Sample records for band gap modification

  1. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  2. Energy band gaps in graphene nanoribbons with corners

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, Dominik; Durajski, Artur P.; Khater, Antoine; Ghader, Doried

    2016-05-01

    In the present paper, we study the relation between the band gap size and the corner-corner length in representative chevron-shaped graphene nanoribbons (CGNRs) with 120° and 150° corner edges. The direct physical insight into the electronic properties of CGNRs is provided within the tight-binding model with phenomenological edge parameters, developed against recent first-principle results. We show that the analyzed CGNRs exhibit inverse relation between their band gaps and corner-corner lengths, and that they do not present a metal-insulator transition when the chemical edge modifications are introduced. Our results also suggest that the band gap width for the CGNRs is predominantly governed by the armchair edge effects, and is tunable through edge modifications with foreign atoms dressing.

  3. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  4. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.

  5. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    NASA Astrophysics Data System (ADS)

    Jiang, F. D.; Feng, J. Y.

    2008-02-01

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.

  6. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  7. Modification in band gap of zirconium complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  8. Effects of electric and magnetic fields on the electronic properties of zigzag carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh; Ahmadi, Eghbal

    2012-04-01

    We have investigated the electronic properties of zigzag CNTs and BNNTs under the external transverse electric field and axial magnetic field, using tight binding approximation. It was found that after switching on the electric and magnetic fields, the band modification such as distortion of the degeneracy, change in energy dispersion, subband spacing and band gap size reduction occurs. The band gap of zigzag BNNTs decreases linearly with increasing the electric field strength but the band gap variation for CNTs increases first and later decreases (Metallic) or first hold constant and then decreases (semiconductor). For type (II) CNTs, at a weak magnetic field, by increasing the electric field strength, the band gap remains constant first and then decreases and in a stronger magnetic field the band gap reduction becomes parabolic. For type (III) CNTs, in any magnetic field, the band gap increases slowly until reaches a maximum value and then decreases linearly. Unlike to CNTs, the magnetic field has less effects on the BNNTs band gap variation.

  9. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  10. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.S.; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090; Yang, J.

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reducemore » the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.« less

  11. A self-sacrifice template route to iodine modified BiOIO3: band gap engineering and highly boosted visible-light active photoreactivity.

    PubMed

    Feng, Jingwen; Huang, Hongwei; Yu, Shixin; Dong, Fan; Zhang, Yihe

    2016-03-21

    The development of high-performance visible-light photocatalysts with a tunable band gap has great significance for enabling wide-band-gap (WBG) semiconductors visible-light sensitive activity and precisely tailoring their optical properties and photocatalytic performance. In this work we demonstrate the continuously adjustable band gap and visible-light photocatalysis activation of WBG BiOIO3via iodine surface modification. The iodine modified BiOIO3 was developed through a facile in situ reduction route by applying BiOIO3 as the self-sacrifice template and glucose as the reducing agent. By manipulating the glucose concentration, the band gap of the as-prepared modified BiOIO3 could be orderly narrowed by generation of the impurity or defect energy level close to the conduction band, thus endowing it with a visible light activity. The photocatalytic assessments uncovered that, in contrast to pristine BiOIO3, the modified BiOIO3 presents significantly boosted photocatalytic properties for the degradation of both liquid and gaseous contaminants, including Rhodamine B (RhB), methyl orange (MO), and ppb-level NO under visible light. Additionally, the band structure evolution as well as photocatalysis mechanism triggered by the iodine surface modification is investigated in detail. This study not only provides a novel iodine surface-modified BiOIO3 for environmental application, but also provides a facile and general way to develop highly efficient visible-light photocatalysts.

  12. Modification of electronic properties of graphene by using low-energy K{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jingul; Lee, Paengro; Ryu, Mintae

    2016-05-02

    Despite its superb electronic properties, the semi-metallic nature of graphene with no band gap (E{sub g}) at the Dirac point has been a stumbling block for its industrial application. We report an improved means of producing a tunable band gap over other schemes by doping low energy (10 eV) potassium ions (K{sup +}) on single layer graphene formed on 6H-SiC(0001) surface, where the noble Dirac nature of the π-band remains almost unaltered. The changes in the π-band induced by K{sup +} ions reveal that the band gap increases gradually with increasing dose (θ) of the ions up to E{sub g} = 0.65 eV atmore » θ = 1.10 monolayers, demonstrating the tunable character of the band gap. Our core level data for C 1s, Si 2p, and K 2p suggest that the K{sup +}-induced asymmetry in charge distribution among carbon atoms drives the opening of band gap, which is in sharp contrast with no band gap when neutral K atoms are adsorbed on graphene. This tunable K{sup +}-induced band gap in graphene illustrates its potential application in graphene-based nano-electronics.« less

  13. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    NASA Astrophysics Data System (ADS)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-01

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  14. Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom(s) in rock-salt phase- a first principle based theoretical initiative

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.

  15. Electronic structure modifications and band gap narrowing in Zn0.95V0.05O

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Majid, S. S.; Rahman, F.; Shukla, D. K.; Phase, D. M.

    2018-04-01

    We present here, structural, optical and electronic structure studies on Zn0.95V0.05O, synthesized using solid state method. Rietveld refinement of x-ray diffraction pattern indicates no considerable change in the lattice of doped ZnO. The band gap of doped sample, as calculated by Kubelka-Munk transformed reflectance spectra, has been found reduced compared to pure ZnO. Considerable changes in absorbance in UV-Vis range is observed in doped sample. V doping induced decrease in band gap is supported by x-ray absorption spectroscopy measurements. It is experimentally confirmed that conduction band edge in Zn0.95V0.05O has shifted towards Fermi level than in pure ZnO.

  16. Nature of the abnormal band gap narrowing in highly crystalline Zn1-xCoxO nanorods

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2006-03-01

    Highly crystalline Zn1-xCoxO nanorods were prepared using a hydrothermal method. With increasing Co2+ dopant concentration, the lattice volume enlarged considerably, which is associated with the enhanced repulsive interactions of defect dipole moments on the wall surfaces. This lattice modification produced a significant decrease in band gap energies with its magnitude that followed the relationship, ΔEg=ΔE0•(e-x/B-1), where x and B are Co2+ dopant concentration and a constant, respectively. The abnormal band gap energies were indicated to originate from the sp-d exchange interactions that are proportional to the square of lattice volume.

  17. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene

    PubMed Central

    Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2014-01-01

    Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications. PMID:25327586

  18. Improved Photoactivity of Pyroxene Silicates by Cation Substitutions.

    PubMed

    Legesse, Merid; Park, Heesoo; El Mellouhi, Fedwa; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H

    2018-04-17

    We investigated the possibility of band structure engineering of pyroxene silicates with chemical formula A +1 B +3 Si 2 O 6 by proper cation substitution. Typically, band gaps of naturally formed pyroxene silicates such as NaAlSi 2 O 6 are quite high (≈5 eV). Therefore, it is important to find a way to reduce band gaps for these materials below 3 eV to make them usable for optoelectronic applications operating at visible light range of the spectrum. Using first-principles calculations, we found that appropriate substitutions of both A + and B 3+ cations can reduce the band gaps of these materials to as low as 1.31 eV. We also discuss how the band gap in this class of materials is affected by cation radii, electronegativity of constituent elements, spin-orbit coupling, and structural modifications. In particular, the replacement of Al 3+ in NaAlSi 2 O 6 by another trivalent cation Tl 3+ results in the largest band-gap reduction and emergence of intermediate bands. We also found that all considered materials are still thermodynamically stable. This work provides a design approach for new environmentally benign and abundant materials for use in photovoltaics and optoelectronic devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Origin of multiple band gap values in single width nanoribbons

    PubMed Central

    Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh

    2016-01-01

    Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172

  20. Effects of photocatalytic activity of metal and non-metal doped Tio2 for Hydrogen production enhancement - A Review

    NASA Astrophysics Data System (ADS)

    Nur Aqilah Sulaiman, Siti; Zaky Noh, Mohamad; Nadia Adnan, Nurul; Bidin, Noriah; Razak, Siti Noraiza Ab

    2018-05-01

    Titanium dioxide TiO2 is well-known materials that has become an efficient photocatalyst for environmental sustainability. Known as solar driven catalysis, TiO2 is considered as the most promising way to alleviate environmental issues caused by the combustion of fossil fuels and to meet worldwide demands for energy. Much effort has been concerned on TiO2 band gap modification to become a visible-light-activated photocatalysts of TiO2 because it can only be excited by UV light irradiation due to its large band gap. Modifications like metals and nonmetals doping has been proposed in the past decades. This reviews survey recent advanced preparation methods of doped-TiO2 including various types of doping methods for various types of dopants and provides general review on further modifications. The characterizations techniques used in order to determine the structural, morphological and optical properties of modified TiO2 is also discussed. Further, a new method of TiO2 modification is proposed in this mini review paper.

  1. Heptagraphene: Tunable dirac cones in a graphitic structure

    DOE PAGES

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-13

    Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a directmore » consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.« less

  2. Passive band-gap reconfiguration born from bifurcation asymmetry.

    PubMed

    Bernard, Brian P; Mann, Brian P

    2013-11-01

    Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.

  3. LASER APPLICATIONS AND OTHER ASPECTS OF QUANTUM ELECTRONICS Nonlinearity, optoelectronic properties, and their correlations for some mixed ternary defect chalcopyrites

    NASA Astrophysics Data System (ADS)

    Dutta Roy, S.

    2010-12-01

    The refractive index, optical nonlinearity, lowest energy band gap, and other related parameters of some mixed defect ternary chalcopyrites are calculated using Levine's bond charge model and its modification developed by Samanta et al. for multinary and mixed compounds. The dependence of the band gap energy on the average quantum number, molecular weight, and anion displacement parameter is shown for the first time, which will be very useful for designing various optoelectronic and nonlinear laser devices.

  4. First-principles studies of electric field effects on the electronic structure of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2016-10-01

    A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.

  5. Theoretical study of the influence of the electric field on the electronic properties of armchair boron nitride nanoribbon

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2014-11-01

    We have investigated the electronic properties of A-BNNRs in the external electric field using third nearest neighbor tight binding approximation including edge effects. We found that the dependence of on-site energy to the external electric field for edge atoms and center part atoms is different. By comparing the band structure in the different fields, several differences are clearly seen such as modification of energy dispersions, creation of additional band edge states and band gap reduction. By increasing the electric field the band gap reduces linearly until reaches zero and BNNRs with larger width are more sensitive than small ones. All changes in the band structure are directly reflected in the DOS spectrum. The numbers and the energies of the DOS peaks are dependent on the electric field strength.

  6. Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2010-11-01

    There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.

  7. Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Li, Yi; Fu, Yuqing; Ni, Bilian; Ding, Kaining; Chen, Wenkai; Wu, Kechen; Huang, Xin; Zhang, Yongfan

    2018-03-01

    The first principle calculations have been performed to investigate the geometries, band structures and optical absorptions of a series of MIL-125 MOFs, in which the 1,4-benzenedicarboxylate (BDC) linkers are modified by different types and amounts of chemical groups, including NH2, OH, and NO2. Our results indicate that new energy bands will appear in the band gap of pristine MIL-125 after introducing new group into BDC linker, but the components of these band gap states and the valence band edge position are sensitive to the type of functional group as well as the corresponding amount. Especially, only the incorporation of amino group can obviously decrease the band gap of MIL-125, and the further reduction of the band gap can be observed if the amount of NH2 is increased. Although MIL-125 functionalized by NH2 group exhibits relatively weak or no activity for the photocatalytic O2 evolution by splitting water, such ligand modification can effectively improve the efficiency in H2 production because now the optical absorption in the visible light region is significantly enhanced. Furthermore, the adsorption of water molecule becomes more favorable after introducing of amino group, which is also beneficial for the water-splitting reaction. The present study can provide theoretical insights to design new photocatalysts based on MIL-125.

  8. Hubbard physics in the PAW GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, J. M., E-mail: jamie.booth@rmit.edu.au; Smith, J. S.; Russo, S. P.

    It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M{sub 1} and M{sub 2} forms of vanadium dioxidemore » are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M{sub 1} VO{sub 2}, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M{sub 2} structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.« less

  9. Red photoluminescent property and modification of WO3:Eu3+ inverse opal for blue light converted LEDs

    NASA Astrophysics Data System (ADS)

    Ruan, Jiufeng; Yang, Zhengwen; Huang, Anjun; Chai, Zhuangzhuang; Qiu, Jianbei; Song, Zhiguo

    2018-01-01

    Blue light converted light-emitting diodes is of great significance as a candidate for next generation lighting. In this work, the WO3:Eu3+ inverse opal photonic crystals were prepared and their luminescence properties were studied. The results demonstrated that the main excitation peak of WO3:Eu3+ inverse opals were located at 465 nm. The red luminescence peak at the 613 nm was observed in the WO3:Eu3+ inverse opal upon 465 nm excitation, exhibiting better red color purity. The influence of photonic band gap on the photoluminescence of WO3:Eu3+ inverse opal was obtained. When the red luminescence peak is in the regions of the photonic band gap and the edge of the band-gap, the red luminescence suppression and enhancement was observed respectively. The WO3:Eu3+ inverse opals may be a promising candidate for the blue light converted LEDs.

  10. DFT investigations of the hydrogenation effect on silicene/graphene hybrids.

    PubMed

    Drissi, L B; Saidi, E H; Bousmina, M; Fassi-Fehri, O

    2012-12-05

    We report here a study on the effect of hydrogenation on a new one-atom thick material made of silicon and carbon atoms (silicene/graphene (SG) hybrid) within density functional theory. The structural, electronic and magnetic properties are investigated for non-, semi- and fully hydrogenated SG hybrids in a chair configuration and are compared with their parent materials. Calculations reveal that pure SG is a non-zero band gap semi-conductor with stable planar honeycomb structure. So mixing C and Si in an alternating manner gives another way to generate a finite band gap in one-atom thick materials. Fully hydrogenation makes the gap larger; however half chemical modification with H reduces the gap in favor of ferromagnetism order. The findings of this work open a wide spectrum of possibilities for designing SG-based nanodevices with controlled and tuned properties.

  11. Predicting a graphene-like WB4 nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin-orbit coupling.

    PubMed

    Zhang, Chunmei; Jiao, Yalong; Ma, Fengxian; Bottle, Steven; Zhao, Mingwen; Chen, Zhongfang; Du, Aijun

    2017-02-15

    The zero-band gap nature of graphene prevents it from performing as a semi-conductor in modern electronics. Although various graphene modification strategies have been developed to address this limitation, the very small band gap of these materials and the suppressed charge carrier mobility of the devices developed still significantly hinder graphene's applications. In this work, a two dimensional (2D) WB 4 monolayer, which exhibits a double Dirac cone, was conceived and assessed using density functional theory (DFT) methods, which would provide a sizable band gap while maintaining higher charge mobility with a Fermi velocity of 1.099 × 10 6 m s -1 . Strong spin-orbit-coupling can generate an observable band gap of up to 0.27 eV that primarily originates from the d-orbit of the heavy metal atom W; therefore a 2D WB 4 nanosheet would be operable at room temperature (T = 300 K) and would be a promising candidate to fabricate nanoelectronics in the upcoming post-silicon era. The phonon-spectrum and ab initio molecular dynamics calculations further demonstrate the dynamic and thermal stability of such nanosheets, thus, suggesting a potentially synthesizable Dirac material.

  12. Impact of nucleation of carbonaceous clusters on structural, electrical and optical properties of Cr+-implanted PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-09-01

    Specimens of polymethylmethacrylate (PMMA) have been implanted with 400 keV Cr+ ions at different ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The possible chemical reactions involved in the nucleation of conjugated carbonaceous clusters in implanted PMMA are discussed. Furthermore, impact of formation of carbonaceous clusters on structural, optical, electrical and morphological properties of implanted PMMA has been examined. The structural modifications in implanted PMMA are observed by Raman spectroscopy. The variation in optical band gap and Urbach energy is measured using UV-visible spectroscopic analysis. The effects of Cr+ ion implantation on electrical and morphological properties are investigated by four-probe apparatus and atomic force microscopy, respectively. The Raman spectroscopic analysis confirmed the formation of carbonaceous clusters with the transformation of implanted layer of PMMA into amorphous carbon. Simultaneously, the optical band gap of implanted PMMA has reduced from 3.13 to 0.85 eV. The increase in Urbach energy favors the decline in band gap together with the structural modification in implanted PMMA. As a result of Cr+ ion implantation, the electrical conductivity of PMMA has improved from 2.14 ± 0.06 × 10-10 S/cm (pristine) to 7.20 ± 0.36 × 10-6 S/cm. The AFM images revealed a decrease in surface roughness with an increment in ion fluence up to 5 × 1014 ions/cm2. The modification in the electrical, optical and structural properties makes the PMMA a promising candidate for its future utilization, as a semiconducting and optically active material, in various fields like plastic electronics and optoelectronic devices.

  13. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ram Sevak, E-mail: singh915@gmail.com

    2015-11-15

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to havemore » metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.« less

  14. Work Function Engineering of Graphene

    PubMed Central

    Garg, Rajni; Dutta, Naba K.; Roy Choudhury, Namita

    2014-01-01

    Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities. PMID:28344223

  15. Work Function Engineering of Graphene.

    PubMed

    Garg, Rajni; Dutta, Naba K; Choudhury, Namita Roy

    2014-04-03

    Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities.

  16. Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation

    NASA Astrophysics Data System (ADS)

    Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza

    2018-05-01

    The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.

  17. Electronic Band Structure Tuning of Highly-Mismatched-Alloys for Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Ting, Min

    Highly-mismatched alloys: ZnO1-xTe x and GaN1-xSb x are discussed within the context of finding the suitable material for a cost-effective Si-based tandem solar cell (SBTSC). SBTSC is an attractive concept for breaking through the energy conversion efficiency theoretical limit of a single junction solar cell. Combining with a material of 1.8 eV band gap, SBTSC can theoretically achieve energy conversion efficiency > 45%. ZnO and GaN are wide band gap semiconductors. Alloying Te in ZnO and alloying Sb in GaN result in large band gap reduction to < 2 eV from 3.3 eV and 3.4 eV respectively. The band gap reduction is majorly achieved by the upward shift of valence band (VB). Incorporating Te in ZnO modifies the VB of ZnO through the valence-band anticrossing (VBAC) interaction between localized Te states and ZnO VB delocalized states, which forms a Te-derived VB at 1 eV above the host VB. Similar band structure modification is resulted from alloying Sb in GaN. Zn1-xTex and GaN 1-xSbx thin films are synthesized across the whole composition range by pulsed laser deposition (PLD) and low temperature molecular beam epitaxy (LT-MBE) respectively. The electronic band edges of these alloys are measured by synchrotron X-ray absorption, emission, and the X-ray photoelectron spectroscopies. Modeling the optical absorption coefficient with the band anticrossing (BAC) model revealed that the Te and Sb defect levels to be at 0.99 eV and 1.2 eV above the VB of ZnO and GaN respectively. Electrically, Zn1-xTex is readily n-type conductive and GaN1-xSbx is strongly p-type conductive. A heterojunction device of p-type GaN 0.93Sb0.07 with n-type ZnO0.77Te0.93 upper cell (band gap at 1.8 eV) on Si bottom cell is proposed as a promising SBTSC device.

  18. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  19. Nanoscale charge distribution and energy band modification in defect-patterned graphene.

    PubMed

    Wang, Shengnan; Wang, Rui; Wang, Xiaowei; Zhang, Dongdong; Qiu, Xiaohui

    2012-04-21

    Defects were introduced precisely to exfoliated graphene (G) sheets on a SiO(2)/n(+) Si substrate to modulate the local energy band structure and the electron pathway using solution-phase oxidation followed by thermal reduction. The resulting nanoscale charge distribution and band gap modification were investigated by electrostatic force microscopy and spectroscopy. A transition phase with coexisting submicron-sized metallic and insulating regions in the moderately oxidized monolayer graphene were visualized and measured directly. It was determined that the delocalization of electrons/holes in a graphene "island" is confined by the surrounding defective C-O matrix, which acts as an energy barrier for mobile charge carriers. In contrast to the irreversible structural variations caused by the oxidation process, the electrical properties of graphene can be restored by annealing. The defect-patterned graphene and graphene oxide heterojunctions were further characterized by electrical transport measurement.

  20. Visible-Light-Responsive Catalyst Development for Volatile Organic Carbon Remediation Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Hintze, Paul E.; Coutts, Janelle

    2015-01-01

    Photocatalysis is a process in which light energy is used to 'activate' oxidation/reduction reactions. Unmodified titanium dioxide (TiO2), a common photocatalyst, requires high-energy UV light for activation due to its large band gap (3.2 eV). Modification of TiO2 can reduce this band gap, leading to visible-light-responsive (VLR) photocatalysts. These catalysts can utilize solar and/or visible wavelength LED lamps as an activation source, replacing mercury-containing UV lamps, to create a "greener," more energy-efficient means for air and water revitalization. Recently, KSC developed several VLR catalysts that, on preliminary evaluation, possessed high catalytic activity within the visible spectrum; these samples out-performed existing commercial VLR catalysts.

  1. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  2. Strain tuning of electronic structure in Bi 4Ti 3O 12-LaCoO 3 epitaxial thin films

    DOE PAGES

    Choi, Woo Seok; Lee, Ho Nyung

    2015-05-08

    In this study, we investigated the crystal and electronic structures of ferroelectric Bi 4Ti 3O 12 single-crystalline thin films site-specifically substituted with LaCoO 3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO 3 and SrTiO 3 substrates to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition-metal 3dmore » states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t 2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band-gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition-metal oxides.« less

  3. High performance as-grown and annealed high band gap tunnel junctions: Te behavior at the interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedair, S. M., E-mail: bedair@ncsu.edu; Harmon, Jeffrey L.; Carlin, C. Zachary

    2016-05-16

    The performance of n{sup +}-InGaP(Te)/p{sup +}-AlGaAs(C) high band gap tunnel junctions (TJ) is critical for achieving high efficiency in multijunction photovoltaics. Several limitations for as grown and annealed TJ can be attributed to the Te doping of InGaP and its behavior at the junction interface. Te atoms in InGaP tend to get attached at step edges, resulting in a Te memory effect. In this work, we use the peak tunneling current (J{sub pk}) in this TJ as a diagnostic tool to study the behavior of the Te dopant at the TJ interface. Additionally, we used our understanding of Te behaviormore » at the interface, guided by device modeling, to modify the Te source shut-off procedure and the growth rate. These modifications lead to a record performance for both the as-grown (2000 A/cm{sup 2}) and annealed (1000 A/cm{sup 2}) high band gap tunnel junction.« less

  4. New family of graphene-based organic semiconductors: An investigation of photon-induced electronic structure manipulation in half-fluorinated graphene

    NASA Astrophysics Data System (ADS)

    Walter, Andrew L.; Sahin, Hasan; Kang, Jun; Jeon, Ki-Joon; Bostwick, Aaron; Horzum, Seyda; Moreschini, Luca; Chang, Young Jun; Peeters, Francois M.; Horn, Karsten; Rotenberg, Eli

    2016-02-01

    The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of ˜5 eV , however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half -fluorinated carbon on Sic(0001), i.e., the (6 √{3 }×6 √{3 } ) R 30∘ C/SiC "buffer layer," graphene on this (6 √{3 }×6 √{3 } ) R 30∘ C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (˜2.5 -eV band gap) and metallic regions, respectively.

  5. Core x-ray spectra in semiconductors and the Mahan-Nozieres-De Dominicis model

    NASA Astrophysics Data System (ADS)

    Livins, Peteris

    1998-10-01

    The Mahan-Nozières-De Dominicis (MND) model of core x-ray spectra is examined for semiconductors. Due to the finite band gap, the Anderson orthogonality does not occur, and thus spectra near the band edge can be calculated without the shakeup contribution. For semiconductors, and not only for metals, we investigate whether the remaining many-particle dynamic exchange effect of the MND model, or so-called replacement, can significantly alter x-ray spectral shapes near the band edge from those obtained from a straightforward final-state rule. For both emission and absorption, in the absence of shakeup, an exact formulation suitable for materials with band structure is discussed. A numerical model for a semiconductor with a 1-eV band gap demonstrates the band-edge modifications, and shows a 50% effect at the band edge, indicating that this dynamic exchange effect can be significant and should be considered in any specific emission or absorption calculation for a semiconductor. Although the ineffectiveness of the orthogonality theorem in semiconductors is emphasized, a suppression near the band edge also remains a possibility. Included is a discussion on the breakdown of the final-state rule. In addition, connection is made to the determinantal approach of Ohtaka and Tanabe.

  6. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  7. On induced-modifications in optical properties of Makrofol® DE 1-1 SSNTD by UVB and UVA

    NASA Astrophysics Data System (ADS)

    Al-Amri, A.; El Ghazaly, M.; Abdel-Aal, M. S.

    The induced modifications in the optical properties of Makrofol® DE 1-1 solid state nuclear track detectors upon irradiation by UVB (302 nm) and UVA (365 nm) were characterized and compared. Makrofol® DE 1-1 detectors were irradiated separately for different durations with UVB (302 nm) and UVA (365 nm). The measurements revealed insignificant changes were observed at all in UVA (365 nm)-irradiated Makrofol® DE 1-1, irrespective the irradiation time (dose). All UVB (302 nm)-irradiated Makrofol® DE 1-1 detectors show a substantial red shift in UV-Vis spectra and a continuous increase in absorbance as the exposure time (Dose) to UVB increases. UVC-irradiated Makrofol® DE 1-1 exhibits absorption bands at 315 ± 5 nm in UV-visible spectra. The absorption increases exponential with the increasing the UVB irradiation time gets saturated started from 75 h to 400 h. In the visible light range no significant changes were observed in Makrofol® DE 1-1 detector irrespective the exposure time to UVB of 302 nm. It is found that the direct band gap is higher than indirect band gap and both decrease with the increase in the irradiation time of UVB of 302 nm. The obtained results of the Urbach energy and carbon atoms per cluster indicate that both increase with the increase in the irradiation time to UVB (302 nm). The induced modification in the optical properties of Makrofol® DE 1-1 can be used in UVB dosimetry, meanwhile it is not applicable for UVA of 365 nm.

  8. 120 MeV Ni Ion beam induced modifications in poly (ethylene terephthalate) used in commercial bottled water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir

    2012-06-05

    We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 x 10{sup 10} to 3 x 10{sup 12} ion/cm{sup 2}. The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements showmore » the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.« less

  9. Semiconductor nanostructures for plasma energetic systems

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Smerdov, Rostislav; Klimenkov, Boris

    2017-10-01

    In this talk we discuss the research results of the three types of ultrasmall electrodes namely the nanoelectrode arrays based on composite nanostructured porous silicon (PS) layers, porous GaP and nanocrystals of ZnO. These semiconductor materials are of great interest to nano- and optoelectronic applications by virtue of their high specific surface area and extensive capability for surface functionalization. The use of semiconductor (GaN) cathodes in photon-enhanced thermionic emission systems has also proved to be effective although only a few (less than 1%) of the incident photons exceed the 3.3 eV GaN band gap. This significant drawback provided us with a solid foundation for our research in the field of nanostructured PS, and composite materials based on it exhibiting nearly optimal parameters in terms of the band gap (1.1 eV). The band gap modification for PS nanostructured layers is possible in the range of less than 1 eV and 3 eV due to the existence of quantum confinement effect and the remarkable possibilities of PS surface alteration thus providing us with a suitable material for both cathode and anode fabrication. The obtained results are applicable for solar concentration and thermionic energy conversion systems. Dr. Sci., Ph.D, Principal Scientist, Professor.

  10. Modification of fluorescence and optical properties of Rhodamine B dye doped PVA/Chitosan polymer blend films

    NASA Astrophysics Data System (ADS)

    Padmakumari, R.; Ravindrachary, V.; Mahantesha, B. K.; Sagar, Rohan N.; Sahanakumari, R.; Bhajantri, R. F.

    2018-05-01

    Pure and Rhodamine B doped Poly (vinyl alcohol)/Chitosan composite films are prepared using solution casting method. Fourier transforms infrared spectra (FTIR), Ultraviolet-Visible (UV-Vis), fluorescence studies were used to characterize the prepared polymer films. The FT-IR results show that the appearance of new peaks along with shift in peak positions indicates the interaction of Rhodamine B with PVA-CS blend. Optical absorption edge, band gap and activation energy were determined from UV-Visible studies. The optical absorption edge increases, band gap decreases and activation energy increases with dopant concentration respectively. The corresponding emission spectra were studied using fluorescence spectroscopy. From the fluorescence study the quenching phenomena are observed in emission wavelength range of 607nm-613nm upon excitation with absorption maxima 443nm.

  11. AC-driven bilayer graphene: quasienergy spectrum of electrons and generation of soliton-like electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Kukhar, Egor I.

    2018-01-01

    Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.

  12. First-principles prediction of new photocatalyst materials with visible-light absorption and improved charge separation: surface modification of rutile TiO₂ with nanoclusters of MgO and Ga₂O₃.

    PubMed

    Nolan, Michael

    2012-11-01

    Titanium dioxide is an important and widely studied photocatalytic material, but to achieve photocatalytic activity under visible-light absorption, it needs to have a narrower band gap and reduced charge carrier recombination. First-principles simulations are presented in this paper to show that heterostructures of rutil TiO₂ modified with nanoclusters of MgO and Ga₂O₃ will be new photocatalytically active materials in the UV (MgO-TiO₂) and visible (Ga₂O₃-TiO₂) regions of the solar spectrum. In particular, our investigations of a model of the excited state of the heterostructures demonstrate that upon light excitation electrons and holes can be separated onto the TiO₂ surface and the metal oxide nanocluster, which will reduce charge recombination and improve photocatalytic activity. For MgO-modified TiO₂, no significant band gap change is predicted, but for Ga₂O₃-modified TiO₂ we predict a band gap change of up to 0.6 eV, which is sufficient to induce visible light absorption. Comparisons with unmodified TiO₂ and other TiO₂-based photocatalyst structures are presented.

  13. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.

    PubMed

    Nolan, Michael

    2011-10-28

    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials. This journal is © the Owner Societies 2011

  14. A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater.

    PubMed

    Saqib, Najm Us; Adnan, Rohana; Shah, Irfan

    2016-08-01

    Titanium dioxide (TiO2) has been considered a useful material for the treatment of wastewater due to its non-toxic character, chemical stability and excellent electrical and optical properties which contribute in its wide range of applications, particularly in environmental remediation technology. However, the wide band gap of TiO2 photocatalyst (anatase phase, 3.20 eV) limits its photocatalytic activity to the ultraviolet region of light. Besides that, the electron-hole pair recombination has been found to reduce the efficiency of the photocatalyst. To overcome these problems, tailoring of TiO2 surface with rare earth metals to improve its surface, optical and photocatalytic properties has been investigated by many researchers. The surface modifications with rare earth metals proved to enhance the efficiency of TiO2 photocatalyts by way of reducing the band gap by shifting the working wavelength to the visible region and inhibiting the anatase-to-rutile phase transformations. This review paper summarises the attempts on modification of TiO2 using rare earth metals describing their effect on the photocatalytic activities of the modified TiO2 photocatalyst.

  15. Influence of annealing temperature on optical properties of the photonic-crystal structures obtained by self-organization of colloidal microspheres of polystyrene and silica

    NASA Astrophysics Data System (ADS)

    Mikhnev, L. V.; Bondarenko, E. A.; Chapura, O. M.; Skomorokhov, A. A.; Kravtsov, A. A.

    2018-01-01

    The influence of annealing temperature on the transmission spectra of photonic crystals composed of polystyrene and silicon dioxide microspheres was studied. It was found that annealing of photonic crystals based on polystyrene and silica leads to a shift in the photonic band gap to the short-wavelength region. Based on the results of optical studies, the dependences of the structural parameters of the obtained opal-like crystals on annealing temperature were obtained. In the case of polystyrene photonic crystals, the displacement of the photonic band gap is observed in a narrow temperature range above the glass transition temperature. For SiO2 photonic crystals, it was found that the process of microspheres sintering is complex and involves three stages of structural modification.

  16. Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates.

    PubMed

    Wang, Mengjing; Lahti, Gabriella; Williams, David; Koski, Kristie J

    2018-06-07

    Silicon telluride (Si 2 Te 3 ) is a two-dimensional, layered, p-type semiconductor that shows broad near-infrared photoluminescence. We show how, through various means of chemical modification, Si 2 Te 3 can have its optoelectronic properties modified in several independent ways without fundamentally altering the host crystalline lattice. Substitutional doping with Ge strongly redshifts the photoluminescence while substantially lowering the direct and indirect band gaps and altering the optical phonon modes. Intercalation with Ge introduces a sharp 4.3 eV ultraviolet resonance and shifts the bulk plasmon even while leaving the infrared response and band gaps virtually unchanged. Intercalation with copper strengthens the photoluminescence without altering its spectral shape. Thus silicon telluride is shown to be a chemically tunable platform of full spectrum optical properties promising for opto-electronic applications.

  17. Enhanced surface modification engineering (H, F, Cl, Br, and NO{sub 2}) of CdS nanowires with and without surface dangling bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang

    2015-08-07

    Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWsmore » is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.« less

  18. Evolution of electronic structure as a function of layer thickness in group-VIB transition metal dichalcogenides: emergence of localization prototypes.

    PubMed

    Zhang, Lijun; Zunger, Alex

    2015-02-11

    Layered group-VIB transition metal dichalcogenides (with the formula of MX2) are known to show a transition from an indirect band gap in the thick n-monolayer stack (MX2)n to a direct band gap at the n = 1 monolayer limit, thus converting the system into an optically active material suitable for a variety of optoelectronic applications. The origin of this transition has been attributed predominantly to quantum confinement effect at reduced n. Our analysis of the evolution of band-edge energies and wave functions as a function of n using ab initio density functional calculations including the long-range dispersion interaction reveals (i) the indirect-to-direct band gap transformation is triggered not only by (kinetic-energy controlled) quantum confinement but also by (potential-energy controlled) band repulsion and localization. On its own, neither of the two effects can explain by itself the energy evolution of the band-edge states relevant to the transformation; (ii) when n decreased, there emerge distinct regimes with characteristic localization prototypes of band-edge states deciding the optical response of the system. They are distinguished by the real-space direct/indirect in combination with momentum-space direct/indirect nature of electron and hole states and give rise to distinct types of charge distribution of the photoexcited carriers that control excitonic behaviors; (iii) the various regimes associated with different localization prototypes are predicted to change with modification of cations and anions in the complete MX2 (M = Cr, Mo, W and X = S, Se, Te) series. These results offer new insight into understanding the excitonic properties (e.g., binding energy, lifetime etc.) of multiple layered MX2 and their heterostructures.

  19. Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2.

    PubMed

    Xiao, Jin; Long, Mengqiu; Li, Xinmei; Zhang, Qingtian; Xu, Hui; Chan, K S

    2014-10-08

    The modification of the electronic structure of bilayer MoS2 by an external electric field can have potential applications in optoelectronics and valleytronics. Nevertheless, the underlying physical mechanism is not clearly understood, especially the effects of the van der Waals interaction. In this study, the spin orbit-coupled electronic structure of bilayer MoS2 has been investigated using the first-principle density functional theory. We find that the van der Waals interaction as well as the interlayer distance has significant effects on the band structure. When the interlayer distance of bilayer MoS2 increases from 0.614 nm to 0.71 nm, the indirect gap between the Γ and Λ points increases from 1.25 eV to 1.70 eV. Meanwhile, the energy gap of bilayer MoS2 transforms from an indirect one to a direct one. An external electric field can shift down (up) the energy bands of the bottom (top) MoS2 layer and also breaks the inversion symmetry of bilayer MoS2. As a result, the electric field can affect the band gaps, the spin-orbit interaction and splits the valance bands into two groups. The present study can help us understand more about the electronic structures of MoS2 materials for potential applications in electronics and optoelectronics.

  20. How the laser-induced ionization of transparent solids can be suppressed

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2013-12-01

    A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.

  1. Scalable Low-Band-Gap Sb2Se3 Thin-Film Photocathodes for Efficient Visible-Near-Infrared Solar Hydrogen Evolution.

    PubMed

    Zhang, Li; Li, Yanbo; Li, Changli; Chen, Qiao; Zhen, Zhen; Jiang, Xin; Zhong, Miao; Zhang, Fuxiang; Zhu, Hongwei

    2017-12-26

    A highly efficient low-band-gap (1.2-0.8 eV) photoelectrode is critical for accomplishing efficient conversion of visible-near-infrared sunlight into storable hydrogen. Herein, we report an Sb 2 Se 3 polycrystalline thin-film photocathode having a low band gap (1.2-1.1 eV) for efficient hydrogen evolution for wide solar-spectrum utilization. The photocathode was fabricated by a facile thermal evaporation of a single Sb 2 Se 3 powder source onto the Mo-coated soda-lime glass substrate, followed by annealing under Se vapor and surface modification with an antiphotocorrosive CdS/TiO 2 bilayer and Pt catalyst. The fabricated Sb 2 Se 3 (Se-annealed)/CdS/TiO 2 /Pt photocathode achieves a photocurrent density of ca. -8.6 mA cm -2 at 0 V RHE , an onset potential of ca. 0.43 V RHE , a stable photocurrent for over 10 h, and a significant photoresponse up to the near-infrared region (ca. 1040 nm) in near-neutral pH buffered solution (pH 6.5) under AM 1.5G simulated sunlight. The obtained photoelectrochemical performance is attributed to the reliable synthesis of a micrometer-sized Sb 2 Se 3 (Se-annealed) thin film as photoabsorber and the successful construction of an appropriate p-n heterojunction at the electrode-liquid interface for effective charge separation. The demonstration of a low-band-gap and high-performance Sb 2 Se 3 photocathode with facile fabrication might facilitate the development of cost-effective PEC devices for wide solar-spectrum utilization.

  2. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-01-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  3. Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment

    NASA Astrophysics Data System (ADS)

    Pistor, P.; Greiner, D.; Kaufmann, C. A.; Brunken, S.; Gorgoi, M.; Steigert, A.; Calvet, W.; Lauermann, I.; Klenk, R.; Unold, T.; Lux-Steiner, M.-C.

    2014-08-01

    The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se2 absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se2 absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletion in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60-70 mV compared to the untreated absorbers, while the fill factor deteriorated.

  4. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-04-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  5. Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2018-07-01

    Wurtzite ZnO nanoparticles, as a nanofiller, were incorporated in a poly(vinyl alcohol) (PVA) matrix to prepare multipurpose nanocomposite films using a solution casting approach. Some advanced analytical techniques were used to investigate the properties of prepared nanocomposite films. The mediation of ZnO nanofillers resulted in modification of structural, optical and mechanical properties of nanocomposite films. A comprehensive band structure investigation might be useful for designing technological applications like in optoelectronic devices. The experimental results were found to be closely dependent on the nanofiller contents. Some theoretical models like Tauc's and Wemple-DiDomenico, were employed to investigate the band structure parameters. The imaginary part of the dielectric constant was used to investigate the band gap. Then, the Helpin-Tsai model was employed to predict Young's moduli of the prepared nanocomposite films. On 3 wt.% ZnO nanofiller loading, the optical band gap of the PVA-based nanocomposite film was decreased from 5.26 eV to 3 eV, the tensile strength increased from 25.3 MPa to 48 MPa and Young's modulus increased from 144 MPa to 544 MPa.

  6. Spatial and temporal control of the diazonium modification of sp2 carbon surfaces.

    PubMed

    Kirkman, Paul M; Güell, Aleix G; Cuharuc, Anatolii S; Unwin, Patrick R

    2014-01-08

    Interest in the controlled chemical functionalization of sp(2) carbon materials using diazonium compounds has been recently reignited, particularly as a means to generate a band gap in graphene. We demonstrate local diazonium modification of pristine sp(2) carbon surfaces, with high control, at the micrometer scale through the use of scanning electrochemical cell microscopy (SECCM). Electrochemically driven diazonium patterning is investigated at a range of driving forces, coupled with surface analysis using atomic force microscopy (AFM) and Raman spectroscopy. We highlight how the film density, level of sp(2)/sp(3) rehybridization and the extent of multilayer formation can be controlled, paving the way for the use of localized electrochemistry as a route to controlled diazonium modification.

  7. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    PubMed

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display.

  8. Lattice strain effects on the optical properties of MoS2 nanosheets

    PubMed Central

    Yang, Lei; Cui, Xudong; Zhang, Jingyu; Wang, Kan; Shen, Meng; Zeng, Shuangshuang; Dayeh, Shadi A.; Feng, Liang; Xiang, Bin

    2014-01-01

    “Strain engineering” in functional materials has been widely explored to tailor the physical properties of electronic materials and improve their electrical and/or optical properties. Here, we exploit both in plane and out of plane uniaxial tensile strains in MoS2 to modulate its band gap and engineer its optical properties. We utilize X-ray diffraction and cross-sectional transmission electron microscopy to quantify the strains in the as-synthesized MoS2 nanosheets and apply measured shifts of Raman-active modes to confirm lattice strain modification of both the out-of-plane and in-plane phonon vibrations of the MoS2 nanosheets. The induced band gap evolution due to in-plane and out-of-plane tensile stresses is validated by photoluminescence (PL) measurements, promising a potential route for unprecedented manipulation of the physical, electrical and optical properties of MoS2. PMID:25008782

  9. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  10. Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Biswas, T.; Chattopadhyay, R.; Ghosh, J.; Bysakh, S.; Bhadra, S. K.

    2016-11-01

    A simple integrated hydrogen sensor using Pd-Au alloy/air based one dimensional photonic crystal with an air defect layer is theoretically modeled. Structural parameters of the photonic crystal are delicately scaled to generate photonic band gap frequencies in a visible spectral regime. An optimized defect thickness permits a localized defect mode operating at a frequency within the photonic band gap region. Hydrogen absorption causes modification in the band gap characteristics due to variation of refractive index and lattice parameters of the alloy. As a result, the transmission peak appeared due to the resonant defect state gets shifted. This peak shifting is utilized to detect sparse amount of hydrogen present in the surrounding environment. A theoretical framework is built to calculate the refractive index profile of hydrogen loaded alloy using density functional theory and Bruggeman's effective medium approximation. The calculated refractive index variation of Pd3Au alloy film due to hydrogen loading is verified experimentally by measuring the reflectance characteristics. Lattice expansion properties of the alloy are studied through X-ray diffraction analyses. The proposed structure shows about 3 nm red shift of the transmission peak for a rise of 1% atomic hydrogen concentration in the alloy.

  11. Experimental observation of a large low-frequency band gap in a polymer waveguide

    NASA Astrophysics Data System (ADS)

    Miniaci, Marco; Mazzotti, Matteo; Radzieński, Maciej; Kherraz, Nesrine; Kudela, Pawel; Ostachowicz, Wieslaw; Morvan, Bruno; Bosia, Federico; Pugno, Nicola M.

    2018-02-01

    The quest for large and low frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, to seismic wave abatement. For this purpose, a plethora of complex architectures (including multi-phase materials) and multi-physics approaches have been proposed in the past, often involving difficulties in their practical realization. To address this issue, in this work we propose an easy-to-manufacture design able to open large, low frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stiffnesses produced by cavities in a monolithic material. The performance of the designed structure is evaluated by numerical simulations and confirmed by Scanning Laser Doppler Vibrometer (SLDV) measurements on an isotropic polyvinyl chloride plate in which a square ring region of cross-like cavities is fabricated. The full wave field reconstruction clearly confirms the ability of even a limited number of unit cell rows of the proposed design to efficiently attenuate Lamb waves. In addition, numerical simulations show that the structure allows to shift of the central frequency of the BG through geometrical modifications. The design may be of interest for applications in which large BGs at low frequencies are required.

  12. Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides.

    PubMed

    Vidal, Julien; Trani, Fabio; Bruneval, Fabien; Marques, Miguel A L; Botti, Silvana

    2010-04-02

    We use hybrid functionals and restricted self-consistent GW, state-of-the-art theoretical approaches for quasiparticle band structures, to study the electronic states of delafossite Cu(Al,In)O2, the first p-type and bipolar transparent conductive oxides. We show that a self-consistent GW approximation gives remarkably wider band gaps than all the other approaches used so far. Accounting for polaronic effects in the GW scheme we recover a very nice agreement with experiments. Furthermore, the modifications with respect to the Kohn-Sham bands are strongly k dependent, which makes questionable the common practice of using a scissor operator. Finally, our results support the view that the low energy structures found in optical experiments, and initially attributed to an indirect transition, are due to intrinsic defects in the samples.

  13. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    PubMed

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  14. Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2018-05-01

    Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.

  15. Research on low-frequency band gap property of a hybrid phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Chao, Ding; Wang, Benchi

    2018-05-01

    A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.

  16. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less

  17. Research on local resonance and Bragg scattering coexistence in phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong

    2017-04-01

    Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.

  18. Optimization of thermoelectric performance of SrSi2-based alloys via the modification in band structure and phonon-point-defect scattering

    PubMed Central

    Kuo, Yung-Kang; Ramachandran, Balakrishnan; Lue, Chin-Shan

    2014-01-01

    Thermoelectric properties of alkaline-earth-metal disilicides are strongly dependent on their electronic band structure in the vicinity of the Fermi level. In particular, the strontium disilicide, SrSi2 with a narrow band gap of about few tens of meV is composed of non-toxic, naturally abundant elements, and its thermoelectric properties are very sensitive to the substitution/alloying with third elements. In this article, we summarize the thermoelectric performance of substituted and Sr-deficient/Sr-rich SrSi2 alloys to realize the high thermoelectric figure-of-merit (ZT) for practical applications in the electronic and thermoelectric aspects, and also to explore the alternative routes to further improve its ZT value. PMID:25505784

  19. Formation of Degenerate Band Gaps in Layered Systems

    PubMed Central

    Ignatov, Anton I.; Merzlikin, Alexander M.; Levy, Miguel; Vinogradov, Alexey P.

    2012-01-01

    In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed. PMID:28817024

  20. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals.

    PubMed

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H(+)/H2 level defining the standard hydrogen electrode, the OH(-)/OH(∗) level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH(∗) level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.

  1. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.

  2. Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistor, P., E-mail: paul.pistor@physik.uni-halle.de; Greiner, D.; Kaufmann, C. A.

    2014-08-11

    The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se{sub 2} absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se{sub 2} absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletionmore » in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60–70 mV compared to the untreated absorbers, while the fill factor deteriorated.« less

  3. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  4. Band gap structures for 2D phononic crystals with composite scatterer

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-qiao; Li, Tuan-jie; Zhang, Jia-long; Zhang, Zhen; Tang, Ya-qiong

    2018-05-01

    We investigated the band gap structures in two-dimensional phononic crystals with composite scatterer. The composite scatterers are composed of two materials (Bragg scattering type) or three materials (locally resonance type). The finite element method is used to calculate the band gap structure, eigenmodes and transmission spectrum. The variation of the location and width of band gap are also investigated as a function of material ratio in the scatterer. We have found that the change trends the widest band gap of the two phononic crystals are different as the material ratio changing. In addition to this, there are three complete band gaps at most for the Bragg-scattering-type phononic crystals in the first six bands; however, the locally resonance-type phononic crystals exist only two complete band gap at most in the first six bands. The gap-tuning effect can be controlled by the material ratio in the scatterer.

  5. Opening complete band gaps in two dimensional locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Wang, Longqi

    2018-05-01

    Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.

  6. Relating the defect band gap and the density functional band gap

    NASA Astrophysics Data System (ADS)

    Schultz, Peter; Edwards, Arthur

    2014-03-01

    Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  7. The effect of annealing on structural and optical properties of α-Fe2O3/CdS/α-Fe2O3 multilayer heterostructures

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Durrani, S. M. A.; Saheb, N.; Al-Kuhaili, M. F.; Bakhtiari, I. A.

    2014-11-01

    Multilayered thin film heterostructures of α-Fe2O3/CdS/α-Fe2O3 were prepared through physical vapor deposition. Each α-Fe2O3 layer was deposited by e-beam evaporation of iron in an oxygen atmosphere. The CdS layer was deposited by thermal evaporation in a vacuum. The effect of post annealing of multilayered thin films in air in the temperature range 250 °C to 450 °C was investigated. Structural characterization indicated the growth of the α-Fe2O3 phase with a polycrystalline structure without any CdS crystalline phase. As-deposited multilayer heterostructures were amorphous and transformed into polycrystalline upon annealing. The surface modification of the films during annealing was revealed by scanning electron microscopy. Spectrophotometric measurements were used to determine the optical properties, including the transmittance, absorbance, and band gap. All the films had both direct as well as indirect band gaps.

  8. Influence of high energy ion irradiation on fullerene derivative (PCBM) thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Trupti; Singhal, Rahul; Vishnoi, Ritu; Lakshmi, G. B. V. S.; Biswas, S. K.

    2017-04-01

    The modifications produced by 55 MeV Si4+ swift heavy ion irradiation on the phenyl C61 butyric acid methyl ester (PCBM) thin films (thickness ∼ 100 nm) has been enlightened. The PCBM thin films were irradiated at 1 × 1010, 1 × 1011 and 1 × 1012 ions/cm2 fluences. After ion irradiation, the decreased optical band gap and FTIR band intensities were observed. The Raman spectroscopy reveals the damage produced by energetic ions. The morphological variation were investigated by atomic force microscopy and contact angle measurements and observed to be influenced by incident ion fluences. After 1011 ions/cm2 fluence, the overlapping of ion tracks starts and produced overlapping effects.

  9. Surface-modified TiO2 powders with phenol derivatives: A comparative DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Sredojević, Dušan N.; Kovač, Tijana; Džunuzović, Enis; Ðorđević, Vesna; Grgur, Branimir N.; Nedeljković, Jovan M.

    2017-10-01

    The charge transfer complex formation between TiO2 powder and variety of phenol derivatives (phenol, 4-nitrophenol, 4-bromophenol, 4-tert-butylphenol, hydroquinone) was achieved. The red-shift of optical absorption was observed upon surface modification of TiO2 powders with phenol derivatives. The influence of substituent functional groups in para position on the optical band gap and conduction band edge of inorganic/organic hybrids was studied using reflection spectroscopy and cyclic voltammetry. The experimental findings were supported by density functional theory calculations. The measured reflection spectra of surface-modified TiO2 powders with phenol derivatives were compared with calculated electronic excitation spectra of corresponding model systems.

  10. Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation

    NASA Astrophysics Data System (ADS)

    Saad, A. F.; Ibraheim, Mona H.; Nwara, Aya M.; Kandil, S. A.

    2018-04-01

    Effects of γ-radiation on the optical and thermal properties of a poly allyl diglycol carbonate (PADC), a form of CR-39, polymer have been investigated. CR-39 detectors were exposed to γ-rays at very high doses ranging from 5.0 × 105 to 3.0 × 106 Gy. The induced changes were analyzed using ultraviolet-visible spectroscopy (UV-VIS) in absorbance mode, and thermogravimetric analysis (TGA). The UV-visible spectra of the virgin and γ-irradiated CR-39 polymer detectors displayed a significant decreasing trend in their optical energy band gaps for indirect transitions, whereas for the direct ones showed a little change. This drop in the energy band gap with increasing dose is discussed on the basis of the gamma irradiation induced modifications in the CR-39 polymeric detector. The TGA thermograms show that the weight loss rate increased with increase in dose, which may be due to the disordered system via scission followed by crosslinking in the irradiated polymer detector. The TGA thermograms also indicated that the CR-39 detector decomposed in three/four stages for the virgin and irradiated samples. The activation energy for thermal decomposition was determined using a type of Arrhenius equation based on the TGA experimental results. These experimental results so obtained can be well used in radiation dosimetry.

  11. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  12. Synthesis of fluorinated graphene oxide by using an easy one-pot deoxyfluorination reaction.

    PubMed

    Aguilar-Bolados, Héctor; Contreras-Cid, Ahirton; Yazdani-Pedram, Mehrdad; Acosta-Villavicencio, Gabriela; Flores, Marcos; Fuentealba, Pablo; Neira-Carrillo, Andrónico; Verdejo, Raquel; López-Manchado, Miguel A

    2018-08-15

    The fluorination of two types of graphene oxides conducted by an easy and scalable deoxyfluorination reaction is reported. This reaction was carried out using diethylaminodifluorosulfinium tetrafluoroborate, a stable compound and an efficient reagent for replacing oxygenated functional groups of graphene oxide by fluoride. The graphene oxide produced by the Hummers' method (GOH) showed lower reactivity than that produced by the Brodie's method (GOB). X-ray photoelectron spectroscopy indicated that the highest fluorination degree achieved was 4.7 at.% when GOB was used, and the CF character corresponds to semi-ionic bonds. Additionally, a partial reduction of GO was concomitant with the functionalization reaction. The deoxyfluorination reaction changed the crystalline structure of GO, favoring the reconstruction of Csp 2 structure of the graphene lattice and reducing the number of stacked layers. The fluorination led to the modification of the electronic band structure of this material, increasing the band gap from 2.05 eV for GOB to 3.88 eV for fluorinated GOB, while for GOH the low flurionation led to a slight increase of the band gap, from 3.48 eV to 3.57 eV. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration.

    PubMed

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-04

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  14. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    PubMed Central

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-01-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035

  15. Dark gap solitons in exciton-polariton condensates in a periodic potential.

    PubMed

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  16. Dark gap solitons in exciton-polariton condensates in a periodic potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  17. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  18. Carbonaceous film coating

    DOEpatents

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  19. Carbonaceous film coating

    DOEpatents

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  20. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    NASA Astrophysics Data System (ADS)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  2. Modification of WS2 nanosheets with controllable layers via oxygen ion irradiation

    NASA Astrophysics Data System (ADS)

    Song, Honglian; Yu, Xiaofei; Chen, Ming; Qiao, Mei; Wang, Tiejun; Zhang, Jing; Liu, Yong; Liu, Peng; Wang, Xuelin

    2018-05-01

    As one kind of two-dimensional materials, WS2 nanosheets have drawn much attention with different kinds of research methods. Yet ion irradiation method was barely used for WS2 nanosheets. In this paper, the structure, composition and optical band gap (Eg) of the multilayer WS2 films deposited by chemical vapor deposition (CVD) method on sapphire substrates before and after oxygen ion irradiation with different energy and fluences were studied. Precise tailored layer-structures and a controllable optical band gap of WS2 nanosheets were achieved after oxygen ion irradiation. The results shows higher energy oxygen irradiation changed the shape from triangular shaped grains to irregular rectangle shape but did not change 2H-WS2 phase structure. The intensity of E2g1 (Г) and A1g (Г) modes decreased and have small shifts after oxygen ion irradiation. The peak frequency difference between the E2g1 (Г) and A1g (Г) modes (Δω) decreased after oxygen ion irradiation, and this result indicates the number of layers decreased after oxygen ion irradiation. The Eg decreased with the increase of the energy and the fluence of oxygen ions. The number of layers, thickness and optical band gap changed after ion irradiation with different ion fluences and energies. The results proposed a new strategy for precise control of multilayer nanosheets and demonstrated the high applicability of ion irradiation in super-capacitors, field effect transistors and other applications.

  3. Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, A. M.

    2017-12-01

    The optical properties of DAM-ADC solid state nuclear track detectors (SSNTDs) were investigated. Samples of DAM-ADC detector were irradiated at room temperature with gamma doses in the range of 100-500 kGy using 1.25 MeV 60Co source of dose rate 4 kGy/h. The optical characterization of these detectors have been studied through the measurements of UV-visible absorption spectra of blank and γ- irradiated samples. The optical energy band gaps, Eg for the detectors were obtained from the direct and the indirect allowed transitions in K-space using two methods (Tauc's model and absorption spectrum fitting (ASF) method). The absorbance of DAM-ADC detector was found to increase with increasing of the gamma absorbed dose. The width of the tail of localized states in the band gap, Eu was evaluated with the Urbach's method. The number of carbon atoms per conjugated length (N), the number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Both of the direct and the indirect band gaps of DAM-ADC detector decrease with increasing of the gamma absorbed dose. Urbach's energy decreased significantly for the detector. An increase in N, M, and n with increasing of the gamma absorbed dose was noticed. Results shed light on the effect of gamma irradiations of DAM-ADC SSNTDs to suitable industrial applications and to modify the optical properties through gamma-induced modifications of the polymer structure.

  4. Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases

    NASA Astrophysics Data System (ADS)

    Simonson, Jack William

    Half-Heusler alloys MNiSn and MCoSb (M = Ti, Zr, Hf) and layered boride intermetallics with structure types YCrB4 and Er 3CrB7 were designed, synthesized, and characterized. The thermoelectric properties of these two classes of alloys were measured from room temperature to 1100 K with the intent of indirectly studying their electronic structure properties and gauging not only their suitability but that of related alloys for high temperature thermoelectric power generation. In the case of the half-Heusler alloys, transition metals were substituted to both the M and Ni/Co sites to study the resultant modifications of the d-orbital-rich portion of the electronic structure near the Fermi energy. This modification and subsequent pinning of the Fermi energy within the gap is discussed herein in terms of first principles electronic structure calculations from the literature. In the half-Heusler alloys, it was found that substitution of transition metals invariably led to a decrease in the thermopower, while the resistivity typically maintained its semiconducting trend. On the other hand, Sn doping in MCoSb type alloys -- a dopant that has been known for some time to be efficient -- was shown to result in high ZT at temperatures in excess of 1000 K. Moreover, the band gaps of the transition metal-doped alloys measured in this work offer insight into the discrepancy between the predicted and measured band gaps in the undoped parent compositions. In the case of the layered boride alloys, on the other hand, few electronic calculations have been published, thus prompting the generalization of a well-known electron counting rule -- which is typically used to study molecular organometallics, boranes, and metallocenes -- to predict the trends in the densities of states of crystalline solids that possess the requisite deltahedral bonding geometry. In accordance with these generalized electronic counting rules, alloys of the form RMB4 (R = Y, Gd, Ho; M = Cr, Mo, W) were measured to be n-type semiconductors with band gaps ranging from 0.15 eV to 0.25 eV. These alloys exhibited thermoelectric power factors comparable with those of other potential boride thermoelectric materials reported in the literature. Furthermore, as a result of the procedure developed for precision synthesis of boron-rich intermetallics and the improved understanding of bonding trends, layered borides of several previously overlooked structure-types were synthesized and screened for superconductivity. Consequently, alloys of the MoB4 phase were discovered to be superconducting when doped with Nb or Ti. Electrical resistivity measurements of superconducting transitions between 6 and 8 K in these materials were confirmed via magnetic susceptibility measurements and x-ray diffraction. Structural measurements indicated opposite trends in lattice modification than those reported for the superconducting transition metal diborides.

  5. Abs-initio, Predictive Calculations for Optoelectronic and Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Bagayoko, Diola

    2010-10-01

    Most density functional theory (DFT) calculations find band gaps that are 30-50 percent smaller than the experimental ones. Some explanations of this serious underestimation by theory include self-interaction and the derivative discontinuity of the exchange correlation energy. Several approaches have been developed in the search for a solution to this problem. Most of them entail some modification of DFT potentials. The Green function and screened Coulomb approximation (GWA) is a non-DFT formalism that has led to some improvements. Despite these efforts, the underestimation problem has mostly persisted in the literature. Using the Rayleigh theorem, we describe a basis set and variational effect inherently associated with calculations that employ a linear combination of atomic orbitals (LCAO) in a variational approach of the Rayleigh-Ritz type. This description concomitantly shows a source of large underestimation errors in calculated band gaps, i.e., an often dramatic lowering of some unoccupied energies on account of the Rayleigh theorem as opposed to a physical interaction. We present the Bagayoko, Zhao, and Williams (BZW) method [Phys. Rev. B 60, 1563 (1999); PRB 74, 245214 (2006); and J. Appl. Phys. 103, 096101 (2008)] that systematically avoids this effect and leads (a) to DFT and LDA calculated band gaps of semiconductors in agreement with experiment and (b) theoretical predictions of band gaps that are confirmed by experiment. Unlike most calculations, BZW computations solve, self-consistently, a system of two coupled equations. DFT-BZW calculated effective masses and optical properties (dielectric functions) also agree with measurements. We illustrate ten years of success of the BZW method with its results for GaN, C, Si, 3C-SIC, 4H-SiC, ZnO, AlAs, Ge, ZnSe, w-InN, c-InN, InAs, CdS, AlN and nanostructures. We conclude with potential applications of the BZW method in optoelectronic and advanced materials research.

  6. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less

  7. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization

    NASA Astrophysics Data System (ADS)

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-01-01

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.

  8. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization.

    PubMed

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-02-21

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.

  9. Zero-bias photocurrent in ferromagnetic topological insulator.

    PubMed

    Ogawa, N; Yoshimi, R; Yasuda, K; Tsukazaki, A; Kawasaki, M; Tokura, Y

    2016-07-20

    Magnetic interactions in topological insulators cause essential modifications in the originally mass-less surface states. They offer a mass gap at the Dirac point and/or largely deform the energy dispersion, providing a new path towards exotic physics and applications to realize dissipation-less electronics. The nonequilibrium electron dynamics at these modified Dirac states unveil additional functions, such as highly efficient photon to spin-current conversion. Here we demonstrate the generation of large zero-bias photocurrent in magnetic topological insulator thin films on mid-infrared photoexcitation, pointing to the controllable band asymmetry in the momentum space. The photocurrent spectra with a maximal response to the intra-Dirac-band excitations can be a sensitive measure for the correlation between Dirac electrons and magnetic moments.

  10. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  11. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less

  12. Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain

    NASA Astrophysics Data System (ADS)

    Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang

    2018-05-01

    SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.

  13. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.

    PubMed

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-08-16

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.

  14. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  15. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, Francesco, E-mail: Francesco.Ambrosio@epfl.ch; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subjectmore » to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall good agreement with experiment.« less

  16. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  17. Effect of p–d hybridization, structural distortion and cation electronegativity on electronic properties of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in

    2013-04-15

    Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductorsmore » in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively due to cation electronegativity.« less

  18. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  19. Tunable and sizable band gap in silicene by surface adsorption

    PubMed Central

    Quhe, Ruge; Fei, Ruixiang; Liu, Qihang; Zheng, Jiaxin; Li, Hong; Xu, Chengyong; Ni, Zeyuan; Wang, Yangyang; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing

    2012-01-01

    Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 108. Therefore, a way is paved for silicene as the channel of a high-performance FET. PMID:23152944

  20. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures

    PubMed Central

    Warmuth, Franziska; Körner, Carolin

    2015-01-01

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713

  1. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    PubMed

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  2. Density functional studies of the defect-induced electronic structure modifications in bilayer boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-05-01

    The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.

  3. Varying the optical properties of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Moreira, Michele; Palffy-Muhoray, Peter; Mitov, Michel

    2008-03-01

    Cholesteric Liquid Crystals (CLCs) are of particular interest as they form self-assembled photonic band gap (PBG) structures - a macroscopic helical structure, leading to a selective reflection of light - which can be easily tuned by external fields. As PBG materials, CLCs have been used as mirrorless lasers with low lasing thresholds since the density of photon states is suppressed in the reflection band and is enhanced at its edges [1]. The modification of the cholesteric organization -- either by the introduction of a pitch gradient across the cell or by the incorporation of nanoparticles in the medium -- has direct consequences on the PBG and hence the reflected intensity [2,3]. In this presentation, I will describe the variations in the optical properties of CLC caused by these modifications and will discuss possible applications, such as tuning the CLC laser wavelength or adjusting the laser threshold. [1] P. Palffy-Muhoray et al., Phil Trans R Soc A 364, 2747 (2006) [2] S. Relaix et al., Appl. Phys. Lett. 89, 251907 (2006) [3] S. Relaix et al., Liq. Cryst. 34, 1009 (2007)

  4. Electronic transport in Thue-Morse gapped graphene superlattice under applied bias

    NASA Astrophysics Data System (ADS)

    Wang, Mingjing; Zhang, Hongmei; Liu, De

    2018-04-01

    We investigate theoretically the electronic transport properties of Thue-Morse gapped graphene superlattice under an applied electric field. The results indicate that the combined effect of the band gap and the applied bias breaks the angular symmetry of the transmission coefficient. The zero-averaged wave-number gap can be greatly modulated by the band gap and the applied bias, but its position is robust against change of the band gap. Moreover, the conductance and the Fano factor are strongly dependent not only on the Fermi energy but also on the band gap and the applied bias. In the vicinity of the new Dirac point, the minimum value of the conductance obviously decreases and the Fano factor gradually forms a Poissonian value plateau with increasing of the band gap.

  5. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas

    2017-12-01

    Ultralong linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes (DWCNTs), and they show a promising route to one-atom-wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chain's bond-length alternation.

  6. First Principles Study of Electronic Band Structure and Structural Stability of Al2C Monolayer and Nanotubes

    NASA Astrophysics Data System (ADS)

    Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.

  7. Engineering the Band Gap States of the Rutile TiO2 (110) Surface by Modulating the Active Heteroatom.

    PubMed

    Yu, Yaoguang; Yang, Xu; Zhao, Yanling; Zhang, Xiangbin; An, Liang; Huang, Miaoyan; Chen, Gang; Zhang, Ruiqin

    2018-04-19

    Introducing band gap states to TiO 2 photocatalysts is an efficient strategy for expanding the range of accessible energy available in the solar spectrum. However, few approaches are able to introduce band gap states and improve photocatalytic performance simultaneously. Introducing band gap states by creating surface disorder can incapacitate reactivity where unambiguous adsorption sites are a prerequisite. An alternative method for introduction of band gap states is demonstrated in which selected heteroatoms are implanted at preferred surface sites. Theoretical prediction and experimental verification reveal that the implanted heteroatoms not only introduce band gap states without creating surface disorder, but also function as active sites for the Cr VI reduction reaction. This promising approach may be applicable to the surfaces of other solar harvesting materials where engineered band gap states could be used to tune photophysical and -catalytic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The properties of optimal two-dimensional phononic crystals with different material contrasts

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Fa; Wu, Bin; He, Cun-Fu

    2016-09-01

    By modifying the spatial distribution of constituent material phases, phononic crystals (PnCs) can be designed to exhibit band gaps within which sound and vibration cannot propagate. In this paper, the developed topology optimization method (TOM), based on genetic algorithms (GAs) and the finite element method (FEM), is proposed to design two-dimensional (2D) solid PnC structures composed of two contrasting elastic materials. The PnCs have the lowest order band gap that is the third band gap for the coupled mode, the first band gap for the shear mode or the XY 34 Z band gap for the mixed mode. Moreover, the effects of the ratios of contrasting material properties on the optimal layout of unit cells and the corresponding phononic band gaps (PBGs) are investigated. The results indicate that the topology of the optimal PnCs and corresponding band gaps varies with the change of material contrasts. The law can be used for the rapid design of desired PnC structures.

  9. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  10. Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S. M.

    The issue of ambiguous values of the band gap (0.6 to 2 eV) of InN thin film in literature has been addressed by a careful experiment. We have grown wurtzite InN films by PA-MBE simultaneously on differently modified c-plane sapphire substrates and characterized by complementary structural and chemical probes. Our studies discount Mie resonances caused by metallic In segregation at grain boundaries as the reason for low band gap values ( Almost-Equal-To 0.6 eV) and also the formation of Indium oxides and oxynitrides as the cause for high band gap value ( Almost-Equal-To 2.0 eV). It is observed that polycrystallinitymore » arising from azimuthal miss-orientation of c-oriented wurtzite InN crystals increases the carrier concentration and the band gap values. We have reviewed the band gap, carrier concentration, and effective mass of InN in literature and our own measurements, which show that the Moss-Burstein relation with a non-parabolic conduction band accounts for the observed variation of band gap with carrier concentration.« less

  11. Resolution of the Band Gap Prediction Problem for Materials Design

    DOE PAGES

    Crowley, Jason M.; Tahir-Kheli, Jamil; Goddard, William A.

    2016-03-04

    An important property with any new material is the band gap. Standard density functional theory methods grossly underestimate band gaps. This is known as the band gap problem. Here in this paper, we show that the hybrid B3PW91 density functional returns band gaps with a mean absolute deviation (MAD) from experiment of 0.22 eV over 64 insulators with gaps spanning a factor of 500 from 0.014 to 7 eV. The MAD is 0.28 eV over 70 compounds with gaps up to 14.2 eV, with a mean error of -0.03 eV. To benchmark the quality of the hybrid method, we comparedmore » the hybrid method to the rigorous GW many-body perturbation theory method. Surprisingly, the MAD for B3PW91 is about 1.5 times smaller than the MAD for GW. Furthermore, B3PW91 is 3-4 orders of magnitude faster computationally. Hence, B3PW91 is a practical tool for predicting band gaps of materials before they are synthesized and represents a solution to the band gap prediction problem.« less

  12. Bi-directional evolutionary optimization for photonic band gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less

  13. Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhang, X. B.; Wang, X. F.; Wang, G. Q.

    2018-02-01

    Tunable terahertz (THz) reflection spectrum, ranged from 0.2 to 8 THz, in band gaps of gallium phosphide (GaP) materials excited by ultrasonic is investigated in the present paper, in which tunable ultrasonic and terahertz wave collinear transmission in the same direction is postulated. Numerical simulation results show that, under the acousto-optic interaction, band gaps of transverse optical phonon polariton dispersion curves are turned on, this leads to a dis-propagation of polariton in GaP bulk. On the other side, GaP material has less absorption to THz wave according to experimental studies, as indicates that THz wave could be reflected by the band gaps spontaneously. The band gaps width and acousto-optic coupling strength are proportional with ultrasonic frequency and its intensity in ultrasonic frequency range of 0-250 MHz, in which low-frequency branch of transverse optical phonon polariton dispersion curves demonstrate periodicity and folding as well as. With the increase of ultrasonic frequency, frequency of band gap is blue-shifted, and total reflectivity decreased with -1-order and -2-order reflectivity decrease. The band gaps converge to the restrahlen band infinitely with frequency of ultrasonic exceeding over 250 MHz, total reflectivity of which is attenuated. As is show above, reflection of THz wave can be accommodated by regulating the frequency and its intensity of ultrasonic frequency. Relevant technology may be available in tunable THz frequency selection and filtering.

  14. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  15. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Haifeng; Nanjing Artillery Academy, Nanjing 211132; Liu Shaobin

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonicmore » band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.« less

  16. Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Kwon, Sung-Joo; Seo, Hong-Kyu; Lee, Tae-Woo

    2016-03-01

    Ultraviolet ozone (UVO) surface treatment of graphene changes its sp2-hybridized carbons to sp3-bonded carbons, and introduces oxygen-containing components. Oxidized graphene has a finite energy band gap, so UVO modification of the surface of a four-layered graphene anode increases its surface ionization potential up to ∼5.2 eV and improves the hole injection efficiency (η) in organic electronic devices by reducing the energy barrier between the graphene anode and overlying organic layers. By controlling the conditions of the UVO treatment, the electrical properties of the graphene can be tuned to improve η. This controlled surface modification of the graphene will provide a way to achieve efficient and stable flexible displays and solid-state lighting.

  17. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  18. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  19. Investigation of Optical and Electrical Properties of Wide Band Gap Materials

    DTIC Science & Technology

    1976-06-01

    porous and heterogeneous. 22 IF 3. CRYSTAL GROWTH OF HgS A. Background fI’ Mercury sulfide is a wide bandgap semiconductor which is of considerable...I24 I 23 Mercury sulfide exists in two modifications, cinnabar (a-HgS) and metacinnabar (0-HgS). The a phase crystallizes in an unusual, dihedrally...5.817 ) at 26 °C, with Eg = -0.15 eV. An early technique, reported by Hamilton 31, on the synthesis of single crystals of the sulphides of Zn, Cd

  20. Topologically trivial and nontrivial edge bands in graphene induced by irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Cai, Zhi-Jun; Wang, Rui-Qiang; Bai, Yan-Kui

    2016-08-01

    We proposed a minimal model to describe the Floquet band structure of two-dimensional materials with light-induced resonant inter-band transition. We applied it to graphene to study the band features caused by the light irradiation. Linearly polarized light induces pseudo gaps (gaps are functions of wavevector), and circularly polarized light causes real gaps on the quasi-energy spectrum. If the polarization of light is linear and along the longitudinal direction of zigzag ribbons, flat edge bands appear in the pseudo gaps, and if it is in the lateral direction of armchair ribbons, curved edge bands can be found. For the circularly polarized cases, edge bands arise and intersect in the gaps of both types of ribbons. The edge bands induced by the circularly polarized light are helical and those by linearly polarized light are topologically trivial ones. The Chern number of the Floquet band, which reflects the number of pairs of helical edge bands in graphene ribbons, can be reduced into the winding number at resonance.

  1. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  2. Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm-3

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Osterburg, Sarah; Lange, Karsten; Lidig, Christian; Garke, Bernd; Goldhahn, Rüdiger; Richter, Eberhard; Netzel, Carsten; Neumann, Maciej D.; Esser, Norbert; Fritze, Stephanie; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois

    2014-08-01

    The interplay between band gap renormalization and band filling (Burstein-Moss effect) in n-type wurtzite GaN is investigated. For a wide range of electron concentrations up to 1.6×1020cm-3 spectroscopic ellipsometry and photoluminescence were used to determine the dependence of the band gap energy and the Fermi edge on electron density. The band gap renormalization is the dominating effect up to an electron density of about 9×1018cm-3; at higher values the Burstein-Moss effect is stronger. Exciton screening, the Mott transition, and formation of Mahan excitons are discussed. A quantitative understanding of the near gap transition energies on electron density is obtained. Higher energy features in the dielectric functions up to 10eV are not influenced by band gap renormalization.

  3. Assessment of band gaps for alkaline-earth chalcogenides using improved Tran Blaha-modified Becke Johnson potential

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Kunduru, Lavanya; Roshan, S. C. Rakesh; Sainath, M.

    2018-04-01

    Assessment of band gaps for nine alkaline-earth chalcogenides namely MX (M = Ca, Sr, Ba and X = S, Se Te) compounds are reported using Tran Blaha-modified Becke Johnson (TB-mBJ) potential and its new parameterization. From the computed electronic band structures at the equilibrium lattice constants, these materials are found to be indirect band gap semiconductors at ambient conditions. The calculated band gaps are improved using TB-mBJ and its new parameterization when compared to local density approximation (LDA) and Becke Johnson potentials. We also observe that TB-mBJ new parameterization for semiconductors below 7 eV reproduces the experimental trends very well for the small band gap semiconducting alkaline-earth chalcogenides. The calculated band profiles look similar for MX compounds (electronic band structures are provided for BaS for representation purpose) using LDA and new parameterization of TB-mBJ potentials.

  4. Interface Engineering of Monolayer MoS2/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment.

    PubMed

    Zhang, Zhaofu; Qian, Qingkai; Li, Baikui; Chen, Kevin J

    2018-05-23

    Interface engineering is a key strategy to deal with the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure, since the properties of this atomic-layer-thick 2D material can easily be impacted by the substrate environment. In this work, the structural, electronic, and optical properties of the 2D/3D heterostructure of monolayer MoS 2 on wurtzite GaN surface without and with nitridation interfacial layer are systematically investigated by first-principles calculation and experimental analysis. The nitridation interfacial layer can be introduced into the 2D/3D heterostructure by remote N 2 plasma treatment to GaN sample surface prior to stacking monolayer MoS 2 on top. The calculation results reveal that the 2D/3D integrated heterostructure is energetically favorable with a negative formation energy. Both interfaces demonstrate indirect band gap, which is a benefit for longer lifetime of the photoexcited carriers. Meanwhile, the conduction band edge and valence band edge of the MoS 2 side increases after nitridation treatment. The modification to band alignment is then verified by X-ray photoelectron spectroscopy measurement on MoS 2 /GaN heterostructures constructed by a modified wet-transfer technique, which indicates that the MoS 2 /GaN heterostructure without nitridation shows a type-II alignment with a conduction band offset (CBO) of only 0.07 eV. However, by the deployment of interface nitridation, the band edges of MoS 2 move upward for ∼0.5 eV as a result of the nitridized substrate property. The significantly increased CBO could lead to better electron accumulation capability at the GaN side. The nitridized 2D/3D heterostructure with effective interface treatment exhibits a clean band gap and substantial optical absorption ability and could be potentially used as practical photocatalyst for hydrogen generation by water splitting using solar energy.

  5. Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director

    DTIC Science & Technology

    2014-08-01

    Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director by Amir I Zaghloul, Youn M... Antenna with Electromagnetic Band Gap (EBG) Surface and Director Amir I Zaghloul, Youn M Lee, Gregory A Mitchell, and Theodore K Anthony...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG

  6. The Marvels of Electromagnetic Band Gap (EBG) Structures

    DTIC Science & Technology

    2003-11-01

    terminology of "Electromagnetic conference papers and journal articles dealing with Band- gaps (EBG)". Recently, many researchers the characterizations...Band Gap (EBG) Structures 9 utilized to reduce the mutual coupling between Structures: An FDTD/Prony Technique elements of antenna arrays. based on the...Band- Gap of several patents. He has had pioneering research contributions in diverse areas of electromagnetics,Snteructure", Dymposiget o l 21 IE 48

  7. A novel theoretical model for the temperature dependence of band gap energy in semiconductors

    NASA Astrophysics Data System (ADS)

    Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo

    2017-10-01

    We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T  >  400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.

  8. Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-07-01

    The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.

  9. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  10. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  11. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  12. Investigation the effect of lattice angle on the band gap width in 3D phononic crystals with rhombohedral(I) lattice

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar

    2014-07-01

    In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.

  13. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  14. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang

    2015-01-01

    In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.

  15. Tuning Ferritin’s band gap through mixed metal oxide nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Embley, Jacob S.; Hansen, Kameron R.; Henrichsen, Andrew M.; Peterson, J. Ryan; Colton, John S.; Watt, Richard K.

    2017-05-01

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with {{{{MnO}}}4}- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin’s potential in solar-energy harvesting. Additionally, the success of using {{{{MnO}}}4}- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  16. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  17. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    PubMed

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  18. Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisodia, Namita, E-mail: namitasisodiya@gmail.com

    2015-06-24

    By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of themore » width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically.« less

  19. Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band.

    PubMed

    Tablero, C

    2005-09-15

    A study using first principles of the electronic properties of S32Zn31Cr, a material derived from the SZn host semiconductor where a Cr atom has been substituted for each of the 32 Zn atoms, is presented. This material has an intermediate band sandwiched between the valence and conduction bands of the host semiconductor, which in a formal band-theoretic picture is metallic because the Fermi energy is located within the impurity band. The potential technological application of these materials is that when they are used to absorb photons in solar cells, the efficiency increases significantly with respect to the host semiconductor. An analysis of the gaps, bandwidths, density of states, total and orbital charges, and electronic density is carried out. The main effects of the local-density approximation with a Hubbard term corrections are an increase in the bandwidth, a modification of the relative composition of the five d and p transition-metal orbitals, and a splitting of the intermediate band. The results demonstrate that the main contribution to the intermediate band is the Cr atom. For values of U greater than 6 eV, where U is the empirical Hubbard term U parameter, this band is unfolded, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition.

  20. Photo-Darkening Kinetics and Structural Anisotropic Modifications in the Chalcogenide Glass Arsenic Trisulfide: a Study of Kinetic X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jay Min

    1990-08-01

    The purpose of the study is to investigate the mechanisms involved with photo-induced atomic structural modifications in the chalcogenide glass As_2 S_3. This glass exhibits the reversible effects of photo-darkening followed by thermal bleaching. We observed the time behavior of photo-induced properties under the influence of linearly polarized band -gap light. In a macroscopic optical investigation, we monitor optical changes in the photo-darkening process, and in a local structural probe we study kinetic (or time -resolved dispersive) x-ray absorption spectroscopy. Our observations center on kinetic phenomena and structural modifications induced by polarized excitation of lone-pair orbitals in the chalcogenide glass. Experimental results include the following observations: (i) The polarity of the optically induced anisotropy is critically dependent on the intensity and the polarization of the band-gap irradiation beam. (ii) The near edge peak height in x-ray absorption spectra shows subtle but sensitive change during the photo-darkening process. (iii) Photon intensity dependent dichroic kinetics reflect a connection between the optically probed macroscopic property and the x-ray probed local anisotropic structure. Analysis of the x-ray absorption results includes a computer simulation of the polarized absorption spectra. These results suggest that specific structural units tend to orient themselves with respect to the photon polarization. A substantial part of the analysis involves a major effort in dealing with the x-ray kinetic data manipulation and the experimental difficulties caused by a synchrotron instability problem. Based on our observations, we propose a possible mechanism for the observed photo-structural modifications. Through a model of computer relaxed photo-darkening kinetics, we support the notion that a twisting of a specific intermediate range order structure is responsible for local directional variations and global network distortions. In the course of this study, we refine knowledge of intermediate range order structural configurations and the bistabilities related to these configurations. The importance of the lone-pair orbital interactions in the chalcogenide glassy network is underscored.

  1. Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials

    NASA Astrophysics Data System (ADS)

    Srivastava, Sanjeev K.; Aghajamali, Alireza

    2016-05-01

    Theoretical investigation of photonic band gaps or reflection bands in one-dimensional annular photonic crystal (APC) containing double negative (DNG) metamaterials and air has been presented. The proposed structure consists of the alternate layers of dispersive DNG material and air immersed in free space. In order to study photonic band gaps we obtain the reflectance spectrum of the annular PC by employing the transfer matrix method (TMM) in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of azimuthal mode number (m) and starting radius (ρ0) on the three band gaps viz. zero averaged refractive index (zero-nbar) gap, zero permittivity (zero- ε) and zero permeability (zero- μ) gaps. It is found that for m ≥ 1 , zero- μ gap appears in TE mode and zero- ε gap appears in TM mode. The width of both zero- μ and zero- ε gap increases by increasing m values, but the enhancement of zero- μ gap is more appreciable. Also, the effect of ρ0 on the three band gaps (reflection bands) of annular PC structure at the given m-number has been studied, for both TE and TM polarizations. The result shows that in both polarizations zero- ε and zero- μ gaps decreases when ρ0 increases, whereas zero-nbar gap remains invariant.

  2. Modeling of silicon in femtosecond laser-induced modification regimes: accounting for ambipolar diffusion

    NASA Astrophysics Data System (ADS)

    Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.

    2017-05-01

    During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.

  3. Band gap opening in α-graphyne by adsorption of organic molecule

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2014-09-01

    The lack of a band gap limits the application of graphyne in nanoelectronic devices. We have investigated possibility of opening a band gap in α-graphyne by adsorption of tetracyanoethylene. The electronic property of α-graphyne in the presence of different numbers of tetracyanoethylene has been studied using density functional theory. It is found that charge is transferred from graphyne sheet to tetracyanoethylene molecules. In the presence of this electron acceptor molecule, a semimetal α-graphyne shows semiconducting property. The energy band gap at the Dirac point is enhanced by increasing the number of tetracyanoethylene. Our results provide a simple method to create and control the band gap in α-graphyne.

  4. Thin film solar cell including a spatially modulated intrinsic layer

    DOEpatents

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  5. Mn-modification effects on Nb2O5 structural, optical and vibrational properties

    NASA Astrophysics Data System (ADS)

    Raba, A. M.; Murillo, E.; Joya, M. R.

    2017-12-01

    In this study Mn-modification (at 1%, 2.5%, 5% and 10%) on Nb2O5 was carried out through the Pechini method; the annealing temperatures: 400°C, 500°C, 600°C and 700°C, were used to study the thermal stability of the system and the crystalline growth. The crystallization at high temperatures has been investigated because low annealing temperature cannot improve the crystallization and the effect of Mn-modification concentration is worthy of a further investigation. Before annealing the samples were analysed by TGA. The structural analysis through XRD is carried out to study a possible increase of the crystallite size (L) by increasing the Mn concentration; for the samples at 700°C and 1% and 2.5% concentrations, L is increased from 39.81 to 46.45nm while L changes from 32.67 to 35.63 with 5% and 10%, respectively. After Mn-modification the evolution of (100) and (180) peaks Nb2O5 was observed suggesting that they were well defined only until 2.5%. IR and Raman spectroscopies allowed to analyse vibrational modes present in the samples: the IR spectrums for the samples at 400°C, 500°C and 600°C showed a band around 1100cm-1 which can be associated to C-C(νC-C) and C-O(νC-O) vibrations; at 700°C the shoulder was distinguished around 750cm-1 characteristics of the Nb2O5 orthorhombic structure. Vibration modes associated with Nb2O5 were found with the Raman spectroscopy; these become less intense after Mn-modification. The band gap energy was obtained through UV-Vis spectrophotometry which revealed a slight increase at 700°C.

  6. Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation.

    PubMed

    Odetti, P; Aragno, I; Rolandi, R; Garibaldi, S; Valentini, S; Cosso, L; Traverso, N; Cottalasso, D; Pronzato, M A; Marinari, U M

    2000-01-01

    The main functional property of collagen is to provide a supporting framework to almost all tissues: the effects of non-enzymatic glycation on this protein are deleterious and in diabetes mellitus contribute to the mechanism of late complications. The aim of this work is to provide evidence by scanning force microscopy of modifications in collagen structure caused by high glucose concentration, in vivo and in vitro, and to correlate the data with markers of non-enzymatic glycation. Tendon fibrils were obtained from the tails of 8-month-old rats (BB/WOR/MOL¿BB) which developed diabetes spontaneously at least 12 weeks before they were killed, and from diabetes-resistant rats of the same strain (BB/WOR/MOL¿WB). A scanning force microscope (SFM; Nanoscope III) equipped with a Contact Mode Head was used for imaging. Band interval, diameter and depth of D-band gap were measured in non-diabetic and diabetic tail tendon fibrils and in fibrils incubated with glucose (0.5 M for 2 weeks). Fructosamine was determined in the tendon fibrils by a colorimetric method and pentosidine was evaluated in acid-hydrolyzed samples by coupled reverse phase-ionic exchange column HPLC. Incubated fibrils revealed modifications in radius (228+/-5 nm) and gap depth (3.65+/-0.10 nm) that closely reproduce diabetes-induced damage (236+/-3 and 3.20+/-0.04 nm respectively) and were significantly different from the pattern seen in non-diabetic fibrils (151+/-1 and 2.06+/-0.03 nm; p<0.001). Both fructosamine and pentosidine were higher in diabetic (3.82+/-1.43 nmol/mg and 2.23+/-0.24 pmol/mg collagen respectively) and in glucose-incubated fibrils (9.27+/-0.55 nmol/mg and 5.15+/-0.12 pmol/mg collagen respectively) vs non-diabetic tendons (1.29+/-0.08 nmol/mg and 0.88+/-0.11 pmol/mg collagen respectively; p<0.01); during the time course of incubation, an early increase in fructosamine was seen, whereas pentosidine increased later. The D-band parameter was similar in all three groups, indicating that axial organization is not modified by non-enzymatic glycation. This is the first description obtained with SFM of diabetes-induced ultrastructural changes in collagen fibrils. Moreover, the data presented are consistent with the concept that chronic exposure of collagen to glucose in vivo or in vitro leads to similar structural modifications in collagen fibrils, probably through crosslinks. The correlation between morphologic parameters and both markers of glycation provides strong evidence for a crucial role of this non-enzymatic modification.

  7. Molecular Characterization of the SUMO-1 Modification of RanGAP1 and Its Role in Nuclear Envelope Association

    PubMed Central

    Mahajan, Rohit; Gerace, Larry; Melchior, Frauke

    1998-01-01

    The mammalian guanosine triphosphate (GTP)ase-activating protein RanGAP1 is the first example of a protein covalently linked to the ubiquitin-related protein SUMO-1. Here we used peptide mapping, mass spectroscopy analysis, and mutagenesis to identify the nature of the link between RanGAP1 and SUMO-1. SUMO-1 is linked to RanGAP1 via glycine 97, indicating that the last 4 amino acids of this 101– amino acid protein are proteolytically removed before its attachment to RanGAP1. Recombinant SUMO-1 lacking the last four amino acids is efficiently used for modification of RanGAP1 in vitro and of multiple unknown proteins in vivo. In contrast to most ubiquitinated proteins, only a single lysine residue (K526) in RanGAP1 can serve as the acceptor site for modification by SUMO-1. Modification of RanGAP1 with SUMO-1 leads to association of RanGAP1 with the nuclear envelope (NE), where it was previously shown to be required for nuclear protein import. Sufficient information for modification and targeting resides in a 25-kD domain of RanGAP1. RanGAP1–SUMO-1 remains stably associated with the NE during many cycles of in vitro import. This indicates that removal of RanGAP1 from the NE is not a required element of nuclear protein import and suggests that the reversible modification of RanGAP1 may have a regulatory role. PMID:9442102

  8. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(sub x)V(sub 1-x) alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(sub x)V(sub 1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(sub x)Te(sub 1-x) and ZnSe(sub y)Te(sub 1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(sub y)Te(sub 1-y) alloys in the entire composition range, y between 0 and 1. The samples used in this study are bulk ZnSe(sub y)Te(sub 1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between localized Se states and the conduction band. On the other hand we show that the large band gap reduction observed on the Se-rich side of the alloy system is a result of an interaction between the localized Te level and the valence bands. This interaction leads to the formation of a Te-like valence band edge that strongly interacts with the light hole valence band. Calculations based on a modified k(sup dot)p model account for the reduction of the band gap and the large increase of the spin-orbit splitting observed in Se-rich ZnSe(sub y)Te(sub 1-y) alloys. We will also discuss the importance of these new results for understanding of the electronic structure and band offsets in other highly mismatched alloy systems.

  9. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Ramdas, A.; Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(x)V(1-x), alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(x),V(1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(x)Te(l-x) and ZnSe(Y)Te(1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(y)Te(1-y) alloys in the entire composition range, 0 less than or equal to y less than or equal to 1. The samples used in this study are bulk ZnSe(y)Te(1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between localized Se states and the conduction band. On the other hand we show that the large band gap reduction observed on the Se-rich side of the alloy system is a result of an interaction between the localized Te level and the valence bands. This interaction leads to the formation of a Te-like valence band edge that strongly interacts with the light hole valence band. Calculations based on a modified k p model account for the reduction of the band gap and the large increase of the spin-orbit splitting observed in Se-rich ZnSe(y)Te(l-y) alloys. We will also discuss the importance of these new results for understanding of the electronic structure and band offsets in other highly mismatched alloy systems.

  10. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  11. All-optical band engineering of gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Kibis, O. V.; Dini, K.; Iorsh, I. V.; Shelykh, I. A.

    2017-03-01

    We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.

  12. Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors.

    PubMed

    Bussolotti, F; Yang, J; Yamaguchi, T; Yonezawa, K; Sato, K; Matsunami, M; Tanaka, K; Nakayama, Y; Ishii, H; Ueno, N; Kera, S

    2017-08-02

    The dynamic interaction between the traveling charges and the molecular vibrations is critical for the charge transport in organic semiconductors. However, a direct evidence of the expected impact of the charge-phonon coupling on the band dispersion of organic semiconductors is yet to be provided. Here, we report on the electronic properties of rubrene single crystal as investigated by angle resolved ultraviolet photoelectron spectroscopy. A gap opening and kink-like features in the rubrene electronic band dispersion are observed. In particular, the latter results in a large enhancement of the hole effective mass (> 1.4), well above the limit of the theoretical estimations. The results are consistent with the expected modifications of the band structures in organic semiconductors as introduced by hole-phonon coupling effects and represent an important experimental step toward the understanding of the charge localization phenomena in organic materials.The charge transport properties in organic semiconductors are affected by the impact of molecular vibrations, yet it has been challenging to quantify them to date. Here, Bussolotti et al. provide direct experimental evidence on the band dispersion modified by molecular vibrations in a rubrene single crystal.

  13. The band gap properties of the three-component semi-infinite plate-like LRPC by using PWE/FE method

    NASA Astrophysics Data System (ADS)

    Qian, Denghui; Wang, Jianchun

    2018-06-01

    This paper applies coupled plane wave expansion and finite element (PWE/FE) method to calculate the band structure of the proposed three-component semi-infinite plate-like locally resonant phononic crystal (LRPC). In order to verify the accuracy of the result, the band structure calculated by PWE/FE method is compared to that calculated by the traditional finite element (FE) method, and the frequency range of the band gap in the band structure is compared to that of the attenuation in the transmission power spectrum. Numerical results and further analysis demonstrate that a band gap is opened by the coupling between the dominant vibrations of the rubber layer and the matrix modes. In addition, the influences of the geometry parameters on the band gap are studied and understood with the help of the simple “base-spring-mass” model, the influence of the viscidity of rubber layer on the band gap is also investigated.

  14. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    PubMed

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  15. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    PubMed Central

    2017-01-01

    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879

  16. Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.

    PubMed

    Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2017-07-03

    The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The quasiparticle band structure of zincblende and rocksalt ZnO.

    PubMed

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B

    2010-03-31

    We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.

  18. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the opticalmore » absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.« less

  19. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    NASA Astrophysics Data System (ADS)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  20. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  1. Local band gap measurements by VEELS of thin film solar cells.

    PubMed

    Keller, Debora; Buecheler, Stephan; Reinhard, Patrick; Pianezzi, Fabian; Pohl, Darius; Surrey, Alexander; Rellinghaus, Bernd; Erni, Rolf; Tiwari, Ayodhya N

    2014-08-01

    This work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.

  2. High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)

    1986-01-01

    A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.

  3. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    NASA Astrophysics Data System (ADS)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-08-01

    Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off ˜ 380 nm, enables it to harness only a small fraction (˜ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  4. The electronic band structure of Ge1-x Sn x in the full composition range: indirect, direct, and inverted gaps regimes, band offsets, and the Burstein-Moss effect

    NASA Astrophysics Data System (ADS)

    Polak, M. P.; Scharoch, P.; Kudrawiec, R.

    2017-05-01

    A comprehensive and detailed study of the composition dependence of lattice constants, band gaps and band offsets has been performed for bulk Ge1-x Sn x alloy in the full composition range using state-of-the-art density functional theory methods. A spectral weight approach to band unfolding has been applied as a means of distinguishing the indirect and direct band gaps from folded supercell band structures. In this way, four characteristic regions of the band gap character have been identified for Ge1-x Sn x alloy: an indirect band gap (x  <  6.5%), a direct band gap (6.5%  <  x  <  25%) and an inverse band gap (x  >  25%) with inverse spin-orbit split-off for 45%  <  x  <  85%. In general, it has been observed that the bowing parameters of band edges (Γ and L-point in conduction band (CBΓ and CB L ), valence band (VB), and spin-orbit (SO) band) are rather large ({{b}\\text{C{{\\text{B}} Γ }}}   =  2.43  ±  0.06 eV, {{b}\\text{C{{\\text{B}}L}}}   =  0.64  ±  0.04 eV, {{b}\\text{VB}}   =  -0.59  ±  0.04 eV, and {{b}\\text{SO}}   =  -0.49  ±  0.05 eV). This indicates that Ge1-x Sn x behaves like a highly mismatched group IV alloy. The composition dependence of lattice constant shows negligible bowing (b a   =  -0.083 Å). Obtained results have been compared with available experimental data. The origin of band gap reduction and large bowing has been analyzed and conclusions have been drawn regarding the relationship between experimental and theoretical results. It is shown that due to the low DOS at the Γ-point, a significant filling of CB by electrons in the direct gap regime may easily take place. Therefore, the Burstein-Moss effect should be considered when comparing experimental data with theoretical predictions as has already been shown for other intrinsic n-type narrow gap semiconductors (e.g. InN).

  5. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-06-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  6. Band structures in fractal grading porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  7. Engineering a light-emitting planar defect within three-dimensional photonic crystals

    PubMed Central

    Liu, Guiqiang; Chen, Yan; Ye, Zhiqing

    2009-01-01

    Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap. PMID:27877309

  8. Ultrawide bandgap pentamode metamaterials with an asymmetric double-cone outside profile

    NASA Astrophysics Data System (ADS)

    Chu, Yangyang; Li, Yucheng; Cai, Chengxin; Liu, Guangshuan; Wang, Zhaohong; Xu, Zhuo

    2018-03-01

    The band-gap characteristic is an important feature of acoustic metamaterials, which has important theoretical and practical significance in acoustic devices. Pentamode metamaterials (PMs) with phonon band-gap characteristics based on an asymmetric double-cone outside profile are presented and studied in this paper. The phonon band structures of these PMs are calculated by using the finite element method. In addition to the single-mode band-gaps, the complete 3D band-gaps are also obtained by changing the outside profile of the double-cone. Moreover, by adjusting the outside profile and the diameter of the double-cone to reduce the symmetry of the structure, the complete 3D band-gap can be widened. Further parametric analysis is presented to investigate the effect of geometrical parameters on the phonon band-gap property, the numerical simulations show that the maximum relative bandwidth is expanded by 15.14 times through reducing the symmetry of the structure. This study provides a possible way for PMs to control elastic wave propagation in the field of depressing vibration and noise, acoustic filtering and acoustic cloaking.

  9. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Yang, Li; Park, Cheol-Hwan; Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.

    2007-11-01

    We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green’s function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5 3.0 eV for ribbons of width 2.4 0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.

  10. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    PubMed

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dileep, K.; Loukya, B.; Datta, R., E-mail: ranjan@jncasr.ac.in

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct frommore » the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.« less

  12. Local Atomic Arrangements and Band Structure of Boron Carbide.

    PubMed

    Rasim, Karsten; Ramlau, Reiner; Leithe-Jasper, Andreas; Mori, Takao; Burkhardt, Ulrich; Borrmann, Horst; Schnelle, Walter; Carbogno, Christian; Scheffler, Matthias; Grin, Yuri

    2018-05-22

    Boron carbide, the simple chemical combination of boron and carbon, is one of the best-known binary ceramic materials. Despite that, a coherent description of its crystal structure and physical properties resembles one of the most challenging problems in materials science. By combining ab initio computational studies, precise crystal structure determination from diffraction experiments, and state-of-the-art high-resolution transmission electron microscopy imaging, this concerted investigation reveals hitherto unknown local structure modifications together with the known structural alterations. The mixture of different local atomic arrangements within the real crystal structure reduces the electron deficiency of the pristine structure CBC+B 12 , answering the question about electron precise character of boron carbide and introducing new electronic states within the band gap, which allow a better understanding of physical properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Density-functional energy gaps of solids demystified

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn

    2018-06-01

    The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?

  14. Thin-film preparation and characterization of Cs 3Sb 2I 9: A lead-free layered perovskite semiconductor

    DOE PAGES

    Saparov, Bayrammurad; Hong, Feng; Sun, Jon -Paul; ...

    2015-07-09

    In this study, computational, thin-film deposition and characterization approaches have been used to examine the ternary halide semiconductor Cs 3Sb 2I 9. Cs 3Sb 2I 9 has two known structural modifications, the 0-D dimer form (space group P6 3/mmc, No. 194) and the 2-D layered form (Pmore » $$\\bar{3}$$ m1, No. 164), which can be prepared via solution and solid state or gas phase reactions, respectively. Our computational investigations suggest that the layered form, which is a one-third Sb-deficient derivative of the ubiquitous perovskite structure, is a potential candidate for high-band-gap photovoltaic (PV) applications. In this work, we describe details of a two-step deposition approach that enables the preparation of large grain (>1 µm) and continuous thin films of the lead-free layered perovskite derivative Cs 3Sb 2I 9. Depending on the deposition conditions, films that are c-axis oriented or randomly oriented can be obtained. The fabricated thin films show enhanced stability under ambient air, compared to methylammonium lead (II) iodide perovskite films stored under similar conditions, and an optical band gap value of 2.05 eV. Photoelectron spectroscopy study yields an ionization energy of 5.6 eV, with the valence band maximum approximately 0.85 eV below the Fermi level, indicating near-intrinsic, weakly p-type character. Density Functional Theory (DFT) analysis points to a nearly direct band gap for this material (less than 0.02 eV difference between the direct and indirect band gaps) and a similar high-level of absorption compared to CH 3NH 3PbI 3. The photoluminescence peak intensity of Cs 3Sb 2I 9 is substantially suppressed compared to that of CH 3NH 3PbI 3, likely reflecting the presence of deep level defects that result in non-radiative recombination in the film, with computational results pointing to I i, IS b, and V I as being likely candidates. A key further finding from this study is that, despite a distinctly layered structure, the electronic transport anisotropy is less pronounced due to the high ionicity of the I atoms and the strong anti-bonding interactions between the Sb s lone pair states and I p states, which leads to a moderately dispersive valence band.« less

  15. Synthesis of gadolinium doped titanium(IV) oxide and their photocatalytic activity to decrease chemical oxygen demand (COD) value of water pollutants

    NASA Astrophysics Data System (ADS)

    Eddy, Diana Rakhmawaty; Dwiyanti, Dina; Rahayu, Iman; Hastiawan, Iwan; Bahti, Husein H.

    2017-05-01

    Pesticides are widely used for the control of plant disease. Unfortunately they are highly toxic to terraneous and aquatic life; this is a particular problem in agricultural areas. TiO2 is widely used for pesticide control because of its photocatalytic activity, but it still has inadequacy in its wide band gap. Alternatively, the wide band gap of TiO2 could be narrowed by modification with rare earth element such as gadolinium, so the photocatalytic activity of TiO2could be significantly enhanced. The purpose of this experiment is to synthesize Gd/TiO2 and its application to reduce COD of water pollutants such as carbosulfan pesticide. This experiment is done by doping gadolinium oxide into titanium tetra isopropoxide by sol-gel method. The crystal structure is characterized by using XRD, shown anatase successfully obtained with the smallest crystallite size is 37.655 nm, indicated optimum calcination time is 4 hours. SEM-EDX result shown morphology of crystal is big aggregates. Photocatalytic activity is tested to carbosulfan pesticide, obtained the COD percent decreases up to 87.88%.

  16. A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction.

    PubMed

    Kuriki, Ryo; Ichibha, Tom; Hongo, Kenta; Lu, Daling; Maezono, Ryo; Kageyama, Hiroshi; Ishitani, Osamu; Oka, Kengo; Maeda, Kazuhiko

    2018-05-30

    Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N 3- , S 2- ) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb 2 Ti 2 O 5.4 F 1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb 2 Ti 2 O 5.4 F 1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb 2 Ti 2 O 5.4 F 1.2 worked as a stable photocatalyst for visible-light-driven H 2 evolution and CO 2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb 2 Ti 2 O 5.4 F 1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb-O bond in the pyrochlore lattice due to the fluorine substitution.

  17. Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Wang, Yonggang; Qu, Jingyu; Zhu, Qiang; Yang, Wenge; Zhu, Jinlong; Wang, Liping; Zhang, Weiwei; He, Duanwei; Zhao, Yusheng

    2018-06-01

    Triclinic rhenium disulphide (Re S2 ) is a promising candidate for postsilicon electronics because of its unique optic-electronic properties. The electrical and optical properties of Re S2 under high pressure, however, remain unclear. Here we present a joint experimental and theoretical study on the structure, electronic, and vibrational properties, and visible-light responses of Re S2 up to 50 GPa. There is a direct-to-indirect band-gap transition in 1 T -Re S2 under low-pressure regime up to 5 GPa. Upon further compression, 1 T -Re S2 undergoes a structural transition to distorted-1 T' phase at 7.7 GPa, followed by the isostructural metallization at 38.5 GPa. Both in situ Raman spectrum and electronic structure analysis reveal that interlayer sulfur-sulfur interaction is greatly enhanced during compression, leading to the remarkable modifications on the electronic properties observed in our subsequent experimental measurements, such as band-gap closure and enhanced photoresponsiveness. This study demonstrates the critical role of pressure in tuning materials properties and the potential usage of layered Re S2 for pressure-responsive optoelectronic applications.

  18. Band Gap Optimization Design of Photonic Crystals Material

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  19. Band gap and electronic structure of MgSiN2

    NASA Astrophysics Data System (ADS)

    Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.

    2014-09-01

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.

  20. Strain-induced band-gap engineering of graphene monoxide and its effect on graphene

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-02-01

    Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.

  1. Band gap scaling laws in group IV nanotubes.

    PubMed

    Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu

    2017-03-17

    By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by -1/r 2  + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.

  2. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).

    PubMed

    Cheng, Y; Liu, X J; Wu, D J

    2011-03-01

    This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. © 2011 Acoustical Society of America

  3. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu

    2016-06-20

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less

  4. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  5. Understanding band gaps of solids in generalized Kohn–Sham theory

    PubMed Central

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  6. H-fractal seismic metamaterial with broadband low-frequency bandgaps

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Yi; Xu, Yang; Yang, Hongwu; Zeng, Zuoxun

    2018-03-01

    The application of metamaterial in civil engineering to achieve isolation of a building by controlling the propagation of seismic waves is a substantial challenge because seismic waves, a superposition of longitudinal and shear waves, are more complex than electromagnetic and acoustic waves. In this paper, we design a broadband seismic metamaterial based on H-shaped fractal pillars and report numerical simulation of band structures for seismic surface waves propagating. Comparative study on the band structures of H-fractal seismic metamaterials with different levels shows that a new level of fractal structure creates new band gap, widens the total band gaps and shifts the same band gap towards lower frequencies. Moreover, the vibration modes for H-fractal seismic metamaterials are computed and analyzed to clarify the mechanism of widening band gaps. A numerical investigation of seismic surface waves propagation on a 2D array of fractal unit cells on the surface of semi-infinite substrate is proposed to show the efficiency of earthquake shielding in multiple complete band gaps.

  7. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    PubMed

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  8. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  9. The temperature-dependency of the optical band gap of ZnO measured by electron energy-loss spectroscopy in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein

    2018-04-01

    The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.

  10. Electronic theoretical study on the influence of torsional deformation on the electronic structure and optical properties of BN-doped graphene

    NASA Astrophysics Data System (ADS)

    Fan, Dazhi; Liu, Guili; Wei, Lin

    2018-06-01

    Based on the density functional theory, the effect of torsional deformation on the electronic structure and optical properties of boron nitride (BN)-doped graphene is studied by using the first-principles calculations. The band structure calculations show that the intrinsic graphene is a semi-metallic material with zero band gap and the torsional deformation has a large effect on its band gap, opening its band gap and turning it from the semi-metal to the medium band gap semiconductor. The doping of BN in graphene makes its band gap open and becomes a medium band gap semiconductor. When it is subjected to a torsional effect, it is found to have a weak influence on its band gap. In other words, the doping of BN makes the changes of the band gap of graphene no longer sensitive to torsional deformation. Optical properties show that the doping of BN leads to a significant decrease in the light absorption coefficient and reflectivity of the graphene at the characteristic peak and that of BN-doped graphene system is also weakened by torsional deformation at the characteristic peak. In the absorption spectrum, the absorption peaks of the doping system of the torsion angle of 2-20∘ are redshifted compared with that of the BN-doped system (the torsion angle is 0∘). In the reflection spectrum, the two reflection peaks are all redshifted relative to that of the BN-doped system (the torsion angle is 0∘) and when the torsion angle exceeds 12∘, the size relationship between the two peaks is interchanged. The results of this paper are of guiding significance for the study of graphene-based nanotube devices in terms of deformation.

  11. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE PAGES

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; ...

    2017-07-13

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  12. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  13. Theoretical study of nitride short period superlattices

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  14. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

    PubMed

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D

    2017-08-16

    Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  15. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites.

    PubMed

    Kim, Heejae; Hunger, Johannes; Cánovas, Enrique; Karakus, Melike; Mics, Zoltán; Grechko, Maksim; Turchinovich, Dmitry; Parekh, Sapun H; Bonn, Mischa

    2017-09-25

    Methylammonium lead iodide perovskite is an outstanding semiconductor for photovoltaics. One of its intriguing peculiarities is that the band gap of this perovskite increases with increasing lattice temperature. Despite the presence of various thermally accessible phonon modes in this soft material, the understanding of how precisely these phonons affect macroscopic material properties and lead to the peculiar temperature dependence of the band gap has remained elusive. Here, we report a strong coupling of a single phonon mode at the frequency of ~ 1 THz to the optical band gap by monitoring the transient band edge absorption after ultrafast resonant THz phonon excitation. Excitation of the 1 THz phonon causes a blue shift of the band gap over the temperature range of 185 ~ 300 K. Our results uncover the mode-specific coupling between one phonon and the optical properties, which contributes to the temperature dependence of the gap in the tetragonal phase.Methylammonium lead iodide perovskite, a promising material for efficient photovoltaics, shows a unique temperature dependence of its optical properties. Kim et al. quantify the coupling between the optical gap and a lattice phonon at 1 THz, which favorably contributes to the thermal variation of the gap.

  16. First principles investigation of GaNbO{sub 4} as a photocatalytic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Neelam, E-mail: sneelam@issc.unipune.ac.in; Verma, Mukta; Shah, Vaishali

    We have performed first principles density functional total energy calculations on pure and doped GaNbO{sub 4} to investigate its applicability as a photo catalyst. Pure GaNbO{sub 4} is an indirect, wide band gap semiconductor similar to the widely investigated TiO{sub 2} which is known to be a photo catalyst in UV light [K. Yang et. al. Chem. Mater. 20, 6528 (2008)]. S atom doping of TiO{sub 2} reduces the band gap [F. Tian et. al. J. Phys. Chem. B 110, 17866 (2006)], and increases its efficiency in the visible light range. It has been experimentally reported that S doping ofmore » GaNbO{sub 4} at the O site, decreases its photo catalytic efficiency. Our band structure calculations show that both pure and doped GaNbO{sub 4} have indirect band gaps and S atom doping reduces the band gap in agreement with experiments. The decrease in the band gap is due to the lowering of the conduction band minimum towards the Fermi level. An unequal reduction in the band gap was observed at the four inequivalent O sites chosen for S doping. This suggests that the photo catalytic activity varies with the dopant site.« less

  17. Band Structure Engineering of Cs2AgBiBr6 Perovskite through Order-Disordered Transition: A First-Principle Study.

    PubMed

    Yang, Jingxiu; Zhang, Peng; Wei, Su-Huai

    2018-01-04

    Cs 2 AgBiBr 6 was proposed as one of the inorganic, stable, and nontoxic replacements of the methylammonium lead halides (CH 3 NH 3 PbI 3 , which is currently considered as one of the most promising light-harvesting material for solar cells). However, the wide indirect band gap of Cs 2 AgBiBr 6 suggests that its application in photovoltaics is limited. Using the first-principle calculation, we show that by controlling the ordering parameter at the mixed sublattice, the band gap of Cs 2 AgBiBr 6 can vary continuously from a wide indirect band gap of 1.93 eV for the fully ordered double-perovskite structure to a small pseudodirect band gap of 0.44 eV for the fully random alloy. Therefore, one can achieve better light absorption simply by controlling the growth temperature and thus the ordering parameters and band gaps. We also show that controlled doping in Cs 2 AgBiBr 6 can change the energy difference between ordered and disordered Cs 2 AgBiBr 6 , thus providing further control of the ordering parameters and the band gaps. Our study, therefore, provides a novel approach to carry out band structure engineering in the mixed perovskites for optoelectronic applications.

  18. Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng

    2011-01-01

    We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.

  19. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  20. The wave attenuation mechanism of the periodic local resonant metamaterial

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  1. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  2. Design of phononic band gaps in functionally graded piezocomposite materials by using topology optimization

    NASA Astrophysics Data System (ADS)

    Vatanabe, Sandro L.; Silva, Emílio C. N.

    2011-04-01

    One of the properties of composite materials is the possibility of having phononic band gaps, within which sound and vibrations at certain frequencies do not propagate. These materials are called Phononic Crystals (PCs). PCs with large band gaps are of great interest for many applications, such as transducers, elastic/ acoustic filters, noise control, and vibration shields. Most of previous works concentrates on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Since the main property of PCs is the presence of band gaps, one possible way to design structures which have a desired band gap is through Topology Optimization Method (TOM). TOM is a computational technique that determines the layout of a material such that a prescribed objective is maximized. Functionally Graded Materials (FGM) are composite materials whose properties vary gradually and continuously along a specific direction within the domain of the material. One of the advantages of applying the FGM concept to TOM is that it is not necessary a discrete 0-1 result, once the material gradation is part of the solution. Therefore, the interpretation step becomes easier and the dispersion diagram obtained from the optimization is not significantly modified. In this work, the main objective is to optimize the position and width of piezocomposite materials band gaps. Finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional functionally graded unit cells. The results demonstrate that phononic band gaps can be designed by using this methodology.

  3. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE PAGES

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...

    2017-11-20

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  4. Electronic properties of hexagonal gallium phosphide: A DFT investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin; Shah, Esha V.; Roy, Debesh R., E-mail: drr@ashd.svnit.ac.in

    2016-05-23

    A detail density functional investigation is performed to develop hexagonal 2D gallium phosphide material. The geometry, band structure and density of states (total and projected) of 2D hexagonal GaP are reported in detail. It is heartening to note that the developed material is identified as an indirect band gap semiconductor. The indirect gap for this material is predicted as 1.97 eV at K-Γ, and a direct gap of 2.28 eV at K point is achieved, which is very close to the reported direct band gap for zinc blende and buckled structures of GaP.

  5. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  6. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  7. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Lin, Fan-Shun

    2018-07-01

    In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.

  8. Band gap engineering of BC2N for nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  9. Origin of and tuning the optical and fundamental band gaps in transparent conducting oxides: The case of M2O3(M =Al ,Ga ,In )

    NASA Astrophysics Data System (ADS)

    Sabino, Fernando P.; Besse, Rafael; Oliveira, Luiz Nunes; Wei, Su-Huai; Da Silva, Juarez L. F.

    2015-11-01

    Good transparent conducting oxides (TCOs), such as In2O3 :Sn (ITO), usually combine large optical band gaps, essential for high transparency, with relatively small fundamental band gaps due to low conduction-band minima, which favor n -type doping and enhance the electrical conductivity. It has been understood that the optical band gaps are wider than the fundamental band gaps because optical transitions between the band-edge states are forbidden. The mechanism blocking such transitions, which can play a crucial role in the designing of alternative TCOs, nonetheless remains obscure. Here, based on first-principles density functional theory calculations and symmetry analysis of three oxides, M2O3 (M =Al ,Ga ,In ), we identify the physical origin of the gap disparities. Three conditions are necessary: (1) the crystal structure must have global inversion symmetry; (2) in order to belong to the Ag or A1 g irreducible representations, the states at the conduction-band minimum must have cation and oxygen s character; (3) in order to have g parity, the oxygen p orbitals constituting the states near the valence-band maximum must be strongly coupled to the cation d orbitals. Under these conditions, optical excitations across the fundamental gap will be forbidden. The three criteria explain the trends in the M2O3 (M =Al,Ga,In) sequence, in particular, explaining why In2O3 in the bixbyite structure yields the highest figure of merit. Our study provides guidelines expected to be instrumental in the search for new TCO materials.

  10. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE PAGES

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; ...

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZr xTi 1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x.more » We present structural and electrical characterization of SrZr xTi 1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  11. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gapsmore » of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.« less

  12. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  13. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Luning; Neuscamman, Eric

    We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less

  15. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

    PubMed

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-11-09

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.

  16. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.

    PubMed

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-04

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  17. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates

    NASA Astrophysics Data System (ADS)

    Oudich, Mourad; Senesi, Matteo; Assouar, M. Badreddine; Ruzenne, Massimo; Sun, Jia-Hong; Vincent, Brice; Hou, Zhilin; Wu, Tsung-Tsong

    2011-10-01

    We provide experimental evidence of the existence of a locally resonant sonic band gap in a two-dimensional stubbed plate. Structures consisting of a periodic arrangement of silicone rubber stubs deposited on a thin aluminium plate were fabricated and characterized. Brillouin spectroscopy analysis is carried out to determine the elastic constants of the used rubber. The constants are then implemented in an efficient finite-element model that predicts the band structure and transmission to identify the theoretical band gap. We measure a complete sonic band gap for the out-of-plane Lamb wave modes propagating in various samples fabricated with different stub heights. Frequency domain measurements of full wave field and transmission are performed through a scanning laser Doppler vibrometer. A complete band gap from 1.9 to 2.6 kHz is showed using a sample with 6-mm stub diameter, 5-mm thickness, and 1-cm structure periodicity. Very good agreement between numerical and experimental results is obtained.

  18. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder

    NASA Astrophysics Data System (ADS)

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-01

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  19. Electronic structure in 1T-ZrS2 monolayer by strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi

    2017-09-01

    We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.

  20. Valley polarization in silicene induced by circularly-polarized resonance light

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Qi, Fenghua

    2017-06-01

    In the presence of circularly-polarized resonance light, silicene develops dynamical band gaps in its quasi-energy band structure. Using numerical calculations, our results show that the gap appearing at ħω/2, where ħω is the photon energy. More importantly, we find that these gaps are non-symmetric for two inequivalent valleys. Therefore we can introduce light-controlled valley polarization in these dynamical band gaps. Different valleytronic devices can be realized using this technique.

  1. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu 3 N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.

    The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less

  2. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu 3 N

    DOE PAGES

    Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.; ...

    2017-03-06

    The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less

  3. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    PubMed

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  4. Achieving omnidirectional photonic band gap in sputter deposited TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B.; Sarkar, P.

    2015-06-24

    The multilayer structure of TiO{sub 2}/SiO{sub 2} (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.

  5. The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Rowtu, Srinu; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2018-02-01

    Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source-substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole-Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to- R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.

  6. Dipole-allowed direct band gap silicon superlattices

    PubMed Central

    Oh, Young Jun; Lee, In-Ho; Kim, Sunghyun; Lee, Jooyoung; Chang, Kee Joo

    2015-01-01

    Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic devices. The structures are almost identical to that of bulk Si except that defective layers are intercalated in the diamond lattice. The superlattices exhibit dipole-allowed direct band gaps as well as indirect band gaps, providing ideal conditions for the investigation of a direct-to-indirect band gap transition. The fact that almost all structural portions of the superlattices originate from bulk Si warrants their stability and good lattice matching with bulk Si. Through first-principles molecular dynamics simulations, we confirmed their thermal stability and propose a possible method to synthesize the defective layer through wafer bonding. PMID:26656482

  7. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  8. Manipulating sonic band gaps at will: vibrational density of states in three-dimensional acoustic metamaterial composites

    NASA Astrophysics Data System (ADS)

    Terao, Takamichi

    2018-04-01

    Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.

  9. Recent Developments in Quantum-Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, K. M. S. V.

    1995-01-01

    Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.

  10. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.

    PubMed

    Colton, J S; Erickson, S D; Smith, T J; Watt, R K

    2014-04-04

    Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

  11. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  12. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE PAGES

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...

    2018-04-16

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  13. Band gap engineering for graphene by using Na{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, S. J.; Lee, P. R.; Kim, J. G.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less

  14. Designing Phononic Crystals with Wide and Robust Band Gaps

    NASA Astrophysics Data System (ADS)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  15. Tailoring topological states in silicene using different halogen-passivated Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Derakhshan, Vahid; Moghaddam, Ali G.; Ceresoli, Davide

    2018-03-01

    We investigate the band structure and topological phases of silicene embedded on halogenated Si(111) surface using density functional theory calculations. Our results show that the Dirac character of low-energy excitations in silicene is almost preserved in the presence of a silicon substrate passivated by various halogens. Nevertheless, the combined effects of symmetry breaking due to both direct and van der Waals interactions between silicene and the substrate, charge transfer from suspended silicene into the substrate, and, finally, the hybridization which leads to the charge redistribution result in a gap in the spectrum of the embedded silicene. We further take the spin-orbit interaction into account and obtain the resulting modification in the gap. The energy gaps with and without spin-orbit coupling vary significantly when different halogen atoms are used for the passivation of the Si surface, and for the case of iodine, they become on the order of 100 meV. To examine the topological properties, we calculate the projected band structure of silicene from which the Berry curvature and Z2 invariant based on the evolution of Wannier charge centers are obtained. As a key finding, it is shown that silicene on halogenated Si substrates has a topological insulating state which can survive even at room temperature for the substrates with iodine and bromine at the surface. Therefore, these results suggest that we can have a reliable, stable, and robust silicene-based two-dimensional topological insulator using the considered substrates.

  16. One pot synthesis of nanosized anion doped TiO{sub 2}: Effect of irradiation of sound waves on surface morphology and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharotri, Nidhi, E-mail: nidhisliet11@gmail.com; Sud, Dhiraj, E-mail: author-suddhiraj@yahoo.com

    2015-08-28

    Commercialization of AOP’s for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO{sub 2} has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO{sub 2} (3.0-3.23 eV) with absorption cut off ∼ 380 nm, enables it to harness only a small fraction (∼ 5%) of the entire solarmore » spectrum. One of the current areas of research is modification of TiO{sub 2} photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO{sub 2} nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.« less

  17. Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G., E-mail: agni@physics.du.ac.in, E-mail: agvedeshwar@gmail.com

    2013-11-21

    The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different sixmore » (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.« less

  18. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  19. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad

    In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.

  20. A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A.; Vyrko, S. A.; Kovalev, A. I.

    2016-03-15

    A quasi-classical method for calculating the narrowing of the Hubbard gap between the A{sup 0} and A{sup +} acceptor bands in a hole semiconductor or the D{sup 0} and D{sup –} donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be randommore » and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band (v band) for acceptors or with the bottom of the conduction band (c band) for donors. In other words, the top of the v band for a p-type semiconductor or the bottom of the c band for an n-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy ε{sub 2} is consistent with available experimental data for lightly compensated p-Si crystals doped with boron and n-Ge crystals doped with antimony.« less

  1. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    NASA Astrophysics Data System (ADS)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  2. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    PubMed

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  3. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  4. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  5. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  6. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE PAGES

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; ...

    2015-11-24

    Complex doping schemes in R 3Al 5O 12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimummore » (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu 3B 5O 12 where B is Al, Ga, In, As, and Sb, and R 3Al 5O 12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  7. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-07-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

  8. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production

    PubMed Central

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-01-01

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production. PMID:27431993

  9. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Zhong, Miao; Ma, Liguo; Wang, Faze; Ma, Li; Shen, Wenzhong

    2016-07-19

    Due to its direct band gap of ~1.35 eV, appropriate energy band-edge positions, and low surface-recombination velocity, p-type InP has attracted considerable attention as a promising photocathode material for solar hydrogen generation. However, challenges remain with p-type InP for achieving high and stable photoelectrochemical (PEC) performances. Here, we demonstrate that surface modifications of InP photocathodes with Ti thin layers and amorphous MoSx nanoparticles can remarkably improve their PEC performances. A high photocurrent density with an improved PEC onset potential is obtained. Electrochemical impedance analyses reveal that the largely improved PEC performance of MoSx/Ti/InP is attributed to the reduced charge-transfer resistance and the increased band bending at the MoSx/Ti/InP/electrolyte interface. In addition, the MoSx/Ti/InP photocathodes function stably for PEC water reduction under continuous light illumination over 2 h. Our study demonstrates an effective approach to develop high-PEC-performance InP photocathodes towards stable solar hydrogen production.

  10. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lin, Z. S.; Molokeev, M. S.; Yelisseyev, A. P.; Zhurkov, S. A.

    2012-03-01

    Room-temperature modification of potassium oxyfluorotungstate, G2-K3WO3F3, has been prepared by low-temperature chemical route and single crystal growth. Wide optical transparency range of 0.3-9.4 μm and forbidden band gap Eg=4.32 eV have been obtained for G2-K3WO3F3 crystal. Meanwhile, its electronic structure has been calculated with the first-principles calculations. The good agreement between the theorectical and experimental results have been achieved. Furthermore, G2-K3WO3F3 is predicted to possess the relatively large nonlinear optical coefficients.

  11. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  12. Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.

    2017-12-01

    Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.

  13. DFT study of gases adsorption on sharp tip nano-catalysts surface for green fertilizer synthesis

    NASA Astrophysics Data System (ADS)

    Yahya, Noorhana; Irfan, Muhammad; Shafie, Afza; Soleimani, Hassan; Alqasem, Bilal; Rehman, Zia Ur; Qureshi, Saima

    2016-11-01

    The energy minimization and spin modifications of sorbates with sorbents in magnetic induction method (MIM) play a vital role in yield of fertilizer. Hence, in this article the focus of study is the interaction of sorbates/reactants (H2, N2 and CO2) in term of average total adsorption energies, average isosteric heats of adsorption energies, magnetic moments, band gaps energies and spin modifications over identical cone tips nanocatalyst (sorbents) of Fe2O3, Fe3O4 (magnetic), CuO and Al2O3 (non-magnetic) for green nano-fertilizer synthesis. Study of adsorption energy, band structures and density of states of reactants with sorbents are purely classical and quantum mechanical based concepts that are vividly illustrated and supported by ADSORPTION LOCATOR and Cambridge Seriel Total Energy Package (CASTEP) modules following classical and first principle DFT simulation study respectively. Maximum values of total average energies, total average adsorption energies and average adsorption energies of H2, N2 and CO2 molecules are reported as -14.688 kcal/mol, -13.444 kcal/mol, -3.130 kcal/mol, - kcal/mol and -6.348 kcal/mol over Al2O3 cone tips respectively and minimum over magnetic cone tips. Whereas, the maximum and average minimum values of average isosteric heats of adsorption energies of H2, N2 and CO2 molecules are figured out to be 3.081 kcal/mol, 4.842 kcal/mol and 6.848 kcal/mol, 0.988 kcal/mol, 1.554 kcal/mol and 2.236 kcal/mol over aluminum oxide and Fe3O4 cone tips respectively. In addition to the adsorption of reactants over identical cone sorbents the maximum and minimum values of net spin, electrons and number of bands for magnetite and aluminum oxide cone structures are attributed to 82 and zero, 260 and 196, 206 and 118 for Fe3O4 and Al2O3 cones respectively. Maximum and least observed values of band gap energies are figured out to be 0.188 eV and 0.018 eV with Al2O3 and Fe3O4 cone structures respectively. Ultimately, with the adsorption of reactants an identical increment of 14 electrons each in up and down spins is resulted.

  14. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less

  15. Quasiparticle band gap in the topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Nechaev, I. A.; Chulkov, E. V.

    2013-10-01

    We present a theoretical study of dispersion of states that form the bulk band-gap edges in the three-dimensional topological insulator Bi2Te3. Within density functional theory, we analyze the effect of atomic positions varied within the error range of the available experimental data and approximation chosen for the exchange-correlation functional on the bulk band gap and k-space location of valence- and conduction-band extrema. For each set of the positions with different exchange-correlation functionals, we show how many-body corrections calculated within a one-shot GW approach affect the mentioned characteristics of electronic structure of Bi2Te3. We thus also illustrate to what degree the one-shot GW results are sensitive to the reference one-particle band structure in the case of bismuth telluride. We found that for this topological insulator the GW corrections enlarge the fundamental band gap and for certain atomic positions and reference band structure bring its value in close agreement with experiment.

  16. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  17. Lamb wave band gaps in a double-sided phononic plate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  18. Phonon-induced ultrafast band gap control in LaTiO3

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    We propose a route for ultrafast band gap engineering in correlated transition metal oxides by using optically driven phonons. We show that the ∖Gamma-point electron band energies can be deterministically tuned in the nonequilibrium state. Taking the Mott insulator LaTiO3 as an example, we show that such phonon-assisted processes dynamically induce an indirect-to-direct band gap transition or even a metal-to-insulator transition, depending on the electron correlation strength. We explain the origin of the dynamical band structure control and also establish its generality by examining related oxides. Lastly, we describe experimental routes to realize the band structure control with impulsive stimulated Raman scattering.

  19. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  20. Tunable band gap in Bi(Fe1-xMnx)O3 films

    NASA Astrophysics Data System (ADS)

    Xu, X. S.; Ihlefeld, J. F.; Lee, J. H.; Ezekoye, O. K.; Vlahos, E.; Ramesh, R.; Gopalan, V.; Pan, X. Q.; Schlom, D. G.; Musfeldt, J. L.

    2010-05-01

    In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1-xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.

  1. One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications—a review

    NASA Astrophysics Data System (ADS)

    Ray, Samit K.; Katiyar, Ajit K.; Raychaudhuri, Arup K.

    2017-03-01

    Remarkable progress has been made in the field of one-dimensional semiconductor nanostructures for electronic and photonic devices. Group-IV semiconductors and their heterostructures have dominated the years of success in microelectronic industry. However their use in photonic devices is limited since they exhibit poor optical activity due to indirect band gap nature of Si and Ge. Reducing their dimensions below a characteristic length scale of various fundamental parameters like exciton Bohr radius, phonon mean free path, critical size of magnetic domains, exciton diffusion length etc result in the significant modification of bulk properties. In particular, light emission from Si/Ge nanowires due to quantum confinement, strain induced band structure modification and impurity doping may lead to the integration of photonic components with mature silicon CMOS technology in near future. Several promising applications based on Si and Ge nanowires have already been well established and studied, while others are now at the early demonstration stage. The control over various forms of energy and carrier transport through the unconstrained dimension makes Si and Ge nanowires a promising platform to manufacture advanced solid-state devices. This review presents the progress of the research with emphasis on their potential application of Si/Ge nanowires and their heterostructures for electronic, photonic, sensing and energy devices.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyewon; Cheong, S.W.; Kim, Bog G., E-mail: boggikim@pusan.ac.kr

    We have studied the properties of SnO{sub 6} octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO{sub 6} containing perovskites. We also have expended the hybrid density functional calculation to the ASnO{sub 3}/A'SnO{sub 3} system with different cation orderings. We propose an empirical relationshipmore » between the tolerance factor and the band gap of SnO{sub 6} containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO{sub 3} for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO{sub 6} octahedrons are plotted as polyhedron. (b) Band gap of ASnO{sub 3} as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO{sub 3}/A'SnO{sub 3} superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO{sub 3}, [001] ordered superlattices, and [111] ordered superlattices of ASnO{sub 3}/A'SnO{sub 3} as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO{sub 3} and ASnO{sub 3}/A'SnO{sub 3}. • The band gap of ASnO{sub 3} using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Zachary M.; Kim, Hyun-Sik; Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803

    In characterizing thermoelectric materials, electrical and thermal transport measurements are often used to estimate electronic band structure properties such as the effective mass and band gap. The Goldsmid-Sharp band gap, E{sub g} = 2e|S|{sub max}T{sub max}, is a tool widely employed to estimate the band gap from temperature dependent Seebeck coefficient measurements. However, significant deviations of more than a factor of two are now known to occur. We find that this is when either the majority-to-minority weighted mobility ratio (A) becomes very different from 1.0 or as the band gap (E{sub g}) becomes significantly smaller than 10 k{sub B}T. For narrow gapsmore » (E{sub g} ≲ 6 k{sub B}T), the Maxwell-Boltzmann statistics applied by Goldsmid-Sharp break down and Fermi-Dirac statistics are required. We generate a chart that can be used to quickly estimate the expected correction to the Goldsmid-Sharp band gap depending on A and S{sub max}; however, additional errors can occur for S < 150 μV/K due to degenerate behavior.« less

  4. Optical properties of II-VI structures for solar energy utilization

    NASA Astrophysics Data System (ADS)

    Schrier, Joshua; Demchenko, Denis; Wang, Lin-Wang

    2007-03-01

    Although II-VI semiconductor materials are abundant, stable, and have direct band gaps, the band gaps are too large for optimal photovoltaic efficiency. However, staggered band alignments of pairs of these materials, and also the formation of intermediate impurity levels in the band gap (which has been demonstrated to increase the efficiency as compared to both single-junction devices), could be utilized to improve the suitability of these materials for solar energy utilization. Previous theoretical studies of these materials are limited, due to the well-known band gap underestimation by density-functional theory. To calculate the absorption spectra, we utilize a band-corrected planewave pseudopotential approach, which gives agreements of within 0.1 eV of the bulk optical gaps values. In this talk, I will present our work on predicting the optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures, nanostructures, and alloys. This work was supported by U.S. Department of Energy under Contract No.DE-AC02-05CH11231 and used the resources of the National Energy Research Scientific Computing Center.

  5. Zn(x)Cd(1-x)Se nanomultipods with tunable band gaps: synthesis and first-principles calculations.

    PubMed

    Wei, Hao; Su, Yanjie; Han, Ziyi; Li, Tongtong; Ren, Xinglong; Yang, Zhi; Wei, Liangming; Cong, Fengsong; Zhang, Yafei

    2013-06-14

    In this paper, we demonstrate that ZnxCd1-xSe nanomultipods can be synthesized via a facile and nontoxic solution-based method. Interesting aspects of composition, morphology and optical properties were deeply explored. The value of Zn/(Zn+Cd) could be altered across the entire range from 0.08 to 0.86 by varying the ratio of cation precursor contents. The band gap energy could be linearly tuned from 1.88 to 2.48 eV with respect to the value of Zn/(Zn+Cd). The experiment also showed that oleylamine played a dominant role in the formation of multipod structure. A possible growth mechanism was further suggested. First-principles calculations of band gap energy and density of states in the Vienna ab initio simulation package code were performed to verify the experimental variation tendency of the band gap. Computational results indicated that dissimilarities of electronic band structures and orbital constitutions determined the tunable band gap of the as-synthesized nanomultipod, which might be promising for versatile applications in relevant areas of solar cells, biomedicine, sensors, catalysts and so on.

  6. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.

    PubMed

    Ni, Zhen Hua; Yu, Ting; Lu, Yun Hao; Wang, Ying Ying; Feng, Yuan Ping; Shen, Ze Xiang

    2008-11-25

    Graphene was deposited on a transparent and flexible substrate, and tensile strain up to approximately 0.8% was loaded by stretching the substrate in one direction. Raman spectra of strained graphene show significant red shifts of 2D and G band (-27.8 and -14.2 cm(-1) per 1% strain, respectively) because of the elongation of the carbon-carbon bonds. This indicates that uniaxial strain has been successfully applied on graphene. We also proposed that, by applying uniaxial strain on graphene, tunable band gap at K point can be realized. First-principle calculations predicted a band-gap opening of approximately 300 meV for graphene under 1% uniaxial tensile strain. The strained graphene provides an alternative way to experimentally tune the band gap of graphene, which would be more efficient and more controllable than other methods that are used to open the band gap in graphene. Moreover, our results suggest that the flexible substrate is ready for such a strain process, and Raman spectroscopy can be used as an ultrasensitive method to determine the strain.

  7. Prediction of large gap flat Chern band in a two-dimensional metal-organic framework

    NASA Astrophysics Data System (ADS)

    Su, Ninghai; Jiang, Wei; Wang, Zhengfei; Liu, Feng

    2018-01-01

    Systems with a flat Chern band have been extensively studied for their potential to realize high-temperature fractional quantum Hall states. To experimentally observe the quantum transport properties, a sizable topological gap is highly necessary. Here, taking advantage of the high tunability of two-dimensional (2D) metal-organic frameworks (MOFs), whose crystal structures can be easily tuned using different metal atoms and molecular ligands, we propose a design of a 2D MOF [Tl2(C6H4)3, Tl2Ph3] showing nontrivial topological states with an extremely large gap in both the nearly flat Chern band and the Dirac bands. By coordinating π-conjugated thallium ions and benzene rings, crystalline Tl2Ph3 can be formed with Tl and Ph constructing honeycomb and kagome lattices, respectively. The px,y orbitals of Tl on the honeycomb lattice form ideal pxy four-bands, through which a flat Chern band with a spin-orbit coupling (SOC) gap around 140 meV evolves below the Fermi level. This is the largest SOC gap among all the theoretically proposed organic topological insulators so far.

  8. Band gap bowing in NixMg1−xO

    PubMed Central

    Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.

    2016-01-01

    Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808

  9. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  10. First-principles study of electronic structure modulations in graphene on Ru(0001) by Au intercalation

    NASA Astrophysics Data System (ADS)

    Nishidate, Kazume; Tanibayashi, Satoru; Yoshimoto, Noriyuki; Hasegawa, Masayuki

    2018-03-01

    First-principles calculations based on density functional theory are used to explore the electronic-structure modulations in graphene on Ru(0001) by Au intercalation. We first use a lattice-matched model to demonstrate that a substantial band gap is induced in graphene by sufficiently strong A-B sublattice symmetry breaking. This band gap opening occurs even in the absence of hybridization between graphene π states and Au states, and a strong sublattice asymmetry is established for a small separation (d ) between the graphene and Au layer, typically, d <3.0 Å , which can actually be achieved for a low Au coverage. In realistic situations, which are mimicked using lattice-mismatched models, graphene π states near the Dirac point easily hybridize with nearby (in energy) Au states even for a van der Waals distance, d ˜3.4 Å , and this hybridization usually dictates a band gap opening in graphene. In that case, the top parts of the intact Dirac cones survive the hybridization and are isolated to form midgap states within the hybridization gap, denying that the band gap is induced by sublattice symmetry breaking. This feature of a band gap opening is similar to that found for the so-called "first" graphene layer on silicon carbide (SiC) and the predicted band gap and doping level are in good agreement with the experiments for graphene/Au/Ru(0001).

  11. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  12. Layer specific optical band gap measurement at nanoscale in MoS{sub 2} and ReS{sub 2} van der Waals compounds by high resolution electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dileep, K., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Sahu, R.; Datta, R., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in

    2016-03-21

    Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS{sub 2} and ReS{sub 2}, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS{sub 2}, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS{sub 2}. For ReS{sub 2}, the band gap is direct, and a value of 1.52 andmore » 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS{sub 2} forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.« less

  13. Structural, optical, physical and electrical properties of V2O5.SrO.B2O3 glasses.

    PubMed

    Sindhu, S; Sanghi, S; Agarwal, A; Seth, V P; Kishore, N

    2006-05-01

    The present work aims to study the structure and variation of optical band gap, density and dc electrical conductivity in vanadium strontium borate glasses. The glass systems xV2O5.(40-x)SrO.60B2O3 and xV2O5.(60-x)B2O3.40SrO with x varying from 0 to 20 mol% were prepared by normal melt quench technique. Structural studies were made by recording IR transmission spectra. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. The position of absorption edge and hence the value of the optical band gap was found to depend on the semiconducting glass composition. The absorption in these glasses is believed to be associated with indirect transitions. The origin of Urbach energy is associated with the phonon-assisted indirect transitions. The change in both density and molar volume was discussed in terms of the structural modifications that take place in the glass matrix on addition of V2O5. dc conductivity of the glass systems is also reported. The change of conductivity and activation energy with composition indicates that the conduction process varies from ionic to polaronic one.

  14. Optical properties of some modified plant compound after 662 keV gamma radiation

    NASA Astrophysics Data System (ADS)

    Mir, Feroz A.; Rather, Sajad A.; Wani, Ishfaq A.; Banday, Javid A.; Khan, Shoukat H.

    2014-11-01

    Plant-isolated compounds, Osthol [7-methoxy-8-(3-methylbut-2-enyl) coumarin], were subjected to modification in the isopentenyl side chain to get an aldehyde of 2-methyl-4 (7-methoxy-2-oxo-2H-chromen-8-yl)-but-2-en-1-al. This modified compound was exposed to γ-radiation produced by 137Cs source at room temperature. Pre- and post-irradiation study was carried out by ultraviolet-visible spectroscopy. The compound shows a sharp absorption peak at 322 nm. This observed absorption band decreases with irradiation up to a certain dose and then increases with a further increase in the radiation dose. This compound exhibits almost a linear response up to 7 Gy. From the optical data analysis, this compound follows indirect allowed transition and the optical gap was found around 3.58 eV. The systematic decrease in the band gap was found with an increase in the radiation dose. Urbach energy is also found to decrease with radiation. This parameter gives a clear indication of the defects and free radical created in the system after irradiation. The present features shown by this compound may be exploited as sensitive dosimeter in 0-7 Gy γ-radiation environment.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in; Kant, Shiva; Reddi, R.S.B.

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB andmore » UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.« less

  16. Enhanced Photocatalytic Activity in Bi1-x Ba x FeO3 Prepared by a PEG400 Assisted Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Zhang, Chenlan; Chen, Jianguo; Jin, Dengren; Cheng, Jinrong

    2018-03-01

    Ferroelectric Bi1-x Ba x FeO3 nanoparticles for x = 0, 0.01, 0.03, 0.05 and 0.10 were synthesized by a polyethylene glycol 400 (PEG400) assisted sol-gel method. X-ray diffraction reveals that Bi1-x Ba x FeO3 nanoparticles exhibit a distorted rhombohedral structure with the R3c space group, and the diffraction peaks shift upon incorporation of Ba. Transmission electron microscope analysis shows that the particle size of Bi1-x Ba x FeO3 nanoparticles is in the range of 30-60 nm, decreasing with an increase in Ba content. Bi1-x Ba x FeO3 nanoparticles have band gaps in the range of 1.68-2.0 eV, which are capable of responding to visible light irradiation. The rate of the photocatalytic degradation of Bi1-x Ba x FeO3 nanoparticles for x = 0.03 to methyl orange (MO) dye achieves about 81% under visible light irradiation for 3 h, which is higher than that of 66% for pure phase BiFeO3 (BFO). Moreover, the effects of Ba2+ modification on the band gap of BFO crystallites have been investigated and discussed.

  17. Local electronic structure and photoelectrochemical activity of partial chemically etched Ti-doped hematite

    NASA Astrophysics Data System (ADS)

    Rioult, Maxime; Belkhou, Rachid; Magnan, Hélène; Stanescu, Dana; Stanescu, Stefan; Maccherozzi, Francesco; Rountree, Cindy; Barbier, Antoine

    2015-11-01

    The direct conversion of solar light into chemical energy or fuel through photoelectrochemical water splitting is promising as a clean hydrogen production solution. Ti-doped hematite (Ti:α-Fe2O3) is a potential key photoanode material, which despite its optimal band gap, excellent chemical stability, abundance, non-toxicity and low cost, still has to be improved. Here we give evidence of a drastic improvement of the water splitting performances of Ti-doped hematite photoanodes upon a HCl wet-etching. In addition to the topography investigation by atomic force microscopy, a detailed determination of the local electronic structure has been carried out in order to understand the phenomenon and to provide new insights in the understanding of solar water splitting. Using synchrotron radiation based spectromicroscopy (X-PEEM), we investigated the X-ray absorption spectral features at the L3 Fe edge of the as grown surface and of the wet-etched surface on the very same sample thanks to patterning. We show that HCl wet etching leads to substantial surface modifications of the oxide layer including increased roughness and chemical reduction (presence of Fe2 +) without changing the band gap. We demonstrate that these changes are profitable and correlated to the drastic changes of the photocatalytic activity.

  18. Band structure of comb-like photonic crystals containing meta-materials

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  19. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  20. Electronic structure and its external electric field modulation of PbPdO2 ultrathin slabs with (002) and (211) preferred orientations.

    PubMed

    Yang, Yanmin; Zhong, Kehua; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-07-31

    The Electronic structure of PbPdO 2 with (002) and (211) preferred orientations were investigated using first-principles calculation. The calculated results indicate that, (002) and (211) orientations exhibit different electric field dependence of band-gap and carrier concentration. The small band gap and more sensitive electric field modulation of band gap were found in (002) orientation. Moreover, the electric field modulation of the resistivity up to 3-4 orders of magnitude is also observed in (002) slab, which reveals that origin of colossal electroresistance. Lastly, electric field modulation of band gap is well explained. This work should be significant for repeating the colossal electroresistance.

  1. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    PubMed

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  2. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    PubMed Central

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  3. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  4. Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications

    DOE PAGES

    Qiao, L.; Zhang, S.; Xiao, H. Y.; ...

    2018-01-01

    Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less

  5. Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L.; Zhang, S.; Xiao, H. Y.

    Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less

  6. Band gap engineering of N-alloyed Ga{sub 2}O{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Dongyu; Li, Bingsheng, E-mail: libingsheng@hit.edu.cn, E-mail: ashen@ccny.cuny.edu; Sui, Yu

    2016-06-15

    The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH{sub 3} and Ar gas for 60 minutes. Then they were annealed in NH{sub 3} ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinicmore » and hexagonal structures after they were annealed in oxygen or ammonia ambience, respectively. The narrowing of the band gap is attributed to the enhanced repulsion of N2p -Ga3d orbits and formation of hexagonal structure.« less

  7. Torsional wave band gap properties in a circular plate of a two-dimensional generalized phononic crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie

    2018-05-01

    The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.

  8. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  9. On the optical band gap of zinc oxide

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    Three different values (3.1, 3.2, and 3.3 eV) have been reported for the optical band gap of zinc oxide single crystals at room temperature. By comparing the optical properties of ZnO crystals using a variety of optical techniques it is concluded that the room temperature band gap is 3.3 eV and that the other values are attributable to a valence band-donor transition at ˜3.15 eV that can dominate the optical absorption when the bulk of a single crystal is probed.

  10. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  11. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less

  12. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    PubMed Central

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  13. Pulsed laser deposited BexZn1-xO1-ySy quaternary alloy films: structure, composition, and band gap bowing

    NASA Astrophysics Data System (ADS)

    Zhang, Wuzhong; Xu, Maji; Zhang, Mi; Cheng, Hailing; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Chen, Changqing; He, Yunbin

    2018-03-01

    In this work, c-axis preferentially oriented BexZn1-xO1-ySy (BeZnOS) quaternary alloy films were prepared successfully on c-plane sapphire by pulsed laser deposition for the first time. By appropriate adjustment of O2 pressure during the deposition, the grown films exhibited a single-phase hexagonal structure and good crystalline quality. The solid solubility of S in BexZn1-xO1-ySy quaternary alloy was significantly expanded (y ≤ 0.17 or y ≥ 0.35) as a result of simultaneous substitution of cation Zn2+ by smaller Be2+ and anion O2- by bigger S2-. Besides, due to the introduction of BeO with a wide band gap, BeZnOS quaternary films exhibited wider band gaps than the ternary ZnOS films with similar S contents. As the O2 pressure increased from 0.05 Pa to 6 Pa, the band gap of BeZnOS displayed an interesting bowing behavior. The variation range of the band gap was between 3.55 eV and 3.10 eV. The BeZnOS films with a wide band gap show potential applications in fabricating optoelectronic devices such as UV-detectors.

  14. Direct band gap silicon crystals predicted by an inverse design method

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo

    2015-03-01

    Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).

  15. Environmentally sensitive theory of electronic and optical transitions in atomically thin semiconductors

    NASA Astrophysics Data System (ADS)

    Cho, Yeongsu; Berkelbach, Timothy C.

    2018-01-01

    We present an electrostatic theory of band-gap renormalization in atomically thin semiconductors that captures the strong sensitivity to the surrounding dielectric environment. In particular, our theory aims to correct known band gaps, such as that of the three-dimensional bulk crystal. Combining our quasiparticle band gaps with an effective-mass theory of excitons yields environmentally sensitive optical gaps as would be observed in absorption or photoluminescence. For an isolated monolayer of MoS2, the presented theory is in good agreement with ab initio results based on the G W approximation and the Bethe-Salpeter equation. We find that changes in the electronic band gap are almost exactly offset by changes in the exciton binding energy such that the energy of the first optical transition is nearly independent of the electrostatic environment, rationalizing experimental observations.

  16. Sizable band gap in organometallic topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.

    2017-01-01

    Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.

  17. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    PubMed

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  18. On the role of micro-inertia in enriched continuum mechanics.

    PubMed

    Madeo, Angela; Neff, Patrizio; Aifantis, Elias C; Barbagallo, Gabriele; d'Agostino, Marco Valerio

    2017-02-01

    In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

  19. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Chen, Lien-Wen

    2011-02-01

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the Γ-X and Γ-X' directions are also presented. The calculated results are compared with the experimental results.

  20. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yater, J. E., E-mail: joan.yater@nrl.navy.mil; Shaw, J. L.; Pate, B. B.

    2016-02-07

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distributionmore » as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron sources, particle detectors, and other electronic devices.« less

  1. Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.

    PubMed

    Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi

    2018-05-03

    We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.

  2. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl; Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara; Nojima, S.

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables themore » efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a PhC, which are made of GaAs.« less

  3. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si

    NASA Astrophysics Data System (ADS)

    Persson, C.; Lindefelt, U.; Sernelius, B. E.

    1999-10-01

    Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.

  4. Band alignment of semiconductors and insulators using dielectric-dependent hybrid functionals: Toward high-throughput evaluation

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-02-01

    The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.

  5. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural and electro-optical properties of bilayer graphyne like BN sheet

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-12-01

    The structural, electronic and optical properties of bilayer graphyne like BN sheet (BNyne) with different stacking manners have been explored by the first-principles calculations. The stabilities of α-BNyne bilayers with different stacking manners are compared. The α-BNyne Bilayers have wide band gaps. Compared to the single α-BNyne, the numbers of energy bands are doubled due to the interlayer interactions and the band gap is reduced. The AB-I configuration has a direct band gap while the band gap becomes indirect for AA-II. The calculated ε2 (ω) of bilayer α-BNyne for (Eǁx) is similar to that of the monolayer α-BNyne, except for the small changes of peak positions and increasing of peak intensities. For (Eǁz), the first absorption peak occures at 3.86 eV, and the prominant peak of monolayer at 9.17 eV becomes broadened. These changes are related to the new transitions resulting from the band splitting.

  7. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    DTIC Science & Technology

    2015-05-01

    ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...field corresponds to the rotation of the B vector about the pseudo field vector, Ω, with components determined by the effective Rabi frequency ( )e...to examine coherent quantum effects, such as Rabi oscillations and quantum entanglement in optical spectra of wide-band-gap materials, and to

  8. A new silicon phase with direct band gap and novel optoelectronic properties

    DOE PAGES

    Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; ...

    2015-09-23

    Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. Additionally, this new allotrope displays large carrier mobility (~10 4 cm/V · s) at room temperature and a low mass density (1.71 g/cm 3), making it amore » promising material for optoelectronic applications.« less

  9. Electronic structure of graphene- and BN-supported phosphorene

    NASA Astrophysics Data System (ADS)

    Davletshin, Artur R.; Ustiuzhanina, Svetlana V.; Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.

    2018-04-01

    By using first-principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene-supported phosphorene is found to be metallic, while the BN-supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. Furthermore, the effects of the van der Waals interactions between the phosphorene and graphene or BN layers by means of the interlayer distance change are investigated. It is shown that the interlayer distance change leads to significant band gap size modulations and direct-indirect band gap transitions in the phosphorene-BN heterostructure. The presented band gap engineering of phosphorene may be a powerful technique for the fabrication of high-performance phosphorene-based nanodevices.

  10. Tailoring of optical band gap by varying Zn content in Cd{sub 1-x}Zn{sub x}S thin films prepared by spray pyrolysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin, E-mail: vipinkumar28@yahoo.co.in; Sharma, D. K.; Agrawal, Sonalika

    Cd{sub 1-X}Zn{sub X}S thin films (X = 0.2, 0.4, 0.6, 0.8) have been grown on glass substrate by spray pyrolysis technique using equimolar concentration aqueous solution of cadmium chloride, zinc acetate and thiourea. Prepared thin films have been characterized by UV-VIS spectrophotometer. The optical band gap of the films has been studied by transmission spectra in wavelength range 325-600nm. It has been observed that optical band gap increases with increasing zinc concentration. The optical band gap of these thin films varies from 2.59 to 3.20eV with increasing Zn content.

  11. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    NASA Astrophysics Data System (ADS)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  12. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-21

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  13. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    PubMed Central

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  14. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  15. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, J.; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714; Peng, X.Y.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of bandmore » gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.« less

  16. Spatial filtering with photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maigyte, Lina; Staliunas, Kestutis; Institució Catalana de Recerca i Estudis Avançats

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., inmore » the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.« less

  17. Microwave emulations and tight-binding calculations of transport in polyacetylene

    NASA Astrophysics Data System (ADS)

    Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.

    2017-01-01

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.

  18. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.

    PubMed

    Tian, Xiaoqing; Xu, Jianbin; Wang, Xiaomu

    2010-09-09

    The band gap opening of bilayer graphene with one side surface adsorption of F4-TCNQ is reported. F4-TCNQ doped bilayer graphene shows p-type semiconductor characteristics. With a F4-TCNQ concentration of 1.3 x 10(-10) mol/cm(2), the charge transfer between each F4-TCNQ molecule and graphene is 0.45e, and the built-in electric field, E(bi), between the graphene layers could reach 0.070 V/A. The charge transfer and band gap opening of the F4-TCNQ-doped graphene can be further modulated by an externally applied electric field (E(ext)). At 0.077 V/A, the gap opening at the Dirac point (K), DeltaE(K) = 306 meV, and the band gap, E(g) = 253 meV, are around 71% and 49% larger than those of the pristine bilayer under the same E(ext).

  19. Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study

    NASA Astrophysics Data System (ADS)

    Marsusi, F.; Fedorov, I. A.; Gerivani, S.

    2018-01-01

    Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a  -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.

  20. Thermal tuning on band gaps of 2D phononic crystals considering adhesive layers

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoliang; Chen, Jialin; Li, Yuhang; Sun, Yuxin; Xing, Yufeng

    2018-02-01

    Phononic crystals are very attractive in many applications, such as noise reduction, filters and vibration isolation, due to their special forbidden band gap structures. In the present paper, the investigation of tunable band gaps of 2D phononic crystals with adhesive layers based on thermal changing is conducted. Based on the lumped-mass method, an analytical model of 2D phononic crystals with relatively thin adhesive layers is established, in which the in-plane and out-of-plane modes are both in consideration. The adhesive material is sensitive to temperature so that the band structure can be tuned and controlled by temperature variation. As temperature increases from 20 °C-80 °C, the first band gap shifts to the frequency zone around 10 kHz, which is included by the audible frequency range. The results propose an important guideline for applications, such as noise suppression using the 2D phononic crystals.

  1. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites

    PubMed Central

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang

    2016-01-01

    The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  2. Inverse problem of the vibrational band gap of periodically supported beam

    NASA Astrophysics Data System (ADS)

    Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei

    2017-04-01

    The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.

  3. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  4. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    PubMed

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  5. Diamond /111/ studied by electron energy loss spectroscopy in the characteristic loss region

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1982-01-01

    Unoccupied surface states on diamond (111) annealed at greater than 900 C are studied by electron energy loss spectroscopy with valence band excitation. A feature found at 2.1 eV loss energy is attributed to an excitation from occupied surface states into unoccupied surface states of energy within the bulk band gap. A surface band gap of approximately 1 eV is estimated. This result supports a previous suggestion for unoccupied band gap states based on core level energy loss spectroscopy. Using the valence band excitation energy loss spectrosocpy, it is also suggested that hydrogen is removed from the as-polished diamond surface by a Menzel-Gomer-Redhead mechanism.

  6. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    PubMed

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  7. Hole superconductivity in a generalized two-band model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X.Q.; Hirsch, J.E.

    1992-06-01

    We study superconductivity in a two-band model that generalizes the model introduced by Suhl, Matthias, and Walker: All possible interaction terms coupling both bands are included. The pairing interaction is assumed to originate in the momentum dependence of the intraband interactions that arises in the model of hole superconductivity. The model generically displays a single critical temperature and two gaps, with the larger gap associated with the band with strongest holelike character to the carriers. The dependence of the critical temperature and of the magnitudes of the gaps on the various parameters in the Hamiltonian is studied.

  8. Impurity-Band Model for GaP1-xNx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Zhang, Y.; Geisz, J. F.

    2005-11-01

    Low-temperature absorption studies on free-standing GaP1-xNx films provide direct experimental evidence that the host conduction-band minimum (CBM) near X1C does not plunge downward with increased nitrogen doping, contrary to what has been suggested recently; rather, it remains stationary for x up to 0.1%. This fact, combined with the results of earlier studies of the CBM at ..GAMMA.. and conduction-band edge near L, confirms that the giant bandgap lowering observed in GaP1-xNx results from a CBM that evolves purely from nitrogen impurity bands.

  9. Optical band gap in a cholesteric elastomer doped by metallic nanospheres

    NASA Astrophysics Data System (ADS)

    Hernández, Julio C.; Reyes, J. Adrián

    2017-12-01

    We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system. These calculations verify the mentioned band structure and provide additional information about the polarization features of the radiation.

  10. Bands dispersion and charge transfer in β-BeH2

    NASA Astrophysics Data System (ADS)

    Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2018-04-01

    Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.

  11. Hierarchical active factors to band gap and nonlinear optical response in Ag-containing quaternary-chalcogenide compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jun-ben; Xinjiang Key Laboratory of Electronic Information Material and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011; Mamat, Mamatrishat, E-mail: mmtrxt@xju.edu.cn

    In this research work, Ag-containing quaternary-chalcogenide compounds KAg{sub 2}TS{sub 4} (T=P, Sb) (I-II) and RbAg{sub 2}SbS{sub 4} (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg{sub 2}PS{sub 4} possesses wide band gap and SHG response comparable with thatmore » of AgGaS{sub 2}. By exploring the origin of the band gap and NLO response for compounds KAg{sub 2}TS{sub 4} (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg{sub 2}TS{sub 4} (T=P, Sb) and RbAg{sub 2}SbS{sub 4} can be used in infrared (IR) region. - Graphical abstract: Metal thiophosphates RbPbPS{sub 4} and KSbP{sub 2}S{sub 6} have a similar band gap with KAg{sub 2}PS{sub 4}. However, based on first principles calculated results it shown that KAg{sub 2}PS{sub 4} possesses wide band gap (3.02 eV) and relatively large SHG response. Display Omitted.« less

  12. On the role of micro-inertia in enriched continuum mechanics

    NASA Astrophysics Data System (ADS)

    Madeo, Angela; Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d'Agostino, Marco Valerio

    2017-02-01

    In this paper, the role of gradient micro-inertia terms η ¯ ∥ ∇ u,t∥2 and free micro-inertia terms η ∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η ¯ ∥ ∇ u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η ∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η ¯ ∥ ∇ u,t∥2, in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η ¯ ∥ ∇ u,t∥2 on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

  13. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.

    PubMed

    Wang, Weidong; Bai, Liwen; Yang, Chenguang; Fan, Kangqi; Xie, Yong; Li, Minglin

    2018-01-31

    Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS₂ are investigated by using the first-principles method. For the O-doped pure monolayer WS₂, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS₂ is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS₂. Then, two typical point defects, including sulfur single-vacancy (V S ) and sulfur divacancy (V 2S ), are introduced to probe the influences of O doping on the electronic properties of WS₂ monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS₂ with V S defect to a certain degree, but weaken the band gap of monolayer WS₂ with V 2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS₂ cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS₂.

  14. On the role of micro-inertia in enriched continuum mechanics

    PubMed Central

    Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d’Agostino, Marco Valerio

    2017-01-01

    In this paper, the role of gradient micro-inertia terms η¯∥ ∇u,t∥2 and free micro-inertia terms η∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η¯∥ ∇u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η¯∥ ∇u,t∥2, in the sense of Cartan–Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η¯∥ ∇u,t∥2 on more classical enriched models such as the Mindlin–Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin–Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials. PMID:28293136

  15. Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: A theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alidoust, Nima; Lessio, Martina; Carter, Emily A., E-mail: eac@princeton.edu

    2016-01-14

    Solar cells based on single pn junctions, employing single-gap semiconductors can ideally achieve efficiencies as high as 34%. Developing solar cells based on intermediate-band semiconductors (IBSCs), which can absorb light across multiple band gaps, is a possible way to defy this theoretical limit and achieve efficiencies as high as 60%. Here, we use first principles quantum mechanics methods and introduce CoO and Co{sub 0.25}Ni{sub 0.75}O as possible IBSCs. We show that the conduction band in both of these materials is divided into two distinct bands separated by a band gap. We further show that the lower conduction band (i.e., themore » intermediate band) is wider in Co{sub 0.25}Ni{sub 0.75}O compared with CoO. This should enhance light absorption from the valence band edge to the intermediate band, making Co{sub 0.25}Ni{sub 0.75}O more appropriate for use as an IBSC. Our findings provide the basis for future attempts to partially populate the intermediate band and to reduce the lower band gap in Co{sub 0.25}Ni{sub 0.75}O in order to enhance the potential of this material for use in IBSC solar cell technologies. Furthermore, with proper identification of heterojunctions and dopants, CoO and Co{sub 0.25}Ni{sub 0.75}O could be used in multi-color light emitting diode and laser technologies.« less

  16. Optical study of the band structure of wurtzite GaP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assali, S., E-mail: simone.assali@polymtl.ca; Greil, J.; Zardo, I.

    2016-07-28

    We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading tomore » a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ{sub 8C} conduction band edge.« less

  17. Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures.

    PubMed

    Hu, Tao; Hong, Jisang

    2015-10-28

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.

  18. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Keyan; Kang, Congying; Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1−x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1−x}O and Cd{sub x}Zn{sub 1−x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1−x}O and Ca{sub x}Zn{sub 1−x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereasmore » the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.« less

  19. Modulation of band gap by an applied electric field in BN-based heterostructures

    NASA Astrophysics Data System (ADS)

    Luo, M.; Xu, Y. E.; Zhang, Q. X.

    2018-05-01

    First-principles density functional theory (DFT) calculations are performed on the structural and electronic properties of the SiC/BN van der Waals (vdW) heterostructures under an external electric field (E-field). Our results reveal that the SiC/BN vdW heterostructure has a direct band gap of 2.41 eV in the raw. The results also imply that electrons are likely to transfer from BN to SiC monolayer due to the deeper potential of BN monolayer. It is also observed that, by applying an E-field, ranging from -0.50 to +0.65 V/Å, the band gap decreases from 2.41 eV to zero, which presents a parabola-like relationship around 0.0 V/Å. Through partial density of states (PDOS) plots, it is revealed that, p orbital of Si, C, B, and N atoms are responsible for the significant variations of band gap. These obtained results predict that, the electric field tunable band gap of the SiC/BN vdW heterostructures carries potential applications for nanoelectronics and spintronic device applications.

  20. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  1. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less

  2. Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study.

    PubMed

    Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia

    2010-02-05

    We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.

  3. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.

    2008-02-01

    Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.

  4. Dispersion of the refractive index of a samarium-doped Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atayeva, S. U., E-mail: seva-atayeva@mail.ru; Mekhtiyeva, S. I.; Isayev, A. I.

    2015-07-15

    The transmission spectrum of a Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor doped with samarium (0.05, 0.1, 0.25, 0.5, and 1 at %) is studied; the Swanepoel method and the single-oscillator model are used to determine the oscillator energy E{sup 0}, dispersion energy E{sup d}, optical width of the band gap E{sup g}, and linear (n) and nonlinear (n{sup 2}) refractive indices. The changes in the values of these parameters as a result of doping are attributed to modification of the local structure and to a change in the concentration of defect states.

  5. Tuning the Band Bending and Controlling the Surface Reactivity at Polar and Nonpolar Surfaces of ZnO through Phosphonic Acid Binding.

    PubMed

    McNeill, Alexandra R; Hyndman, Adam R; Reeves, Roger J; Downard, Alison J; Allen, Martin W

    2016-11-16

    ZnO is a prime candidate for future use in transparent electronics; however, development of practical materials requires attention to factors including control of its unusual surface band bending and surface reactivity. In this work, we have modified the O-polar (0001̅), Zn-polar (0001), and m-plane (101̅0) surfaces of ZnO with phosphonic acid (PA) derivatives and measured the effect on the surface band bending and surface sensitivity to atmospheric oxygen. Core level and valence band synchrotron X-ray photoemission spectroscopy was used to measure the surface band bending introduced by PA modifiers with substituents of opposite polarity dipole moment: octadecylphosphonic acid (ODPA) and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctylphosphonic acid (F 13 OPA). Both PAs act as surface electron donors, increasing the downward band bending and the strength of the two-dimensional surface electron accumulation layer on all of the ZnO surfaces investigated. On the O-polar (0001̅) and m-plane (101̅0) surfaces, the ODPA modifier produced the largest increase in downward band bending relative to the hydroxyl-terminated unmodified surface of 0.55 and 0.35 eV, respectively. On the Zn-polar (0001) face, the F 13 OPA modifier gave the largest increase (by 0.50 eV) producing a total downward band bending of 1.00 eV, representing ∼30% of the ZnO band gap. Ultraviolet (UV) photoinduced surface wettability and photoconductivity measurements demonstrated that the PA modifiers are effective at decreasing the sensitivity of the surface toward atmospheric oxygen. Modification with PA derivatives produced a large increase in the persistence of UV-induced photoconductivity and a large reduction in UV-induced changes in surface wettability.

  6. Electronic and optical properties of the LiCdX (X = N, P, As and Sb) filled-tetrahedral compounds with the Tran–Blaha modified Becke–Johnson density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr; Bin-Omran, S.; Department of Physics, Faculty of Science & Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942

    Highlights: • Electronic and optical properties of the LiCdX compounds have been predicted. • Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap. • We predict a direct band gap in all of the considered LiCdX compounds. • Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able tomore » accurately describe the electronic structure of semiconductors, namely the Tran–Blaha-modified Becke–Johnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.« less

  7. Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag2Ga2SiS6 compound

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Myronchuk, G. L.; Parasyuk, O. V.; Khyzhun, O. Y.; Fedorchuk, A. O.; Pavlyuk, V. V.; Kozer, V. R.; Sachanyuk, V. P.; El-Naggar, A. M.; Albassam, A. A.; Jedryka, J.; Kityk, I. V.

    2017-02-01

    For the first time phase equilibria and phase diagram of the AgGaS2-SiS2 system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag2Ga2SiS6 (LT- Ag2Ga2SiS6) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å3. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LT- Ag2Ga2SiS6 crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LT-Ag2Ga2SiS6 was matched on a common energy scale with the X-ray emission S Kβ1,3 and Ga Kβ2 bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LT-Ag2Ga2SiS6, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag2Ga2SiS6 is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λmax1 =590 nm and λmax2 =860 nm. Additionally, linear electro-optical effect of LT-Ag2Ga2SiS6 for the wavelengths of a cw He-Ne laser at 1150 nm was explored.

  8. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  9. Pressure effects on band structures in dense lithium

    NASA Astrophysics Data System (ADS)

    Goto, Naoyuki; Nagara, Hitose

    2012-07-01

    We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.

  10. A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo

    DOE PAGES

    Zhao, Luning; Neuscamman, Eric

    2017-05-17

    We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less

  11. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    NASA Astrophysics Data System (ADS)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-06-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing.

  12. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    PubMed Central

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering–based applications including photonic devices and (bio)imaging/sensing. PMID:27345862

  13. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  14. Electrical, Optical and Structural Studies of INAS/INGASB VLWIR Superlattices

    DTIC Science & Technology

    2013-01-01

    period measured by x-ray diffraction and the optical band gap energy determined by the photoresponse spectra. Sample InAs (Å) GaSb (Å) In (%) IF (Å...8x8 EFA. 22 Temperature-dependent lattice constants, band gap energies , and other physical data for InAs and GaSb are taken from Vurgaftman et al...gallium antimonide to achieve energy band gaps less than 50 meV with a superlattice period on the order of 68 Å. Similar to the work reported on

  15. Electronic and transport properties of zigzag carbon nanotubes with the presence of periodical antidot and boron/nitride doping defects

    NASA Astrophysics Data System (ADS)

    Zoghi, Milad; Yazdanpanah Goharrizi, Arash; Mirjalili, Seyed Mohammad; Kabir, M. Z.

    2018-06-01

    Electronic and transport properties of Carbon nanotubes (CNTs) are affected by the presence of physical or chemical defects in their structures. In this paper, we present novel platforms of defected zigzag CNTs (Z-CNTs) in which two topologies of antidot and Boron/Nitride (BN) doping defects are periodically imposed throughout the length of perfect tubes. Using the tight binding model and the non-equilibrium Green’s function method, it is realized that the quantum confinement of Z-CNTs is modified by the presence of such defects. This new quantum confinement results in the appearance of mini bands and mini gaps in the transmission spectra, as well as a modified band structure and band gap size. The modified band gap could be either larger or smaller than the intrinsic band gap of a perfect tube, which is determined by the category of Z-CNT. The in-depth analysis shows that the size of the modified band gap is the function of several factors consisting of: the radii of tube (D r), the distance between adjacent defects (d d), the utilized defect topology, and the kind of defect (antidot or BN doping). Furthermore, taking advantage of the tunable band gap size of Z-CNT with the presence of periodical defects, new platforms of defect-based Z-CNT resonant tunneling diode (RTD) are proposed for the first time. Our calculations demonstrate the apparition of resonances in transmission spectra and the negative differential resistance in the I-V characteristics for such RTD platforms.

  16. First-principle study of effect of variation of `x' on the band alignment in CZTS1-xSex

    NASA Astrophysics Data System (ADS)

    Ghemud, Vipul; Kshirsagar, Anjali

    2018-04-01

    The present work concentrates on the electronic structure study of CZTS1-xSex alloy with x ranging from 0 to 1. For the alloy study, we have carried out first-principles calculations employing generalized gradient approximation for structural optimization and further hybrid functional approach to compare the optical band gap with that obtained from the experiments. A systematic increase in the lattice parameters with lowering of band gap from 1.52eV to 1.04eV is seen with increasing Se concentration from 0 to 100%, however the lowering of valence band edge and conduction band edge is not linear with the concentration variation. Our results indicate that the lowering of band gap is a result increased Cu:d and Se:p hybridization with increasing `x'.

  17. Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping

    NASA Astrophysics Data System (ADS)

    Zhang, Kenan; Deng, Ke; Li, Jiaheng; Zhang, Haoxiong; Yao, Wei; Denlinger, Jonathan; Wu, Yang; Duan, Wenhui; Zhou, Shuyun

    2018-05-01

    SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interest due to its excellent thermoelectric properties and potential device applications. Experimental electronic structure of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices.

  18. Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.

    PubMed

    Dixit, H; Lamoen, D; Partoens, B

    2013-01-23

    CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.

  19. Tunable Electronic and Topological Properties of Germanene by Functional Group Modification

    PubMed Central

    Ren, Ceng-Ceng; Zhang, Shu-Feng; Ji, Wei-Xiao; Zhang, Chang-Wen; Li, Ping; Wang, Pei-Ji

    2018-01-01

    Electronic and topological properties of two-dimensional germanene modified by functional group X (X = H, F, OH, CH3) at full coverage are studied with first-principles calculation. Without considering the effect of spin-orbit coupling (SOC), all functionalized configurations become semiconductors, removing the Dirac cone at K point in pristine germanene. We also find that their band gaps can be especially well tuned by an external strain. When the SOC is switched on, GeX (X = H, CH3) is a normal insulator and strain leads to a phase transition to a topological insulator (TI) phase. However, GeX (X = F, OH) becomes a TI with a large gap of 0.19 eV for X = F and 0.24 eV for X = OH, even without external strains. More interestingly, when all these functionalized monolayers form a bilayer structure, semiconductor-metal states are observed. All these results suggest a possible route of modulating the electronic properties of germanene and promote applications in nanoelectronics. PMID:29509699

  20. Modeling the free energy surfaces of electron transfer in condensed phases

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.; Voth, Gregory A.

    2000-10-01

    We develop a three-parameter model of electron transfer (ET) in condensed phases based on the Hamiltonian of a two-state solute linearly coupled to a harmonic, classical solvent mode with different force constants in the initial and final states (a classical limit of the quantum Kubo-Toyozawa model). The exact analytical solution for the ET free energy surfaces demonstrates the following features: (i) the range of ET reaction coordinates is limited by a one-sided fluctuation band, (ii) the ET free energies are infinite outside the band, and (iii) the free energy surfaces are parabolic close to their minima and linear far from the minima positions. The model provides an analytical framework to map physical phenomena conflicting with the Marcus-Hush two-parameter model of ET. Nonlinear solvation, ET in polarizable charge-transfer complexes, and configurational flexibility of donor-acceptor complexes are successfully mapped onto the model. The present theory leads to a significant modification of the energy gap law for ET reactions.

  1. Three-dimensional carbon allotropes comprising phenyl rings and acetylenic chains in sp+ sp 2 hybrid networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian -Tao; Chen, Changfeng; Li, Han -Dong

    Here, we here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+ sp 2 bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp 2-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells R - 3m symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicatemore » that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties.« less

  2. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    NASA Astrophysics Data System (ADS)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  3. Three-dimensional carbon allotropes comprising phenyl rings and acetylenic chains in sp+ sp 2 hybrid networks

    DOE PAGES

    Wang, Jian -Tao; Chen, Changfeng; Li, Han -Dong; ...

    2016-04-18

    Here, we here identify by ab initio calculations a new type of three-dimensional (3D) carbon allotropes that consist of phenyl rings connected by linear acetylenic chains in sp+ sp 2 bonding networks. These structures are constructed by inserting acetylenic or diacetylenic bonds into an all sp 2-hybridized rhombohedral polybenzene lattice, and the resulting 3D phenylacetylene and phenyldiacetylene nets comprise a 12-atom and 18-atom rhombohedral primitive unit cells R - 3m symmetry, which are characterized as the 3D chiral crystalline modification of 2D graphyne and graphdiyne, respectively. Simulated phonon spectra reveal that these structures are dynamically stable. Electronic band calculations indicatemore » that phenylacetylene is metallic, while phenyldiacetylene is a semiconductor with an indirect band gap of 0.58 eV. The present results establish a new type of carbon phases and offer insights into their outstanding structural and electronic properties.« less

  4. Enhanced ultrafast relaxation rate in the Weyl semimetal phase of MoTe2 measured by time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Crepaldi, A.; Autès, G.; Gatti, G.; Roth, S.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Seddon, E. A.; Bugnon, Ph.; Magrez, A.; Berger, H.; Vobornik, I.; Kalläne, M.; Quer, A.; Rossnagel, K.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.

    2017-12-01

    MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.

  5. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  6. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  7. Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony

    2018-05-01

    Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.

  8. Steric engineering of metal-halide perovskites with tunable optical band gaps

    NASA Astrophysics Data System (ADS)

    Filip, Marina R.; Eperon, Giles E.; Snaith, Henry J.; Giustino, Feliciano

    2014-12-01

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  9. Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2017-11-01

    Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.

  10. A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun

    2018-04-01

    The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.

  11. The effects of the chemical composition and strain on the electronic properties of GaSb/InAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Feng; Wang, Dan; Tang, Li-Ming, E-mail: lmtang@hnu.edu.cn

    2014-09-07

    The effects of the chemical composition and strain on the electronic properties of [111] zinc-blende (ZB) and [0001] wurtzite (WZ) GaSb/InAs core-shell nanowires (NWs) with different core diameters and shell thicknesses are studied using first-principles methods. The band structures of the [111] ZB GaSb/InAs core-shell NWs underwent a noticeable type-I/II band alignment transition, associated with a direct-to-indirect band gap transition under a compressive uniaxial strain. The band structures of the [0001] WZ GaSb/InAs core-shell NWs preserved the direct band gap under either compressive or tensile uniaxial strains. In addition, the band gaps and the effective masses of the carriers couldmore » be tuned by their composition. For the core-shell NWs with a fixed GaSb-core size, the band gaps decreased linearly with an increasing InAs-shell thickness, caused by the significant downshift of the conduction bands. For the [111] ZB GaSb/InAs core-shell NWs, the calculated effective masses indicated that the transport properties could be changed from hole-dominated conduction to electron-dominated conduction by changing the InAs-shell thickness.« less

  12. Understanding the optical properties of ZnO1-xSx and ZnO1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Baldissera, Gustavo; Persson, Clas

    2016-01-01

    ZnO1-xYx with chalcogen element Y exhibits intriguing optoelectronic properties as the alloying strongly impacts the band-gap energy Eg(x). In this work, we analyze and compare the electronic structures and the dielectric responses of Zn(O,S) and Zn(O,Se) alloys by means of the density functional theory and the partially self-consistent GW approach. We model the crystalline stability from the total energies, and the results indicate that Zn(O,S) is more stable as alloy than Zn(O,Se). We demonstrate also that ion relaxation strongly affects total energies, and that the band-gap bowing depends primarily on local relaxation of the bonds. Moreover, we show that the composition dependent band-gap needs to be analyzed by the band anti-crossing model for small alloying concentration, while the alloying band-bowing model is accurate for strong alloying. We find that the Se-based alloys have a stronger change in the band-gap energy (for instance, ΔEg(0.50) = Eg(ZnO) - Eg(x = 0.50) ≈ 2.2 eV) compared with that of the S-based alloy (ΔEg(0.50) = 1.2 eV), mainly due to a stronger relaxation of the Zn-anion bonds that affects the electronic structure near the band edges. The optical properties of the alloys are discussed in terms of the complex dielectric function ɛ(ω) = ɛ1(ω) + iɛ2(ω) and the absorption coefficient α(ω). While the large band-gap bowing directly impacts the low-energy absorption spectra, the high-frequency dielectric constant ɛ∞ is correlated to the intensity of the dielectric response at energies above 4 eV. Therefore, the dielectric constant is only weakly affected by the non-linear band-gap variation. Despite strong structural relaxation, the high absorption coefficients of the alloys demonstrate that the alloys have well-behaved optoelectronic properties.

  13. Growth and photoluminescence study of several single crystal segments relevant to monolithic semiconductor cascade solar cells

    NASA Astrophysics Data System (ADS)

    Sillmon, Roger S.; Schreiner, Anton F.; Timmons, Michael

    1983-09-01

    Several representative single crystal stacked layers of III-V compound and alloy semiconductors were grown which are spatial regions relevant to a monolithic cascade solar cell, including the substrate, n-GaAs(Si), which was pre-growth heat treated in H 2(g) prior to its use. These structures were then studied by cryogenic laser excited photoluminescence (PL), and the substrate portion was explored in a depth profiling mode. Within the forbidden band gap region up to seven recombinations were observed and identified for undoped GaAs layers or the GaAs(Si) substrate, and several other PL recombinations were observed for undoped Al xGa 1- xAs and Al yGa 1- ySb zAs 1- z layers. In addition to the valence and conduction bands, these optical bands are also associa ted with the presence of C Ga, Si Ga, Si As, Cu Ga, V As, V Ga and vacancy-impurity complexes involving several of these defect types even in the absence of intentional doping. The findings also relate to problems of self-compensation and type inversion, so that the need for growth modifications is indicated.

  14. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  15. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  16. New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings

    NASA Astrophysics Data System (ADS)

    Kong, Xiangru; Li, Linyang; Leenaerts, Ortwin; Liu, Xiong-Jun; Peeters, François M.

    2017-07-01

    Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four- and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.

  17. Thickness dependent band gap of Bi{sub 2-x}Sb{sub x}Te{sub 3} (x = 0, 0.05, 0.1) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, M. M.; Soni, P. H., E-mail: phsoni-msu@yahoo.com; Desai, C. F.

    2016-05-23

    Thin films of Bi{sub 2}Te{sub 3}(Sb) were prepared on alkali halide crystal substrates. Sb content and the film thickness were varied. Bi{sub 2}Te{sub 3} is a narrow gap semiconductor. Bi-Sb is a continuous solid solution of substitutional type and Sb therefore was used to test its effect on the band gap. The film thickness variation was also taken up. The infra-red absorption spectra were used in the wave number range 400 cm{sup −1} to 4000 cm{sup −1}. The band gap obtained from the absorption data was found to increase with decreasing thickness since the thickness range used was from 30more » nm to 170 nm. This is a range corresponding to nanostructures and hence quantum size effect was observed as expected. The band gap also exhibited Sb content dependence. The detail results are have been reported and explained.« less

  18. Variation of crystal structure and optical properties of wurtzite-type oxide semiconductor alloys of β-Cu(Ga,Al)O2

    NASA Astrophysics Data System (ADS)

    Nagatani, Hiraku; Mizuno, Yuki; Suzuki, Issei; Kita, Masao; Ohashi, Naoki; Omata, Takahisa

    2017-06-01

    Band-gap engineering of β-CuGaO2 was demonstrated by the alloying of gallium with aluminum, that is, Cu(Ga1-xAlx)O2. The ternary wurtzite β-NaFeO2-type alloys were obtained in the range 0 ≤ x ≤ 0.7, and γ-LiAlO2-type phase appeared in the range 0.7 ≤ x ≤ 1. The energy band gap of wurtzite β-CuGaO2 was controlled in the range between 1.47 and 2.09 eV. A direct band gap for x < 0.6 and indirect band gap for x ≥ 0.6 were proposed based on the structural distortion in the β-NaFeO2-type phase and density functional theory (DFT) calculation of β-CuAlO2. The DFT calculation also indicated that the γ-LiAlO2-type phases appeared in 0.7 ≤ x ≤ 1 are also indirect-gap semiconductors.

  19. Tunable two-dimensional photonic crystals using liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.

    2000-01-01

    The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.

  20. Role of biaxial strain and microscopic ordering for structural and electronic properties of InxGa1 -xN

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Lee, Sangheon; Freysoldt, Christoph; Neugebauer, Jörg

    2015-08-01

    The structural and electronic properties of InxGa1 -xN alloys are studied as a function of c -plane biaxial strain and In ordering by density functional theory with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. A nonlinear variation of the c lattice parameter with In content is observed in biaxial strain and should be taken into account when deducing In content from interplanar distances. From compressive to tensile strain, the character of the top valence-band state changes, leading to a nonlinear variation of the band gap in InxGa1 -xN . Interestingly, the well-known bowing of the InxGa1 -xN band gap is largely removed for alloys grown strictly coherently on GaN, while the actual values for band gaps at x <0.33 are hardly affected by strain. Ordering plays a minor role for lattice constants but may induce changes of the band gap up to 0.15 eV.

  1. Effects of High-Pressure High-Temperature Sintering on the Band Gap and Thermoelectric Properties of PbSe

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Yi; Sun, Zhen-Ya

    2018-06-01

    In this study, PbSe bulk samples were prepared by a high-pressure high-temperature (HPHT) sintering technique, and the phase compositions, band gaps and thermoelectric properties of the samples were systematically investigated. The sintering pressure exerts a significant influence on the preferential orientation, band gap and thermoelectric properties of PbSe. With increasing pressure, the preferential orientation decreases, mainly due to the decreased crystallinity, while the band gap first decreases and then increases. The electrical conductivity and power factor decrease gradually with increasing pressure, mainly attributed to the decreased carrier concentration and mobility. Consequently, the sample prepared by 2 GPa shows the highest thermoelectric figure-of-merit, ZT, of 0.55 at ˜ 475 K. The ZT of the HPHT-sintered PbSe could be further improved by properly doping or optimizing the HPHT parameters. This study further demonstrates that the sintering pressure could be another degree of freedom to manipulate the band structure and thermoelectric properties of materials.

  2. Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification.

    PubMed

    Miniaci, Marco; Marzani, Alessandro; Testoni, Nicola; De Marchi, Luca

    2015-02-01

    In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; Spencer, James E.; /SLAC

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less

  4. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  5. N- and C-Modified TiO2 Nanotube Arrays: Enhanced Photoelectrochemical Properties and Effect of Nanotubes Length on Photoconversion Efficiency

    PubMed Central

    Mohamed, Ahmed El Ruby; Barghi, Shahzad

    2018-01-01

    In this investigation, a new, facile, low cost and environmental-friendly method was introduced to fabricate N- and C-modified TiO2 nanotube arrays by immersing the as-anodized TiO2 nanotube arrays (TNTAs) in a urea aqueous solution with mechanical agitation for a short time and keeping the TNTAs immersed in the solution for 6 h at room temperature. Then, the TNTAs were annealed at different temperatures. The produced N-, C-modified TNTAs were characterized using FESEM, EDX, XRD, XPS, UV-Vis diffuse reflectance spectra. Modified optical properties with narrow band gap energy, Eg, of 2.65 eV was obtained after annealing the modified TNTAs at 550 °C. Modified TNTAs showed enhanced photoelectochemical performance. Photoconversion efficiency (PCE) was increased from 4.35% for pristine (unmodified) TNTAs to 5.18% for modified TNTAs, an increase of 19%. Effect of nanotubes length of modified TNTAs on photoelectrochemical performance was also studied. Photocurrent density and PCE were increased by increasing nanotube length with a maximum PCE of 6.38% for nanotube length of 55 µm. This high PCE value was attributed to: band gap reduction due to C- and N-modification of TNTAs surface, increased surface area of long TNTAs compared with short TNTAs, investigated in previous studies. PMID:29597248

  6. Effect of silver ion-induced disorder on morphological, chemical and optical properties of poly (methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Saleemi, Farhat; Rafique, M. Shahid; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Aziz, Uzma

    2016-11-01

    Ion implantation is a versatile technique to tailor the surface properties of polymers in a controlled manner. In the present study, samples of poly (methyl methacrylate) (PMMA) have been implanted with 400 keV silver (Ag+) ion beam to various ion fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The effect of Ag+ ion-induced disorder on morphological, chemical and optical properties of PMMA is analyzed using Atomic Force Microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy. Furthermore, the electrical conductivity of pristine and implanted PMMA is measured using four probe apparatus. The AFM images revealed the growth of nano-sized grainy structures and hillocks above the surface of implanted PMMA. The FTIR spectra confirmed the modifications in chemical structure of PMMA along with the formation of sbnd Cdbnd Csbnd carbon contents. The refractive index, extinction coefficient and photoconductivity of implanted PMMA have been found to increase as a function of ion fluence. Simultaneously, indirect optical band gap is reduced from 3.13 to 0.81 eV at a relatively high fluence (5 × 1015 ions/cm2). A linear correlation has been established between the band gap and Urbach energies. Moreover, the electrical conductivity of Ag+ implanted PMMA has increased from 2.14 × 10-10 (pristine) to 9.6 × 10-6 S/cm.

  7. Type I band alignment in GaAs{sub 81}Sb{sub 19}/GaAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072; Wei, M. J.

    2015-09-14

    The composition and band gap of the shell that formed during the growth of axial GaAs/GaAs{sub 81}Sb{sub 19}/ GaAs heterostructure nanowires have been investigated by transmission electron microscopy combined with energy dispersion spectroscopy, scanning tunneling spectroscopy, and density functional theory calculations. On the GaAs{sub 81}Sb{sub 19} intermediate segment, the shell is found to be free of Sb (pure GaAs shell) and transparent to the tunneling electrons, despite the (110) biaxial strain that affects its band gap. As a result, a direct measurement of the core band gap allows the quantitative determination of the band offset between the GaAs{sub 81}Sb{sub 19}more » core and the GaAs shell and identifies it as a type I band alignment.« less

  8. Probing the density of trap states in the middle of the bandgap using ambipolar organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Häusermann, Roger; Chauvin, Sophie; Facchetti, Antonio; Chen, Zhihua; Takeya, Jun; Batlogg, Bertram

    2018-04-01

    The number of trap states in the band gap of organic semiconductors directly influences the charge transport as well as the threshold and turn-on voltage. Direct charge transport measurements have been used until now to probe the trap states rather close to the transport level, whereas their number in the middle of the band gap has been elusive. In this study, we use PDIF-CN2, a well known n-type semiconductor, together with vanadium pentoxide electrodes to build ambipolar field-effect transistors. Employing three different methods, we study the density of trap states in the band gap of the semiconductor. These methods give consistent results, and no pool of defect states was found. Additionally, we show first evidence that the number of trap states close to the transport level is correlated with the number of traps in the middle of the band-gap, meaning that a high number of trap states close to the transport level also implies a high number of trap states in the middle of the band gap. This points to a common origin of the trap states over a wide energy range.

  9. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  10. High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 ) 4 -NH 3 ]CuCl 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Li, Shourui; Wang, Kai

    Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less

  11. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  12. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  13. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when canopies' biomass distribution is highly heterogeneous.

  14. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study

    NASA Astrophysics Data System (ADS)

    Shi, H.-L.; Duan, Y.

    2008-12-01

    Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

  15. Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs

    NASA Astrophysics Data System (ADS)

    Li, Fengming; Zhang, Chuanzeng; Liu, Chunchuan

    2017-04-01

    A novel strategy is proposed to actively tune the vibration and wave propagation properties in elastic beams. By periodically placing the piezoelectric actuator/sensor pairs along the beam axis, an active periodic beam structure which exhibits special vibration and wave propagation properties such as the frequency pass-bands and stop-bands (or band-gaps) is developed. Hamilton's principle is applied to establish the equations of motion of the sub-beam elements i.e. the unit-cells, bonded by the piezoelectric patches. A negative proportional feedback control strategy is employed to design the controllers which can provide a positive active stiffness to the beam for a positive feedback control gain, which can increase the stability of the structural system. By means of the added positive active stiffness, the periodicity or the band-gap property of the beam with periodically placed piezoelectric patches can be actively tuned. From the investigation, it is shown that better band-gap characteristics can be achieved by using the negative proportional feedback control. The band-gaps can be obviously broadened by properly increasing the control gain, and they can also be greatly enlarged by appropriately designing the structural sizes of the controllers. The control voltages applied on the piezoelectric actuators are in reasonable and controllable ranges, especially, they are very low in the band-gaps. Thus, the vibration and wave propagation behaviors of the elastic beam can be actively controlled by the periodically placed piezoelectric patches.

  16. Doping induced carrier and band-gap modulation in bulk versus nano for topological insulators: A test case of Stibnite

    NASA Astrophysics Data System (ADS)

    Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani

    2018-04-01

    We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.

  17. In-situ, Gate Bias Dependent Study of Neutron Irradiation Effects on AlGaN/GaN HFETs

    DTIC Science & Technology

    2010-03-01

    band gap and high breakdown field, AlGaN devices can operate at very high temperature and operating frequency. AlGaN/GaN based structures, have been...stable under ambient conditions [3]. GaN has a wide, direct band gap of 3.4 eV. It is therefore suitable for high temperature devices. Its high...also be grown with a wurtzite crystal structure and has a band - gap of 6.1 eV. Aluminum, due to having smaller atoms than gallium, forms a smaller

  18. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinet, Gunjan, E-mail: gunjansrinet@gmail.com; Kumar, Ravindra, E-mail: gunjansrinet@gmail.com; Sajal, Vivek, E-mail: gunjansrinet@gmail.com

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  19. Band gap and conductivity variations of ZnO nano structured thin films annealed under Vacuum

    NASA Astrophysics Data System (ADS)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). The samples were annealed under vacuum and conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. All the results were compared with that of the sample annealed under air. It was observed that the band gap decreases and concequently conductivity of the samples increases when the samples are annealed under vacuum.

  20. Band gap and conductivity variations of ZnO thin films by doping with Aluminium

    NASA Astrophysics Data System (ADS)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). Aluminium was doped for different doping concentrations from 3 at.% to 12 at.% in steps of 3 at.%. Conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. It was observed that as the doping concentration of Aluminium increases, the band gap of the samples decreases and concequently conductivity of the samples increases.

  1. Density functional theory calculations for the band gap and formation energy of Pr4-xCaxSi12O3+xN18-x; a highly disordered compound with low symmetry and a large cell size.

    PubMed

    Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun

    2017-06-28

    A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

  2. High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.

    2016-09-23

    High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less

  3. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  4. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  5. High-Pressure Band-Gap Engineering in Lead-Free Cs 2 AgBiBr 6 Double Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Wang, Yonggang; Pan, Weicheng

    Novel inorganic lead-free double perovskites with improved stability are regarded as alternatives to state-of-art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–propertymore » relationship in lead-free double perovskites, but also offers new strategies for further development of advanced perovskite devices.« less

  6. Band gaps in periodically magnetized homogeneous anisotropic media

    NASA Astrophysics Data System (ADS)

    Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.

    2010-11-01

    In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.

  7. Fabrication of wide-band-gap Mg{sub x}Zn{sub 1-x}O quasi-ternary alloys by molecular-beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Hiroshi; Fujita, Shigeo; Fujita, Shizuo

    2005-05-09

    A series of wurtzite MgZnO quasi-ternary alloys, which consist of wurtzite MgO/ZnO superlattices, were grown by molecular-beam epitaxy on sapphire substrates. By changing the thicknesses of ZnO layers and/or of MgO layers of the superlattice, the band-gap energy was artificially tuned from 3.30 to 4.65 eV. The highest band gap, consequently realized by the quasi-ternary alloy, was larger than that of the single MgZnO layer, we have ever reported, keeping the wurtzite structure. The band gap of quasi-ternary alloys was well analyzed by the Kronig-Penny model supposing the effective masses of wurtzite MgO as 0.30m{sub 0} and (1-2)m{sub 0} formore » electrons and holes, respectively.« less

  8. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  9. Simultaneous localization of photons and phonons in defect-free dodecagonal phoxonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Xu, Bihang; Wang, Zhong; Tan, Yixiang; Yu, Tianbao

    2018-03-01

    In dodecagonal phoxonic quasicrytals (PhXQCs) with a very high rotational symmetry, we demonstrate numerically large phoxonic band gaps (PhXBGs, the coexistence of photonic and phononic band gaps). By computing the existence and dependence of PhXBGs on the choice of radius of holes, we find that PhXQCs can possess simultaneous photonic and phononic band gaps over a rather wide range of geometric parameters. Furthermore, localized modes of THz photons and tens of MHz phonons may exist inside and outside band gaps in defect-free PhXQCs. The electromagnetic and elastic field can be confined simultaneously around the quasicrytals center and decay in a length scale of several basic cells. As a kind of quasiperiodic structures, 12-fold PhXQCs provide a good candidate for simultaneously tailoring electromagnetic and elastic waves. Moreover, these structures exhibit some interesting characteristics due to the very high symmetry.

  10. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    NASA Astrophysics Data System (ADS)

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-10-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  11. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  12. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  13. Edge effects on the electronic properties of phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less

  14. Graphene Calisthenics: Modeling the Polymer-induced Graphene Stretching for Next Generation Electronics

    NASA Astrophysics Data System (ADS)

    Huo, Mandy; Meaker, Kacey; Chong, Su-Ann; Crommie, Michael

    2014-03-01

    Graphene is one atomic layer of graphite. It is stronger than steel yet very elastic. Although graphene is a semiconductor with no band gap, we can introduce a gap using various methods in order to make it useful in next-generation electronics. One way to do this is to strain graphene. While we can easily strain graphene uniaxially, this type of strain does not produce appreciable band gaps until relatively high strain percentages close to the fracture point of graphene. However, with a special strain geometry we can produce band gaps well before reaching the breaking point of graphene. This has been done experimentally, but not in a controlled manner. From previous research, strain percentages around 10 percent produce appreciable band gaps. Increasing the strain will increase the size of these gaps, but graphene breaks at around 20 percent strain. We propose to control the amount by which we strain graphene by placing it on a special polymer which expands when light is shone on it. In this project we use COMSOL, a finite element analysis software, to estimate the strain resulting in graphene due to stretching it with a given polymer geometry to find the shapes which will produce the specified strain.

  15. A first-principles study of impurity effects on monolayer MoS2: bandgap dominated by donor impurities

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zhou, Wenzhe; Yang, Zhixiong; Wu, Shoujian; Ouyang, Fangping; Xu, Hui

    2017-12-01

    Based on the first principles calculation, the electrical properties and optical properties of monolayer molybdenum disulfide (MoS2) substitutionally doped by the VB and VIIB transition metal atoms (V, Nb, Ta, Mn, Tc, Re) were investigated. It is found that n-type doping or p-type doping tunes the Fermi level into the conduction band or the valence band respectively, leading to the degenerate semiconductor, while the compensatorily doped systems where the number of valence electrons is not alerted remain direct band gap ranging from 0.958 eV to 1.414 eV. According to the analysis on densities of states, the LUMO orbitals of donor impurities play the crucial role in band gap tuning. Hence, the band gap and optical properties of doped MoS2 are dominated by the species of the donor. Due to the reduction of the band gap, doped MoS2 have a lower threshold energy of photon absorption and an enhanced absorption in near infrared region. These results provide a significant guidance for the design of new 2D optoelectronic materials based on transition metal disulfide.

  16. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  17. Ionic-Liquid-Assisted Microwave Synthesis of Solid Solutions of Sr 1–xBa xSnO 3 Perovskite for Photocatalytic Applications

    DOE PAGES

    Alammar, Tarek; Slowing, Igor I.; Anderegg, Jim; ...

    2017-06-06

    Nanocrystalline Sr 1–xBa xSnO 3 (x = 0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat-treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X-ray diffraction results, as the Ba content in the SrSnO 3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO 3 to the cubic BaSnO 3 structure. The analysis of the sample morphology by SEM reveals that the Sr 1–xBa xSnO 3more » samples favor the formation of nanorods (500 nm–5 μm in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19 eV with increasing Ba 2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr 0.8Ba 0.2SnO 3 > SrSnO 3 > BaSnO 3 > Sr 0.6Ba 0.4SnO 3 > Sr 0.2Ba 0.8SnO 3. Here, the highest photocatalytic activity was observed for Sr 0.8Ba 0.2SnO 3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band-edge position.« less

  18. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  19. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    PubMed

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  20. Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Y. R.; Cao, J. X., E-mail: jxcao@xtu.edu.cn; Zhang, Y.

    2016-05-21

    By virtue of first principle calculations, we propose an approach to reduce the band gap of layered semiconductors through the application of external electric fields for photocatalysis. As a typical example, the band gap of a boron nitride (BN) bilayer was reduced in the range from 4.45 eV to 0.3 eV by varying the external electric field strength. More interestingly, it is found that the uppermost valence band and the lowest conduction band are dominated by the N-p{sub z} and B-p{sub z} from different layers of the BN sheet, which suggests a wonderful photoexcited electron and hole separation system for photocatalysis. Ourmore » results imply that the strong external electric field can present an abrupt polarized surface.« less

  1. Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2014-03-01

    We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.

  2. Visible light photoreduction of CO.sub.2 using heterostructured catalysts

    DOEpatents

    Matranga, Christopher; Thompson, Robert L; Wang, Congjun

    2015-03-24

    The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.

  3. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  4. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin filmmore » solar cells.« less

  5. Electrophoretic formation of semiconductor layers with adjustable band gap

    NASA Astrophysics Data System (ADS)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  6. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    NASA Astrophysics Data System (ADS)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  7. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  8. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators.

    PubMed

    Cheng, Huhu; Huang, Yaxin; Shi, Gaoquan; Jiang, Lan; Qu, Liangti

    2017-07-18

    Graphene, with large delocalized π electron cloud on a two-dimensional (2D) atom-thin plane, possesses excellent carrier mobility, large surface area, high light transparency, high mechanical strength, and superior flexibility. However, the lack of intrinsic band gap, poor dispersibility, and weak reactivity of graphene hinder its application scope. Heteroatom-doping regulation and surface modification of graphene can effectively reconstruct the sp 2 bonded carbon atoms and tailor the surface chemistry and interfacial interaction, while microstructure mediation on graphene can induce the special chemical and physical properties because of the quantum confinement, edge effect, and unusual mass transport process. Based on these regulations on graphene, series of methods and techniques are developed to couple the promising characters of graphene into the macroscopic architectures for potential and practical applications. In this Account, we present our effort on graphene regulation from chemical modification to microstructure control, from the morphology-designed macroassemblies to their applications in functional systems excluding the energy-storage devices. We first introduce the chemically regulative graphene with incorporated heteroatoms into the honeycomb lattice, which could open the intrinsic band gap and provide many active sites. Then the surface modification of graphene with functional components will improve dispersibility, prevent aggregation, and introduce new functions. On the other hand, microstructure mediation on graphene sheets (e.g., 0D quantum dots, 1D nanoribbons, and 2D nanomeshes) is demonstrated to induce special chemical and physical properties. Benefiting from the effective regulation on graphene sheets, diverse methods including dimension-confined strategy, filtration assembly, and hydrothermal treatment have been developed to assemble individual graphene sheets to macroscopic graphene fibers, films, and frameworks. These rationally regulated graphene sheets and well-constructed assemblies present promising applications in energy-conversion materials and device systems focusing on actuators that can convert different energy forms (e.g., electric, chemical, photonic, thermal, etc.) to mechanical actuation and electrical generators that can directly transform environmental energy to electric power. These results reveal that graphene sheets with surface chemistry and microstructure regulations as well as their rationally designed assemblies provide a promising and abundant platform for development of diverse functional devices. We hope that this Account will promote further efforts toward fundamental research on graphene regulation and the wide applications of advanced designed assemblies in new types of energy-conversion materials/devices and beyond.

  9. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  10. Investigations of the Nonlinear Optical Response of Composite and Photonic Band Gap Materials

    DTIC Science & Technology

    1998-11-01

    M. J. Bloemer, M. Scalora , J. P. Dowling, and C. M. Bowden, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band...with applications to photonic band structures," Phys. Rev. A 46, 612 (1992). 5. M. Scalora , J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and...J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57 (1995). 6. J. P. Dowling, M. Scalora , M. J

  11. Novel band structures in silicene on monolayer zinc sulfide substrate.

    PubMed

    Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping

    2014-10-01

    Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.

  12. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering.

    PubMed

    Wu, Lihua; Yang, Jiong; Zhang, Tiansong; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2016-03-02

    Rashba semiconductors are of great interest in spintronics, superconducting electronics and thermoelectrics. Bulk BiTeI is a new Rashba system with a giant spin-split band structure. 2D-like thermoelectric response has been found in BiTeI. However, as optimizing the carrier concentration, the bipolar effect occurs at elevated temperature and deteriorates the thermoelectric performance of BiTeI. In this paper, band gap engineering in Rashba semiconductor BiTeI through Br-substitution successfully reduces the bipolar effect and improves the thermoelectric properties. By utilizing the optical absorption and Burstein-Moss-effect analysis, we find that the band gap in Rashba semiconductor BiTeI increases upon bromine substitution, which is consistent with theoretical predictions. Bipolar transport is mitigated due to the larger band gap, as the thermally-activated minority carriers diminish. Consequently, the Seebeck coefficient keeps increasing with a corresponding rise in temperature, and thermoelectric performance can thus be enhanced with a ZT  =  0.5 at 570 K for BiTeI0.88Br0.12.

  13. Quasiparticle and optical properties of strained stanene and stanane.

    PubMed

    Lu, Pengfei; Wu, Liyuan; Yang, Chuanghua; Liang, Dan; Quhe, Ruge; Guan, Pengfei; Wang, Shumin

    2017-06-20

    Quasiparticle band structures and optical properties of two dimensional stanene and stanane (fully hydrogenated stanene) are studied by the GW and GW plus Bethe-Salpeter equation (GW-BSE) approaches, with inclusion of the spin-orbit coupling (SOC). The SOC effect is significant for the electronic and optical properties in both stanene and stanane, compared with their group IV-enes and IV-anes counterparts. Stanene is a semiconductor with a quasiparticle band gap of 0.10 eV. Stanane has a sizable band gap of 1.63 eV and strongly binding exciton with binding energy of 0.10 eV. Under strain, the quasiparticle band gap and optical spectrum of both stanene and stanane are tunable.

  14. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  15. Band gaps and Brekhovskikh attenuation of laser-generated surface acoustic waves in a patterned thin film structure on silicon

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.

    2008-10-01

    Surface acoustic modes of a periodic array of copper and SiO2 lines on a silicon substrate are studied using a laser-induced transient grating technique. It is found that the band gap formed inside the Brillouin zone due to “avoided crossing” of Rayleigh and Sezawa modes is much greater than the band gap in the Rayleigh wave dispersion formed at the zone boundary. Another unexpected finding is that a very strong periodicity-induced attenuation is observed above the longitudinal threshold rather than above the transverse threshold.

  16. Intra-band gap in Lamb modes propagating in a periodic solid structure

    NASA Astrophysics Data System (ADS)

    Pierre, J.; Rénier, M.; Bonello, B.; Hladky-Hennion, A.-C.

    2012-05-01

    A laser ultrasonic technique is used to measure the dispersion of Lamb waves at a few MHz, propagating in phononic crystals made of dissymmetric air inclusions drilled throughout silicon plates. It is shown that the specific shape of the inclusions is at the origin of the intra-band gap that opens within the second Brillouin zone, at the crossing of both flexural and dilatational zero-order modes. The magnitude of the intra-band gap is measured as a function of the dissymmetry rate of the inclusions. Experimental data and the computed dispersion curves are in very good agreement.

  17. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures.

    PubMed

    Simon, John; Zhang, Ze; Goodman, Kevin; Xing, Huili; Kosel, Thomas; Fay, Patrick; Jena, Debdeep

    2009-07-10

    The large electronic polarization in III-V nitrides allows for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-band-gap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-band-gap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.

  18. Analysis of photonic band gap in novel piezoelectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  19. Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Dan, Nguyen Trung; Bechstedt, F.

    1996-02-01

    We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.

  20. Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Cheung, Frankie; Zhao, Feng; Cheng, Xin-Lu

    The first principle density functional theory method SIESTA has been used to compute the band gap of several polynitroaromatic explosives, such as TATB, DATB, TNT, and picric acid. In these systems, the weakest bond is the one between an NO2 group and the aromatic ring. The bond dissociation energy (BDE) alone cannot predicate the relative sensitivity to impact of these four systems correctly. It was found that their relative impact sensitivity could be explained by considering the BDE and the band gap value of the crystal state together.

  1. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Garwood, T.; Modine, N. A.; Krishna, S.

    2017-03-01

    The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.

  2. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Bertola, M.; Tovbis, A.

    2017-09-01

    Finite-gap (algebro-geometric) solutions to the focusing Nonlinear Schrödinger Equation (fNLS) i ψ_t + ψ_{xx} + 2|ψ|^2ψ=0, are quasi-periodic solutions that represent nonlinear multi-phase waves. In general, a finite-gap solution for (0-1) is defined by a collection of Schwarz symmetrical spectral bands and of real constants (initial phases), associated with the corresponding bands. In this paper we prove an interesting new formula for the maximal amplitude of a finite-gap solution to the focusing Nonlinear Schrödinger equation with given spectral bands: the amplitude does not exceed the sum of the imaginary parts of all the endpoints in the upper half plane. In the case of the straight vertical bands, that amounts to the half of the sum of the length of all the bands. The maximal amplitude will be attained for certain choices of the initial phases. This result is an important part of a criterion for the potential presence of the rogue waves in finite-gap solutions with a given set of spectral endpoints, obtained in Bertola et al. (Proc R Soc A, 2016. doi: 10.1098/rspa.2016.0340). A similar result was also obtained for the defocusing Nonlinear Schrödinger equation.

  3. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  4. Two-dimensional wide-band-gap nitride semiconductors: Single-layer 1 T -X N2 (X =S ,Se , and Te )

    NASA Astrophysics Data System (ADS)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2016-11-01

    Recently, the two-dimensional (2D) semiconductors arsenene and antimonene, with band gaps larger than 2.0 eV, have attracted tremendous interest, especially for potential applications in optoelectronic devices with a photoresponse in the blue and UV range. Motivated by this exciting discovery, types of highly stable wide-band-gap 2D nitride semiconductors were theoretically designed. We propose single-layer 1 T -X N2 (X =S , Se, and Te) via first-principles simulations. We compute 1 T -X N2 (X =S , Se, and Te) with indirect band gaps of 2.825, 2.351, and 2.336 eV, respectively. By applying biaxial strain, they are able to induce the transition from a wide-band-gap semiconductor to a metal, and the range of absorption spectra of 1 T -X N2 (X =S , Se, and Te) obviously extend from the ultraviolet region to the blue-purple light region. With an underlying graphene, we find that 1 T -X N2 can completely shield the light absorption of graphene in the range of 1-1.6 eV. Our research paves the way for optoelectronic devices working under blue or UV light, and mechanical sensors based on these 2D crystals.

  5. Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films

    NASA Astrophysics Data System (ADS)

    Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2018-02-01

    A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.

  6. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    PubMed

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  7. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garwood, Tristan; Modine, Normand A.; Krishna, S.

    2016-12-18

    The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structuresmore » calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.« less

  8. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.

    PubMed

    Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V

    2017-07-25

    Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

  9. Optical band gap determination of calcium doped lanthanum manganite nano particle tailored with polypyrrole

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Smitha Mysore; Murugendrappa, Malalkere Veerappa

    2018-05-01

    In this paper we bring forth the effect of La0.7Ca0.3MnO3 (LCM) perovskite nano particle on the optical band gap in composition with conducting Polypyrrole (PPy) prepared by chemical oxidation method. The morphology and crystalline phase were determined by SEM, TEM and X-Ray diffraction studies. The Optical band gap studies were analyzed using the UV-VIS spectrometer scanned in the range 200 nm to 600 nm for pure PPy and PPy/LCM composites. There is a characteristic peak observed for the composites situated around 315 nm for pure PPy, PPy/LCM10 and PPy/LCM50. But for higher compositions of LCM weight percentage like 30%, 40% and 50% the peak shift slightly to higher wavelength side. The peak shifts to 320 nm, 325 nm and 335 nm respectively. The optical band gap increased for Pure PPy, PPy/LCM10 and PPy/LCM20 and found to decrease gradually for PPy/LCM30, PPy/LCM40 and PPy/LCM50. The studies suggest that LCM composition in the PPy chain has a role in modifying the wavelength and in turn its band gap. The study may find application in organic devices working at high frequency and voltage.

  10. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.

    PubMed

    Kou, Liangzhi; Hu, Feiming; Yan, Binghai; Frauenheim, Thomas; Chen, Changfeng

    2014-07-07

    Developing graphene-based nanoelectronics hinges on opening a band gap in the electronic structure of graphene, which is commonly achieved by breaking the inversion symmetry of the graphene lattice via an electric field (gate bias) or asymmetric doping of graphene layers. Here we introduce a new design strategy that places a bilayer graphene sheet sandwiched between two cladding layers of materials that possess strong spin-orbit coupling (e.g., Bi2Te3). Our ab initio and tight-binding calculations show that a proximity enhanced spin-orbit coupling effect opens a large (44 meV) band gap in bilayer graphene without breaking its lattice symmetry, and the band gap can be effectively tuned by an interlayer stacking pattern and significantly enhanced by interlayer compression. The feasibility of this quantum-well structure is demonstrated by recent experimental realization of high-quality heterojunctions between graphene and Bi2Te3, and this design also conforms to existing fabrication techniques in the semiconductor industry. The proposed quantum-well structure is expected to be especially robust since it does not require an external power supply to open and maintain a band gap, and the cladding layers provide protection against environmental degradation of the graphene layer in its device applications.

  11. BiVO4 -TiO2 Composite Photocatalysts for Dye Degradation Formed Using the SILAR Method.

    PubMed

    Odling, Gylen; Robertson, Neil

    2016-09-19

    Composite photocatalyst films have been fabricated by depositing BiVO4 upon TiO2 via a sequential ionic layer adsorption reaction (SILAR) method. The photocatalytic materials were investigated by XRD, TEM, UV/Vis diffuse reflectance, inductively coupled plasma optical emission spectrometry (ICP-OES), XPS, photoluminescence and Mott-Schottky analyses. SILAR processing was found to deposit monoclinic-scheelite BiVO4 nanoparticles onto the surface, giving successive improvements in the films' visible light harvesting. Electrochemical and valence band XPS studies revealed that the prepared heterojunctions have a type II band structure, with the BiVO4 conduction band and valence band lying cathodically shifted from those of TiO2 . The photocatalytic activity of the films was measured by the decolourisation of the dye rhodamine 6G using λ>400 nm visible light. It was found that five SILAR cycles was optimal, with a pseudo-first-order rate constant of 0.004 min(-1) . As a reference material, the same SILAR modification has been made to an inactive wide-band-gap ZrO2 film, where the mismatch of conduction and valence band energies disallows charge separation. The photocatalytic activity of the BiVO4 -ZrO2 system was found to be significantly reduced, highlighting the importance of charge separation across the interface. The mechanism of action of the photocatalysts has also been investigated, in particular the effect of self-sensitisation by the model organic dye and the ability of the dye to inject electrons into the photocatalyst's conduction band. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low temperature absorption edge and photoluminescence study in TlIn(Se1-xSx)2 layered mixed crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.

    2018-02-01

    Transmission on TlIn(Se1-xSx)2 mixed crystals (0.25 ≤ x ≤ 1) were carried out in the 400-800 nm wavelength range at T = 10 K. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance. The compositional dependence of direct band gap energy at T = 10 K revealed that as sulfur composition is increased in the mixed crystals, the direct band gap energy rises from 2.26 eV (x = 0.25) to 2.56 eV (x = 1). Photoluminescence spectra of TlIn(Se1-xSx)2 mixed crystals were studied in the wavelength region of 400-620 nm at T = 10 K. The observed bands were attributed to the transitions of electrons from shallow donor levels to the valence band. The shift of the PL bands to higher energies with elevating sulfur content was revealed. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements.

  13. Emergence of topological semimetals in gap closing in semiconductors without inversion symmetry.

    PubMed

    Murakami, Shuichi; Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi

    2017-05-01

    A band gap for electronic states in crystals governs various properties of solids, such as transport, optical, and magnetic properties. Its estimation and control have been an important issue in solid-state physics. The band gap can be controlled externally by various parameters, such as pressure, atomic compositions, and external field. Sometimes, the gap even collapses by tuning some parameter. In the field of topological insulators, this closing of the gap at a time-reversal invariant momentum indicates a band inversion, that is, it leads to a topological phase transition from a normal insulator to a topological insulator. We show, through an exhaustive study on possible space groups, that the gap closing in inversion-asymmetric crystals is universal, in the sense that the gap closing always leads either to a Weyl semimetal or to a nodal-line semimetal. We consider three-dimensional spinful systems with time-reversal symmetry. The space group of the system and the wave vector at the gap closing uniquely determine which possibility occurs and where the gap-closing points or lines lie in the wave vector space after the closing of the gap. In particular, we show that an insulator-to-insulator transition never happens, which is in sharp contrast to inversion-symmetric systems.

  14. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae

    2016-04-27

    The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Shanshan; Zhang Hong; Matunis, Michael J.

    SUMOs (small ubiquitin-related modifiers) are eukaryotic proteins that are covalently conjugated to other proteins and thereby regulate a wide range of important cellular processes. The molecular mechanisms by which SUMO modification influences the functions of most target proteins and cellular processes, however, remain poorly defined. A major obstacle to investigating the effects of SUMO modification is the availability of a system for selectively inducing the modification or demodification of an individual protein. To address this problem, we have developed a procedure using the rapamycin heterodimerizer system. This procedure involves co-expression of rapamycin-binding domain fusion proteins of SUMO and candidate SUMOmore » substrates in living cells. Treating cells with rapamycin induces a tight association between SUMO and a single SUMO substrate, thereby allowing specific downstream effects to be analyzed. Using RanGAP1 as a model SUMO substrate, the heterodimerizer system was used to investigate the molecular mechanism by which SUMO modification targets RanGAP1 from the cytoplasm to nuclear pore complexes (NPCs). Our results revealed a dual role for Ubc9 in targeting RanGAP1 to NPCs: In addition to conjugating SUMO-1 to RanGAP1, Ubc9 is also required to form a stable ternary complex with SUMO-1 modified RanGAP1 and Nup358. As illustrated by our studies, the rapamycin heterodimerizer system represents a novel tool for studying the molecular effects of SUMO modification.« less

  16. Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S

    NASA Astrophysics Data System (ADS)

    Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.

    2018-05-01

    We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.

  17. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    NASA Astrophysics Data System (ADS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2014-06-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results.

  18. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  19. Low-frequency band gap of locally resonant phononic crystals with a dual-base plate.

    PubMed

    Zuo, Shuguang; Huang, Haidong; Wu, Xudong; Zhang, Minghai; Ni, Tianxin

    2018-03-01

    To achieve a wider band gap and a lower cut-on frequency, a locally resonant phononic crystal (LRPC) with a dual-base plate is investigated in this paper. Compared with the LRPC with a single plate, the band structure of the LRPC with a dual-base plate is calculated using the method of plane wave expansion and verified by the finite element method. According to the analysis of the band curves of the LRPC with a dual-base plate, the mechanisms are explained. Next, the influences of the thickness of the plates, the stiffness of the springs, the mass of resonators, and the lattice constant are also investigated. The results show that the structural asymmetry between the upper and the lower plate is conducive to reducing the cut-on frequency and broadening the band gap effectively. The results indicate a different approach for the application of LRPC in vibration and noise control.

  20. New insights into the opening band gap of graphene oxides

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa

    Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.

  1. Design and analysis of novel photocatalytic materials

    NASA Astrophysics Data System (ADS)

    Boppana, Venkata Bharat Ram

    The development of sustainable sources of energy to decrease our dependence on non-renewable fossil fuels and the reduction of emissions causing global warming are important technological challenges of the 21st century. Production of solar fuels by photocatalysis is one potential route to reduce the impact of those problems. The most widely applied photocatalyst is TiO2 because it is stable, non-toxic and inexpensive. Still, it cannot utilize the solar spectrum efficiently as its band gap is 3.2 eV thus able to absorb only 3% of sun light. This thesis therefore explores multiple avenues towards improving the light absorption capability of semiconductor materials without loss in activity. To achieve this objective, the valence band hybridization method of band gap reduction was utilized. This technique is based on introducing new orbitals at the top of valence band of the semiconductor that can then hybridize with existing orbitals. The hybridization then raises the maximum of the valence band thereby reducing the band gap. This technique has the added advantage of increasing the mobility of oxidizing holes in the now dispersed valence band. In practice, this can be achieved by introducing N 2p or Sn 5s orbitals in the valence band of an oxide. We initially designed novel zinc gallium oxy-nitrides, with the spinel structure and band gaps in the visible region of the solar spectrum, by nitridation of a zinc gallate precursor produced by sol-gel synthesis. These spinel oxy-nitrides have band gaps of 2.5 to 2.7 eV, surface areas of 16 to 36 m 2/g, and nitrogen content less than 1.5%. They are active towards degradation of organic molecules in visible light. Density functional theory calculations show that this band gap reduction in part is associated with hybridization between the dopant N 2p states with Zn 3d orbitals at the top of the valence band. While spinel oxy-nitrides are produced under nitridation at 550°C, at higher temperatures they are consumed to form wurzitic oxy-nitrides. The wurzite materials also have band gaps less than 3 eV but their surface areas are 2 to 5 m2/g. The thesis explores in detail the changes associated with the gallium coordination as the spinel zinc gallate precursor transforms into the spinel oxy-nitride at 550°C, and further changes into the wurzite oxy-nitride at 850°C are studied through X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, neutron powder diffraction, X-ray absorption spectroscopy and other techniques. We believe that the protocol developed in this thesis opens an avenue for the synthesis of semiconductors having the spinel crystal structure and band gaps engineered to the visible region with potential applications for opto-electronic devices and photocatalytic processes. Though these spinel oxynitrides are interesting, they suffer from vacancies and low surface areas from the high temperature nitridation step. This could be overcome by synthesizing photocatalysts hydrothermally. We proceeded to explore the interactions of Sn2+ 5s orbitals with O 2p orbitals towards hybridizing the valence band. This led to the development of novel visible-light-active Sn2+ - TiO2 and SnOx -- ZnGa2O4 materials. The former catalysts are prepared from the reaction of titanium butoxide and several tin precursors at 80°C in aqueous solutions. Samples synthesized with SnCl2 have lower band gaps (red-shifted to the visible region) with respect to anatase TiO2. The catalysts are isostructural with anatase TiO2 even at the highest loadings of Sn2+. When the precursor is changed to SnCl4, rutile is the predominant phase obtained but no reduction in the band gap is observed. The experiments also indicate the presence of chlorine in the samples, also influencing the optical and catalytic properties as confirmed by comparison to materials prepared using bromide precursors. These catalysts are photocatalytically active for the degradation of organic molecules with rates higher than the standard (P25 TiO2) and also evidenced from the generation of hydroxyl radicals using visible light. This protocol could be extended to incorporate Sn2+ 5s orbitals into other oxide semiconductors to prepare photocatalysts with interesting electronic properties.

  2. Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-04-01

    This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.

  3. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  4. Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.

    2018-02-01

    Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.

  5. Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides.

    PubMed

    Nie, Xiliang; Wei, Su-Huai; Zhang, S B

    2002-02-11

    Doping wide-gap materials p type is highly desirable but often difficult. This makes the recent discovery of p-type delafossite oxides, CuM(III)O2, very attractive. The CuM(III)O2 also show unique and unexplained physical properties: Increasing band gap from M(III) = Al,Ga, to In, not seen in conventional semiconductors. The largest gap CuInO2 can be mysteriously doped both n and p type but not the smaller gaps CuAlO2 and CuGaO2. Here, we show that both properties are results of a large disparity between the fundamental gap and the apparent optical gap, a finding that could lead to a breakthrough in the study of bipolarly dopable wide-gap semiconductor oxides.

  6. Probing the Band Structure of Ultrathin MoTe2 via Strain

    NASA Astrophysics Data System (ADS)

    Aslan, Burak; Datye, Isha; Kuo, Hsueh-Hui; Mleczko, Michal; Fisher, Ian; Pop, Eric; Heinz, Tony

    Molybdenum ditelluride (MoTe2) is a semiconducting layered group VI transition metal dichalcogenide with an optical band gap of 1.1 and 0.9 eV in the monolayer and bulk, respectively. The bulk crystal possesses an indirect gap whereas the monolayer has a direct one. It is still under debate whether the direct-to-indirect gap crossover occurs at the monolayer or bilayer limit at room temperature, resulting from the fact that the two gaps are very close to one another in ultrathin crystals. We take advantage of this closeness by tuning the two gaps with in-plane tensile strain. In particular, we employ photoluminescence and absorption spectroscopy to probe the near-band-edge optical transitions and study their line-shapes to distinguish the direct and indirect gaps in few-layer MoTe2. We observe that the applied strain redshifts the direct and indirect gaps at different rates and strongly affects the spectral widths of the optical transitions. Our observations help us understand what contributes to the broadening of the A exciton peak in ultrathin MoTe2 and how the direct-to-indirect gap crossover occurs with decreasing thickness.

  7. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.

    PubMed

    Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping

    2018-05-16

    A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.

  8. Thermoreflectance characterization of beta-Ga2O3 thin-film nanostrips.

    PubMed

    Ho, Ching-Hwa; Tseng, Chiao-Yeh; Tien, Li-Chia

    2010-08-02

    Nanostructure of beta-Ga(2)O(3) is wide-band-gap material with white-light-emission function because of its abundance in gap states. In this study, the gap states and near-band-edge transitions in beta-Ga(2)O(3) nanostrips have been characterized using temperature-dependent thermoreflectance (TR) measurements in the temperature range between 30 and 320 K. Photoluminescence (PL) measurements were carried to identify the gap-state transitions in the beta-Ga(2)O(3) nanostrips. Experimental analysis of the TR spectra revealed that the direct gap (E(0)) of beta-Ga(2)O(3) is 4.656 eV at 300 K. There are a lot of gap-state and near-band-edge (GSNBE) transitions denoted as E(D3), E(W1), E(W2), E(W3), E(D2), EDBex, E(DB), E(D1), E(0), and E(0)' can be detected in the TR and PL spectra at 30 K. Transition origins for the GSNBE features in the beta-Ga(2)O(3) nanostrips are respectively evaluated. Temperature dependences of transition energies of the GSNBE transitions in the beta-Ga(2)O(3) nanostrips are analyzed. The probable band scheme for the GSNBE transitions in the beta-Ga(2)O(3) nanostrips is constructed.

  9. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

    PubMed

    Theocharis, G; Boechler, N; Kevrekidis, P G; Job, S; Porter, Mason A; Daraio, C

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  10. Germanene on single-layer ZnSe substrate: novel electronic and optical properties.

    PubMed

    Ye, H Y; Hu, F F; Tang, H Y; Yang, L W; Chen, X P; Wang, L G; Zhang, G Q

    2018-06-01

    In this work, the structural, electronic and optical properties of germanene and ZnSe substrate nanocomposites have been investigated using first-principles calculations. We found that the large direct-gap ZnSe semiconductors and zero-gap germanene form a typical orbital hybridization heterostructure with a strong binding energy, which shows a moderate direct band gap of 0.503 eV in the most stable pattern. Furthermore, the heterostructure undergoes semiconductor-to-metal band gap transition when subjected to external out-of-plane electric field. We also found that applying external strain and compressing the interlayer distance are two simple ways of tuning the electronic structure. An unexpected indirect-direct band gap transition is also observed in the AAII pattern via adjusting the interlayer distance. Quite interestingly, the calculated results exhibit that the germanene/ZnSe heterobilayer structure has perfect optical absorption in the solar spectrum as well as the infrared and UV light zones, which is superior to that of the individual ZnSe substrate and germanene. The staggered interfacial gap and tunability of the energy band structure via interlayer distance and external electric field and strain thus make the germanene/ZnSe heterostructure a promising candidate for field effect transistors (FETs) and nanoelectronic applications.

  11. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals

    NASA Astrophysics Data System (ADS)

    Theocharis, G.; Boechler, N.; Kevrekidis, P. G.; Job, S.; Porter, Mason A.; Daraio, C.

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  12. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO

    NASA Astrophysics Data System (ADS)

    Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.

    2013-01-01

    The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.

  13. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.

    PubMed

    Umari, P; Petrenko, O; Taioli, S; De Souza, M M

    2012-05-14

    Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.

  14. First-principles studies of a photovoltaic material based on silicon heavily codoped with sulfur and nitrogen

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Wang, Yongyong; Song, Xiaohui; Yang, Feng

    2018-03-01

    In silicon co-hyperdoped with nitrogen and sulfur, dopant atoms tend to form dimers in the near-equilibrium process. The dimer that contains substitutional N and S atoms has the lowest formation energy and can form an impurity band that overlaps with the conduction band (CB). When separating the two atoms far apart from each other, the impurity band is clearly isolated from the CB and becomes an intermediate band (IB). The sub-band-gap absorption decreases with the decrease in the substitutional atom distance. The sub-band-gap absorption of the material is the combined effect of the configurations with different N-S distances.

  15. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory.

    PubMed

    Tran, Fabien; Blaha, Peter

    2017-05-04

    Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

  16. The infrared bands Pechan prism axis parallel detection method

    NASA Astrophysics Data System (ADS)

    Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li

    2017-02-01

    In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.

  17. Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light-Matter Interaction toward Excellent Photodetectors.

    PubMed

    Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun

    2017-09-26

    Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.

  18. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    PubMed Central

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-01-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability. PMID:24108361

  19. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.

    PubMed

    Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu

    2014-12-28

    The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.

  20. Spherical silicon-shell photonic band gap structures fabricated by laser-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, Z. Y.; Lu, Y. F.

    2007-02-01

    Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.

Top