamental gap originates from the response part v resp of the exchange-correlation potential and can be calculated very simply using an approximation to v resp . This affords a calculation of the fundamental gap at the same level of accuracy as other properties of crystals at little extra cost beyond the ground state bandstructure calculation. The method is based on integer electron systems, fractional electron systems (an ensemble of N- and (N + 1)-electron systems) and the derivative discontinuity are not invoked.
Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view
NASA Astrophysics Data System (ADS)
Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.
2013-07-01
The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.
NASA Astrophysics Data System (ADS)
He, Jiangang; Franchini, Cesare
2017-11-01
In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization method and making use of the relation \
Band gap in tubular pillar phononic crystal plate.
Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui
2016-09-01
In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.
Valley polarization in silicene induced by circularly-polarized resonance light
NASA Astrophysics Data System (ADS)
Cao, Jie; Qi, Fenghua
2017-06-01
In the presence of circularly-polarized resonance light, silicene develops dynamical band gaps in its quasi-energy band structure. Using numerical calculations, our results show that the gap appearing at ħω/2, where ħω is the photon energy. More importantly, we find that these gaps are non-symmetric for two inequivalent valleys. Therefore we can introduce light-controlled valley polarization in these dynamical band gaps. Different valleytronic devices can be realized using this technique.
The calculation of band gap energy in zinc oxide films
NASA Astrophysics Data System (ADS)
Arif, Ali; Belahssen, Okba; Gareh, Salim; Benramache, Said
2015-01-01
We investigated the optical properties of undoped zinc oxide thin films as the n-type semiconductor; the thin films were deposited at different precursor molarities by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 200 and 500 °C. In this paper, we present a new approach to control the optical gap energy of ZnO thin films by concentration of the ZnO solution and substrate temperatures from experimental data, which were published in international journals. The model proposed to calculate the band gap energy with the Urbach energy was investigated. The relation between the experimental data and theoretical calculation suggests that the band gap energies are predominantly estimated by the Urbach energies, film transparency, and concentration of the ZnO solution and substrate temperatures. The measurements by these proposal models are in qualitative agreements with the experimental data; the correlation coefficient values were varied in the range 0.96-0.99999, indicating high quality representation of data based on Equation (2), so that the relative errors of all calculation are smaller than 4%. Thus, one can suppose that the undoped ZnO thin films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition and contained higher optical band gap energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in
2013-04-15
Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductorsmore » in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively due to cation electronegativity.« less
Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish
2015-08-15
Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the opticalmore » absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.« less
Strain-induced band-gap engineering of graphene monoxide and its effect on graphene
NASA Astrophysics Data System (ADS)
Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.
2013-02-01
Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.
Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.
Dixit, H; Lamoen, D; Partoens, B
2013-01-23
CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
NASA Astrophysics Data System (ADS)
Fan, Dazhi; Liu, Guili; Wei, Lin
2018-06-01
Based on the density functional theory, the effect of torsional deformation on the electronic structure and optical properties of boron nitride (BN)-doped graphene is studied by using the first-principles calculations. The band structure calculations show that the intrinsic graphene is a semi-metallic material with zero band gap and the torsional deformation has a large effect on its band gap, opening its band gap and turning it from the semi-metal to the medium band gap semiconductor. The doping of BN in graphene makes its band gap open and becomes a medium band gap semiconductor. When it is subjected to a torsional effect, it is found to have a weak influence on its band gap. In other words, the doping of BN makes the changes of the band gap of graphene no longer sensitive to torsional deformation. Optical properties show that the doping of BN leads to a significant decrease in the light absorption coefficient and reflectivity of the graphene at the characteristic peak and that of BN-doped graphene system is also weakened by torsional deformation at the characteristic peak. In the absorption spectrum, the absorption peaks of the doping system of the torsion angle of 2-20∘ are redshifted compared with that of the BN-doped system (the torsion angle is 0∘). In the reflection spectrum, the two reflection peaks are all redshifted relative to that of the BN-doped system (the torsion angle is 0∘) and when the torsion angle exceeds 12∘, the size relationship between the two peaks is interchanged. The results of this paper are of guiding significance for the study of graphene-based nanotube devices in terms of deformation.
Theoretical study of nitride short period superlattices
NASA Astrophysics Data System (ADS)
Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.
2018-02-01
Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.
Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Keyan; Kang, Congying; Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn
2012-10-15
In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1−x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1−x}O and Cd{sub x}Zn{sub 1−x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1−x}O and Ca{sub x}Zn{sub 1−x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereasmore » the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.« less
Umari, P; Petrenko, O; Taioli, S; De Souza, M M
2012-05-14
Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.
Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod
2011-10-20
Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less
Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys
Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.
2016-01-01
Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470
Direct band gap silicon crystals predicted by an inverse design method
NASA Astrophysics Data System (ADS)
Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo
2015-03-01
Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).
NASA Astrophysics Data System (ADS)
Wu, Yi-hong; Fujita, Shizuo; Fujita, Shigeo
1990-01-01
We report on the calculations of energy band gaps based on the semiempirical tight-binding model for short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices (SLSs). During the calculation, much attention has been paid to the modeling of strain effect. It is found that (ZnTe)m(ZnSe)n superlattices grown on InAs, InP, and GaAs substrates show very different electronic properties from each other, which is consistent with experimental results now available. Assuming that the emission observed for (ZnTe)m(ZnSe)n SLS originates from intrinsic luminescence, we obtain an unstrained valence-band offset of 1.136±0.1 eV for this superlattice. On the other hand, the band gap of (ZnS)m(ZnSe)n superlattice grown coherently on GaP is found to exhibit a much stronger structure dependence than that grown coherently on GaAs. The difference of energy gap between superlattice with equal monolayers (m=n) and the corresponding alloy with equal chalcogenide composition is also discussed.
NASA Astrophysics Data System (ADS)
Nagatani, Hiraku; Mizuno, Yuki; Suzuki, Issei; Kita, Masao; Ohashi, Naoki; Omata, Takahisa
2017-06-01
Band-gap engineering of β-CuGaO2 was demonstrated by the alloying of gallium with aluminum, that is, Cu(Ga1-xAlx)O2. The ternary wurtzite β-NaFeO2-type alloys were obtained in the range 0 ≤ x ≤ 0.7, and γ-LiAlO2-type phase appeared in the range 0.7 ≤ x ≤ 1. The energy band gap of wurtzite β-CuGaO2 was controlled in the range between 1.47 and 2.09 eV. A direct band gap for x < 0.6 and indirect band gap for x ≥ 0.6 were proposed based on the structural distortion in the β-NaFeO2-type phase and density functional theory (DFT) calculation of β-CuAlO2. The DFT calculation also indicated that the γ-LiAlO2-type phases appeared in 0.7 ≤ x ≤ 1 are also indirect-gap semiconductors.
NASA Astrophysics Data System (ADS)
Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.
2017-05-01
We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.
[Study of cubic boron nitride crystal UV absorption spectroscopy].
Liu, Hai-Bo; Jia, Gang; Chen, Gang; Meng, Qing-Ju; Zhang, Tie-Chen
2008-07-01
UV absorption spectroscopy of artificial cubic boron nitride (cBN) single crystal flake, synthesized under high-temperature and high-pressure, was studied in the present paper. UV WINLAB spectrometer was used in the experiments, and MOLECULAR SPECTROSCOPY software was used for data analysis. The UV-cBN limit of 198 nm was showed in this test by a special fixture quartz sample. We calculated the energy gap by virtue of the formula: lambda0 = 1.24/E(g) (microm). The energy gap is 6. 26 eV. There are many viewpoints about the gap of cBN. By using the first-principles theory to calculate energy band structure and density of electronic states of cBN, an indirect transition due to electronics in valence band jumping into conduction band by absorbing photon can be confirmed. That leads to UV absorption. The method of calculation was based on the quantum mechanics of CASTEP in the commercial software package of Cerius2 in the Co. Accerlrys in the United States. The theory of CASTEP is based on local density approximation or gradient corrected LDA. The crystal parameter of cBN was input to the quantum mechanics of CASTEP in order to construct the crystal parameter model of cBN. We calculated the energy gap of cBN by the method of gradient corrected LDA. The method underestimates the value of nonconductor by about 1 to 2 eV. We gaot some opinions as follows: cBN is indirect band semiconductor. The energy gap is 4.76 eV, less than our experiment. The reason may be defect that we ignored in calculating process. It was reported that the results by first principles method of calculation of the band generally was less than the experimental results. This paper shows good UV characteristics of cBN because of the good agreement of experimental results with the cBN band width. That is a kind of development prospect of UV photo-electronic devices and high-temperature semiconductor devices.
Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity
NASA Astrophysics Data System (ADS)
Thurston, Cameron
Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.
Relating the defect band gap and the density functional band gap
NASA Astrophysics Data System (ADS)
Schultz, Peter; Edwards, Arthur
2014-03-01
Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.
Further improvements in program to calculate electronic properties of narrow band gap materials
NASA Technical Reports Server (NTRS)
Patterson, James D.
1991-01-01
Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.
Systematic analysis of the unique band gap modulation of mixed halide perovskites.
Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha
2016-02-14
Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.
NASA Astrophysics Data System (ADS)
Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang
2016-10-01
Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.
Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot
NASA Astrophysics Data System (ADS)
Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang
2015-01-01
In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.
Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.
Hu, Xiaohui; Kou, Liangzhi; Sun, Litao
2016-08-16
The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.
Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2
NASA Astrophysics Data System (ADS)
Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam
2017-09-01
Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.
Ultrawide low frequency band gap of phononic crystal in nacreous composite material
NASA Astrophysics Data System (ADS)
Yin, J.; Huang, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.
2014-06-01
The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results.
Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires
NASA Astrophysics Data System (ADS)
Gao, Faming
2011-05-01
A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.
Composition dependent band offsets of ZnO and its ternary alloys
NASA Astrophysics Data System (ADS)
Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong
2017-01-01
We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1-xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1-xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 - 2.33x + 1.77x2 for Zn1-xMgxO and Zn1-xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics.
Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N
2014-03-28
Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex dielectric function, with more structured curves for incident light polarized along the 100 and 101 directions.
Spectral properties of excitons in the bilayer graphene
NASA Astrophysics Data System (ADS)
Apinyan, V.; Kopeć, T. K.
2018-01-01
In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.
Doping effect on monolayer MoS2 for visible light dye degradation - A DFT study
NASA Astrophysics Data System (ADS)
Cheriyan, Silpa; Balamurgan, D.; Sriram, S.
2018-04-01
The electronic and optical properties of, Nitrogen (N), Cobalt (Co), and Co-N co-doped monolayers of MoS2 has been studied by using density functional theory (DFT) for visible light photocatalytic activity. From the calculations, it has been observed that the band gap of monolayer MoS2 has been reduced while doping. However, the band gaps of pristine and N doped MoS2 monolayers only falls in the visible region while for Co and Co-N co-doped systems, the band gap shifted to IR region. The optical calculation also confirms the results. The formation energy values of the doped system reaveal that MoS2 monolayer drops its stability while doping. To evaluate the photocatalytic response, band edge potentials of pristine and N-MoS2 are calculated, and the observed results show that compared to N-doped MoS2 monolayer, pure MoS2 is highly suitable for visible light photocatalytic dye degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankar, A., E-mail: amitshan2009@gmail.com; Rai, D.P.; Chettri, Sandeep
2016-08-15
We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconductingmore » nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.« less
A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.
Linderälv, Christopher; Lindman, Anders; Erhart, Paul
2018-01-04
Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.
NASA Astrophysics Data System (ADS)
Jiang, F. D.; Feng, J. Y.
2008-02-01
Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daga, Avinash; Sharma, Smita
First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO{sub 3} where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO{sub 3} and SrZrO{sub 3} to be insulating. A small band gap is observed in SrMoO{sub 3} perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all themore » calculations.« less
Band gap scaling laws in group IV nanotubes.
Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu
2017-03-17
By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by -1/r 2 + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.
Enhancement of nonlinear optical susceptibility of CuPc films by ITO layer
NASA Astrophysics Data System (ADS)
Ganesh, V.; Zahran, H. Y.; Yahia, I. S.; Shkir, Mohd; AlFaify, S.
2016-12-01
In the present study, the Copper Phthalocyanine (CuPc)/ITO thin film was fabricated using thermal evaporation method. The structural property was analyzed by X-ray diffraction study and confirms that the thin film has been preferentially grown along (200) plane. The atomic force microscope study was carried out on deposited film and quality of thin films is assessed by calculating the roughness of the films. The direct and indirect band gap, linear and nonlinear optical characteristics of grown films were calculated by using UV-Vis-NIR spectrometer studies. The calculated values of the first direct and indirect band gaps (Eg1(d) &Eg1(ind)) are 1.879 and 1.644 eV as a fundamental gap, while the values of second direct and indirect band gap (Eg2(d) &Eg2(ind)) are 1.660 and 1.498 eV as an onset gap for CuPc. The values of nonlinear refractive index (n2) and third order nonlinear optical susceptibility (χ3) are found to be 5 × 10-8 and 8 × 10-9 (theoretical) and 5.2 × 10-8 and 1.56 × 10-7 (experimental) respectively. The optical band and third order nonlinear properties suggest that the as-prepared films are may be applied in optoelectronic and nonlinear applications.
NASA Astrophysics Data System (ADS)
Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dileep, K.; Loukya, B.; Datta, R., E-mail: ranjan@jncasr.ac.in
2014-09-14
Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct frommore » the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.« less
Prediction of direct band gap silicon superlattices with dipole-allowed optical transition
NASA Astrophysics Data System (ADS)
Kim, Sunghyun; Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Chang, K. J.
While cubic diamond silicon (c-Si) is an important element in electronic devices, it has poor optical properties owing to its indirect gap nature, thereby limiting its applications to optoelectronic devices. Here, we report Si superlattice structures which are computationally designed to possess direct band gaps and excellent optical properties. The computational approach adopts density functional calculations and conformational space annealing for global optimization. The Si superlattices, which consist of alternating stacks of Si(111) layers and a defective layer with Seiwatz chains, have either direct or quasi-direct band gaps depending on the details of attacking layers. The photovoltaic efficiencies are calculated by solving Bethe-Salpeter equation together with quasiparticle G0W0 calculations. The strong direct optical transition is attributed to the overlap of the valence and conduction band edge states in the interface region. Our Si superlattices exhibit high thermal stability, with the energies lower by an order of magnitude than those of the previously reported Si allotropes. We discuss a possible route to the synthesis of the superlattices through wafer bonding. This work is supported by Samsung Science and Technology Foundation under Grant No. SSTF-BA1401-08.
NASA Astrophysics Data System (ADS)
Vaitheeswaran, G.; Kanchana, V.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Christensen, N. E.
2016-08-01
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent GW approximation. The GW calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E
2016-08-10
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr; Bin-Omran, S.; Department of Physics, Faculty of Science & Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942
Highlights: • Electronic and optical properties of the LiCdX compounds have been predicted. • Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap. • We predict a direct band gap in all of the considered LiCdX compounds. • Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able tomore » accurately describe the electronic structure of semiconductors, namely the Tran–Blaha-modified Becke–Johnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Krieger, J.B.; Norman, M.R.
1991-11-15
The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it ismore » believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.« less
A new superhard carbon allotrope: Orthorhombic C20
NASA Astrophysics Data System (ADS)
Wei, Qun; Zhao, Chenyang; Zhang, Meiguang; Yan, Haiyan; Zhou, Yingjiao; Yao, Ronghui
2018-06-01
A new superhard carbon orthorhombic allotrope oC20 is proposed, which exhibits distinct topologies including C4, C3 and two types of C6 carbon rings. The calculated elastic constants and phonon spectra reveal that oC20 is mechanically and dynamically stable at ambient pressure. The calculated electronic band structure of oC20 shows that it is an indirect band gap semiconductor with a band gap of 4.46 eV. The Vickers hardness of oC20 is 75 GPa. The calculated tensile and shear strength indicate that the weakest tensile strength is 64 GPa and the weakest shear strength is 48 GPa, which means oC20 is a potential superhard material.
Theory of Anion-Substituted Nitrogen-Bearing III-V Alloys
1998-07-20
was found by Zunger group). When more than 4% arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the...arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the properties of random alloys predict smaller bowing...BEARING lll-V ALLOYS Prepared by: M. A. Berding, Senior Research Physicist M. van Schilfgaarde, Senior Research Physicist A. Sher, Associate Director
NASA Astrophysics Data System (ADS)
Choudhary, Mukesh K.; Ravindran, P.
2018-05-01
The electronic structures of TixZrx/2CoPbxTex, TixZrx/2Hfx/2CoPbxTex (x = 0.5), and the parent compound TiCoSb were investigated using the full potential linearized augmented plane wave method. The thermoelectric transport properties of these alloys are calculated on the basis of semi-classical Boltzmann transport theory. From the band structure calculations we show that the substitution of Zr,Hf in the Ti site and Pb and Te in the Sb site lower the band gap value and also change the indirect band (IB) gap of TiCoSb to the direct band (DB) gap. The calculated band gap of TiCoSb, TixZrx/2CoPbxTex, and TixZrx/2Hfx/2CoPbxTex are 1.04 eV (IB), 0.92 eV (DB), and 0.93 eV (DB), respectively. All these alloys follow the empirical rule of 18 valence-electron content which is essential for bringing semiconductivity in half Heusler alloys. It is shown that the substitution of Hf at the Ti site improve the ZT value (˜1.05) at room temperature, whereas there is no significant difference in ZT is found at higher temperature. Based on the calculated thermoelectric transport properties, we conclude that the appropriate concentration of Hf substitution can further improve the thermoelectric performance of TixZrx/2Hfx/2CoPbxTex.
A novel theoretical model for the temperature dependence of band gap energy in semiconductors
NASA Astrophysics Data System (ADS)
Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo
2017-10-01
We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T > 400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.
2014-12-01
from standard HSE06 hybrid functional with α = 0.25 and ω = 0.11 bohr–1 and b) from HSE with α = 0.093 and ω of 0.11 bohr–1...better agreement for the band gap value for future calculations, a systemic study was conducted for the (α, ω) parameter space of the HSE ...orthogonal). Future HSE calculations will be performed with the updated parameters. Fig. 7 Density of States of PEEK based on the optimized
Ultrawide bandgap pentamode metamaterials with an asymmetric double-cone outside profile
NASA Astrophysics Data System (ADS)
Chu, Yangyang; Li, Yucheng; Cai, Chengxin; Liu, Guangshuan; Wang, Zhaohong; Xu, Zhuo
2018-03-01
The band-gap characteristic is an important feature of acoustic metamaterials, which has important theoretical and practical significance in acoustic devices. Pentamode metamaterials (PMs) with phonon band-gap characteristics based on an asymmetric double-cone outside profile are presented and studied in this paper. The phonon band structures of these PMs are calculated by using the finite element method. In addition to the single-mode band-gaps, the complete 3D band-gaps are also obtained by changing the outside profile of the double-cone. Moreover, by adjusting the outside profile and the diameter of the double-cone to reduce the symmetry of the structure, the complete 3D band-gap can be widened. Further parametric analysis is presented to investigate the effect of geometrical parameters on the phonon band-gap property, the numerical simulations show that the maximum relative bandwidth is expanded by 15.14 times through reducing the symmetry of the structure. This study provides a possible way for PMs to control elastic wave propagation in the field of depressing vibration and noise, acoustic filtering and acoustic cloaking.
A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A.; Vyrko, S. A.; Kovalev, A. I.
2016-03-15
A quasi-classical method for calculating the narrowing of the Hubbard gap between the A{sup 0} and A{sup +} acceptor bands in a hole semiconductor or the D{sup 0} and D{sup –} donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be randommore » and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band (v band) for acceptors or with the bottom of the conduction band (c band) for donors. In other words, the top of the v band for a p-type semiconductor or the bottom of the c band for an n-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy ε{sub 2} is consistent with available experimental data for lightly compensated p-Si crystals doped with boron and n-Ge crystals doped with antimony.« less
Electronic structure and defect properties of selenophosphate Pb2P2Se6 for γ-ray detection
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; Im, Jino; Wessels, Bruce W.; Kanatzidis, Mercouri G.; Freeman, Arthur J.
Heavy metal chalco-phosphate Pb2P2Se6 has shown a significant promise as an X-ray and γ-ray detector material. To assess the fundamental physical properties important for its performance as detector, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and static dielectric constants. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Pb2P2Se6 is an indirect band gap material with the calculated band gap of 2.0 eV, has small effective masses, which could result in a good carrier mobility-lifetime product μτ , and a very high static dielectric constant, which could lead to high mobility of carriers by screening of charged scattering centers. We further investigated a large set of native defects in Pb2P2Se6 to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are selenium vacancies, followed by lead vacancies, then phosphorus vacancies and antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
NASA Astrophysics Data System (ADS)
Garwood, T.; Modine, N. A.; Krishna, S.
2017-03-01
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garwood, Tristan; Modine, Normand A.; Krishna, S.
2016-12-18
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structuresmore » calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael E. McIlwain; Nick Thompson; Da Gao
Considerable interest is given to the excellent scintillation properties of cerium doped lanthanum chloride (LaCl3) and lanthanum bromide (LaBr3). The scintillation efficiencies are much greater than other materials, even those containing cerium. This high efficiency is attributed to the high mobility of electrons and holes, unique placement of the cerium 5d states within the band gap, and energy of the band gap. To better understand the scintillation process and better define the nature of the Self Trapped Exciton (STE) within these unique scintillation materials, density functional theory (DFT), and Ab-inito (HF-MP2) calculations are reported. DFT calculations have yielded a qualitativemore » description of the orbital composition and energy distribution of the band structure in the crystalline material. MP2 and single configuration interaction calculations have provided quantitative values for the band gap and provided energies for the possible range of excited states created following hole and electron creation. Based on this theoretical treatment, one possible description of the STE is the combination of Vk center (Br2-1) and LaBr+1 species that recombine to form a distorted geometry LaBr3* (triplet state). Depending on the distance between the LaBr and Br2, the STE emission band can be reproduced.« less
Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite
NASA Astrophysics Data System (ADS)
Edelbro, R.; Sandström, Å.; Paul, J.
2003-02-01
The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV. The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossings at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed.
NASA Astrophysics Data System (ADS)
Kashyap, Manish K.; Paudyal, D.; Harmon, B. N.
In the present study, we have performed ab-initio simulations of sp-element defect in ZnCdTe2-xSex (x =0.625) chalcopyrite to check the tuning of band gap as compared to the pristine case. The exchange and correlation (XC) effects are taken into account by an orbital independent modified Becke-Johnson (mBJ) potential as coupled with Local Density Approximation (LDA) for these calculations. The calculated energy band structures show a direct band gap at the point in the brillouin zone for the pristine as well as the defected case and the band gap decreases with inclusion of sp-disorder. The imaginary dielectric function predicts the optical band gap of pristine ZnCdTe2 very close to the experimental value and the results are in reasonable agreement without applying any scissor operator. With inclusion of sp-element defect, the optical spectra is tuned to optimal region, suitable for photovoltaics. It is apparent that mBJ functional is well suited for calculating electronic structure of pristine as well as defected ZnCdTe2chalcopyrite. MKK acknowledges financial support from UGC, India in the form of RAMAN Post-doctoral fellowship. This work at Ames Laboratory was supported by the DOE, Office of Basic Energy Sciences, Materials Sciences Division under contract No. DE-AC02-07CH11358.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.B.; Cohen, M.L.; Louie, S.G.
1990-05-15
A newly developed first-principles quasiparticle theory is used to calculate the band offset at the (001) interface and band gaps in 1{times}1 and 2{times}2 superlattices of GaAs-AlAs heterojunctions. We find a sizable many-body contribution to the valence-band offset which is dominated by the many-body corrections to bulk GaAs and AlAs quasiparticle energies. The resultant offset {Delta}{ital E}{sub {ital v}}=0.53{plus minus}0.05 eV is in good agreement with the recent experimental values of 0.50--0.56 eV. Our calculated direct band gaps for ultrathin superlattices are also in good agreement with experiment. The {ital X}{sub 1{ital c}}-derived state at point {bar {Gamma}}, is however,more » above the {Gamma}{sub 1{ital c}}-derived state for both the 1{times}1 and 2{times}2 lattices, contrary to results obtained under the virtual-crystal approximation (a limiting case for the Kronig-Penny model) and some previous local-density-approximation (corrected) calculations. The differences are explained in terms of atomic-scale localizations and many-body effects. Oscillator strengths and the effects of disorder on the spectra are discussed.« less
NASA Astrophysics Data System (ADS)
Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar
2014-07-01
In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.
Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.
Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B
2017-07-03
The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of defects on the absorption edge of InN thin films: The band gap value
NASA Astrophysics Data System (ADS)
Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.
2007-07-01
We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.
Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.
2016-01-01
Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654
Electronic structure of graphene- and BN-supported phosphorene
NASA Astrophysics Data System (ADS)
Davletshin, Artur R.; Ustiuzhanina, Svetlana V.; Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.
2018-04-01
By using first-principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene-supported phosphorene is found to be metallic, while the BN-supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. Furthermore, the effects of the van der Waals interactions between the phosphorene and graphene or BN layers by means of the interlayer distance change are investigated. It is shown that the interlayer distance change leads to significant band gap size modulations and direct-indirect band gap transitions in the phosphorene-BN heterostructure. The presented band gap engineering of phosphorene may be a powerful technique for the fabrication of high-performance phosphorene-based nanodevices.
Structural studies and band gap tuning of Cr doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinet, Gunjan, E-mail: gunjansrinet@gmail.com; Kumar, Ravindra, E-mail: gunjansrinet@gmail.com; Sajal, Vivek, E-mail: gunjansrinet@gmail.com
2014-04-24
Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.
Comparing photonic band structure calculation methods for diamond and pyrochlore crystals.
Vermolen, E C M; Thijssen, J H J; Moroz, A; Megens, M; van Blaaderen, A
2009-04-27
The photonic band diagrams of close-packed colloidal diamond and pyrochlore structures, have been studied using Korringa-Kohn-Rostoker (KKR) and plane-wave calculations. In addition, the occurrence of a band gap has been investigated for the binary Laves structures and their constituent large- and small-sphere substructures. It was recently shown that these Laves structures give the possibility to fabricate the diamond and pyrochlore structures by self-organization. The comparison of the two calculation methods opens the possibility to study the validity and the convergence of the results, which have been an issue for diamond-related structures in the past. The KKR calculations systematically give a lower value for the gap width than the plane-wave calculations. This difference can partly be ascribed to a convergence issue in the plane-wave code when a contact point of two spheres coincides with the grid.
First-principles study of the structural, electronic and thermal properties of CaLiF3
NASA Astrophysics Data System (ADS)
Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.
2013-09-01
Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.
NASA Astrophysics Data System (ADS)
Hsu, Jin-Chen; Lin, Fan-Shun
2018-07-01
In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.
Germanene on single-layer ZnSe substrate: novel electronic and optical properties.
Ye, H Y; Hu, F F; Tang, H Y; Yang, L W; Chen, X P; Wang, L G; Zhang, G Q
2018-06-01
In this work, the structural, electronic and optical properties of germanene and ZnSe substrate nanocomposites have been investigated using first-principles calculations. We found that the large direct-gap ZnSe semiconductors and zero-gap germanene form a typical orbital hybridization heterostructure with a strong binding energy, which shows a moderate direct band gap of 0.503 eV in the most stable pattern. Furthermore, the heterostructure undergoes semiconductor-to-metal band gap transition when subjected to external out-of-plane electric field. We also found that applying external strain and compressing the interlayer distance are two simple ways of tuning the electronic structure. An unexpected indirect-direct band gap transition is also observed in the AAII pattern via adjusting the interlayer distance. Quite interestingly, the calculated results exhibit that the germanene/ZnSe heterobilayer structure has perfect optical absorption in the solar spectrum as well as the infrared and UV light zones, which is superior to that of the individual ZnSe substrate and germanene. The staggered interfacial gap and tunability of the energy band structure via interlayer distance and external electric field and strain thus make the germanene/ZnSe heterostructure a promising candidate for field effect transistors (FETs) and nanoelectronic applications.
Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors
NASA Astrophysics Data System (ADS)
Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony
2018-05-01
Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.
NASA Astrophysics Data System (ADS)
Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.
2013-01-01
The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018; Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn
The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localizationmore » of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.« less
Vibration band gaps for elastic metamaterial rods using wave finite element method
NASA Astrophysics Data System (ADS)
Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.
2016-10-01
Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.
Bands dispersion and charge transfer in β-BeH2
NASA Astrophysics Data System (ADS)
Trivedi, D. K.; Galav, K. L.; Joshi, K. B.
2018-04-01
Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong
The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less
Quasiparticle band gap in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Nechaev, I. A.; Chulkov, E. V.
2013-10-01
We present a theoretical study of dispersion of states that form the bulk band-gap edges in the three-dimensional topological insulator Bi2Te3. Within density functional theory, we analyze the effect of atomic positions varied within the error range of the available experimental data and approximation chosen for the exchange-correlation functional on the bulk band gap and k-space location of valence- and conduction-band extrema. For each set of the positions with different exchange-correlation functionals, we show how many-body corrections calculated within a one-shot GW approach affect the mentioned characteristics of electronic structure of Bi2Te3. We thus also illustrate to what degree the one-shot GW results are sensitive to the reference one-particle band structure in the case of bismuth telluride. We found that for this topological insulator the GW corrections enlarge the fundamental band gap and for certain atomic positions and reference band structure bring its value in close agreement with experiment.
Electron band structure of the high pressure cubic phase of AlH3
NASA Astrophysics Data System (ADS)
Shi, Hongliang; Zarifi, Niliffar; Yim, Wai-Leung; Tse, J. S.
2012-07-01
The electronic band structure of the cubic Pm3n phase of AlH3 stable above 100 GPa is examined with semi-local, Tran-Blaha modified Becke-Johnson local density approximation (TB-mBJLDA), screened hybrid density functionals and GW methods. The shift of the conduction band to higher energy with increasing pressure is predicted by all methods. However, there are significant differences in detail band structure. In the pressure range from 90 to160 GPa, semi-local, hybrid functional and TB-mBJLDA calculations predicted that AlH3 is a poor metal. In comparison, GW calculations show a gap opening at 160 GPa and AlH3 becomes a small gap semi-conductor. From the trends of the calculated band shifts, it can be concluded that the favourable conditions leading to the nesting of Fermi surfaces predicted by semi-local calculation have disappeared if the exchange term is included. The results highlight the importance of the correction to the exchange energy on the band structure of hydrogen dominant dense metal hydrides at high pressure hydrides and may help to rationalize the absence of superconductivity in AlH3 from experimental measurements.
Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.
Su, Kang; Wang, Yuhua
2010-03-01
As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.
Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com
Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less
Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia
2010-02-05
We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.
Yang, Jingxiu; Zhang, Peng; Wei, Su-Huai
2018-01-04
Cs 2 AgBiBr 6 was proposed as one of the inorganic, stable, and nontoxic replacements of the methylammonium lead halides (CH 3 NH 3 PbI 3 , which is currently considered as one of the most promising light-harvesting material for solar cells). However, the wide indirect band gap of Cs 2 AgBiBr 6 suggests that its application in photovoltaics is limited. Using the first-principle calculation, we show that by controlling the ordering parameter at the mixed sublattice, the band gap of Cs 2 AgBiBr 6 can vary continuously from a wide indirect band gap of 1.93 eV for the fully ordered double-perovskite structure to a small pseudodirect band gap of 0.44 eV for the fully random alloy. Therefore, one can achieve better light absorption simply by controlling the growth temperature and thus the ordering parameters and band gaps. We also show that controlled doping in Cs 2 AgBiBr 6 can change the energy difference between ordered and disordered Cs 2 AgBiBr 6 , thus providing further control of the ordering parameters and the band gaps. Our study, therefore, provides a novel approach to carry out band structure engineering in the mixed perovskites for optoelectronic applications.
NASA Astrophysics Data System (ADS)
Kobayashi, Katsushi
1997-06-01
The possibility of a spin density wave (SDW) state in a metallic carbon nanotube (CN) and its electronic properties are investigated within the Hartree-Fock self consistent field (SCF) energy-band calculation. Two kinds of spatial SDW states are assumed in this study. Each assumed SDW on the wave function is constructed with the degenerate π orbital in the metallic CN system. The results calculated for the one SDW model of CN always have a relative stability (˜ 0.1 eV/cell) in SCF total energy compared with the original model in which no SDW is assumed. All the results calculated for another SDW model are completely equal to the original one. Moreover, in the energy dispersion of the former stable SDW model, the degenerate π level found in the original model disappears and the band gap (3-5 eV) occurs around at the Fermi level. The energetic stability and the band gap are also found in the π-electron band calculation within the Hubbard Hamiltonian.
Pnma-BN: Another Boron Nitride Polymorph with Interesting Physical Properties
Ma, Zhenyang; Han, Zheng; Liu, Xuhong; Yu, Xinhai; Wang, Dayun; Tian, Yi
2016-01-01
Structural, mechanical, electronic properties, and stability of boron nitride (BN) in Pnma structure were studied using first-principles calculations by Cambridge Serial Total Energy Package (CASTEP) plane-wave code, and the calculations were performed with the local density approximation and generalized gradient approximation in the form of Perdew–Burke–Ernzerhof. This BN, called Pnma-BN, contains four boron atoms and four nitrogen atoms buckled through sp3-hybridized bonds in an orthorhombic symmetry unit cell with Space group of Pnma. Pnma-BN is energetically stable, mechanically stable, and dynamically stable at ambient pressure and high pressure. The calculated Pugh ratio and Poisson’s ratio revealed that Pnma-BN is brittle, and Pnma-BN is found to turn brittle to ductile (~94 GPa) in this pressure range. It shows a higher mechanical anisotropy in Poisson’s ratio, shear modulus, Young’s modulus, and the universal elastic anisotropy index AU. Band structure calculations indicate that Pnma-BN is an insulator with indirect band gap of 7.18 eV. The most extraordinary thing is that the band gap increases first and then decreases with the increase of pressure from 0 to 60 GPa, and from 60 to 100 GPa, the band gap increases first and then decreases again. PMID:28336837
Zero-n gap in one dimensional photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chobey, Mahesh K., E-mail: mahesh01chobey@gmail.com; Suthar, B.
2016-05-06
We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.
NASA Astrophysics Data System (ADS)
Lu, M. F.; Zhou, C. P.; Li, Q. Q.; Zhang, C. L.; Shi, H. F.
2018-01-01
In order to improve the photocatalytic activity under visible-light irradiation, we adopted first principle calculations based on density functional theory (DFT) to calculate the electronic structures of B site transition metal element doped InNbO4. The results indicated that the complete hybridization of Nb 4d states and some Ti 3d states contributed to the new conduction band of Ti doped InNbO4, barely changing the position of band edge. For Cr doping, some localized Cr 3d states were introduced into the band gap. Nonetheless, the potential of localized levels was too positive to cause visible-light reaction. When it came to Cu doping, the band gap was almost same with that of InNbO4 as well as some localized Cu 3d states appeared above the top of VB. The introduction of localized energy levels benefited electrons to migrate from valence band (VB) to conduction band (CB) by absorbing lower energy photons, realizing visible-light response.
Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass
Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd
2012-01-01
This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711
Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications
Qiao, L.; Zhang, S.; Xiao, H. Y.; ...
2018-01-01
Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less
Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L.; Zhang, S.; Xiao, H. Y.
Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less
Band gap engineering of N-alloyed Ga{sub 2}O{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dongyu; Li, Bingsheng, E-mail: libingsheng@hit.edu.cn, E-mail: ashen@ccny.cuny.edu; Sui, Yu
2016-06-15
The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH{sub 3} and Ar gas for 60 minutes. Then they were annealed in NH{sub 3} ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinicmore » and hexagonal structures after they were annealed in oxygen or ammonia ambience, respectively. The narrowing of the band gap is attributed to the enhanced repulsion of N2p -Ga3d orbits and formation of hexagonal structure.« less
NASA Astrophysics Data System (ADS)
Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie
2018-05-01
The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.
Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K
2008-12-01
Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.
Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization
NASA Astrophysics Data System (ADS)
Dan, Nguyen Trung; Bechstedt, F.
1996-02-01
We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.
Hubbard physics in the PAW GW approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, J. M., E-mail: jamie.booth@rmit.edu.au; Smith, J. S.; Russo, S. P.
It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M{sub 1} and M{sub 2} forms of vanadium dioxidemore » are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M{sub 1} VO{sub 2}, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M{sub 2} structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.« less
Strain-induced topological quantum phase transition in phosphorene oxide
NASA Astrophysics Data System (ADS)
Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun
Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x < 0.5, and then to decrease with x > 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.
Electronic properties of copper aluminate examined by three theoretical approaches
NASA Astrophysics Data System (ADS)
Christensen, Niels; Svane, Axel
2010-03-01
Electronic properties of 3R.CuAlO2 are derived vs. pressure from ab initio band structure calculations within the local-density approximation (LDA), LDA+U scheme as well as the quasiparticle self-consistent GW approximation (QSGW, van Schilfgaarde, Kotani, and Falaev). The LDA underestimates the gap and places the Cu-3d states at too high energies. An effective U value, 8.2 eV, can be selected so that LDA+U lowers the 3d states to match XPS data and such that the lowest gap agrees rather well with optical absorption experiments. The electrical field gradient (EFG) on Cu is in error when calculated within the LDA. The agreement with experiment can be improved by LDA+U, but a larger U, 13.5 eV, is needed for full adjustment. QSGW yields correct Cu-EFG and, when electron-hole correlations are included, also correct band gaps. The QSGW and LDA band gap deformation potential values differ significantly.
Non-Dirac Chern insulators with large band gaps and spin-polarized edge states.
Xue, Y; Zhang, J Y; Zhao, B; Wei, X Y; Yang, Z Q
2018-05-10
Based on first-principles calculations and k·p models, we demonstrate that PbC/MnSe heterostructures are a non-Dirac type of Chern insulator with very large band gaps (244 meV) and exotically half-metallic edge states, providing the possibilities of realizing very robust, completely spin polarized, and dissipationless spintronic devices from the heterostructures. The achieved extraordinarily large nontrivial band gap can be ascribed to the contribution of the non-Dirac type electrons (composed of px and py) and the very strong atomic spin-orbit coupling (SOC) interaction of the heavy Pb element in the system. Surprisingly, the band structures are found to be sensitive to the different exchange and correlation functionals adopted in the first-principles calculations. Chern insulators with various mechanisms are acquired from them. These discoveries show that the predicted nontrivial topology in PbC/MnSe heterostructures is robust and can be observed in experiments at high temperatures. The system has great potential to have attractive applications in future spintronics.
A comparative study of thermoelectric properties of CuGaTe2 by using PBE and MBJ potentials
NASA Astrophysics Data System (ADS)
Sharma, Sonu; Singh, Birender; Kumar, Pradeep
2018-04-01
We have investigated the electronic and thermoelectric properties of CuGaTe2 by combining the first principle calculations with Boltzmann transport theory. The electronic properties show that CuGaTe2 is a direct band semiconductor with large band gap at r-point. The band gaps are computed by using PBE and mBJ potentials and value obtained with mBJ is much closer to the experimental value. Partial density of states plots show that the band gap is formed by the hybridization between 3d states of Cu atom, 4s and 4p states of Ga atom and 5p states of Te atom. Very large value (˜300 µVK-1) of Seebeck coefficient is obtained for this compound. Figure-of-merit calculated by using transport coefficients is also found to be very large for the entire temperature range and CuGaTe2 is a good thermoelectric material.
Optical properties of II-VI structures for solar energy utilization
NASA Astrophysics Data System (ADS)
Schrier, Joshua; Demchenko, Denis; Wang, Lin-Wang
2007-03-01
Although II-VI semiconductor materials are abundant, stable, and have direct band gaps, the band gaps are too large for optimal photovoltaic efficiency. However, staggered band alignments of pairs of these materials, and also the formation of intermediate impurity levels in the band gap (which has been demonstrated to increase the efficiency as compared to both single-junction devices), could be utilized to improve the suitability of these materials for solar energy utilization. Previous theoretical studies of these materials are limited, due to the well-known band gap underestimation by density-functional theory. To calculate the absorption spectra, we utilize a band-corrected planewave pseudopotential approach, which gives agreements of within 0.1 eV of the bulk optical gaps values. In this talk, I will present our work on predicting the optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures, nanostructures, and alloys. This work was supported by U.S. Department of Energy under Contract No.DE-AC02-05CH11231 and used the resources of the National Energy Research Scientific Computing Center.
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
Ni, Zhen Hua; Yu, Ting; Lu, Yun Hao; Wang, Ying Ying; Feng, Yuan Ping; Shen, Ze Xiang
2008-11-25
Graphene was deposited on a transparent and flexible substrate, and tensile strain up to approximately 0.8% was loaded by stretching the substrate in one direction. Raman spectra of strained graphene show significant red shifts of 2D and G band (-27.8 and -14.2 cm(-1) per 1% strain, respectively) because of the elongation of the carbon-carbon bonds. This indicates that uniaxial strain has been successfully applied on graphene. We also proposed that, by applying uniaxial strain on graphene, tunable band gap at K point can be realized. First-principle calculations predicted a band-gap opening of approximately 300 meV for graphene under 1% uniaxial tensile strain. The strained graphene provides an alternative way to experimentally tune the band gap of graphene, which would be more efficient and more controllable than other methods that are used to open the band gap in graphene. Moreover, our results suggest that the flexible substrate is ready for such a strain process, and Raman spectroscopy can be used as an ultrasensitive method to determine the strain.
Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.
2016-01-01
Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808
Yb5Ga2Sb6: a mixed valent and narrow-band gap material in the RE5M2X6 family.
Subbarao, Udumula; Sarkar, Sumanta; Gudelli, Vijay Kumar; Kanchana, V; Vaitheeswaran, G; Peter, Sebastian C
2013-12-02
A new compound Yb5Ga2Sb6 was synthesized by the metal flux technique as well as high frequency induction heating. Yb5Ga2Sb6 crystallizes in the orthorhombic space group Pbam (no. 55), in the Ba5Al2Bi6 structure type, with a unit cell of a = 7.2769(2) Å, b = 22.9102(5) Å, c = 4.3984(14) Å, and Z = 2. Yb5Ga2Sb6 has an anisotropic structure with infinite anionic double chains (Ga2Sb6)(10-) cross-linked by Yb(2+) and Yb(3+) ions. Each single chain is made of corner-sharing GaSb4 tetrahedra. Two such chains are bridged by Sb2 groups to form double chains of 1/∞ [Ga2Sb6(10-)]. The compound satisfies the classical Zintl-Klemm concept and is a narrow band gap semiconductor with an energy gap of around 0.36 eV calculated from the electrical resistivity data corroborating with the experimental absorption studies in the IR region (0.3 eV). Magnetic measurements suggest Yb atoms in Yb5Ga2Sb6 exist in the mixed valent state. Temperature dependent magnetic susceptibility data follows the Curie-Weiss behavior above 100 K and no magnetic ordering was observed down to 2 K. Experiments are accompanied by all electron full-potential linear augmented plane wave (FP-LAPW) calculations based on density functional theory to calculate the electronic structure and density of states. The calculated band structure shows a weak overlap of valence band and conduction band resulting in a pseudo gap in the density of states revealing semimetallic character.
All-electron GW quasiparticle band structures of group 14 nitride compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Iek-Heng; Cheng, Hai-Ping, E-mail: cheng@qtp.ufl.edu; Kozhevnikov, Anton
We have investigated the group 14 nitrides (M{sub 3}N{sub 4}) in the spinel phase (γ-M{sub 3}N{sub 4} with M = C, Si, Ge, and Sn) and β phase (β-M{sub 3}N{sub 4} with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G{sub 0}W{sub 0} calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γmore » point have been found for spinel-type nitrides γ-M{sub 3}N{sub 4} with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.« less
NASA Astrophysics Data System (ADS)
Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad
In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.
First-principle study of effect of variation of `x' on the band alignment in CZTS1-xSex
NASA Astrophysics Data System (ADS)
Ghemud, Vipul; Kshirsagar, Anjali
2018-04-01
The present work concentrates on the electronic structure study of CZTS1-xSex alloy with x ranging from 0 to 1. For the alloy study, we have carried out first-principles calculations employing generalized gradient approximation for structural optimization and further hybrid functional approach to compare the optical band gap with that obtained from the experiments. A systematic increase in the lattice parameters with lowering of band gap from 1.52eV to 1.04eV is seen with increasing Se concentration from 0 to 100%, however the lowering of valence band edge and conduction band edge is not linear with the concentration variation. Our results indicate that the lowering of band gap is a result increased Cu:d and Se:p hybridization with increasing `x'.
Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr
2015-08-07
We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less
Crystal Growth and Characterization of the Narrow-Band-Gap Semiconductors OsPn 2 (Pn = P, As, Sb)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Shoemaker, Daniel P.
2014-09-15
Using metal fluxes, crystals of the binary osmium dipnictides OsPn(2) (Pn = P, As, Sb) have been grown for the first time. Single-crystal X-ray diffraction confirms that these compounds crystallize in the marcasite structure type with orthorhombic space group Pnnm. The structure is a three-dimensional framework of corner- and edge-sharing OsPn(6) octahedra, as well as [Pn(2)(-4)] anions. Raman spectroscopy shows the presence of PP single bonds, consistent with the presence of [Pn(2)(-4)] anions and formally Os4+ cations. Optical-band-gap and high-temperature electrical resistivity measurements indicate that these materials are narrow-band-gap semiconductors. The experimentally determined Seebeck coefficients reveal that nominally undoped OsP2more » and OsSb2 are n-type semiconductors, whereas OsAs2 is p-type. Electronic band structure using density functional theory calculations shows that these compounds are indirect narrow-band-gap semiconductors. The bonding p orbitals associated with the Pn(2) dimer are below the Fermi energy, and the corresponding antibonding states are above, consistent with a PnPn single bond. Thermopower calculations using Boltzmann transport theory and constant relaxation time approximation show that these materials are potentially good thermoelectrics, in agreement with experiment.« less
Tunneling calculations for GaAs-Al(x)Ga(1-x) as graded band-gap sawtooth superlattices. Thesis
NASA Technical Reports Server (NTRS)
Forrest, Kathrine A.; Meijer, Paul H. E.
1991-01-01
Quantum mechanical tunneling calculations for sawtooth (linearly graded band-gap) and step-barrier AlGaAs superlattices were performed by means of a transfer matrix method, within the effective mass approximation. The transmission coefficient and tunneling current versus applied voltage were computed for several representative structures. Particular consideration was given to effective mass variations. The tunneling properties of step and sawtooth superlattices show some qualitative similarities. Both structures exhibit resonant tunneling, however, because they deform differently under applied fields, the J-V curves differ.
Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.
2016-01-01
We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081
Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses
NASA Astrophysics Data System (ADS)
Edathazhe, Akhila B.; Shashikala, H. D.
2018-04-01
This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.
Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar
2018-05-01
Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.
Du, Aijun; Zhu, Zhonghua; Smith, Sean C
2010-03-10
The lack of an obvious "band gap" is a formidable hurdle for making a nanotransistor from graphene. Here, we use density functional calculations to demonstrate for the first time that porosity such as evidenced in recently synthesized porous graphene ( http://www.sciencedaily.com/releases/2009/11/091120084337.htm ) opens a band gap. The size of the band gap (3.2 eV) is comparable to most popular photocatalytic titania and graphitic C(3)N(4) materials. In addition, the adsorption of hydrogen on Li-decorated porous graphene is much stronger than that in regular Li-doped graphene due to the natural separation of Li cations, leading to a potential hydrogen storage gravimetric capacity of 12 wt %. In light of the most recent experimental progress on controlled synthesis, these results uncover new potential for the practical application of porous graphene in nanoelectronics and clean energy.
NASA Astrophysics Data System (ADS)
Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng
2017-12-01
Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.
NASA Astrophysics Data System (ADS)
Yang, Pei; Shi, Li-Jie; Zhang, Jian-Min; Liu, Gui-Bin; Yang, Shengyuan A.; Guo, Wei; Yao, Yugui
2018-01-01
Tuning band gaps of semiconductors in terms of defect control is essential for the optical and electronic properties of photon emission or photon harvesting devices. By using first-principles calculations, we study the stability condition of bulk CuInS2 and formation energies of point and complex defects in CuInS2 with hybrid exchange-correlation functionals. We find that at Cu-rich and In-poor conditions, 2Cui + CuIn is the main complex defect, while InCu + 2VCu is the main complex defect at In-rich and Cu-poor conditions. Such stable complex defects provide the feasibility of tuning band gaps by varying the [Cu]/[In] molar ratios. These results present how the off-stoichiometry CuInS2 crystal structures, and electronic and optical properties can be optimized by tuning the [Cu]/[In] ratio and Fermi level, and highlight the importance of complex defects in achieving better photoelectric performance in CuInS2. Such band gap tuning in terms of complex defect engineering is a general approach and thus applicable to other photo-harvest or light-emission semiconductors.
Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu
2015-12-28
Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gapsmore » of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.« less
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola
2018-02-01
We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.
Electronic and mechanic properties of trigonal boron nitride by first-principles calculations
NASA Astrophysics Data System (ADS)
Mei, Hua Yue; Pang, Yong; Liu, Ding Yu; Cheng, Nanpu; Zheng, Shaohui; Song, Qunliang; Wang, Min
2018-07-01
A new boron nitride allotrope with 6 atoms in a unit cell termed as trigonal BN (TBN), which belongs to P3121 space group, is theoretically investigated. Electronic structures, mechanic properties, phonon spectra and other properties were calculated by using first-principles based on density functional theory (DFT). The elastic constants reveal that TBN is mechanically stable. Furthermore, phonon dispersion indicates that TBN is dynamically stable. The calculated bulk modulus and shear modulus of TBN are 323 and 342 GPa, respectively. The calculated Young's modulus are Ex = Ey = 760 GPa, Ez = 959 GPa, indicating that TBN is a super-hard and brittle material. The universal anisotropy index, which is only 0.296, shows its weak anisotropy. Band structure states clearly that TBN is an indirect semiconductor with a band gap of 3.87 eV. The valence bands are mainly composed of N 2p states, and the conduction bands are mainly contributed by B 2p states. Simulated X-ray diffraction patterns (XRD) and Raman spectra were also provided for future experimental characterizations. Due to its band gap and super-hard properties, TBN may possess potential in super-hard, optical and electronic applications.
NASA Astrophysics Data System (ADS)
Nurhuda, Maryam; Aziz Majidi, Muhammad
2018-04-01
The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.
Electronic structure modifications and band gap narrowing in Zn0.95V0.05O
NASA Astrophysics Data System (ADS)
Ahad, Abdul; Majid, S. S.; Rahman, F.; Shukla, D. K.; Phase, D. M.
2018-04-01
We present here, structural, optical and electronic structure studies on Zn0.95V0.05O, synthesized using solid state method. Rietveld refinement of x-ray diffraction pattern indicates no considerable change in the lattice of doped ZnO. The band gap of doped sample, as calculated by Kubelka-Munk transformed reflectance spectra, has been found reduced compared to pure ZnO. Considerable changes in absorbance in UV-Vis range is observed in doped sample. V doping induced decrease in band gap is supported by x-ray absorption spectroscopy measurements. It is experimentally confirmed that conduction band edge in Zn0.95V0.05O has shifted towards Fermi level than in pure ZnO.
Spin-orbit coupling in quasiparticle studies of topological insulators
NASA Astrophysics Data System (ADS)
Aguilera, Irene; Friedrich, Christoph; Blügel, Stefan
2013-10-01
We present one-shot GW calculations of the bulk electronic structure of the topological insulators Bi2Se3 and Bi2Te3 within the all-electron full-potential linearized augmented-plane-wave formalism. We compare three different ways of treating the spin-orbit interaction in calculating the quasiparticle energies: (i) The spin-orbit coupling (SOC) is already incorporated in the noninteracting system that serves as starting point for the quasiparticle correction. (ii) The SOC is added in a second-variation approach only after the quasiparticle calculation has been performed in the absence of SOC. We found that the approximate treatment (ii) yields most quasiparticle bands with reasonable accuracy but does fail in the important band-gap region, where the SOC gives rise to a band inversion relevant for the topological properties of these materials. For example, Bi2Se3 is just on the brink of becoming a trivial semiconductor within this approximate approach, while it maintains its topological properties in the case of the consistent treatment (i). Finally, we consider another approach (iii), in which the SOC is included in the Green function G as in (i), but neglected in the calculation of the screened Coulomb potential W. This approach gives results in very good agreement with the full treatment (i), but with a smaller numerical effort. We conclude that, in the high-symmetry directions studied, bulk Bi2Se3 is a direct-gap and Bi2Te3 an indirect-gap semiconductor with band gaps of 0.20 and 0.19 eV, respectively.
Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene
Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei
2014-01-01
Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications. PMID:25327586
Abs-initio, Predictive Calculations for Optoelectronic and Advanced Materials Research
NASA Astrophysics Data System (ADS)
Bagayoko, Diola
2010-10-01
Most density functional theory (DFT) calculations find band gaps that are 30-50 percent smaller than the experimental ones. Some explanations of this serious underestimation by theory include self-interaction and the derivative discontinuity of the exchange correlation energy. Several approaches have been developed in the search for a solution to this problem. Most of them entail some modification of DFT potentials. The Green function and screened Coulomb approximation (GWA) is a non-DFT formalism that has led to some improvements. Despite these efforts, the underestimation problem has mostly persisted in the literature. Using the Rayleigh theorem, we describe a basis set and variational effect inherently associated with calculations that employ a linear combination of atomic orbitals (LCAO) in a variational approach of the Rayleigh-Ritz type. This description concomitantly shows a source of large underestimation errors in calculated band gaps, i.e., an often dramatic lowering of some unoccupied energies on account of the Rayleigh theorem as opposed to a physical interaction. We present the Bagayoko, Zhao, and Williams (BZW) method [Phys. Rev. B 60, 1563 (1999); PRB 74, 245214 (2006); and J. Appl. Phys. 103, 096101 (2008)] that systematically avoids this effect and leads (a) to DFT and LDA calculated band gaps of semiconductors in agreement with experiment and (b) theoretical predictions of band gaps that are confirmed by experiment. Unlike most calculations, BZW computations solve, self-consistently, a system of two coupled equations. DFT-BZW calculated effective masses and optical properties (dielectric functions) also agree with measurements. We illustrate ten years of success of the BZW method with its results for GaN, C, Si, 3C-SIC, 4H-SiC, ZnO, AlAs, Ge, ZnSe, w-InN, c-InN, InAs, CdS, AlN and nanostructures. We conclude with potential applications of the BZW method in optoelectronic and advanced materials research.
Type I band alignment in GaAs{sub 81}Sb{sub 19}/GaAs core-shell nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072; Wei, M. J.
2015-09-14
The composition and band gap of the shell that formed during the growth of axial GaAs/GaAs{sub 81}Sb{sub 19}/ GaAs heterostructure nanowires have been investigated by transmission electron microscopy combined with energy dispersion spectroscopy, scanning tunneling spectroscopy, and density functional theory calculations. On the GaAs{sub 81}Sb{sub 19} intermediate segment, the shell is found to be free of Sb (pure GaAs shell) and transparent to the tunneling electrons, despite the (110) biaxial strain that affects its band gap. As a result, a direct measurement of the core band gap allows the quantitative determination of the band offset between the GaAs{sub 81}Sb{sub 19}more » core and the GaAs shell and identifies it as a type I band alignment.« less
Crystal and electronic structure of copper sulfides
NASA Astrophysics Data System (ADS)
Lukashev, Pavel
Copper sulfides with different copper concentration exist in mineral form ranging from CuS to Cu2S. Among these, chalcosite Cu 2S, and digenite Cu1.8S were the subject of extensive research for decades mainly because of their use as the absorber in photovoltaic cells. Yet; their electronic structure is poorly understood because their crystal structure is complex. Most of the results published so far report the semiconducting nature of these compounds with the energy band gap being in the range of 0.84 to 1.9 eV. The crystal structure consists of a close-packed lattice of S with mobile Cu occupying various types of interstitial sites with a statistical distribution depending on temperature. In this thesis we present the first computational study of their electronic band structure. Initially, we investigated the simpler antifluorite structure. Both local density approximation (LDA) and self-consistent quasiparticle GW calculations with the full-potential linearized muffin-tin orbital method give a semimetallic band structure. Inspection of the nature of the bands shows that the lowest conduction band is mainly Cu-s-like except right near the center of the Brillouin zone where a Cu-s-like state lies about 1 eV below the valence band maximum. Significantly, in GW calculations, this state shifts up by several 0.1 eV but not sufficiently to open a gap. A random distortion of the Cu atoms from the perfect antifluorite positions is found to break the degeneracy of the d state at the Gamma-point and thus opens up a small gap of about 0.1 eV in LDA. As our next step we constructed supercell models for the cubic and hexagonal phases with the Cu positions determined by a weighted random number generator. The low temperature monoclinic phase was also studied. The computed total energies of these structures follow the same order as the reported phases with increasing temperatures. All these models gave similar small band gaps of order 0.1-0.2 eV. However, their conduction band is now mainly s-like and addition of an expected Cu-s level shift opens the gap to about 0.5 eV. Some simpler hexagonal model structures gave slightly larger band gap but were found to be unrealistic. The optical absorption data all show a strong intraband absorption with a minimum in absorption at about 1 eV. Our calculations suggest a significantly lower gap of order 0.5 eV with low absorption cross section, the true nature of which is masked by the free carrier absorption. As part of our study of the related Cu-compounds, we analyzed the quasiparticle effects beyond LDA obtained from a GW calculation on the effective masses and Kohn-Luttinger hamiltonian parameters for CuBr.
NASA Astrophysics Data System (ADS)
Sabino, Fernando P.; Besse, Rafael; Oliveira, Luiz Nunes; Wei, Su-Huai; Da Silva, Juarez L. F.
2015-11-01
Good transparent conducting oxides (TCOs), such as In2O3 :Sn (ITO), usually combine large optical band gaps, essential for high transparency, with relatively small fundamental band gaps due to low conduction-band minima, which favor n -type doping and enhance the electrical conductivity. It has been understood that the optical band gaps are wider than the fundamental band gaps because optical transitions between the band-edge states are forbidden. The mechanism blocking such transitions, which can play a crucial role in the designing of alternative TCOs, nonetheless remains obscure. Here, based on first-principles density functional theory calculations and symmetry analysis of three oxides, M2O3 (M =Al ,Ga ,In ), we identify the physical origin of the gap disparities. Three conditions are necessary: (1) the crystal structure must have global inversion symmetry; (2) in order to belong to the Ag or A1 g irreducible representations, the states at the conduction-band minimum must have cation and oxygen s character; (3) in order to have g parity, the oxygen p orbitals constituting the states near the valence-band maximum must be strongly coupled to the cation d orbitals. Under these conditions, optical excitations across the fundamental gap will be forbidden. The three criteria explain the trends in the M2O3 (M =Al,Ga,In) sequence, in particular, explaining why In2O3 in the bixbyite structure yields the highest figure of merit. Our study provides guidelines expected to be instrumental in the search for new TCO materials.
Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua
2017-12-06
A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.
Electron elevator: Excitations across the band gap via a dynamical gap state
Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...
2016-01-27
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less
Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.
Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A
2016-01-29
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.
Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Y. R.; Cao, J. X., E-mail: jxcao@xtu.edu.cn; Zhang, Y.
2016-05-21
By virtue of first principle calculations, we propose an approach to reduce the band gap of layered semiconductors through the application of external electric fields for photocatalysis. As a typical example, the band gap of a boron nitride (BN) bilayer was reduced in the range from 4.45 eV to 0.3 eV by varying the external electric field strength. More interestingly, it is found that the uppermost valence band and the lowest conduction band are dominated by the N-p{sub z} and B-p{sub z} from different layers of the BN sheet, which suggests a wonderful photoexcited electron and hole separation system for photocatalysis. Ourmore » results imply that the strong external electric field can present an abrupt polarized surface.« less
Modulation of band gap by an applied electric field in BN-based heterostructures
NASA Astrophysics Data System (ADS)
Luo, M.; Xu, Y. E.; Zhang, Q. X.
2018-05-01
First-principles density functional theory (DFT) calculations are performed on the structural and electronic properties of the SiC/BN van der Waals (vdW) heterostructures under an external electric field (E-field). Our results reveal that the SiC/BN vdW heterostructure has a direct band gap of 2.41 eV in the raw. The results also imply that electrons are likely to transfer from BN to SiC monolayer due to the deeper potential of BN monolayer. It is also observed that, by applying an E-field, ranging from -0.50 to +0.65 V/Å, the band gap decreases from 2.41 eV to zero, which presents a parabola-like relationship around 0.0 V/Å. Through partial density of states (PDOS) plots, it is revealed that, p orbital of Si, C, B, and N atoms are responsible for the significant variations of band gap. These obtained results predict that, the electric field tunable band gap of the SiC/BN vdW heterostructures carries potential applications for nanoelectronics and spintronic device applications.
Structural and electronic properties of GaAs and GaP semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Anita; Kumar, Ranjan
2015-05-15
The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.
Electronic and thermal properties of germanene and stanene by first-principles calculations
NASA Astrophysics Data System (ADS)
Jomehpour Zaveh, S.; Roknabadi, M. R.; Morshedloo, T.; Modarresi, M.
2016-03-01
The electronic, vibrational and thermal properties of germanene and stanene have been investigated based on density functional theory (DFT) and density functional perturbation theory (DFPT). The electronic band structure, total and partial density of states and phonon dispersion spectrum and states are analyzed. The phonon spectrum is positive for all modes in the first Brillouin zone and there is a phonon energy band gap between acoustic and optical modes which is around 50 cm-1 for both structure. The constant-volume specific heats of two structures are calculated by using phonon spectrum and density of states. The spin-orbit coupling (SOC) opens a direct energy band gap at the Dirac point, softens phonon spectrum and decreases phonon group velocity of ZA mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nhalil, Hariharan; Han, Dan; Du, Mao-Hua
High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less
Nhalil, Hariharan; Han, Dan; Du, Mao-Hua; ...
2018-03-01
High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less
Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films
NASA Astrophysics Data System (ADS)
Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.
2015-05-01
Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.
New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings
NASA Astrophysics Data System (ADS)
Kong, Xiangru; Li, Linyang; Leenaerts, Ortwin; Liu, Xiong-Jun; Peeters, François M.
2017-07-01
Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four- and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.
Tunable two-dimensional photonic crystals using liquid crystal infiltration
NASA Astrophysics Data System (ADS)
Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.
2000-01-01
The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.
Mott Transition in GdMnO3: an Ab Initio Study
NASA Astrophysics Data System (ADS)
Ferreira, W. S.; Moreira, E.; Frazão, N. F.
2018-04-01
Orthorhombic GdMnO3 is studied using density functional theory considering the pseudo-potential plane-wave method within local-spin-density approximation, LSDA. The electronic band structure and density of states, for several hydrostatic pressures, are studied. The Mott transition was observed at 60 GPa. Calculated lattice parameters are close to the experimental measurements, and some indirect band gaps (S→Γ) were obtained within the LSDA level of calculation, between the occupied O-2 p and unoccupied Gd-4 f states. The variation of the gap reduces with increasing pressure, being well fitted to a quadratic function.
Complete band gaps of phononic crystal plates with square rods.
El-Naggar, Sahar A; Mostafa, Samia I; Rafat, Nadia H
2012-04-01
Much of previous work has been devoted in studying complete band gaps for bulk phononic crystal (PC). In this paper, we theoretically investigate the existence and widths of these gaps for PC plates. We focus our attention on steel rods of square cross sectional area embedded in epoxy matrix. The equations for calculating the dispersion relation for square rods in a square or a triangular lattice have been derived. Our analysis is based on super cell plane wave expansion (SC-PWE) method. The influence of inclusions filling factor and plate thickness on the existence and width of the phononic band gaps has been discussed. Our calculations show that there is a certain filling factor (f=0.55) below which arrangement of square rods in a triangular lattice is superior to the arrangement in a square lattice. A comparison between square and circular cross sectional rods reveals that the former has superior normalized gap width than the latter in case of a square lattice. This situation is switched in case of a triangular lattice. Moreover, a maximum normalized gap width of 0.7 can be achieved for PC plate of square rods embedded in a square lattice and having height 90% of the lattice constant. Copyright © 2011 Elsevier B.V. All rights reserved.
Anhydrous crystals of DNA bases are wide gap semiconductors.
Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L
2011-05-07
We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.
NASA Astrophysics Data System (ADS)
Marzouk, M. A.; Abo-Naf, S. M.; Zayed, H. A.; Hassan, N. S.
2017-03-01
Heavy metal oxide (PbO and Bi2O3) glasses doped with transition metal (TM) ions (TiO2, V2O5, Cr2O3, and MnO2) and having low content of common glass formers (B2O3, SiO2, or P2O5) were prepared by the conventional melt annealing method. Ultraviolet, visible absorption, and photoluminescence properties of these glasses were measured, and the data were employed to investigate the prepared glassy samples. The optical absorption spectra of TiO2 and V2O5 exhibited three bands centered at about 240, 305, and 380 nm, followed by a broad asymmetrical near-visible band centered at 425-432 nm, while Cr2O3 and MnO2 exhibited an extended visible peak at 517-548 nm. Results showed that the luminescence intensity changed with different transition metal oxides. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) were calculated. The calculated values of the optical energy gap were found to be dependent on the glass composition. The changing values of optical band gap and band tail can be related to the structural changes that are taking place in the glass samples. The variations of the luminescence intensity, values of optical band gap, band tail, and refractive index gave an indication of the potential use of the prepared glasses to design novel optical functional materials with higher optical performance.
Experimental and theoretical study of topology and electronic correlations in PuB4
NASA Astrophysics Data System (ADS)
Choi, Hongchul; Zhu, Wei; Cary, S. K.; Winter, L. E.; Huang, Zhoushen; McDonald, R. D.; Mocko, V.; Scott, B. L.; Tobash, P. H.; Thompson, J. D.; Kozimor, S. A.; Bauer, E. D.; Zhu, Jian-Xin; Ronning, F.
2018-05-01
We synthesize single crystals of PuB4 using an Al-flux technique. Single-crystal diffraction data provide structural parameters for first-principles density functional theory (DFT) calculations. By computing the density of states, the Z2 topological invariant using the Wilson loop method, and the surface electronic structure from slab calculations, we find that PuB4 is a nonmagnetic strong topological insulator with a band gap of 254 meV. Our magnetic susceptibility, heat capacity, and resistivity measurements are consistent with this analysis, albeit with a smaller gap of 35 meV. DFT plus dynamical mean-field theory calculations show that electronic correlations reduce the size of the band gap, and provide better agreement with the value determined by resistivity. These results demonstrate that PuB4 is a promising actinide material to investigate the interplay of electronic correlations and nontrivial topology.
Ab-initio calculations of electronic, transport, and structural properties of boron phosphide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.
2014-09-14
We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less
NASA Astrophysics Data System (ADS)
Nishidate, Kazume; Tanibayashi, Satoru; Yoshimoto, Noriyuki; Hasegawa, Masayuki
2018-03-01
First-principles calculations based on density functional theory are used to explore the electronic-structure modulations in graphene on Ru(0001) by Au intercalation. We first use a lattice-matched model to demonstrate that a substantial band gap is induced in graphene by sufficiently strong A-B sublattice symmetry breaking. This band gap opening occurs even in the absence of hybridization between graphene π states and Au states, and a strong sublattice asymmetry is established for a small separation (d ) between the graphene and Au layer, typically, d <3.0 Å , which can actually be achieved for a low Au coverage. In realistic situations, which are mimicked using lattice-mismatched models, graphene π states near the Dirac point easily hybridize with nearby (in energy) Au states even for a van der Waals distance, d ˜3.4 Å , and this hybridization usually dictates a band gap opening in graphene. In that case, the top parts of the intact Dirac cones survive the hybridization and are isolated to form midgap states within the hybridization gap, denying that the band gap is induced by sublattice symmetry breaking. This feature of a band gap opening is similar to that found for the so-called "first" graphene layer on silicon carbide (SiC) and the predicted band gap and doping level are in good agreement with the experiments for graphene/Au/Ru(0001).
NASA Astrophysics Data System (ADS)
Saçmacı, Mustafa; Çavuş, Hatice Kanbur; Arı, Hatice; Şahingöz, Recep; Özpozan, Talat
2012-11-01
Novel acid mono azo dye, 2-[(E)-(8-hydroxyquinolin-5yl)-diazenyl]-4,5-dimethoxybenzoic acid (HQD), was synthesized by coupling diazonium salt solution of 2-amino-4,5-dimethoxybenzoic acid (DMA) with 8-hydroxyquinoline (HQ). This dye was characterized by UV-vis, IR & Raman, 1H and 13C NMR spectroscopic techniques and elemental analysis. The normal coordinate analysis of HQD was also performed to assign each band in vibrational spectra. DFT (B3LYP and B3PW91) calculations were employed to optimize the geometry, to interpret NMR spectra, to calculate and to determine the stable tautomeric structure of the compound. Natural Bond Orbital (NBO) analysis was performed to investigate intramolecular interactions. The vibrational spectral data obtained from solid phase IR & Raman spectra were assigned based on the results of the theoretical calculations. UV-vis spectroscopic technique was employed to obtain the optical band gap of HQD. The analysis of the optical absorption data revealed the existence of direct and indirect transitions in the optical band gaps. The optical band gaps of HQD have been found 1.95 and 1.90 eV for direct and indirect transitions, respectively.
Zn-VI quasiparticle gaps and optical spectra from many-body calculations.
Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G
2017-06-01
The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.
Thermal, electronic and ductile properties of lead-chalcogenides under pressure.
Gupta, Dinesh C; Bhat, Idris Hamid
2013-09-01
Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.
Improved Photoactivity of Pyroxene Silicates by Cation Substitutions.
Legesse, Merid; Park, Heesoo; El Mellouhi, Fedwa; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H
2018-04-17
We investigated the possibility of band structure engineering of pyroxene silicates with chemical formula A +1 B +3 Si 2 O 6 by proper cation substitution. Typically, band gaps of naturally formed pyroxene silicates such as NaAlSi 2 O 6 are quite high (≈5 eV). Therefore, it is important to find a way to reduce band gaps for these materials below 3 eV to make them usable for optoelectronic applications operating at visible light range of the spectrum. Using first-principles calculations, we found that appropriate substitutions of both A + and B 3+ cations can reduce the band gaps of these materials to as low as 1.31 eV. We also discuss how the band gap in this class of materials is affected by cation radii, electronegativity of constituent elements, spin-orbit coupling, and structural modifications. In particular, the replacement of Al 3+ in NaAlSi 2 O 6 by another trivalent cation Tl 3+ results in the largest band-gap reduction and emergence of intermediate bands. We also found that all considered materials are still thermodynamically stable. This work provides a design approach for new environmentally benign and abundant materials for use in photovoltaics and optoelectronic devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A
2014-01-01
Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2017-11-01
Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.
Wang, Zhenhai; Zhao, Mingwen; Wang, Xiaopeng; Xi, Yan; He, Xiujie; Liu, Xiangdong; Yan, Shishen
2012-12-05
The band alignment in ZnO-GaN and related heterostructures is crucial for uses in solar harvesting technology. Here, we report our density functional calculations of the band alignment and optical properties of ZnO-GaN and ZnO-(Ga(1-x)Zn(x))(N(1-x)O(x))-GaN heterostructures using a Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. We found that the conventional GGA functionals underestimate not only the band gap but also the band offset of these heterostructures. Using the hybrid functional calculations, we show that the (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution has a direct band gap of about 2.608 eV, in good agreement with the experimental data. More importantly, this solid solution forms type-II band alignment with the host materials. A GaN-(Ga(1-x)Zn(x))(N(1-x)O(x))-ZnO core-shell solar cell model is presented to improve the visible light absorption ability and carrier collection efficiency.
Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons
NASA Astrophysics Data System (ADS)
Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang
2017-12-01
Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semari, F.; Khenata, R.; Depatment of Physics and Astronomy, King Saud University, PO Box 2455, Riyadh 11451
2010-12-15
The structural, elastic, electronic, and optical properties of cubic spinel MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4} compounds have been calculated using a full relativistic version of the full-potential linearized-augmented plane wave with the mixed basis FP/APW+lo method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel-Vosko GGA formalism is also applied to optimize the corresponding potential for band structure calculations. The ground state properties, including the lattice constants, the internal parameter, the bulk modulus, and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. Using the totalmore » energy-strain technique, we have determined the full set of first-order elastic constants C{sub ij} and their pressure dependence, which have not been calculated or measured yet. The shear modulus, Young's modulus, and Poisson's ratio are calculated for polycrystalline XIn{sub 2}S{sub 4} aggregates. The Debye temperature is estimated from the average sound velocity. Electronic band structures show a direct band gap ({Gamma}-{Gamma}) for MgIn{sub 2}S{sub 4} and an indirect band gap (K-{Gamma}) for CdIn{sub 2}S{sub 4}. The calculated band gaps with EVGGA show a significant improvement over the GGA. The optical constants, including the dielectric function {epsilon}({omega}), the refractive index n({omega}), the reflectivity R({omega}), and the energy loss function L({omega}) were calculated for radiation up to 30 eV. -- Graphical abstract: Calculated total and partial densities of states for MgIn{sub 2}S{sub 4} and CdIn{sub 2}S{sub 4}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Sivabrata, E-mail: siva1987@iopb.res.in; Parashar, S. K. S., E-mail: sksparashar@yahoo.com; Rout, G. C., E-mail: gcr@iopb.res.in
We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green’s function for electron operator corresponding to A and B sub lattices by Zubarev’s Green’s function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the differentmore » physical parameters.« less
Bulk and surface electronic structures of MgO
NASA Astrophysics Data System (ADS)
Schönberger, U.; Aryasetiawan, F.
1995-09-01
The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.
High Power Orbit Transfer Vehicle
2003-07-01
multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted
Color centers of a borosilicate glass induced by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray
NASA Astrophysics Data System (ADS)
Du, Jishi; Wu, Jiehua; Zhao, Lili; Song, Lixin
2013-05-01
Optical absorption spectra, electron paramagnetic resonance (EPR) spectra, Raman spectra of a borosilicate glass after irradiation by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray were studied. The process of irradiation inducing color centers in the glass was discussed. The band gap of the glass before and after 60Co-γ ray irradiation was studied using Mott and Davis's theory, and it was found that calculated change of the band gap introduced a paradox, because Mott and Davis's theory on the band gap cannot be adopted in the study on the irradiated glass.
Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.
Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae
2016-04-27
The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics.
NASA Astrophysics Data System (ADS)
Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.
2018-05-01
We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.
Low-frequency band gap of locally resonant phononic crystals with a dual-base plate.
Zuo, Shuguang; Huang, Haidong; Wu, Xudong; Zhang, Minghai; Ni, Tianxin
2018-03-01
To achieve a wider band gap and a lower cut-on frequency, a locally resonant phononic crystal (LRPC) with a dual-base plate is investigated in this paper. Compared with the LRPC with a single plate, the band structure of the LRPC with a dual-base plate is calculated using the method of plane wave expansion and verified by the finite element method. According to the analysis of the band curves of the LRPC with a dual-base plate, the mechanisms are explained. Next, the influences of the thickness of the plates, the stiffness of the springs, the mass of resonators, and the lattice constant are also investigated. The results show that the structural asymmetry between the upper and the lower plate is conducive to reducing the cut-on frequency and broadening the band gap effectively. The results indicate a different approach for the application of LRPC in vibration and noise control.
New insights into the opening band gap of graphene oxides
NASA Astrophysics Data System (ADS)
Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa
Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.
Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement
NASA Astrophysics Data System (ADS)
Tran, Fabien; Ehsan, Sohaib; Blaha, Peter
2018-02-01
Based on the work of Gritsenko et al. (GLLB) [Phys. Rev. A 51, 1944 (1995), 10.1103/PhysRevA.51.1944], the method of Kuisma et al. [Phys. Rev. B 82, 115106 (2010), 10.1103/PhysRevB.82.115106] to calculate the band gap in solids was shown to be much more accurate than the common local density approximation (LDA) and generalized gradient approximation (GGA). The main feature of the GLLB-SC potential (SC stands for solid and correlation) is to lead to a nonzero derivative discontinuity that can be conveniently calculated and then added to the Kohn-Sham band gap for a comparison with the experimental band gap. In this work, a thorough comparison of GLLB-SC with other methods, e.g., the modified Becke-Johnson (mBJ) potential [Tran and Blaha, Phys. Rev. Lett. 102, 226401 (2009), 10.1103/PhysRevLett.102.226401], for electronic, magnetic, and density-related properties is presented. It is shown that for the band gap, GLLB-SC does not perform as well as mBJ for systems with a small band gap and strongly correlated systems, but is on average of similar accuracy as hybrid functionals. The results on itinerant metals indicate that GLLB-SC overestimates significantly the magnetic moment (much more than mBJ does), but leads to excellent results for the electric field gradient, for which mBJ is in general not recommended. In the aim of improving the results, variants of the GLLB-SC potential are also tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ram Sevak, E-mail: singh915@gmail.com
2015-11-15
Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to havemore » metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.« less
NASA Astrophysics Data System (ADS)
Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.
2012-11-01
We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.
Electronic band structures and excitonic properties of delafossites: A GW-BSE study
NASA Astrophysics Data System (ADS)
Wang, Xiaoming; Meng, Weiwei; Yan, Yanfa
2017-08-01
We report the band structures and excitonic properties of delafossites CuMO2 (M=Al, Ga, In, Sc, Y, Cr) calculated using the state-of-the-art GW-BSE approach. We evaluate different levels of self-consistency of the GW approximations, namely G0W0, GW0, GW, and QSGW, on the band structures and find that GW0, in general, predicts the band gaps in better agreement with experiments considering the electron-hole effect. For CuCrO2, the HSE wave function is used as the starting point for the perturbative GW0 calculations, since it corrects the band orders wrongly predicted by PBE. The discrepancy about the valence band characters of CuCrO2 is classified based on both HSE and QSGW calculations. The PBE wave functions, already good, are used for other delafossites. All the delafossites are shown to be indirect band gap semiconductors with large exciton binding energies, varying from 0.24 to 0.44 eV, in consistent with experimental findings. The excitation mechanisms are explained by examining the exciton amplitude projections on the band structures. Discrepancies compared with experiments are also addressed. The lowest and strongest exciton, mainly contributed from either Cu 3d → Cu 3p (Al, Ga, In) or Cu 3d → M 3d (M = Sc, Y, Cr) transitions, is always located at the L point of the rhombohedral Brillouin zone.
DFT study of structural and electronic properties of MoS2(1-x)Se2x alloy (x = 0.25)
NASA Astrophysics Data System (ADS)
Gusakova, Julia; Gusakov, Vasilii; Tay, Beng Kang
2018-04-01
First-principles calculations have been performed to study the structural features of the monolayer MoS2(1-x)Se2x (x = 0.25) alloy and its electronic properties. We studied the effects of the relative positions of Se atoms in a real monolayer alloy. It was demonstrated that the distribution of the Se atoms between the top and bottom chalcogen planes was most energetically favorable. For a more probable distribution of Se atoms, a MoS2(1-x)Se2x (x = 0.25) monolayer alloy is a direct semiconductor with a fundamental band gap equal to 2.35 eV (calculated with the GVJ-2e method). We also evaluated the optical band gap of the alloy at 77 K (1.86 eV) and at room temperature (1.80 eV), which was in good agreement with the experimentally measured band gap of 1.79 eV.
First principles study on the elastic and electronic properties of CdX (X = S, Se and Te)
NASA Astrophysics Data System (ADS)
Sharma, Sheetal; Verma, Ajay Singh; Sarkar, Bimal Kumar; Bhandari, Rajiv; Jindal, Vijay Kumar
2011-12-01
Wide band gap semiconductors are emerging as a potential candidate for optically active materials in blue green spectral region and operating at high power level and high temperature. CdX, X = S, Se and Te are wide band gap semiconductors having applications in optoelectronics devices. In this paper we investigated the elastic and electronic properties of Cadmium chalcogenide (cubic zinc-blende (ZB) structure) using standard Kohn-Sham self consistent density functional theory method (DFT) that uses non conserving pseudopotentials in fully nonlocal form within the generalized gradient approximation (GGA) for the exchange-correlation potential. The independent elastic constants, C11, C12 and C44, are calculated from direct computation of stresses generated by small strains. The shear modulus and Young's modulus are estimated for CdX. Using the GGA for the exchange correlation potential, the calculated direct fundamental band gap value is in very good agreement with the measured one.
Narrowing of band gap at source/drain contact scheme of nanoscale InAs-nMOS
NASA Astrophysics Data System (ADS)
Mohamed, A. H.; Oxland, R.; Aldegunde, M.; Hepplestone, S. P.; Sushko, P. V.; Kalna, K.
2018-04-01
A multi-scale simulation study of Ni/InAs nano-scale contact aimed for the sub-14 nm technology is carried out to understand material and transport properties at a metal-semiconductor interface. The deposited Ni metal contact on an 11 nm thick InAs channel forms an 8.5 nm thick InAs leaving a 2.5 nm thick InAs channel on a p-type doped (1 × 1016 cm-3) AlAs0.47Sb0.53 buffer. The density functional theory (DFT) calculations reveal a band gap narrowing in the InAs at the metal-semiconductor interface. The one-dimensional (1D) self-consistent Poisson-Schrödinger transport simulations using real-space material parameters extracted from the DFT calculations at the metal-semiconductor interface, exhibiting band gap narrowing, give a specific sheet resistance of Rsh = 90.9 Ω/sq which is in a good agreement with an experimental value of 97 Ω/sq.
Two Novel C3N4 Phases: Structural, Mechanical and Electronic Properties
Fan, Qingyang; Chai, Changchun; Wei, Qun; Yang, Yintang
2016-01-01
We systematically studied the physical properties of a novel superhard (t-C3N4) and a novel hard (m-C3N4) C3N4 allotrope. Detailed theoretical studies of the structural properties, elastic properties, density of states, and mechanical properties of these two C3N4 phases were carried out using first-principles calculations. The calculated elastic constants and the hardness revealed that t-C3N4 is ultra-incompressible and superhard, with a high bulk modulus of 375 GPa and a high hardness of 80 GPa. m-C3N4 and t-C3N4 both exhibit large anisotropy with respect to Poisson’s ratio, shear modulus, and Young’s modulus. Moreover, m-C3N4 is a quasi-direct-bandgap semiconductor, with a band gap of 4.522 eV, and t-C3N4 is also a quasi-direct-band-gap semiconductor, with a band gap of 4.210 eV, with the HSE06 functional. PMID:28773550
NASA Astrophysics Data System (ADS)
Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.
Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.
El-Diasty, Fouad; Abdel-Wahab, Fathy
2015-10-01
The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Boric acid flux synthesis, structure and magnetic property of MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dingfeng; Cong, Rihong; Gao, Wenliang, E-mail: gaowl@cqu.edu.cn
2013-05-01
Three new borates MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB₁₂O₁₄(OH)₁₀. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2₁/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²⁺. Magnetic measurements indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectancemore » spectrum of ZnB₁₂O₁₄(OH)₁₀ suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering. DFT calculations show ZnB₁₂O₁₄(OH)₁₀ has a direct band gap of 4.9 eV. Highlights: • MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO₆ (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB₁₂O₁₄(OH)₁₀ has a direct band gap 4.9 eV.« less
Structural and electronic properties of monolayer group III monochalcogenides
NASA Astrophysics Data System (ADS)
Demirci, S.; Avazlı, N.; Durgun, E.; Cahangirov, S.
2017-03-01
We investigate the structural, mechanical, and electronic properties of the two-dimensional hexagonal structure of group III-VI binary monolayers, M X (M =B , Al, Ga, In and X =O , S, Se, Te) using first-principles calculations based on the density functional theory. The structural optimization calculations and phonon spectrum analysis indicate that all of the 16 possible binary compounds are thermally stable. In-plane stiffness values cover a range depending on the element types and can be as high as that of graphene, while the calculated bending rigidity is found to be an order of magnitude higher than that of graphene. The obtained electronic band structures show that M X monolayers are indirect band-gap semiconductors. The calculated band gaps span a wide optical spectrum from deep ultraviolet to near infrared. The electronic structure of oxides (M O ) is different from the rest because of the high electronegativity of oxygen atoms. The dispersions of the electronic band edges and the nature of bonding between atoms can also be correlated with electronegativities of constituent elements. The unique characteristics of group III-VI binary monolayers can be suitable for high-performance device applications in nanoelectronics and optics.
NASA Astrophysics Data System (ADS)
Alay-e-Abbas, S. M.; Shaukat, A.
2011-05-01
First-principles density functional theory calculations have been performed for structural, electronic and optical properties of three polymorphic forms of rubidium telluride. Our calculations show that the sequence of pressure induced phase transitions for Rb 2Te is Fm3¯m → Pnma → P6 3/mmc which is governed by the coordination numbers of the anions. From our calculated low transition pressure value for the Fm3¯m phase to the Pnma phase transition of Rb 2Te, the experimentally observed meta-stability of Fm3¯m phase at ambient conditions seems reasonable. The electronic band structure has been calculated for all the three phases and the change in the energy band gap is discussed for the transitioning phases. The energy band gaps obtained for the three phases of Rb 2Te decrease on going from the meta-stable phase to the high-pressure phases. Total and partial density of states for the polymorphs of Rb 2Te has been computed to elucidate the contribution of various atomic states on the electronic band structure. Furthermore, optical properties for all the polymorphic forms have been presented in form of the complex dielectric function.
Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo
2013-02-26
The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.
Influence of the ``second gap'' on the optical absorption of transparent conducting oxides
NASA Astrophysics Data System (ADS)
Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy
Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.
NASA Technical Reports Server (NTRS)
Beratan, David N.
1989-01-01
The presence of conjugation and substitution defects introduces gap states in finite polyenes that are shown to influence the size and sign of the second molecular hyperpolarizability (SMH). Using a one-electron tight-binding model, the dependence of SMH on the defect-state occupancy and energy in finite polyenes is calculated. Defects can cause a significant decrease or enhancement of SMH by impeding charge delocalization or by creating partly filled bands (mimicking the one-band limit), respectively. Concomitant sign changes in SMH are predicted. Calculation results suggest strategies for designing molecules that can be either photochemically or electrochemically switched between states with considerably different SMHs.
Electronic and optical properties of double perovskite Ba2VMoO6: FP-LAPW study
NASA Astrophysics Data System (ADS)
Hnamte, Lalhriatpuia; Sandeep, Joshi, Himanshu; Thapa, R. K.
2018-05-01
The calculation is carried out using the FPLAPW method in the DFT framework within mBJ and LDA using the WIEN2k code. The investigation of electronic properties showed Ba2VMoO6 to be semi-metal in spin-up and insulation in spin down. In both spin up and spin down channel, direct band gap along with indirect band gap in ΓX direction was observed. For investigation of the optical transitions in this compound, the real and imaginary parts of the dielectric function, reflectivity, refractive index and optical conductivity of real and imaginary parts are calculated and analysed.
Optical properties of pure and PbSe doped TiS2 nanodiscs
NASA Astrophysics Data System (ADS)
Parvaz, M.; Islamuddin; Khan, Zishan H.
2018-06-01
Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Feng; Wang, Dan; Tang, Li-Ming, E-mail: lmtang@hnu.edu.cn
2014-09-07
The effects of the chemical composition and strain on the electronic properties of [111] zinc-blende (ZB) and [0001] wurtzite (WZ) GaSb/InAs core-shell nanowires (NWs) with different core diameters and shell thicknesses are studied using first-principles methods. The band structures of the [111] ZB GaSb/InAs core-shell NWs underwent a noticeable type-I/II band alignment transition, associated with a direct-to-indirect band gap transition under a compressive uniaxial strain. The band structures of the [0001] WZ GaSb/InAs core-shell NWs preserved the direct band gap under either compressive or tensile uniaxial strains. In addition, the band gaps and the effective masses of the carriers couldmore » be tuned by their composition. For the core-shell NWs with a fixed GaSb-core size, the band gaps decreased linearly with an increasing InAs-shell thickness, caused by the significant downshift of the conduction bands. For the [111] ZB GaSb/InAs core-shell NWs, the calculated effective masses indicated that the transport properties could be changed from hole-dominated conduction to electron-dominated conduction by changing the InAs-shell thickness.« less
Continuously controlled optical band gap in oxide semiconductor thin films
Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac
2016-02-02
The optical band gap of the prototypical semiconducting oxide SnO 2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion,more » charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less
Li, Wenqing; Walther, Christian F J; Kuc, Agnieszka; Heine, Thomas
2013-07-09
The performance of a wide variety of commonly used density functionals, as well as two screened hybrid functionals (HSE06 and TB-mBJ), on predicting electronic structures of a large class of en vogue materials, such as metal oxides, chalcogenides, and nitrides, is discussed in terms of band gaps, band structures, and projected electronic densities of states. Contrary to GGA, hybrid functionals and GGA+U, both HSE06 and TB-mBJ are able to predict band gaps with an appreciable accuracy of 25% and thus allow the screening of various classes of transition-metal-based compounds, i.e., mixed or doped materials, at modest computational cost. The calculated electronic structures are largely unaffected by the choice of basis functions and software implementation, however, might be subject to the treatment of the core electrons.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes
Suram, Santosh K.; Zhou, Lan; Shinde, Aniketa; ...
2018-01-01
Combinatorial photoelectrochemistry combined with first principles calculations demonstrate that NiMnO 3 and its mixture with Ni 6 MnO 8 are photoanodes with phenomenal absorptivity and band alignment to the oxygen evolution reaction.
Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suram, Santosh K.; Zhou, Lan; Shinde, Aniketa
Combinatorial photoelectrochemistry combined with first principles calculations demonstrate that NiMnO 3 and its mixture with Ni 6 MnO 8 are photoanodes with phenomenal absorptivity and band alignment to the oxygen evolution reaction.
Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.
Villegas, Cesar E P; Rocha, A R; Marini, Andrea
2016-08-10
Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).
Novel band structures in silicene on monolayer zinc sulfide substrate.
Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping
2014-10-01
Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.
NASA Astrophysics Data System (ADS)
Hoat, D. M.; Rivas Silva, J. F.; Méndez Blas, A.
2018-07-01
The structural, electronic and optical properties of GaP, BP binary compounds and their ternary alloys Ga1-xBxP (x = 0.25, 0.5 and 0.75) have been studied by full-potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT) as implemented in WIEN2k package. Local density approximation (LDA) and generalized gradient approximation (GGA) as proposed by Perdew-Burke-Ernzerhof (PBE), Wu-Cohen (WC) and PBE for solid (PBESol) were used for treatment of exchange-correlation effect in calculations. Additionally, the Tran-Blaha modified Becke-Johnson (mBJ) potential was also employed for electronic and optical calculations due to that it gives very accurate band gap of solids. As B concentration increases, the lattice constant reduces and the energy band gap firstly decreases for small composition x and then it shows increasing trend until pure BP. Our results show that the indirect-direct band gap transition can be reached from x = 0.33. The linear optical properties, such as reflectivity, absorption coefficient, refractive index and optical conductivity of binary compounds and ternary alloys were derived from their calculated complex dielectric function in wide energy range up to 30 eV, and the alloying effect on these properties was also analyzed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roychowdhury, Subhajit; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in; Sandhya Shenoy, U.
2016-05-09
Topological crystalline insulator (TCI), Pb{sub 0.6}Sn{sub 0.4}Te, exhibits metallic surface states protected by crystal mirror symmetry with negligibly small band gap. Enhancement of its thermoelectric performances needs tuning of its electronic structure particularly through engineering of its band gap. While physical perturbations tune the electronic structure of TCI by breaking of the crystal mirror symmetry, chemical means such as doping have been more attractive recently as they result in better thermoelectric performance in TCIs. Here, we demonstrate that K doping in TCI, Pb{sub 0.6}Sn{sub 0.4}Te, breaks the crystal mirror symmetry locally and widens electronic band gap, which is confirmed bymore » direct electronic absorption spectroscopy and electronic structure calculations. K doping in Pb{sub 0.6}Sn{sub 0.4}Te increases p-type carrier concentration and suppresses the bipolar conduction via widening a band gap, which collectively boosts the thermoelectric figure of merit (ZT) to 1 at 708 K.« less
Experimental and theoretical investigation of relative optical band gaps in graphene generations
NASA Astrophysics Data System (ADS)
Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet
2017-01-01
Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.
Tuning the band gap in silicene by oxidation.
Du, Yi; Zhuang, Jincheng; Liu, Hongsheng; Xu, Xun; Eilers, Stefan; Wu, Kehui; Cheng, Peng; Zhao, Jijun; Pi, Xiaodong; See, Khay Wai; Peleckis, Germanas; Wang, Xiaolin; Dou, Shi Xue
2014-10-28
Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in √13 × √13, 4 × 4, and 2√3 × 2√3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on √13 × √13, 4 × 4, and 2√3 × 2√3 structures under oxidation, which is verified by in situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.
Origin of multiple band gap values in single width nanoribbons
Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh
2016-01-01
Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172
Measuring the band structures of periodic beams using the wave superposition method
NASA Astrophysics Data System (ADS)
Junyi, L.; Ruffini, V.; Balint, D.
2016-11-01
Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in the dispersion curve measured from the experiments were deduced to be a result of a combination of measurement noise, the different placement of the accelerometer with finite mass, and the torsional mode.
NASA Astrophysics Data System (ADS)
Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko
2018-06-01
We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.
Energy band gap and spectroscopic studies in Mn{sub 1-x}Cu{sub x}WO{sub 4} (0 ≤ x ≤ 0.125)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal, Priyanath; Rambabu, P.; Turpu, G. R.
2016-05-06
A study on the effect of nonmagnetic Cu{sup 2+} substitution at Mn{sup 2+} site on the structural and energy band gap of the MnWO{sub 4} is reported. Convenient solid state reaction route has been adopted for the synthesis of Mn{sub 1-x}Cu{sub x}WO{sub 4}. X-ray diffraction (XRD) pattern showed high crystalline quality of the prepared samples. Raman spectroscopic studies were carried out to understand the structural aspects of the doping. 15 Raman active modes were identified out of 18, predicted for wolframite type monoclinic structure of MnWO{sub 4}. UV-visible diffuse reflectance spectra were recorded and analyzed to get energy band gapmore » of the studied system and are found in the range of 2.5 eV to 2.04 eV with a systematic decrease with the increase in Cu{sup 2+} concentration. Energy band gap values are verified by Density Functional Theory calculations based on projector augmented wave (PAW) method. The calculated values are in good agreement with the experimental data.« less
Effect of Sb in thick InGaAsSbN layers grown by liquid phase epitaxy
NASA Astrophysics Data System (ADS)
Donchev, V.; Milanova, M.; Asenova, I.; Shtinkov, N.; Alonso-Álvarez, D.; Mellor, A.; Karmakov, Y.; Georgiev, S.; Ekins-Daukes, N.
2018-02-01
Dilute nitride InGaAsSbN layers grown by low-temperature liquid phase epitaxy are studied in comparison with quaternary InGaAsN layers grown at the same growth conditions to understand the effect of Sb in the alloy. The lattice mismatch to the GaAs substrate is found to be slightly larger for the InGaAsSbN layers, which is explained by the large atomic radius of Sb. A reduction of the band gap energy with respect to InGaAsN is demonstrated by means of photoluminescence (PL), surface photovoltage (SPV) spectroscopy and tight-binding calculations. The band-gap energies determined from PL and ellipsometry measurements are in good agreement, while the SPV spectroscopy and the tight-binding calculations provide lower values. Possible reasons for these discrepancies are discussed. The PL spectra reveal localized electronic states in the band gap near the conduction band edge, which is confirmed by SPV spectroscopy. The analysis of the power dependence of the integrated PL has allowed determining the dominant radiative recombination mechanisms in the layers. The values of the refraction index in a wide spectral region are found to be higher for the Sb containing layers.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Zhou, Wenzhe; Yang, Zhixiong; Wu, Shoujian; Ouyang, Fangping; Xu, Hui
2017-12-01
Based on the first principles calculation, the electrical properties and optical properties of monolayer molybdenum disulfide (MoS2) substitutionally doped by the VB and VIIB transition metal atoms (V, Nb, Ta, Mn, Tc, Re) were investigated. It is found that n-type doping or p-type doping tunes the Fermi level into the conduction band or the valence band respectively, leading to the degenerate semiconductor, while the compensatorily doped systems where the number of valence electrons is not alerted remain direct band gap ranging from 0.958 eV to 1.414 eV. According to the analysis on densities of states, the LUMO orbitals of donor impurities play the crucial role in band gap tuning. Hence, the band gap and optical properties of doped MoS2 are dominated by the species of the donor. Due to the reduction of the band gap, doped MoS2 have a lower threshold energy of photon absorption and an enhanced absorption in near infrared region. These results provide a significant guidance for the design of new 2D optoelectronic materials based on transition metal disulfide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghatforoush, Lotfali, E-mail: saghatforoush@gmail.com; Khoshtarkib, Zeinab; Amani, Vahid
2016-01-15
Three new coordination polymers, [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl (1), Br (2)) and [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} (3) (bptz=3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) were synthesized. X-ray structural analysis indicated that compounds 1 and 2 are composed of one-dimensional (1D) linear chains while the compound 3 has 1D stair-stepped structure. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that compound 1 and 2 are direct band gap semiconductors; however, compound 3 is an indirect semiconductor. The linear optical properties of the compounds are also calculated by DFT method. According to the DFT calculations, the observed emission bandmore » of the compounds in solid state is due to electron transfer from an excited bptz-π* state (CBs) to the top of VBs. {sup 1}H NMR spectra of the compounds indicate that, in solution phase, the compounds don’t decompose completely. Thermal stability of the compounds is studied using TG, DTA methods. - Graphical abstract: Synthesis, crystal structure and emission spectra of [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl and Br) and [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} are presented. The electronic band structure and linear optical properties of the compounds are calculated by the DFT method. - Highlights: • Three 1D Hg(II) halide coordination polymers with bptz ligand have been prepared. • The structures of the compounds are determined by single crystal XRD. • DFT calculations show that [Hg(μ-bptz)X{sub 2}]{sub n} (X=Cl and Br) have a direct band gap. • DFT calculations show that [Hg{sub 2}(μ-bptz)(μ-I){sub 2}I{sub 2}]{sub n} has an indirect band gap. • The compounds show an intraligand electron transfer emission band in solid state.« less
Lamb waves in phononic crystal slabs with square or rectangular symmetries
NASA Astrophysics Data System (ADS)
Brunet, Thomas; Vasseur, Jérôme; Bonello, Bernard; Djafari-Rouhani, Bahram; Hladky-Hennion, Anne-Christine
2008-08-01
We report on both numerical and experimental results showing the occurrence of band gaps for Lamb waves propagating in phononic crystal plates. The structures are made of centered rectangular and square arrays of holes drilled in a silicon plate. A supercell plane wave expansion method is used to calculate the band structures and to predict the position and the magnitude of the gaps. The band structures of phononic crystal slabs are then measured using a laser ultrasonic technique. Lamb waves in the megahertz range and with wave vectors ranging over more than the first two reduced Brillouin zones are investigated.
Modeling direct interband tunneling. II. Lower-dimensional structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.
First-principles studies of electric field effects on the electronic structure of trilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
A visible light photocatalyst: effects of vanadium substitution on ETS-10.
Marie Shough, Anne; Lobo, Raul F; Doren, Douglas J
2007-10-07
Hybrid density functional theory/molecular mechanics (DFT/MM) methods have been used to investigate the effects of vanadium substitution in ETS-10. Models have been developed to contain varying concentrations of V(IV) and V(V) within the O-M-O (M = Ti, V) chain. Most of the V-substituted models have a localized mid-gap state. The occupation of this localized state depends upon the dopant oxidation state, leading to the addition of multiple low energy transitions. A linear correlation has been identified between band gap energies estimated using ground state orbital energies and those calculated using the more accurate and computationally demanding time-dependent DFT (TDDFT) method for a variety of transition metal substituted models of ETS-10. Consistent with experimental data for V substitution, our models predict a decrease in the optical band gap with increasing [V], due to a lowering of the delocalized d-orbital states at the bottom of the conduction band with increasing V d-orbital character. This effect is more pronounced in the case of V(V) substitution than V(IV). Excitation energies for the V-doped models, calculated with TDDFT methods correlate well with experimental data, allowing for the assignment of specific optical transitions to experimental UV-Vis spectra. The electronic structure of V-substituted ETS-10 at high V concentration demonstrates band gap energies within the visible range of the spectrum. Additionally, at high [V] the band gap energy and presence of low energy electron traps can be controlled by the relative concentration of V(IV) and V(V) along the O-M-O chain, establishing V-substituted ETS-10 as a promising visible light photocatalyst.
Structural, electronic and magnetic properties of metal thiophosphate InPS4
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Nayak, Vikas; Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2017-05-01
The non-centrosymmetric crystal, InPS4, has been investigated by means of density functional theory (DFT). In this paper we have calculated the structural parameters, electronic band structures, density of states plot and magnetic properties using full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation has been solved employing the generalised gradient approximation due to Perdew-Burke-Ernzerhof. The calculations are performed both without spin as well as spin polarized. The results show that InPS4 is an indirect band gap semiconductor with (N-Г) energy gap of 2.32eV (without spin) and 1.86eV in spin up and down channels.The obtained lattice parameters and energy gap agree well with the experimental results. Our reported magnetic moment results show that the property of InPS4is nonmagnetic.
The Effect of High N-DOPED Anatase TiO2 on the Band Gap Narrowing and Redshift by First-Principles
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Jin, Yongjun; Ying, Chun; Zhao, Erjun; Zhang, Yue; Dong, Hongying
2012-10-01
Anatase TiO2 supercells were studied by first-principles, in which one was undoped and another three were high N-doping. Partial densities of states, band structure, population and absorption spectrum were calculated. The calculated results indicated that in the condition of TiO2-xNx (x = 0.0625, 0.125, 0.25), the higher the doping concentration is, the shorter will be the lattice parameters parallel to the direction of c-axis. The strength of covalent bond significantly varied. The formation energy increases at first, and then decreases. The doping models become less stable as N-doping concentration increases. Meanwhile, the narrower the band gap is, the more significant will be the redshift, which is in agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.
2017-12-01
First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.
Du, Mao-Hua
2015-04-02
We know that native point defects play an important role in carrier transport properties of CH3NH3PbI3. However, the nature of many important defects remains controversial due partly to the conflicting results reported by recent density functional theory (DFT) calculations. In this Letter, we show that self-interaction error and the neglect of spin–orbit coupling (SOC) in many previous DFT calculations resulted in incorrect positions of valence and conduction band edges, although their difference, which is the band gap, is in good agreement with the experimental value. Moreover, this problem has led to incorrect predictions of defect-level positions. Hybrid density functional calculations,more » which partially correct the self-interaction error and include the SOC, show that, among native point defects (including vacancies, interstitials, and antisites), only the iodine vacancy and its complexes induce deep electron and hole trapping levels inside of the band gap, acting as nonradiative recombination centers.« less
Twisted bilayer blue phosphorene: A direct band gap semiconductor
NASA Astrophysics Data System (ADS)
Ospina, D. A.; Duque, C. A.; Correa, J. D.; Suárez Morell, Eric
2016-09-01
We report that two rotated layers of blue phosphorene behave as a direct band gap semiconductor. The optical spectrum shows absorption peaks in the visible region of the spectrum and in addition the energy of these peaks can be tuned with the rotational angle. These findings makes twisted bilayer blue phosphorene a strong candidate as a solar cell or photodetection device. Our results are based on ab initio calculations of several rotated blue phosphorene layers.
Mechanical Anisotropic and Electronic Properties of Amm2-carbon under Pressure*
NASA Astrophysics Data System (ADS)
Xing, Meng-Jiang; Li, Xiao-Zhen; Yu, Shao-Jun; Wang, Fu-Yan
2017-09-01
Structural, electronic properties and mechanical anisotropy of Amm2-carbon are investigated utilizing frist-principles calculations by Cambridge Serial Total Energy Package (CASTEP) code. The work is performed with the generalized gradient approximation in the form of Perdew-Burke-Ernzerhof (PBE), PBEsol, Wu and Cohen (WC) and local density approximation in the form of Ceperley and Alder data as parameterized by Perdew and Zunger (CA-PZ). The mechanical anisotropy calculations show that Amm2-carbon exhibit large anisotropy in elastic moduli, such as Poisson’s ratio, shear modulus and Young’s modulus, and other anisotropy factors, such as the shear anisotropic factor and the universal anisotropic index AU. It is interestingly that the anisotropy in shear modulus and Young’s modulus, universal anisotropic index and the shear anisotropic factor all increases with increasing pressure, but the anisotropy in Poisson’s ratio decreases. The band structure calculations reveal that Amm2-carbon is a direct-band-gap semiconductor at ambient pressure, but with the pressure increasing, it becomes an indirect-band-gap semiconductor.
Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation
NASA Astrophysics Data System (ADS)
Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian
2016-01-01
We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.
Theoretical study of band gap in CuAlO2: Pressure dependence and self-interaction correction
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi
2012-08-01
By using first-principles calculations, we studied the energy gaps of delafossite CuAlO2: (1) pressure dependence and (2) self-interaction correction (SIC). Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure at 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. The energy gap calculated within the SIC is close to experimental data while one calculated without the SIC is about 1 eV smaller than the experimental data.
Pathway to oxide photovoltaics via band-structure engineering of SnO
Peng, Haowei; Bikowski, Andre; Zakutayev, Andriy; ...
2016-10-04
All-oxide photovoltaics could open rapidly scalable manufacturing routes, if only oxide materials with suitable electronic and optical properties were developed. SnO has exceptional doping and transport properties among oxides, but suffers from a strongly indirect band gap. Here, we address this shortcoming by band-structure engineering through isovalent but heterostructural alloying with divalent cations (Mg, Ca, Sr, and Zn). Furthermore, using first-principles calculations, we show that suitable band gaps and optical properties close to that of direct semiconductors are achievable, while the comparatively small effective masses are preserved in the alloys. Initial thin film synthesis and characterization support the feasibility ofmore » the approach.« less
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Zhou, Yuzhi; Ciampi, Guido; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Haller, E. E.; Chrzan, D. C.
2013-08-01
We apply state-of-art first principle calculations to study the polymorphism and electronic structure of three previously reported phases of TlBr. The calculated band structures of NaCl-structure phase and orthorhombic-structure phase have different features than that of commonly observed CsCl-structure phase. We further interpret photoluminescence spectra based on our calculations. Several peaks close to calculated band gap values of the NaCl-structure phase and the orthorhombic-structure phase are found in unpolished TlBr samples.
Heptagraphene: Tunable dirac cones in a graphitic structure
Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.
2016-09-13
Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a directmore » consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.« less
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2012-02-01
The electro-optical properties of zigzag and armchair BNNTs in a uniform transverse electric field are investigated within tight binding approximation. It is found that the electric field modifies the band structure and splits band degeneracy where these effects reflect in the DOS and JDOS spectra. A decrease in the band gap, as a function of the electric field, is observed. This gap reduction increases with the diameter and it is independent of chirality. An analytic function to estimate the electric field needed for band gap closing is proposed which is in good agreement with DFT results. In additional, we show that the larger diameter tubes are more sensitive than small ones. Number and position of peaks in DOS and JDOS spectra for armchair and zigzag tubes with similar radius are dependent on electric field strength.
Pandey, Mohnish; Jacobsen, Karsten W; Thygesen, Kristian S
2016-11-03
Organic-inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C 4 H 9 NH 3 ) 2 MX 2 Y 2 , where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant.
Extension of photonic band gap in one-dimensional ternary metal-dielectric photonic crystal
NASA Astrophysics Data System (ADS)
Pandey, G. N.; Thapa, Khem B.
2018-05-01
In this paper, the photonic band gap structure in the visible and near infrared for a ternary metal dielectric photonic crystal has been theoretically investigated. At the normal incidence, the high reflectance range can be significantly enlarged at a thicker metal film. The transmission of the structure containing Cu has large compared to the other metals like Al and Ag metals. The transmission properties of the metal are dependent upon the value of the plasma frequency. In this paper we consider the effect of the variation of the thickness of the metal on the reflection bands of ternary metallic-dielectric photonic crystal (MDPC). Finally we find that the enlargement of band gap in MDPC is due to the addition of increase of the thickness of metallic film at normal incidence. All the theoretical calculations are made based on the transfer matrix method together with the Drude model of metal.
NASA Astrophysics Data System (ADS)
Umamaheswari, R.; Yogeswari, M.; Kalpana, G.
2013-02-01
Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jun-ben; Xinjiang Key Laboratory of Electronic Information Material and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011; Mamat, Mamatrishat, E-mail: mmtrxt@xju.edu.cn
In this research work, Ag-containing quaternary-chalcogenide compounds KAg{sub 2}TS{sub 4} (T=P, Sb) (I-II) and RbAg{sub 2}SbS{sub 4} (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg{sub 2}PS{sub 4} possesses wide band gap and SHG response comparable with thatmore » of AgGaS{sub 2}. By exploring the origin of the band gap and NLO response for compounds KAg{sub 2}TS{sub 4} (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg{sub 2}TS{sub 4} (T=P, Sb) and RbAg{sub 2}SbS{sub 4} can be used in infrared (IR) region. - Graphical abstract: Metal thiophosphates RbPbPS{sub 4} and KSbP{sub 2}S{sub 6} have a similar band gap with KAg{sub 2}PS{sub 4}. However, based on first principles calculated results it shown that KAg{sub 2}PS{sub 4} possesses wide band gap (3.02 eV) and relatively large SHG response. Display Omitted.« less
Wang, Weidong; Bai, Liwen; Yang, Chenguang; Fan, Kangqi; Xie, Yong; Li, Minglin
2018-01-31
Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS₂ are investigated by using the first-principles method. For the O-doped pure monolayer WS₂, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS₂ is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS₂. Then, two typical point defects, including sulfur single-vacancy (V S ) and sulfur divacancy (V 2S ), are introduced to probe the influences of O doping on the electronic properties of WS₂ monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS₂ with V S defect to a certain degree, but weaken the band gap of monolayer WS₂ with V 2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS₂ cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS₂.
NASA Astrophysics Data System (ADS)
Morshedi, Hosein; Naseri, Mosayeb; Hantehzadeh, Mohammad Reza; Elahi, Seyed Mohammad
2018-04-01
In this paper, using a first principles calculation, a two-dimensional structure of silicon-antimony named penta-Sb2Si is predicted. The structural, kinetic, and thermal stabilities of the predicted monolayer are confirmed by the cohesive energy calculation, phonon dispersion analysis, and first principles molecular dynamic simulation, respectively. The electronic properties investigation shows that the pentagonal Sb2Si monolayer is a semiconductor with an indirect band gap of about 1.53 eV (2.1 eV) from GGA-PBE (PBE0 hybrid functional) calculations which can be effectively engineered by employing external biaxial compressive and tensile strain. Furthermore, the optical characteristics calculation indicates that the predicted monolayer has considerable optical absorption and reflectivity in the ultraviolet region. The results suggest that a Sb2Si monolayer has very good potential applications in new nano-optoelectronic devices.
Theoretical study of thermopower behavior of LaFeO3 compound in high temperature region
NASA Astrophysics Data System (ADS)
Singh, Saurabh; Shastri, Shivprasad S.; Pandey, Sudhir K.
2018-04-01
The electronic structure and thermopower (α) behavior of LaFeO3 compound were investigated by combining the ab-initio electronic structures and Boltzmann transport calculations. LSDA plus Hubbard U (U = 5 eV) calculation on G-type anti-ferromagnetic (AFM) configuration gives an energy gap of ˜2 eV, which is very close to the experimentally reported energy gap. The calculated values of effective mass of holes (mh*) in valance band (VB) are found ˜4 times that of the effective mass of electrons (me*) in conduction band (CB). The large effective masses of holes are responsible for the large and positive thermopower exhibited by this compound. The calculated values of α using BoltzTraP code are found to be large and positive in the 300-1200 K temperature range, which is in agreement with the experimentally reported data.
Interlayer excitons in MoSe2/WSe2 heterostructures from first principles
NASA Astrophysics Data System (ADS)
Gillen, Roland; Maultzsch, Janina
2018-04-01
Based on ab initio theoretical calculations of the optical spectra of vertical heterostructures of MoSe2 (or MoS2) and WSe2 sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the A excitons of MoSe2 and WSe2 with a significant binding energy on the order of 250 meV for the first excitons in the series. At the same time, we predict from accurate many-body G0W0 calculations that crystallographically aligned MoSe2/WSe2 heterostructures exhibit an indirect fundamental band gap. Due to the type-II nature of the MoSe2/WSe2 heterostructure, the indirect transition and the exciton Rydberg series corresponding to a direct transition exhibit a distinct interlayer nature with spatial charge separation of the coupled electrons and holes. Our calculations confirm the recent experimental observation of a doublet nature of the long-lived states in photoluminescence spectra of Mo X2/W Y2 heterostructures, and we attribute these two contributions to momentum-direct interlayer excitons at the K point of the hexagonal Brillouin zone and to momentum-indirect excitons at the indirect fundamental band gap. Our calculations further suggest a noticeable effect of stacking order on the electronic band gaps and on the peak energies of the interlayer excitons and their oscillation strengths.
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Zhang, Haotian; Dou, Renqin; Liu, Wenpeng; Sun, Dunlu; Zhang, Qingli
2018-07-01
Terbium-aluminum (Tb3Al5O12: TAG) as well as Terbium-scandium-aluminum (Tb3Sc2Al3O12: TSAG) garnet materials have attracted tremendous attention around the world owing to their multifunctional applications. However, the electronic structure, optical and luminescent properties for TAG and TSAG are still requiring elucidation. To solve these intriguing problems, firstly, a systematic theoretical calculation based on the density functional theory methods were carried out on them and their electronic structure and optical properties were obtained. The calculated results indicating that both TAG and TSAG belongs to direct band gap materials category with band gap of 4.46 and 4.05 eV, respectively. Secondly, we compared the calculated results with the experimental results (including band gap, refractive index and reflectivity) and found that they were in good coincident. Lastly, we investigated the luminescence properties of TSAG and evaluated its probability for using as visible phosphor and laser matrix. In addition, a Judd-Ofelt theory calculation was performed on TSAG to reveal the radioactive transition of Tb-4f configuration and the three Judd-Ofelt intense parameters were obtained to be 4.47, 1.37 and 4.23 × 10-20 cm2, respectively. All of the obtained results can provide an essential understanding of TAG and TSAG garnet materials and also useful for the further exploration of them.
AB INITIO STUDY OF OPTOELECTRONIC PROPERTIES OF SPINEL ZnAl2O4 BEYOND GGA AND LDA
NASA Astrophysics Data System (ADS)
Yousaf, Masood; Saeed, M. A.; Isa, Ahmad Radzi Mat; Rahnamaye Aliabad, H. A.; Noor, N. A.
2012-12-01
Electronic band structure and optical parameters of ZnAl2O4 are investigated by first-principles technique based on a new potential approximation, known as modified Becke-Johnson (mBJ). This method describes the excited states of insulators and semiconductors more accurately The recent direct band gap result by EV-GGA is underestimated by about 15% compared to our band gap value using mBJ-GGA. The value of the band gap of ZnAl2O4 decreases as follows: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). The band structure base optical parametric quantities (dielectric constant, index of refraction, reflectivity and optical conductivity) are also calculated, and their variations with energy range are discussed. The first critical point (optical absorption's edge) in ZnAl2O4 occurs at about 5.26 eV in case of mBJ. This study about the optoelectronic properties indicates that ZnAl2O4 can be used in optical devices.
NASA Astrophysics Data System (ADS)
Zoghi, Milad; Yazdanpanah Goharrizi, Arash; Mirjalili, Seyed Mohammad; Kabir, M. Z.
2018-06-01
Electronic and transport properties of Carbon nanotubes (CNTs) are affected by the presence of physical or chemical defects in their structures. In this paper, we present novel platforms of defected zigzag CNTs (Z-CNTs) in which two topologies of antidot and Boron/Nitride (BN) doping defects are periodically imposed throughout the length of perfect tubes. Using the tight binding model and the non-equilibrium Green’s function method, it is realized that the quantum confinement of Z-CNTs is modified by the presence of such defects. This new quantum confinement results in the appearance of mini bands and mini gaps in the transmission spectra, as well as a modified band structure and band gap size. The modified band gap could be either larger or smaller than the intrinsic band gap of a perfect tube, which is determined by the category of Z-CNT. The in-depth analysis shows that the size of the modified band gap is the function of several factors consisting of: the radii of tube (D r), the distance between adjacent defects (d d), the utilized defect topology, and the kind of defect (antidot or BN doping). Furthermore, taking advantage of the tunable band gap size of Z-CNT with the presence of periodical defects, new platforms of defect-based Z-CNT resonant tunneling diode (RTD) are proposed for the first time. Our calculations demonstrate the apparition of resonances in transmission spectra and the negative differential resistance in the I-V characteristics for such RTD platforms.
Electronic and mechanical properties of ZnX (X = S, Se and Te)—An ab initio study
NASA Astrophysics Data System (ADS)
Verma, Ajay Singh; Sharma, Sheetal; Sarkar, Bimal Kumar; Jindal, Vijay Kumar
2011-12-01
Zinc chalcogenides (ZnX, X = S, Se and Te) have been increasing attention as wide and direct band gap semiconductor for blue and ultraviolet optical devices. This paper analyzes electronic and mechanical properties of these materials by ab initio pseudo-potential method that uses non conserving pseudopotentials in fully nonlocal form, as implemented in SIESTA code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. The calculations are given for band gap, elastic constants (C11, C12 and C44), shear modulus, and Young's modulus. The results are in very good agreement with previous theoretical calculations and available experimental data.
NASA Astrophysics Data System (ADS)
Hong, Sung Y.; Song, Jung M.
1997-12-01
A theoretical study of a variety of tricyclic polymers [-(C8H2X2Y)n-] with two different types of bridging groups was performed, X=S and Y=CH2, SiH2, C=O, C=S, or C=CH2 for the fused bithiophene system and vice versa for the thieno-bicyclic system. These two types of the bridging groups are different from each other in that S favors the aromatic form of a cyclic polymer and the other groups prefer the quinonoid form. Geometrical structures of the polymers were obtained from semiempirical self-consistent-field (SCF) band calculations and the electronic properties from the modified extended Hückel band calculations. It is found that the ground-state geometrical structures of the tricyclic polymers are determined by the bridging groups in the outer rings. That is, the fused bithiophene system is aromatic in the ground state and the thieno-bicyclic system is quinonoid. The ground-state band gaps (which correspond to the absorption peaks of π-π* band transition) of the polymers were estimated to be in the range of 0.7-2.0 eV. The band gaps were analyzed in terms of the bond-length alternation along the conjugated carbon backbone, the C1-C4 interactions, and the electronic effect of the bridging groups. We also investigated the geometrical and electronic structures of polydicyanomethylene-cyclopenta-dicyclopentadiene (PDICNCY). Unlike the theoretical predictions of Toussaint and Bredas [Synth. Met. 69, 637 (1995)], PDICNCY in the ground state was estimated to be of the quinonoid form and to possess a large band gap (2.55 eV) comparable with the gap of polythiophene.
Topological Semimetals Studied by Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi
2018-04-01
In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.
Nanostructured Materials Developed for Solar Cells
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Fahey, Stephen D.; Gennett, Thomas; Tin, Padetha
2004-01-01
There has been considerable investigation recently regarding the potential for the use of nanomaterials and nanostructures to increase the efficiency of photovoltaic devices. Efforts at the NASA Glenn Research Center have involved the development and use of quantum dots and carbon nanotubes to enhance inorganic and organic cell efficiencies. Theoretical results have shown that a photovoltaic device with a single intermediate band of states resulting from the introduction of quantum dots offers a potential efficiency of 63.2 percent. A recent publication extended the intermediate band theory to two intermediate bands and calculated a limiting efficiency of 71.7 percent. The enhanced efficiency results from converting photons of energy less than the band gap of the cell by an intermediate band. The intermediate band provides a mechanism for low-energy photons to excite carriers across the energy gap by a two-step process.
Core x-ray spectra in semiconductors and the Mahan-Nozieres-De Dominicis model
NASA Astrophysics Data System (ADS)
Livins, Peteris
1998-10-01
The Mahan-Nozières-De Dominicis (MND) model of core x-ray spectra is examined for semiconductors. Due to the finite band gap, the Anderson orthogonality does not occur, and thus spectra near the band edge can be calculated without the shakeup contribution. For semiconductors, and not only for metals, we investigate whether the remaining many-particle dynamic exchange effect of the MND model, or so-called replacement, can significantly alter x-ray spectral shapes near the band edge from those obtained from a straightforward final-state rule. For both emission and absorption, in the absence of shakeup, an exact formulation suitable for materials with band structure is discussed. A numerical model for a semiconductor with a 1-eV band gap demonstrates the band-edge modifications, and shows a 50% effect at the band edge, indicating that this dynamic exchange effect can be significant and should be considered in any specific emission or absorption calculation for a semiconductor. Although the ineffectiveness of the orthogonality theorem in semiconductors is emphasized, a suppression near the band edge also remains a possibility. Included is a discussion on the breakdown of the final-state rule. In addition, connection is made to the determinantal approach of Ohtaka and Tanabe.
Edge effects on the electronic properties of phosphorene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun
2014-10-14
Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less
Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics
NASA Astrophysics Data System (ADS)
Jin, Yingdi; Li, Xingxing; Yang, Jinlong
A serial of two dimensional titanium and zirconium trichalcogenides nanosheets MX3 (M=Ti, Zr; X=S, Se, Te) are investigated based on first-principles calculations. The evaluated low cleavage energy indicates that stable two dimensional monolayers can be exfoliated from their bulk crystals in experiment. Electronic studies reveal very rich electronic properties in these monolayers, including metallic TiTe3 and ZrTe3, direct band gap semiconductor TiS3 and indirect band gap semiconductors TiSe3, ZrS3 and ZrSe3. The band gaps of all the semiconductors are between 0.57~1.90 eV, which implies their potential applications in nano-electronics. And the calculated effective masses demonstrate highly anisotropic conduction properties for all the semiconductors. Optically, TiS3 and TiSe3 monolayers exhibit good light absorption in the visible and near-infrared region respectively, indicating their potential applications in optical devices. In particular, the highly anisotropic optical absorption of TiS3 monolayer suggests it could be used in designing nano optical waveguide polarizers.
NASA Astrophysics Data System (ADS)
Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.
2017-08-01
The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.
Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films
NASA Astrophysics Data System (ADS)
Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin
2018-02-01
A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.
Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang
2013-10-14
The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.
Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.
Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V
2017-07-25
Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.
Kou, Liangzhi; Hu, Feiming; Yan, Binghai; Frauenheim, Thomas; Chen, Changfeng
2014-07-07
Developing graphene-based nanoelectronics hinges on opening a band gap in the electronic structure of graphene, which is commonly achieved by breaking the inversion symmetry of the graphene lattice via an electric field (gate bias) or asymmetric doping of graphene layers. Here we introduce a new design strategy that places a bilayer graphene sheet sandwiched between two cladding layers of materials that possess strong spin-orbit coupling (e.g., Bi2Te3). Our ab initio and tight-binding calculations show that a proximity enhanced spin-orbit coupling effect opens a large (44 meV) band gap in bilayer graphene without breaking its lattice symmetry, and the band gap can be effectively tuned by an interlayer stacking pattern and significantly enhanced by interlayer compression. The feasibility of this quantum-well structure is demonstrated by recent experimental realization of high-quality heterojunctions between graphene and Bi2Te3, and this design also conforms to existing fabrication techniques in the semiconductor industry. The proposed quantum-well structure is expected to be especially robust since it does not require an external power supply to open and maintain a band gap, and the cladding layers provide protection against environmental degradation of the graphene layer in its device applications.
Investigation of light induced effect on density of states of Pb doped CdSe thin films
NASA Astrophysics Data System (ADS)
Kaur, Jagdish; Singh, Baljinder; Tripathi, S. K.
2016-05-01
Thin films of Pb doped CdSe are deposited on the glass substrates by thermal evaporation technique using inert gas condensation method. The prepared thin films are light soaked under vacuum of 2×10-3 mbar for two hour. The absorption coefficient in the sub-band gap region has been studied using Constant Photocurrent Method (CPM). The absorption coefficient in the sub-band gap region follows an exponential Urbach tail. The value of Urbach energy and number density of defect states have been calculated from the absorption coefficient in the sub-band gap region and found to increase after light soaking treatment. The energy distribution of the occupied density of states below Fermi level has been evaluated using derivative procedure of the absorption coefficient.
Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles
Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...
2011-08-01
Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less
Band Structure Characteristics of Nacreous Composite Materials with Various Defects
NASA Astrophysics Data System (ADS)
Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.
2016-06-01
Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.
Yashima, Masatomo; Yamada, Hiroki; Maeda, Kazuhiko; Domen, Kazunari
2010-04-14
We present the experimental visualization of covalent bonding, positional disorders and split anion sites in visible-light responsive photocatalyst (Ga(0.885)Zn(0.115))(N(0.885)O(0.115)). ZnO alloying into GaN reduces the band gap, leading to the visible-light response. DFT calculations indicated no significant difference in band gap between structural models with and without split sites.
Graphene symmetry-breaking with molecular adsorbates: modeling and experiment
NASA Astrophysics Data System (ADS)
Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.
2012-02-01
Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.
Marcasite revisited: Optical absorption gap at room temperature
NASA Astrophysics Data System (ADS)
Sánchez, C.; Flores, E.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Ferrer, I. J.
2016-03-01
Jagadeesh and Seehra published in 1980 that the marcasite band gap energy is 0.34 eV. However, recent calculations and experimental approximations accomplished by several research groups point out that the marcasite band gap energy should be quite similar to that of pyrite (of the order of 0.8-1.0 eV). By using diffuse reflectance spectroscopy (DRS) we have determined that marcasite has no optical absorption gap at photon energies 0.06 ≤ hν ≤ 0.75 eV and that it has two well defined optical transitions at ~ 0.9 eV and ~ 2.2 eV quite similar to those of pyrite. Marcasite optical absorption gap appears to be Eg ≅ 0.83 ± 0.02 eV and it is due to an allowed indirect transition.
Electronic properties of ZnPSe3-MoS2 Van der Waals heterostructure
NASA Astrophysics Data System (ADS)
Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.
2018-04-01
We present a comparative study of electronic properties of ZnPSe3-MoS2 heterostructure using GGA-PBE functional and DFT-D2 method within the framework of density functional theory (DFT). Electronic band structure for the considered heterostructure shows a direct band gap semiconducting character. A decrease in band gap is observed with the heterostructuring as compared to their constituent pristine monolayers. The alignment of valance band maxima and conduction band minima on different layers in heterostructure indicate the physical separation of charge carriers. A work function of 5.31 eV has been calculated for ZnPSe3-MoS2 heterostructure. These results provide a physical basis for the potential applications of these ZnPSe3-MoS2 heterostructure in optoelectronic devices.
Band Structure and Contact Resistance of Carbon Nanotubes Deformed by a Metal Contact.
Hafizi, Roohollah; Tersoff, Jerry; Perebeinos, Vasili
2017-11-17
Capillary and van der Waals forces cause nanotubes to deform or even collapse under metal contacts. Using ab initio band structure calculations, we find that these deformations reduce the band gap by as much as 30%, while fully collapsed nanotubes become metallic. Moreover, degeneracy lifting due to the broken axial symmetry, and wave functions mismatch between the fully collapsed and the round portions of a CNT, lead to a 3 times higher contact resistance. The latter we demonstrate by contact resistance calculations within the tight-binding approach.
Spin-split silicon states at step edges of Si(553)-Au
NASA Astrophysics Data System (ADS)
Biedermann, K.; Regensburger, S.; Fauster, Th.; Himpsel, F. J.; Erwin, S. C.
2012-06-01
The quasi-one-dimensional Si(553)-Au surface is investigated with time-resolved two-photon photoemission and laser-based photoemission. Several occupied and unoccupied states inside and outside the bulk band gap of silicon were found near the center of the surface Brillouin zone. A nondispersing unoccupied state 0.62 eV above the Fermi level with a lifetime of 125 fs matches the spin-split silicon step-edge state predicted by density functional theory calculations. Two occupied bands can be associated with the bands calculated for nonpolarized step-edge atoms.
AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS
NASA Astrophysics Data System (ADS)
Noor, N. A.; Shaukat, A.
2012-12-01
This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.
NASA Astrophysics Data System (ADS)
Shi, H.-L.; Duan, Y.
2008-12-01
Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.
Monazite-type SrCr O 4 under compression
Gleissner, J.; Errandonea, Daniel; Segura, A.; ...
2016-10-20
We report a high-pressure study of monoclinic monazite-type SrCrO 4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO 4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO 4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO 4. We determined the pressure evolution of the band gap for the low- and high-pressure phasesmore » as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO 4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO 4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO 4. A comparison of the high-pressure behavior of the electronic properties of SrCrO 4 (SrWO 4) and PbCrO 4 (PbWO 4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.« less
NASA Astrophysics Data System (ADS)
Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.
2018-04-01
We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.
The Pseudogap in Multiband Superconductivity
NASA Astrophysics Data System (ADS)
Kristoffel, N.; Rubin, P.
2012-11-01
The pseudogap (PG) excitation is analyzed as a natural event in multiband superconductivity. It corresponds to minimal quasiparticle excitation energy of an electron band not touched by the chemical potential. The critical points of the phase diagram are determined by vanishing conditions for normal state pseudogaps (NPG). For two bands (gapped or overlapping) these are positioned on edges of the superconducting dome. Theoretical background for a three-band system with two interband pairing channels is developed. There are three independent superconducting gaps (SCG). The PG is associated with the band component possessing a bare gap which can be quenched by doping. At low doping the PG and the SCG of another band component coexist. The critical point is not fixed in respect of the transition temperature (Tc) dome background. The depletion of the PG associated states is restored here. This effect can also be indirect by the participation of these states in determining the chemical potential position. At the critical point the PG looses its normal state contribution and continues as the SCG of the same band. Illustrative examples on the doping scale have been calculated.
Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin
2014-10-21
First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang-Yang; University of Chinese Academy of Science, Beijing 100039; Zhang, Zhi-Jun, E-mail: zhangzhijun@shu.edu.cn
Highlights: • The band gap of Lu{sub 2}WO{sub 6} is calculated to be 3.13 eV using the CASTEP mode. • Valent state and occupation site of Eu are clarified by X-ray absorption fine structure (XAFS) spectra. • The thermal/concentration quenching mechanisms of Eu in Lu{sub 2}WO{sub 6} have been investigated in detail. - Abstract: Density functional theory calculations on monoclinic Lu{sub 2}WO{sub 6} is carried out using the Cambridge Sequential Total Energy Package code. The result indicates that Lu{sub 2}WO{sub 6} is a broad band gap semiconductor with an indirect band gap of 3.13 eV. Eu ions are trivalency and themore » average coordination number is 7.6(5), indicating that the site of Lu is occupied by Eu. The activation energy ΔE is calculated as 0.314 eV. In addiation, the thermal quenching mechnism of Eu-activated Lu{sub 2}WO{sub 6} and the different concentration quenching mechanisms for {sup 5}D{sub 0} and {sup 5}D{sub 1} emissions of Eu ions have been proposed.« less
GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures
NASA Astrophysics Data System (ADS)
Zhou, Liqin; Guo, Yu; Zhao, Jijun
2018-01-01
Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.
Electronic Structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by First-Principles Calculation
NASA Astrophysics Data System (ADS)
Wang, Jin-song; Liu, Hong-xia; Deng, Shuping; Li, De-cong; Shen, Lan-xian; Cheng, Feng; Deng, Shu-kang
2017-05-01
Sn-based clathrates possess excellent thermoelectric properties ascribed to their higher Seebeck coefficient and lower thermal conductivity. Guest atoms significantly modulate the thermoelectric properties of Sn-based calculates because of their diverse atomic radius and interactions with framework atoms. Thus, we explored the electronic structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by first-principles calculation. Results revealed significant differences between Yb8Ga16Sn30 and M8Ga16Sn30 (M = Ba, Sr,). In particular, the Yb-filled compound substitution possesses lowest formation energy and the off-center distance of the Yb atom is the largest compared with the other structures. I-M8Ga16Sn30 (M = Ba, Sr, Yb) is an indirect band gap semiconductor, and the enhanced hybridization effect between the guest and framework atoms' orbits exists because the Yb f orbit results in a decrease in band gap. Ba- and Sr-filled clathrates have similar valence bands but slightly different conduction bands; however, Yb8Ga16Sn30 possess the spiculate density of states near the Fermi level that reveals excellent thermoelectric properties.
Electronic structure of Ag7GeS5I superionic compound
NASA Astrophysics Data System (ADS)
Bletskan, Dmytro; Studenyak, Ihor; Bletskan, Mykhailo; Vakulchak, Vasyl
2018-05-01
This paper presents the originally results of ab initio calculations of electronic structure, total and partial densities of electronic states as well as electronic charge density distribution of Ag7GeS5I crystal performed within the density functional theory (DFT) in the local density approximation (LDA) for exchange-correlation potential. According to performed calculations, Ag7GeS5I is the direct-gap semiconductor with the valence band top and the conductivity band bottom in the Γ point of Brillouin zone. The band gap width calculated in the LDA-approximation is Egd = 0.73 eV. The analysis of total and partial densities of electronic states allow us to identify the atomic orbital contributions into the crystal orbitals as well as the formation data of chemical bond in the studied crystal. In the top part of Ag7GeS5I valence band it was revealed the considerable mixing (hybridization) of the occupied d-states of Ag noble metal and the delocalized p-states of sulfur and iodine, which is undoubtedly associated with the covalent character of chemical bond between S, I atoms and noble metal atom.
Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study
NASA Astrophysics Data System (ADS)
Fiedler, Gregor; Kratzer, Peter
2016-08-01
The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.
Band-edge positions in G W : Effects of starting point and self-consistency
NASA Astrophysics Data System (ADS)
Chen, Wei; Pasquarello, Alfredo
2014-10-01
We study the effect of starting point and self-consistency within G W on the band-edge positions of semiconductors and insulators. Compared to calculations based on a semilocal starting point, the use of a hybrid-functional starting point shows a larger quasiparticle correction for both band-edge states. When the self-consistent treatment is employed, the band-gap opening is found to result mostly from a shift of the valence-band edge. Within the non-self-consistent methods, we analyse the performance of empirical and nonempirical schemes in which the starting point is optimally tuned. We further assess the accuracy of the band-edge positions through the calculation of ionization potentials of surfaces. The ionization potentials for most systems are reasonably well described by one-shot calculations. However, in the case of TiO2, we find that the use of self-consistency is critical to obtain a good agreement with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schleife, A; Bechstedt, F
2012-02-15
Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparentmore » conducting oxides in good agreement with experiment.« less
Band gap modulation of graphene by metal substrate: A first principles study
NASA Astrophysics Data System (ADS)
Sahoo, Mihir Ranjan; Sahu, Sivabrata; Kushwaha, Anoop Kumar; Nayak, S. K.
2018-04-01
Due to high in-plane charge carrier mobility with high electron velocity and long spin diffusion length, graphene guarantees as a completely unique material for devices with various applications. Unaffected 2pz orbitals of carbon atoms in graphene can be highly influenced by substrates and leads to tuning in electronic properties. We report here a density functional calculation of graphene monolayer based on metallic substrate like nickel surfaces. Band-gap of graphene near K points opens due to interactions between 2pz and d-orbitals of nickel atoms and the gap modulation can be done with the increasing number of layers of substrates.
NASA Astrophysics Data System (ADS)
Tan, Guiping; Lu, Junzhe; Zhu, Hengjiang; Li, Fangfang; Ma, Miaomiao; Wang, Xiaoning
2018-07-01
Using density functional theory (DFT), we have studied the structure of a zigzag silicene nanoribbons (SiNRs) with periodically embedded with four- and eight-membered rings, and studied their electronic properties by calculating its band structures and density of states (DOS). The results showed that the zigzag SiNRs have a sp2 hybridization, in addition, the band gap gradually decreased with the increase of the width by layer, and gradually changed from semiconductor properties to metal properties. The existence of vacancy defects increased the band gap and energies, but their positions could not change the structure and the electronic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, E.; Henriques, J.M.; Azevedo, D.L.
2012-03-15
Neutron diffraction data for Sr{sub x}Ba{sub 1-x}SnO{sub 3} (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions were used as inputs to obtain optimized geometries and electronic properties using the density functional theory (DFT) formalism considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The crystal structures and SnO{sub 6} octahedra tilting angles found after total energy minimization agree well with experiment, specially for the GGA data. Elastic constants were also obtained and compared with theoretical and experimental results for cubic BaSnO{sub 3}. While the alloys with cubic unit cell have an indirect band gap, tetragonalmore » and orthorhombic alloys exhibit direct band gaps (exception made to x=1.0). The Kohn-Sham minimum electronic band gap oscillates from 1.52 eV (cubic x=0.0, LDA) to 2.61 eV (orthorhombic x=1.0, LDA), and from 0.74 eV (cubic BaSnO{sub 3}, GGA) to 1.97 eV (orthorhombic SrSnO{sub 3}, GGA). Parabolic interpolation of bands has allowed us to estimate the effective masses for charge carriers, which are shown to be anisotropic and larger for holes. - Graphical Abstract: Highlights: Black-Right-Pointing-Pointer DFT calculations were performed on Sr{sub x}Ba{sub 1-x}SnO{sub 3} solid solutions. Black-Right-Pointing-Pointer Calculated crystal structures agree well with experiment. Black-Right-Pointing-Pointer Alloys have direct or indirect gaps depending on the Sr molar fraction. Black-Right-Pointing-Pointer The Kohn-Sham gap variation from x=0.0 to x=1.0 is close to the experimental value. Black-Right-Pointing-Pointer Carrier effective masses are very anisotropic, specially for holes.« less
NASA Astrophysics Data System (ADS)
Hutchison, Geoffrey Rogers
Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths, and show that well-known tilted and herringbone motifs in oligothiophenes are driven by electrostatic repulsion. Tilted stacks exhibit intrinsic charge-transfer rates smaller than cofacial stacks, but with lower packing energy. Given similar electron and hole bandwidths, a charge injection model explains substitution-modulated majority carrier changes in n- and p-type oligothiophene field-effect transistors.
NASA Astrophysics Data System (ADS)
Subashchandrabose, S.; Ramesh Babu, N.; Saleem, H.; Syed Ali Padusha, M.
2015-08-01
The (E)-1-((pyridine-2-yl)methylene)semicarbazide (PMSC) was synthesized. The experimental and theoretical study on molecular structure and vibrational spectra were carried out. The FT-IR (400-4000 cm-1), FT-Raman (50-3500 cm-1) and UV-Vis (200-500 nm) spectra of PMSC were recorded. The geometric structure, conformational analysis, vibrational wavenumbers of PMSC in the ground state have been calculated using B3LYP method of 6-311++G(d,p) basis set. The complete vibrational assignments were made on the basis of TED, calculated by SQM method. The Non-linear optical activity was measured by means of first order hyperpolarizability calculation and π-electrons of conjugative bond in the molecule. The intra-molecular charge transfer, mode hyperconjugative interaction and molecular stabilization energies were calculated. The band gap energies between occupied and unoccupied molecular orbitals were analyzed; it proposes lesser band gap with more reactivity. To understand the electronic properties of this molecule the Mulliken charges were also calculated.
Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.
Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping
2018-05-16
A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.
Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes.
Suram, Santosh K; Zhou, Lan; Shinde, Aniketa; Yan, Qimin; Yu, Jie; Umehara, Mitsutaro; Stein, Helge S; Neaton, Jeffrey B; Gregoire, John M
2018-05-01
Combinatorial (photo)electrochemical studies of the (Ni-Mn)Ox system reveal a range of promising materials for oxygen evolution photoanodes. X-ray diffraction, quantum efficiency, and optical spectroscopy mapping reveal stable photoactivity of NiMnO3 in alkaline conditions with photocurrent onset commensurate with its 1.9 eV direct band gap. The photoactivity increases upon mixture with 10-60% Ni6MnO8 providing an example of enhanced charge separation via heterojunction formation in mixed-phase thin film photoelectrodes. Density functional theory-based hybrid functional calculations of the band edge energies in this oxide reveal that a somewhat smaller than typical fraction of exact exchange is required to explain the favorable valence band alignment for water oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yubo; Zhang, Jiawei; Wang, Youwei
Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of themore » mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV.« less
NASA Astrophysics Data System (ADS)
Varley, J. B.; Lordi, V.; Ogitsu, T.; Deangelis, A.; Horsley, K.; Gaillard, N.
2018-04-01
Understanding the impact of impurities in solar absorbers is critical to engineering high-performance in devices, particularly over extended periods of time. Here, we use hybrid functional calculations to explore the role of hydrogen interstitial (Hi) defects in the electronic properties of a number of attractive solar absorbers within the chalcopyrite and kesterite families to identify how this common impurity may influence device performance. Our results identify that Hi can inhibit the highly p-type conditions desirable for several higher-band gap absorbers and that H incorporation could detrimentally affect the open-circuit voltage (Voc) and limit device efficiencies. Additionally, we find that Hi can drive the Fermi level away from the valence band edge enough to lead to n-type conductivity in a number of chalcopyrite and kesterite absorbers, particularly those containing Ag rather than Cu. We find that these effects can lead to interfacial Fermi-level pinning that can qualitatively explain the observed performance in high-Ga content CIGSe solar cells that exhibit saturation in the Voc with increasing band gap. Our results suggest that compositional grading rather than bulk alloying, such as by creating In-rich surfaces, may be a better strategy to favorably engineering improved thin-film photovoltaics with larger-band gap absorbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuwei; Singh, David J.
Ferroelectrics with suitable band gaps have recently attracted attention as candidate solar absorbing materials for photovoltaics. The inversion symmetry breaking may promote the separation of photoexcited carriers and allow voltages higher than the band gap. However, these effects are not fully understood, in part because of a lack of suitable model systems for studying these effects in detail. Here, we report properties of ferroelectric Sn 2P 2S 6 and Sn 2P 2Se 6 using first principles calculations. Results are given for the electronic structure, carrier pocket shapes, optical absorption, and transport.We find indirect band gaps of 2.20 eV and 1.55more » eV, respectively, and favorable band structures for carrier transport, including both holes and electrons. Strong absorption is found above the direct gaps of 2.43 eV and 1.76 eV. Furthermore these compounds may serve as useful model systems for understanding photovoltaic effects in ferroelectric semiconductors.« less
Li, Yuwei; Singh, David J.
2017-12-05
Ferroelectrics with suitable band gaps have recently attracted attention as candidate solar absorbing materials for photovoltaics. The inversion symmetry breaking may promote the separation of photoexcited carriers and allow voltages higher than the band gap. However, these effects are not fully understood, in part because of a lack of suitable model systems for studying these effects in detail. Here, we report properties of ferroelectric Sn 2P 2S 6 and Sn 2P 2Se 6 using first principles calculations. Results are given for the electronic structure, carrier pocket shapes, optical absorption, and transport.We find indirect band gaps of 2.20 eV and 1.55more » eV, respectively, and favorable band structures for carrier transport, including both holes and electrons. Strong absorption is found above the direct gaps of 2.43 eV and 1.76 eV. Furthermore these compounds may serve as useful model systems for understanding photovoltaic effects in ferroelectric semiconductors.« less
Ab initio studies of Th3N4, Th2N3 and Th2N2(NH)
NASA Astrophysics Data System (ADS)
Obodo, K. O.; Chetty, N.
2014-09-01
Using density functional theory within the Perdew-Burke-Ernzerhof generalized gradient approximation [GGA (PBE)] implemented in the VASP codes, we investigate the structural, elastic and electronic properties of Th3N4, Th2N3 and Th2N2(NH). The calculated structural properties of these thorium-based nitrides are in good agreement with experimental data. We observe that all the Th-N based compounds that we considered are energetically favorable and elastically stable. We find that Th3N4 is semiconducting with a band gap of 1.59 eV, which compares well with the experimental band gap of 1.7 eV and we find Th2N3 to be metallic. Th2N2(NH), which is crystallographically equivalent to Th2N3, is insulating with a band gap of 2.12 eV. This is due to the -(NH) group that effects a shifting of the energy bands that results in the opening of a gap at the Fermi-level. The Th-N based compounds that we considered are predominantly ionic.
NASA Astrophysics Data System (ADS)
Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour
2018-01-01
Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.
Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe
Li, Jin; He, Chaoyu; Meng, Lijun; ...
2015-09-14
Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less
Viñes, Francesc; Lamiel-García, Oriol; Chul Ko, Kyoung; Yong Lee, Jin; Illas, Francesc
2017-04-30
The effect of the amount of Hartree-Fock mixing parameter (α) and of the screening parameter (w) defining the range separated HSE type hybrid functional is systematically studied for a series of seven metal oxides: TiO 2 , ZrO 2 , CuO 2 , ZnO, MgO, SnO 2 , and SrTiO 3 . First, reliable band gap values were determined by comparing the optimal α reproducing the experiment with the inverse of the experimental dielectric constant. Then, the effect of the w in the HSE functional on the calculated band gap was explored in detail. Results evidence the existence of a virtually infinite number of combinations of the two parameters which are able to reproduce the experimental band gap, without a unique pair able to describe the full studied set of materials. Nevertheless, the results point out the possibility of describing the electronic structure of these materials through a functional including a screened HF exchange and an appropriate correlation contribution. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.
Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo
2015-12-28
We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.
Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals
NASA Astrophysics Data System (ADS)
Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo
2015-12-01
We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.
Prediction of a two-dimensional S3N2 solid for optoelectronic applications
NASA Astrophysics Data System (ADS)
Xiao, Hang; Shi, Xiaoyang; Liao, Xiangbiao; Zhang, Yayun; Chen, Xi
2018-02-01
Two-dimensional materials have attracted tremendous attention for their fascinating electronic, optical, chemical, and mechanical properties. However, the band gaps of most reported two-dimensional (2D) materials are smaller than 2.0 eV, which has greatly restricted their optoelectronic applications in the blue and ultraviolet range of the spectrum. Here, we propose a stable trisulfur dinitride (S3N2 ) 2D crystal that is a covalent network composed solely of S-N σ bonds. The S3N2 crystal is dynamically, thermally, and chemically stable, as confirmed by the computed phonon spectrum and ab initio molecular dynamics simulations. GW calculations show that the S3N2 crystal is a wide, direct band-gap (3.92 eV) semiconductor with a small-hole effective mass. In addition, the band gap of S3N2 structures can be tuned by forming multilayer S3N2 crystals, S3N2 nanoribbons, and S3N2 nanotubes, expanding its potential applications. The anisotropic optical response of the 2D S3N2 crystal is revealed by GW-Bethe-Salpeter-equation calculations. The optical band gap of S3N2 is 2.73 eV and the exciton binding energy of S3N2 is 1.19 eV, showing a strong excitonic effect. Our result not only marks the prediction of a 2D crystal composed of nitrogen and sulfur, but also underpins potential innovations in 2D electronics and optoelectronics.
NASA Astrophysics Data System (ADS)
Li, Yi; Fu, Yuqing; Ni, Bilian; Ding, Kaining; Chen, Wenkai; Wu, Kechen; Huang, Xin; Zhang, Yongfan
2018-03-01
The first principle calculations have been performed to investigate the geometries, band structures and optical absorptions of a series of MIL-125 MOFs, in which the 1,4-benzenedicarboxylate (BDC) linkers are modified by different types and amounts of chemical groups, including NH2, OH, and NO2. Our results indicate that new energy bands will appear in the band gap of pristine MIL-125 after introducing new group into BDC linker, but the components of these band gap states and the valence band edge position are sensitive to the type of functional group as well as the corresponding amount. Especially, only the incorporation of amino group can obviously decrease the band gap of MIL-125, and the further reduction of the band gap can be observed if the amount of NH2 is increased. Although MIL-125 functionalized by NH2 group exhibits relatively weak or no activity for the photocatalytic O2 evolution by splitting water, such ligand modification can effectively improve the efficiency in H2 production because now the optical absorption in the visible light region is significantly enhanced. Furthermore, the adsorption of water molecule becomes more favorable after introducing of amino group, which is also beneficial for the water-splitting reaction. The present study can provide theoretical insights to design new photocatalysts based on MIL-125.
disorder effect on quantum transport properties of ultra thin Fe film
NASA Astrophysics Data System (ADS)
Zhang, Xiaotian; Nakamura, Kohji; Shindou, Ryuichi
2015-03-01
Ferromagnetic ultrathin films are experimentally known to often exhibit perpendicular magnetic anisotropy, when being placed on certain substrates. Based on reported ab-initio band calculations of free-standing Fe-monolayer and that on MgO substrate, we will introduce an effective tight-binding model, which capture a part of an electronic structure near Fermi level for both cases. We will show that the model supports electronic bands with non-zero Chern number and chiral edge modes which cross a direct band gap on the order of 50meV. Unluckily, however, the direct band gap is also masked by another dispersive bands which have non-zero Berry's curvature in the k-space. To demonstrate how disorder kills conducting characters of the latter bulk bands while leave intact those of the chiral edge modes, we will clarify behaviors of localization length and conductance in the effective model with on-site disorders.
Reshak, Ali H; Shalaginov, Mikhail Y; Saeed, Yasir; Kityk, I V; Auluck, S
2011-03-31
We report a first-principles study of structural and phase stability in three different structures of perovskite-types KMgH(3) according to H position. While electronic and optical properties were measured only for stable perovskite-type KMgH(3), our calculated structural parameters are found in good agreement with experiment and other theoretical results. We also study the electronic charge density space distribution contours in the (200), (101), and (100) crystallographic planes, which gives better insight picture of chemical bonding between K-H, K-Mg-H, and Mg-H. Moreover, we have calculated the electronic band structure dispersion, total, and partial density of electron states to study the band gap origin and the contribution of s-band of H, s and p-band of Mg in the valence band, and d-band of K in the conduction band. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, and loss functions of stable KMgH(3) were calculated for photon energies up to 40 eV.
Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors
NASA Astrophysics Data System (ADS)
Huang, Shouting
Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the size of Si/Ge core-shell NWs and corresponding quantum confinement is shown to be efficient for modifying both valence and conduction band offsets simultaneously. Our proposed approaches to control band offsets in nano-sized heterojunctions may be of practical interest for nanoelectronic and photovoltaic applications. Additionally, I also studied the lattice vibrational modes of Si/Ge core-shell N-Ws. Our calculations show that the internal strain induced by the lattice mismatch between core and shell plays an important role in significantly shifting the frequency of characteristic optical modes of core-shell NWs. In particular, our simulation demonstrates that these frequency shifts can be detected by Raman-scattering experiments, giving rise to a convenient and nondestructive way to obtain structural information of core-shell materials. Meanwhile, another type of collective modes, the radial breathing modes (RBM), is identified in Si-core/Ge-shell NWs and their frequency dependence is explained by an elastic media model. Our studied vibrational modes and their frequency evolution are useful for thermoelectric applications based on core-shell nanostructures. Then I studied optical properties and exciton spectra of 2D semiconducting carbon structures. The energy spectra and wavefunctions of excitons in the 2D graphene derivatives, i.e., graphyne and graphane, are found to be strongly modified by quantum confinement, making them qualitatively different from the usual Rydberg series. However, their parity and optical selection rules are preserved. Thus a one-parameter hydrogenic model is applied to quantitatively explain the ab initio exciton spectra, and allows one to extrapolate the electron-hole binding energy from optical spectroscopies of 2D semiconductors without costly simulations. Meanwhile, our calculated optical absorption spectrum and enhanced spin singlet-triplet splitting project graphyne, an allotrope of graphene, as a good candidate for intriguing energy and biomedical applications. Lastly, we report first-principles results on electronic structures of 2D graphene-like system, i.e., silicene. For planar and simply buckled silicene structures, we confirm their zero-gap nature and show a significant renormalization of their Fermi velocity by including many-electron effects. However, the other two recently proposed silicene structures exhibit a finite band gap, indicating that they are gapped semiconductors instead of expected Dirac-fermion semimetals. This finite band gap of the latter two structures is preserved even with the Ag substrate included. The gap opening is explained by the symmetry breaking of the buckled structures. Moreover, our GW calculation reveals enhanced many-electron effects in these 2D structures. Finally the band gap of the latter two structures can be tuned in a wide range by applying strain.
Nitrogen-Induced Perturbation of the Valence Band States in GaP1-xNx Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudiy, S. V.; Zunger, A.; Felici, M.
2006-01-01
The effects of diluted nitrogen impurities on the valence- and conduction-band states of GaP{sub 1-x}N{sub x} have been predicted and measured experimentally. The calculation uses state-of-the-art atomistic modeling: we use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations. These calculations agree with photoluminescence excitation (PLE) measurements performed for nitrogen concentrations x up to 0.035 and photon energies up to 1 eV above the GaP optical-absorption edge, as well as with published ellipsometry data. In particular, a predicted nitrogen-induced buildup of the L character near the valence- and conduction-band edges accounts for the surprising broad-absorptionmore » plateau observed in PLE between the X{sub 1c} and the {Lambda}{sub 1c} critical points of GaP. Moreover, theory accounts quantitatively for the downward bowing of the indirect conduction-band edge and for the upward bowing of the direct transition with increasing nitrogen concentration. We review some of the controversies in the literature regarding the shifts in the conduction band with composition, and conclude that measured results at ultralow N concentration cannot be used to judge behavior at a higher concentration. In particular, we find that at the high concentrations of nitrogen studied here ({approx}1%) the conduction-band edge (CBE) is a hybridized state made from the original GaP X{sub 1c} band-edge state plus all cluster states. In this limit, the CBE plunges down in energy as the N concentration increases, in quantitative agreement with the measurements reported here. However, at ultralow nitrogen concentrations (<0.1%), the CBE is the nearly unperturbed host X{sub 1c}, which does not sense the nitrogen cluster levels. Thus, this state does not move energetically as nitrogen is added and stays pinned in energy, in agreement with experimental results.« less
Cheng, Jian -Yih; Chan, Maria K. Y.; Lilley, Carmen M.
2016-09-26
Silicene on metal silicides poses promise for direct integration of silicene into electronic devices. The details of the metal silicide-silicene interface, however, may have significant effects on the electronic properties. In this work, the electronic properties of silicene on NiSi 2(111) and hydrogenated NiSi 2(111) (H:NiSi 2) substrates, as well as hydrogenated silicene (H:silicene) on a NiSi 2(111) substrate, were simulated using first principles methods. The preferred Si surface termination of NiSi 2 was determined through surface energy calculations, and the band structure and density of states (DOS) were calculated for the two-dimensional silicene and H:silicene layers. Hydrogenating NiSi 2more » lowered the binding energy between silicene and the substrate and resulting in partial decoupling of the electronic properties. Relaxed silicene on H:NiSi 2 showed a small band gap opening of 0.14 eV. Silicene on H:NiSi 2 also had a calculated electron effective mass of 0.08m 0 and Fermi velocity of 0.39×10 6 m/s, which are similar to the values for freestanding silicene. H:silicene on NiSi 2 retained its band structure and DOS compared to freestanding H:silicene. The band gap of H:silciene on NiSi 2 was 1.97 eV and is similar to freestanding H:silicene band gap of 2 eV. As a result, this research showed that hydrogenation may be a viable method for decoupling a silicene layer from a NiSi 2(111) substrate to tune its electronic properties.« less
NASA Astrophysics Data System (ADS)
Shah, Aadil Abass; Azam, Ameer
2018-04-01
In this research work we have reported the synthesis of two different delafossites, CuAlO2 and CuFeO2 by two different synthesis methods viz hydrothermal method and the combustion method. The effect of synthesis on structure, band gap and morphology of the synthesized delafossites was carried out using various techniques. The phase and structure of the synthesized delafossites were studied and confirmed using X-ray diffraction and the crystallite size was calculated. FTIR measurements showed the presence of different stretching modes and functional groups in the synthesized oxides. The surface morphology was studied using the scanning electron microscopy. The band gap of the synthesized delafossite oxides was found to be in the range of 2.8 and 3.3 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu
The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α- and β-GeSe, revealing a direct band gap of 1.61 eV for monolayer α-GeSe and an indirect band gap of 2.47 eV for monolayer β-GeSe. For monolayer β-GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. However, for β-GeSe, robust band gaps nearly independent of the applied tensile strain along themore » armchair direction are observed. Both monolayer α- and β-GeSe exhibit anisotropic optical absorption in the visible spectrum.« less
Waveguide-mode polarization gaps in square spiral photonic crystals
NASA Astrophysics Data System (ADS)
Liu, Rong-Juan; John, Sajeev; Li, Zhi-Yuan
2015-09-01
We designed waveguide channels in two types of square spiral photonic crystals. Wide polarization gaps, in which only one circular polarization wave is allowed while the other counter-direction circular polarization wave is forbidden, can be opened up on the waveguide modes within the fundamental photonic band gap according to the calculation of band structures and transmission spectra. This phenomenon is ascribed to the chirality of the waveguide and is independent of the chirality of the background photonic crystal. Moreover, the transmission spectra show a good one-way property of the waveguide channels. The chiral quality factor demonstrates the handedness of the allowed and impeded chiral waveguide modes, and further proved the property of the waveguide-mode polarization gap. Such waveguides with waveguide-mode polarization gap are a good candidate for one-way waveguides with robust backscattering-immune transport.
Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P
2008-07-25
Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.
Ab initio prediction of superdense tetragonal and monoclinic polymorphs of carbon
Li, Zhen -Zhen; Wang, Jian -Tao; Xu, Li -Fang; ...
2016-11-02
The design and synthesis of three-dimensional denser carbons are one of the hot issues in condensed matter physics because of their fascinating properties. Here we identify by ab initio calculations several tetragonal and monoclinic polymorphs of carbon that adopt the t32, t32*, m32, and m32* structures in P4¯2 1c, P4 32 12, P2 1/c, and C2 symmetry, respectively. These carbon polymorphs have large 32-atom unit cells in all-sp 3 bonding networks comprising five- and six-membered rings that are dynamically stable, as verified by a phonon mode analysis. Electronic band structure calculations show that they are insulators with band gaps inmore » the range of 5.19–5.41 eV, close to the calculated band gap of 5.34 eV for diamond. Remarkably, these carbon phases possess an extremely high atom number density exceeding that of diamond. Lastly, the present results establish different types of carbon phases and offer insights into their outstanding structural and electronic properties.« less
NASA Astrophysics Data System (ADS)
Andrews, Bartholomew; Möller, Gunnar
2018-01-01
We study the stability of composite fermion fractional quantum Hall states in Harper-Hofstadter bands with Chern number |C |>1 . From composite fermion theory, states are predicted to be found at filling factors ν =r /(k r |C |+1 ),r ∈Z , with k =1 for bosons and k =2 for fermions. Here, we closely analyze these series in both cases, with contact interactions for bosons and nearest-neighbor interactions for (spinless) fermions. In particular, we analyze how the many-body gap scales as the bands are tuned to the effective continuum limit of Chern number |C | bands, realized near flux density nϕ=1 /|C | . Near these points, the Hofstadter model requires large magnetic unit cells that yield bands with perfectly flat dispersion and Berry curvature. We exploit the known scaling of energies in the effective continuum limit in order to maintain a fixed square aspect ratio in finite-size calculations. Based on exact diagonalization calculations of the band-projected Hamiltonian for these lattice geometries, we show that for both bosons and fermions, the vast majority of finite-size spectra yield the ground-state degeneracy predicted by composite fermion theory. For the chosen interactions, we confirm that states with filling factor ν =1 /(k |C |+1 ) are the most robust and yield a clear gap in the thermodynamic limit. For bosons with contact interactions in |C |=2 and |C |=3 bands, our data for the composite fermion states are compatible with a finite gap in the thermodynamic limit. We also report new evidence for gapped incompressible states stabilized for fermions with nearest-neighbor interactions in |C |>1 bands. For cases with a clear gap, we confirm that the thermodynamic limit commutes with the effective continuum limit within finite-size error bounds. We analyze the nature of the correlation functions for the Abelian composite fermion states and find that the correlation functions for |C |>1 states are smooth functions for positions separated by |C | sites along both axes, giving rise to |C| 2 sheets; some of which can be related by inversion symmetry. We also comment on two cases which are associated with a bosonic integer quantum Hall effect (BIQHE): For ν =2 in |C |=1 bands, we find a strong competing state with a higher ground-state degeneracy, so no clear BIQHE is found in the band-projected Hofstadter model; for ν =1 in |C |=2 bands, we present additional data confirming the existence of a BIQHE state.
NASA Astrophysics Data System (ADS)
Erickson, S. D.; Smith, T. J.; Moses, L. M.; Watt, R. K.; Colton, J. S.
2015-01-01
Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.
NASA Astrophysics Data System (ADS)
Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars
2013-05-01
The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Tuan, Vu V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Fedorov, Igor A.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Feddi, Elmustapha; Nguyen, Chuong V.
2018-05-01
Using density functional theory, we have studied the structural, electronic and optical properties of two-dimensional graphene-like C_2N nanosheet under in-plane strains. Our results indicate that the C_2N nanosheet is a semiconductor with a direct band gap of 1.70 eV at the equilibrium state opening between the highest valence band and lowest conduction band located at the Γ point. The band gap of the C_2N nanosheet decreases with the increasing of both uniaxial/biaxial strains. In the presence of the strain, we found band shift and band splitting of the occupied and unoccupied energy states of the valence and conduction bands, resulting in a decrease of the band gap. Furthermore, the absorption and reflectance spectra for the C_2N nanosheet have a broad peak around 2.6 eV, where a maximum absorption value is up to 3.2 × 10^{-5} cm^{-1} and reflectance is about 0.27%. Moreover, our calculations also show that the optical properties of the C_2N nanosheets can be controlled by applying the biaxial and uniaxial strains. The obtained results might provide potential applications for the C_2N nanosheets in nanoelectronics and optoelectronics.
Optical characterization of semiconductor materials by using FTIR-PAS
NASA Astrophysics Data System (ADS)
Arévalo, Fabiola; Saavedra, Renato; Paulraj, M.
2008-11-01
In this paper we discuss the procedures for photoacoustic measurements for semiconducting materials, including bulk samples like Gallium Antimonide (GaSb). The optical absorption at photon energies near the band gap was measured at room temperature using Fourier Transform Infrared Photoacoustic spectroscopy (FTIR-PAS). Measurements were performed using a NEXUS 670 FTIR-spectrometer (from Thermo Nicolet) with a MTEC model 300 PA cell (MTEC Photoacoustics, Inc.). Optical properties of the studied samples were determined from their room temperature PA spectra and band gaps were calculated directly from absorption spectra
Stability and Exfoliation of Germanane: A Germanium Graphane Analogue
2013-05-01
above or below the layer.18,21 There is a great propensity for the silicon lattice to oxidize, initially forming siloxene (SiH0.5(OH)0.5) sheets...observed experimental band gap. The calculated band gap for the two layer unit cell at the A point of the Brillouin zone is ~1.77 eV. The difference...layer GeH, the photothermal degradation at laser intensities above 40 kW/cm2 and the overlap of the two E2 and A1 Raman modes with higher order silicon
NASA Astrophysics Data System (ADS)
Dutta Roy, S.
2010-12-01
The refractive index, optical nonlinearity, lowest energy band gap, and other related parameters of some mixed defect ternary chalcopyrites are calculated using Levine's bond charge model and its modification developed by Samanta et al. for multinary and mixed compounds. The dependence of the band gap energy on the average quantum number, molecular weight, and anion displacement parameter is shown for the first time, which will be very useful for designing various optoelectronic and nonlinear laser devices.
Encapsulated silicene: A robust large-gap topological insulator
Kou, Liangzhi; Ma, Yandong; Yan, Binghai; ...
2015-08-20
The quantum spin Hall (QSH) effect predicted in silicene has raised exciting prospects of new device applications compatible with current microelectronic technology. Efforts to explore this novel phenomenon, however, have been impeded by fundamental challenges imposed by silicene’s small topologically nontrivial band gap and fragile electronic properties susceptible to environmental degradation effects. Here we propose a strategy to circumvent these challenges by encapsulating silicene between transition-metal dichalcogenides (TMDCs) layers. First-principles calculations show that such encapsulated silicene exhibit a two-orders-of-magnitude enhancement in its nontrivial band gap, which is driven by the strong spin–orbit coupling effect in TMDCs via the proximity effect.more » Moreover, the cladding TMDCs layers also shield silicene from environmental gases that are detrimental to the QSH state in free-standing silicene. In conclusion, the encapsulated silicene represents a novel two-dimensional topological insulator with a robust nontrivial band gap suitable for room-temperature applications, which has significant implications for innovative QSH device design and fabrication.« less
NASA Astrophysics Data System (ADS)
Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao
2018-04-01
A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
NASA Astrophysics Data System (ADS)
Li, L. L.; Partoens, B.; Peeters, F. M.
2018-04-01
By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
Kim, Beom Seo; Rhim, Jun-Won; Kim, Beomyoung; Kim, Changyoung; Park, Seung Ryong
2016-01-01
Monolayer MX2 (M = Mo, W; X = S, Se) has recently been drawn much attention due to their application possibility as well as the novel valley physics. On the other hand, it is also important to understand the electronic structures of bulk MX2 for material applications since it is very challenging to grow large size uniform and sustainable monolayer MX2. We performed angle-resolved photoemission spectroscopy and tight binding calculations to investigate the electronic structures of bulk 2H-MX2. We could extract all the important electronic band parameters for bulk 2H-MX2, including the band gap, direct band gap size at K (-K) point and spin splitting size. Upon comparing the parameters for bulk 2H-MX2 (our work) with mono- and multi-layer MX2 (published), we found that stacked layers, substrates for thin films, and carrier concentration significantly affect the parameters, especially the band gap size. The origin of such effect is discussed in terms of the screening effect. PMID:27805019
Penta-SiC5 monolayer: A novel quasi-planar indirect semiconductor with a tunable wide band gap
NASA Astrophysics Data System (ADS)
Naseri, Mosayeb
2018-03-01
In this paper, by using of the first principles calculations in the framework of the density functional theory, we systematically investigated the structure, stability, electronic and optical properties of a novel two-dimensional pentagonal monolayer semiconductors namely penta-SiC5 monolayer. Comparing elemental silicon, diamond, and previously reported 2D carbon allotropes, our calculation shows that the predicted penta-SiC5 monolayer has a metastable nature. The calculated results indicate that the predicted monolayer is an indirect semiconductor with a wide band gap of about 2.82 eV by using Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional level of theory which can be effectively tuned by external biaxial strains. The obtained exceptional electronic properties suggest penta-SiC5 monolayer as promising candidates for application in new electronic devices in nano scale.
Photonic band gap structure simulator
Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.
2006-10-03
A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.
The electronic structure of lithium metagallate.
Johnson, N W; McLeod, J A; Moewes, A
2011-11-09
Herein we present a study of the electronic structure of lithium metagallate (LiGaO(2)), a material of interest in the field of optoelectronics. We use soft x-ray spectroscopy to probe the electronic structure of both the valence and conduction bands and compare our measurements to ab initio density functional theory calculations. We use several different exchange-correlation functionals, but find that no single theoretical approach used herein accurately quantifies both the band gap and the Ga 3d(10) states in LiGaO(2). We derive a band gap of 5.6 eV, and characterize electron hybridization in both the valence and conduction bands. Our study of the x-ray spectra may prove useful in analysing spectra from more complicated LiGaO(2) heterostructures. © 2011 IOP Publishing Ltd
Modulation of the electronic property of phosphorene by wrinkle and vertical electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhongming, E-mail: zmwei@semi.ac.cn; Li, Jingbo, E-mail: jbli@semi.ac.cn
2015-09-14
The electronic properties of wrinkled phosphorene and its response to charge injection and external vertical electric field have been studied using first-principles calculations. It is found that small-size wrinkle systems have lower energy than wrinkle-free monolayer, suggesting that free-standing phosphorene spontaneously forms small protrusion on its nanosheet. The ratio of wrinkle height to curvature radius increases with enlarging height, indicating a promotion of field enhancement factor. Furthermore, the injected charges mostly distribute at peak and valley. Direct-to-indirect band-gap transition has been found for zigzag wrinkle with height of 14.81 Å. The band gaps of wrinkled nanosheets decrease almost linearly with increasingmore » field, which is caused by charge separation of valence band maximum and conduction band minimum.« less
Intrinsic optical confinement for ultrathin InAsN quantum well superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakri, A.; Robert, C.; Pedesseau, L.
We study energy-band engineering with InAsN monolayer in GaAs/GaP quantum well structure. A tight-binding calculation indicates that both type I alignment along with direct band-gap behavior can be obtained. We show that the optical transitions are less sensitive to the position of the probe.
NASA Astrophysics Data System (ADS)
Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.
2018-04-01
By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.
Birefringence and band structure of CdP2 crystals
NASA Astrophysics Data System (ADS)
Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.
2013-08-01
The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||с
Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A
2015-10-05
First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Cunguo; Wang, Rongshun
2000-12-01
Based on energy band theory of solid states, extended Hückel molecular orbital methods (EHMO/CO) were used to calculate the two-dimensional (2D) energy band structures of highly oriented trans-polyacetylene (PA) undoped and doped with n-type dopant (Li, Na, K). The band gaps ( Eg) of undoped PA in directions parallel and perpendicular to the oriented direction were 1.195 and 3.040 eV, respectively. When PA was doped with n-type dopant, the corresponding band gaps Eg1 and Eg2 decreased significantly. Based on the calculated results, we could successfully account for the changes of electrical anisotropy of PA from the undoped state to the doped form. The conductivity anisotropy ratio σ1/ σ2 decreased when PA was doped with n-type dopant, because the PA chains and the dopant showed a strong interchain coupling. It was the interchain coupling that acted as a bridge between two neighboring chains, and made the charge-carrier transport easier between the interchains. The theoretical results for undoped and doped PA are in good agreement with the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Nasim; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir; Mirzaie, Reza
2015-11-15
The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.
Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd
2013-01-04
Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.
Mahatha, S K; Patel, K D; Menon, Krishnakumar S R
2012-11-28
Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).
Defect engineering of complex semiconductor alloys: Cu2-2xMxO1-yXy
NASA Astrophysics Data System (ADS)
Lany, Stephan; Stevanovic, Vladan
2013-03-01
The electrical properties of semiconductors are generally controlled via doping, i.e., the incorporation of dilute concentrations of aliovalent impurity atoms, whereas the band structure properties (gap, effective masses, optical properties) are manipulated by alloying, i.e., the incorporation of much larger amounts of isovalent elements. Theoretical approaches usually address either doping or alloying, but rarely both problems at the same time. By combining defect supercell calculations, GW quasi-particle energy calculation, and thermodynamic modeling, we study the range of electrical and band structure properties accessible by alloying aliovalent cations (M = Mg, Zn, Cd) and isovalent anions (X = S, Se) in Cu2O. In order to extend dilute defect models to higher concentrations, we take into account the association/dissociation of defect pairs and complexes, as well as the composition dependence of the band gap and the band edge energies. Considering a composition window for the Cu2-2xMxO1-yXy alloys of 0 <= (x,y) <= 0.2, we predict a wide range of possible band gaps from 1.7 to 2.6 eV, and net doping concentrations between p = 1019 cm-3 and n = 1017cm-3, notably achieving type conversion from p- to n-type at Zn or Cd compositions around x = 0.1. This work is supported as part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.
Thermoelectric properties of AgSbTe₂ from first-principles calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaei, Nafiseh; Akbarzadeh, Hadi; Hashemifar, S. Javad, E-mail: hashemifar@cc.iut.ac.ir
2014-09-14
The structural, electronic, and transport properties of AgSbTe₂ are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic Fd3⁻m and trigonal R3⁻m structures of AgSbTe₂ are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1–0.35 eV for AgSbTe₂ compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeckmore » coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe₂ as a function of temperature and carrier concentration.« less
NASA Astrophysics Data System (ADS)
Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul
2018-03-01
Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.
NASA Astrophysics Data System (ADS)
Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.
2018-02-01
Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.
A B-C-N hybrid porous sheet: an efficient metal-free visible-light absorption material.
Lu, Ruifeng; Li, Feng; Salafranca, Juan; Kan, Erjun; Xiao, Chuanyun; Deng, Kaiming
2014-03-07
The polyphenylene network, known as porous graphene, is one of the most important and widely studied two-dimensional materials. As a potential candidate for photocatalysis and photovoltaic energy generation, its application has been limited by the low photocatalytic activity in the visible-light region. State-of-the-art hybrid density functional theory investigations are presented to show that an analogous B-C-N porous sheet outperforms the pristine polyphenylene network with significantly enhanced visible-light absorption. Compared with porous graphene, the calculated energy gap of the B-C-N hybrid crystal shrinks to 2.7 eV and the optical absorption peak remarkably shifts to the visible light region. The redox potentials of water splitting are well positioned in the middle of the band gap. Hybridizations among B_p, N_p and C_p orbitals are responsible for these findings. Valence and conduction band calculations indicate that the electrons and holes can be effectively separated, reducing charge recombination and improving the photoconversion efficiency. Moreover, the band gap and optical properties of the B-C-N hybrid porous sheet can be further finely engineered by external strain.
Gap state charge induced spin-dependent negative differential resistance in tunnel junctions
NASA Astrophysics Data System (ADS)
Jiang, Jun; Zhang, X.-G.; Han, X. F.
2016-04-01
We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.
NASA Astrophysics Data System (ADS)
Shi, Guangsha; Kioupakis, Emmanouil
2018-02-01
We apply density functional and many-body perturbation theory calculations to consistently determine and parameterize the relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn, and predict the Seebeck coefficient as a function of doping and temperature. The quasiparticle band gaps, including spin-orbit coupling effects, are determined to be 0.728 eV, 0.555 eV, and 0.142 eV for Mg2Si, Mg2Ge, and Mg2Sn, respectively. The inclusion of the semicore electrons of Mg, Ge, and Sn in the valence is found to be important for the accurate determination of the band gaps of Mg2Ge and Mg2Sn. We also developed a Luttinger-Kohn Hamiltonian and determined a set of band parameters to model the near-edge relativistic quasiparticle band structure consistently for all three compounds that can be applied for thermoelectric device simulations. Our calculated values for the Seebeck coefficient of all three compounds are in good agreement with the available experimental data for a broad range of temperatures and carrier concentrations. Our results indicate that quasiparticle corrections are necessary for the accurate determination of Seebeck coefficients at high temperatures at which bipolar transport becomes important.
Large Band Gap of alpha-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopy
NASA Astrophysics Data System (ADS)
Sinn, Soobin; Kim, Choong Hyun; Sandilands, Luke; Lee, Kyungdong; Won, Choongjae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won
The Kitaev honeycomb lattice model has attracted great attention because of its possibility to stabilize a quantum spin liquid ground state. Recently, it was proposed that alpha-RuCl3 is its material realization and the first 4 d relativistic Mott insulator from an optical spectrum and LDA + U + SO calculations. Here, we present photoemission and inverse photoemission spectra of alpha-RuCl3. The observed band gap is about 1.8 eV, which suggests that the previously assigned optical gap of 0.3 eV is misinterpreted, and that the strong peak at about 1.2 eV in the optical spectrum may be associated with an actual optical gap. Assuming a strong excitonic effect of 0.6 eV in the optical spectrum, all the structures except for the peak at 0.3 eV are consistent with our electronic spectra. When compared with LDA + U + SO calculations, the value of U should be considerably larger than the previous one, which implies that the spin-orbit coupling is not a necessary ingredient for the insulating mechanism of alpha-RuCl3. We also present angle-resolved photoemission spectra to be compared with LDA + U + SO and LDA +DMFT calculations.
Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial
NASA Astrophysics Data System (ADS)
Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.
2016-05-01
Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.
Zhang, Chunmei; Jiao, Yalong; Ma, Fengxian; Bottle, Steven; Zhao, Mingwen; Chen, Zhongfang; Du, Aijun
2017-02-15
The zero-band gap nature of graphene prevents it from performing as a semi-conductor in modern electronics. Although various graphene modification strategies have been developed to address this limitation, the very small band gap of these materials and the suppressed charge carrier mobility of the devices developed still significantly hinder graphene's applications. In this work, a two dimensional (2D) WB 4 monolayer, which exhibits a double Dirac cone, was conceived and assessed using density functional theory (DFT) methods, which would provide a sizable band gap while maintaining higher charge mobility with a Fermi velocity of 1.099 × 10 6 m s -1 . Strong spin-orbit-coupling can generate an observable band gap of up to 0.27 eV that primarily originates from the d-orbit of the heavy metal atom W; therefore a 2D WB 4 nanosheet would be operable at room temperature (T = 300 K) and would be a promising candidate to fabricate nanoelectronics in the upcoming post-silicon era. The phonon-spectrum and ab initio molecular dynamics calculations further demonstrate the dynamic and thermal stability of such nanosheets, thus, suggesting a potentially synthesizable Dirac material.
Ultrafast band-gap oscillations in iron pyrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, B; Kolpak, AM
2013-12-20
With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistentmore » GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (approximate to 100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to +/- 0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.« less
Theoretical studies on band structure and optical gain of GaInAsN/GaAs /GaAs cylindrical quantum dot
NASA Astrophysics Data System (ADS)
Mal, Indranil; Samajdar, Dip Prakash; John Peter, A.
2018-07-01
Electronic band structure, effective masses, band offsets and optical gain of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot systems are investigated using 10 band k·p Hamiltonian for various nitrogen and indium concentrations. The calculations include the effects of strain generated due to the lattice mismatch and the effective band gap of GaInAsN/GaAs heterostructures. The variation of conduction band, light hole and heavy hole band offsets with indium and nitrogen compositions in the alloy are obtained. The band structure of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot is found in the crystal directions Δ (100) and Λ (111) using 10 band k·p Hamiltonian. The optical gain of the cylindrical quantum dot structures as functions of surface carrier concentration and the dot radius is investigated. Our results show that the tensile strain of 1.34% generates a band gap of 0.59 eV and the compressive strain of 2.2% produces a band gap of 1.28 eV and the introduction of N atoms has no effect on the spin orbit split off band. The variation of optical gain with the dot size and the carrier concentration indicates that the optical gain increases with the decrease in the radius of the quantum dot. The results may be useful for the potential applications in optical devices.
Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter
NASA Astrophysics Data System (ADS)
Engelhorn, Kyle Craig
This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential is applied to the calculated spectra to obtain satisfactory agreement with measured spectra.
Mapping the conduction band edge density of states of γ-In2Se3 by diffuse reflectance spectra
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Vedeshwar, Agnikumar G.
2018-03-01
It is demonstrated that the measured diffuse reflectance spectra of γ-In2Se3 can be used to map the conduction band edge density of states through Kubelka-Munk analysis. The Kubelka-Munk function derived from the measured spectra almost mimics the calculated density of states in the vicinity of conduction band edge. The calculation of density of states was carried out using first-principles approach yielding the structural, electronic, and optical properties. The calculations were carried out implementing various functionals and only modified Tran and Blaha (TB-MBJ) results tally closest with the experimental result of band gap. The electronic and optical properties were calculated using FP-LAPW + lo approach based on the Density Functional Theory formalism implementing only TB-mBJ functional. The electron and hole effective masses have been calculated as me * = 0.25 m 0 and mh * = 1.11 m 0 , respectively. The optical properties clearly indicate the anisotropic nature of γ-In2Se3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lei; Liang, Renrong, E-mail: liangrr@tsinghua.edu.cn; Wang, Jing
2016-01-15
Direct gap Ge{sub 1−x}Sn{sub x} alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in Ge{sub 1−x}Sn{sub x} alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorablemore » for high-performance direct gap Ge{sub 1−x}Sn{sub x} electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
AbuEl-Rub, Khaled M.
2012-09-06
The MBE growth of short-period InAs/GaSb type-II superlattice structures, varied around 20.5 A InAs/24 A GaSb were [J. Applied physics, 96, 2580 (2004)] carried out by Haugan et al. These SLs were designed to produce devices with an optimum mid-infrared photoresponse and a sharpest photoresponse cutoff. We have used a realistic and reliable 14-band k.p formalism description of the superlattice electronic band structure to calculate the absorption coefficient in such short-period InAs/GaSb type-II superlattices. The parameters for this formalism are known from fitting to independent experiments for the bulk materials. The band-gap energies are obtained without any fitting parameters, andmore » are in good agreement with experimental data.« less
Du, Ke-zhao; Wang, Xing-zhi; Liu, Yang; Hu, Peng; Utama, M Iqbal Bakti; Gan, Chee Kwan; Xiong, Qihua; Kloc, Christian
2016-02-23
2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
Symmetry driven control of optical properties in WO 3 films
Herklotz, A.; Rus, S. F.; KC, S.; ...
2017-06-23
Optical band gap control of semiconducting thin films is critical for the optimization of photoelectronic and photochemical applications. In this work, we demonstrate that the optical band gap of WO 3 films can be continuously controlled through uniaxial strain induced by low-energy helium implantation. We show that the implantation of He into epitaxially grown and coherently strained WO 3 films can be used to induce single axis out-of-plane lattice expansion of up to 2%. Ellipsometric spectroscopy reveals that this lattice expansion shifts the absorption spectrum to lower energies and effectively reduces the optical band gap by about 0.18 eV permore » percent expansion of the out-of-plane unit cell length. Furthermore, density functional calculations show that this response is a direct result of changes in orbital degeneracy driven by changes in the octahedral rotations and tilts.« less
Exploring the charge localization and band gap opening of borophene: a first-principles study.
Kistanov, Andrey A; Cai, Yongqing; Zhou, Kun; Srikanth, Narasimalu; Dmitriev, Sergey V; Zhang, Yong-Wei
2018-01-18
Recently synthesized two-dimensional (2D) boron, borophene, exhibits a novel metallic behavior rooted in the s-p orbital hybridization, distinctively different from other 2D materials such as sulfides/selenides and semi-metallic graphene. This unique feature of borophene implies new routes for charge delocalization and band gap opening. Herein, using first-principles calculations, we explore the routes to localize the carriers and open the band gap of borophene via chemical functionalization, ribbon construction, and defect engineering. The metallicity of borophene is found to be remarkably robust against H- and F-functionalization and the presence of vacancies. Interestingly, a strong odd-even oscillation of the electronic structure with width is revealed for H-functionalized borophene nanoribbons, while an ultra-high work function (∼7.83 eV) is found for the F-functionalized borophene due to its strong charge transfer to the atomic adsorbates.
Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu; ...
2017-12-15
The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α- and β-GeSe, revealing a direct band gap of 1.61 eV for monolayer α-GeSe and an indirect band gap of 2.47 eV for monolayer β-GeSe. For monolayer β-GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. However, for β-GeSe, robust band gaps nearly independent of the applied tensile strain along themore » armchair direction are observed. Both monolayer α- and β-GeSe exhibit anisotropic optical absorption in the visible spectrum.« less
NASA Astrophysics Data System (ADS)
Kamalraj, Devaraj; Yuvaraj, Selvaraj; Yoganand, Coimbatore Paramasivam; Jaffer, Syed S.
2018-01-01
Here, we propose a new synthetic methodology for silver nanocluster preparation by using a double stranded-DNA (ds-DNA) template which no one has reported yet. A new calculative method was formulated to determine the size of the nanocluster and their band gaps by using steady state 3D contour fluorescence technique with Brus model. Generally, the structure and size of the nanoclusters determine by using High Resolution Transmission Electron Microscopy (HR-TEM). Before imaging the samples by using HR-TEM, they are introduced to drying process which causes aggregation and forms bigger polycrystalline particles. It takes long time duration and expensive methodology. In this current methodology, we found out the size and band gap of the nanocluster in the liquid form without any polycrystalline aggregation for which 3D contour fluorescence technique was used as an alternative approach to the HR-TEM method.
NASA Astrophysics Data System (ADS)
Mahmood, Q.; Ashraf, A.; Hassan, M.
2018-02-01
We predict the phase dependent electronic properties for elaborating the optical and thermoelectric behaviors of both cubic (Pm-3m) and orthorhombic (Pbnm) Ca3XO (X = Si, Ge) antiperovskites using first-principles density functional theory (DFT) computations. The mBJ functional is employed for computing the most accurate electronic characteristics. A direct band gap semiconducting nature has been found appearing due to hybridization between O and Si/Ge p-states. The calculated band gaps lying in the infrared energy region suggest that the studied anti-perovskites can absorb visible and ultraviolet energy revealing potential optoelectronics device applications. Moreover, the important thermoelectric parameters are computed for illustrating the potential thermoelectric applications. Hence, the studied anti-perovskites can simultaneously exhibit various flexible material properties, which reveal their worth for the devices demonstrating versatile characteristics.
Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications
NASA Astrophysics Data System (ADS)
Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.
2018-02-01
Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.
NASA Astrophysics Data System (ADS)
Ziaei, Vafa; Bredow, Thomas
2017-06-01
We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.
Elastic waves in periodic and non-periodic sets of hollow cylinders
NASA Astrophysics Data System (ADS)
Nikitov, S. A.; Gulyaev, Yu. V.; Lisenkov, I. V.; Popov, R. S.; Grigorievkii, A. V.; Grigorievkii, V. I.
2008-06-01
Two ways of modeling of elastic wave propagation in microstructured acoustic fiber are considered. First one is the calculation of band gap parameters by FEM for phononic crystal forming cross section of fiber. Second one is immediate calculation of dispersion characteristics of elastic fiber containing hole cylindric chanels. For fiber made of fused β quarz numerical results are proposed. For the first type full forbidden gap obtained and for second two different types of modes was found.
Two-dimensional wide-band-gap II-V semiconductors with a dilated graphene-like structure
NASA Astrophysics Data System (ADS)
Zhang, Xue-Jing; Liu, Bang-Gui
2016-12-01
Since the advent of graphene, two-dimensional (2D) materials have become very attractive and there is growing interest in exploring new 2D materials beyond graphene. Here, through density-functional theory (DFT) calculations, we predict 2D wide-band-gap II-V semiconductor materials of M3X2 (M = Zn, Cd and X = N, P, As) with a dilated graphene-like honeycomb structure. In this structure the group-V X atoms form two X-atomic planes symmetrically astride the centering group-IIB M atomic plane. Our DFT calculation shows that 2D Zn3N2, Zn3P2 and Zn3As2 have direct band gaps of 2.87, 3.81 and 3.55 eV, respectively, and 2D Cd3N2, Cd3P2 and Cd3As2 exhibit indirect band gaps of 2.74, 3.51 and 3.29 eV, respectively. Each of the six 2D materials is shown to have effective carrier (either hole or electron) masses down to 0.03m 0-0.05m 0. The structural stability and feasibility of experimental realization of these 2D materials has been shown in terms of DFT phonon spectra and total energy comparison with related existing bulk materials. On the experimental side, there already are many similar two-coordinate structures of Zn and other transition metals in various organic materials. Therefore, these 2D semiconductors can enrich the family of 2D electronic materials and may have promising potential for achieving novel transistors and optoelectronic devices.
First principles study of pressure induced polymorphic phase transition in KNO3
NASA Astrophysics Data System (ADS)
Yedukondalu, N.; Vaitheeswaran, G.
2015-06-01
We report the structural, elastic, electronic, and vibrational properties of polymorphic phases II and III of KNO3 based on density functional theory (DFT). Using semi-empirical dispersion correction (DFT-D2) method, we predicted the correct thermodynamic ground state of KNO3 and the obtained ground state properties of the polymorphs are in good agreement with the experiments. We further used this method to calculate the elastic constants, IR and Raman spectra, vibrational frequencies and their assignment of these polymorphs. The calculated Tran Blaha-modified Becke Johnson (TB-mBJ) electronic structure shows that both the polymorphic phases are direct band gap insulators with mixed ionic and covalent bonding. Also the TB-mBJ band gaps are improved over standard DFT functionals which are comparable with the available experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khani, V.; Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir; Shakeri, M.S.
2013-09-01
Graphical abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals are studied and crystallization condition has been evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used for morphological variations and UV–vis absorption spectroscopy for comparative analysis of transparency. In order to investigate the optical properties of transparent glass–ceramics, optical band gap, Fermi energy level and Urbach energy are calculated. The results of the investigation illustrate that band gap is reduced with increases in crystallizationmore » time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes. - Highlights: • The optimum temperature and time of crystallization were determined. • Li–mica nanocrystals with size of <30 nm were formed using a two-step heat-treatment. • Optical band gap and Fermi energy of nanocrystalline materials decreased with increasing of crystallization temperature and time. • Urbach band tailing was decreased with increasing of crystallization condition. - Abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals were studied. The crystallization condition of these glasses was evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used to detect morphological changes and UV–vis absorption spectroscopy was used for comparative analysis of transparency. In order to investigate the optical properties of the transparent glass–ceramics, optical band gap, Fermi energy level and Urbach energy were calculated. The results of the investigation illustrate that the band gap is reduced with increases in crystallization time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes.« less
NASA Astrophysics Data System (ADS)
Fadlallah, M. M.
2017-05-01
The structure stability, magnetic, electronic, optical, and photocatalytic properties of nonmetal (B, C, N, P, and S), and halogen (F, Cl, Br, and I)-doped anatase TiO2 nanotubes (TNTs) have been investigated using spin polarized density functional theory. The N- and F-doped TNTs are the most stable among other doped TNTs. It is found that the magnetic moment of doped TNT is the difference between the number of the valence electrons of the dopant and host anion. All dopants decrease the band gap of TNT. The decrease in the band gap of nonmetal (C, N, P, and S)-doped TNTs, in particular N and P, is larger than that of halogen-doped TNTs due to the created states of the nonmetal dopant in the band gap. There is a good agreement between the calculation results and the experimental observations. Even though C-, N-, and P-doped TNTs have the lowest band gap, they cannot be used as a photocatalysis for water splitting. The B-, S-, and I-doped TiO2 nanotubes are of great potential as candidates for water splitting in the visible light range.
First-principles calculation of electronic and optical properties of graphene like ZnO (G-ZnO)
NASA Astrophysics Data System (ADS)
Farooq, Rabia; Mahmood, Tariq; Anwar, Abdul Waheed; Abbasi, Ghadah Niaz
2016-02-01
Semiconductor metal oxides are favorable for their exotic properties like wide band gap, transparency, enhanced charge mobility, and strong luminescence at room temperature. These properties have put metal oxides under limelight, especially ZnO has earned a renowned position in emanate industry for transparent electrodes, electronics, super-capacitors, photo-voltaic cells, gas-sensors, and many more. ZnO is not only environmental friendly but also a highly stable and cheap photo catalytic source naturally available in high abundance. First principles calculation is performed to study optoelectronic properties of ZnO. Geometry optimization of graphene like ZnO (G-ZnO) is preformed using generalized gradient approximation along with hybrid functional (GGA-PBE and GGA-PBE + U) to calculate various structural and electronic parameters of G-ZnO. Employing Hubbard (U) parameter improved band gap and c/a ratio calculation as 1.245 eV and 1.613 respectively; also dielectric constant is calculated as 4.58 (U = 15 eV) which is in accordance with the available experimental data.
Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation
NASA Astrophysics Data System (ADS)
Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.
2018-05-01
By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.
NASA Astrophysics Data System (ADS)
Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.
2009-12-01
We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.
GW quasiparticle energy study of ternary tetradymite Bi2Te2Se and Bi2Te2S thin films
NASA Astrophysics Data System (ADS)
Shuaibu, Alhassan; Rahman, Md. Mahmudur; Zainuddin, Hishamuddin; Talib, Zainal Abidin; Muhida, Rifki
2015-04-01
In this work, we have evaluated the quasiparticle energies of ternary tetradymite Bi2Te2Se and Bi2Te2S using first-principles calculation within the G0W0 methods. We have also performed a broad convergence tests in order to investigate the quasiparticle corrections to the structural parameters and to the semi core d electrons in both of the compounds. For each case, we have calculated the many-body corrections within a one-shot GW method of the compounds. Our results have shown that for Bi2Te2Se the GW corrections increase the band gap to almost 10%, and for specific atomic positions, the band structure shows a close value to the experimental one. For Bi2Te2S, despite increase in the band gap due to the GW corrections, possibility of bulk resistivity that can be significant for photovoltaic applications was observed.
Symmetries and band gaps in nanoribbons
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Tian, Yiteng; Fernando, Gayanath; Kocharian, Armen
In ideal graphene-like systems, time reversal and sublattice symmetries preserve the degeneracies at the Dirac point(s). We have examined such degeneracies in the band structure as well as the transport properties in various arm-twisted (graphene-related) nanoribbons. A twist angle is defined such that at 0 degrees the ribbon is a rectangular ribbon and at 60 degrees the ribbon is cut from a honeycomb lattice. Using model Hamiltonians and first principles calculations in these nanoribbons with Z2 topology, we have monitored the band structure as a function of the twist angle θ. In twisted ribbons, it turns out that the introduction of an extra hopping term leads to a gap opening. We have also calculated the size and temperature broadening effects in similar ribbons in addition to Rashba-induced transport properties. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No.DE-AC02- 98CH10886.
Topological interface states in the natural heterostructure (PbSe)5(Bi2Se3 )6 with BiPb defects
NASA Astrophysics Data System (ADS)
Momida, Hiroyoshi; Bihlmayer, Gustav; Blügel, Stefan; Segawa, Kouji; Ando, Yoichi; Oguchi, Tamio
2018-01-01
We study theoretically the electronic band structure of (PbSe) 5(Bi2Se3 )6, which consists of an ordinary insulator PbSe and a topological insulator Bi2Se3 . The first-principles calculations show that this material has a gapped Dirac-cone energy dispersion inside the bulk, which originates from the topological states of Bi2Se3 layers encapsulated by PbSe layers. Furthermore, we calculate the band structures of (BixPb1 -xSe )5(Bi2Se3 )6 with BiPb antisite defects included in the PbSe layers. The result shows that a high density of BiPb defects can exist in real materials, consistent with the experimentally estimated x of more than 30%. The BiPb defects strongly modify the band alignment between Bi2Se3 and PbSe layers, while the topological interface states of Bi2Se3 are kept as a gapped Dirac-cone-like dispersion.
Study and analysis of filtering characteristics of 1D photonic crystal
NASA Astrophysics Data System (ADS)
Juyal, Rohan; Suthar, Bhuvneshwer; Kumar, Arun
2018-05-01
Propagation of electromagnetic wave have been studied and analyzed through 1D photonic crystal. 1D photonic band gap material with low and high refractive index material has been chosen for this study. Band structure and reflectivity of this 1D structure has been calculated using transmission matrix method (TMM). Study and analysis of the band structure and reflectivity of this structure shows that this structure may work as an optical filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, In; Song, Jung-Hwan; Im, Jino
CsSnI{sub 3} is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI{sub 3} have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI{sub 3}, coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI{submore » 3}. The black orthorhombic form of CsSnI{sub 3} demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI{sub 3} indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of {approx} 10{sup 17} cm{sup -3} and a hole mobility of {approx} 585 cm{sup 2} V{sup -1} s{sup -1}. The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise intrinsically. Thus, although stoichiometric CsSnI{sub 3} is a semiconductor, the material is prone to intrinsic defects associated with Sn vacancies. This creates highly mobile holes which cause the materials to appear metallic.« less
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; He, Yihui; Wessels, Bruce W.; Kanatzidis, Mercouri G.
Heavy metal chalcohalides Hg3Q2I2 (Q =S, Se and Te) have shown significant promise as X-ray and γ-ray detector materials. To assess the fundamental physical properties important for their performance as detectors, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and native defect properties. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Hg3Q2I2 have either indirect (Q =S, Se) or direct (Q =Te) band gaps within 1.9-2.25 range which is optimal for a detector material, and very small electron effective masses (0.19 m0 for Hg3Se2I2) which could result in a good carrier mobility-lifetime product μτ . We further investigated a large set of native defects in the most promising candidate material, Hg3Se2I2, to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are iodine vacancies, mercury vacancies, and selenium vacancies followed by antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
Lafond, A; Guillot-Deudon, C; Vidal, J; Paris, M; La, C; Jobic, S
2017-03-06
The substitution of lithium for copper in Cu 2 ZnSnS 4 (CZTS) has been experimentally and theoretically investigated. Formally, the (Cu 1-x Li x )ZnSnS 4 system exhibits two well-defined solid solutions. Indeed, single crystal structural analyses demonstrate that the low (x < 0.4) and high (x > 0.6) lithium-content compounds adopt the kesterite structure and the wurtz-kesterite structure, respectively. For x between 0.4 and 0.6, the two aforementioned structure types coexist. Moreover, 119 Sn NMR analyses carried out on a (Cu 0.7 Li 0.3 ) 2 ZnSnS 4 sample clearly indicate that lithium replaces copper preferentially on two of the three available 2-fold crystallographic sites commonly occupied by Cu and Zn in disordered kesterite. Furthermore, the observed individual lines in the NMR spectrum suggest that the propensity of Cu and Zn atoms to be randomly distributed over the 2c and 2d crystallographic sites is lowered when lithium is partially substituted for copper. Additionally, the first-principles calculations provide insights into the arrangement of Li atoms as a function of the Cu/Zn disorder and its effect on the structural (lattice parameters) and optical properties of CZTS (band gap evolution). Those calculations agree with the experimental observations and account for the evolutions of the unit cell parameters as well as for the increase of band gap when the Li-content increases. The calculation of the formation enthalpy of point defect unambiguously indicates that Li modifies the Cu/Zn disorder in a manner similar to the change of Cu/Zn disorder induced by Ag alloying. Overall, it was found that Li alloying is a versatile way of tuning the optoelectronic properties of CZTS making it a good candidate as wide band gap materials for the top cells of tandem solar cells.
DFT investigations of the hydrogenation effect on silicene/graphene hybrids.
Drissi, L B; Saidi, E H; Bousmina, M; Fassi-Fehri, O
2012-12-05
We report here a study on the effect of hydrogenation on a new one-atom thick material made of silicon and carbon atoms (silicene/graphene (SG) hybrid) within density functional theory. The structural, electronic and magnetic properties are investigated for non-, semi- and fully hydrogenated SG hybrids in a chair configuration and are compared with their parent materials. Calculations reveal that pure SG is a non-zero band gap semi-conductor with stable planar honeycomb structure. So mixing C and Si in an alternating manner gives another way to generate a finite band gap in one-atom thick materials. Fully hydrogenation makes the gap larger; however half chemical modification with H reduces the gap in favor of ferromagnetism order. The findings of this work open a wide spectrum of possibilities for designing SG-based nanodevices with controlled and tuned properties.
The investigation of Ce doped ZnO crystal: The electronic, optical and magnetic properties
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Zhang, Jian-Min; Qiu, Ze-Gang; Yang, Xu; Li, Zhi-Qin
2018-04-01
The electronic, optical and magnetic properties of Ce doped ZnO crystal have been studied by using first principles method. The research of formation energies show that Ce doped ZnO is energetically stable, and the formation energies reduce from 6.25% to 12.5% for Ce molar percentage. The energy band is still direct band gap after Ce doped, and band gap increases with the increase of Cesbnd Ce distance. The Fermi level moves upward into conduction band and the DOS moves to lower energy with the increase of Ce concentration, which showing the properties of n-type semiconductor. The calculated optical properties imply that Ce doped causes a red-shift of absorption peaks, and enhances the absorption of the visible light. The transition from ferromagnetic to antiferromagnetic has been found in Ce doped ZnO.
DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shatendra, E-mail: shatendra@gmai.com; Sharma, Jyotsna; Sharma, Yogita
2016-05-06
The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by usingmore » other methods.« less
Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra
2016-12-21
The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.
NASA Astrophysics Data System (ADS)
Zahedifar, Maedeh; Kratzer, Peter
2018-01-01
Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0 method is required to perform a reliable computational search for the optimum material.
Growth and Characterization of the p-type Semiconductors Tin Sulfide and Bismuth Copper Oxy Selenide
NASA Astrophysics Data System (ADS)
Francis, Jason
BiCuOSe and SnS are layered, moderate band gap (epsilon G ≈ 1 eV) semiconductors that exhibit intrinsic p type conductivity. Doping of BiCuOSe with Ca results in a slight expansion of the lattice and an increase of the hole concentration from 10 18 cm--3 to greater than 1020 cm --3. The large carrier density in undoped films is the result of copper vacancies. Mobility is unaffected by doping, remaining constant at 1.5 cm2V--1s--1 in both undoped and doped films, because the Bi-O layers serve as the source of carriers, while transport occurs within the Cu-Se layers. Bi possesses a 6s2 lone pair that was expected to hybridize with the oxygen p states at the top of the valence band, resulting in high hole mobility as compared to similar materials such as LaCuOSe, which lack this lone pair. However, both LaCuOSe and BiCuOSe have similar hole mobility. X-ray absorption and emission spectroscopy, combined with density functional theory calculations, reveal that the Bi 6 s states contribute deep within the valence band, forming bonding and anti-bonding states with O 2p at 11 eV and 3 eV below the valence band maximum, respectively. Hence, the Bi lone pair does not contribute at the top of the valence band and does not enhance the hole mobility. The Bi 6p states contribute at the bottom of the conduction band, resulting in a smaller band gap for BiCuOSe than LaCuOSe (1 eV vs. 3 eV). SnS is a potential photovoltaic absorber composed of weakly coupled layers stacked along the long axis. This weak coupling results in the formation of strongly oriented films on amorphous substrates. The optical band gap is 1.2 eV, in agreement with GW calculations. Absorption reaches 105 cm--1 within 0.5 eV of the band gap. The p type conduction arises from energetically favorable tin vacancies. Variation of growth conditions yields carrier densities of 1014 -- 1016 cm--3 and hole mobility of 7 -- 15 cm2V--1s--1. SnS was alloyed with rocksalt CaS, which was predicted to form a rocksalt structure when the calcium content is increased past 18%. Films of Sn1--x CaxS with x from 0.4 to 0.9 adopt the rocksalt structure with a band gap of 1.1-1.3 eV, with absorption greater than 105 cm--1 within about 0.7 eV of the band gap. The lattice contracts as the calcium content of the films is increased, reaching 5.7 A when x = 0.93. Films are highly insulating, but Seebeck measurements do indicate p type conduction.
NASA Astrophysics Data System (ADS)
da Silva Filho, J. G.; Freire, V. N.; Caetano, E. W. S.; Ladeira, L. O.; Fulco, U. L.; Albuquerque, E. L.
2013-11-01
In this letter, we study the electronic structure and optical properties of the active medicinal component γ-aminobutyric acid (GABA) and its cocrystals with oxalic (OXA) and benzoic (BZA) acid by means of the density functional theory formalism. It is shown that the cocrystallization strongly weakens the zwitterionic character of the GABA molecule leading to striking differences among the electronic band structures and optical absorption spectra of the GABA crystal and GABA:OXA, GABA:BZA cocrystals, originating from distinct sets of hydrogen bonds. Calculated band widths and Δ-sol band gap estimates indicate that both GABA and GABA:OXA, GABA:BZA cocrystals are indirect gap insulators.
Role of oxygen vacancies in HfO2-based gate stack breakdown
NASA Astrophysics Data System (ADS)
Wu, X.; Migas, D. B.; Li, X.; Bosman, M.; Raghavan, N.; Borisenko, V. E.; Pey, K. L.
2010-04-01
We study the influence of multiple oxygen vacancy traps in the percolated dielectric on the postbreakdown random telegraph noise (RTN) digital fluctuations in HfO2-based metal-oxide-semiconductor transistors. Our electrical characterization results indicate that these digital fluctuations are triggered only beyond a certain gate stress voltage. First-principles calculations suggest the oxygen vacancies to be responsible for the formation of a subband in the forbidden band gap region, which affects the triggering voltage (VTRIG) for the RTN fluctuations and leads to a shrinkage of the HfO2 band gap.
NASA Astrophysics Data System (ADS)
Kumar, Akash; Balasubramaniam, K. R.; Kangsabanik, Jiban; Vikram, Alam, Aftab
2016-11-01
Structural stability, electronic structure, and optical properties of CH3NH3BaI3 hybrid perovskite are examined from theory as well as experiment. Solution-processed thin films of CH3NH3BaI3 exhibited a high transparency in the wavelength range of 400-825 nm (1.5-3.1 eV for which the photon current density is highest in the solar spectrum) which essentially justifies a high band gap of 4 eV obtained by theoretical estimation. Also, the x-ray diffraction patterns of the thin films match well with the {00 l } peaks of the simulated pattern obtained from the relaxed unit cell of CH3NH3BaI3 , crystallizing in the I 4 /m c m space group, with lattice parameters, a =9.30 Å, c =13.94 Å. Atom projected density of state and band structure calculations reveal the conduction and valence band edges to be comprised primarily of barium d orbitals and iodine p orbitals, respectively. The larger band gap of CH3NH3BaI3 compared to CH3NH3PbI3 can be attributed to the lower electronegativity coupled with the lack of d orbitals in the valence band of Ba2 +. A more detailed analysis reveals the excellent chemical and mechanical stability of CH3NH3BaI3 against humidity, unlike its lead halide counterpart, which degrades under such conditions. We propose La to be a suitable dopant to make this compound a promising candidate for transparent conductor applications, especially for all perovskite solar cells. This claim is supported by our calculated results on charge concentration, effective mass, and vacancy formation energies.
Guo, Weiyan; Guo, Yating; Dong, Hao; Zhou, Xin
2015-02-28
A systematic study using density functional theory has been performed for β-Ga2O3 doped with non-metal elements X (X = C, N, F, Si, P, S, Cl, Se, Br, and I) to evaluate the effect of doping on the band edges and photocatalytic activity of β-Ga2O3. The utilization of a more reliable hybrid density functional, as prescribed by Heyd, Scuseria and Ernzerhof, is found to be effective in predicting the band gap of β-Ga2O3 (4.5 eV), in agreement with the experimental result (4.59 eV). Based on the relaxed structures of X-doped systems, the defect formation energies and the plots of density of states have been calculated to analyze the band edges, the band gap states and the preferred doping sites. Our results show that the doping is energetically favored under Ga-rich growth conditions with respect to O-rich growth conditions. It is easier to replace the threefold coordinated O atom with non-metal elements compared to the fourfold coordinated O atom. X-doped systems (X = C, Si, P) show no change in the band gap, with the presence of discrete midgap states, which have adverse effect on the photocatalytic properties. The photocatalytic redox ability can be improved to a certain extent by doping with N, S, Cl, Se, Br, and I. The band alignments for Se-doped and I-doped β-Ga2O3 are well positioned for the feasibility of both photo-oxidation and photo-reduction of water, which are promising photocatalysts for water splitting in the visible region.
Huang, Bolong
2016-04-05
The ground-state 4f fine-structure levels in the intrinsic optical transition gaps between the 2p and 5d orbitals of lanthanide sesquioxides (Ln2 O3 , Ln = La…Lu) were calculated by a two-way crossover search for the U parameters for DFT + U calculations. The original 4f-shell potential perturbation in the linear response method were reformulated within the constraint volume of the given solids. The band structures were also calculated. This method yields nearly constant optical transition gaps between Ln-5d and O-2p orbitals, with magnitudes of 5.3 to 5.5 eV. This result verifies that the error in the band structure calculations for Ln2 O3 is dominated by the inaccuracies in the predicted 4f levels in the 2p-5d transition gaps, which strongly and non-linearly depend on the on-site Hubbard U. The relationship between the 4f occupancies and Hubbard U is non-monotonic and is entirely different from that for materials with 3d or 4d orbitals, such as transition metal oxides. This new linear response DFT + U method can provide a simpler understanding of the electronic structure of Ln2 O3 and enables a quick examination of the electronic structures of lanthanide solids before hybrid functional or GW calculations. © 2015 Wiley Periodicals, Inc.
Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosio, Francesco, E-mail: Francesco.Ambrosio@epfl.ch; Miceli, Giacomo; Pasquarello, Alfredo
2015-12-28
We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subjectmore » to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anke, B.; Bredow, T.; Pilarski, M.
Yellow LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was successfully synthesized as phase-pure material crystallizing isostructurally to previously reported Ba{sub 3}Ta{sub 5}O{sub 14}N and mixed-valence Ba{sub 3}Ta{sup V}{sub 4}Ta{sup IV}O{sub 15}. The electronic structure of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was studied theoretically with the range-separated hybrid method HSE06. The most stable structure was obtained when lanthanum was placed on 2a and nitrogen on 4h sites confirming Pauling's second rule. By incorporating nitrogen, the measured band gap decreases from ∼3.8 eV for the oxide via 2.74 eV for Ba{sub 3}Ta{sub 5}O{sub 14}N to 2.63 eV for the new oxide nitride, giving risemore » to an absorption band well in the visible-light region. Calculated fundamental band gaps confirm the experimental trend. The atom-projected density of states has large contributions from N2p orbitals close to the valence band edge. These are responsible for the observed band gap reduction. Photocatalytic hydrogen formation was investigated and compared with that of Ba{sub 3}Ta{sub 5}O{sub 14}N revealing significantly higher activity for LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} under UV-light. - Graphical abstract: X-ray powder diffraction pattern of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} with the results of the Rietveld refinements. Inset: Unit cell of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} and polyhedral representation of the crystal structure. - Highlights: • Synthesis of a new oxide nitride LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2}. • Refinement of the crystal structure. • Quantum chemical calculations provided band gap close to the measured value. • New phase shows a higher photocatalytic H{sub 2} evolution rate compared to prior tested Ba{sub 3}Ta{sub 5}O{sub 14}N.« less
Tetragonal bismuth bilayer: A stable and robust quantum spin hall insulator
Kou, Liangzhi; Tan, Xin; Ma, Yandong; ...
2015-11-23
In this study, topological insulators (TIs) exhibit novel physics with great promise for new devices, but considerable challenges remain to identify TIs with high structural stability and large nontrivial band gap suitable for practical applications. Here we predict by first-principles calculations a two-dimensional (2D) TI, also known as a quantum spin Hall (QSH) insulator, in a tetragonal bismuth bilayer (TB-Bi) structure that is dynamically and thermally stable based on phonon calculations and finite-temperature molecular dynamics simulations. Density functional theory and tight-binding calculations reveal a band inversion among the Bi-p orbits driven by the strong intrinsic spin–orbit coupling, producing a largemore » nontrivial band gap, which can be effectively tuned by moderate strains. The helical gapless edge states exhibit a linear dispersion with a high Fermi velocity comparable to that of graphene, and the QSH phase remains robust on a NaCl substrate. These remarkable properties place TB-Bi among the most promising 2D TIs for high-speed spintronic devices, and the present results provide insights into the intriguing QSH phenomenon in this new Bi structure and offer guidance for its implementation in potential applications.« less
Foster, Michael E.; Sohlberg, Karl; Spataru, Dan Catalin; ...
2016-06-19
The metal organic framework material Ni 3(2,3,6,7,10,11 - hexaiminotriphenylene) 2, (Ni 3(HITP) 2) is composed of layers of extended conjugated planes analogous to graphene. We carried out Density functional theory (DFT) calculations to model the electronic structure of bulk and monolayer Ni 3(HITP) 2. The layered 3D material is metallic, similar to graphene. Our calculations predict that there is appreciable band dispersion not only in-plane, but perpendicular to the stacking planes as well, suggesting that, unlike graphene, the conductivity may be nearly isotropic. In contrast, a 2D monolayer of the material exhibits a band gap, consistent with previously published results.more » Insight obtained from studies of the evolution of the material from semiconducting to metallic as the material is transitioned from 2D to 3D suggests the possibility of modifying the material to render it semiconducting by changing the metal center and inserting spacer moieties between the layers. Furthermore, the DFT calculations predict that the modified material will be structurally stable and exhibit a band gap.« less
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2018-02-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
NASA Astrophysics Data System (ADS)
Kubacki, J.; Kajewski, D.; Goraus, J.; Szot, K.; Koehl, A.; Lenser, Ch.; Dittmann, R.; Szade, J.
2018-04-01
Epitaxial thin films of Fe doped SrTiO3 have been studied by the use of resonant photoemission. This technique allowed us to identify contributions of the Fe and Ti originating electronic states to the valence band. Two valence states of iron Fe2+ and Fe3+, detected on the base of x-ray absorption studies spectra, appeared to form quite different contributions to the valence band of SrTiO3. The electronic states within the in-gap region can be attributed to Fe and Ti ions. The Fe2+ originating states which can be connected to the presence of oxygen vacancies form a broad band reaching binding energies of about 0.5 eV below the conduction band, while Fe3+ states form in the gap a sharp feature localized just above the top of the valence band. These structures were also confirmed by calculations performed with the use of the FP-LAPW/APW+lo method including Coulomb correlations within the d shell. It has been shown that Fe doping induced Ti originating states in the energy gap which can be related to the hybridization of Ti and Fe 3d orbitals.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Xi-Bo; Wang, Da; Lau, Woon-Ming; Peng, Ping; Liu, Li-Min
2014-02-01
The family of bulk metal phosphorus trichalcogenides (APX3, A = MII, M_{0.5}^IM_{0.5}^{III}; X = S, Se; MI, MII, and MIII represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe3, CdPSe3, Ag0.5Sc0.5PSe3, and Ag0.5In0.5PX3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag0.5Sc0.5PSe3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.
Theoretical Investigations of Si-Ge Alloys in P42/ncm Phase: First-Principles Calculations
Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Yan, Fang
2017-01-01
The structural, mechanical, anisotropic, electronic and thermal properties of Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are investigated in this work. The calculations have been performed with an ultra-soft pseudopotential by using the generalized gradient approximation and local density approximation in the framework of density functional theory. The achieved results for the lattice constants and band gaps of P42/ncm-Si and P42/ncm-Ge in this research have good accordance with other results. The calculated elastic constants and elastic moduli of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase are better than that of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/mnm phase. The Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit varying degrees of mechanical anisotropic properties in Poisson’s ratio, shear modulus, Young’s modulus, and universal anisotropic index. The band structures of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase show that they are all indirect band gap semiconductors with band gap of 1.46 eV, 1.25 eV, 1.36 eV and 1.00 eV, respectively. In addition, we also found that the minimum thermal conductivity κmin of the Si, Si0.667Ge0.333, Si0.333Ge0.667 and Ge in P42/ncm phase exhibit different degrees of anisotropic properties in (001), (010), (100) and (01¯0) planes. PMID:28772964
Electronic properties of 3R-CuAlO2 under pressure: Three theoretical approaches
NASA Astrophysics Data System (ADS)
Christensen, N. E.; Svane, A.; Laskowski, R.; Palanivel, B.; Modak, P.; Chantis, A. N.; van Schilfgaarde, M.; Kotani, T.
2010-01-01
The pressure variation in the structural parameters, u and c/a , of the delafossite CuAlO2 is calculated within the local-density approximation (LDA). Further, the electronic structures as obtained by different approximations are compared: LDA, LDA+U , and a recently developed “quasiparticle self-consistent GW ” (QSGW) approximation. The structural parameters obtained by the LDA agree very well with experiments but, as expected, gaps in the formal band structure are underestimated as compared to optical experiments. The (in LDA too high lying) Cu3d states can be down shifted by LDA+U . The magnitude of the electric field gradient (EFG) as obtained within the LDA is far too small. It can be “fitted” to experiments in LDA+U but a simultaneous adjustment of the EFG and the gap cannot be obtained with a single U value. QSGW yields reasonable values for both quantities. LDA and QSGW yield significantly different values for some of the band-gap deformation potentials but calculations within both approximations predict that 3R-CuAlO2 remains an indirect-gap semiconductor at all pressures in its stability range 0-36 GPa, although the smallest direct gap has a negative pressure coefficient.
Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange
NASA Astrophysics Data System (ADS)
Gillen, Roland; Robertson, John
2011-07-01
We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; ...
2017-11-10
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less
First-principles calculation of intrinsic defect chemistry and self-doping in PbTe
NASA Astrophysics Data System (ADS)
Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
2017-10-01
Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. Here we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling, and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.
NASA Astrophysics Data System (ADS)
Dass, Devi
2018-03-01
Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.
Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.
Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen
2018-01-31
Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.
Synthesis and optical properties of antimony oxide glasses doped with holmium trioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunatha, S.; Eraiah, B., E-mail: eraiah@rediffmail.com
2016-05-06
Holmium doped lithium-antimony-lead borate glasses having 1 mol% AgNO{sub 3} with composition 50B{sub 2}O{sub 3}-20PbO-25Sb{sub 2}O{sub 3}-5Li{sub 2}O have been prepared using single step melt quenching technique. The XRD spectrum confirms amorphous nature of glasses. The optical absorbance studies were carried out on these glasses. The optical direct band gap energies were found to be in the range of 3.10 eV to 3.31 eV and indirect band gap energies were found to be in the range of 2.28 eV to 3.00 eV. The refractive indexes have been calculated by using Lorentz-Lorenz formula and the calculated values in the range ofmore » 2.31 to 2.37.« less
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2018-04-01
Effects of strain on the electronic and optical properties of graphene on monolayer boron nitride (BN) substrate are investigated using first-principle calculations based on density functional theory. Strain-free graphene/BN has a small band gap of 97 meV at the K point. The magnitude of band gap increases with in-plane biaxial strain while it decreases with the perpendicular uniaxial strain. The ɛ2 (ω ) spectrum of graphene/BN bilayer for parallel polarization shows red and blue shifts by applying the in-plane tensile and compressive strains, respectively. Also the positions of peaks in the ɛ2 (ω ) spectrum are not significantly changed under perpendicular strain. The calculated results indicate that graphene on the BN substrate has great potential in microelectronic and optoelectronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu
Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range frommore » −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.« less
First-Principle Electronic Properties of Dilute-P GaN(1-x)P(x) Alloy for Visible Light Emitters.
Tan, Chee-Keong; Borovac, Damir; Sun, Wei; Tansu, Nelson
2016-04-14
A study on the electronic properties of the dilute-P GaN(1-x)P(x)alloy using First-Principle Density Functional Theory (DFT) calculations is presented. Our results indicate a band gap energy coverage from 3.645 eV to 2.697 eV, with P-content varying from 0% to 12.5% respectively. In addition, through line fitting of calculated and experimental data, a bowing parameter of 9.5 ± 0.5 eV was obtained. The effective masses for electrons and holes are analyzed, as well as the split-off energy parameters where findings indicate minimal interband Auger recombination. The alloy also possesses the direct energy band gap property, indicating its strong potential as a candidate for future photonic device applications.
NASA Astrophysics Data System (ADS)
Miao, Mao-Sheng; Yarbro, Sam; Barton, Phillip T.; Seshadri, Ram
2014-01-01
Using density functional theory with a hybrid functional, we calculate the ionization energies and electron affinities of a series of delafossite compounds (AMO2: A =Cu, Ag; M =B, Al, Ga, In, Sc). The alignments of the valence band maximum and the conduction band minimum, which directly relate to the ionization energies and electron affinities, were obtained by calculations of supercell slab models constructed in a nonpolar orientation. Our calculations reveal that the ionization energy decreases with an increasing atomic number of group-III elements, and thus suggest an improved p-type doping propensity for heavier compounds. For keeping both a low ionization energy and a band gap of sufficient size, CuScO2 is superior to the Cu-based group-III delafossites. By analyzing the electronic structures, we demonstrate that the compositional trend of the ionization energies and electron affinities is the result of a combined effect of d-band broadening due to Cu(Ag)-Cu(Ag) coupling and a repositioning of the d-band center.
Calculating the optical properties of defects and surfaces in wide band gap materials
NASA Astrophysics Data System (ADS)
Deák, Peter
2018-04-01
The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.
NASA Astrophysics Data System (ADS)
Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin
2018-03-01
In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.
First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer
NASA Astrophysics Data System (ADS)
Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.
2017-08-01
Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.
Elastic superlattices with simultaneously negative effective mass density and shear modulus
NASA Astrophysics Data System (ADS)
Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.
2013-03-01
We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, G. C., E-mail: siva1987@iopb.res.in, E-mail: skp@iopb.res.in, E-mail: gcr@iopb.res.in; Sahu, Sivabrata; Panda, S. K.
2016-04-13
We report here a microscopic tight-binding model calculation for AB-stacked bilayer graphene in presence of biasing potential between the two layers and the impurity effects to study the evolution of the total density of states with special emphasis on opening of band gap near Dirac point. We have calculated the electron Green’s functions for both the A and B sub-lattices by Zubarev technique. The imaginary part of the Green’s function gives the partial and total density of states of electrons. The density of states are computed numerically for 1000 × 1000 grid points of the electron momentum. The evolution ofmore » the opening of band gap near van-Hove singularities as well as near Dirac point is investigated by varying the different interlayer hoppings and the biasing potentials. The inter layer hopping splits the density of states at van-Hove singularities and produces a V-shaped gap near Dirac point. Further the biasing potential introduces a U shaped gap near Dirac point with a density minimum at the applied potential(i.e. at V/2).« less
Ab initio study of boron nitride lines on graphene
NASA Astrophysics Data System (ADS)
Mata-Carrizal, Berenice; Sanginés-Mendoza, Raúl; Martinez, Edgar
2013-03-01
Graphene has unusual electronic properties which make it a promising material for electronic devices. Neverthless, the absence of a band gap sets limitations on its practical applications. Thus, it is crucial to find methods to create and tune the band gap of systems based on graphene. In this way, we explore the modulation of the electronic properties of graphene through doping with boron nitride lines. In particular, we studied the electronic structure of graphene sheets doped with boron nitride lines armchair and zigzag type. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. We found that both doping lines type induce a bandgap and that the energy gap increases as the length of doping lines increases. Accordingly to our DFT calculations, we found that the energy gap on graphene doped with armchair and zigzag lines is due to a two different mechanisms to drain charge from pi- to sigma- orbitals. Thus, we found that doping graphene with boron nitride lines is a useful way to induce and modulate the bandgap on graphene. This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) under Grant No. 133022.
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-01
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X =N ,P ,As ,Sb , and II-VI compounds, (Zn or Cd)X , with X =O ,S ,Se ,Te . By correcting (1) the binary band gaps at high-symmetry points Γ , L , X , (2) the separation of p -and d -orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor
NASA Astrophysics Data System (ADS)
Mitra, S.; Biswas, T.; Chattopadhyay, R.; Ghosh, J.; Bysakh, S.; Bhadra, S. K.
2016-11-01
A simple integrated hydrogen sensor using Pd-Au alloy/air based one dimensional photonic crystal with an air defect layer is theoretically modeled. Structural parameters of the photonic crystal are delicately scaled to generate photonic band gap frequencies in a visible spectral regime. An optimized defect thickness permits a localized defect mode operating at a frequency within the photonic band gap region. Hydrogen absorption causes modification in the band gap characteristics due to variation of refractive index and lattice parameters of the alloy. As a result, the transmission peak appeared due to the resonant defect state gets shifted. This peak shifting is utilized to detect sparse amount of hydrogen present in the surrounding environment. A theoretical framework is built to calculate the refractive index profile of hydrogen loaded alloy using density functional theory and Bruggeman's effective medium approximation. The calculated refractive index variation of Pd3Au alloy film due to hydrogen loading is verified experimentally by measuring the reflectance characteristics. Lattice expansion properties of the alloy are studied through X-ray diffraction analyses. The proposed structure shows about 3 nm red shift of the transmission peak for a rise of 1% atomic hydrogen concentration in the alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zheng; Lü, Tie-Yu; Wang, Hui-Qiong
We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type) semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature,more » indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.« less
Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y 3+ ions
NASA Astrophysics Data System (ADS)
Shakeri, M. S.; Rezvani, M.
2011-09-01
The effect of different amounts of Y 2O 3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li 2O-20Al 2O 3-65.2SiO 2 (wt%) composition accompanied with Y 2O 3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y 3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y 3+ ions as the network former in the track of SiO 4 tetrahedrals.
Photocatalytic property and structural stability of CuAl-based layered double hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Ming; Liu, Haiqiang, E-mail: Liuhaiqiang1980@126.com
2015-07-15
Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210more » mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl« less
NASA Astrophysics Data System (ADS)
Zaharo, Aflah; Purqon, Acep
2017-07-01
The calculation of the structure and electronic properties of Rare Earth (RE) at the wurtzite Gallium Nitride (GaN) based on DFT has completed. GGA approximation used for exchange correlation and Ultra soft pseudo potential too. The stability structure of GaN is seen that difference lattice parameter 11% lower than another calculation and experiment result. It is shown the stability structure GaN have direct band gap energy on Gamma point hexagonal lattice Brillouin zone. The width Eg is 2.6 eV. When one atom Ga is substituted with one atom RE, the bond length is change 12 % longest. An in good agreement with theoretical doping RE concentration increases, the edge of energy level shifted towards to make the band gap narrow which is allow the optical transitions and help to improve the optical performance of GaN. The RE doped GaN is potentially applicable for various color of LED with lower energy consumption and potentially energy saving application
Liu, Qing-Lu; Zhao, Zong-Yan; Yi, Jian-Hong
2018-05-07
For photocatalytic applications, the response of a material to the solar spectrum and its redox capabilities are two important factors determined by the band gap and band edge position of the electronic structure of the material. The crystal structure and composition of the photocatalyst are fundamental for determining the above factors. In this article, we examine the functional material Ta-O-N as an example of how to discuss relationships among these factors in detail with the use of theoretical calculations. To explore how the crystal structure and composition influence the photocatalytic performance, two groups of Ta-O-N materials were considered: the first group included ε-Ta 2 O 5 , TaON, and Ta 3 N 5 ; the second group included β-Ta 2 O 5 , δ-Ta 2 O 5 , ε-Ta 2 O 5 , and amorphous-Ta 2 O 5 . Calculation results indicated that the band gap and band edge position are determined by interactions between the atomic core and valence electrons, the overlap of valence electronic states, and the localization of valence states. Ta 3 N 5 and TaON are suitable candidates for efficient photocatalysts owing to their photocatalytic water-splitting ability and good utilization efficiency of solar energy. δ-Ta 2 O 5 has a strong oxidation potential and a band gap suitable for absorbing visible light. Thus, it can be applied to photocatalytic degradation of most pollutants. Although a-Ta 2 O 5 , ε-Ta 2 O 5 , and β-Ta 2 O 5 cannot be directly used as photocatalysts, they can still be applied to modify conventional Ta-O-N photocatalysts, owing to their similar composition and structure. These calculation results will be helpful as reference data for analyzing the photocatalytic performance of more complicated Ta-O-N functional materials. On the basis of these findings, one could design novel Ta-O-N functional materials for specific photocatalytic applications by tuning the composition and crystal structure.
Large scale phononic metamaterials for seismic isolation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravantinos-Zafiris, N.; Sigalas, M. M.
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.
Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses
NASA Astrophysics Data System (ADS)
Souri, Dariush; Mohammadi, Mousa; Zaliani, Hamideh
2014-11-01
Ternary glass systems of the form xSb-(60- x) V2O5-40TeO2 (Sx glasses) with 0 ≤ x ≤ 15 (in mol. %) have been prepared by using the normal melt quenching technique. The optical absorption spectra of these glasses have been recorded within wavelength range of 190 — 1100 nm. The absorption spectrum fitting method was employed to obtain the energy band gap. In this method, only the measurement of absorbance spectrum of the glass is needed. The position of the absorption edge and therefore the optical band gap values were found to be depend on glass composition. Results show that the optical band gap is in the range 1.57 — 2.14 eV. For each sample, the width of the band tail was determined. The densities of present glasses were measured and the molar volumes were calculated. Also, some thermal properties such as glass transition temperature ( T g) and crystallization temperature (TCr) were obtained by using differential scanning calorimetry (DSC) technique, and from which the glass thermal stability S and glass forming tendency K gl were calculated. Results show that these glasses (specially for x ≥ 10 mol. %) have good stability and therefore good resistance against thermal shocks for technological applications in fiber devices. Also, T g values indicate the rigidity and packing of the samples increase with increasing the Sb concentration as a network modifier. [Figure not available: see fulltext.
Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.
Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin
2018-05-30
Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.
NASA Astrophysics Data System (ADS)
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xuncheng; He, Bo; Anderson, Christopher L.
Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugatedmore » polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.« less
Liu, Xuncheng; He, Bo; Anderson, Christopher L.; ...
2017-05-24
Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugatedmore » polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.« less
Electronic properties of prismatic modifications of single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.
2018-01-01
The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.
NASA Astrophysics Data System (ADS)
Samajdar, D. P.; Dhar, S.
2016-01-01
Valence Band Anticrossing (VBAC) Model is used to calculate the changes in band structure of Bi containing alloys such as InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix due to the incorporation of dilute concentrations of bismuth. The coupling parameter CBi which gives the magnitude of interaction of Bi impurity states with the LH, HH and SO sub bands in VBAC depends on the increase in the HH/LH related energy level EHH/LH+, location of the Bi related impurity level EBi and valence band offset ΔEVBM between the endpoint compounds in the corresponding III-V-Bi. The reduction in band gap as well as the enhancement of the spin-orbit splitting energy is well explained using this model and the calculated results are compared with the results of Virtual Crystal Approximation (VCA) and Density Functional Theory (DFT) calculations, as well as with the available experimental data and are found to have good agreement. The incorporation of Bi mainly perturbs the valence band due to the interaction of the Bi impurity states with the HH, LH and SO bands. The lowering of the conduction band minimum (CBM) due to VCA is added with the upward movement of the HH/LH bands to get the total reduction in band gap for the bismides. The valence band shifts of 31.9, 32.5, 20.8 and 12.4 meV/at%Bi for InP1-xBix, InAs1-xBix, InSb1-xBix and GaSb1-xBix respectively constitute 65, 76, 59 and 31% of the total band gap reduction and the rest is the contribution of the conduction band shift. The spin-orbit splitting energy also shows significant increase with the maximum change in InPBi and the minimum in InSbBi. The same is true for Ga containing bismides if we make a comparison with the available values for GaAsBi and GaPBi with that of GaSbBi. It has also been observed that the increase in splitting energy is greater in case of the bismides such as InAsBi, InPBi and GaAsBi than the bismides such as InSbBi and GaSbBi with the parent substrates having higher values of splitting energy. This may be due to the proximity of the Bi related impurity level EBi with the SO bands of InAs, InP and GaAs.
NASA Astrophysics Data System (ADS)
Rahman, Abeera; Shin, Young-Han
Recently many efforts have been paid to two-dimensional layered metal dichalcogenides (LMDs). Among them MoS2 has become a prototype LMD, and recent studies show surprising and rich new physics emerging in other van der Waals materials such as layered SnS2 [1-4]. SnS2 is a semiconducting earth-abundant material and Sn is a group IV element replacing the transition metal in MoS2. SnS2 shows new possibilities in various potential applications. However, the knowledge on basic properties of layered SnS2 is still not well understood. In this study, we consider two types of structures; 1T with P 3 m 1 (164) space group and 1H with P63 / mmc (194) space group. Our first principles calculations show that the 1T structure for SnS2 is more stable than the 1H structure whereas latter is more stable for MoS2. Moreover,in contrast to MoS2,SnS2 shows an indirect band gap both for 1T and 1H structures while 1T MoS2 is metallic and 1H has a direct band gap. We also study strain effect in the range of 0-10% on the band structure for monolayer and bilayer SnS2 (both for 1T and 1H structures).We find significant change in their band gaps. We also investigate the bilayer SnS2 with and without out-of-plane stress. This research was supported by Brain Korea 21 Plus Program and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2014M3A7B4049367, NRF-2014R1A2A1A1105089).
Doping and band gap control at poly(vinylidene fluoride)/graphene interface
NASA Astrophysics Data System (ADS)
Cai, Jia; Wang, Jian-Lu; Gao, Heng; Tian, Bobo; Gong, Shi-Jing; Duan, Chun-Gang; Chu, Jun-Hao
2018-05-01
Using the density-functional first-principles calculations, we investigate the electronic structures of poly(vinylidene fluoride) PVDF/graphene composite systems. The n- and p-doping of graphene can be flexibly switched by reversing the ferroelectric polarization of PVDF, without scarifying the intrinsic π-electron band dispersions of graphene that are usually undermined by chemical doping. The doping degree is also dependent on the thickness of PVDF layers, which will get saturated when PVDF is thick enough. In PVDF/bilayer graphene (BLG) heterostructure, the doping degree directly determines the local energy gap of the charged BLG. The sandwich structure of PVDF/BLG/PVDF can further enhance the local energy gap as well as keep the electric neutrality of BLG, which will be of great application potentials in graphene-based nanoelectronics.
Liao, Xiangbiao; Xiao, Hang; Lu, Xiaobo; Chen, Youlong; Shi, Xiaoyang; Chen, Xi
2018-02-23
A new phosphorous allotrope, closed-edged bilayer phosphorene nanoribbon, is proposed via radially deforming armchair phosphorene nanotubes. Using molecular dynamics simulations, the transformation pathway from round PNTs falls into two types of collapsed structures: arc-like and sigmoidal bilayer nanoribbons, dependent on the number of phosphorene unit cells. The fabricated nanoribbions are energetically more stable than their parent nanotubes. It is also found via ab initio calculations that the band structure along tube axis substantially changes with the structural transformation. The direct-to-indirect transition of band gap is highlighted when collapsing into the arc-like nanoribbons but not the sigmoidal ones. Furthermore, the band gaps of these two types of nanoribbons show significant size-dependence of the nanoribbon width, indicative of wider tunability of their electrical properties.
NASA Astrophysics Data System (ADS)
Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo
2018-03-01
Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.
NASA Astrophysics Data System (ADS)
Shinozuka, Yuzo; Oda, Masato
2015-09-01
The interacting quasi-band model proposed for electronic states in simple alloys is extended for compound semiconductor alloys with general lattice structures containing several atoms per unit cell. Using a tight-binding model, a variational electronic wave function for quasi-Bloch states yields a non-Hermitian Hamiltonian matrix characterized by matrix elements of constituent crystals and concentration of constituents. Solving secular equations for each k-state yields the alloy’s energy spectrum for any type of randomness and arbitrary concentration. The theory is used to address III-V (II-VI) alloys with a zincblende lattice with crystal band structures well represented by the sp3s* model. Using the resulting 15 × 15 matrix, the concentration dependence of valence and conduction bands is calculated in a unified scheme for typical alloys: Al1-xGaxAs, GaAs1-xPx, and GaSb1-xPx. Results agree well with experiments and are discussed with respect to the concentration dependence, direct-indirect gap transition, and band-gap-bowing origin.
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Design of ultra compact polarization splitter based on complete photonic band gap
NASA Astrophysics Data System (ADS)
Sinha, R. K.; Nagpal, Yogita
2005-11-01
Certain select structures in photonic crystals (PhCs) exhibit complete photonic band gap i.e. a frequency region where the photonic band gaps for both polarizations (i.e. transverse electric and transverse magnetic modes) exist and overlap. One of the most fundamental applications of the photonic band gap structures is the design of photonic crystal waveguides, which can be made by inserting linear defects in the photonic crystal structures. By setting closely two parallel 2D PhC waveguides, a directional waveguide coupler can be designed, which can be used to design a polarization splitter. In this paper we design a polarization splitter in a photonic crystal structure composed of two dimensional honeycomb pattern of dielectric rods in air. This photonic crystal structure exhibits a complete photonic band gap that extends from λ = 1.49 μm to λ = 1.61 μm, where lambda is the wavelength in free space, providing a large bandwidth of 120 nm. A polarization splitter can be made by designing a polarization selective coupler. The coupling lengths at various wavelengths for both polarizations have been calculated using the Finite Difference Time Domain method. It has been shown that the coupling length, for TE polarization is much smaller as compared to that for the TM polarization. This principle is used to design a polarization splitter of length 32 μm at λ = 1.55 μm. Further, the spectral response of the extinction ratios for both polarizations in the two waveguides at propagation distance of 32 μm has been studied.
DFT+U Study of Chemical Impurities in PuO 2
Hernandez, Sarah C.; Holby, Edward F.
2016-05-24
In this paper, we employ density functional theory to explore the effects of impurities in the fluorite crystal structure of PuO 2. The impurities that were considered are known impurities that exist in metallic δ-phase Pu, including H, C, Fe, and Ga. These impurities were placed at various high-symmetry sites within the PuO 2 structure including an octahedral interstitial site, an interstitial site with coordination to two neighboring O atoms, an O substitutional site, and a Pu substitutional site. Incorporation energies were calculated to be energetically unfavorable for all sites except the Pu substitutional site. When impurities were placed inmore » a Pu substitutional site, complexes incorporating the impurities and O formed within the PuO 2 structure. The observed defect-oxygen structures were OH, CO 3, FeO 5, and GaO 3. The presence of these defects led to distortion of the surrounding O atoms within the structure, producing long-range disorder of O atoms. In contrast, perturbations of Pu atoms had a relatively short-range effect on the relaxed structures. These effects are demonstrated via radial distribution functions for O and Pu vacancies. Calculated electronic structure revealed hybridization of the impurity atom with the O valence states and a relative decrease in the Pu 5f states. Minor differences in band gaps were observed for the defected PuO 2 structures containing H, C, and Ga. Finally, Fe-containing structures, however, were calculated to have a significantly decreased band gap, where the implementation of a Hubbard U parameter on the Fe 3d orbitals will maintain the calculated PuO 2 band gap.« less
Sulfur-doped Graphene Nanoribbons with a Sequence of Distinct Band Gaps
NASA Astrophysics Data System (ADS)
Du, Shi-Xuan; Zhang, Yan-Fang; Zhang, Yi; Berger, Reinhard; Feng, Xinliang; Mullen, Klaus; Lin, Xiao; Zhang, Yu-Yang; Pantelides, Sokrates T.; Gao, Hong-Jun
Unlike free-standing graphene, graphene nanoribbons (GNRs) can possess semiconducting band gap. However, achieving such control has been a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently achieved by surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. By mixing two different monomers, GNR heterojunctions can in principle be fabricated. Here we report fabrication and characterization of chevron-type GNRs by using sulfur-substituted oligophenylene monomers to achieve GNRs and related heterostructures for the first time. Importantly, our first-principles calculations show that the band gaps of GNRs can be tailored by different S configurations in cyclodehydrogenated isomers through debromination and intramolecular cyclodehydrogenation. This feature should open up new avenues to create multiple GNR heterojunctions by engineering the sulfur configurations. These predictions have been confirmed by Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). The unusual sequence of intraribbon heterojunctions may be useful for nanoscale optoelectronic applications based on quantum dots
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Phuong, Le T. T.; Nguyen, Chuong V.
2018-06-01
The effect of strain on the structural and electronic properties of monolayer phosphorene is studied by using first-principle calculations based on the density functional theory. The intra- and inter-bond length and bond angle for monolayer phosphorene is also evaluated. The intra- and inter-bond length and the bond angle for phosphorene show an opposite tendency under different directions of the applied strain. At the equilibrium state, monolayer phosphorene is a semiconductor with a direct band gap at the Γ-point of 0.91 eV. A direct-indirect band gap transition is found in monolayer phosphorene when both the compression and tensile strain are simultaneously applied along both zigzag and armchair directions. Under the applied compression strain, a semiconductor-metal transition for monolayer phosphorene is observed at -13% and -10% along armchair and zigzag direction, respectively. The direct-indirect and phase transition will largely constrain application of monolayer phosphorene to electronic and optical devices.
High pressure structural stability of the Na-Te system
NASA Astrophysics Data System (ADS)
Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian
2018-03-01
The ab initio evolutionary algorithm is used to search for all thermodynamically stable Na-Te compounds at extreme pressure. In our calculations, several new structures are discovered at high pressure, namely, Imma Na2Te, Pmmm NaTe, Imma Na8Te2 and P4/mmm NaTe3. Like the known structures of Na2Te (Fm-3m, Pnma and P63/mmc), the Pmmm NaTe, Imma Na8Te2 and P4/mmm NaTe3 structures also show semiconductor properties with band-gap decreases when pressure increased. However, we find that the band-gap of Imma Na2Te structure increases with pressure. We presume that the result may be caused by the increasing of splitting between Te p states and Na s, Na p and Te d states. Furthermore, we think that the strong hybridization between Na p state and Te d state result in the band gap increasing with pressure.
Thermoelectric properties of layered NaSbSe2.
Putatunda, Aditya; Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Singh, David J
2018-06-06
We investigate ordered monoclinic NaSbSe 2 as a thermoelectric using first principles calculations. We find that from an electronic point of view, ordered and oriented n-type NaSbSe 2 is comparable to the best known thermoelectric materials. This phase has a sufficiently large band gap for thermoelectric and solar absorber applications in contrast to the disordered phase which has a much narrower gap. The electronic structure shows anisotropic, non-parabolic bands. The results show a high Seebeck coefficient in addition to direction dependent high conductivity. The electronic structure quantified by an electron fitness function is very favorable, especially in the n-type case.
Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2018-05-01
We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.
Thermoelectric properties of layered NaSbSe2
NASA Astrophysics Data System (ADS)
Putatunda, Aditya; Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Singh, David J.
2018-06-01
We investigate ordered monoclinic NaSbSe2 as a thermoelectric using first principles calculations. We find that from an electronic point of view, ordered and oriented n-type NaSbSe2 is comparable to the best known thermoelectric materials. This phase has a sufficiently large band gap for thermoelectric and solar absorber applications in contrast to the disordered phase which has a much narrower gap. The electronic structure shows anisotropic, non-parabolic bands. The results show a high Seebeck coefficient in addition to direction dependent high conductivity. The electronic structure quantified by an electron fitness function is very favorable, especially in the n-type case.
Bonding between graphene and MoS 2 monolayers without and with Li intercalation
Ahmed, Towfiq; Modine, N. A.; Zhu, Jian-Xin
2015-07-27
We performed density functional theory (DFT) calculations for a bi-layered heterostructure combining a graphene layer with a MoS 2 layer with and without intercalated Li atoms. Our calculations demonstrate the importance of the van der Waals (vdW) interaction, which is crucial for forming stable bonding between the layers. Our DFT calculation correctly reproduces the linear dispersion, or Dirac cone, feature at the Fermi energy for the isolated graphene monolayer and the band gap for the MoS 2 monolayer. For the combined graphene/MoS 2 bi-layer, we observe interesting electronic structure and density of states (DOS) characteristics near the Fermi energy, showingmore » both the gap like features of the MoS 2 layer and in-gap states with linear dispersion contributed mostly by the graphene layer. Our calculated total DOS in this vdW heterostructure reveals that the graphene layer significantly contributes to pinning the Fermi energy at the center of the band gap of MoS 2. We also find that intercalating Li ions in between the layers of the graphene/MoS2 heterostructure enhances the binding energy through orbital hybridizations between cations (Li adatoms) and anions (graphene and MoS 2 monolayers). Moreover, we calculate the dielectric function of the Li intercalated graphene/MoS 2 heterostructure, the imaginary component of which can be directly compared with experimental measurements of optical conductivity in order to validate our theoretical prediction. We observe sharp features in the imaginary component of the dielectric function, which shows the presence of a Drude peak in the optical conductivity, and therefore metallicity in the lithiated graphene/MoS 2 heterostructure.« less
A Kronig-Penney Model of Salts of DNA
Rosen, Philip
1968-01-01
A one dimensional Kronig-Penney model for a salt like Na DNA is given. The helical periodicity is treated in a manner suggested by Tinoco and Woody. Using data on the semiconductor band gap, we estimate the strength of the potential barrier. The energy limits of the ten bands filled by 20π electrons per unit cell are calculated and exhibited in Table I. PMID:5643271
Optical absorption in disordered monolayer molybdenum disulfide
NASA Astrophysics Data System (ADS)
Ekuma, C. E.; Gunlycke, D.
2018-05-01
We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.
Experimental and theoretical XANES of CdSxSe1-x nanostructures
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Murphy, M. W.; Liu, L.; Hu, Y.; Sham, T. K.
2014-03-01
The morphology and electronic properties of the CdSxSe1-x nanostructures with varying alloy compositions have been acquired experimentally by X-ray Absorption Near-Edge Structures (XANES) at the Cd, Se and S K-edge and L3,2-edges. The theoretical XANES spectra have been calculated using the density functional approach. It is found that the optical band-gap emission of these CdSxSe1-x nano-ribbons can be tuned to the range between that of pure CdS (2.43 eV) and CdSe (1.74 eV) by changing the S and Se ratio. This gradual shift in (optical and structural) properties from CdS character to CdSe character is also seen in the electronic structures. The densities of states and band structures show that with the addition of Se replacing S in CdS, the band gap shrinks. The K and L3,2 edges of Cd, Se, and S of the XANES structures of both the CdS and CdSe in B4 (wurtzite) and B3 (cubic zinc-blende) structures have been calculated and compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuaibu, Alhassan; Department of Physics, Faculty of Science, Nigerian Defence Academy, P.M., 2109. Kaduna Nigeria; Rahman, Md. Mahmudur
In this work, we have evaluated the quasiparticle energies of ternary tetradymite Bi{sub 2}Te{sub 2}Se and Bi{sub 2}Te{sub 2}S using first-principles calculation within the G{sub 0}W{sub 0} methods. We have also performed a broad convergence tests in order to investigate the quasiparticle corrections to the structural parameters and to the semi core d electrons in both of the compounds. For each case, we have calculated the many-body corrections within a one-shot GW method of the compounds. Our results have shown that for Bi{sub 2}Te{sub 2}Se the GW corrections increase the band gap to almost 10%, and for specific atomic positions,more » the band structure shows a close value to the experimental one. For Bi{sub 2}Te{sub 2}S, despite increase in the band gap due to the GW corrections, possibility of bulk resistivity that can be significant for photovoltaic applications was observed.« less
The size effect to O2- -Ce4+ charge transfer emission and band gap structure of Sr2 CeO4.
Wang, Wenjun; Pan, Yu; Zhang, Wenying; Liu, Xiaoguang; Li, Ling
2018-04-24
Sr 2 CeO 4 phosphors with different crystalline sizes were synthesized by the sol-gel method or the solid-state reaction. Their crystalline size, luminescence intensity of O 2- -Ce 4+ charge transfer and energy gaps were obtained through the characterization by X-ray diffraction, photoluminescence spectra, as well as UV-visible diffuse reflectance measurements. An inverse relationship between photoluminescence (PL) spectra and crystalline size was observed when the heating temperature was from 1000°C to 1300°C. In addition, band energy calculated for all samples showed that a reaction temperature of 1200°C for the solid-state method and 1100°C for sol-gel method gave the largest values, which corresponded with the smallest crystalline size. Correlation between PL intensity and crystalline size showed an inverse relationship. Band structure, density of states and partial density of states of the crystal were calculated to analyze the mechanism using the cambrige sequential total energy package (CASTEP) module integrated with Materials Studio software. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won
2016-12-01
Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.
Hydrogen storage in lithium hydride: A theoretical approach
NASA Astrophysics Data System (ADS)
Banger, Suman; Nayak, Vikas; Verma, U. P.
2018-04-01
First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.
Research on local resonance and Bragg scattering coexistence in phononic crystal
NASA Astrophysics Data System (ADS)
Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong
2017-04-01
Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.
AFM investigation and optical band gap study of chemically deposited PbS thin films
NASA Astrophysics Data System (ADS)
Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.
2016-08-01
The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.
Investigation of structural, optical and electrical properties of Co3O4 nanoparticles
NASA Astrophysics Data System (ADS)
Bhargava, Richa; Khan, Shakeel; Ahmad, Naseem; Ansari, Mohd Mohsin Nizam
2018-05-01
In the current work, we report the synthesis of Cobalt oxide (Co3O4) NPs (NPs) by co-precipitation method. The structural analysis was confirmed by using X-ray diffractometer (XRD) which shows that the Co3O4 NPs have cubic phase. The average crystallite size and the lattice parameter were calculated for Co3O4 NPs. The functional groups of the as-synthesized sample were examined by Fourier transform infrared spectroscopy (FTIR). The optical band gap of Co3O4 NPs was estimated by using UV diffuse reflectance spectroscopy and the Band gap was evaluated by using Tauc relation. The temperature dependence of dielectric constant and dielectric loss were studied over a range of temperature 50-300 °C. The DC electrical resistivity of Co3O4 NPs shows a semiconducting behaviour and the value of activation energy was calculated by using Arrhenius equation.
Optical properties of zinc lead tellurite glasses
NASA Astrophysics Data System (ADS)
Alazoumi, Salah Hassan; Aziz, Sidek Abdul; El-Mallawany, R.; Aliyu, Umar Sa'ad; Kamari, Halimah Mohamed; Zaid, Mohd Hafiz Mohd Mohd; Matori, Khamirul Amin; Ushah, Abdulbaset
2018-06-01
Tellurite glass systems in the form of [ZnO]x [(TeO2)0.7-(PbO)0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280-4000 cm-1) and UV-Vis (200-800 nm) spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD) were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41-3.94 eV and 2.40-2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition.
Stanene cyanide: a novel candidate of Quantum Spin Hall insulator at high temperature
Ji, Wei-xiao; Zhang, Chang-wen; Ding, Meng; Li, Ping; Li, Feng; Ren, Miao-juan; Wang, Pei-ji; Hu, Shu-jun; Yan, Shi-shen
2015-01-01
The search for quantum spin Hall (QSH) insulators with high stability, large and tunable gap and topological robustness, is critical for their realistic application at high temperature. Using first-principle calculations, we predict the cyanogen saturated stanene SnCN as novel topological insulators material, with a bulk gap as large as 203 meV, which can be engineered by applying biaxial strain and electric field. The band topology is identified by Z2 topological invariant together with helical edge states, and the mechanism is s-pxy band inversion at G point induced by spin-orbit coupling (SOC). Remarkably, these systems have robust topology against chemical impurities, based on the calculations on halogen and cyano group co-decorated stanene SnXxX′1−x (X,X′ = F, Cl, Br, I and CN), which makes it an appropriate and flexible candidate material for spintronic devices. PMID:26688269
Tan, Chih-Shan; Huang, Michael Hsuan-Yi
2018-05-21
To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Yan; Xu, Xiaoming; Li, Yanzhang; Ding, Cong; Wu, Jing; Lu, Anhuai; Ding, Hongrui; Qin, Shan; Wang, Changqiu
2018-05-01
Rutile is the most common and stable form of TiO2 that ubiquitously existing on Earth and other terrestrial planets like Mars. Semiconducting mineral such as rutile-based photoredox reactions have been considered to play important roles in geological times. However, due to the inherent complexity in chemistry, the precision determination on band structure of natural rutile and the theoretical explanation on its solar-driven photochemistry have been hardly seen yet. Considering the multiple minor and trace elements in natural rutile, we firstly obtained the single-crystal crystallography, mineralogical composition and defects characteristic of the rutile sample by using both powder and single crystal X-ray diffraction, electron microprobe analysis and X-ray photoelectron spectroscopy. Then, the band gap was accurately determined by synchrotron-based O K-edge X-ray absorption and emission spectra, which was firstly applied to natural rutile due to its robustness on compositions and defects. The absolute band edges of the rutile sample was calculated by considering the electronegativity of the atoms, band gap and point of zero charge. Besides, after detecting the defect energy levels by photoluminescence spectra, we drew the schematic band structure of natural rutile. The band gap (2.7 eV) of natural rutile was narrower than that of synthetic rutile (3.0 eV), and the conduction and valence band edges of natural rutile at pH = pHPZC were determined to be -0.04 V and 2.66 V (vs. NHE), respectively. The defect energy levels located at nearly the middle position of the forbidden band. Further, we used theoretical calculations to verify the isomorphous substitution of Fe and V for Ti gave rise to the distortion of TiO6 octahedron and created vacancy defects in natural rutile. Based on density functional theory, the narrowed band gap was interpreted to the contribution of Fe-3d and V-3d orbits, and the defect energy state was formed by hybridization of O-2p and Fe/V/Ti-3d orbits in the forbidden band. Therefore, excitons can be created under visible light. The conduction band electrons and valence band holes enabled the photoreduction of CO2 to organic molecules (e.g., acetic acid and CH4) and photooxidative generation of oxidants (e.g., radOH, O2 and ClO4-) via rutile photocatalysis, respectively. This study underlies the capability of natural semiconducting minerals in solar energy utilization and the implications of their photocatalysis in both the origin of primitive life on Earth and formation of modern environments on Mars.
Zhang, Run-wu; Zhang, Chang-wen; Ji, Wei-xiao; Li, Sheng-shi; Yan, Shi-shen; Li, Ping; Wang, Pei-ji
2016-01-01
Group III-V films are of great importance for their potential application in spintronics and quantum computing. Search for two-dimensional III-V films with a nontrivial large-gap are quite crucial for the realization of dissipationless transport edge channels using quantum spin Hall (QSH) effects. Here we use first-principles calculations to predict a class of large-gap QSH insulators in functionalized TlSb monolayers (TlSbX2; (X = H, F, Cl, Br, I)), with sizable bulk gaps as large as 0.22 ~ 0.40 eV. The QSH state is identified by Z2 topological invariant together with helical edge states induced by spin-orbit coupling (SOC). Noticeably, the inverted band gap in the nontrivial states can be effectively tuned by the electric field and strain. Additionally, these films on BN substrate also maintain a nontrivial QSH state, which harbors a Dirac cone lying within the band gap. These findings may shed new light in future design and fabrication of QSH insulators based on two-dimensional honeycomb lattices in spintronics. PMID:26882865
Zhang, Run-wu; Zhang, Chang-wen; Ji, Wei-xiao; Li, Sheng-shi; Yan, Shi-shen; Li, Ping; Wang, Pei-ji
2016-02-17
Group III-V films are of great importance for their potential application in spintronics and quantum computing. Search for two-dimensional III-V films with a nontrivial large-gap are quite crucial for the realization of dissipationless transport edge channels using quantum spin Hall (QSH) effects. Here we use first-principles calculations to predict a class of large-gap QSH insulators in functionalized TlSb monolayers (TlSbX2; (X = H, F, Cl, Br, I)), with sizable bulk gaps as large as 0.22~0.40 eV. The QSH state is identified by Z2 topological invariant together with helical edge states induced by spin-orbit coupling (SOC). Noticeably, the inverted band gap in the nontrivial states can be effectively tuned by the electric field and strain. Additionally, these films on BN substrate also maintain a nontrivial QSH state, which harbors a Dirac cone lying within the band gap. These findings may shed new light in future design and fabrication of QSH insulators based on two-dimensional honeycomb lattices in spintronics.
Converged G W quasiparticle energies for transition metal oxide perovskites
NASA Astrophysics Data System (ADS)
Ergönenc, Zeynep; Kim, Bongjae; Liu, Peitao; Kresse, Georg; Franchini, Cesare
2018-02-01
The ab initio calculation of quasiparticle (QP) energies is a technically and computationally challenging problem. In condensed matter physics, the most widely used approach to determine QP energies is the G W approximation. Although the G W method has been widely applied to many typical semiconductors and insulators, its application to more complex compounds such as transition metal oxide perovskites has been comparatively rare, and its proper use is not well established from a technical point of view. In this work, we have applied the single-shot G0W0 method to a representative set of transition metal oxide perovskites including 3 d (SrTiO3, LaScO3, SrMnO3, LaTiO3, LaVO3, LaCrO3, LaMnO3, and LaFeO3), 4 d (SrZrO3, SrTcO3, and Ca2RuO4 ), and 5 d (SrHfO3, KTaO3, and NaOsO3) compounds with different electronic configurations, magnetic orderings, structural characteristics, and band gaps ranging from 0.1 to 6.1 eV. We discuss the proper procedure to obtain well-converged QP energies and accurate band gaps within single-shot G0W0 by comparing the conventional approach based on an incremental variation of a specific set of parameters (number of bands, energy cutoff for the plane-wave expansion and number of k points) and the basis-set extrapolation scheme [J. Klimeš et al., Phys. Rev. B 90, 075125 (2014), 10.1103/PhysRevB.90.075125]. Although the conventional scheme is not supported by a formal proof of convergence, for most cases it delivers QP energies in reasonably good agreement with those obtained by the basis-set correction procedure and it is by construction more useful for calculating band structures. In addition, we have inspected the difference between the adoption of norm-conserving and ultrasoft potentials in G W calculations and found that the norm violation for the d shell can lead to less accurate results in particular for charge-transfer systems and late transition metals. A minimal statistical analysis indicates that the correlation of the G W data with the density functional theory gap is more robust than the correlation with the experimental gaps; moreover, we identify the static dielectric constant as alternative useful parameter for the approximation of G W gap in high-throughput automatic procedures. Finally, we compute the QP band structure and spectra within the random phase approximation and compare the results with available experimental data.
Formation of Degenerate Band Gaps in Layered Systems
Ignatov, Anton I.; Merzlikin, Alexander M.; Levy, Miguel; Vinogradov, Alexey P.
2012-01-01
In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed. PMID:28817024
Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S
2013-05-14
We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material has a considerable optical anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, G.W.; Dye, D.H.; Karim, D.P.
1987-02-01
The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less
NASA Astrophysics Data System (ADS)
Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.
1987-02-01
The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.
NASA Astrophysics Data System (ADS)
Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.
2016-12-01
In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.
NASA Astrophysics Data System (ADS)
El Mrabet, R.; Kassou, S.; Tahiri, O.; Belaaraj, A.; Guionneau, P.
2016-10-01
In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index ( n), the extinction coefficient ( k), the absorption coefficient (α), the real and imaginary dielectric permittivity parts (ɛr,ɛi)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.
NASA Astrophysics Data System (ADS)
Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.
2018-06-01
In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.
Ahuja, B L; Jain, Pradeep; Sahariya, Jagrati; Heda, N L; Soni, Pramod
2013-07-11
The first-ever electron momentum density (EMD) measurements of explosive materials, namely, RDX (1,3,5-trinitro-1,3,5-triazacyclohexane, (CH2-N-NO2)3) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane, (CH2-N-NO2)4), have been reported using a 740 GBq (137)Cs Compton spectrometer. Experimental Compton profiles (CPs) are compared with the EMDs derived from linear combination of atomic orbitals with density functional theory. It is found that the CPs deduced from generalized gradient approximation (GGA) with Wu-Cohen exchange energies give a better agreement with the corresponding experimental profiles than those from local density approximation and other schemes of GGA. Further, Mulliken population, energy bands, partial and total density of states, and band gap have also been reported using GGA calculations. Present ground state calculations unambiguously show large band gap semiconductor nature of both RDX and HMX. A similar type of bonding in these materials is uniquely established using Compton data and density of states. It is also outstandingly consistent with the Mulliken population, which predicts almost equal amount of charge transfer (0.84 and 0.83 e(-)) from H1 + H2 + N2 to C1 + N1 + O1 + O2 in both the explosives.
Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites
NASA Astrophysics Data System (ADS)
Musari, Abolore A.; Joubert, Daniel P.; Olowofela, Joseph A.; Akinwale, Adio T.; Adebayo, Gboyega A.
2017-12-01
Pyrites (FeS2) are solid minerals that are found abundantly in Nigeria and are easy to prepare in laboratories. In this work, FeS2 is studied extensively in its pure state as well as when iron is substitutionally doped with zinc and calcium at concentrations of 0, 0.25, 0.5, 0.75 and 1. Using density functional theory, the eectronic, dynamic and thermodynamic properties were calculated. The results revealed that the lattice parameters and bulk modulus increases with increasing concentration and the obtained values are in agreement with available experimental and theoretical values. Though pyrite, when doped with zinc, obeys Vegard's law, doping with calcium revealed pronounced deviation from this law. The calculated band structures showed that FeS2 has an indirect band gap whose size decreases after introducing zinc while doping with calcium increases the band gap. The phonon dispersion of the end members FeS2 and ZnS2 indicate that the systems are dynamically stable while CaS2 is dynamically unstate. Also, the thermodynamic properties of the pure and doped pyrites were calculated and the ranges of temperature at which the lattice and electronic degrees of freedom contribute to the specific heat capacity are presented.
NASA Astrophysics Data System (ADS)
Zheng, Z. D.; Wang, X. C.; Mi, W. B.
2017-10-01
The electronic structure of the strained g-C2N/XSe2 (X=Mo, W) van der Waals heterostructures are investigated by first-principles calculations. The g-C2N/MoSe2 heterostructure is an indirect band gap semiconductor at a strain from 0% to 8%, where its band gap is 0.66, 0.61, 0.73, 0.60 and 0.33 eV. At K point, the spin splitting is 186, 181, 39, 13 and 9 meV, respectively. For g-C2N/WSe2 heterostructures, the band gap is 0.32, 0.37, 0.42, 0.45 and 0.36 eV, and the conduction band minimum is shifted from Г-M region to K-Г region as the strain increases from 0% to 8%. Its spin splitting monotonically decreases as a strain raises to 8%, which is 445, 424, 261, 111 and 96 meV, respectively. Moreover, at a strain less than 4%, the conduction band mainly comes from g-C2N, but it comes from XSe2 (X=Mo, W) above 6%. Our results show that the g-C2N/XSe2 heterostructures have tunable electronic structures, which makes it a potential candidate for novel electronic devices.
Wang, Ruiqi; Zhang, Xian; He, Jianqiao; Bu, Kejun; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang
2018-02-05
Six isostructural antiperovskite-derived chalcohalides, Ba 2 MQ 3 X (M = As, Sb; Q = S, Se; X = Cl, Br, I), crystallizing in the space group Pnma, have been synthesized by solid-state reactions. The crystal structure features a 3D framework with the [XBa 5 ] 9+ disordered square pyramids as building blocks and [MQ 3 ] 3- units filling the interspace. [XBa 5 ] 9+ disordered square pyramids are edge-sharing along [010], derived from the fusing of the two pyramids in octahedral [XBa 6 ] 11+ . Surprisingly, Ba 2 AsS 3 X (X = Cl, Br, I) show almost the same optical band gap of 2.80 eV, and Ba 2 AsSe 3 X (X = Br, I) also have a similar band gap of 2.28 eV. The optical band gap of Ba 2 SbS 3 I is 2.64 eV. First-principles calculations reveal that the optical absorption is attributed to the transitions between Q np at the valence band maximum (VBM) and M np-Q np at the conduction band minimum (CBM). These compounds also possess interesting photoluminescence properties with splitting emission peaks on excitation at 200 nm.
Viscoelastic effect on acoustic band gaps in polymer-fluid composites
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.
2009-10-01
In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.
Quasiparticle semiconductor band structures including spin-orbit interactions.
Malone, Brad D; Cohen, Marvin L
2013-03-13
We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.
Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+.
Ogiegło, Joanna M; Katelnikovas, Arturas; Zych, Aleksander; Jüstel, Thomas; Meijerink, Andries; Ronda, Cees R
2013-03-28
The optical properties of gadolinium gallium aluminum garnet, Gd3(Ga,Al)5O12, doped with Ce(3+) are investigated as a function of the Ga/Al ratio, aimed at an improved understanding of the energy flow and luminescence quenching in these materials. A decrease of both the crystal field strength and band gap with increasing content of Ga(3+) is observed and explained by the geometrical influence of Ga(3+) on the crystal field splitting of the 5d level in line with theoretical work of Muñoz-García et al. ( uñoz-García, A. B.; Seijo, L. Phys. Rev. B 2010, 82, 184118 ). Thermal quenching results in shorter decay times as well as reduced emission intensities for all samples in the temperature range from 100 to 500 K. An activation energy for emission quenching is calculated from the data. The band gap of the host is measured upon Ga substitution and the decrease in band gap is related to Ga(3+) substitution into tetrahedral sites after all octahedral sites are occupied in the garnet material. Based on the change in band gap and crystal field splitting, band diagrams can be constructed explaining the low thermal quenching temperatures in the samples with high Ga content. The highest luminescence intensity is found for Gd3(Ga,Al)5O12 with 40% of Al(3+) replaced by Ga(3+).
Excitation Dependent Phosphorous Property and New Model of the Structured Green Luminescence in ZnO
NASA Astrophysics Data System (ADS)
Ye, Honggang; Su, Zhicheng; Tang, Fei; Wang, Mingzheng; Chen, Guangde; Wang, Jian; Xu, Shijie
2017-02-01
The copper induced green luminescence (GL) with two sets of fine structures in ZnO crystal has been found for several decades (i.e., R. Dingle, Phys. Rev. Lett. 23, 579 (1969)), but the physical origin of the doublet still remains as an open question up to now. In this paper, we provide new insight into the mechanism of the structured GL band in terms of new experimental findings and theoretical calculations. It is found, for the first time, that the GL signal exhibits persistent afterglow for tens of minutes after the switch-off of below-band-gap excitation light but it cannot occur under above-band-gap excitation. Such a phosphorous property may be interpreted as de-trapping and feeding of electrons from a shallow trapping level via the conduction band to the Cu-related luminescence centers where the Cu3+ ion is proposed to work as the final state of the GL emission. From first-principles calculation, such a Cu3+ ion in wurtzite ZnO prefers a high spin 3d8 state with two non-degenerated half-filled orbitals due to the Jahn-Teller effect, probably leading to the double structures in photoluminescence spectrum. Therefore, this model gives a comprehensively new understanding on the mechanism of the structured GL band in ZnO.
NASA Astrophysics Data System (ADS)
Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.
2018-05-01
Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.