Sample records for band gap quantum

  1. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    DTIC Science & Technology

    2015-05-01

    ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...field corresponds to the rotation of the B vector about the pseudo field vector, Ω, with components determined by the effective Rabi frequency ( )e...to examine coherent quantum effects, such as Rabi oscillations and quantum entanglement in optical spectra of wide-band-gap materials, and to

  2. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  3. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  4. Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Dan, Nguyen Trung; Bechstedt, F.

    1996-02-01

    We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.

  5. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  6. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less

  7. Recent Developments in Quantum-Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, K. M. S. V.

    1995-01-01

    Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.

  8. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  9. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  10. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-06-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  11. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gapsmore » of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.« less

  12. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu

    2016-06-20

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less

  13. Theoretical studies on band structure and optical gain of GaInAsN/GaAs /GaAs cylindrical quantum dot

    NASA Astrophysics Data System (ADS)

    Mal, Indranil; Samajdar, Dip Prakash; John Peter, A.

    2018-07-01

    Electronic band structure, effective masses, band offsets and optical gain of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot systems are investigated using 10 band k·p Hamiltonian for various nitrogen and indium concentrations. The calculations include the effects of strain generated due to the lattice mismatch and the effective band gap of GaInAsN/GaAs heterostructures. The variation of conduction band, light hole and heavy hole band offsets with indium and nitrogen compositions in the alloy are obtained. The band structure of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot is found in the crystal directions Δ (100) and Λ (111) using 10 band k·p Hamiltonian. The optical gain of the cylindrical quantum dot structures as functions of surface carrier concentration and the dot radius is investigated. Our results show that the tensile strain of 1.34% generates a band gap of 0.59 eV and the compressive strain of 2.2% produces a band gap of 1.28 eV and the introduction of N atoms has no effect on the spin orbit split off band. The variation of optical gain with the dot size and the carrier concentration indicates that the optical gain increases with the decrease in the radius of the quantum dot. The results may be useful for the potential applications in optical devices.

  14. Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR

    NASA Astrophysics Data System (ADS)

    Singh, Navjot; Sharma, J.; Tripathi, S. K.

    2016-05-01

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.

  15. Enhanced Photoelectrochemical Water Splitting Behaviour of Tuned Band Gap CdSe QDs Sensitized LaB₆.

    PubMed

    Babu, M Soban; Sivanantham, A; Chakravarthi, B Barath; Kannan, R Sujith; Panda, Subhendu K; Berchmans, L John; Arya, S B; Sreedhar, Gosipathala

    2017-01-01

    We report the fabrication of tuned band gap quantum dots sensitized LaB₆ hybrid nanostructures and their application as a photoanode for photoelectrochemical water splitting. The lanthanum hexaboride (LaB₆) obtained by molten salt electrolysis method is sensitized with different sized CdSe quantum dots, which form a multiple-level hierarchical heterostructure and such design enhance the light absorption and charge carrier separation, which in turn showed higher photocurrent density compared to that of pristine LaB₆. When LaB₆ is sensitized with CdSe quantum dots of different band gaps, which have the absorption in the green and red (530 and 605 nm) regions in visible light, developed a ten times higher photocurrent density (11.0 mA cm(−2)) compared to that of pristine LaB6 (0.5 mA cm(−2) at 0.75 V vs. Ag/AgCl) in 1 M Na₂S electrolyte under illumination. These results prove that the tuned band gap quantum dots sensitized LaB₆ heterostructures are an ideal candidate for a photoanode in solar water splitting applications.

  16. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  17. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  18. Luminescence of CdSe/ZnS quantum dots infiltrated into an opal matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruzintsev, A. N.; Emelchenko, G. A.; Masalov, V. M.

    The effect of the photonic band gap in the photonic crystal, the synthesized SiO{sub 2} opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and themore » luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.« less

  19. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    PubMed

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  20. Can the oscillator strength of the quantum dot bandgap transition exceed unity?

    NASA Astrophysics Data System (ADS)

    Hens, Z.

    2008-10-01

    We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.

  1. Giant electron-hole transport asymmetry in ultra-short quantum transistors.

    PubMed

    McRae, A C; Tayari, V; Porter, J M; Champagne, A R

    2017-05-31

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e-h charging energy asymmetry). We parameterize the e-h transport asymmetry by the ratio of the hole and electron charging energies η e-h . This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, η e-h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

  2. A new approach to high-efficiency multi-band-gap solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnham, K.W.J.; Duggan, G.

    1990-04-01

    The advantages of using multi-quantum-well or superlattice systems as the absorbers in concentrator solar cells are discussed. By adjusting the quantum-well width, an effective band-gap variation that covers the high-efficiency region of the solar spectrum can be obtained. Higher efficiencies should result from the ability to optimize separately current and voltage generating factors. Suitable structures to ensure good carrier separation and collection and to obtain higher open-circuit voltages are presented using the (AlGa)As/GaAs/(InGa)As system. Efficiencies above existing single-band-gap limits should be achievable, with upper limits in excess of 40%.

  3. Prediction of large gap flat Chern band in a two-dimensional metal-organic framework

    NASA Astrophysics Data System (ADS)

    Su, Ninghai; Jiang, Wei; Wang, Zhengfei; Liu, Feng

    2018-01-01

    Systems with a flat Chern band have been extensively studied for their potential to realize high-temperature fractional quantum Hall states. To experimentally observe the quantum transport properties, a sizable topological gap is highly necessary. Here, taking advantage of the high tunability of two-dimensional (2D) metal-organic frameworks (MOFs), whose crystal structures can be easily tuned using different metal atoms and molecular ligands, we propose a design of a 2D MOF [Tl2(C6H4)3, Tl2Ph3] showing nontrivial topological states with an extremely large gap in both the nearly flat Chern band and the Dirac bands. By coordinating π-conjugated thallium ions and benzene rings, crystalline Tl2Ph3 can be formed with Tl and Ph constructing honeycomb and kagome lattices, respectively. The px,y orbitals of Tl on the honeycomb lattice form ideal pxy four-bands, through which a flat Chern band with a spin-orbit coupling (SOC) gap around 140 meV evolves below the Fermi level. This is the largest SOC gap among all the theoretically proposed organic topological insulators so far.

  4. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  5. Giant electron-hole transport asymmetry in ultra-short quantum transistors

    PubMed Central

    McRae, A. C.; Tayari, V.; Porter, J. M.; Champagne, A. R.

    2017-01-01

    Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV. PMID:28561024

  6. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  7. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite [Tunable excitonic insulator in quantum limit graphite

    DOE PAGES

    Zhu, Zengwei; McDonald, R. D.; Shekhter, A.; ...

    2017-05-04

    Here, the excitonic insulator phase has long been predicted to form in proximity to a band gap opening in the underlying band structure. The character of the pairing is conjectured to crossover from weak (BCS-like) to strong coupling (BEC-like) as the underlying band structure is tuned from the metallic to the insulating side of the gap opening. Here we report the high-magnetic field phase diagram of graphite to exhibit just such a crossover. By way of comprehensive angle-resolved magnetoresistance measurements, we demonstrate that the underlying band gap opening occurs inside the magnetic field-induced phase, paving the way for a systematicmore » study of the BCS-BEC-like crossover by means of conventional condensed matter probes.« less

  8. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite [Tunable excitonic insulator in quantum limit graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zengwei; McDonald, R. D.; Shekhter, A.

    Here, the excitonic insulator phase has long been predicted to form in proximity to a band gap opening in the underlying band structure. The character of the pairing is conjectured to crossover from weak (BCS-like) to strong coupling (BEC-like) as the underlying band structure is tuned from the metallic to the insulating side of the gap opening. Here we report the high-magnetic field phase diagram of graphite to exhibit just such a crossover. By way of comprehensive angle-resolved magnetoresistance measurements, we demonstrate that the underlying band gap opening occurs inside the magnetic field-induced phase, paving the way for a systematicmore » study of the BCS-BEC-like crossover by means of conventional condensed matter probes.« less

  9. Tunable and sizable band gap in silicene by surface adsorption

    PubMed Central

    Quhe, Ruge; Fei, Ruixiang; Liu, Qihang; Zheng, Jiaxin; Li, Hong; Xu, Chengyong; Ni, Zeyuan; Wang, Yangyang; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing

    2012-01-01

    Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 108. Therefore, a way is paved for silicene as the channel of a high-performance FET. PMID:23152944

  10. Inhibition of quantum size effects from surface dangling bonds: The first principles study on different morphology SiC nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Fang, Xiao-Yong; Jia, Ya-Hui; Cao, Mao-Sheng

    2018-06-01

    In recent years, we investigated the structure and photoelectric properties of Silicon carbide nanowires (SiCNWs) with different morphologies and sizes by using the first-principle in density functional theory, and found a phenomenon that is opposite to quantum size effect, namely, the band gap of nanowires increases with the increase of the diameter. To reveal the nature of this phenomenon, we further carry out the passivation of SiCNWs. The results show that the hydrogenated SiCNWs are direct band gap semiconductors, and the band gap decreases with the diameter increasing, which indicates the dangling bonds of the SiCNWs suppress its quantum size effect. The optical properties of SiCNWs with different diameters before and after hydrogenated are compared, we found that these surface dangling bonds lead to spectral shift which is different with quantum size effect of SiCNWs. These results have potential scientific value to deepen the understanding of the photoelectric properties of SiCNWs and to promote the development of optoelectronic devices.

  11. Effect of temperature on In_{{\\varvec{x}}} Ga_{1-{{\\varvec{x}}}} As/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Borji, Mahdi Ahmadi; Reyahi, Ali; Rajaei, Esfandiar; Ghahremani, Mohsen

    2017-08-01

    In this paper, the strain, band-edge, and energy levels of pyramidal In_x Ga_{1-x} As/GaAs quantum dots are investigated by 1-band effective mass approach. It is shown that while temperature has no remarkable effect on the strain tensor, the band gap lowers and the radiation wavelength elongates by increasing temperature. Also, band gap and energy do not linearly decrease by temperature rise. Our results appear to agree with former researches. This can be used in designing laser devices and sensors when applied in different working temperatures. Furthermore, when the device works for a long time, self-heating occurs which changes the characteristics of the output.

  12. Abnormal broadening of the optical transitions in (Ga,As)N/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Turcotte, S.; Beaudry, J.-N.; Masut, R. A.; Desjardins, P.; Bentoumi, G.; Leonelli, R.

    2012-01-01

    We have measured the near band-gap absorption of structurally well characterized GaAs1-xNx quantum wells grown on GaAs(001) with x<0.014. The spectra were reproduced by a model that includes electron-hole correlations. We find that the width of the excitonic and band-to-band optical transitions are more than twice larger than what is found in conventional III-V alloy heterostructures. This confirms the presence of strong nitrogen-configuration induced band-gap fluctuations reported previously by Bentoumi [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.70.035315 70, 035315 (2004)] for bulk dilute GaAsN alloys.

  13. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  14. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    PubMed

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-09

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  15. Nanostructured Materials Developed for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Fahey, Stephen D.; Gennett, Thomas; Tin, Padetha

    2004-01-01

    There has been considerable investigation recently regarding the potential for the use of nanomaterials and nanostructures to increase the efficiency of photovoltaic devices. Efforts at the NASA Glenn Research Center have involved the development and use of quantum dots and carbon nanotubes to enhance inorganic and organic cell efficiencies. Theoretical results have shown that a photovoltaic device with a single intermediate band of states resulting from the introduction of quantum dots offers a potential efficiency of 63.2 percent. A recent publication extended the intermediate band theory to two intermediate bands and calculated a limiting efficiency of 71.7 percent. The enhanced efficiency results from converting photons of energy less than the band gap of the cell by an intermediate band. The intermediate band provides a mechanism for low-energy photons to excite carriers across the energy gap by a two-step process.

  16. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    DOE PAGES

    Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin; ...

    2015-12-21

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less

  17. On the size and temperature dependence of the energy gap in cadmium-selenide quantum dots embedded in fluorophosphate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.

    2017-03-15

    The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.

  18. Functionalized Thallium Antimony Films as Excellent Candidates for Large-Gap Quantum Spin Hall Insulator

    PubMed Central

    Zhang, Run-wu; Zhang, Chang-wen; Ji, Wei-xiao; Li, Sheng-shi; Yan, Shi-shen; Li, Ping; Wang, Pei-ji

    2016-01-01

    Group III-V films are of great importance for their potential application in spintronics and quantum computing. Search for two-dimensional III-V films with a nontrivial large-gap are quite crucial for the realization of dissipationless transport edge channels using quantum spin Hall (QSH) effects. Here we use first-principles calculations to predict a class of large-gap QSH insulators in functionalized TlSb monolayers (TlSbX2; (X = H, F, Cl, Br, I)), with sizable bulk gaps as large as 0.22 ~ 0.40 eV. The QSH state is identified by Z2 topological invariant together with helical edge states induced by spin-orbit coupling (SOC). Noticeably, the inverted band gap in the nontrivial states can be effectively tuned by the electric field and strain. Additionally, these films on BN substrate also maintain a nontrivial QSH state, which harbors a Dirac cone lying within the band gap. These findings may shed new light in future design and fabrication of QSH insulators based on two-dimensional honeycomb lattices in spintronics. PMID:26882865

  19. Functionalized Thallium Antimony Films as Excellent Candidates for Large-Gap Quantum Spin Hall Insulator.

    PubMed

    Zhang, Run-wu; Zhang, Chang-wen; Ji, Wei-xiao; Li, Sheng-shi; Yan, Shi-shen; Li, Ping; Wang, Pei-ji

    2016-02-17

    Group III-V films are of great importance for their potential application in spintronics and quantum computing. Search for two-dimensional III-V films with a nontrivial large-gap are quite crucial for the realization of dissipationless transport edge channels using quantum spin Hall (QSH) effects. Here we use first-principles calculations to predict a class of large-gap QSH insulators in functionalized TlSb monolayers (TlSbX2; (X = H, F, Cl, Br, I)), with sizable bulk gaps as large as 0.22~0.40 eV. The QSH state is identified by Z2 topological invariant together with helical edge states induced by spin-orbit coupling (SOC). Noticeably, the inverted band gap in the nontrivial states can be effectively tuned by the electric field and strain. Additionally, these films on BN substrate also maintain a nontrivial QSH state, which harbors a Dirac cone lying within the band gap. These findings may shed new light in future design and fabrication of QSH insulators based on two-dimensional honeycomb lattices in spintronics.

  20. Intrinsic optical confinement for ultrathin InAsN quantum well superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakri, A.; Robert, C.; Pedesseau, L.

    We study energy-band engineering with InAsN monolayer in GaAs/GaP quantum well structure. A tight-binding calculation indicates that both type I alignment along with direct band-gap behavior can be obtained. We show that the optical transitions are less sensitive to the position of the probe.

  1. Designing artificial 2D crystals with site and size controlled quantum dots.

    PubMed

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  2. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    PubMed

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  3. LASER APPLICATIONS AND OTHER ASPECTS OF QUANTUM ELECTRONICS Nonlinearity, optoelectronic properties, and their correlations for some mixed ternary defect chalcopyrites

    NASA Astrophysics Data System (ADS)

    Dutta Roy, S.

    2010-12-01

    The refractive index, optical nonlinearity, lowest energy band gap, and other related parameters of some mixed defect ternary chalcopyrites are calculated using Levine's bond charge model and its modification developed by Samanta et al. for multinary and mixed compounds. The dependence of the band gap energy on the average quantum number, molecular weight, and anion displacement parameter is shown for the first time, which will be very useful for designing various optoelectronic and nonlinear laser devices.

  4. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.

    PubMed

    Kou, Liangzhi; Hu, Feiming; Yan, Binghai; Frauenheim, Thomas; Chen, Changfeng

    2014-07-07

    Developing graphene-based nanoelectronics hinges on opening a band gap in the electronic structure of graphene, which is commonly achieved by breaking the inversion symmetry of the graphene lattice via an electric field (gate bias) or asymmetric doping of graphene layers. Here we introduce a new design strategy that places a bilayer graphene sheet sandwiched between two cladding layers of materials that possess strong spin-orbit coupling (e.g., Bi2Te3). Our ab initio and tight-binding calculations show that a proximity enhanced spin-orbit coupling effect opens a large (44 meV) band gap in bilayer graphene without breaking its lattice symmetry, and the band gap can be effectively tuned by an interlayer stacking pattern and significantly enhanced by interlayer compression. The feasibility of this quantum-well structure is demonstrated by recent experimental realization of high-quality heterojunctions between graphene and Bi2Te3, and this design also conforms to existing fabrication techniques in the semiconductor industry. The proposed quantum-well structure is expected to be especially robust since it does not require an external power supply to open and maintain a band gap, and the cladding layers provide protection against environmental degradation of the graphene layer in its device applications.

  5. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    DOE PAGES

    Li, Jin; He, Chaoyu; Meng, Lijun; ...

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less

  6. Binding energy of excitons formed from spatially separated electrons and holes in insulating quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokutnyi, S. I., E-mail: pokutnyi-sergey@inbox.ru; Kulchin, Yu. N.; Dzyuba, V. P.

    It is found that the binding energy of the ground state of an exciton formed from an electron and a hole spatially separated from each other (the hole is moving within a quantum dot, and the electron is localized above the spherical (quantum dot)–(insulating matrix) interface) in a nanosystem containing insulating Al{sub 2}O{sub 3} quantum dots is substantially increased (by nearly two orders of magnitude) compared to the exciton binding energy in an Al{sub 2}O{sub 3} single crystal. It is established that, in the band gap of an Al{sub 2}O{sub 3} nanoparticle, a band of exciton states (formed from spatiallymore » separated electrons and holes) appears. It is shown that there exists the possibility of experimentally detecting the ground and excited exciton states in the band gap of Al{sub 2}O{sub 3} nanoparticles at room temperature from the absorption spectrum of the nanosystem.« less

  7. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.

    PubMed

    Wang, Tuo; Vaxenburg, Roman; Liu, Wenyong; Rupich, Sara M; Lifshitz, Efrat; Efros, Alexander L; Talapin, Dmitri V; Sibener, S J

    2015-01-27

    The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

  8. Electronic and transport properties of zigzag carbon nanotubes with the presence of periodical antidot and boron/nitride doping defects

    NASA Astrophysics Data System (ADS)

    Zoghi, Milad; Yazdanpanah Goharrizi, Arash; Mirjalili, Seyed Mohammad; Kabir, M. Z.

    2018-06-01

    Electronic and transport properties of Carbon nanotubes (CNTs) are affected by the presence of physical or chemical defects in their structures. In this paper, we present novel platforms of defected zigzag CNTs (Z-CNTs) in which two topologies of antidot and Boron/Nitride (BN) doping defects are periodically imposed throughout the length of perfect tubes. Using the tight binding model and the non-equilibrium Green’s function method, it is realized that the quantum confinement of Z-CNTs is modified by the presence of such defects. This new quantum confinement results in the appearance of mini bands and mini gaps in the transmission spectra, as well as a modified band structure and band gap size. The modified band gap could be either larger or smaller than the intrinsic band gap of a perfect tube, which is determined by the category of Z-CNT. The in-depth analysis shows that the size of the modified band gap is the function of several factors consisting of: the radii of tube (D r), the distance between adjacent defects (d d), the utilized defect topology, and the kind of defect (antidot or BN doping). Furthermore, taking advantage of the tunable band gap size of Z-CNT with the presence of periodical defects, new platforms of defect-based Z-CNT resonant tunneling diode (RTD) are proposed for the first time. Our calculations demonstrate the apparition of resonances in transmission spectra and the negative differential resistance in the I-V characteristics for such RTD platforms.

  9. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.

    PubMed

    Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping

    2018-05-16

    A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.

  10. Anisotropic-Strain-Induced Band Gap Engineering in Nanowire-Based Quantum Dots.

    PubMed

    Francaviglia, Luca; Giunto, Andrea; Kim, Wonjong; Romero-Gomez, Pablo; Vukajlovic-Plestina, Jelena; Friedl, Martin; Potts, Heidi; Güniat, Lucas; Tütüncüoglu, Gözde; Fontcuberta I Morral, Anna

    2018-04-11

    Tuning light emission in bulk and quantum structures by strain constitutes a complementary method to engineer functional properties of semiconductors. Here, we demonstrate the tuning of light emission of GaAs nanowires and their quantum dots up to 115 meV by applying strain through an oxide envelope. We prove that the strain is highly anisotropic and clearly results in a component along the NW longitudinal axis, showing good agreement with the equations of uniaxial stress. We further demonstrate that the strain strongly depends on the oxide thickness, the oxide intrinsic strain, and the oxide microstructure. We also show that ensemble measurements are fully consistent with characterizations at the single-NW level, further elucidating the general character of the findings. This work provides the basic elements for strain-induced band gap engineering and opens new avenues in applications where a band-edge shift is necessary.

  11. Strain-induced topological quantum phase transition in phosphorene oxide

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x < 0.5, and then to decrease with x > 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  12. Effects of excitation frequency on high-order terahertz sideband generation in semiconductors

    NASA Astrophysics Data System (ADS)

    Xie, Xiao-Tao; Zhu, Bang-Fen; Liu, Ren-Bao

    2013-10-01

    We theoretically investigate the effects of the excitation frequency on the plateau of high-order terahertz sideband generation (HSG) in semiconductors driven by intense terahertz (THz) fields. We find that the plateau of the sideband spectrum strongly depends on the detuning between the near-infrared laser field and the band gap. We use the quantum trajectory theory (three-step model) to understand the HSG. In the three-step model, an electron-hole pair is first excited by a weak laser, then driven by the strong THz field, and finally recombined to emit a photon with energy gain. When the laser is tuned below the band gap (negative detuning), the electron-hole generation is a virtual process that requires quantum tunneling to occur. When the energy gained by the electron-hole pair from the THz field is less than 3.17 times the ponderomotive energy (Up), the electron and the hole can be driven to the same position and recombined without quantum tunneling, so that the HSG will have large probability amplitude. This leads to a plateau feature of the HSG spectrum with a high-frequency cutoff at about 3.17Up above the band gap. Such a plateau feature is similar to the case of high-order harmonics generation in atoms where electrons have to overcome the binding energy to escape the atomic core. A particularly interesting excitation condition in HSG is that the laser can be tuned above the band gap (positive detuning), corresponding to the unphysical ‘negative’ binding energy in atoms for high-order harmonic generation. Now the electron-hole pair is generated by real excitation, but the recombination process can be real or virtual depending on the energy gained from the THz field, which determines the plateau feature in HSG. Both the numerical calculation and the quantum trajectory analysis reveal that for positive detuning, the HSG plateau cutoff depends on the frequency of the excitation laser. In particular, when the laser is tuned more than 3.17Up above the band gap, the HSG spectrum presents no plateau feature but instead sharp peaks near the band edge and near the excitation frequency.

  13. Helical quantum states in HgTe quantum dots with inverted band structures.

    PubMed

    Chang, Kai; Lou, Wen-Kai

    2011-05-20

    We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.

  14. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion

    NASA Astrophysics Data System (ADS)

    Erickson, S. D.; Smith, T. J.; Moses, L. M.; Watt, R. K.; Colton, J. S.

    2015-01-01

    Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.

  15. Graphene-based topological insulator with an intrinsic bulk band gap above room temperature.

    PubMed

    Kou, Liangzhi; Yan, Binghai; Hu, Feiming; Wu, Shu-Chun; Wehling, Tim O; Felser, Claudia; Chen, Changfeng; Frauenheim, Thomas

    2013-01-01

    Topological insulators (TIs) represent a new quantum state of matter characterized by robust gapless states inside the insulating bulk gap. The metallic edge states of a two-dimensional (2D) TI, known as the quantum spin Hall (QSH) effect, are immune to backscattering and carry fully spin-polarized dissipationless currents. However, existing 2D TIs realized in HgTe and InAs/GaSb suffer from small bulk gaps (<10 meV) well below room temperature, thus limiting their application in electronic and spintronic devices. Here, we report a new 2D TI comprising a graphene layer sandwiched between two Bi2Se3 slabs that exhibits a large intrinsic bulk band gap of 30-50 meV, making it viable for room-temperature applications. Distinct from previous strategies for enhancing the intrinsic spin-orbit coupling effect of the graphene lattice, the present graphene-based TI operates on a new mechanism of strong inversion between graphene Dirac bands and Bi2Se3 conduction bands. Strain engineering leads to effective control and substantial enhancement of the bulk gap. Recently reported synthesis of smooth graphene/Bi2Se3 interfaces demonstrates the feasibility of experimental realization of this new 2D TI structure, which holds great promise for nanoscale device applications.

  16. Rényi entropies and topological quantum numbers in 2D gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Bolívar, Juan Carlos; Romera, Elvira

    2017-05-01

    New topological quantum numbers are introduced by analyzing complexity measures and relative Rényi entropies in silicene in the presence of perpendicular electric and magnetic fields. These topological quantum numbers characterize the topological insulator and band insulator phases in silicene. In addition, we have found that, these information measures reach extremum values at the charge neutrality points. These results are valid for other 2D gapped Dirac materials analogous to silicene with a buckled honeycomb structure and a significant spin-orbit coupling.

  17. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

    PubMed

    Xue, Fei; MacDonald, A H

    2018-05-04

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  18. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions

    NASA Astrophysics Data System (ADS)

    Xue, Fei; MacDonald, A. H.

    2018-05-01

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  19. Photoresponse Enhancement in Monolayer ReS2 Phototransistor Decorated with CdSe-CdS-ZnS Quantum Dots.

    PubMed

    Qin, Jing-Kai; Ren, Dan-Dan; Shao, Wen-Zhu; Li, Yang; Miao, Peng; Sun, Zhao-Yuan; Hu, PingAn; Zhen, Liang; Xu, Cheng-Yan

    2017-11-15

    ReS 2 films are considered as a promising candidate for optoelectronic applications due to their direct band gap character and optical/electrical anisotropy. However, the direct band gap in a narrow spectrum and the low absorption of atomically thin flakes weaken the prospect for light-harvesting applications. Here, we developed an efficient approach to enhance the performance of a ReS 2 -based phototransistor by coupling CdSe-CdS-ZnS core-shell quantum dots. Under 589 nm laser irradiation, the responsivity of the ReS 2 phototransistor decorated with quantum dots could be enhanced by more than 25 times (up to ∼654 A/W) and the rising and recovery time can be also reduced to 3.2 and 2.8 s, respectively. The excellent optoelectronic performance is originated from the coupling effect of quantum dots light absorber and cross-linker ligands 1,2-ethanedithiol. Photoexcited electron-hole pairs in quantum dots can separate and transfer efficiently due to the type-II band alignment and charge exchange process at the interface. Our work shows that the simple hybrid zero- and two-dimensional hybrid system can be employed for photodetection applications.

  20. Quantum Well Infrared Photodetectors: Device Physics and Light Coupling

    NASA Technical Reports Server (NTRS)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Mumolo, J.; Luong, E.; Hong, W.; Sengupta, D. K.

    1997-01-01

    It is customary to make infrared (IR) detectors in the long wavelength range by utilizing the interband transition which promotes an electron across the band gap (Eg) from the valence band to the conduction.

  1. Temperature-Induced Topological Phase Transition in HgTe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Kadykov, A. M.; Krishtopenko, S. S.; Jouault, B.; Desrat, W.; Knap, W.; Ruffenach, S.; Consejo, C.; Torres, J.; Morozov, S. V.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.

    2018-02-01

    We report a direct observation of temperature-induced topological phase transition between the trivial and topological insulator states in an HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures, and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electronlike and holelike subbands. Their crossing at a critical magnetic field Bc is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of Bc, we directly extract the critical temperature Tc at which the bulk band gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.

  2. Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk

    2015-09-07

    Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less

  3. Coulomb Oscillations in a Gate-Controlled Few-Layer Graphene Quantum Dot.

    PubMed

    Song, Yipu; Xiong, Haonan; Jiang, Wentao; Zhang, Hongyi; Xue, Xiao; Ma, Cheng; Ma, Yulin; Sun, Luyan; Wang, Haiyan; Duan, Luming

    2016-10-12

    Graphene quantum dots could be an ideal host for spin qubits and thus have been extensively investigated based on graphene nanoribbons and etched nanostructures; however, edge and substrate-induced disorders severely limit device functionality. Here, we report the confinement of quantum dots in few-layer graphene with tunable barriers, defined by local strain and electrostatic gating. Transport measurements unambiguously reveal that confinement barriers are formed by inducing a band gap via the electrostatic gating together with local strain induced constriction. Numerical simulations according to the local top-gate geometry confirm the band gap opening by a perpendicular electric field. We investigate the magnetic field dependence of the energy-level spectra in these graphene quantum dots. Experimental results reveal a complex evolution of Coulomb oscillations with the magnetic field, featuring kinks at level crossings. The simulation of energy spectrum shows that the kink features and the magnetic field dependence are consistent with experimental observations, implying the hybridized nature of energy-level spectrum of these graphene quantum dots.

  4. Magneto-ballistic transport in GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuationsmore » and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.« less

  5. Asymmetric band gaps in a Rashba film system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, C.; Moras, P.; Sheverdyaeva, P. M.

    The joint effect of exchange and Rashba spin-orbit interactions is examined on the surface and quantum well states of Ag 2 Bi -terminated Ag films grown on ferromagnetic Fe(110). The system displays a particular combination of time-reversal and translational symmetry breaking that strongly influences its electronic structure. Angle-resolved photoemission reveals asymmetric band-gap openings, due to spin-selective hybridization between Rashba-split surface states and exchange-split quantum well states. This results in an unequal number of states along positive and negative reciprocal space directions. We suggest that the peculiar asymmetry of the discovered electronic structure can have significant influence on spin-polarized transport properties.

  6. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  7. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  8. Quantum spin Hall state in monolayer 1T '-WTe 2

    DOE PAGES

    Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...

    2017-06-26

    A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less

  9. Quantum spin Hall state in monolayer 1T '-WTe 2

    DOE PAGES

    Tang, Shujie; Zhang, Chaofan; Wong, Dillon; ...

    2017-06-26

    A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin–orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T '-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulkmore » bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Finally, our results establish monolayer 1T '-WTe 2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).« less

  10. Pressure Study of Photoluminescence in GaN/InGaN/ AlGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Perlin, Piotr; Iota, V.; Weinstein, B. A.; Wisniewski, P.; Osinski, M.; Eliseev, P. G.

    1997-03-01

    We have studied the photoluminescence (PL) from two commercial high brightness single quantum well light emitting diodes (Nichia Chem. Industs.) with In_xGa_1-x N (x=0.45 and 0.2) as the active layers under hydrostatic pressures up to 7 GPa. These diodes are the best existing light emitters at short wavelengths, having the emission wavelengths of 430 nm and 530 nm depending on the content of indium in the 30 Åthick quantum wells. Although these devices show a remarkable quality and efficiency (luminosity as high as 12 cd), the mechanism of recombination remains obscure. We discovered that the pressure coefficient for each of the observed PL peaks is dramatically (2-3 times) lower than that of the energy gap of its InGaN active layer. These observations, in conjunction with the fact that the observed emission occurs below the energy gap of the quantum well material, and also considering the anomalous temperature behavior of the emission (peak energy increasing with temperature) suggest the involvement of localized states and exclude a simple band-to-band recombination picture. These localized states may be tentatively attributed to the presence of band tails in the gap which stem from composition fluctuations in the InGaN alloy. (figures)

  11. Hidden edge Dirac point and robust quantum edge transport in InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Li, Chang-An; Zhang, Song-Bo; Shen, Shun-Qing

    2018-01-01

    The robustness of quantum edge transport in InAs/GaSb quantum wells in the presence of magnetic fields raises an issue on the fate of topological phases of matter under time-reversal symmetry breaking. A peculiar band structure evolution in InAs/GaSb quantum wells is revealed: the electron subbands cross the heavy hole subbands but anticross the light hole subbands. The topologically protected band crossing point (Dirac point) of the helical edge states is pulled to be close to and even buried in the bulk valence bands when the system is in a deeply inverted regime, which is attributed to the existence of the light hole subbands. A sizable Zeeman energy gap verified by the effective g factors of edge states opens at the Dirac point by an in-plane or perpendicular magnetic field; however, it can also be hidden in the bulk valance bands. This provides a plausible explanation for the recent observation on the robustness of quantum edge transport in InAs/GaSb quantum wells subjected to strong magnetic fields.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying-Jie, E-mail: qfyingjie@iphy.ac.cn; Institute of Physics, Chinese Academy of Sciences, Beijing, 100190; Han, Wei

    In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths. - Highlights: • Propose a scheme to enhance entanglement trapping in photonic band gap material. • Weak measurement and its reversal are performed locally on individual qubits. • Obtain an optimal condition for maximizing the concurrence of entanglement trapping. • Entanglement suddenmore » death can be prevented by weak measurement in photonic band gap.« less

  13. Diluted magnetic semiconductors with narrow band gaps

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  14. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    NASA Astrophysics Data System (ADS)

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-12-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates.

  15. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    PubMed Central

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-01-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. PMID:27991584

  16. Pseudospin Dependent One-Way Transmission in Graphene-Based Topological Plasmonic Crystals

    NASA Astrophysics Data System (ADS)

    Qiu, Pingping; Qiu, Weibin; Ren, Junbo; Lin, Zhili; Wang, Zeyu; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2018-04-01

    Originating from the investigation of condensed matter states, the concept of quantum Hall effect and quantum spin Hall effect (QSHE) has recently been expanded to other field of physics and engineering, e.g., photonics and phononics, giving rise to strikingly unconventional edge modes immune to scattering. Here, we present the plasmonic analog of QSHE in graphene plasmonic crystal (GPC) in mid-infrared frequencies. The band inversion occurs when deforming the honeycomb lattice GPCs, which further leads to the topological band gaps and pseudospin features of the edge states. By overlapping the band gaps with different topologies, we numerically simulated the pseudospin-dependent one-way propagation of edge states. The designed GPC may find potential applications in the fields of topological plasmonics and trigger the exploration of the technique of the pseudospin multiplexing in high-density nanophotonic integrated circuits.

  17. Topological Anderson insulator phase in a Dirac-semimetal thin film

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Xu, Dong-Hui; Zhou, Bin

    2017-06-01

    The recently discovered topological Dirac semimetal represents a new exotic quantum state of matter. Topological Dirac semimetals can be viewed as three-dimensional analogues of graphene, in which the Dirac nodes are protected by crystalline symmetry. It has been found that the quantum confinement effect can gap out Dirac nodes and convert Dirac semimetal to a band insulator. The band insulator is either a normal insulator or quantum spin Hall insulator, depending on the thin-film thickness. We present the study of disorder effects in a thin film of Dirac semimetals. It is found that moderate Anderson disorder strength can drive a topological phase transition from a normal band insulator to a topological Anderson insulator in a Dirac-semimetal thin film. The numerical calculation based on the model parameters of Dirac semimetal Na3Bi shows that in the topological Anderson insulator phase, a quantized conductance plateau occurs in the bulk gap of the band insulator, and the distributions of local currents further confirm that the quantized conductance plateau arises from the helical edge states induced by disorder. Finally, an effective medium theory based on the Born approximation fits the numerical data.

  18. Visible light photoreduction of CO.sub.2 using heterostructured catalysts

    DOEpatents

    Matranga, Christopher; Thompson, Robert L; Wang, Congjun

    2015-03-24

    The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.

  19. Lack of quantum confinement in Ga2O3 nanolayers

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-08-01

    β -Ga2Ox3 is a wide-band-gap semiconductor with promising applications in transparent electronics and in power devices. β -Ga2O3 has monoclinic crystal symmetry and does not display a layered structured characteristic of 2D materials in the bulk; nevertheless, monolayer-thin Ga2O3 layers can be created. We used first-principles techniques to investigate the structural and electronic properties of these nanolayers. Surprisingly, freestanding films do not exhibit any signs of quantum confinement and exhibit the same electronic structure as bulk material. A detailed examination reveals that this can be attributed to the presence of states that are strongly confined near the surface. When the Ga2O3 layers are embedded in a wider band-gap material such as Al2O3 , the expected effects of quantum confinement can be observed. The effective mass of electrons in all the nanolayers is small, indicating promising device applications.

  20. Silicon quantum dots embedded in a SiO2 matrix: From structural study to carrier transport properties

    NASA Astrophysics Data System (ADS)

    Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert

    2013-08-01

    We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.

  1. Quantum size and electric field modulations on electronic structures of SnS2/BN hetero-multilayers

    NASA Astrophysics Data System (ADS)

    Xia, Congxin; Zhang, Qian; Xiao, Wenbo; Du, Juan; Li, Xueping; Li, Jingbo

    2018-05-01

    Through first-principles calculations, we study the stability, band structures, band alignment, and interlayer charge transfer of SnS2/BN hetero-multilayers, considering quantum size and electric field effects. We find that SnS2/BN hetero-multilayers possess the characteristics of direct band structures and type-II band alignment. Moreover, increasing the BN layer number can decrease the band gap value and work function. Additionally, type-II can be tuned to type-I band alignment in the presence of an electric field. These results indicate that the SnS2/BN system is different from that of other BN-based hybrid materials, such as MoS2/BN with type-I band alignment, which is promising for optoelectronic device applications.

  2. Surface chemistry and density distribution influence on visible luminescence of silicon quantum dots: an experimental and theoretical approach.

    PubMed

    Dutt, Ateet; Matsumoto, Yasuhiro; Santana-Rodríguez, G; Ramos, Estrella; Monroy, B Marel; Santoyo Salazar, J

    2017-01-04

    The impact of the surface reconstruction of the density distribution and photoluminescence of silicon quantum dots (QDs) embedded in a silicon oxide matrix (SiO x ) has been studied. Annealing treatments carried out on the as-deposited samples provoked the effusion of hydrogen species. Moreover, depending on the surrounding density and coalescence of QDs, they resulted in a change in the average size of the particles depending on the initial local environment. The shift in the luminescence spectra all over the visible region (blue, green and red) shows a strong dependence on the resultant change in the size and/or the passivation environment of QDs. Density functional theoretical (DFT) calculations support this fact and explain the possible electronic transitions (HOMO-LUMO gap) involved. Passivation in the presence of oxygen species lowers the band gap of Si 29 and Si 35 nanoclusters up to 1.7 eV, whereas, surface passivation in the environment of hydrogen species increases the band gap up to 4.4 eV. These results show a good agreement with the quantum confinement model described in this work and explain the shift in the luminescence all over the visible region. The results reported here offer vital insight into the mechanism of emission from silicon quantum dots which has been one of the most debated topics in the last two decades. QDs with multiple size distribution in different local environments (band gap) observed in this work could be used for the fabrication of light emission diodes (LEDs) or shift-conversion thin films in third generation efficient tandem solar cells for the maximum absorption of the solar spectrum in different wavelength regions.

  3. Nano-scale engineering using lead chalcogenide nanocrystals for opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Xu, Fan

    Colloidal quantum dots (QDs) or nanocrystals of inorganic semiconductors exhibit exceptional optoelectronic properties such as tunable band-gap, high absorption cross-section and narrow emission spectra. This thesis discusses the characterizations and physical properties of lead-chalcogenide nanocrystals, their assembly into more complex nanostructures and applications in solar cells and near-infrared light-emitting devices. In the first part of this work, we demonstrate that the band edge emission of PbS quantum dots can be tuned from the visible to the mid-infrared region through size control, while the self-attachment of PbS nanocrystals can lead to the formation of 1-D nanowires, 2-D quantum dot monolayers and 3-D quantum dot solids. In particular, the assembly of closely-packed quantum dot solids has attracted enormous attention. A series of distinctive optoelectronic properties has been observed, such as superb multiple exciton generation efficiencies, efficient hot-electron transfer and cold-exciton recycling. Since the surfactant determines the quantum dot surface passivation and inter dot electronic coupling, we examine the influence of different cross-linking surfactants on the optoelectronic properties of the quantum dot solids. Then, we discuss the ability to tune the quantum dot band-gap combined with the controllable assembly of lead-chalcogenide quantum dots, which opens new possibilities to engineer the properties of quantum dot solids. The PbS and PbSe quantum dot cascade structures and PbS/PbSe quantum dot heterojunctions are assembled using the layer-by-layer deposition method. We show that exciton funnelling and trap state-bound exciton recycling in the quantum dot cascade structure dramatically enhances the quantum dots photoluminescence. Moreover, we show that both type-I and type-II PbS/PbSe quantum dot heterojunctions can be assembled by carefully choosing the quantum dot sizes. In type-I heterojunctions, the excited electron-hole pairs tend to localize in narrower band-gap quantum dots, leading to significant photoluminescence enhancement. In contrast, the staggered energy bands in type-II heterojunctions lead to rapid exciton separation at the junctions that considerably quenches the photoluminescence. As such, this strategy can be fruitfully employed to enhance performances in nanocrystal-based photovoltaic devices. Using this approach, we achieve efficient PbS nanocrystal-based solar cells using an ITO/ TiO2/ PbS QDs/Au architecture, where a porous TiO2 nanowire network is employed as electron transporting layer. Our best heterojunction solar cells exhibit a decent short circuit current of 2.5 mA/cm2, a large open circuit voltage of 0.6 V and a power converting efficiency of 5.4 % under 8.5 mW/cm2 low-light illumination. On the other hand, nanocrystal-based near infrared LED devices are fabricated using a simple ITO-PbS QDs-Al device structure. There, the active quantum dot layer serves as both the electron- and hole-transporting layer. With appropriate surface chemistry treatment on quantum dots, a high-brightness near-infrared LED device is achieved.

  4. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.

    PubMed

    Colton, J S; Erickson, S D; Smith, T J; Watt, R K

    2014-04-04

    Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

  5. Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice

    NASA Astrophysics Data System (ADS)

    Hou, Jing-Min

    2013-09-01

    We study a two-dimensional fermionic square lattice, which supports the existence of a two-dimensional Weyl semimetal, quantum anomalous Hall effect, and 2π-flux topological semimetal in different parameter ranges. We show that the band degenerate points of the two-dimensional Weyl semimetal and 2π-flux topological semimetal are protected by two distinct novel hidden symmetries, which both correspond to antiunitary composite operations. When these hidden symmetries are broken, a gap opens between the conduction and valence bands, turning the system into a insulator. With appropriate parameters, a quantum anomalous Hall effect emerges. The degenerate point at the boundary between the quantum anomalous Hall insulator and trivial band insulator is also protected by the hidden symmetry.

  6. Thickness dependent band gap of Bi{sub 2-x}Sb{sub x}Te{sub 3} (x = 0, 0.05, 0.1) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, M. M.; Soni, P. H., E-mail: phsoni-msu@yahoo.com; Desai, C. F.

    2016-05-23

    Thin films of Bi{sub 2}Te{sub 3}(Sb) were prepared on alkali halide crystal substrates. Sb content and the film thickness were varied. Bi{sub 2}Te{sub 3} is a narrow gap semiconductor. Bi-Sb is a continuous solid solution of substitutional type and Sb therefore was used to test its effect on the band gap. The film thickness variation was also taken up. The infra-red absorption spectra were used in the wave number range 400 cm{sup −1} to 4000 cm{sup −1}. The band gap obtained from the absorption data was found to increase with decreasing thickness since the thickness range used was from 30more » nm to 170 nm. This is a range corresponding to nanostructures and hence quantum size effect was observed as expected. The band gap also exhibited Sb content dependence. The detail results are have been reported and explained.« less

  7. Effects of strong interactions in a half-metallic magnet: A determinant quantum Monte Carlo study

    DOE PAGES

    Jiang, M.; Pickett, W. E.; Scalettar, R. T.

    2013-04-03

    Understanding the effects of electron-electron interactions in half-metallic magnets (HMs), which have band structures with one gapped spin channel and one metallic channel, poses fundamental theoretical issues as well as having importance for their potential applications. Here we use determinant quantum Monte Carlo to study the impacts of an on-site Hubbard interaction U, finite temperature, and an external (Zeeman) magnetic field on a bilayer tight-binding model which is a half-metal in the absence of interactions, by calculating the spectral density, conductivity, spin polarization of carriers, and local magnetic properties. We quantify the effect of U on the degree of thermalmore » depolarization, and follow relative band shifts and monitor when significant gap states appear, each of which can degrade the HM character. For this model, Zeeman coupling induces, at fixed particle number, two successive transitions: compensated half-metal with spin-down band gap → metallic ferromagnet → saturated ferromagnetic insulator. However, over much of the more relevant parameter regime, the half-metallic properties are rather robust to U.« less

  8. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  9. Topological phase transition and evolution of edge states in In-rich InGaN/GaN quantum wells under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Łepkowski, S. P.; Bardyszewski, W.

    2017-02-01

    Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.

  10. Topological phase transition and evolution of edge states in In-rich InGaN/GaN quantum wells under hydrostatic pressure.

    PubMed

    Łepkowski, S P; Bardyszewski, W

    2017-02-08

    Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.

  11. Modeling direct interband tunneling. II. Lower-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095

    We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.

  12. Studies of silicon quantum dots prepared at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  13. One-dimensional carrier confinement in “Giant” CdS/CdSe excitonic nanoshells

    DOE PAGES

    Razgoniaeva, Natalia; Moroz, Pavel; Yang, Mingrui; ...

    2017-05-23

    Here, the emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifestedmore » in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4–16.0% range.« less

  14. One-dimensional carrier confinement in “Giant” CdS/CdSe excitonic nanoshells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razgoniaeva, Natalia; Moroz, Pavel; Yang, Mingrui

    Here, the emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifestedmore » in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4–16.0% range.« less

  15. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  16. Study of quantum confinement effects in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  17. Specific features of electroluminescence in heterostructures with InSb quantum dots in an InAs matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru

    2013-11-15

    The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states ofmore » quantum dots at the type-II InSb/InAs heterointerface.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less

  19. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE PAGES

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; ...

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  20. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling.

    PubMed

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  1. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identifying topological-band insulator transitions in silicene and other 2D gapped Dirac materials by means of Rényi-Wehrl entropy

    NASA Astrophysics Data System (ADS)

    Calixto, M.; Romera, E.

    2015-02-01

    We propose a new method to identify transitions from a topological insulator to a band insulator in silicene (the silicon equivalent of graphene) in the presence of perpendicular magnetic and electric fields, by using the Rényi-Wehrl entropy of the quantum state in phase space. Electron-hole entropies display an inversion/crossing behavior at the charge neutrality point for any Landau level, and the combined entropy of particles plus holes turns out to be maximum at this critical point. The result is interpreted in terms of delocalization of the quantum state in phase space. The entropic description presented in this work will be valid in general 2D gapped Dirac materials, with a strong intrinsic spin-orbit interaction, isostructural with silicene.

  3. Impact of the wetting layer thickness on the emission wavelength of direct band gap GeSn/Ge quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, Bouraoui; Al-Saigh, Reem; Salem, Bassem

    2017-07-01

    The effects of the wetting layer thickness (t WL) on the electronic properties of direct band gap type-I strained dome shaped Ge(1-x)Sn x quantum dot (QD) embedded in Ge matrix is numerically studied. The emission wavelength and the energy difference between S and P electron levels have been evaluated as a function of t WL for different QD size and composition with constant height to diameter ratio. The emission wavelength is found to be red shifted by increasing the wetting layer thickness, with smaller size QD being more sensitive to the variation of t WL. Furthermore, the minimum Sn composition required to fit the directness criteria is found to reduce by increasing the wetting layer thickness.

  4. Photo-conductance of a single Quantum Dot

    NASA Astrophysics Data System (ADS)

    Zimmers, Alexandre; Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Dubertret, Benoit; Aubin, Herve; Ulysse, Christian; LPEM Collaboration

    One promising strategy for the development of nanoscale resonant spin sensors is to measure the spin-dependent photo-current in Quantum Dots (QDots) containing spin-dependent recombination centers. To reach single spin sensitivity will require measurements of the photo-conductance of single QDots. We present here an experimental study of the conductance and photo-conductance of single HgSe QDots as function of drain and gate voltage. The evolution of the differential conductance dI/dV spectrum with the gate voltage demonstrates that single HgSe QDots are forming the junction. The amplitude of the gap measured in the differential conductance spectrum changes with the occupation level. A large inter-band gap, 0,85eV, is observed for the empty QDot, a smaller intra-band gap 0,25eV is observed for the doubly occupied QDot. These gap energies are consistent with the values extracted from the optical absorption spectrum. Upon illuminating the QDot junction, we show that the photo-conductive signal produced by this single QDot can be measured with a simple demodulation method. ANR Grant ''QUANTICON'' 10-0409-01 / DIM Nano-K / Chinese Scholarship Council.

  5. Experimental and theoretical investigation of relative optical band gaps in graphene generations

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet

    2017-01-01

    Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.

  6. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  7. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  8. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction

    DOE PAGES

    Crisp, Ryan W.; Pach, Gregory F.; Kurley, J. Matthew; ...

    2017-01-10

    Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%.more » But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.« less

  9. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction.

    PubMed

    Crisp, Ryan W; Pach, Gregory F; Kurley, J Matthew; France, Ryan M; Reese, Matthew O; Nanayakkara, Sanjini U; MacLeod, Bradley A; Talapin, Dmitri V; Beard, Matthew C; Luther, Joseph M

    2017-02-08

    We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.

  10. [Study of cubic boron nitride crystal UV absorption spectroscopy].

    PubMed

    Liu, Hai-Bo; Jia, Gang; Chen, Gang; Meng, Qing-Ju; Zhang, Tie-Chen

    2008-07-01

    UV absorption spectroscopy of artificial cubic boron nitride (cBN) single crystal flake, synthesized under high-temperature and high-pressure, was studied in the present paper. UV WINLAB spectrometer was used in the experiments, and MOLECULAR SPECTROSCOPY software was used for data analysis. The UV-cBN limit of 198 nm was showed in this test by a special fixture quartz sample. We calculated the energy gap by virtue of the formula: lambda0 = 1.24/E(g) (microm). The energy gap is 6. 26 eV. There are many viewpoints about the gap of cBN. By using the first-principles theory to calculate energy band structure and density of electronic states of cBN, an indirect transition due to electronics in valence band jumping into conduction band by absorbing photon can be confirmed. That leads to UV absorption. The method of calculation was based on the quantum mechanics of CASTEP in the commercial software package of Cerius2 in the Co. Accerlrys in the United States. The theory of CASTEP is based on local density approximation or gradient corrected LDA. The crystal parameter of cBN was input to the quantum mechanics of CASTEP in order to construct the crystal parameter model of cBN. We calculated the energy gap of cBN by the method of gradient corrected LDA. The method underestimates the value of nonconductor by about 1 to 2 eV. We gaot some opinions as follows: cBN is indirect band semiconductor. The energy gap is 4.76 eV, less than our experiment. The reason may be defect that we ignored in calculating process. It was reported that the results by first principles method of calculation of the band generally was less than the experimental results. This paper shows good UV characteristics of cBN because of the good agreement of experimental results with the cBN band width. That is a kind of development prospect of UV photo-electronic devices and high-temperature semiconductor devices.

  11. Gate-defined quantum confinement in suspended bilayer graphene

    NASA Astrophysics Data System (ADS)

    Allen, M. T.; Martin, J.; Yacoby, A.

    2012-07-01

    Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers defined by external electric fields that open a bandgap, thereby eliminating both edge and substrate disorder. We report clean quantum dot formation in two regimes: at zero magnetic field B using the energy gap induced by a perpendicular electric field and at B>0 using the quantum Hall ν=0 gap for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates single electron transport with high device quality and access to vibrational modes, enabling broad applications from electromechanical sensors to quantum bits.

  12. Ultra-small (r<2 nm), stable (>1 year) copper oxide quantum dots with wide band gap

    NASA Astrophysics Data System (ADS)

    Talluri, Bhusankar; Prasad, Edamana; Thomas, Tiju

    2018-01-01

    Practical use of quantum dots (QDs) will rely on processes that enable (i) monodispersity, (ii) scalability, (iii) green approaches to manufacturing them. We demonstrate, a green, rapid, soft chemical, and industrial viable approach for obtaining quasi-spherical, ultra-small (size ∼2.4 ± 0.5 nm), stable (>1 yr), and monodispersed copper oxide QDs (r < 2 nm) based on digestive ripening (DR). These QDs show wide band gap (Eg∼5.3 eV), this substantial band gap increase is currently inexplicable using Brus' equation, and is likely due to surface chemistry of these strongly confined QDs. Capping with triethanolamine (TEA) results in reduction in the average particle diameter from 9 ± 4 nm to 2.4 ± 0.5 nm and an increase of zeta potential (ξ) from +12 ± 2 mV to +31 ± 2 mV. XPS and electron diffraction studies indicate that capped copper oxide QDs which have TEA chemisorbed on its surface are expected to partly stabilize Cu (I) resulting in mixed phase in these QDs. This result is likely to inform efforts that involve achieving monodisperse microstructures and nano-structures, of oxides with a tendency for multivalency.

  13. Temperature induced CuInSe2 nanocrystal formation in the Cu2Se-In3Se2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Rajesh, S.

    2017-04-01

    The paper deals with the impact of annealing on Cu2Se-In3Se2 multilayer structure and discusses the quantum confinements. Thermal evaporation technique was used to prepare multilayer films over the glass substrates. The films were annealed at different temperatures (150 °C-350 °C) under vacuum atmosphere. The XRD pattern reveals that the films exhibit (112) peaks with CuInSe2 Chalcopyrite structure and upon annealing crystallinity improved. The grain size comes around 13-19 nm. The optical band gap value was found to be 2.21 to 2.09 eV and band gap splitting was observed for higher annealing temperatures. The increase in the band gap is related to quantum confinement effect. SEM image shows nano crystals spread over the entire surface for higher annealing temperatures. Optical absorption and PL spectra shows the blue shift during annealing. The HR-TEM shows the particle size in the nano range and which confirms the CuInSe2 nanocrystal formation. AFM image shows the rough surface with homogenous grains for the as deposited films and smooth surface for annealed films.

  14. Experimental signatures of the inverted phase in InAs/GaSb coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Karalic, Matija; Mueller, Susanne; Mittag, Christopher; Pakrouski, Kiryl; Wu, QuanSheng; Soluyanov, Alexey A.; Troyer, Matthias; Tschirky, Thomas; Wegscheider, Werner; Ensslin, Klaus; Ihn, Thomas

    2016-12-01

    Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and compare it with another sample in the noninverted semiconducting regime. The activated behavior in conjunction with a strong suppression of the resistance peak at the charge neutrality point in a parallel magnetic field attest to the topological hybridization gap between electron and hole bands in the inverted sample. We observe an unconventional Landau level spectrum with energy gaps modulated by the magnetic field applied perpendicular to the quantum wells. This is caused by a strong spin-orbit interaction provided jointly by the InAs and the GaSb quantum wells.

  15. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    PubMed Central

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  16. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-04-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide.

  17. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs 2LiMn 3F 12

    DOE PAGES

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs 2Mn 3F 12 kagome lattice and on the (001) surface of a Cs 2LiMn 3F 12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding modelmore » based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.« less

  18. Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice

    NASA Astrophysics Data System (ADS)

    Hou, Jing-Min

    2014-03-01

    We study a two-dimensional fermionic square lattice, which supports the existence of two-dimensional Weyl semimetal, quantum anomalous Hall effect, and 2 π -flux topological semimetal in different parameter ranges. We show that the band degenerate points of the two-dimensional Weyl semimetal and 2 π -flux topological semimetal are protected by two distinct novel hidden symmetries, which both corresponds to antiunitary composite operations. When these hidden symmetries are broken, a gap opens between the conduction and valence bands, turning the system into a insulator. With appropriate parameters, a quantum anomalous Hall effect emerges. The degenerate point at the boundary between the quantum anomalous Hall insulator and trivial band insulator is also protected by the hidden symmetry. [PRL 111, 130403(2013)] This work was supported by the National Natural Science Foundation of China under Grants No. 11004028 and No. 11274061.

  19. Intermediate Band Gap Solar Cells: The Effect of Resonant Tunneling on Delocalization

    NASA Astrophysics Data System (ADS)

    William, Reid; Mathew, Doty; Sanwli, Shilpa; Gammon, Dan; Bracker, Allan

    2011-03-01

    Quantum dots (QD's) have many unique properties, including tunable discrete energy levels, that make them suitable for a variety of next generation photovoltaic applications. One application is an intermediate band solar cell (IBSC); in which QD's are incorporated into the bulk material. The QD's are tuned to absorb low energy photons that would otherwise be wasted because their energy is less than the solar cell's bulk band gap. Current theory concludes that identical QD's should be arranged in a superlattice to form a completely delocalized intermediate band maximizing absorption of low energy photons while minimizing the decrease in the efficiency of the bulk material. We use a T-matrix model to assess the feasibility of forming a delocalized band given that real QD ensembles have an inhomogeneous distribution of energy levels. Our results suggest that formation of a band delocalized through a large QD superlattice is challenging; suggesting that the assumptions underlying present IBSC theory require reexamination. We use time-resolved photoluminescence of coupled QD's to probe the effect of delocalized states on the dynamics of absorption, energy transport, and nonradiative relaxation. These results will allow us to reexamine the theoretical assumptions and determine the degree of delocalization necessary to create an efficient quantum dot-based IBSC.

  20. In-plane, commensurate GaN/AlN junctions: single-layer composite structures, multiple quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Onen, Abdullatif; Kecik, Deniz; Ciraci, Salim

    In-plane composite structures constructed of the stripes or core/shells of single-layer GaN and AlN, which are joined commensurately display diversity of electronic properties, that can be tuned by the size of their constituents. In heterostructures, the dimensionality of electrons change from 2D to 1D upon their confinements in wide constituent stripes leading to the type-I band alignment and hence multiple quantum well structure in the direct space. The δ-doping of one wide stripe by other narrow stripe results in local narrowing or widening of the band gap. The direct-indirect transition of the fundamental band gap of composite structures can be attained depending on the odd or even values of formula unit in the armchair edged heterojunction. In a patterned array of GaN/AlN core/shells, the dimensionality of the electronic states are reduced from 2D to 0D forming multiple quantum dots in large GaN-cores, while 2D electrons propagate in multiply connected AlN shell as if they are in a supercrystal. These predictions are obtained from first-principles calculations based on density functional theory on single-layer GaN and AlN compound semiconductors which were synthesized recently. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.

  1. Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes.

    PubMed

    Suram, Santosh K; Zhou, Lan; Shinde, Aniketa; Yan, Qimin; Yu, Jie; Umehara, Mitsutaro; Stein, Helge S; Neaton, Jeffrey B; Gregoire, John M

    2018-05-01

    Combinatorial (photo)electrochemical studies of the (Ni-Mn)Ox system reveal a range of promising materials for oxygen evolution photoanodes. X-ray diffraction, quantum efficiency, and optical spectroscopy mapping reveal stable photoactivity of NiMnO3 in alkaline conditions with photocurrent onset commensurate with its 1.9 eV direct band gap. The photoactivity increases upon mixture with 10-60% Ni6MnO8 providing an example of enhanced charge separation via heterojunction formation in mixed-phase thin film photoelectrodes. Density functional theory-based hybrid functional calculations of the band edge energies in this oxide reveal that a somewhat smaller than typical fraction of exact exchange is required to explain the favorable valence band alignment for water oxidation.

  2. Interband emission energy in a dilute nitride quaternary semiconductor quantum dot for longer wavelength applications

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo; Duque, C. A.

    2016-07-01

    Excitonic properties are studied in a strained Ga1-xInxNyAs1-y/GaAs cylindrical quantum dot. The optimum condition for the desired band alignment for emitting wavelength 1.55 μm is investigated using band anticrossing model and the model solid theory. The band gap and the band discontinuities of a Ga1-xInxNyAs1-y/GaAs quantum dot on GaAs are computed with the geometrical confinement effect. The binding energy of the exciton, the oscillator strength and its radiative life time for the optimum condition are found taking into account the spatial confinement effect. The effects of geometrical confinement and the nitrogen incorporation on the interband emission energy are brought out. The result shows that the desired band alignment for emitting wavelength 1.55 μm is achieved for the inclusion of alloy contents, y=0.0554% and x=0.339% in Ga1-xInxNyAs1-y/GaAs quantum dot. And the incorporation of nitrogen and indium shows the red-shift and the geometrical confinement shows the blue-shift. And it can be applied for fibre optical communication networks.

  3. Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Liao, Tianjun; Zhang, Yanchao

    2016-01-28

    A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less

  4. Tunneling calculations for GaAs-Al(x)Ga(1-x) as graded band-gap sawtooth superlattices. Thesis

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Meijer, Paul H. E.

    1991-01-01

    Quantum mechanical tunneling calculations for sawtooth (linearly graded band-gap) and step-barrier AlGaAs superlattices were performed by means of a transfer matrix method, within the effective mass approximation. The transmission coefficient and tunneling current versus applied voltage were computed for several representative structures. Particular consideration was given to effective mass variations. The tunneling properties of step and sawtooth superlattices show some qualitative similarities. Both structures exhibit resonant tunneling, however, because they deform differently under applied fields, the J-V curves differ.

  5. Structural and optical properties of Mg doped ZnS quantum dots and biological applications

    NASA Astrophysics Data System (ADS)

    Ashokkumar, M.; Boopathyraja, A.

    2018-01-01

    Zn1-xMgxS (x = 0, 0.2 and 0.4) quantum dots (QDs) were prepared by co-precipitation method. The Mg dopant did not modify the cubic blende structure of ZnS QDs. The Mg related secondary phase was not detected even for 40% of Mg doping. The size mismatch between host Zn ion and dopant Mg ion created distortion around the dopant. The creation of distortion centres produced small changes in the lattice parameters and diffraction peak position. All the QDs showed small sulfur deficiency and the deficiency level were increased by Mg doping. Band gap of the QD was decreased due to the dominated quantum confinement effect over compositional effect at initial doping of Mg. But at higher doping the band gap was increased due to compositional effect, since there was no change in average crystallite size. The prepared QDs had three emission bands in the UV and Visible regions corresponding to near band edge emission and defect related emissions. The electron transport reaction chain which forms free radicals was broken by sulfur vacancy trap sites. Therefore, the ZnS QDs had better antioxidant activity and the antioxidant behaviour was enhanced by Mg doping. The enhanced UV absorption and emission of 20% of Mg doped ZnS QDs let to maximize the zone of inhibition against E. Coli bacterial strain.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range frommore » −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.« less

  7. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi 2O 2Se

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng

    Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less

  8. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi 2O 2Se

    DOE PAGES

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; ...

    2017-04-03

    Identifying new two-dimensional (2D) materials with both high carrier mobility and a large electronic band gap is critical for novel electronics and optoelectronics applications. Here, we demonstrated a new air-stable ultrahigh-mobility layered Bi 2O 2Se semiconductor with a large band gap of ~ 0.8 eV and a low effective mass of ~ 0.14 m 0. High-quality 2D Bi2O2Se crystals with a thickness down to a monolayer and a domain size greater than 200 μm were readily grown by chemical vapor deposition (CVD). Size-tunable band gap of Bi 2O 2Se was found to increase as thinning down to the monolayer duemore » to the quantum confinement effect. An ultrahigh Hall mobility of > 20,000 cm 2 V -1 s -1 was achieved in as-grown Bi 2O 2Se flakes at 1.9 K, which allows for the observation of Shubnikov–de Haas quantum oscillations. Top-gated field-effect transistors based on CVD-grown 2D Bi 2O 2Se crystals (down to bilayer) exhibited high Hall mobility (up to 450 cm 2 V -1 s -1), large current on/off ratios (>106) and near-ideal subthreshold swings (~65 mV/dec) at room temperature. Our results make the high-mobility 2D Bi 2O 2Se semiconductor a promising candidate for future high-speed and low-power electronic applications.« less

  9. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn; Liu, Jianping

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another,more » however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.« less

  10. Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb

    PubMed Central

    Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Bansil, Arun

    2016-01-01

    Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. Our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAH effect. PMID:27507248

  11. Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb

    DOE PAGES

    Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; ...

    2016-08-10

    Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. In conclusion, our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAHmore » effect.« less

  12. Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: A theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alidoust, Nima; Lessio, Martina; Carter, Emily A., E-mail: eac@princeton.edu

    2016-01-14

    Solar cells based on single pn junctions, employing single-gap semiconductors can ideally achieve efficiencies as high as 34%. Developing solar cells based on intermediate-band semiconductors (IBSCs), which can absorb light across multiple band gaps, is a possible way to defy this theoretical limit and achieve efficiencies as high as 60%. Here, we use first principles quantum mechanics methods and introduce CoO and Co{sub 0.25}Ni{sub 0.75}O as possible IBSCs. We show that the conduction band in both of these materials is divided into two distinct bands separated by a band gap. We further show that the lower conduction band (i.e., themore » intermediate band) is wider in Co{sub 0.25}Ni{sub 0.75}O compared with CoO. This should enhance light absorption from the valence band edge to the intermediate band, making Co{sub 0.25}Ni{sub 0.75}O more appropriate for use as an IBSC. Our findings provide the basis for future attempts to partially populate the intermediate band and to reduce the lower band gap in Co{sub 0.25}Ni{sub 0.75}O in order to enhance the potential of this material for use in IBSC solar cell technologies. Furthermore, with proper identification of heterojunctions and dopants, CoO and Co{sub 0.25}Ni{sub 0.75}O could be used in multi-color light emitting diode and laser technologies.« less

  13. Evolution of electronic structure as a function of layer thickness in group-VIB transition metal dichalcogenides: emergence of localization prototypes.

    PubMed

    Zhang, Lijun; Zunger, Alex

    2015-02-11

    Layered group-VIB transition metal dichalcogenides (with the formula of MX2) are known to show a transition from an indirect band gap in the thick n-monolayer stack (MX2)n to a direct band gap at the n = 1 monolayer limit, thus converting the system into an optically active material suitable for a variety of optoelectronic applications. The origin of this transition has been attributed predominantly to quantum confinement effect at reduced n. Our analysis of the evolution of band-edge energies and wave functions as a function of n using ab initio density functional calculations including the long-range dispersion interaction reveals (i) the indirect-to-direct band gap transformation is triggered not only by (kinetic-energy controlled) quantum confinement but also by (potential-energy controlled) band repulsion and localization. On its own, neither of the two effects can explain by itself the energy evolution of the band-edge states relevant to the transformation; (ii) when n decreased, there emerge distinct regimes with characteristic localization prototypes of band-edge states deciding the optical response of the system. They are distinguished by the real-space direct/indirect in combination with momentum-space direct/indirect nature of electron and hole states and give rise to distinct types of charge distribution of the photoexcited carriers that control excitonic behaviors; (iii) the various regimes associated with different localization prototypes are predicted to change with modification of cations and anions in the complete MX2 (M = Cr, Mo, W and X = S, Se, Te) series. These results offer new insight into understanding the excitonic properties (e.g., binding energy, lifetime etc.) of multiple layered MX2 and their heterostructures.

  14. disorder effect on quantum transport properties of ultra thin Fe film

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotian; Nakamura, Kohji; Shindou, Ryuichi

    2015-03-01

    Ferromagnetic ultrathin films are experimentally known to often exhibit perpendicular magnetic anisotropy, when being placed on certain substrates. Based on reported ab-initio band calculations of free-standing Fe-monolayer and that on MgO substrate, we will introduce an effective tight-binding model, which capture a part of an electronic structure near Fermi level for both cases. We will show that the model supports electronic bands with non-zero Chern number and chiral edge modes which cross a direct band gap on the order of 50meV. Unluckily, however, the direct band gap is also masked by another dispersive bands which have non-zero Berry's curvature in the k-space. To demonstrate how disorder kills conducting characters of the latter bulk bands while leave intact those of the chiral edge modes, we will clarify behaviors of localization length and conductance in the effective model with on-site disorders.

  15. Development of transition metal dichalcogenide based quantum dots for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seth, Subhashree; Sharma, S. K.

    2018-05-01

    Photoluminescent quantum dots (QDs) were synthesized by facile colloidal chemical route. Its properties were characterized and analysed by utilizing Fluorescence, FTIR and UV-Vis spectrophotometers. The resultant MoS2 QD exhibits fluorescence at 470 nm for excitation wavelength 400 nm. The as prepared sample exhibits excitation dependent emission due to polydispersion of MoS2 in the dispersive medium which is the characteristics of colloidal synthesis. It is also observed that resultant MoS2 QDs show size tunable emission in the visible region. The FTIR spectrum confirms the attachment of oleic acid on the surface of MoS2. Absorption spectrum shows a band at 346 nm and a shoulder band at 400 nm. The band gap of quantum dots was obtained as 3.5 eV. CIE diagram indicates the shifting of colour coordinates towards green region with increasing excitation wavelength.

  16. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures.

    PubMed

    Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi

    2011-12-20

    Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modelling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO(3) bilayers have a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in e(g) systems are also discussed.

  17. Tunability of the fractional quantum Hall states in buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Apalkov, Vadym M.; Chakraborty, Tapash

    2014-12-01

    We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.

  18. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  19. Giant topological nontrivial band gaps in chloridized gallium bismuthide.

    PubMed

    Li, Linyang; Zhang, Xiaoming; Chen, Xin; Zhao, Mingwen

    2015-02-11

    Quantum spin Hall (QSH) effect is promising for achieving dissipationless transport devices but presently is achieved only at extremely low temperature. Searching for the large-gap QSH insulators with strong spin-orbit coupling (SOC) is the key to increase the operating temperature. We demonstrate theoretically that this can be solved in the chloridized gallium bismuthide (GaBiCl2) monolayer, which has nontrivial gaps of 0.95 eV at the Γ point, and 0.65 eV for bulk, as well as gapless edge states in the nanoribbon structures. The nontrivial gaps due to the band inversion and SOC are robust against external strain. The realization of the GaBiCl2 monolayer will be beneficial for achieving QSH effect and related applications at high temperatures.

  20. Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2010-09-01

    Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.

  1. Prediction of a Large-Gap and Switchable Kane-Mele Quantum Spin Hall Insulator

    NASA Astrophysics Data System (ADS)

    Marrazzo, Antimo; Gibertini, Marco; Campi, Davide; Mounet, Nicolas; Marzari, Nicola

    2018-03-01

    Fundamental research and technological applications of topological insulators are hindered by the rarity of materials exhibiting a robust topologically nontrivial phase, especially in two dimensions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin Hall insulator with a sizable band gap of ˜0.5 eV that is a monolayer of jacutingaite, a naturally occurring layered mineral first discovered in 2008 in Brazil and recently synthesized. This system realizes the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially exfoliable two-dimensional monolayer, with helical edge states that are robust and that can be manipulated exploiting a unique strong interplay between spin-orbit coupling, crystal-symmetry breaking, and dielectric response.

  2. Edge effects on the electronic properties of phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less

  3. Superlattice photoelectrodes for photoelectrochemical cells

    DOEpatents

    Nozik, Arthur J.

    1987-01-01

    A superlattice or multiple-quantum-well semiconductor is used as a photoelectrode in a photoelectrochemical process for converting solar energy into useful fuels or chemicals. The quantum minibands of the superlattice or multiple-quantum-well semiconductor effectively capture hot-charge carriers at or near their discrete quantum energies and deliver them to drive a chemical reaction in an electrolyte. The hot-charge carries can be injected into the electrolyte at or near the various discrete multiple energy levels quantum minibands, or they can be equilibrated among themselves to a hot-carrier pool and then injected into the electrolyte at one average energy that is higher than the lowest quantum band gap in the semiconductor.

  4. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    NASA Astrophysics Data System (ADS)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton-QD (QW) coupled system is inhibited and polariton bound states are formed within the polaritonic energy gap. A theory is also developed to study the polariton eigenenergy spectrum, polariton effective mass, and polariton spectral density of N identical semiconductor QDs (QWs) or a superlattice (SL) placed inside a III--V semiconductor. A polariton-impurity band lying within the polaritonic energy gap of the III--V semiconductor is predicted when the resonance energies of the QDs (QWs) lie inside the polaritonic energy gap. Hole-like polariton effective mass of the polariton-impurity band is predicted. It is also predicted that the spectral density of the polariton has a Lorentzian shape if the resonance energies of the QDs (QWs) lie outside the polaritonic gap.

  5. Stanene cyanide: a novel candidate of Quantum Spin Hall insulator at high temperature

    PubMed Central

    Ji, Wei-xiao; Zhang, Chang-wen; Ding, Meng; Li, Ping; Li, Feng; Ren, Miao-juan; Wang, Pei-ji; Hu, Shu-jun; Yan, Shi-shen

    2015-01-01

    The search for quantum spin Hall (QSH) insulators with high stability, large and tunable gap and topological robustness, is critical for their realistic application at high temperature. Using first-principle calculations, we predict the cyanogen saturated stanene SnCN as novel topological insulators material, with a bulk gap as large as 203 meV, which can be engineered by applying biaxial strain and electric field. The band topology is identified by Z2 topological invariant together with helical edge states, and the mechanism is s-pxy band inversion at G point induced by spin-orbit coupling (SOC). Remarkably, these systems have robust topology against chemical impurities, based on the calculations on halogen and cyano group co-decorated stanene SnXxX′1−x (X,X′  =  F, Cl, Br, I and CN), which makes it an appropriate and flexible candidate material for spintronic devices. PMID:26688269

  6. New type of quantum spin Hall insulators in hydrogenated PbSn thin films

    PubMed Central

    Liu, Liang; Qin, Hongwei; Hu, Jifan

    2017-01-01

    The realization of a quantum spin Hall (QSH) insulator working at high temperature is of both scientific and technical interest since it supports spin-polarized and dssipationless edge states. Based on first-principle calculations, we predicted that the two-dimensional (2D) binary compound of lead and tin (PbSn) in a buckled honeycomb framework can be tuned into a topological insulator with huge a band gap and structural stability via hydrogenation or growth on special substrates. This heavy-element-based structure is sufficiently ductile to survive the 18 ps molecular dynamics (MD) annealing to 400 K, and the band gap opened by strong spin-orbital-coupling (SOC) is as large as 0.7 eV. These characteristics indicate that hydrogenated PbSn (H-PbSn) is an excellent platform for QSH realization at high temperature. PMID:28218297

  7. Polymer Assisted Functional Ceramic Nanofibrous Structures for Potential Optoelectronic and Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Aykut, Yakup

    The use of fossil fuels adversely effects the environment and hence increases global warming. On the other hand the lack of fuel reservoirs triggers people to find environmentally friendly new energy sources. Solar cell technology is one of the developing energy production technologies in green productions. Currently, many solar cells are made of highly purified silicon crystals. However silicon based solar cells have high energy conversion efficiency, they are highly brittle, expensive, and time consuming during the fabrication process. Organic and metal oxide based photovoltaic materials are a more cost-effective alternative to silicon based solar cells. In ceramic materials, Titanium dioxide (TiO2), zinc oxide (ZnO) and magnesium zinc oxide (MgxZn 1-xO) have intensive research interest owing to their optoelectronic and photocatalytic properties, and they have been used in dye sensitized solar cells as electron acceptor layer due to their high band gap properties and having low conduction band levels than electron donor dye molecules or quantum dots. On the other hand, energy band levels of the ceramic materials are considerable affected by their crystal microstructures, shapes and doping materials. Because of their high surface to volume ratio, nanofibers are suitable as active energy conversions layers in organic and dye sensitized solar cells. Using nanofibrous ceramic structure instead of film provides higher energy conversion efficiency since the high surface areas of the electrospun mats may accommodate a greater concentration of dye molecules or quantum dots, which could result in greater efficiency of electron transfer within the material, as compared to traditional film-based technologies. Also, the continuous structure of nanofibers may allow for effective electron transfer as a result of the direct conduction pathway of the photoelectrons along the fibers. Moreover, 3D structures of nanofibrous mat allow scattering and absorbing the photons multiple times. Sol-Gel electrospinning procedure has been widely used to obtain ceramic nanofibers. Briefly, at sol-gel electrospinning procedure, a carrier polymer and ceramic precursor is dissolved in an appropriate solvent, and polymer/ceramic precursor composite nanofibers are produced with a following electrospinning process. Then, as spun nanofibers are calcined at high temperatures to remove polymer and other organic residues from the fibers and convert ceramic precursor into ceramic nanofibers. We investigate temperature dependent crystal phase transformations of electrospun TiO2 nanofibers regardless of other parameters and observed their microstructures and optical properties due to different calcination temperatures. Quantum dots are semi conductive metallic nanocrystals with very wide light absorption range in UV, visible and even in near-infrared regions depending on the size of the quantum dots. On the other hand, TiO2 is a high band gap semiconductor material and absorbs the light in UV range that limits its photovoltaic applications. In order to extend its light absorption through visible region, we sensitized and incorporated low band gap CdSe quantum dot on electrospun TiO2 nanofibers. Zinc oxide (ZnO) is another high band gap ceramic materials with promising optical properties have been used for photonic applications. Intrinsic lattice defects in ZnO are one of the main limitation factors that affect the device performance tremendously and could be controlled due to fabrication process. We investigated the effect of different type of surfactants with different charge groups on fiber morphology, microstructure and optical properties of sol-gel electrospun ZnO nanofibers. Finally, in order to tune band gap energy level of ZnO nanofibers to higher values, we doped Mg2+ into ZnO nanofibers. Because Zn2+ and Mg2+ have similar atomic radii, some of Zn2+ ions are replaced with Mg 2+ ions in the structure to produce different "x" value of MgxZn1-xO due to amount of Mg content. We produced tuned band gap MgxZn1-xO nanofibers via sol-gel electrospinning.

  8. Conformal fabrication of colloidal quantum dot solids for optically enhanced photovoltaics.

    PubMed

    Labelle, André J; Thon, Susanna M; Kim, Jin Young; Lan, Xinzheng; Zhitomirsky, David; Kemp, Kyle W; Sargent, Edward H

    2015-05-26

    Colloidal quantum dots (CQD) are an attractive thin-film material for photovoltaic applications due to low material costs, ease of fabrication, and size-tunable band gap. Unfortunately, today they suffer from a compromise between light absorption and photocarrier extraction, a fact that currently prevents the complete harvest of incoming above-band-gap solar photons. We have investigated the use of structured substrates and/or electrodes to increase the effective light path through the active material and found that these designs require highly conformal application of the light-absorbing films to achieve the greatest enhancement. This conformality requirement derives from the need for maximal absorption enhancement combined with shortest-distance charge transport. Here we report on a means of processing highly conformal layer-by-layer deposited CQD absorber films onto microstructured, light-recycling electrodes. Specifically, we engineer surface hydrophilicity to achieve conformal deposition of upper layers atop underlying ones. We show that only with the application of conformal coating can we achieve optimal quantum efficiency and enhanced power conversion efficiency in structured-electrode CQD cells.

  9. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene

    PubMed Central

    Wang, Ya-ping; Ji, Wei-xiao; Zhang, Chang-wen; Li, Ping; Li, Feng; Ren, Miao-juan; Chen, Xin-Lian; Yuan, Min; Wang, Pei-ji

    2016-01-01

    Discovery of two-dimensional (2D) topological insulator such as group-V films initiates challenges in exploring exotic quantum states in low dimensions. Here, we perform first-principles calculations to study the geometric and electronic properties in 2D arsenene monolayer with hydrogenation (HAsH). We predict a new σ-type Dirac cone related to the px,y orbitals of As atoms in HAsH, dependent on in-plane tensile strain. Noticeably, the spin-orbit coupling (SOC) opens a quantum spin Hall (QSH) gap of 193 meV at the Dirac cone. A single pair of topologically protected helical edge states is established for the edges, and its QSH phase is confirmed with topological invariant Z2 = 1. We also propose a 2D quantum well (QW) encapsulating HAsH with the h-BN sheet on each side, which harbors a nontrivial QSH state with the Dirac cone lying within the band gap of cladding BN substrate. These findings provide a promising innovative platform for QSH device design and fabrication operating at room temperature. PMID:26839209

  10. Controllable band structure and topological phase transition in two-dimensional hydrogenated arsenene

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ping; Ji, Wei-Xiao; Zhang, Chang-Wen; Li, Ping; Li, Feng; Ren, Miao-Juan; Chen, Xin-Lian; Yuan, Min; Wang, Pei-Ji

    2016-02-01

    Discovery of two-dimensional (2D) topological insulator such as group-V films initiates challenges in exploring exotic quantum states in low dimensions. Here, we perform first-principles calculations to study the geometric and electronic properties in 2D arsenene monolayer with hydrogenation (HAsH). We predict a new σ-type Dirac cone related to the px,y orbitals of As atoms in HAsH, dependent on in-plane tensile strain. Noticeably, the spin-orbit coupling (SOC) opens a quantum spin Hall (QSH) gap of 193 meV at the Dirac cone. A single pair of topologically protected helical edge states is established for the edges, and its QSH phase is confirmed with topological invariant Z2 = 1. We also propose a 2D quantum well (QW) encapsulating HAsH with the h-BN sheet on each side, which harbors a nontrivial QSH state with the Dirac cone lying within the band gap of cladding BN substrate. These findings provide a promising innovative platform for QSH device design and fabrication operating at room temperature.

  11. Electrical Activation Studies of Silicon Implanted Aluminum Gallium Nitride with High Aluminum Mole Fraction

    DTIC Science & Technology

    2007-12-01

    realized with silicon due to its indirect band gap that results in poor quantum efficiency . The first LEDs and laser diodes were developed with...deep UV (λ < 340 nm) still face many challenges and have low internal quantum efficiency . Jong Kyu Kim et al. have developed a light emitting triode...LET) to try to overcome some of the challenges and 16 have produced a lighting device with increased quantum efficiency (16). AlxGa1-xN has been

  12. Stability of fractional Chern insulators in the effective continuum limit of Harper-Hofstadter bands with Chern number |C |>1

    NASA Astrophysics Data System (ADS)

    Andrews, Bartholomew; Möller, Gunnar

    2018-01-01

    We study the stability of composite fermion fractional quantum Hall states in Harper-Hofstadter bands with Chern number |C |>1 . From composite fermion theory, states are predicted to be found at filling factors ν =r /(k r |C |+1 ),r ∈Z , with k =1 for bosons and k =2 for fermions. Here, we closely analyze these series in both cases, with contact interactions for bosons and nearest-neighbor interactions for (spinless) fermions. In particular, we analyze how the many-body gap scales as the bands are tuned to the effective continuum limit of Chern number |C | bands, realized near flux density nϕ=1 /|C | . Near these points, the Hofstadter model requires large magnetic unit cells that yield bands with perfectly flat dispersion and Berry curvature. We exploit the known scaling of energies in the effective continuum limit in order to maintain a fixed square aspect ratio in finite-size calculations. Based on exact diagonalization calculations of the band-projected Hamiltonian for these lattice geometries, we show that for both bosons and fermions, the vast majority of finite-size spectra yield the ground-state degeneracy predicted by composite fermion theory. For the chosen interactions, we confirm that states with filling factor ν =1 /(k |C |+1 ) are the most robust and yield a clear gap in the thermodynamic limit. For bosons with contact interactions in |C |=2 and |C |=3 bands, our data for the composite fermion states are compatible with a finite gap in the thermodynamic limit. We also report new evidence for gapped incompressible states stabilized for fermions with nearest-neighbor interactions in |C |>1 bands. For cases with a clear gap, we confirm that the thermodynamic limit commutes with the effective continuum limit within finite-size error bounds. We analyze the nature of the correlation functions for the Abelian composite fermion states and find that the correlation functions for |C |>1 states are smooth functions for positions separated by |C | sites along both axes, giving rise to |C| 2 sheets; some of which can be related by inversion symmetry. We also comment on two cases which are associated with a bosonic integer quantum Hall effect (BIQHE): For ν =2 in |C |=1 bands, we find a strong competing state with a higher ground-state degeneracy, so no clear BIQHE is found in the band-projected Hofstadter model; for ν =1 in |C |=2 bands, we present additional data confirming the existence of a BIQHE state.

  13. Encapsulated silicene: A robust large-gap topological insulator

    DOE PAGES

    Kou, Liangzhi; Ma, Yandong; Yan, Binghai; ...

    2015-08-20

    The quantum spin Hall (QSH) effect predicted in silicene has raised exciting prospects of new device applications compatible with current microelectronic technology. Efforts to explore this novel phenomenon, however, have been impeded by fundamental challenges imposed by silicene’s small topologically nontrivial band gap and fragile electronic properties susceptible to environmental degradation effects. Here we propose a strategy to circumvent these challenges by encapsulating silicene between transition-metal dichalcogenides (TMDCs) layers. First-principles calculations show that such encapsulated silicene exhibit a two-orders-of-magnitude enhancement in its nontrivial band gap, which is driven by the strong spin–orbit coupling effect in TMDCs via the proximity effect.more » Moreover, the cladding TMDCs layers also shield silicene from environmental gases that are detrimental to the QSH state in free-standing silicene. In conclusion, the encapsulated silicene represents a novel two-dimensional topological insulator with a robust nontrivial band gap suitable for room-temperature applications, which has significant implications for innovative QSH device design and fabrication.« less

  14. Observation of infrared absorption of InAs quantum dot structures in AlGaAs matrix toward high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Hirofumi; Watanabe, Katsuyuki; Kotani, Teruhisa; Izumi, Makoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-06-01

    In accordance with the detailed balance limit model of single-intermediate-band solar cells (IBSCs), the optimum matrix bandgap and IB–conduction band (CB) energy gap are ∼1.9 and 0.7 eV, respectively. We present the room-temperature polarized infrared absorption of 20 stacked InAs quantum dot (QD) structures in the Al0.32Ga0.68As matrix with a bandgap of ∼1.9 eV for the design of high-efficiency IBSCs by using a multipass waveguide geometry. We find that the IB–CB absorption is almost independent of the light polarization, and estimate the magnitude of the absorption per QD layer to be ∼0.01%. We also find that the IB–CB absorption edge of QD structures with a wide-gap matrix is ∼0.41 eV. These results indicate that both the significant increase in the magnitude of IB–CB absorption and the lower energy of the IB state for the higher IB–CB energy gap are necessary toward the realization of high-efficiency IBSCs.

  15. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    PubMed

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  16. Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating.

    PubMed

    Ullah, Zakir; Wang, Zhiguo; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2014-12-01

    For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  17. Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar

    2018-05-01

    Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.

  18. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.

    PubMed

    Shen, J; Song, Y; Lee, M L; Cha, J J

    2014-11-21

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems.

  19. A k · p treatment of edge states in narrow 2D topological insulators, with standard boundary conditions for the wave function and its derivative.

    PubMed

    Klipstein, P C

    2018-07-11

    For 2D topological insulators with strong electron-hole hybridization, such as HgTe/CdTe quantum wells, the widely used 4  ×  4 k · p Hamiltonian based on the first electron and heavy hole sub-bands yields an equal number of physical and spurious solutions, for both the bulk states and the edge states. For symmetric bands and zero wave vector parallel to the sample edge, the mid-gap bulk solutions are identical to the edge solutions. In all cases, the physical edge solution is exponentially localized to the boundary and has been shown previously to satisfy standard boundary conditions for the wave function and its derivative, even in the limit of an infinite wall potential. The same treatment is now extended to the case of narrow sample widths, where for each spin direction, a gap appears in the edge state dispersions. For widths greater than 200 nm, this gap is less than half of the value reported for open boundary conditions, which are called into question because they include a spurious wave function component. The gap in the edge state dispersions is also calculated for weakly hybridized quantum wells such as InAs/GaSb/AlSb. In contrast to the strongly hybridized case, the edge states at the zone center only have pure exponential character when the bands are symmetric and when the sample has certain characteristic width values.

  20. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    NASA Astrophysics Data System (ADS)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  1. Effective theory of monolayer TMDC double quantum dots

    NASA Astrophysics Data System (ADS)

    David, Alessandro; Burkard, Guido; Kormányos, Andor

    2018-07-01

    Monolayer transition metal dichalcogenides (TMDCs) are promising candidates for quantum technologies, such as spin qubits in quantum dots, because they are truly two-dimensional semiconductors with a direct band gap. In this work, we analyse theoretically the behaviour of a double quantum dot (DQD) system created in the conduction band of these materials, with two electrons in the (1,1) charge configuration. Motivated by recent experimental progress, we consider several scenarios, including different spin–orbit splittings in the two dots and including the case when the valley degeneracy is lifted due to an insulating ferromagnetic substrate. Finally, we discuss in which cases it is possible to reduce the low energy subspace to the lowest Kramers pairs. We find that in this case the low energy model is formally identical to the Heisenberg exchange Hamiltonian, indicating that such Kramers pairs may serve as qubit implementations.

  2. Interplay of Hofstadter and quantum Hall states in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Spanton, Eric M.; Zibrov, Alexander A.; Zhou, Haoxin; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea

    Electron interactions in ultraclean systems such as graphene lead to the fractional quantum Hall effect in an applied magnetic field. Long wavelength periodic potentials from a moiré pattern in aligned boron nitride-graphene heterostructures may compete with such interactions and favor spatially ordered states (e.g. Wigner crystals orcharge density waves). To investigate this competition, we studied the bulk phase diagram of asymmetrically moiré-coupled bilayer graphene via multi-terminal magnetocapacitance measurements at ultra-high magnetic fields. Two quantum numbers characterize energy gaps in this regime: t, which indexes the Bloch bands, and s, which indexes the Landau level. Similar to past experiments, we observe the conventional integer and fractional quantum Hall gaps (t = 0), integer Hofstadter gaps (integer s and integer t ≠ 0), and fractional Bloch states associated with an expanded superlattice unit cell (fractional s and integer t). Additionally, we find states with fractional values for both s and t. Measurement of the capacitance matrix shows that these states occur on the layer exposed to the strong periodic potential. We discuss the results in terms of possible fractional quantum hall states unique to periodically modulated systems.

  3. Size-dependent optical properties of colloidal PbS quantum dots.

    PubMed

    Moreels, Iwan; Lambert, Karel; Smeets, Dries; De Muynck, David; Nollet, Tom; Martins, José C; Vanhaecke, Frank; Vantomme, André; Delerue, Christophe; Allan, Guy; Hens, Zeger

    2009-10-27

    We quantitatively investigate the size-dependent optical properties of colloidal PbS nanocrystals or quantum dots (Qdots), by combining the Qdot absorbance spectra with detailed elemental analysis of the Qdot suspensions. At high energies, the molar extinction coefficient epsilon increases with the Qdot volume d(3) and agrees with theoretical calculations using the Maxwell-Garnett effective medium theory and bulk values for the Qdot dielectric function. This demonstrates that quantum confinement has no influence on epsilon in this spectral range, and it provides an accurate method to calculate the Qdot concentration. Around the band gap, epsilon only increases with d(1.3), and values are comparable to the epsilon of PbSe Qdots. The data are related to the oscillator strength f(if) of the band gap transition and results agree well with theoretical tight-binding calculations, predicting a linear dependence of f(if) on d. For both PbS and PbSe Qdots, the exciton lifetime tau is calculated from f(if). We find values ranging between 1 and 3 mus, in agreement with experimental literature data from time-resolved luminescence spectroscopy. Our results provide a thorough general framework to calculate and understand the optical properties of suspended colloidal quantum dots. Most importantly, it highlights the significance of the local field factor in these systems.

  4. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.

    PubMed

    Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A

    2018-05-25

    The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.

  5. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  6. Spatial intensity distribution of controlled-NOT gate carrying orbital angular momentum via photonic band gap structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Xiaorui; Zhe Zhang, Yun

    2018-07-01

    By employing the different topological charges of a Laguerre–Gaussian beam as a qubit, we experimentally demonstrate a controlled-NOT (CNOT) gate with light beams carrying orbital angular momentum via a photonic band gap structure in a hot atomic ensemble. Through a degenerate four-wave mixing process, the spatial distribution of the CNOT gate including splitting and spatial shift can be affected by the Kerr nonlinear effect in multilevel atomic systems. Moreover, the intensity variations of the CNOT gate can be controlled by the relative phase modulation. This research can be useful for applications in quantum information processing.

  7. Surface Majorana fermions and bulk collective modes in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Park, YeJe; Chung, Suk Bum; Maciejko, Joseph

    2015-02-01

    The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.

  8. Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaowphong, Sulawan, E-mail: sulawank@gmail.com; Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200

    2012-05-15

    Silver bismuth sulfide (AgBiS{sub 2}) nanostructures were successfully prepared via a simple biomolecule-assisted hydrothermal synthesis at 200 Degree-Sign C for 12-72 h. Silver nitrate, bismuth nitrate and L-cysteine were used as starting materials. Here, the biomolecule, L-cysteine, was served as the sulfide source and a complexing agent. The products, characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were cubic AgBiS{sub 2} nanoparticles with a diameter range of about 20-75 nm. It was found that their crystallinity and particle size increased with increasing reaction time. The energy dispersive X-ray spectroscopy (EDX) and inductively coupledmore » plasma optical emission spectrophotometry (ICP-OES) analyses were used to confirm the stoichiometry of AgBiS{sub 2}. The optical band gap of the AgBiS{sub 2} nanoparticles, calculated from UV-vis spectra, was 3.0 eV which indicated a strong blue shift because of the quantum confinement effect. A possible formation mechanism of the AgBiS{sub 2} nanoparticles was also discussed. - Graphical abstract: The optical band gap of the as-prepared AgBiS{sub 2} nanoparticles displays a strong blue shift comparing to the 2.46 eV of bulk AgBiS{sub 2} caused by the quantum confinement effects. Highlights: Black-Right-Pointing-Pointer A simple biomolecule-assisted hydrothermal method is developed to prepare AgBiS{sub 2}. Black-Right-Pointing-Pointer L-Cysteine is served as the sulfide source and a complexing agent. Black-Right-Pointing-Pointer Increase in band gap of the AgBiS{sub 2} nanoparticles attributes to the quantum confinement effects.« less

  9. Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band k·p modeling

    NASA Astrophysics Data System (ADS)

    Ryczko, K.; Sek, G.; Sitarek, P.; Mika, A.; Misiewicz, J.; Langer, F.; Höfling, S.; Forchel, A.; Kamp, M.

    2013-06-01

    Optical transitions in GaAs1-xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k.p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 mo in QWs with 1.2% N and 0.15 mo for the case of larger N content of 2.2%.

  10. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics.

    PubMed

    Sanchez, Rafael S; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3-xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The "color" of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit.

  11. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: Implications in advanced LEDs and photovoltaics

    PubMed Central

    Sanchez, Rafael S.; de la Fuente, Mauricio Solis; Suarez, Isaac; Muñoz-Matutano, Guillermo; Martinez-Pastor, Juan P.; Mora-Sero, Ivan

    2016-01-01

    We report the first observation of exciplex state electroluminescence due to carrier injection between the hybrid lead halide perovskite (MAPbI3–xClx) and quantum dots (core/shell PbS/CdS). Single layers of perovskite (PS) and quantum dots (QDs) have been produced by solution processing methods, and their photoluminescent properties are compared to those of bilayer samples in both PS/QD and QD/PS configurations. Exciplex emission at lower energies than the band gap of both PS and QD has been detected. The exciplex emission wavelength of this mixed system can be simply tuned by controlling the QD size. Light-emitting diodes (LEDs) have been fabricated using those configurations, which provide light emission with considerably low turn-on potential. The “color” of the LED can also be tuned by controlling the applied bias. The presence of the exciplex state PS and QDs opens up a broad range of possibilities with important implications not only in tunable LEDs but also in the preparation of intermediate band gap photovoltaic devices with the potentiality of surpassing the Shockley-Queisser limit. PMID:26844299

  12. Quantum-size-induced phase transitions in quantum dots: Indirect-band gap GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Luo, Jun-Wei; Franceschetti, Alberto

    2008-03-01

    Quantum nanostructures are often advertised as having stronger absorption than the bulk material from which they are made, to the potential benefit of nanotechnology. However, nanostructures made of direct gap materials such as GaAs can convert to indirect-gap, weakly-aborbing systems when the quantum size becomes small. This is the case for spherical GaAs dots of radius 15 å or less (about 1000 atoms) embedded in a wide-gap matrix. The nature of the transition: γ-to-X or γ-to-L is however, controversial. The distinction can not be made on the basis of electronic structure techniques that misrepresent the magnitude of the various competing effective mass tensors (e.g, LDA or GGA) or wavefunction coupling (e.g, tight-binding). Using a carefully fit screened pseudopotential method we show that the transition occurs from γ to X, and, more importantly, that the transition involves a finite V (γ-X) interband coupling, manifested as an ``anti-crossing'' between the confined electron states of GaAs as the dot size crosses 15 å. The physics of this reciprocal-space γ-X transition, as well as the real-space (type II) transition in GaAs/AlGaAs will be briefly discussed.

  13. Doping effects in InN/GaN short-period quantum well structures-Theoretical studies based on density functional methods

    NASA Astrophysics Data System (ADS)

    Strak, Pawel; Kempisty, Pawel; Sakowski, Konrad; Krukowski, Stanislaw

    2014-09-01

    Density functional theory studies were conducted to determine an influence of the carrier concentration on the optical and electronic properties of InN/GaN superlattice system. The oscillator strength values, energy gaps and the band profiles were obtained. The band profiles were found to be strongly affected for technically possible heavy n-type doping while for p-type doping the carrier influence, both screening and band shift, is negligible. Blue shift of the transition energy between conduction band minima and valence band maxima was observed for high concentrations of both type carriers.

  14. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    DOE PAGES

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less

  15. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry

    NASA Astrophysics Data System (ADS)

    Xue, Xiong-Xiong; Feng, Ye-Xin; Liao, Lei; Chen, Qin-Jun; Wang, Dan; Tang, Li-Ming; Chen, Keqiu

    2018-03-01

    We present a systematical study of atomic structures and electronic properties of various dimension tellurium (Te) with broken intrinsical screw symmetry by applying reasonable strain. It is demonstrated that (i) bulk trigonal Te has degenerate Weyl nodes around the H point near the Fermi energy, and this degeneracy will be broken by introducing the selenium (Se) atom through creating the inner unsymmetrical strain, instead of external shear strain. (ii) 2D structures of tetragonal Te (t-Te) and 1T-MoS2-like Te (1T-Te) show direct and indirect band gap, respectively. Under the uniform biaxial compressive (BC) strain, monolayer of t-Te shows the direct-to-indirect band gap transition, while 1T-Te monolayer has a band gap transition firstly from indirect to direct and then from direct to indirect. Their effective masses of hole and electron can be effectively tuned by BC strain. (iii) One-dimensional (1D) structures of single helix, triangular Te and hexagonal Te nanowires display the obvious quantum confinement effect on the band structure and different sensitivity to the effect of uniaxial compressive strain.

  16. Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.

    PubMed

    Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen

    2018-01-31

    Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.

  17. Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides.

    PubMed

    Santra, Pralay K; Kamat, Prashant V

    2013-01-16

    Photon management in solar cells is an important criterion as it enables the capture of incident visible and infrared photons in an efficient way. Highly luminescent CdSeS quantum dots (QDs) with a diameter of 4.5 nm were prepared with a gradient structure that allows tuning of absorption and emission bands over the entire visible region without varying the particle size. These crystalline ternary cadmium chalcogenides were deposited within a mesoscopic TiO(2) film by electrophoretic deposition with a sequentially-layered architecture. This approach enabled us to design tandem layers of CdSeS QDs of varying band gap within the photoactive anode of a QD solar cell (QDSC). An increase in power conversion efficiency of 1.97-2.81% with decreasing band gap was observed for single-layer CdSeS, thus indicating varying degrees of photon harvesting. In two- and three-layered tandem QDSCs, we observed maximum power conversion efficiencies of 3.2 and 3.0%, respectively. These efficiencies are greater than the values obtained for the three individually layered photoanodes. The synergy of using tandem layers of the ternary semiconductor CdSeS in QDSCs was systematically evaluated using transient spectroscopy and photoelectrochemistry.

  18. Tetragonal bismuth bilayer: A stable and robust quantum spin hall insulator

    DOE PAGES

    Kou, Liangzhi; Tan, Xin; Ma, Yandong; ...

    2015-11-23

    In this study, topological insulators (TIs) exhibit novel physics with great promise for new devices, but considerable challenges remain to identify TIs with high structural stability and large nontrivial band gap suitable for practical applications. Here we predict by first-principles calculations a two-dimensional (2D) TI, also known as a quantum spin Hall (QSH) insulator, in a tetragonal bismuth bilayer (TB-Bi) structure that is dynamically and thermally stable based on phonon calculations and finite-temperature molecular dynamics simulations. Density functional theory and tight-binding calculations reveal a band inversion among the Bi-p orbits driven by the strong intrinsic spin–orbit coupling, producing a largemore » nontrivial band gap, which can be effectively tuned by moderate strains. The helical gapless edge states exhibit a linear dispersion with a high Fermi velocity comparable to that of graphene, and the QSH phase remains robust on a NaCl substrate. These remarkable properties place TB-Bi among the most promising 2D TIs for high-speed spintronic devices, and the present results provide insights into the intriguing QSH phenomenon in this new Bi structure and offer guidance for its implementation in potential applications.« less

  19. Theory of g-factor enhancement in narrow-gap quantum well heterostructures.

    PubMed

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2011-09-28

    We report on the study of the exchange enhancement of the g-factor in the two-dimensional (2D) electron gas in n-type narrow-gap semiconductor heterostructures. Our approach is based on the eight-band k⋅p Hamiltonian and takes into account the band nonparabolicity, the lattice deformation, the spin-orbit coupling and the Landau level broadening in the δ-correlated random potential model. Using the 'screened' Hartree-Fock approximation we demonstrate that the exchange g-factor enhancement not only shows maxima at odd values of Landau level filling factors but, due to the conduction band nonparabolicity, persists at even filling factor values as well. The magnitude of the exchange enhancement, the amplitude and the shape of the g-factor oscillations are determined by both the screening of the electron-electron interaction and the Landau level width. The 'enhanced' g-factor values calculated for the 2D electron gas in InAs/AlSb quantum well heterostructures are compared with our earlier experimental data and with those obtained by Mendez et al (1993 Phys. Rev. B 47 13937) in magnetic fields up to 30 T.

  20. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy

    2018-05-01

    In this work, we prepared CdTe quantum dots, and series of Cd1-xMnxTe-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd1-xMnxTe-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd1-xMnxTe-alloyed quantum dots which confirmed the successful ion-exchange reaction.

  1. Electronic band structure and optical gain of GaN{sub x}Bi{sub y}As{sub 1−x−y}/GaAs pyramidal quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhi-Gang; State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083; Bose, Sumanta

    The electronic band structure and optical gain of GaN{sub x}Bi{sub y}As{sub 1−x−y}/GaAs pyramidal quantum dots (QDs) are investigated using the 16-band k ⋅ p model with constant strain. The optical gain is calculated taking both homogeneous and inhomogeneous broadenings into consideration. The effective band gap falls as we increase the composition of nitrogen (N) and bismuth (Bi) and with an appropriate choice of composition we can tune the emission wavelength to span within 1.3 μm–1.55 μm, for device application in fiber technology. The extent of this red shift is more profound in QDs compared with bulk material due to quantum confinement. Othermore » factors affecting the emission characteristics include virtual crystal, strain profile, band anticrossing (BAC), and valence band anticrossing (VBAC). The strain profile has a profound impact on the electronic structure, specially the valence band of QDs, which can be determined using the composition distribution of wave functions. All these factors eventually affect the optical gain spectrum. With an increase in QD size, we observe a red shift in the emission energy and emergence of secondary peaks owing to transitions or greater energy compared with the fundamental transition.« less

  2. Quantum Dots and Their Multimodal Applications: A Review

    PubMed Central

    Bera, Debasis; Qian, Lei; Tseng, Teng-Kuan; Holloway, Paul H.

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence) or electric field (electroluminescence). In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  3. Temperature-Dependent Energy Gap Shift and Thermally Activated Transition in Multilayer CdTe/ZnTe Quantum Dots.

    PubMed

    Man, Minh Tan; Lee, Hong Seok

    2015-10-01

    We investigated the influence of growth conditions on carrier dynamics in multilayer CdTe/ZnTe quantum dots (QDs) by monitoring the temperature dependence of the photoluminescence emission energy. The results were analyzed using the empirical Varshni and O'Donnell relations for temperature variation of the energy gap shift. Best fit values showed that the thermally activated transition between two different states occurs due to band low-temperature quenching with values separated by 5.0-6.5 meV. The addition of stack periods in multilayer CdTe/ZnTe QDs plays an important role in the energy gap shift, where the exciton binding energy is enhanced, and, conversely, the exciton-phonon coupling strength is suppressed with an average energy of 19.3-19.8 meV.

  4. Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser

    NASA Astrophysics Data System (ADS)

    Ke, Qing; Tan, Shaoyang; Zhai, Teng; Zhang, Ruikang; Lu, Dan; Ji, Chen

    2014-11-01

    A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (IQE) while maintaing a low internal loss of the device as well. The P-doping profile and separate confinement heterostructure (SCH) layer band gap are optimized respectively with commercial software Crosslight. Analysis of lasers with different p-doping profiles shows that, although heavy doping in P-cladding layer increases the internal loss of the device, it ensures a high IQE because higher energy barrier at the SCH/P-cladding interface as a result of heavy doping helps reduce the carrier leakage from the waveguide to the InP-cladding layer. The band gap of the SCH layer are also optimized for high slope efficiency. Smaller band gap helps reduce the vertical carrier leakage from the waveguide to the P-cladding layer, but the corresponding higher carrier concentration in SCH layer will cause some radiative recombination, thus influencing the IQE. And as the injection current increases, the carrier concentration increases faster with smaller band gap, therefore, the output power saturates sooner. An optimized band gap in SCH layer of approximately 1.127eV and heavy doping up to 1e18/cm3 at the SCH/P-cladding interface are identified for our high power laser design, and we achieved a high IQE of 94% and internal loss of 2.99/cm for our design.

  5. Quantum strain sensor with a topological insulator HgTe quantum dot

    PubMed Central

    Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674

  6. Sulfur-doped Graphene Nanoribbons with a Sequence of Distinct Band Gaps

    NASA Astrophysics Data System (ADS)

    Du, Shi-Xuan; Zhang, Yan-Fang; Zhang, Yi; Berger, Reinhard; Feng, Xinliang; Mullen, Klaus; Lin, Xiao; Zhang, Yu-Yang; Pantelides, Sokrates T.; Gao, Hong-Jun

    Unlike free-standing graphene, graphene nanoribbons (GNRs) can possess semiconducting band gap. However, achieving such control has been a major challenge in the fabrication of GNRs. Chevron-type GNRs were recently achieved by surface-assisted polymerization of pristine or N-substituted oligophenylene monomers. By mixing two different monomers, GNR heterojunctions can in principle be fabricated. Here we report fabrication and characterization of chevron-type GNRs by using sulfur-substituted oligophenylene monomers to achieve GNRs and related heterostructures for the first time. Importantly, our first-principles calculations show that the band gaps of GNRs can be tailored by different S configurations in cyclodehydrogenated isomers through debromination and intramolecular cyclodehydrogenation. This feature should open up new avenues to create multiple GNR heterojunctions by engineering the sulfur configurations. These predictions have been confirmed by Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). The unusual sequence of intraribbon heterojunctions may be useful for nanoscale optoelectronic applications based on quantum dots

  7. Gate-defined Quantum Confinement in Suspended Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Allen, Monica

    2013-03-01

    Quantum confined devices in carbon-based materials offer unique possibilities for applications ranging from quantum computation to sensing. In particular, nanostructured carbon is a promising candidate for spin-based quantum computation due to the ability to suppress hyperfine coupling to nuclear spins, a dominant source of spin decoherence. Yet graphene lacks an intrinsic bandgap, which poses a serious challenge for the creation of such devices. We present a novel approach to quantum confinement utilizing tunnel barriers defined by local electric fields that break sublattice symmetry in suspended bilayer graphene. This technique electrostatically confines charges via band structure control, thereby eliminating the edge and substrate disorder that hinders on-chip etched nanostructures to date. We report clean single electron tunneling through gate-defined quantum dots in two regimes: at zero magnetic field using the energy gap induced by a perpendicular electric field and at finite magnetic fields using Landau level confinement. The observed Coulomb blockade periodicity agrees with electrostatic simulations based on local top-gate geometry, a direct demonstration of local control over the band structure of graphene. This technology integrates quantum confinement with pristine device quality and access to vibrational modes, enabling wide applications from electromechanical sensors to quantum bits. More broadly, the ability to externally tailor the graphene bandgap over nanometer scales opens a new unexplored avenue for creating quantum devices.

  8. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, S. M.; Pilania, G.; Liu, X. Y.

    2015-11-14

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U{sup (FH)}. The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U{sup (FH)}, thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  9. Band gap modulation in magnetically doped low-defect thin films of (Bi1-xSbx)2 Te3 with minimized bulk carrier concentration

    NASA Astrophysics Data System (ADS)

    Maximenko, Yulia; Scipioni, Kane; Wang, Zhenyu; Katmis, Ferhat; Steiner, Charles; Weis, Adam; van Harlingen, Dale; Madhavan, Vidya

    Topological insulators Bi2Te3 and Sb2Te3 are promising materials for electronics, but both are naturally prone to vacancies and anti-site defects that move the Fermi energy onto the bulk bands. Fabricating (Bi1-xSbx)2 Te3 (BST) with the tuned x minimizes point defects and unmasks topological surface states by reducing bulk carriers. BST thin films have shown topological surface states and quantum anomalous Hall effect. However, different studies reported variable Sb:Bi ratios used to grow an undoped BST film. Here, we develop a reliable way to grow defect-free subnanometer-flat BST thin films having the Fermi energy tuned to the Dirac point. High-resolution scanning tunneling microscopy (STM) and Landau level spectroscopy prove the importance of crystallinity and surface roughness-not only Sb:Bi ratio-for the final bulk carrier concentration. The BST thin films were doped with Cr and studied with STM with atomic resolution. Counterintuitively, Cr density is anticorrelated with the local band gap due to Cr's antiferromagnetic order. We analyze the correlations and report the relevant band gap values. Predictably, high external magnetic field compromises antiferromagnetic order, and the local band gap increases. US DOE DE-SC0014335; Moore Found. GBMF4860; F. Seitz MRL.

  10. Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key

    NASA Astrophysics Data System (ADS)

    Sivanesan, Umaseh; Tsang, Kin; Izmaylov, Artur F.

    2017-12-01

    Most of the textbooks explaining electric conductivity in the context of quantum mechanics provide either incomplete or semi-classical explanations that are not connected with the elementary concepts of quantum mechanics. We illustrate the conduction phenomena using the simplest model system in quantum dynamics, a particle in a box (PIB). To induce the particle dynamics, a linear potential tilting the bottom of the box is introduced, which is equivalent to imposing a constant electric field for a charged particle. Although the PIB model represents a closed system that cannot have a flow of electrons through the system, we consider the oscillatory dynamics of the particle probability density as the analogue of the electric current. Relating the amplitude and other parameters of the particle oscillatory dynamics with the gap between the ground and excited states of the PIB model allows us to demonstrate one of the most basic dependencies of electric conductivity on the valence-conduction band gap of the material.

  11. Photoinduced topological phase transition and spin polarization in a two-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Chen, M. N.; Su, W.; Deng, M. X.; Ruan, Jiawei; Luo, W.; Shao, D. X.; Sheng, L.; Xing, D. Y.

    2016-11-01

    A great deal of attention has been paid to the topological phases engineered by photonics over the past few years. Here, we propose a topological quantum phase transition to a quantum anomalous Hall (QAH) phase induced by off-resonant circularly polarized light in a two-dimensional system that is initially in a quantum spin Hall phase or a trivial insulator phase. This provides an alternative method to realize the QAH effect, other than magnetic doping. The circularly polarized light effectively creates a Zeeman exchange field and a renormalized Dirac mass, which are tunable by varying the intensity of the light and drive the quantum phase transition. Both the transverse and longitudinal Hall conductivities are studied, and the former is consistent with the topological phase transition when the Fermi level lies in the band gap. A highly controllable spin-polarized longitudinal electrical current can be generated when the Fermi level is in the conduction band, which may be useful for designing topological spintronics.

  12. Investigation of structural, morphological and opto-electronic properties of CdS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Ibrahim Mohammed S., M.; Gubari, Ghamdan M. M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    We have successfully deposited CdS quantum dot thin film on the glass substrate by simple and economic chemical bath deposition method at ˜50 ˚C. The X-ray diffraction study confirms the formation of CdS when compared with standard JCPDS data with average crystallite size ˜3 nm. The morphology of the film was studied by FE-SEM, which suggests the homogeneous and uniform deposition of the CdS material over the entire glass substrate with a porous structure. From UV absorption spectra we observed that the sample exhibited a band edge near ˜400 nm with a slight deviation with the presence of excitonic peak for the sample. The presence of excitonic peak may be attributed to the formation of quantum dots. The calculated band gap energy of CdS quantum dot thin film was found to be ˜3.136 eV. The thin film further characterized to study electrical parameters and the sample show a drastic increase in current after light illumination.

  13. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  14. A Semimetal Nanowire Rectifier: Balancing Quantum Confinement and Surface Electronegativity.

    PubMed

    Sanchez-Soares, Alfonso; Greer, James C

    2016-12-14

    For semimetal nanowires with diameters on the order of 10 nm, a semimetal-to-semiconductor transition is observed due to quantum confinement effects. Quantum confinement in a semimetal lifts the degeneracy of the conduction and valence bands in a "zero" gap semimetal or shifts energy levels with a "negative" overlap to form conduction and valence bands. For semimetal nanowires with diameters less than 10 nm, the band gap energy can be significantly larger than the thermal energy at room temperature resulting in a new class of semiconductors suitable for nanoelectronics. As a nanowire's diameter is reduced, its surface-to-volume ratio increases rapidly leading to an increased impact of surface chemistry on its electronic structure. Energy level shifts to states in the vicinity of the Fermi energy with varying surface electronegativity are shown to be comparable in magnitude to quantum confinement effects arising in nanowires with diameters of a few nanometer; these two effects can counteract one another leading to semimetallic behavior at nanowire cross sections at which confinement effects would otherwise dominate. Abruptly changing the surface terminating species along the length of a nanowire can lead to an abrupt change in the surface electronegativity. This can result in the formation of a semimetal-semiconductor junction within a monomaterial nanowire without impurity doping nor requiring the formation of a heterojunction. Using density functional theory in tandem with a Green's function approach to determine electronic structure and charge transport, respectively, current rectification is calculated for such a junction. Current rectification ratios of the order of 10 3 -10 5 are predicted at applied biases as low as 300 mV. It is concluded that rectification can be achieved at essentially molecular length scales with conventional biasing, while rivaling the performance of macroscopic semiconductor diodes.

  15. Preparation of CdS Nanoparticles by First-Year Undergraduates

    ERIC Educational Resources Information Center

    Winkelmann, Kurt; Noviello, Thomas; Brooks, Stephen

    2007-01-01

    The first year undergraduates use a simple method to synthesize 5-nm CdS nanoparticles in a water-in-oil microemulsion. The quantum size effect, the relationship between colors, optical absorbance, band-gap energy and the CdS particles affected by the formation of micelles are observed.

  16. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871; Zhang, Qin

    2014-11-24

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom ofmore » the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.« less

  17. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u}more » is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.« less

  18. Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots.

    PubMed

    Tynkevych, Olena; Karavan, Volodymyr; Vorona, Igor; Filonenko, Svitlana; Khalavka, Yuriy

    2018-05-02

    In this work, we prepared CdTe quantum dots, and series of Cd 1-x Mn x Te-alloyed quantum dots with narrow size distribution by an ion-exchange reaction in water solution. We found that the photoluminescence peaks are shifted to higher energies with the increasing Mn 2+ content. So far, this is the first report of blue-emitting CdTe-based quantum dots. By means of cyclic voltammetry, we detected features of electrochemical activity of manganese energy levels formed inside the Cd 1-x Mn x Te-alloyed quantum dot band gap. This allowed us to estimate their energy position. We also demonstrate paramagnetic behavior for Cd 1-x Mn x Te-alloyed quantum dots which confirmed the successful ion-exchange reaction.

  19. Transport electron through a quantum wire by side-attached asymmetric quantum-dot rings

    NASA Astrophysics Data System (ADS)

    Rostami, A.; Zabihi, S.; Rasooli S., H.; Seyyedi, S. K.

    2011-12-01

    The electronic conductance at zero temperature through a quantum wire with side-attached asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Anderson tunneling Hamiltonian method. We show that the asymmetric configuration of QD- scatter system strongly impresses the amplitude and spectrum of quantum wire nanostructure transmission characteristics. It is shown that whenever the balanced number of quantum dots in two rings is substituted by unbalanced scheme, the number of forbidden mini-bands in quantum wire conductance increases and QW-nanostructure electronic conductance contains rich spectral properties due to appearance of the new anti-resonance and resonance points in spectrum. Considering the suitable gap between nano-rings can strengthen the amplitude of new resonant peaks in the QW conductance spectrum. The proposed asymmetric quantum ring scatter system idea in this paper opens a new insight on designing quantum wire nano structure for given electronic conductance.

  20. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Y. F.; Chen, C. -C.; Wang, Yao

    Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  1. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Y. F.; Chen, C. -C.; Wang, Yao

    We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding ofmore » the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  2. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE PAGES

    Kung, Y. F.; Chen, C. -C.; Wang, Yao; ...

    2016-04-29

    Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  3. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kung, Y. F.; Chen, C.-C.; Wang, Yao; Huang, E. W.; Nowadnick, E. A.; Moritz, B.; Scalettar, R. T.; Johnston, S.; Devereaux, T. P.

    2016-04-01

    We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π ,π ) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.

  4. Tunable multifunctional topological insulators in ternary Heusler and related compounds

    NASA Astrophysics Data System (ADS)

    Felser, Claudia

    2011-03-01

    Recently the quantum spin Hall effect was theoretically predicted and experimentally realized in quantum wells based on the binary semiconductor HgTe. The quantum spin Hall state and topological insulators are new states of quantum matter interesting for both fundamental condensed-matter physics and material science. Many Heusler compounds with C1b structure are ternary semiconductors that are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the bandgap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by the lattice parameter) and magnitude of spin--orbit coupling (by the atomic charge). Based on first-principle calculations we demonstrate that around 50 Heusler compounds show band inversion similar to that of HgTe. The topological state in these zero-gap semiconductors can be created by applying strain or by designing an appropriate quantumwell structure, similar to the case of HgTe. Many of these ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the rare-earth element Ln, which can realize additional properties ranging from superconductivity (for example LaPtBi) to magnetism (for example GdPtBi) and heavy fermion behaviour (for example YbPtBi). These properties can open new research directions in realizing the quantized anomalous Hall effect and topological superconductors. Heusler compounds are similar to a stuffed diamond, correspondingly, it should be possible to find the ``high Z'' equivalent of graphene in a graphite-like structure with 18 valence electrons and with inverted bands. Indeed the ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. These materials have a gap at the Fermi energy and are therefore candidates for 3D-topological insulators. Additionally they are centro-symmetric, therefore, it is possible to determine the parity of their wave functions, and hence, their topological character. Surprisingly, the compound KHgSb with the strong SOC is topologically trivial, whereas LiAuSe is found to be a topological non-trivial insulator.

  5. Hole Fermi surface in Bi2Se3 probed by quantum oscillations

    NASA Astrophysics Data System (ADS)

    Piot, B. A.; Desrat, W.; Maude, D. K.; Orlita, M.; Potemski, M.; Martinez, G.; Hor, Y. S.

    2016-04-01

    Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi2Se3 crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscillations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between 0∘ and 90∘, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross sections down to 24 meV. There is therefore no signature of a camelback in the valence band of our bulk samples, in accordance with the direct band gap predicted by G W calculations.

  6. Many-body design of highly strained GaInNAs electroabsorption modulators on GaInAs ternary substrates

    NASA Astrophysics Data System (ADS)

    Fujisawa, Takeshi; Arai, Masakazu; Kano, Fumiyoshi

    2010-05-01

    Electroabsorption in highly strained GaInAs and GaInNAs quantum wells (QWs) grown on GaInAs or quasi-GaInAs substrates is investigated by using microscopic many-body theory. The effects of various parameters, such as strain, barrier height, substrate composition, and temperature are thoroughly examined. It is shown that the value of the absorption coefficient strongly depends on the depth of the QWs under large bias electric field due to the small overlap integral of wave functions between the conduction and valence bands. The use of GaInNAs QWs makes the strain in the well layer very small. Further, the effective quantum-well depth is increased in GaInNAs QWs due to the anticrossing interaction between the conduction and N-resonant bands, making it possible to obtain larger absorption coefficient under large bias electric fields without using wide-band gap materials for barriers.

  7. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.

    PubMed

    Allan, Guy; Delerue, Christophe

    2011-09-27

    We present calculations of impact ionization rates, carrier multiplication yields, and solar-power conversion efficiencies in solar cells based on quantum dots (QDs) of a semimetal, α-Sn. Using these results and previous ones on PbSe and PbS QDs, we discuss a strategy to select QDs with the highest carrier multiplication rate for more efficient solar cells. We suggest using QDs of materials with a close to zero band gap and a high multiplicity of the bands in order to favor the relaxation of photoexcited carriers by impact ionization. Even in that case, the improvement of the maximum solar-power conversion efficiency appears to be a challenging task. © 2011 American Chemical Society

  8. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2018-05-31

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  9. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe–Salpeter equation

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2018-05-01

    An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.

  10. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  11. Engineering Graphene Quantum Dots for Enhanced Ultraviolet and Visible Light p-Si Nanowire-Based Photodetector.

    PubMed

    Mihalache, Iuliana; Radoi, Antonio; Pascu, Razvan; Romanitan, Cosmin; Vasile, Eugenia; Kusko, Mihaela

    2017-08-30

    In this work, a significant improvement of the classical silicon nanowire (SiNW)-based photodetector was achieved through the realization of core-shell structures using newly designed GQD PEI s via simple solution processing. The poly(ethyleneimine) (PEI)-assisted synthesis successfully tuned both optical and electrical properties of graphene quantum dots (GQDs) to fulfill the requirements for strong yellow photoluminescence emission along with large band gap formation and the introduction of electronic states inside the band gap. The fabrication of a GQD PEI -based device was followed by systematic structural and photoelectronic investigation. Thus, the GQD PEI /SiNW photodetector exhibited a large photocurrent to dark current ratio (I ph /I dark up to ∼0.9 × 10 2 under 4 V bias) and a remarkable improvement of the external quantum efficiency values that far exceed 100%. In this frame, GQD PEI s demonstrate the ability to arbitrate both charge-carrier photogeneration and transport inside a heterojunction, leading to simultaneous attendance of various mechanisms: (i) efficient suppression of the dark current governed by the type I alignment in energy levels, (ii) charge photomultiplication determined by the presence of the PEI-induced electron trap levels, and (iii) broadband ultraviolet-to-visible downconversion effects.

  12. Distribution of Chern number by Landau level broadening in Hofstadter butterfly

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2015-04-01

    We discuss the relationship between the quantum Hall conductance and a fractal energy band structure, Hofstadter butterfly, on a square lattice under a magnetic field. At first, we calculate the Hall conductance of Hofstadter butterfly on the basis of the linear responce theory. By classifying the bands into some groups with a help of continued fraction expansion, we find that the conductance at the band gaps between the groups accord with the denominators of fractions obtained by aborting the expansion halfway. The broadening of Landau levels is given as an account of this correspondance.

  13. Valence-band structure of the ferromagnetic semiconductor GaMnAs studied by spin-dependent resonant tunneling spectroscopy.

    PubMed

    Ohya, Shinobu; Muneta, Iriya; Hai, Pham Nam; Tanaka, Masaaki

    2010-04-23

    The valence-band structure and the Fermi level (E(F)) position of ferromagnetic-semiconductor GaMnAs are quantitatively investigated by electrically detecting the resonant tunneling levels of a GaMnAs quantum well (QW) in double-barrier heterostructures. The resonant level from the heavy-hole first state is clearly observed in the metallic GaMnAs QW, indicating that holes have a high coherency and that E(F) exists in the band gap. Clear enhancement of tunnel magnetoresistance induced by resonant tunneling is demonstrated in these double-barrier heterostructures.

  14. Optical band gaps of organic semiconductor materials

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  15. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    PubMed Central

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  16. Physics and performances of III-V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations.

    PubMed

    Afzalian, A; Vasen, T; Ramvall, P; Shen, T-M; Wu, J; Passlack, M

    2018-06-27

    We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000  ×  faster) but accurate (error  <  1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III-V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III-V GAA nanowire HTFETs including the effect of electron-phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.

  17. Physics and performances of III–V nanowire broken-gap heterojunction TFETs using an efficient tight-binding mode-space NEGF model enabling million-atom nanowire simulations

    NASA Astrophysics Data System (ADS)

    Afzalian, A.; Vasen, T.; Ramvall, P.; Shen, T.-M.; Wu, J.; Passlack, M.

    2018-06-01

    We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000  ×  faster) but accurate (error  <  1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III–V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III–V GAA nanowire HTFETs including the effect of electron–phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.

  18. Zinc oxide wide band gap semiconductor for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Choopun, Supab

    The main objective of this dissertation is to study the key aspects of ZnO-based materials for fabrication of wide band gap optoelectronic devices. ZnO has received attention due to its direct band gap, alloying and doping capabilities. It has similar properties to that of GaN, a material system that has become very important for the fabrication of blue light emitting diodes, laser diodes, detectors, etc. In this study, ZnO and related materials were grown in thin film form on c-plane sapphire substrates by pulsed laser deposition and then, these films were mainly studied in terms of their structural, optical and electrical properties. The studied key aspects include growth and optimization of device quality ZnO films, band gap tailoring of ZnO films by alloying, fabrication of quantum well structures, and impurity doping for n-type and p-type ZnO films. The growth and optimization of ZnO films have been studied as a function of substrate temperature and oxygen background pressure. By tuning the growth temperature and oxygen pressure during the initial and final stages of growth, it was possible to control desirable surface, interface chemistry structure, crystalline quality, and optoelectronic properties of the films while maintaining high quality epitaxy. Band gap tailoring has been studied by alloying of ZnO with MgO. MgZnO alloy films exhibit two phases, hexagonal and cubic, depending on the Mg concentration in the MgZnO lattice. The band gap energy of MgZnO alloys can be varied in a wide range from 3.3 eV to 4.0 eV for hexagonal structured films and 4.0 to 7.6 eV for cubic structured films. Studies both n-type as well as p-type doping and activation in ZnO films are reported. It was found that In-doped ZnO films with high optical transparency and high electrical conductivity can be grown at temperature below 300°C. P-type ZnO films have been studied by using a cationic-codoping method. Weak p-type conductivity in ZnO films was obtained from Cu and Al codoping. A hole concentration of 1.4 x 1015 cm-3 in all-cationic codoped ZnO film was realized for the first time. In addition, some novel technological applications of ZnO films have also been realized. ZnO film was used as a buffer layer for the growth of III--V nitrides. Moreover, the wider band gap of MgZnO alloy film was used to fabricate single quantum well heterostructures of MgZnO/ZnO/MgZnO. We have also studied the optical lasing effect in ZnO films. Finally, possible future studies and applications on ZnO and related alloys are discussed.

  19. Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5

    NASA Astrophysics Data System (ADS)

    Park, Eunsung; Lee, Sangyun; Ronning, Filip; Thompson, Joe D.; Zhang, Qiu; Balicas, Luis; Lu, Xin; Park, Tuson

    2018-04-01

    Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder–Tinkham–Klapwijk model with two gaps Δ1  =  0.61 meV and Δ2  =  1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

  20. Graphene-based non-Boolean logic circuits

    NASA Astrophysics Data System (ADS)

    Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.

    2013-10-01

    Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.

  1. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  2. Orbitals, Occupation Numbers, and Band Structure of Short One-Dimensional Cadmium Telluride Polymers.

    PubMed

    Valentine, Andrew J S; Talapin, Dmitri V; Mazziotti, David A

    2017-04-27

    Recent work found that soldering CdTe quantum dots together with a molecular CdTe polymer yielded field-effect transistors with much greater electron mobility than quantum dots alone. We present a computational study of the CdTe polymer using the active-space variational two-electron reduced density matrix (2-RDM) method. While analogous complete active-space self-consistent field (CASSCF) methods scale exponentially with the number of active orbitals, the active-space variational 2-RDM method exhibits polynomial scaling. A CASSCF calculation using the (48o,64e) active space studied in this paper requires 10 24 determinants and is therefore intractable, while the variational 2-RDM method in the same active space requires only 2.1 × 10 7 variables. Natural orbitals, natural-orbital occupations, charge gaps, and Mulliken charges are reported as a function of polymer length. The polymer, we find, is strongly correlated, despite possessing a simple sp 3 -hybridized bonding scheme. Calculations reveal the formation of a nearly saturated valence band as the polymer grows and a charge gap that decreases sharply with polymer length.

  3. Computational prediction of the electronic structure and optical properties of graphene-like β-CuN3.

    PubMed

    Zhang, Xu; Zhao, Xudong; Jing, Yu; Wu, Dihua; Zhou, Zhen

    2015-12-21

    Recently, a new polymorph of the highly energetic phase β-CuN3 has been synthesized. By hybrid density functional computations, we investigated the structural, electronic and optical properties of β-CuN3 bulk and layers. Due to the quantum confinement effect, the band gap of the monolayer (2.39 eV) is larger than that of the bulk (2.23 eV). The layer number affects the configuration and the band gap. β-CuN3 shows both ionic and covalent characters, and could be stable in the infrared and visible spectrum and would decompose under ultraviolet light. The results imply that bulk β-CuN3 could be used as an energetic material.

  4. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, Steven Michael; Pilania, Ghanshyam; Liu, Xiang-Yang

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transferhopping integrals T and on-fragment parameters U (FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. In this paper, we demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U (FH), thus providing new insight into the nature of metal-insulator transitions. Finally, this result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  5. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE PAGES

    Valone, Steven Michael; Pilania, Ghanshyam; Liu, Xiang-Yang; ...

    2015-11-13

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transferhopping integrals T and on-fragment parameters U (FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. In this paper, we demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U (FH), thus providing new insight into the nature of metal-insulator transitions. Finally, this result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  6. Crystal Phase Quantum Well Emission with Digital Control.

    PubMed

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-10-11

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  7. Tunability and Stability of Lead Sulfide Quantum Dots in Ferritin

    NASA Astrophysics Data System (ADS)

    Peterson, J. Ryan; Hansen, Kameron

    Quantum dot solar cells have become one of the fastest growing solar cell technologies to date, and lead sulfide has proven to be an efficient absorber. However, one of the primary concerns in dye-sensitized quantum dot solar cell development is core degradation. We have synthesized lead sulfide quantum dots inside of the spherical protein ferritin in order to protect them from photocorrosion. We have studied the band gaps of these quantum dots and found them to be widely tunable inside ferritin just as they are outside the protein shell. In addition, we have examined their stability by measuring changes in photoluminescence as they are exposed to light over minutes and hours and found that the ferritin-enclosed PbS quantum dots have significantly better resistance to photocorrosion. Brigham Young University, National Science Foundation.

  8. The Hofstadter Butterfly and some physical consequences

    NASA Astrophysics Data System (ADS)

    Claro, Francisco

    Opening its beautiful wings for the first time four decades ago, the Hofstadter Butterfly emerged as a self-similar pattern of bands and gaps displaying the allowed energies for two dimensional crystalline electrons in a perpendicular magnetic field. Within the Harper model, as the external field parameter is varied well defined gaps traverse the spectrum, some closing at a Dirac point where two approaching bands touch. Such band edges degeneracy is lifted in more realistic models. Gaps have a unique label that determines the Hall conductivity of a noninteracting electron system, as observed in recent experiments. When the 2D electron assembly is allowed to interact in the absence of an underlying periodic potential, the mean field approximation predicts a liquid at integer filling fractions and electron density fluctuations otherwise, which if periodic may be represented again by a Harper equation. The intriguing odd denominator rule observed in experiment in the fractional quantum Hall regime is then a natural prediction of the model. Although I have an affiliation (lifetime Granted) I am actually retired (do not have a paid contract).

  9. Structure-Dependent Optical Properties of Self-Organized Bi2Se3 Nanostructures: From Nanocrystals to Nanoflakes.

    PubMed

    Yang, Shang-Dong; Yang, Liao; Zheng, Yu-Xiang; Zhou, Wen-Jie; Gao, Meng-Yu; Wang, Song-You; Zhang, Rong-Jun; Chen, Liang-Yao

    2017-08-30

    Bismuth selenide (Bi 2 Se 3 ), with a wide bulk band gap and single massless Dirac cone at the surface, is a promising three-dimensional topological insulator. Bi 2 Se 3 possesses gapless surface states and an insulator-like bulk band gap as a new type of quantum matter. Different Bi 2 Se 3 nanostructures were prepared using electron beam evaporation with high production efficiency. Structural investigations by energy-dispersive X-ray analysis, scanning electron microscopy, and X-ray diffraction revealed the sample stoichiometries and the structural transition mechanism from nanocrystals to nanoflakes. The optical properties systematically probed and analyzed by spectroscopic ellipsometry showed strong dependence on the nanostructures and were also predicted to have structure-modifiable technological prospects. The optical parameters, plasma frequencies, scattering rates of the free electrons, and optical band gaps were related to the topological properties of the Bi 2 Se 3 nanostructures via light-matter interactions, offering new opportunities and approaches for studies on topological insulators and spintronics. The high-quality Bi 2 Se 3 nanostructures provide advantages in exploring novel physics and exploiting prospective applications.

  10. Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam

    2016-06-01

    It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

  11. Infrared photonic bandgap materials and structures

    NASA Astrophysics Data System (ADS)

    Sundaram, S. K.; Keller, P. E.; Riley, B. J.; Martinez, J. E.; Johnson, B. R.; Allen, P. J.; Saraf, L. V.; Anheier, N. C., Jr.; Liau, F.

    2006-02-01

    Three-dimensional periodic dielectric structure can be described by band theory, analogous to electron waves in a crystal. Photonic band gap (PBG) structures were introduced in 1987. The PBG is an energy band in which optical modes, spontaneous emission, and zero-point fluctuations are all absent. It was first theoretically predicted that a three-dimensional photonic crystal could have a complete band gap. E. Yablonovitch built the first three-dimensional photonic crystal (Yablonovite) on microwave length scale, with a complete PBG. In nature, photonic crystals occur as semiprecious opal and the microscopic structures on the wings of some tropical butterflies, which are repeating structures (PBG structure/materials) that inhibit the propagation of some frequencies of light. Pacific Northwest National Laboratory (PNNL) has been developing tunable (between 3.5 and 16 μm) quantum cascade lasers (QCL), chalcogenides, and all other components for an integrated approach to chemical sensing. We have made significant progress in modeling and fabrication of infrared photonic band gap (PBG) materials and structures. We modeled several 2-D designs and defect configurations. Transmission spectra were computed by the Finite Difference Time Domain Method (with FullWAVE TM). The band gaps were computed by the Plane Wave Expansion Method (with BandSOLVE TM). The modeled designs and defects were compared and the best design was identified. On the experimental front, chalcogenide glasses were used as the starting materials. As IIS 3, a common chalcogenide, is an important infrared (IR) transparent material with a variety of potential applications such as IR sensors, waveguides, and photonic crystals. Wet-chemical lithography has been extended to PBG fabrication and challenges identified. An overview of results and challenges will be presented.

  12. Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics.

    PubMed

    Colbert, Adam E; Janke, Eric M; Hsieh, Stephen T; Subramaniyan, Selvam; Schlenker, Cody W; Jenekhe, Samson A; Ginger, David S

    2013-01-17

    We use photoinduced absorption (PIA) spectroscopy to investigate pathways for photocurrent generation in hybrid organic/inorganic quantum dot bulk heterojunction solar cells. We study blends of the conjugated polymer poly(2,3-bis(2-(hexyldecyl)quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)dithieno[3,2-b:2',3'-d]pyrrole) (PDTPQx-HD) with PbS quantum dots and find that positively charged polarons are formed on the conjugated polymer following selective photoexcitation of the PbS quantum dots. This result provides a direct spectroscopic fingerprint demonstrating that photoinduced hole transfer occurs from the photoexcited quantum dots to the host polymer. We compute the relative yields of long-lived holes following photoexcitation of both the polymer and quantum dot phases and estimate that more long-lived polarons are produced per photon absorbed by the polymer phase than by the quantum dot phase.

  13. III-V quantum light source and cavity-QED on silicon.

    PubMed

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  14. Systematic research on Ag2X (X = O, S, Se, Te) as visible and near-infrared light driven photocatalysts and effects of their electronic structures

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wu, Zhaomei; Zhu, Yingming; Tian, Wen; Liang, Bin

    2018-01-01

    Four silver chalcogen compounds, Ag2O, Ag2S, Ag2Se and Ag2Te, can be utilized as visible-light-driven photocatalysts. In this research, the electronic structures of these compounds were analyzed by simulation and experiments to systematically reveal the relationship between photocatalytic performance and energetic structure. All four chalcogenides exhibited interesting photocatalytic activities under ultraviolet, visible and near-infrared light. However, their photocatalytic performances and stability significantly depended on the band gap width, and the valence band and conduct band position, which was determined by their composition. Increasing the X atomic number from O to Te resulted in the upward movement of the valence band top and the conduct band bottom, which resulted in narrower band gaps, a wider absorption spectrum, a weaker photo-oxidization capacity, a higher recombination probability of hole and electron pairs, lower quantum efficiency, and worse stability. Among them, Ag2O has the highest photocatalytic performance and stability due to its widest band gap and lowest position of VB and CB. The combined action of photogenerated holes and different radicals, depending on the different electronic structures, including anion ozone radical, hydroxide radical, and superoxide radical, was observed and understood. The results of experimental observations and simulations of the four silver chalcogen compounds suggested that a proper electronic structure is necessary to obtain a balance between photocatalytic performance and absorbable light region in the development of new photocatalysts.

  15. Photovoltaic Properties of Selenized CuGa/In Films with Varied Compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Mansfield, Lorelle M.; Ramanathan, Kannan

    2016-11-21

    Thin CuGa/In films with varied compositions were deposited by co-evaporation and then selenized in situ with evaporated selenium. The selenized Cu(In, Ga)Se2 absorbers were used to fabricate 390 solar cells. Cu/(Ga+In) and Ga/(Ga+In) (Cu/III and Ga/III) were independently varied, and photovoltaic performance was optimal at Cu/III of 77-92% for all Ga/III compositions studied (Ga/III ~ 30, 50, and 70%). The best absorbers at each Ga/III composition were characterized with time-resolved photoluminescence, scanning electron microscopy, and secondary ion mass spectrometry, and devices were studied with temperature-dependent current density-voltage, light and electrical biased quantum efficiency, and capacitance-voltage. The best cells with Ga/IIImore » ~ 30, 50, and 70% had efficiencies of 14.5, 14.4, and 12.2% and maximum power temperature coefficients of -0.496, -0.452, and -0.413%/degrees C, respectively. This resulted in the Ga/III ~ 50% champion having the highest efficiency at temperatures greater than 40 degrees C, making it the optimal composition for practical purposes. This optimum is understood as a result of the absorber's band gap grading- where minimum band gap dominates short-circuit current density, maximum space charge region band gap dominates open-circuit voltage, and average absorber band gap dominates maximum power temperature coefficient.« less

  16. MnNiO3 revisited with modern theoretical and experimental methods

    NASA Astrophysics Data System (ADS)

    Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael; Kuhn, Stephen; Jellison, Gerald E.; Sefat, Athena S.; Krogel, Jaron T.; Reboredo, Fernando A.

    2017-11-01

    MnNiO3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Monte Carlo study of the bulk properties of MnNiO3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å3, which compares well to the experimental value of 94.4 Å3. A bulk modulus of 217 GPa is predicted for MnNiO3. We rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO3.

  17. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  18. Enhanced Emission of Quantum System in Si-Ge Nanolayer Structure.

    PubMed

    Huang, Zhong-Mei; Huang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Wu, Xue-Ke

    2016-12-01

    It is very interesting that the enhanced peaks near 1150 and 1550 nm are observed in the photoluminescence (PL) spectra in the quantum system of Si-Ge nanolayer structure, which have the emission characteristics of a three-level system with quantum dots (QDs) pumping and emission of quasi-direct-gap band, in our experiment. In the preparing process of Si-Ge nanolayer structure by using a pulsed laser deposition method, it is discovered that the nanocrystals of Si and Ge grow in the (100) and (111) directions after annealing or electron beam irradiation. The enhanced PL peaks with multi-longitudinal-mode are measured at room temperature in the super-lattice of Si-Ge nanolayer quantum system on SOI.

  19. Tuning the electronic and optical properties of hexagonal boron-nitride nanosheet by inserting graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ding, Yi-Min; Shi, Jun-Jie; Zhang, Min; Wu, Meng; Wang, Hui; Cen, Yu-Lang; Pan, Shu-Hang; Guo, Wen-Hui

    2018-02-01

    It is difficult to integrate two-dimensional (2D) graphene and hexagonal boron-nitride (h-BN) in optoelectronic nanodevices, due to the semi-metal and insulator characteristic of graphene and h-BN, respectively. Using the state-of-the-art first-principles calculations based on many-body perturbation theory, we investigate the electronic and optical properties of h-BN nanosheet embedded with graphene dots. We find that C atom impurities doped in h-BN nanosheet tend to phase-separate into graphene quantum dots (QD), and BNC hybrid structure, i.e. a graphene dot within a h-BN background, can be formed. The band gaps of BNC hybrid structures have an inverse relationship with the size of graphene dot. The calculated optical band gaps for BNC structures vary from 4.71 eV to 3.77 eV, which are much smaller than that of h-BN nanosheet. Furthermore, the valence band maximum is located in C atoms bonded to B atoms and conduction band minimum is located in C atoms bonded to N atoms, which means the electron and hole wave functions are closely distributed around the graphene dot. The bound excitons, localized around the graphene dot, determine the optical spectra of the BNC hybrid structures, in which the exciton binding energies decrease with increase in the size of graphene dots. Our results provide an important theoretical basis for the design and development of BNC-based optoelectronic nanodevices.

  20. Disorder-induced transitions in resonantly driven Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Titum, Paraj; Lindner, Netanel H.; Refael, Gil

    2017-08-01

    We investigate the effects of disorder in Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are induced by resonantly driving a transition between the valence and conduction bands. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a mobility gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator. Interestingly, the effects of disorder are not necessarily adverse: we show that in the same quantum well, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet topological Anderson insulator (FTAI). We identify the conditions on the driving field necessary for observing such a transition.

  1. Highly strained InAlP/InGaAs-based coupled double quantum wells on InP substrates

    NASA Astrophysics Data System (ADS)

    Gozu, Shin-ichiro; Mozume, Teruo

    2018-05-01

    InAlP/InGaAs based coupled double quantum wells (CDQWs) are proposed for optelectronic devices utilizing intersubband transitions. The aim of the proposed CDQW structure was to reduce the Al volume as compared with that in InGaAs/AlAsSb(AlAs/InAlAs) based CDQWs. By careful consideration of the band gap energy as well as conduction band offset and lattice constants for III–V materials, highly strained InAlP was chosen as the barrier material. With the appropriate CDQW structure and under the optimized growth conditions, proposed CDQWs exhibited clear X-ray diffraction satellite peaks, and almost identical optical absorption spectrum as compared with the InGaAs/AlAs/InAlAs CDQWs.

  2. Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Becher, Christoph

    2011-06-20

    We report on single photon frequency downconversion from the red part of the spectrum (738 nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403 nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

  3. Interpretation of quantum yields exceeding unity in photoelectrochemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szklarczyk, M.; Allen, R.E.

    1986-10-20

    In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.

  4. Unexpected Giant-Gap Quantum Spin Hall Insulator in Chemically Decorated Plumbene Monolayer

    PubMed Central

    Zhao, Hui; Zhang, Chang-wen; Ji, Wei-xiao; Zhang, Run-wu; Li, Sheng-shi; Yan, Shi-shen; Zhang, Bao-min; Li, Ping; Wang, Pei-ji

    2016-01-01

    Quantum spin Hall (QSH) effect of two-dimensional (2D) materials features edge states that are topologically protected from backscattering by time-reversal symmetry. However, the major obstacles to the application for QSH effect are the lack of suitable QSH insulators with a large bulk gap. Here, we predict a novel class of 2D QSH insulators in X-decorated plumbene monolayers (PbX; X = H, F, Cl, Br, I) with extraordinarily giant bulk gaps from 1.03 eV to a record value of 1.34 eV. The topological characteristic of PbX mainly originates from s-px,y band inversion related to the lattice symmetry, while the effect of spin-orbital coupling (SOC) is only to open up a giant gap. Their QSH states are identified by nontrivial topological invariant Z2 = 1, as well as a single pair of topologically protected helical edge states locating inside the bulk gap. Noticeably, the QSH gaps of PbX are tunable and robust via external strain. We also propose high-dielectric-constant BN as an ideal substrate for the experimental realization of PbX, maintaining its nontrivial topology. These novel QSH insulators with giant gaps are a promising platform to enrich topological phenomena and expand potential applications at high temperature. PMID:26833133

  5. Room Temperature Quantum Spin Hall Insulator in Ethynyl-Derivative Functionalized Stanene Films

    PubMed Central

    Zhang, Run-wu; Zhang, Chang-wen; Ji, Wei-xiao; Li, Sheng-shi; Yan, Shi-shen; Hu, Shu-jun; Li, Ping; Wang, Pei-ji; Li, Feng

    2016-01-01

    Quantum spin Hall (QSH) insulators feature edge states that topologically protected from backscattering. However, the major obstacles to application for QSH effect are the lack of suitable QSH insulators with a large bulk gap. Based on first-principles calculations, we predict a class of large-gap QSH insulators in ethynyl-derivative functionalized stanene (SnC2X; X = H, F, Cl, Br, I), allowing for viable applications at room temperature. Noticeably, the SnC2Cl, SnC2Br, and SnC2I are QSH insulators with a bulk gap of ~0.2 eV, while the SnC2H and SnC2F can be transformed into QSH insulator under the tensile strains. A single pair of topologically protected helical edge states is established for the edge of these systems with the Dirac point locating at the bulk gap, and their QSH states are confirmed with topological invariant Z2 = 1. The films on BN substrate also maintain a nontrivial large-gap QSH effect, which harbors a Dirac cone lying within the band gap. These findings may shed new light in future design and fabrication of large-gap QSH insulators based on two-dimensional honeycomb lattices in spintronics. PMID:26728874

  6. Time-Resolved Photoluminescence Spectroscopy Of The Carrier Dynamics In GaAs/AlxGa1-xAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Polland, Hans J.; Kuhl, Jurgen; Gobel, Ernst O.

    1988-08-01

    Picosecond photoluminescence experiments at low temperature (6K) have been employed to study the trapping dynamics of photoexcited carriers in GaAs/AlGaAs single quantum wells for different shapes of the AlxGai_xAs confinement layers. We have obtained the following results by analyzing the spectral and temporal distribution of the photoluminescence after picosecond pulse excitation: Trapping efficiency is ==, 40% for a standard ungraded cladding layer (A10.3G1.7As with constant band gap and 5nm thick wells) but increases to ,-, 60% and 100% for samp es with a spatially parabolic or linear band gap profile of the confinement layers, respectively. Trapping times are appreciably shorter than the luminescence risetime which is between 60ps to 100ps. Thus carrier trapping does not impose severe limitations on the modulation speed of single quantum well devices up to frequencies in the order of 10GHz. Similar results are obtained for a well with a width of 1.2nm. Inhomogeneities in the carrier trapping mechanism due to well width fluctuations are not observed in our samples. In the second part we describe the photoluminescence properties of GaAs/A1,Gai_x As quantum wells (x=0.3) under the influence of electric fields perpendicular to the layers. We observe a drastic red shift and a concomitant strong increase of the electron-hole recombination lifetime for well widths > lOnm due to the quantum-confined Stark effect. At high fields (50-100kV/cm) field ionization due to tunneling leads to a decrease of both the photoluminescence yield and decay time, in accordance with a simple WKB theory

  7. Electronic, Optical, and Thermal Properties of Reduced-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Shouting

    Reduced-dimensional materials have attracted tremendous attention because of their new physics and exotic properties, which are of great interests for fundamental science. More importantly, the manipulation and engineering of matter on an atomic scale yield promising applications for many fields including nanoelectronics, nanobiotechnology, environments, and renewable energy. Because of the unusual quantum confinement and enhanced surface effect of reduced-dimensional materials, traditional empirical models suffer from necessary but unreliable parameters extracted from previously-studied bulk materials. In this sense, quantitative, parameter-free approaches are highly useful for understanding properties of reduced-dimensional materials and, furthermore, predicting their novel applications. The first-principles density functional theory (DFT) is proven to be a reliable and convenient tool. In particular, recent progress in many-body perturbation theory (MBPT) makes it possible to calculate excited-state properties, e.g., quasiparticle (QP) band gap and optical excitations, by the first-principles approach based on DFT. Therefore, during my PhD study, I employed first-principles calculations based on DFT and MBPT to systematically study fundamental properties of typical reduced-dimensional semiconductors, i.e., the electronic structure, phonons, and optical excitations of core-shell nanowires (NWs) and graphene-like two-dimensional (2D) structures of current interests. First, I present first-principles studies on how to engineer band alignments of nano-sized radial heterojunctions, Si/Ge core-shell NWs. Our calculation reveals that band offsets in these one-dimensional (1D) nanostructures can be tailored by applying axial strain or varying core-shell sizes. In particular, the valence band offset can be efficiently tuned across a wide range and even be diminished via applied strain. Two mechanisms contribute to this tuning of band offsets. Furthermore, varying the size of Si/Ge core-shell NWs and corresponding quantum confinement is shown to be efficient for modifying both valence and conduction band offsets simultaneously. Our proposed approaches to control band offsets in nano-sized heterojunctions may be of practical interest for nanoelectronic and photovoltaic applications. Additionally, I also studied the lattice vibrational modes of Si/Ge core-shell N-Ws. Our calculations show that the internal strain induced by the lattice mismatch between core and shell plays an important role in significantly shifting the frequency of characteristic optical modes of core-shell NWs. In particular, our simulation demonstrates that these frequency shifts can be detected by Raman-scattering experiments, giving rise to a convenient and nondestructive way to obtain structural information of core-shell materials. Meanwhile, another type of collective modes, the radial breathing modes (RBM), is identified in Si-core/Ge-shell NWs and their frequency dependence is explained by an elastic media model. Our studied vibrational modes and their frequency evolution are useful for thermoelectric applications based on core-shell nanostructures. Then I studied optical properties and exciton spectra of 2D semiconducting carbon structures. The energy spectra and wavefunctions of excitons in the 2D graphene derivatives, i.e., graphyne and graphane, are found to be strongly modified by quantum confinement, making them qualitatively different from the usual Rydberg series. However, their parity and optical selection rules are preserved. Thus a one-parameter hydrogenic model is applied to quantitatively explain the ab initio exciton spectra, and allows one to extrapolate the electron-hole binding energy from optical spectroscopies of 2D semiconductors without costly simulations. Meanwhile, our calculated optical absorption spectrum and enhanced spin singlet-triplet splitting project graphyne, an allotrope of graphene, as a good candidate for intriguing energy and biomedical applications. Lastly, we report first-principles results on electronic structures of 2D graphene-like system, i.e., silicene. For planar and simply buckled silicene structures, we confirm their zero-gap nature and show a significant renormalization of their Fermi velocity by including many-electron effects. However, the other two recently proposed silicene structures exhibit a finite band gap, indicating that they are gapped semiconductors instead of expected Dirac-fermion semimetals. This finite band gap of the latter two structures is preserved even with the Ag substrate included. The gap opening is explained by the symmetry breaking of the buckled structures. Moreover, our GW calculation reveals enhanced many-electron effects in these 2D structures. Finally the band gap of the latter two structures can be tuned in a wide range by applying strain.

  8. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  9. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  10. On the origin of blue emission from ZnO quantum dots synthesized by a sol-gel route

    NASA Astrophysics Data System (ADS)

    Han, Li-Li; Cui, Lan; Wang, Wei-Hua; Wang, Jiang-Long; Du, Xi-Wen

    2012-06-01

    ZnO quantum dots (QDs) with blue emission were synthesized by a sol-gel method. A series of control experiments were conducted to explore the origin of the blue emission. It is found that the blue emission arises from neither the quantum confinement nor intermediate products, and it can be achieved only in the presence of Li+ cations and excessive OH- anions. Moreover, the long decay time of the blue emission suggests a defect-related de-excitation process. On the basis of the experimental and calculation results, possible de-excitation paths for light emission were discussed, and the origin of the blue emission was determined as the electron transition from the conduction band to interstitial oxygen defects. Excessive OH- anions are responsible for the formation of interstitial oxygen defects, and Li+ ions can stabilize the defects by substituting for Zn atoms. Besides, Li+ ions can block the growth of ZnO QDs, broaden their band gap and cause a blue shift of the blue emission.

  11. Spin valley and giant quantum spin Hall gap of hydrofluorinated bismuth nanosheet.

    PubMed

    Gao, Heng; Wu, Wei; Hu, Tao; Stroppa, Alessandro; Wang, Xinran; Wang, Baigeng; Miao, Feng; Ren, Wei

    2018-05-09

    Spin-valley and electronic band topological properties have been extensively explored in quantum material science, yet their coexistence has rarely been realized in stoichiometric two-dimensional (2D) materials. We theoretically predict the quantum spin Hall effect (QSHE) in the hydrofluorinated bismuth (Bi 2 HF) nanosheet where the hydrogen (H) and fluorine (F) atoms are functionalized on opposite sides of bismuth (Bi) atomic monolayer. Such Bi 2 HF nanosheet is found to be a 2D topological insulator with a giant band gap of 0.97 eV which might host room temperature QSHE. The atomistic structure of Bi 2 HF nanosheet is noncentrosymmetric and the spontaneous polarization arises from the hydrofluorinated morphology. The phonon spectrum and ab initio molecular dynamic (AIMD) calculations reveal that the proposed Bi 2 HF nanosheet is dynamically and thermally stable. The inversion symmetry breaking together with spin-orbit coupling (SOC) leads to the coupling between spin and valley in Bi 2 HF nanosheet. The emerging valley-dependent properties and the interplay between intrinsic dipole and SOC are investigated using first-principles calculations combined with an effective Hamiltonian model. The topological invariant of the Bi 2 HF nanosheet is confirmed by using Wilson loop method and the calculated helical metallic edge states are shown to host QSHE. The Bi 2 HF nanosheet is therefore a promising platform to realize room temperature QSHE and valley spintronics.

  12. Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal.

    PubMed

    Jaiswal, Amit; Ghsoh, Siddhartha Sankar; Chattopadhyay, Arun

    2012-11-06

    We report the use of biopolymer-stabilized ZnS quantum dots (Q-dots) for cation exchange reaction-based easy sensing and removal of heavy metal ions such as Hg(2+), Ag(+), and Pb(2+) in water. Chitosan-stabilized ZnS Q-dots were synthesized in aqueous medium and were observed to have been converted to HgS, Ag(2)S, and PbS Q-dots in the presence of corresponding ions. The transformed Q-dots showed characteristic color development, with Hg(2+) being exceptionally identifiable due to the visible bright yellow color formation, while brown coloration was observed in other metal ions. The cation exchange was driven by the difference in the solubility product of the reactant and the product Q-dots. The cation exchanged Q-dots preserved the morphology of the reactant Q-dots and displayed volume increase based on the bulk crystal lattice parameters. The band gap of the transformed Q-dots showed a major increase from the corresponding bulk band gap of the material, demonstrating the role of quantum confinement. Next, we fabricated ZnS Q-dot impregnated chitosan film which was used to remove heavy metal ions from contaminated water as measured using atomic absorption spectroscopy (AAS). The present system could suitably be used as a simple dipstick for elimination of heavy metal ion contamination in water.

  13. Refractive indices measurement of (GaInP)m/(AlInP)n quasi-quanternaries and GaInP/AllnP multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kaneko, Yawara; Kishino, Katsumi

    1994-08-01

    Measurements of the refractive indices of (GaInP)m/(AlInP)n quasi-quaternaries (QQs), GaInP/AlInP multiple quantum wells (MQWs), and (Al(x)Ga(1 - x))(0.5) In(0.5)P quanternaries were made systematically, using the reflectance method, in photon energy ranges nearly as high as up to the band gap. Data was fitted using the modified single effective oscillator (MSEO) method. A single oscillator energy E(sub zero) of 4.17 + 0.49 x(sub eg) and dispersion energy (E(sub d) of 35.79 - 1.16 x(sub eg) was obtained for (GaInP)m/(AlInP)2 QQs, where the equivalent Al composition x(sub eg) is defined by the stacking film thickness ratio x(sub eg) = d(AlInP)/(d(GaInP) + d(AlInP). Agreement of refractive indices obtained for QQs and quaternary compounds with equivalent x(sub eg) has been confirmed. Still, for the GaInP/AlInP MQWs, MSEO fitting was also agreeable, using the same oscillator energy E(sub zero) and dispersion energy E(sub d) of the (GaInP)m/(AlInP)2 QQs with the same thickness ratio, and substituting band gap energy E(sub Gamma) values shifted due to quantum effects.

  14. Semiconductor nanostructures for plasma energetic systems

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Smerdov, Rostislav; Klimenkov, Boris

    2017-10-01

    In this talk we discuss the research results of the three types of ultrasmall electrodes namely the nanoelectrode arrays based on composite nanostructured porous silicon (PS) layers, porous GaP and nanocrystals of ZnO. These semiconductor materials are of great interest to nano- and optoelectronic applications by virtue of their high specific surface area and extensive capability for surface functionalization. The use of semiconductor (GaN) cathodes in photon-enhanced thermionic emission systems has also proved to be effective although only a few (less than 1%) of the incident photons exceed the 3.3 eV GaN band gap. This significant drawback provided us with a solid foundation for our research in the field of nanostructured PS, and composite materials based on it exhibiting nearly optimal parameters in terms of the band gap (1.1 eV). The band gap modification for PS nanostructured layers is possible in the range of less than 1 eV and 3 eV due to the existence of quantum confinement effect and the remarkable possibilities of PS surface alteration thus providing us with a suitable material for both cathode and anode fabrication. The obtained results are applicable for solar concentration and thermionic energy conversion systems. Dr. Sci., Ph.D, Principal Scientist, Professor.

  15. Synthesis and energy applications of mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the intrinsic modification of titania by doping, graphene quantum dot sensitization in mesoporous titania film was also investigated for visible light photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered mesoporous titania films showed synergistic effect in water splitting due to high surface area, band gap reduction, enhanced visible light absorption, and efficient charge separation and transport. This study suggests that plasma based doping and graphene quantum dot sensitization are promising strategies to reduce band gap and enhance visible light absorption of high surface area surfactant templated mesoporous titania films, leading to superior visible-light driven photoelectrochemical hydrogen production. The results demonstrate the importance of designing and manipulating the energy band alignment in composite nanomaterials for fundamentally improving visible light absorption, charge separation and transport, and thereby photoelectrochemical properties.

  16. Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehdi Aghaei, Sadegh; Calizo, Irene, E-mail: icalizo@fiu.edu

    2015-09-14

    The popularity of graphene owing to its unique and exotic properties has triggered a great deal of interest in other two-dimensional nanomaterials. Among them silicene shows considerable promise for electronic devices with a carrier mobility comparable to graphene, flexible buckled structure, and expected compatibility with silicon electronics. Using first-principle calculations based on density functional theory, the electronic properties of armchair silicene nanoribbons perforated with periodic nanoholes (ASiNRPNHs) are investigated. Two different configurations of mono-hydrogenated (:H) and di-hydrogenated (:2H) silicene edges are considered. Pristine armchair silicene nanoribbons (ASiNRs) can be categorized into three branches with width W = 3P − 1, 3P, andmore » 3P + 1, P is an integer. The order of their energy gaps change from “E{sub G} (3P − 1) < E{sub G} (3P) < E{sub G} (3P + 1)” for W-ASiNRs:H to “E{sub G} (3P + 1) < E{sub G} (3P − 1) < E{sub G} (3P)” for W-ASiNRs:2H. We found the band gaps of W-ASiNRs:H and (W + 2)-ASiNRs:2H are slightly different, giving larger band gaps for wider ASiNRs:2H. ASiNRPNHs' band gaps changed based on the nanoribbon's width, nanohole's repeat periodicity and position relative to the nanoribbon's edge compared to pristine ASiNRs because of changes in quantum confinement strength. ASiNRPNHs:2H are more stable than ASiNRPNHs:H and their band gaps are noticeably greater than ASiNRPNHs:H. We found that the value of energy band gap for 12-ASiNRPNHs:2H with repeat periodicity of 2 is 0.923 eV. This value is about 2.2 times greater than pristine ASiNR:2H and double that of the 12-ASiNRPNHs:H with repeat periodicity of 2.« less

  17. Gate-Defined Quantum Confinement in InSe-based van der Waals Heterostructures.

    PubMed

    Hamer, Matthew J; Tóvári, Endre; Zhu, Mengjian; Thompson, Michael Dermot; Mayorov, Alexander S; Prance, Jonathan; Lee, Yongjin; Haley, Richard; Kudrynskyi, Zakhar R; Patanè, Amalia; Terry, Daniel; Kovalyuk, Zakhar D; Ensslin, Klaus; Kretinin, Andrey V; Geim, Andre K; Gorbachev, Roman Vladislavovich

    2018-05-15

    Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.

  18. Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, C., E-mail: cedric.robert@insa-rennes.fr, E-mail: cedric.robert@tyndall.ie; Pedesseau, L.; Cornet, C.

    The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.

  19. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting in Tb and Yb co-doped glass containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Sekar, G.; Akrobetu, R.; Mu, R.; Morgan, S. H.

    2011-10-01

    Tb, Yb, and Ag co-doped glass nano-composites were synthesized in a lithium-lanthanum-aluminosilicate glass matrix (LLAS) by a melt-quench technique. Ag nanoparticles (NPs) were formed in the glass matrix and confirmed by optical absorption and transmission electron microscopy (TEM). Plasmon enhanced luminescence was observed. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting were studied for samples with different thermal annealing times. Because the Yb3+ emission at 940 - 1020 nm is matched well with the band gap of crystalline Si, the quantum cutting effect may have its potential application in silicon-based solar cells.

  20. Temperature dependence of quantized states in an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure

    NASA Astrophysics Data System (ADS)

    Li, C. F.; Lin, D. Y.; Huang, Y. S.; Chen, Y. F.; Tiong, K. K.

    1997-01-01

    Piezoreflectance (PzR) and contactless electroreflectance (CER) measurements of an In0.86Ga0.14As0.3P0.7/InP quantum well heterostructure as a function of temperature in the range of 20-300 K have been carried out. A careful analysis of the PzR and CER spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state and the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of EmnH(L) are evaluated. A detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of 11H exciton is evaluated and compared with that of the bulk material.

  1. Temperature dependence of quantized states in strained-layer In0.21Ga0.79As/GaAs single quantum well

    NASA Astrophysics Data System (ADS)

    Chi, Wuh-Sheng; Huang, Ying-Sheng; Qiang, Hao; Pollak, Fred H.; Pettit, David G.; Woodall, Jerry M.

    1994-02-01

    The piezoreflectance (PzR) and photoreflectance (PR) measurements of a strained-layer (001) In0.21Ga0.79As/GaAs single quantum well as a function of temperature in the range of 20 to 300 K have been carried out. A careful analysis of the PzR and PR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of E(sub mnH(L)) are evaluated. The detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of the 11H exciton is evaluated and compared with that of the bulk material.

  2. Temperature Dependence of Quantized States in Strained-Layer In0.21Ga0.79As/GaAs Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Chi, Wuh-Sheng; Huang, Ying-Sheng; Qiang, Hao; Pollak, Fred; Pettit, David; Woodall, Jerry

    1994-02-01

    The piezoreflectance (PzR) and photoreflectance (PR) measurements of a strained-layer (001) In0.21Ga0.79As/GaAs single quantum well as a function of temperature in the range of 20 to 300 K have been carried out. A careful analysis of the PzR and PR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy (light)-hole band state. The parameters that describe the temperature dependence of E mnH(L) are evaluated. The detailed study of the temperature variation of excitonic transition energies indicates that the main influence of temperature on quantized transitions is through the temperature dependence of the band gap of the constituent material in the well. The temperature dependence of the linewidth of the 11H exciton is evaluated and compared with that of the bulk material.

  3. Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots

    DOE PAGES

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; ...

    2016-11-29

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  4. Current rectification by self-assembled molecular quantum dots from first principles

    NASA Astrophysics Data System (ADS)

    Larade, Brian; Bratkovsky, Alexander

    2003-03-01

    We present results of first-principles calculations of the current rectification by self-assembled molecular quantum dots. Molecules of that kind should be synthesized with a central conjugated (narrow band-gap) part, and two peripheral saturated (wide band-gap) barrier groups of substantially different lengths L1 and L_2. The peripheral groups must end with chemical Â"anchorÂ" groups, enabling attachment of the molecule to the electrodes. In such molecules, if they are not longer than about 2-3 nm, the electron transport is likely to proceed by resonant tunneling through molecular orbitals (MO) centered on the conjugated part of the molecule (Â"quantum dotÂ") [1,2]. Generally, either LUMO (lowest unoccupied MO) or HOMO (highest occupied MO) will be most transparent to the tunneling electrons because of their different coupling to electrodes. We have studied (i) single benzene ring C6H6 [2] and (ii) naphthalene C10H8, separated from gold electrodes by alkane chains of different lengths with the use of the non-equilibrium Green's function method and self-consistent density-functional theory. The results show significant changes in electron density and potential distribution in the vicinity of molecule-electrode contact. In the case of a naphthalene quantum dot, separated from electrodes by asymmetric alkane groups (CH2)2 and (CH2)6, the I-V curve shows current rectification on the order of ˜ 10^2. [1] A.M. Bratkovsky and P.E. Kornilovitch, Phys. Rev. B (2002), to be published. [2] P. E. Kornilovitch, A.M. Bratkovsky, and R.S. Williams, Phys. Rev. B 66, 165436 (2002).

  5. InAs Colloidal Quantum Dots Synthesis via Aminopnictogen Precursor Chemistry.

    PubMed

    Grigel, Valeriia; Dupont, Dorian; De Nolf, Kim; Hens, Zeger; Tessier, Mickael D

    2016-10-05

    Despite their various potential applications, InAs colloidal quantum dots have attracted considerably less attention than more classical II-VI materials because of their complex syntheses that require hazardous precursors. Recently, amino-phosphine has been introduced as a cheap, easy-to-use and efficient phosphorus precursor to synthesize InP quantum dots. Here, we use aminopnictogen precursors to implement a similar approach for synthesizing InAs quantum dots. We develop a two-step method based on the combination of aminoarsine as the arsenic precursor and aminophosphine as the reducing agent. This results in state-of-the-art InAs quantum dots with respect to the size dispersion and band-gap range. Moreover, we present shell coating procedures that lead to the formation of InAs/ZnS(e) core/shell quantum dots that emit in the infrared region. This innovative synthesis approach can greatly facilitate the research on InAs quantum dots and may lead to synthesis protocols for a wide range of III-V quantum dots.

  6. [Infrared spectroscopy based on quantum cascade lasers].

    PubMed

    Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing

    2013-04-01

    Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.

  7. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    PubMed Central

    2015-01-01

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron–hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6–3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO. PMID:24689856

  8. Enhancing analog performance and suppression of subthreshold swing using hetero-junctionless double gate TFETs

    NASA Astrophysics Data System (ADS)

    Chauhan, Sudakar Singh; Sharma, Neha

    2017-12-01

    This paper proposes hetero-junctionless double gate tunnel field effect transistor (HJLDG-TFETs) for suppression of subthreshold swing (SS) using an InAs compound semiconductor material. The proposed device with high dielectric material, gives an excellent performance when InAs uses at source side. Because of low band gap of 0.36 eV , it reduces the potential barrier height of source channel interface causing higher band to band tunneling. Whereas, Si at the drain side with higher band gap of 1.12 eV , increasing the barrier height of drain channel interface causing lower quantum tunneling. As a result, the proposed device with high-k (HfO2) at 30 nm channel section provides a tremendous characteristics with high ION /IOFF ratio of 2 ×1011 , a point SS of 43.30 mV / decade and moderate SS of 56.75 mV / decade . All the above results show that the proposed device is assured for a low power switching application. The variation in gate supply voltage also analyzed for transconductance property of the device.

  9. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Im, J.; DeGottardi, W.

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  10. Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2

    DOE PAGES

    Fang, L.; Im, J.; DeGottardi, W.; ...

    2016-10-12

    Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less

  11. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture.

    PubMed

    Kongkanand, Anusorn; Tvrdy, Kevin; Takechi, Kensuke; Kuno, Masaru; Kamat, Prashant V

    2008-03-26

    Different-sized CdSe quantum dots have been assembled on TiO2 films composed of particle and nanotube morphologies using a bifunctional linker molecule. Upon band-gap excitation, CdSe quantum dots inject electrons into TiO2 nanoparticles and nanotubes, thus enabling the generation of photocurrent in a photoelectrochemical solar cell. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and (ii) improvement in the photoconversion efficiency by facilitating the charge transport through TiO2 nanotube architecture. The maximum IPCE (photon-to-charge carrier generation efficiency) obtained with 3 nm diameter CdSe nanoparticles was 35% for particulate TiO2 and 45% for tubular TiO2 morphology. The maximum IPCE observed at the excitonic band increases with decreasing particle size, whereas the shift in the conduction band to more negative potentials increases the driving force and favors fast electron injection. The maximum power-conversion efficiency

  12. MnNiO 3 revisited with modern theoretical and experimental methods

    DOE PAGES

    Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael; ...

    2017-11-03

    MnNiO 3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Montemore » Carlo study of the bulk properties of MnNiO 3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å 3, which compares well to the experimental value of 94.4 Å 3. A bulk modulus of 217 GPa is predicted for MnNiO 3. As a result, we rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO 3.« less

  13. MnNiO 3 revisited with modern theoretical and experimental methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael

    MnNiO 3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Montemore » Carlo study of the bulk properties of MnNiO 3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å 3, which compares well to the experimental value of 94.4 Å 3. A bulk modulus of 217 GPa is predicted for MnNiO 3. As a result, we rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO 3.« less

  14. Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.

    PubMed

    Su, Kang; Wang, Yuhua

    2010-03-01

    As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.

  15. Highly Efficient Defect Emission from ZnO:Zn and ZnO:S Powders

    NASA Astrophysics Data System (ADS)

    Everitt, Henry

    2013-03-01

    Bulk Zinc Oxide (ZnO) is a wide band gap semiconductor with an ultraviolet direct band gap energy of 3.4 eV and a broad, defect-related visible wavelength emission band centered near 2 eV. We have shown that the external quantum efficiency can exceed 50% for this nearly white emission band that closely matches the human dark-adapted visual response. To explore the potential of ZnO as a rare earth-free white light phosphor, we investigated the mechanism of efficient defect emission in three types of ZnO powders: unannealed, annealed, and sulfur-doped. Annealing and sulfur-doping of ZnO greatly increase the strength of defect emission while suppressing the UV band edge emission. Continuous wave and ultrafast one- and two-photon excitation spectroscopy are used to examine the defect emission mechanism. Low temperature photoluminescence (PL) and PL excitation (PLE) spectra were measured for all three compounds, and it was found that bound excitons mediate the defect emission. Temperature-dependent PLE spectra for the defect and band edge emission were measured to estimate trapping and activation energies of the bound excitons and clarify the role they play in the defect emission. Time-resolved techniques were used to ascertain the role of exciton diffusion, the effects of reabsorption, and the spatial distributions of radiative and non-radiative traps. In unannealed ZnO we find that defect emission is suppressed and UV band edge emission is inefficient (< 2%) because of reabsorption and non-radiative recombination due to a high density of non-radiative bulk traps. By annealing ZnO, bulk trap densities are reduced, and a high density of defects responsible for the broad visible emission are created near the surface. Interestingly, nearly identical PLE spectra are found for both the band edge and the defect emission, one of many indications that the defect emission is deeply connected to bound excitons. Quantum efficiency, also measured as a function of excitation wavelength, closely mirrors the PLE spectra for both emission bands. Sulfur-doped ZnO exhibits additional PLE and X-ray features indicative of a ZnS-rich surface shell that correlates with even more efficient defect emission. The results presented here offer hope that engineering defects in ZnO materials may significantly improve the quantum efficiency for white light phosphor applications. This work was supported by the Army's in-house laboratory innovative research program.

  16. Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Coutts, Janelle L.; Clausen, Christian A.

    2011-01-01

    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area.

  17. Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films

    NASA Astrophysics Data System (ADS)

    Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.

    2018-04-01

    By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.

  18. High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times

    NASA Astrophysics Data System (ADS)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.

  19. Near infrared emission of TbAG:Ce3+,Yb3+ phosphor for solar cell applications

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr3+, Gd3+,Gd3+-Eu3+, and Er3+-Tb3+ had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb3+-Yb3+, Pr3+-Yb3+, and Tm3+-Yb3+ has been reported. The Yb3+ ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb3+ is close to 100% and the energy of the only excited level of Yb3+ (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce3+-doped Tb3Al5O12 (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300-500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce3+ ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this paper, Ce3+ -Yb3+-codoped TbAG ceramics were prepared and the energy transfer (ET) including down conversion mechanism in Ce3+ - Yb3+ codoped TbAG ceramics have been evaluated by the photoluminescence (PL), the photoluminescence excitation (PLE), the lifetime and the quantum yield (QY), which was measured directly using an integrating sphere.

  20. Static strain tuning of quantum dots embedded in a photonic wire

    NASA Astrophysics Data System (ADS)

    Tumanov, D.; Vaish, N.; Nguyen, H. A.; Curé, Y.; Gérard, J.-M.; Claudon, J.; Donatini, F.; Poizat, J.-Ph.

    2018-03-01

    We use strain to statically tune the semiconductor band gap of individual InAs quantum dots (QDs) embedded in a GaAs photonic wire featuring very efficient single photon collection. Thanks to the geometry of the structure, we are able to shift the QD excitonic transition by more than 25 meV by using nano-manipulators to apply the stress. Moreover, owing to the strong transverse strain gradient generated in the structure, we can relatively tune two QDs located in the wire waveguide and bring them in resonance, opening the way to the observation of collective effects such as superradiance.

  1. III–V quantum light source and cavity-QED on Silicon

    PubMed Central

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  2. Fabrication et caracterisation de cristaux photoniques pour exaltation de fluorescence

    NASA Astrophysics Data System (ADS)

    Gascon, Annabelle

    2011-12-01

    In today's world, there is a pressing need for point-of-care molecular analysis that is fast, inexpensive and transportable. Lab-on-a- chips are designed to fulfill that need. They are micro-electromechanical systems (MEMS), fabricated with microelectronic techniques, that use the analytes physical properties to detect their presence in liquid samples. This detection can be performed by attaching the analyte to quantum dots. These quantum dots are semiconducting nanoparticles with narrow fluorescence band. In our project, we use a tuneable system with a two-slab photonic crystal that serves as a tuneable optical filter, detecting the presence and wavelength of these quantum dots. Photonic crystals are dielectrics with a variable refractive index, with a period near the visible light wavelength. They are called photonic crystals because they have a photonic band gap just as atomic crystals, periodic structure of atoms, have an electronic band gap. They are photonic because photons instead of electrons propagate through them. They can also enhance fluorescence from quantum dots at the photonic crystals guided resonance wavelength. My project objectives are to: (1) Fabricate two-slab photonic crystal, (2) Characterize photonic crystals, (3) Place quantum dots on photonic crystals, (4) Measure fluorescence enhancement. The device made during this project consists of a silicon wafer on which were deposited a 200 nm silicon nitride layer, then a 200 nm silicon dioxide layer and finally another 200 nm silicon nitride layer. An electron-beam lithography defines the photonic crystals and the MEMS. The photonic crystals are square lattices of holes 180 nm in diameter, at a period of 460 nm, etched through the two silicon nitride slabs. The two slabs are etched in a single step of Reactive Ion Etching (RIE). Then, the silicon under the photonic crystal is etched from the backside up to the nitride by deep-RIE. Finally, the oxide layer is removed in order to completely suspend the two-slab photonic crystal. The M EMS can change the gap between the two slabs in order to tune the guided resonance wavelength. An optical set-up is used to trace the photonic crystals transmission and reflection spectrum, in order to know the guided resonance position. A supercontinuum source illuminates the device at a normal incidence angle for wavelength between 400 nm and 800 nm. High-resolution spectra are obtained with a CCD camera spectrometer. Different types of one-slab photonic crystals are analyzed with this approach: we observe guided resonance peaks near 550 nm, 615 nm and 700 nm. Finally, a quantum dots microdrop is placed on the photonic crystal. The quantum dots emission wavelength matches with the photonic crystal guided resonance. A hyperspectral fluorescence microscope excites quantum dots between 436 nm and 483 nm, detects emission greater than 500 nm and plots a fluorescence wavelength spectrum. This set-up measures and compares the fluorescence of the quantum dots placed on and next to the photonic crystals. Our results show that the fluorescence is 30 times higher on the photonic crystals, but the fluorescence wavelength corresponds neither to the quantum dots emission nor to the photonic crystal guided resonance. In conclusion, this master thesis project demonstrates that it is possible to fabricate two-slab photonic crystals in silicon nitride and to plot their transmission and reflection spectra in order to find their guided resonance position. A fluorescence enhancement is visible, but at a different wavelength than of the quantum dots.

  3. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, S.; Peter, A. John, E-mail: a.john.peter@gmail.com

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-Vmore » narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.« less

  4. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49more » layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.« less

  5. Observation of quantum oscillation of work function in ultrathin-metal/semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takhar, Kuldeep; Meer, Mudassar; Khachariya, Dolar

    2015-09-15

    Quantization in energy level due to confinement is generally observed for semiconductors. This property is used for various quantum devices, and it helps to improve the characteristics of conventional devices. Here, the authors have demonstrated the quantum size effects in ultrathin metal (Ni) layers sandwiched between two large band-gap materials. The metal work function is found to oscillate as a function of its thickness. The thermionic emission current bears the signature of the oscillating work function, which has a linear relationship with barrier heights. This methodology allows direct observation of quantum oscillations in metals at room temperature using a Schottkymore » diode and electrical measurements using source-measure-units. The observed phenomena can provide additional mechanism to tune the barrier height of metal/semiconductor junctions, which are used for various electronic devices.« less

  6. Structural studies of n-type nc-Si-QD thin films for nc-Si solar cells

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Kar, Debjit

    2017-12-01

    A wide optical gap nanocrystalline silicon (nc-Si) dielectric material is a basic requirement at the n-type window layer of nc-Si solar cells in thin film n-i-p structure on glass substrates. Taking advantage of the high atomic-H density inherent to the planar inductively coupled low-pressure (SiH4 + CH4)-plasma, development of an analogous material in P-doped nc-Si-QD/a-SiC:H network has been tried. Incorporation of C in the Si-network extracted from the CH4 widens the optical band gap; however, at enhanced PH3-dilution of the plasma spontaneous miniaturization of the nc-Si-QDs below the dimension of Bohr radius (∼4.5 nm) further enhances the band gap by virtue of the quantum size effect. At increased flow rate of PH3, dopant induced continuous amorphization of the intrinsic crystalline network is counterbalanced by the further crystallization promoted by the supplementary atomic-H extracted from PH3 (1% in H2) in the plasma, eventually holding a moderately high degree of crystallinity. The n-type wide band gap (∼1.93 eV) window layer with nc-Si-QDs in adequate volume fraction (∼52%) could furthermore be instrumental as an effective seed layer for advancing sequential crystallization in the i-layer of nc-Si solar cells with n-i-p structure in superstrate configuration.

  7. Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Angelov, O.; Stoyanova, D.; Ivanova, I.

    2016-10-01

    Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.

  8. Many-body effects and excitonic features in 2D biphenylene carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann, E-mail: johann.luder@physics.uu.se; Puglia, Carla; Eriksson, Olle

    2016-01-14

    The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV asmore » well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon’s excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.« less

  9. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Łepkowski, Sławomir P.; Bardyszewski, Witold

    2017-05-01

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  10. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells.

    PubMed

    Łepkowski, Sławomir P; Bardyszewski, Witold

    2017-05-17

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  11. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency.

    PubMed

    Zhou, Chenkun; Lin, Haoran; Tian, Yu; Yuan, Zhao; Clark, Ronald; Chen, Banghao; van de Burgt, Lambertus J; Wang, Jamie C; Zhou, Yan; Hanson, Kenneth; Meisner, Quinton J; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Lambers, Eric; Djurovich, Peter; Ma, Biwu

    2018-01-21

    Single crystalline zero-dimensional (0D) organic-inorganic hybrid materials with perfect host-guest structures have been developed as a new generation of highly efficient light emitters. Here we report a series of lead-free organic metal halide hybrids with a 0D structure, (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I) and (C 9 NH 20 ) 2 SbX 5 (X = Cl), in which the individual metal halide octahedra (SnX 6 4- ) and quadrangular pyramids (SbX 5 2- ) are completely isolated from each other and surrounded by the organic ligands C 4 N 2 H 14 X + and C 9 NH 20 + , respectively. The isolation of the photoactive metal halide species by the wide band gap organic ligands leads to no interaction or electronic band formation between the metal halide species, allowing the bulk materials to exhibit the intrinsic properties of the individual metal halide species. These 0D organic metal halide hybrids can also be considered as perfect host-guest systems, with the metal halide species periodically doped in the wide band gap matrix. Highly luminescent, strongly Stokes shifted broadband emissions with photoluminescence quantum efficiencies (PLQEs) of close to unity were realized, as a result of excited state structural reorganization of the individual metal halide species. Our discovery of highly luminescent single crystalline 0D organic-inorganic hybrid materials as perfect host-guest systems opens up a new paradigm in functional materials design.

  12. Photoluminescence spectroscopy and the effective mass theory of strained (In,Ga)As/GaAs heterostructures grown on (112)B GaAs substrates

    NASA Technical Reports Server (NTRS)

    Henderson, R. H.; Sun, D.; Towe, E.

    1995-01-01

    The photoluminescence characteristics of pseudomorphic In(0.19)Ga(0.81)As/GaAs quantum well structures grown on both the conventional (001) and the unconventional (112)B GaAs substrate are investigated. It is found that the emission spectra of the structures grown on the (112)B surface exhibit some spectral characteristics not observed on similar structures grown on the (001) surface. A spectral blue shift of the e yields hh1 transition with increasing optical pump intensity is observed for the quantum wells on the (112) surface. This shift is interpreted to be evidence of a strain-induced piezoelectric field. A second spectral feature located within the band gap of the In(0.19)Ga(0.81)As layer is also observed for the (112) structure; this feature is thought to be an impurity-related emission. The expected transition energies of the quantum well structures are calculated using the effective mass theory based on the 4 x 4 Luttinger valence band Hamiltonian, and related strain Hamiltonian.

  13. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.

  14. Semiconductor quantum dot scintillation under gamma-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; Wang, T

    2006-08-23

    We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma-ray irradiation, and compare the energy resolution of the 59 keV line of Americium 241 obtained with our quantum dot-glass nanocomposite material to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon transport models. These results demonstrate the potential of quantum dots for room-temperature gamma-ray detection, which has applications in medical imaging, environmental monitoring, as well asmore » security and defense. Present technology in gamma radiation detection suffers from flexibility and scalability issues. For example, bulk Germanium provides fine energy resolution (0.2% energy resolution at 1.33 MeV) but requires operation at liquid nitrogen temperature. On the other hand, Cadmium-Zinc-Telluride is a good room temperature detector ( 1% at 662 keV) but the size of the crystals that can be grown is limited to a few centimeters in each direction. Finally, the most commonly used scintillator, Sodium Iodide (NaI), can be grown as large crystals but suffers from a lack of energy resolution (7% energy resolution at 662 keV). Recent advancements in nanotechnology6-10 have provided the possibility of controlling materials synthesis at the molecular level. Both morphology and chemical composition can now be manipulated, leading to radically new material properties due to a combination of quantum confinement and surface to volume ratio effects. One of the main consequences of reducing the size of semiconductors down to nanometer dimensions is to increase the energy band gap, leading to visible luminescence, which suggests that these materials could be used as scintillators. The visible band gap of quantum dots would also ensure both efficient photon counting (better coupling with photomultipliers optimized for the visible region), and high photon output (smaller individual photon energy results in more photons produced) at room temperature, which is essential for effective Poisson counting (the energy resolution {Delta}E/E is inversely proportional to the square root of the number of photons collected).« less

  15. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  16. The effect of exchange interaction on quasiparticle Landau levels in narrow-gap quantum well heterostructures.

    PubMed

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2012-04-04

    Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures. © 2012 IOP Publishing Ltd

  17. Effect of impurities on optical properties of pentaerythritol tetranitrate

    NASA Astrophysics Data System (ADS)

    Tsyshevskiy, Roman; Sharia, Onise; Kuklja, Maija M.

    2012-03-01

    Despite numerous efforts, the electronic nature of initiation of high explosives to detonation in general and mechanisms of their sensitivity to laser initiation in particular are far from being completely understood. Recent experiments show that Nd:YAG laser irradiation (at 1064nm) causes resonance explosive decomposition of PETN samples. In an attempt to shed some light on electronic excitations and to develop a rigorous interpretation to these experiments, the electronic structure and optical properties of PETN and a series of common impurities were studied. Band gaps (S0→S1) and optical singlet-triplet (S0→T1) transitions in both an ideal material and PETN containing various defects were simulated by means of state-of-the-art quantum-chemical computational techniques. It was shown that the presence of impurities in the PETN crystal causes significant narrowing of the band gap. The structure and role of molecular excitons in PETN are discussed.

  18. Highly conducting and wide band gap phosphorous doped nc-Si–QD/a-SiC films as n-type window layers for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-05-23

    Nano-crystalline silicon quantum dots (Si-QDs) embedded in the phosphorous doped amorphous silicon carbide (a-SiC) matrix has been successfully prepared at a low temperature (300 °C) by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD) system from (SiH{sub 4} + CH{sub 4})-plasma with PH{sub 3} as the doping gas. The effect of PH{sub 3} flow rate on structural, optical and electrical properties of the films has been studied. Phosphorous doped nc-Si–QD/a-SiC films with high optical band gap (>1.9 eV) and superior conductivity (~10{sup −2} S cm{sup −1}) are obtained, which could be appropriately used as n-type window layers for nc-Si solarmore » cells in n-i-p configuration.« less

  19. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    PubMed

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  20. Resonant tunneling diode based on band gap engineered graphene antidot structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palla, Penchalaiah, E-mail: penchalaiah.palla@vit.ac.in; Ethiraj, Anita S.; Raina, J. P.

    The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green’s Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved themore » Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.« less

  1. Indium phosphide nanowires and their applications in optoelectronic devices.

    PubMed

    Zafar, Fateen; Iqbal, Azhar

    2016-03-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II-VI and I-VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III-V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core-shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed.

  2. Observation of a well-defined hybridization gap and in-gap states on the SmB6 (001) surface

    NASA Astrophysics Data System (ADS)

    Sun, Zhixiang; Maldonado, Ana; Paz, Wendel S.; Inosov, Dmytro S.; Schnyder, Andreas P.; Palacios, J. J.; Shitsevalova, Natalya Yu.; Filipov, Vladimir B.; Wahl, Peter

    2018-06-01

    The rise of topology in condensed-matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been proposed that a band inversion between 5 d and 4 f bands gives rise to topologically protected surface states. However, unambiguous proof of the existence and topological nature of these surface states is still missing, and its low-energy electronic structure is still not fully established. Here we present a study of samarium hexaboride by ultralow-temperature scanning tunneling microscopy and spectroscopy. We obtain clear atomically resolved topographic images of the sample surface. Our tunneling spectra reveal signatures of a hybridization gap with a size of about 8 meV and with a reduction of the differential conductance inside the gap by almost half, and surprisingly, several strong resonances below the Fermi level. The spatial variations of the energy of the resonances point toward a microscopic variation of the electronic states by the different surface terminations. High-resolution tunneling spectra acquired at 100 mK reveal a splitting of the Kondo resonance, possibly due to the crystal electric field.

  3. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure.

    PubMed

    Warrier, Anita R; Gandhimathi, R

    2018-04-27

    In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm -1 , 1078.17 cm -1 , 1255.60 cm -1 , 1466.91 cm -1 . The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼10 4 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.

  4. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure

    NASA Astrophysics Data System (ADS)

    Warrier, Anita R.; Gandhimathi, R.

    2018-07-01

    In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm‑1, 1078.17 cm‑1, 1255.60 cm‑1, 1466.91 cm‑1. The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼104 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.

  5. InP/ZnSe/ZnS core-multishell quantum dots for improved luminescence efficiency

    NASA Astrophysics Data System (ADS)

    Greco, Tonino; Ippen, Christian; Wedel, Armin

    2012-04-01

    Semiconductor quantum dots (QDs) exhibit unique optical properties like size-tunable emission color, narrow emission peak, and high luminescence efficiency. QDs are therefore investigated towards their application in light-emitting devices (QLEDs), solar cells, and for bio-imaging purposes. In most cases QDs made from cadmium compounds like CdS, CdSe or CdTe are studied because of their facile and reliable synthesis. However, due to the toxicity of Cd compounds and the corresponding regulation (e.g. RoHS directive in Europe) these materials are not feasible for customer applications. Indium phosphide is considered to be the most promising alternative because of the similar band gap (InP 1.35 eV, CdSe 1.73 eV). InP QDs do not yet reach the quality of CdSe QDs, especially in terms of photoluminescence quantum yield and peak width. Typically, QDs are coated with another semiconductor material of wider band gap, often ZnS, to passivate surface defects and thus improve luminescence efficiency. Concerning CdSe QDs, multishell coatings like CdSe/CdS/ZnS or CdSe/ZnSe/ZnS have been shown to be advantageous due to the improved compatibility of lattice constants. Here we present a method to improve the luminescence efficiency of InP QDs by coating a ZnSe/ZnS multishell instead of a ZnS single shell. ZnSe exhibits an intermediate lattice constant of 5.67 Å between those of InP (5.87 Å) and ZnS (5.41 Å) and thus acts as a wetting layer. As a result, InP/ZnSe/ZnS is introduced as a new core-shell quantum dot material which shows improved photoluminescence quantum yield (up to 75 %) compared to the conventional InP/ZnS system.

  6. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    PubMed

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  7. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  8. The Property, Preparation and Application of Topological Insulators: A Review

    PubMed Central

    Tian, Wenchao; Shi, Jing; Wang, Yongkun

    2017-01-01

    Topological insulator (TI), a promising quantum and semiconductor material, has gapless surface state and narrow bulk band gap. Firstly, the properties, classifications and compounds of TI are introduced. Secondly, the preparation and doping of TI are assessed. Some results are listed. (1) Although various preparation methods are used to improve the crystal quality of the TI, it cannot reach the industrialization. Fermi level regulation still faces challenges; (2) The carrier type and lattice of TI are affected by non-magnetic impurities. The most promising property is the superconductivity at low temperature; (3) Magnetic impurities can destroy the time-reversal symmetry of the TI surface, which opens the band gap on the TI surface resulting in some novel physical effects such as quantum anomalous Hall effect (QAHE). Thirdly, this paper summarizes various applications of TI including photodetector, magnetic device, field-effect transistor (FET), laser, and so on. Furthermore, many of their parameters are compared based on TI and some common materials. It is found that TI-based devices exhibit excellent performance, but some parameters such as signal to noise ratio (S/N) are still lower than other materials. Finally, its advantages, challenges and future prospects are discussed. Overall, this paper provides an opportunity to improve crystal quality, doping regulation and application of TI. PMID:28773173

  9. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE PAGES

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...

    2017-12-28

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  10. Statistical thermodynamic foundation for photovoltaic and photothermal conversion. IV. Solar cells with larger-than-unity quantum efficiency revisited

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Landsberg, Peter T.; De Vos, Alexis; Desoete, Bart

    2001-02-01

    A detailed balance solar energy conversion model offering a single treatment of both photovoltaic and photothermal conversion is expounded. It includes a heat rejection mechanism. The effect of multiple impact ionizations on the solar cell efficiency is reconsidered by including the constraints dictated by the first law of thermodynamics (which already exist in the model) and it improves of course the solar cell efficiency. However the upper bound efficiencies previously derived are too optimistic as they do not take into consideration the necessary increase in solar cell temperature. The cell efficiency operating under unconcentrated radiation is a few percent lower than in the ideal case (i.e., with perfect cooling). Wider band gap materials are recommended for those applications where the cell cooling is not effective. The best operation of naturally ventilated cells is under unconcentrated or slightly concentrated solar radiation. Increasing the (forced) ventilation rate allows an increase of the optimum concentration ratio. Additional effects such as the radiation reflectance and radiative pair recombination efficiency are also considered. A sort of threshold minimum band gap depending on the last effect is emphasized: materials with band gaps narrower than this threshold are characterized by very low cell efficiency.

  11. Observation of fractional Chern insulators in a van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Spanton, Eric M.; Zibrov, Alexander A.; Zhou, Haoxin; Taniguchi, Takashi; Watanabe, Kenji; Zaletel, Michael P.; Young, Andrea F.

    2018-04-01

    Topologically ordered phases are characterized by long-range quantum entanglement and fractional statistics rather than by symmetry breaking. First observed in a fractionally filled continuum Landau level, topological order has since been proposed to arise more generally at fractional fillings of topologically nontrivial Chern bands. Here we report the observation of gapped states at fractional fillings of Harper-Hofstadter bands arising from the interplay of a magnetic field and a superlattice potential in a bilayer graphene–hexagonal boron nitride heterostructure. We observed phases at fractional filling of bands with Chern indices C=‑1, ±2, and ±3. Some of these phases, in C=‑1 and C=2 bands, are characterized by fractional Hall conductance—that is, they are known as fractional Chern insulators and constitute an example of topological order beyond Landau levels.

  12. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  13. Structural and optoelectronic studies on Ag-CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Ibrahim Mohammed S., M.; Gubari, Ghamdan M. M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    In the present study, we have successfully deposited CdS quantum dot thin films and Ag doped CdS on a glass slide by simple and economical chemical bath deposition at room temperature. The X-ray diffraction method analysis reveals that CdS thin films exhibit hexagonal structure when compared with standard JCPDS data. The estimated average crystallite size of the quantum dots and resulted in the least crystallite size of ˜9 nm. a comparison between the optical and electrical properties of the films before and after doping Ag was made through measuring and analyzing the curves for UV and I-V. From UV absorption spectra we observed that the samples exhibited a band edge near ˜400 nm with a slight deviation with the presence of excitonic peak for both CdS and Ag doped CdS. The presence of excitonic peak may be referred to the formation of quantum dots. The calculated band gap energy of thin films was found to be 3.45 eV and 3.15 eV for both CdS and Ag doped CdS thin films respectively, where the optical absorption spectra of Ag doped CdS nanoparticles also exhibit shift with respect to that of CdS quantum dots thin films. The photosensitive of CdS thin films show an increase in photocurrent when Ag doped CdS.

  14. Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin

    2018-03-01

    In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.

  15. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2015-08-01

    The electronic structures of short period mGaN/nGayAl1-yN and mInyGa1-yN/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations, the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.

  16. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals

    PubMed Central

    Mudd, G. W.; Molas, M. R.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L.; Potemski, M.; Fal’ko, V. I.; Patanè, A.

    2016-01-01

    The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies. PMID:28008964

  17. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals.

    PubMed

    Mudd, G W; Molas, M R; Chen, X; Zólyomi, V; Nogajewski, K; Kudrynskyi, Z R; Kovalyuk, Z D; Yusa, G; Makarovsky, O; Eaves, L; Potemski, M; Fal'ko, V I; Patanè, A

    2016-12-23

    The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.

  18. Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Liu, Cheng-Cheng; Zhao, Jijun; Yao, Yugui

    2018-03-01

    Monolayer group-III monochalcogenides (MX, M = Ga, In; X = S, Se, Te), an emerging category of two-dimensional (2D) semiconductors, hold great promise for electronics, optoelectronics and catalysts. By first-principles calculations, we show that the phonon dispersion and Raman spectra, as well as the electronic and topological properties of monolayer MX can be tuned by oxygen functionalization. Chemisorption of oxygen atoms on one side or both sides of the MX sheet narrows or even closes the band gap, enlarges work function, and significantly reduces the carrier effective mass. More excitingly, InS, InSe, and InTe monolayers with double-side oxygen functionalization are 2D topological insulators with sizeable bulk gap up to 0.21 eV. Their low-energy bands near the Fermi level are dominated by the px and py orbitals of atoms, allowing band engineering via in-plane strains. Our studies provide viable strategy for realizing quantum spin Hall effect in monolayer group-III monochalcogenides at room temperature, and utilizing these novel 2D materials for high-speed and dissipationless transport devices.

  19. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-10-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  20. A room-temperature-operated Si LED with β-FeSi2 nanocrystals in the active layer: μW emission power at 1.5 μm

    NASA Astrophysics Data System (ADS)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Balagan, S. A.; Dotsenko, S. A.; Galkin, K. N.; Galkin, N. G.; Shamirzaev, T. S.; Gutakovskii, A. K.; Latyshev, A. V.; Iinuma, M.; Terai, Y.

    2017-03-01

    This article describes the development of an Si-based light-emitting diode with β-FeSi2 nanocrystals embedded in the active layer. Favorable epitaxial conditions allow us to obtain a direct band gap type-I band alignment Si/β-FeSi2 nanocrystals/Si heterostructure with optical transition at a wavelength range of 1500-1550 nm at room temperature. Transmission electron microscopy data reveal strained, defect-free β-FeSi2 nanocrystals of diameter 6 and 25 nm embedded in the Si matrix. Intense electroluminescence was observed at a pumping current density as low as 0.7 A/cm2. The device reached an optical emission power of up to 25 μW at 9 A/cm2 with an external quantum efficiency of 0.009%. Watt-Ampere characteristic linearity suggests that the optical power margin of the light-emitting diode has not been exhausted. Band structure calculations explain the luminescence as being mainly due to radiative recombination in the large β-FeSi2 nanocrystals resulting from the realization of an indirect-to-direct band gap electronic configuration transformation arising from a favorable deformation of nanocrystals. The direct band gap structure and the measured short decay time of the luminescence of several tens of ns give rise to a fast operation speed for the device. Thus a method for developing a silicon-based photonic integrated circuit, combining complementary metal-oxide-semiconductor technology functionality and near-infrared light emission, is reported here.

  1. Phonon-Induced Topological Transition to a Type-II Weyl Semimetal

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Lin; Jo, Na Hyun; Wu, Yun; Kaminski, Adam; Canfield, Paul C.; Johnson, Duane D.

    The emergence of topological quantum states requires certain combinations of crystalline symmetry with or without time reversal symmetry. Without restricting to searches for crystal structures with non-symmorphic symmetry operations in the space groups, we have studied the interplay between crystal symmetry, atomic displacements (lattice vibration), band degeneracy and topology. For a system with a full gap opening between the two band manifolds near the Fermi energy, we show that small atomic displacements (accessible via optical phonons near room temperature) can lower the symmetry to induce type-II Weyl points at the boundary between a pair of closely-lying electron and hole pockets. DOE Ames Laboratory LDRD.

  2. Photocatalytic hydrogen evolution over β-iron silicide under infrared-light irradiation.

    PubMed

    Yoshimizu, Masaharu; Kobayashi, Ryoya; Saegusa, Makoto; Takashima, Toshihiro; Funakubo, Hiroshi; Akiyama, Kensuke; Matsumoto, Yoshihisa; Irie, Hiroshi

    2015-02-18

    We investigated the ability of β-iron silicide (β-FeSi2) to serve as a hydrogen (H2)-evolution photocatalyst due to the potential of its conduction band bottom, which may allow thermodynamically favorable H2 evolution in spite of its small band-gap of 0.80 eV. β-FeSi2 had an apparent quantum efficiency for H2 evolution of ∼24% up to 950 nm (near infrared light), in the presence of the dithionic acid ion (S2O6(2-)) as a sacrificial agent. It was also sensitive to infrared light (>1300 nm) for H2 evolution.

  3. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

    PubMed Central

    Sandeep, C. S. Suchand; Cate, Sybren ten; Schins, Juleon M.; Savenije, Tom J.; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J.; Siebbeles, Laurens D. A.

    2013-01-01

    Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron–hole pairs and Auger recombination. Above a mobility of ~1 cm2 V−1 s−1, all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley–Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots. PMID:23974282

  4. Quantum hall ferromagnets

    NASA Astrophysics Data System (ADS)

    Kumar, Akshay

    We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.

  5. Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Ru; Niu, Haihong; Ji, Fengwei; Wan, Lei; Mao, Xiaoli; Guo, Huier; Xu, Jinzhang; Cao, Guozhong

    2016-11-01

    PbS is a promising light harvester for near-infrared (NIR) responsive quantum dot (QD) photovoltaics due to its narrow bulk band gap (0.41 eV) and large exciton Bohr radius (18 nm). However, the relatively low conduction band (CB) and high-density surface defects of PbS as two major drawbacks for its use in solar cells severely hamper the photovoltaic performance enhancement. In this work, a modified solution-based successive ionic layer adsorption and reaction (SILAR) utilizing mixed cationic precursors of Pb2+ and Cd2+ is explored, and such a scheme offers two benefits, band-structure tailoring and surface passivation. In-situ deposited CdS suppresses the excessive growth of PbS in the mesopores, thereby facilitating the favorable electron injection from PbS to TiO2 in view of the up-shifted CB level of QDs; the intimate interpenetration of two sulfides with each other leads to superior passivation of trap state defects on PbS, which suppresses the interfacial charge recombination. With the construction of photovoltaics based on such a hybrid (Pb,Cd)S/CdS configuration, impressive power conversion efficiency up to 4.08% has been reached, outperforming that of the conventional PbS/CdS pattern (2.95%). This work highlights the great importance of band-structure tailoring and surface passivation for constructing highly efficient PbS QD photovoltaics.

  6. Opto-electronic properties of P-doped nc-Si–QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-07-14

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si–QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si–C bonds in the amorphous matrix and the embedded high densitymore » tiny nc-Si–QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si–QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si–QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si–QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si–QD/a-SiC:H films grown at ∼300 °C, demonstrating wide optical gap ∼1.86–1.96 eV and corresponding high electrical conductivity ∼4.5 × 10{sup −1}–1.4 × 10{sup −2} S cm{sup −1}, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.« less

  7. Opto-electronic properties of P-doped nc-Si-QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2016-07-01

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.

  8. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na2 SeO3 as Se source and investigating optical properties.

    PubMed

    Khafajeh, R; Molaei, M; Karimipour, M

    2017-06-01

    In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na 2 SeO 3 as the Se source by a rapid and room temperature photochemical (UV-assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR), and energy dispersive X-ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round-shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2 T 2 acceptor levels of Cu 2 + . The emission was increased by increasing the Cu 2 + ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%. Copyright © 2016 John Wiley & Sons, Ltd.

  9. From Ba{sub 3}Ta{sub 5}O{sub 14}N to LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2}: Decreasing the optical band gap of a photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anke, B.; Bredow, T.; Pilarski, M.

    Yellow LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was successfully synthesized as phase-pure material crystallizing isostructurally to previously reported Ba{sub 3}Ta{sub 5}O{sub 14}N and mixed-valence Ba{sub 3}Ta{sup V}{sub 4}Ta{sup IV}O{sub 15}. The electronic structure of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} was studied theoretically with the range-separated hybrid method HSE06. The most stable structure was obtained when lanthanum was placed on 2a and nitrogen on 4h sites confirming Pauling's second rule. By incorporating nitrogen, the measured band gap decreases from ∼3.8 eV for the oxide via 2.74 eV for Ba{sub 3}Ta{sub 5}O{sub 14}N to 2.63 eV for the new oxide nitride, giving risemore » to an absorption band well in the visible-light region. Calculated fundamental band gaps confirm the experimental trend. The atom-projected density of states has large contributions from N2p orbitals close to the valence band edge. These are responsible for the observed band gap reduction. Photocatalytic hydrogen formation was investigated and compared with that of Ba{sub 3}Ta{sub 5}O{sub 14}N revealing significantly higher activity for LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} under UV-light. - Graphical abstract: X-ray powder diffraction pattern of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} with the results of the Rietveld refinements. Inset: Unit cell of LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2} and polyhedral representation of the crystal structure. - Highlights: • Synthesis of a new oxide nitride LaBa{sub 2}Ta{sub 5}O{sub 13}N{sub 2}. • Refinement of the crystal structure. • Quantum chemical calculations provided band gap close to the measured value. • New phase shows a higher photocatalytic H{sub 2} evolution rate compared to prior tested Ba{sub 3}Ta{sub 5}O{sub 14}N.« less

  10. Quantum many-body intermetallics: Phase stability of Fe3Al and small-gap formation in Fe2VAl

    NASA Astrophysics Data System (ADS)

    Kristanovski, Oleg; Richter, Raphael; Krivenko, Igor; Lichtenstein, Alexander I.; Lechermann, Frank

    2017-01-01

    Various intermetallic compounds harbor subtle electronic correlation effects. To elucidate this fact for the Fe-Al system, we perform a realistic many-body investigation based on a combination of density functional theory with dynamical mean-field theory in a charge self-consistent manner. A better characterization and understanding of the phase stability of bcc-based D 03-Fe3Al through an improved description of the correlated charge density and the magnetic energy is achieved. Upon replacement of one Fe sublattice with V, the Heusler compound Fe2VAl is realized, known to display bad-metal behavior and increased specific heat. Here we document a charge-gap opening at low temperatures in line with previous experimental work. The gap structure does not match conventional band theory and is reminiscent of (pseudo)gap characteristics in correlated oxides.

  11. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    NASA Astrophysics Data System (ADS)

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.

  12. Specific features of the spectra and relaxation kinetics of long-wavelength photoconductivity in narrow-gap HgCdTe epitaxial films and heterostructures with quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Ikonnikov, A. V.; Antonov, A. V.

    2013-11-15

    The spectra and relaxation kinetics of interband photoconductivity are investigated in narrow-gap Hg{sub 1-x}Cd{sub x}Te epitaxial films with x = 0.19-0.23 and in structures with HgCdTe-based quantum wells (QWs), having an interband-transition energy in the range of 30-90 meV, grown by molecular-beam epitaxy on GaAs (013) substrates. A long-wavelength sensitivity band caused by impurities or defects is found in the spectra of the structures with quantum wells in addition to the interband photoconductivity. It is shown that the lifetimes of nonequilibrium carriers in the structures with QWs is less than in bulk samples at the same optical-transition energy. From themore » measured carrier lifetimes, the ampere-watt responsivity and the equivalent noise power for a film with x = 0.19 at a wavelength of 19 {mu}m are estimated. When investigating the relaxation kinetics of the photoconductivity at 4.2 K in high excitation regime, it is revealed that radiative recombination is dominant over other mechanisms of nonequilibrium-carrier recombination.« less

  13. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  14. The effects of temperature on optical properties of InGaN/GaN multiple quantum well light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhu, Youhua; Huang, Jing; Deng, Honghai; Wang, Meiyu; Yin, HaiHong

    2017-02-01

    The effects of temperature on the optical properties of InGaN/GaN quantum well (QW) light-emitting diodes have been investigated by using the six-by-six K-P method taking into account the temperature dependence of band gaps, lattice constants, and elastic constants. The numerical results indicate that the increase of temperature leads to the decrease of the spontaneous emission rate at the same injection current density due to the redistribution of carrier density and the increase of the non-radiative recombination rate. The product of Fermi-Dirac distribution functions of electron fc n and hole ( 1 - fv U m ) for the transitions between the three lowest conduction subbands (c1-c3) and the top six valence subbands (v1-v6) is larger at the lower temperature, which indicates that there are more electron-hole pairs distributed on the energy levels. It should be noted that the optical matrix elements of the inter-band transitions slightly increase at the higher temperature. In addition, the internal quantum efficiency of the InGaN/GaN QW structure is evidently decreased with increasing temperature.

  15. Continuous-wave mid-infrared photonic crystal light emitters at room temperature

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Shi, Zhisheng

    2017-01-01

    Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.

  16. Trends on band alignments: Validity of Anderson's rule in SnS2- and SnSe2-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.

    2018-04-01

    Van der Waals (vdW) heterostructures are promising candidates for building blocks in novel electronic and optoelectronic devices with tailored properties, since their electronic action is dominated by the band alignments upon their contact. In this work, we analyze 10 vdW heterobilayers based on tin dichalcogenides by first-principles calculations. Structural studies show that all systems are stable, and that commensurability leads to smaller interlayer distances. Using hybrid functional calculations, we derive electronic properties and band alignments for all the heterosystems and isolated two-dimensional (2D) crystals. Natural band offsets are derived from calculated electron affinities and ionization energies of 11 freestanding 2D crystals. They are compared with band alignments in true heterojunctions, using a quantum mechanical criterion, and available experimental data. For the hBN/SnSe 2 system, we show that hBN suffers an increase in band gap, while leaving almost unchanged the electronic properties of SnSe2. Similarly, MX2 (M = Mo, W; X = S, Se) over SnX2 preserve the natural discontinuities from each side of the heterobilayer. Significant charge transfer occurs in junctions with graphene, which becomes p-doped and forms an Ohmic contact with SnX2. Zirconium and hafnium dichalcogenides display stronger interlayer interactions, leading to larger shifts in band alignments with tin dichalcogenides. Significant orbital overlap is found, which creates zero conduction band offset systems. The validity of the Anderson electron affinity rule is discussed. Failures of this model are traced back to interlayer interaction, band hybridization, and quantum dipoles. The systematic work sheds light on interfacial engineering for future vdW electronic and optoelectronic devices.

  17. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

    NASA Astrophysics Data System (ADS)

    Blancon, J.-C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M. M.; Appavoo, K.; Sfeir, M. Y.; Tretiak, S.; Ajayan, P. M.; Kanatzidis, M. G.; Even, J.; Crochet, J. J.; Mohite, A. D.

    2017-03-01

    Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskite layers. These states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blancon, Jean -Christophe Robert; Tsai, Hsinhan; Nie, Wanyi

    Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskitemore » layers. Furthermore, these states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.« less

  19. Zeno effect in quantum Newton's cradle

    NASA Astrophysics Data System (ADS)

    Barros Hito, C. M.; Silva, M. B. E.; Bosco de Magalhães, A. R.

    2018-04-01

    We describe a chain of quantum oscillators which behaves analogously to Newton's cradle. The energy swings between the ends of the chain with very low population in its interior. Moreover, the oscillators at the ends can entangle with each other with negligible entanglement with the intermediate oscillators that mediate the process. Up to a certain number of oscillators, the system evolves in a manner similar to two coupled oscillators. The conditions for such behavior and the characteristic periods are analyzed. When that number exceeds a threshold, the dynamical regime changes to virtually freezing. In the oscillatory regime, Zeno effect can be observed. The parallelism between the Zeno dynamics in quantum Newton's cradle and in two coupled oscillators is highlighted. Promising platforms to observe such phenomena in the laboratory are cavities in photonic-band-gap material and trapped ions.

  20. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  1. Topological edge states in ultra thin Bi(110) puckered crystal lattice

    NASA Astrophysics Data System (ADS)

    Wang, Baokai; Hsu, Chuanghan; Chang, Guoqing; Lin, Hsin; Bansil, Arun

    We discuss the electronic structure of a 2-ML Bi(110) film with a crystal structure similar to that of black phosphorene. In the absence of Spin-Orbit coupling (SOC), the film is found to be a semimetal with two kinds of Dirac cones, which are classified by their locations in the Brillouin zone. All Dirac nodes are protected by crystal symmetry and carry non-zero winding numbers. When considering ribbons, along specific directions, projections of Dirac nodes serve as starting or ending points of edge bands depending on the sign of their carried winding number. After the inclusion of the SOC, all Dirac nodes are gapped out. Correspondingly, the edge states connecting Dirac nodes split and cross each other, and thus form a Dirac node at the boundary of the 1D Brillouin zone, which suggests that the system is a Quantum Spin Hall insulator. The nontrivial Quantum Spin Hall phase is also confirmed by counting the product of parities of the occupied bands at time-reversal invariant points.

  2. Thomson backscattering diagnostics of nanosecond electron bunches in high space charge regime

    NASA Astrophysics Data System (ADS)

    Plachinda, Pavel

    The trend over the last 50 years of down-scaling the silicon transistor to achieve faster computations has led to doubling of the number of transistors and computation speed over about every two years. However, this trend cannot be maintained due to the fundamental limitations of silicon as the main material for the semiconducting industry. Therefore, there is an active search for exploration of alternate materials. Among the possible candidates that can may be able to replace silicon is graphene which has recently gained the most attention. Unique properties of graphene include exceedingly high carrier mobility, tunable band gap, huge optical density of a monolayer, anomalous quantum Hall effect, and many others. To be suitable for microelectronic applications the material should be semiconductive, i.e. have a non-zero band gap. Pristine graphene is a semimetal, but by the virtue of doping the graphene surface with different molecules and radicals a band gap can be opened. Because the electronic properties of all materials are intimately related to their atomic structure, characterization of molecular and electronic structure of functionalizing groups is of high interest. The ab-inito (from the first principles) calculations provide a unique opportunity to study the influence of the dopants and thus allow exploration of the physical phenomena in functionalized graphene structures. This ability paves the road to probe the properties based on the intuitive structural information only. A great advantage of this approach lies in the opportunity for quick screening of various atomic structures. We conducted a series of ab-inito investigations of graphene functionalized with covalently and hapticly bound groups, and demonstrated possible practical usage of functionalized graphene for microelectronic and optical applications. This investigation showed that it is possible produce band gaps in graphene (i.e., produce semiconducting graphene) of about 1 eV, without degrading the carrier mobility. This was archived by considering the influence of those adducts on electronic band structure and conductivity properties.

  3. Large Band Gap of alpha-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sinn, Soobin; Kim, Choong Hyun; Sandilands, Luke; Lee, Kyungdong; Won, Choongjae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    The Kitaev honeycomb lattice model has attracted great attention because of its possibility to stabilize a quantum spin liquid ground state. Recently, it was proposed that alpha-RuCl3 is its material realization and the first 4 d relativistic Mott insulator from an optical spectrum and LDA + U + SO calculations. Here, we present photoemission and inverse photoemission spectra of alpha-RuCl3. The observed band gap is about 1.8 eV, which suggests that the previously assigned optical gap of 0.3 eV is misinterpreted, and that the strong peak at about 1.2 eV in the optical spectrum may be associated with an actual optical gap. Assuming a strong excitonic effect of 0.6 eV in the optical spectrum, all the structures except for the peak at 0.3 eV are consistent with our electronic spectra. When compared with LDA + U + SO calculations, the value of U should be considerably larger than the previous one, which implies that the spin-orbit coupling is not a necessary ingredient for the insulating mechanism of alpha-RuCl3. We also present angle-resolved photoemission spectra to be compared with LDA + U + SO and LDA +DMFT calculations.

  4. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    PubMed

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  5. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  6. Understanding the electronic structure of CdSe quantum dot-fullerene (C{sub 60}) hybrid nanostructure for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in

    2014-09-21

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD.more » With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.« less

  7. Gap state analysis in electric-field-induced band gap for bilayer graphene.

    PubMed

    Kanayama, Kaoru; Nagashio, Kosuke

    2015-10-29

    The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states for gap states by the conductance method. An energy gap of ~ 250 meV is obtained at the maximum displacement field of ~ 3.1 V/nm, where the current on/off ratio of ~ 3 × 10(3) is demonstrated at 20 K. The density of states for the gap states are in the range from the latter half of 10(12) to 10(13) eV(-1) cm(-2). Although the large amount of gap states at the interface of high-k oxide/bilayer graphene limits the current on/off ratio at present, our results suggest that the reduction of gap states below ~ 10(11) eV(-1) cm(-2) by continual improvement of the gate stack makes bilayer graphene a promising candidate for future nanoelectronic device applications.

  8. Quasiparticle breakdown in a quantum spin liquid.

    PubMed

    Stone, Matthew B; Zaliznyak, Igor A; Hong, Tao; Broholm, Collin L; Reich, Daniel H

    2006-03-09

    Much of modern condensed matter physics is understood in terms of elementary excitations, or quasiparticles--fundamental quanta of energy and momentum. Various strongly interacting atomic systems are successfully treated as a collection of quasiparticles with weak or no interactions. However, there are interesting limitations to this description: in some systems the very existence of quasiparticles cannot be taken for granted. Like unstable elementary particles, quasiparticles cannot survive beyond a threshold where certain decay channels become allowed by conservation laws; their spectrum terminates at this threshold. Such quasiparticle breakdown was first predicted for an exotic state of matter--super-fluid 4He at temperatures close to absolute zero, a quantum Bose liquid where zero-point atomic motion precludes crystallization. Here we show, using neutron scattering, that quasiparticle breakdown can also occur in a quantum magnet and, by implication, in other systems with Bose quasiparticles. We have measured spin excitations in a two-dimensional quantum magnet, piperazinium hexachlorodicuprate (PHCC), in which spin-1/2 copper ions form a non-magnetic quantum spin liquid, and find remarkable similarities with excitations in superfluid 4He. We observe a threshold momentum beyond which the quasiparticle peak merges with the two-quasiparticle continuum. It then acquires a finite energy width and becomes indistinguishable from a leading-edge singularity, so that excited states are no longer quasiparticles but occupy a wide band of energy. Our findings have important ramifications for understanding excitations with gapped spectra in many condensed matter systems, ranging from band insulators to high-transition-temperature superconductors.

  9. Electronic structure and quantum transport properties of metallic and semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Simbeck, Adam J.

    The future of the semiconductor industry hinges upon new developments to combat the scaling issues that currently afflict two main chip components: transistors and interconnects. For transistors this means investigating suitable materials to replace silicon for both the insulating gate and the semiconducting channel in order to maintain device performance with decreasing size. For interconnects this equates to overcoming the challenges associated with copper when the wire dimensions approach the confinement limit, as well as continuing to develop low-k dielectric materials that can assure minimal cross-talk between lines. In addition, such challenges make it increasingly clear that device design must move from a top-down to a bottom-up approach in which the desired electronic characteristics are tailored from first-principles. It is with such fundamental hurdles in mind that ab initio calculations on the electronic and quantum transport properties of nanoscale metallic and semiconducting wires have been performed. More specifically, this study seeks to elaborate on the role played by confinement, contacts, dielectric environment, edge decoration, and defects in altering the electronic and transport characteristics of such systems. As experiments continue to achieve better control over the synthesis and design of nanowires, these results are expected to become increasingly more important for not only the interpretation of electronic and transport trends, but also in engineering the electronic structure of nanowires for the needs of the devices of the future. For the metallic atomic wires, the quantum transport properties are first investigated by considering finite, single-atom chains of aluminum, copper, gold, and silver sandwiched between gold contacts. Non-equilibrium Green's function based transport calculations reveal that even in the presence of the contact the conductivity of atomic-scale aluminum is greater than that of the other metals considered. This is in opposition to the situation in the bulk where the conductivity of aluminum is well known to be the lowest amongst these four metals. The better performance of aluminum is attributed to its higher density of states near the Fermi energy, which is the determining factor in the ballistic limit. The results from the finite systems are corroborated by the study of the electronic structure of truly one-dimensional atomic wires where it is confirmed that aluminum is more conductive than copper, gold, or silver. The one-dimensional results are attributed to the higher number of eigenchannels available in aluminum wires, which is the determining factor in the periodic structure. For the semiconducting wires, ultra-thin and fully hydrogen-passivated silicon and germanium systems oriented along the [110] direction are considered in an attempt to understand the role of the substrate in modulating the band structure of the wire. The electronic structures of free-standing and graphene supported SiH2 and GeH2 atomic wires are investigated using a combination of first-principles density functional theory and many-body perturbation theory. The band gaps predicted from density functional theory are essentially unaffected by the presence of the graphene substrate, whereas the quasiparticle gaps computed under the GW approximation are substantially reduced. The quasiparticle band gaps of the SiH2 and GeH2 wires decrease by ˜1.1 eV when supported by graphene. This decrease is attributed to a substrate-induced polarization effect which is more effective at screening the Coulomb interaction. These results extend the substrate-induced quasiparticle band gap renormalization to semiconducting wires composed of silicon and germanium, and shows that besides size and orientation, the substrate can also be used to engineer the band gap of semiconducting wires. Finally, for both metallic and semiconducting nanowires, the role of oxygen edge functionalization in armchair graphene nanoribbons is investigated. Although the benefits of carbon-based nanomaterials have been well documented, their unique electronic properties have yet to be realized in a practical device. The results demonstrate that the introduction of oxygen results in a rich geometrical environment, which in turn determines the electronic and magnetic properties of the ribbon. If the geometry of the ribbon is forced to remain planar then a degenerate, magnetic ground state is predicted whose electronic structure depends upon the magnetic coupling between nanoribbon edges. Allowing the nanoribbon to adopt a non-planar geometry though drastically reduces the energy of the system and the magnetic coupling reported in the planar case is lost. The more energetically favorable non-planar geometry is attributed to a steric interaction resulting from the level of oxygen concentration. The electronic structures of the non-planar ribbons display three band gap families whose gaps generally decrease with increasing ribbon width. The band gap trends as a function of width for the 3p and 3p + 2 families are promising for larger width nanoribbons with sizable band gaps.

  10. Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    2018-05-01

    Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e., the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.

  11. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  12. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, nature of the quantum dots, and dosage of quantum dots.

  13. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  14. Optically adjustable valley Hall current in single-layer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Pavlidis, Dimitris; Shi, Junxia

    2018-02-01

    The illumination of a single-layer transition metal dichalcogenide with an elliptically polarized light beam is shown to give rise to a differential rate of inter-band carrier excitation between the valence and conduction states around the valley edges, K and K' . This rate with a linear dependence on the beam ellipticity and inverse of the optical gap manifests as an asymmetric Fermi distribution between the valleys or a non-equilibrium population which under an external field and a Berry curvature induced anomalous velocity, results in an externally tunable finite valley Hall current. Surface imperfections that influence the excitation rates are included through the self-consistent Born approximation. Further, we describe applications centered around circular dichroism, quantum computing, and spin torque via optically excited spin currents within the framework of the suggested formalism. A closing summary points to the possibility of extending the calculations to composite charged particles like trions. The role of the substrate in renormalizing the fundamental band gap and moderating the valley Hall current is also discussed.

  15. Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene.

    PubMed

    Hong, Hyo-Ki; Jo, Junhyeon; Hwang, Daeyeon; Lee, Jongyeong; Kim, Na Yeon; Son, Seungwoo; Kim, Jung Hwa; Jin, Mi-Jin; Jun, Young Chul; Erni, Rolf; Kwak, Sang Kyu; Yoo, Jung-Woo; Lee, Zonghoon

    2017-01-11

    Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.

  16. Nano sulfide and oxide semiconductors as promising materials for studies by positron annihilation

    NASA Astrophysics Data System (ADS)

    Nambissan, P. M. G.

    2013-06-01

    A number of wide band gap sulfide and oxide semiconducting nanomaterial systems were investigated using the experimental techniques of positron lifetime and coincidence Doppler broadening measurements. The results indicated several features of the nanomaterial systems, which were found strongly related to the presence of vacancy-type defects and their clusters. Quantum confinement effects were displayed in these studies as remarkable changes in the positron lifetimes and the lineshape parameters around the same grain sizes below which characteristic blue shifts were observed in the optical absorption spectra. Considerable enhancement in the band gap and significant rise of the positron lifetimes were found occurring when the particle sizes were reduced to very low sizes. The results of doping or substitutions by other cations in semiconductor nanosystems were also interesting. Variously heat-treated TiO2 nanoparticles were studied recently and change of positron annihilation parameters across the anatase to rutile structural transition are carefully analyzed. Preliminary results of positron annihilation studies on Eu-doped CeO nanoparticles are also presented.

  17. Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness.

    PubMed

    Li, Junqiang; Shan, Xin; Bade, Sri Ganesh R; Geske, Thomas; Jiang, Qinglong; Yang, Xin; Yu, Zhibin

    2016-10-03

    Charge-carrier injection into an emissive semiconductor thin film can result in electroluminescence and is generally achieved by using a multilayer device structure, which requires an electron-injection layer (EIL) between the cathode and the emissive layer and a hole-injection layer (HIL) between the anode and the emissive layer. The recent advancement of halide perovskite semiconductors opens up a new path to electroluminescent devices with a greatly simplified device structure. We report cesium lead tribromide light-emitting diodes (LEDs) without the aid of an EIL or HIL. These so-called single-layer LEDs have exhibited a sub-band gap turn-on voltage. The devices obtained a brightness of 591 197 cd m -2 at 4.8 V, with an external quantum efficiency of 5.7% and a power efficiency of 14.1 lm W -1 . Such an advancement demonstrates that very high efficiency of electron and hole injection can be obtained in perovskite LEDs even without using an EIL or HIL.

  18. Indium phosphide nanowires and their applications in optoelectronic devices

    PubMed Central

    Zafar, Fateen

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed. PMID:27118920

  19. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    PubMed

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  20. Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation

    PubMed Central

    Zheng, Jiaxin; Wang, Lu; Quhe, Ruge; Liu, Qihang; Li, Hong; Yu, Dapeng; Mei, Wai-Ning; Shi, Junjie; Gao, Zhengxiang; Lu, Jing

    2013-01-01

    Radio-frequency application of graphene transistors is attracting much recent attention due to the high carrier mobility of graphene. The measured intrinsic cut-off frequency (fT) of graphene transistor generally increases with the reduced gate length (Lgate) till Lgate = 40 nm, and the maximum measured fT has reached 300 GHz. Using ab initio quantum transport simulation, we reveal for the first time that fT of a graphene transistor still increases with the reduced Lgate when Lgate scales down to a few nm and reaches astonishing a few tens of THz. We observe a clear drain current saturation when a band gap is opened in graphene, with the maximum intrinsic voltage gain increased by a factor of 20. Our simulation strongly suggests it is possible to design a graphene transistor with an extraordinary high fT and drain current saturation by continuously shortening Lgate and opening a band gap. PMID:23419782

  1. Research on low-frequency band gap property of a hybrid phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Chao, Ding; Wang, Benchi

    2018-05-01

    A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.

  2. Impact of Alloy Fluctuations on Radiative and Auger Recombination in InGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Jones, Christina; Teng, Chu-Hsiang; Yan, Qimin; Ku, Pei-Cheng; Kioupakis, Emmanouil

    Light-emitting diodes (LEDs) based on indium gallium nitride (InGaN) are important for efficient solid-state lighting (2014 Nobel Prize in Physics). Despite its many successes, InGaN suffers from issues that reduce the efficiency of devices at high power, such as the green gap and efficiency droop. The origin of the droop has been attributed to Auger recombination, mediated by carrier scattering due to phonons and alloy disorder. Additionally, InGaN exhibits atomic-scale composition fluctuations that localize carriers and may affect the efficiency. In this work, we study the effect of local composition fluctuations on the radiative recombination rate, Auger recombination rate, and efficiency of InGaN/GaN quantum wells. We apply k.p calculations to simulate band edges and wave functions of quantum wells with fluctuating alloy distributions based on atom probe tomography data, and we evaluate double and triple overlaps of electron and hole wave functions. We compare results for quantum wells with fluctuating alloy distributions to those with uniform alloy compositions and to published work. Our results demonstrate that alloy-composition fluctuations aggravate the efficiency-droop and green-gap problems and further reduce LED efficiency at high power. We acknowledge the NSF CAREER award DMR-1254314, the NSF Graduate Research Fellowship Program DGE-1256260, and the DOE NERSC facility (DE-AC02-05CH11231).

  3. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqiang; Tateno, Kouta; Sogawa, Tetsuomi; Gotoh, Hideki

    2018-04-01

    We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.

  4. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale.

    PubMed

    Zhang, Guoqiang; Tateno, Kouta; Sogawa, Tetsuomi; Gotoh, Hideki

    2018-04-02

    We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.

  5. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Gaohua; Department of Applied Physics and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082; Luo, Ning

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands showmore » rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.« less

  6. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.

    2015-09-01

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective mass theory, the probability distributions of the band states in the [001]-oriented nanowires with a square cross section and the [111]-oriented nanowires with a hexagonal cross section show characteristic patterns with symmetries closely related to the irreducible representations of the relevant double point groups and, in general, go beyond the prediction of a simple one-band effective mass theory. We also investigate the effects of quantum confinement on the band structures of the [001]- and [111]-oriented InSb and GaSb nanowires and present an empirical formula for the description of quantization energies of the band edge states in the nanowires, which could be used to estimate the enhancement of the band gaps of the nanowires as a result of quantum confinement. The size dependencies of the electron and hole effective masses in these nanowires are also investigated and discussed.

  7. Near infrared emission of TbAG:Ce{sup 3+},Yb{sup 3+} phosphor for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Yadav, P. J., E-mail: yadav.pooja75@yahoo.in; Pathak, A. A., E-mail: aapathak@yahoo.com

    2016-05-06

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimatedmore » to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr{sup 3+}, Gd{sup 3+},Gd{sup 3+}–Eu{sup 3+}, and Er{sup 3+}–Tb{sup 3+} had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb{sup 3+}–Yb{sup 3+}, Pr{sup 3+}–Yb{sup 3+}, and Tm{sup 3+}–Yb{sup 3+} has been reported. The Yb{sup 3+} ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb{sup 3+} is close to 100% and the energy of the only excited level of Yb{sup 3+} (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce{sup 3+}-doped Tb{sub 3}Al{sub 5}O{sub 12} (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300–500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce{sup 3+} ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this paper, Ce{sup 3+} –Yb{sup 3+}-codoped TbAG ceramics were prepared and the energy transfer (ET) including down conversion mechanism in Ce{sup 3+} – Yb{sup 3+} codoped TbAG ceramics have been evaluated by the photoluminescence (PL), the photoluminescence excitation (PLE), the lifetime and the quantum yield (QY), which was measured directly using an integrating sphere.« less

  8. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less

  9. Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorczyca, I., E-mail: iza@unipress.waw.pl; Skrobas, K.; Suski, T.

    2015-08-21

    The electronic structures of short period mGaN/nGa{sub y}Al{sub 1−y}N and mIn{sub y}Ga{sub 1-y}N/nGaN superlattices grown along the wurtzite c axis have been calculated for different alloy compositions y and various small numbers m of well- and n of barrier-monolayers. The general trends in gap behavior can, to a large extent, be related to the strength of the internal electric field, E, in the GaN and InGaN quantum wells. In the GaN/GaAlN superlattices, E reaches 4 MV/cm, while in the InGaN/GaN superlattices, values as high as E ≈ 6.5 MV/cm are found. The strong electric fields are caused by spontaneous and piezoelectric polarizations,more » the latter contribution dominating in InGaN/GaN superlattices. The influence of different arrangements of In atoms (indium clustering) on the band gap values in InGaN/GaN superlattices is examined.« less

  10. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.

    PubMed

    Deng, Yexin; Luo, Zhe; Conrad, Nathan J; Liu, Han; Gong, Yongji; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Xu, Xianfan; Ye, Peide D

    2014-08-26

    Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black phosphorus, showing its promise for electronics and optoelectronics applications due to its high hole mobility and thickness-dependent direct band gap. However, p–n junctions, the basic building blocks of modern electronic and optoelectronic devices, have not yet been realized based on black phosphorus. In this paper, we demonstrate a gate-tunable p–n diode based on a p-type black phosphorus/n-type monolayer MoS2 van der Waals p–n heterojunction. Upon illumination, these ultrathin p–n diodes show a maximum photodetection responsivity of 418 mA/W at the wavelength of 633 nm and photovoltaic energy conversion with an external quantum efficiency of 0.3%. These p–n diodes show promise for broad-band photodetection and solar energy harvesting.

  11. Quantum dot behavior in transition metal dichalcogenides nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Zhang, Zhuo-Zhi; Li, Hai-Ou; Song, Xiang-Xiang; Deng, Guang-Wei; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2017-08-01

    Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.

  12. Quantum confinement of nanocrystals within amorphous matrices

    NASA Astrophysics Data System (ADS)

    Lusk, Mark T.; Collins, Reuben T.; Nourbakhsh, Zahra; Akbarzadeh, Hadi

    2014-02-01

    Nanocrystals encapsulated within an amorphous matrix are computationally analyzed to quantify the degree to which the matrix modifies the nature of their quantum-confinement power—i.e., the relationship between nanocrystal size and the gap between valence- and conduction-band edges. A special geometry allows exactly the same amorphous matrix to be applied to nanocrystals of increasing size to precisely quantify changes in confinement without the noise typically associated with encapsulating structures that are different for each nanocrystal. The results both explain and quantify the degree to which amorphous matrices redshift the character of quantum confinement. The character of this confinement depends on both the type of encapsulating material and the separation distance between the nanocrystals within it. Surprisingly, the analysis also identifies a critical nanocrystal threshold below which quantum confinement is not possible—a feature unique to amorphous encapsulation. Although applied to silicon nanocrystals within an amorphous silicon matrix, the methodology can be used to accurately analyze the confinement softening of other amorphous systems as well.

  13. Influence of surface plasmon resonance of Sn nanoparticles and nanosheets on the photoluminescence and Raman spectra of SnS quantum dots

    NASA Astrophysics Data System (ADS)

    Warrier, Anita R.; Gandhimathi, R.

    2018-04-01

    We report on enhancement of photoluminescence of SnS quantum dots by embedding them in a mesh of Sn nanostructures. SnS quantum dots with band gap ˜2.7 eV are embedded in a mesh of Sn nanostructures, that are synthesized from tin chloride solution using sodium borohydride as reducing agent. The synthesized Sn nanostructures have a morphology dependent, tunable surface plasmon resonance ranging from UV region (295 nm) to visible region (400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (˜ 400 meV). Due to the influence of Sn nanoparticles on the SnS quantum dots, the photoluminescence and Raman line intensity is enhanced by an order of ˜103 The enhancement is more pronounced for Sn nanosheets due to the large surface area and visible light surface plasmon resonance.

  14. Research on local resonance and Bragg scattering coexistence in phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong

    2017-04-01

    Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.

  15. Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pach, Gregory F.

    Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal's size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding field of QDSC research has lacked standardization of synthetic techniques and device design. Therefore, we sought to detail methodology for synthesizing PbS and PbSe QDs as well as photovoltaic device fabrication techniques as a fast track toward constructing high-performance solar cells. We show that these protocols lead toward consistently achieving efficiencies above 8% for PbS QDSCs. Using the same methodology for building single-junction photovoltaic devices, we incorporated PbS QDs as a bottom cell into a monolithic tandem architecture along with solution-processed CdTe nanocrystals. Modeling shows that near-peak tandem device efficiencies can be achieved across a wide range of bottom cell band gaps, and therefore the highly tunable band gap of lead-chalcogenide QDs lends well towards a bottom cell in a tandem architecture. A fully functioning monolithic tandem device is realized through the development of a ZnTe/ZnO recombination layer that appropriately combines the two subcells in series. Multiple recent reports have shown nanocrystalline heterostructures to undergo the MEG process more efficiency than several other nanostrucutres, namely lead-chalcogenide QDs. The final section of my thesis expands upon a recent publication by Zhang et. al., which details the synthesis of PbS/CdS heterostructures in which the PbS and CdS domains exist on opposite sides of the nanocrystal and are termed "Janus particles". Transient absorption spectroscopy shows MEG quantum yields above unity very the thermodynamic limit of 2Eg for PbS/CdS Janus particles. We further explain a mechanism for enhanced MEG using photoluminescence studies.

  16. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  17. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

    DOE PAGES

    Blancon, Jean -Christophe Robert; Tsai, Hsinhan; Nie, Wanyi; ...

    2017-03-09

    Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskitemore » layers. Furthermore, these states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.« less

  18. Theoretical study of strain-dependent optical absorption in a doped self-assembled InAs/InGaAs/GaAs/AlGaAs quantum dot

    PubMed Central

    Tankasala, Archana; Hsueh, Yuling; Charles, James; Fonseca, Jim; Povolotskyi, Michael; Kim, Jun Oh; Krishna, Sanjay; Allen, Monica S; Allen, Jeffery W; Rahman, Rajib; Klimeck, Gerhard

    2018-01-01

    A detailed theoretical study of the optical absorption in doped self-assembled quantum dots is presented. A rigorous atomistic strain model as well as a sophisticated 20-band tight-binding model are used to ensure accurate prediction of the single particle states in these devices. We also show that for doped quantum dots, many-particle configuration interaction is also critical to accurately capture the optical transitions of the system. The sophisticated models presented in this work reproduce the experimental results for both undoped and doped quantum dot systems. The effects of alloy mole fraction of the strain controlling layer and quantum dot dimensions are discussed. Increasing the mole fraction of the strain controlling layer leads to a lower energy gap and a larger absorption wavelength. Surprisingly, the absorption wavelength is highly sensitive to the changes in the diameter, but almost insensitive to the changes in dot height. This behavior is explained by a detailed sensitivity analysis of different factors affecting the optical transition energy. PMID:29719758

  19. From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide

    NASA Astrophysics Data System (ADS)

    Zhang, Run-Wu; Liu, Cheng-Cheng; Ma, Da-Shuai; Yao, Yugui

    2018-03-01

    Two-dimensional (2D) topological insulators (TIs) have attracted tremendous research interest from both the theoretical and the experimental fields in recent years. However, it is much less investigated in realizing node line (NL) semimetals in 2D materials. Combining first-principles calculations and symmetry analysis, we find that NL phases emerge in p -CS2 and p -SiS2 , as well as other pentagonal IVX2 films, i.e., p -IVX2 (IV= C, Si, Ge, Sn, Pb; X=S, Se, Te) in the absence of spin-orbit coupling (SOC). The NLs in p -IVX2 consist of symbolic Fermi loops centered around the Γ point and are protected by mirror reflection symmetry. As the atomic number is downward shifted, the NL semimetals are driven into 2D TIs with the large bulk gap up to 0.715 eV induced by the remarkable SOC effect. The nontrivial bulk gap can be tunable under external biaxial strain and uniaxial strain. Moreover, we also propose a quantum well by sandwiching a p -PbTe2 crystal between two NaI sheets in which p -PbTe2 still keeps its nontrivial topology with a sizable band gap (˜0.5 eV). These findings provide a new 2D material platform for exploring fascinating physics in both NL semimetals and TIs.

  20. Electronic Materials and Processing: Proceedings of the First Electronic Materials and Processing Congress Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    DTIC Science & Technology

    1988-01-01

    usually be traced to a combination of new semiconductors one on top of the other, then concepts, materials, and device principles, the process is called...example, growth techniques. New combinations of compound semiconductors such as GaAs have an materials called heterostructures can be made intrinsically...of combinations of metals, have direct energy band gaps that facilitate semiconductor, and insulators. Quantum the efficient recombination of

  1. One-dimensional Coulomb problem in Dirac materials

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2014-11-01

    We investigate the one-dimensional Coulomb potential with application to a class of quasirelativistic systems, so-called Dirac-Weyl materials, described by matrix Hamiltonians. We obtain the exact solution of the shifted and truncated Coulomb problems, with the wave functions expressed in terms of special functions (namely, Whittaker functions), while the energy spectrum must be determined via solutions to transcendental equations. Most notably, there are critical band gaps below which certain low-lying quantum states are missing in a manifestation of atomic collapse.

  2. Electronic Structures of Strained InAs x P1-x by Density Functional Theory.

    PubMed

    Lee, Seung Mi; Kim, Min-Young; Kim, Young Heon

    2018-09-01

    We investigated the effects of strain on the electronic structures of InAsxP1-x using quantum mechanical density functional theory calculations. The electronic band gap and electron effective mass decreased with the increase of the uniaxial tensile strain along the [0001] direction of wurtzite InAs0.75P0.25. Therefore, faster electron movements are expected. These theoretical results are in good agreement with the experimental measurements of InAs0.75P0.25 nanowire.

  3. Red-luminescence band: A tool for the quality assessment of germanium and silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Fraj, I.; Favre, L.; David, T.; Abbarchi, M.; Liu, K.; Claude, J. B.; Ronda, A.; Naffouti, M.; Saidi, F.; Hassen, F.; Maaref, H.; Aqua, J. N.; Berbezier, I.

    2017-10-01

    We present the photoluminescence (PL) emission of Silicon and Germanium nanocrystals (NCs) of different sizes embedded in two different matrices. Formation of the NCs is achieved via solid-state dewetting during annealing in a molecular beam epitaxy ultra-high vacuum system of ultrathin amorphous Si and Ge layers deposited at room temperature on SiO2. During the dewetting process, the bi-dimensional amorphous layers transform into small pseudo-spherical islands whose mean size can be tuned directly with the deposited thickness. The nanocrystals are capped either ex situ by silicon dioxide or in situ by amorphous Silicon. The surface-state dependent emission (typically in the range 1.74 eV-1.79 eV) exhibited higher relative PL quantum yields compared to the emission originating from the band gap transition. This red-PL emission comes from the radiative transitions between a Si band and an interface level. It is mainly ascribed to the NCs and environment features deduced from morphological and structural analyses. Power dependent analysis of the photoluminescence intensity under continuous excitation reveals a conventional power law with an exponent close to 1, in agreement with the type II nature of the emission. We show that Ge-NCs exhibit much lower quantum efficiency than Si-NCs due to non-radiative interface states. Low quantum efficiency is also obtained when NCs have been exposed to air before capping, even if the exposure time is very short. Our results indicate that a reduction of the non-radiative surface states is a key strategy step in producing small NCs with increased PL emission for a variety of applications. The red-PL band is then an effective tool for the quality assessment of NCs based structures.

  4. Formation of Degenerate Band Gaps in Layered Systems

    PubMed Central

    Ignatov, Anton I.; Merzlikin, Alexander M.; Levy, Miguel; Vinogradov, Alexey P.

    2012-01-01

    In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed. PMID:28817024

  5. Bandgap engineering of InGaAsP/InP laser structure by photo-absorption-induced point defects

    NASA Astrophysics Data System (ADS)

    Kaleem, Mohammad; Nazir, Sajid; Saqib, Nazar Abbas

    2016-03-01

    Integration of photonic components on the same photonic wafer permits future optical communication systems to be dense and advanced performance. This enables very fast information handling between photonic active components interconnected through passive optical low loss channels. We demonstrate the UV-Laser based Quantum Well Intermixing (QWI) procedure to engineer the band-gap of compressively strained InGaAsP/InP Quantum Well (QW) laser material. We achieved around 135nm of blue-shift by simply applying excimer laser (λ= 248nm). The under observation laser processed material also exhibits higher photoluminescence (PL) intensity. Encouraging experimental results indicate that this simple technique has the potential to produce photonic integrated devices and circuits.

  6. Zeeman-Field-Tuned Topological Phase Transitions in a Two-Dimensional Class-DIII Superconductor

    PubMed Central

    Deng, W. Y.; Geng, H.; Luo, W.; Sheng, L.; Xing, D. Y.

    2016-01-01

    We investigate the topological phase transitions in a two-dimensional time-reversal invariant topological superconductor in the presence of a Zeeman field. Based on the spin Chern number theory, we find that the system exhibits a number of topologically distinct phases with changing the out-of-plane component of the Zeeman field, including a quantum spin Hall-like phase, quantum anomalous Hall-like phases with total Chern number C = −2, −1, 1 and 2, and a topologically trivial superconductor phase. The BdG band gap closes at each boundary of the phase transitions. Furthermore, we demonstrate that the zero bias conductance provides clear transport signatures of the different topological phases, which are robust against symmetry-breaking perturbations. PMID:27148675

  7. Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced Verdet constant

    NASA Astrophysics Data System (ADS)

    Panmand, Rajendra P.; Kumar, Ganapathy; Mahajan, Satish M.; Kulkarni, Milind V.; Amalnerkar, D. P.; Kale, Bharat B.; Gosavi, Suresh. W.

    2011-02-01

    We report optical studies with magneto-optic properties of Bi2S3 quantum dot/wires-glass nanocomposite. The size of the Q-dot was observed to be in the range 3-15 nm along with 11 nm Q-wires. Optical study clearly demonstrated the size quantization effect with drastic band gap variation with size. Faraday rotation tests on the glass nanocomposites show variation in Verdet constant with Q-dot size. Bi2S3 Q-dot/wires glass nanocomposite demonstrated 190 times enhanced Verdet constant compared to the host glass. Prima facie observations exemplify the significant enhancement in Verdet constant of Q-dot glass nanocomposites and will have potential application in magneto-optical devices.

  8. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOEpatents

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  9. The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits.

    PubMed

    Goswami, Prasenjit N; Mandal, Debranjan; Rath, Arup K

    2018-01-18

    Surface chemistry plays a crucial role in determining the electronic properties of quantum dot solids and may well be the key to mitigate loss processes involved in quantum dot solar cells. Surface ligands help to maintain the shape and size of the individual dots in solid films, to preserve the clean energy band gap of the individual particles and to control charge carrier conduction across solid films, in turn regulating their performance in photovoltaic applications. In this report, we show that the changes in size, shape and functional groups of small chain organic ligands enable us to modulate mobility, dielectric constant and carrier doping density of lead sulfide quantum dot solids. Furthermore, we correlate these results with performance, stability and recombination processes in the respective photovoltaic devices. Our results highlight the critical role of surface chemistry in the electronic properties of quantum dots. The role of the size, functionality and the surface coverage of the ligands in determining charge transport properties and the stability of quantum dot solids have been discussed. Our findings, when applied in designing new ligands with higher mobility and improved passivation of quantum dot solids, can have important implications for the development of high-performance quantum dot solar cells.

  10. Intersubband spectroscopy of ZnO/ZnMgO quantum wells grown on m-plane ZnO substrates for quantum cascade device applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quach, Patrick; Jollivet, Arnaud; Isac, Nathalie; Bousseksou, Adel; Ariel, Frédéric; Tchernycheva, Maria; Julien, François H.; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hierro, Adrián.; Le Biavan, Nolwenn; Hugues, Maxime; Chauveau, Jean-Michel

    2017-03-01

    Quantum cascade (QC) lasers opens new prospects for powerful sources operating at THz frequencies. Up to now the best THz QC lasers are based on intersubband emission in GaAs/AlGaAs quantum well (QW) heterostructures. The maximum operating temperature is 200 K, which is too low for wide-spread applications. This is due to the rather low LO-phonon energy (36 meV) of GaAs-based materials. Indeed, thermal activation allows non-radiative path through electron-phonon interaction which destroys the population inversion. Wide band gap materials such as ZnO have been predicted to provide much higher operating temperatures because of the high value of their LO-phonon energy. However, despite some observations of intersubband absorption in c-plane ZnO/ZnMgO quantum wells, little is known on the fundamental parameters such as the conduction band offset in such heterostructures. In addition the internal field inherent to c-plane grown heterostuctures is an handicap for the design of QC lasers and detectors. In this talk, we will review a systematic investigation of ZnO/ZnMgO QW heterostructures with various Mg content and QW thicknesses grown by plasma molecular beam epitaxy on low-defect m-plane ZnO substrates. We will show that most samples exhibit TM-polarized intersubband absorption at room temperature linked either to bound-to-quasi bound inter-miniband absorption or to bound-to bound intersubband absorption depending on the Mg content of the barrier material. This systematic study allows for the first time to estimate the conduction band offset of ZnO/ZnMgO heterostructures, opening prospects for the design of QC devices operating at THz frequencies. This was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement #665107.

  11. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation.

    PubMed

    Liu, Chao; Li, Zhou; Hajagos, Tibor Jacob; Kishpaugh, David; Chen, Dustin Yuan; Pei, Qibing

    2017-06-27

    Spectroscopic gamma-photon detection has widespread applications for research, defense, and medical purposes. However, current commercial detectors are either prohibitively expensive for wide deployment or incapable of producing the characteristic gamma photopeak. Here we report the synthesis of transparent, ultra-high-loading (up to 60 wt %) Cd x Zn 1-x S/ZnS core/shell quantum dot/polymer nanocomposite monoliths for gamma scintillation by in situ copolymerization of the partially methacrylate-functionalized quantum dots in a monomer solution. The efficient Förster resonance energy transfer of the high-atomic-number quantum dots to lower-band-gap organic dyes enables the extraction of quantum-dot-borne excitons for photon production, resolving the problem of severe light yield deterioration found in previous nanoparticle-loaded scintillators. As a result, the nanocomposite scintillator exhibited simultaneous improvements in both light yield (visible photons produced per MeV of gamma-photon energy) and gamma attenuation. With these enhancements, a 662 keV Cs-137 gamma photopeak with 9.8% resolution has been detected using a 60 wt % quantum-dot nanocomposite scintillator, demonstrating the potential of such a nanocomposite system in the development of high-performance low-cost spectroscopic gamma detectors.

  12. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime

    NASA Astrophysics Data System (ADS)

    Reeg, Christopher; Loss, Daniel; Klinovaja, Jelena

    2018-04-01

    Semiconducting quantum wires defined within two-dimensional electron gases and strongly coupled to thin superconducting layers have been extensively explored in recent experiments as promising platforms to host Majorana bound states. We study numerically such a geometry, consisting of a quasi-one-dimensional wire coupled to a disordered three-dimensional superconducting layer. We find that, in the strong-coupling limit of a sizable proximity-induced superconducting gap, all transverse subbands of the wire are significantly shifted in energy relative to the chemical potential of the wire. For the lowest subband, this band shift is comparable in magnitude to the spacing between quantized levels that arises due to the finite thickness of the superconductor (which typically is ˜500 meV for a 10-nm-thick layer of aluminum); in higher subbands, the band shift is much larger. Additionally, we show that the width of the system, which is usually much larger than the thickness, and moderate disorder within the superconductor have almost no impact on the induced gap or band shift. We provide a detailed discussion of the ramifications of our results, arguing that a huge band shift and significant renormalization of semiconducting material parameters in the strong-coupling limit make it challenging to realize a topological phase in such a setup, as the strong coupling to the superconductor essentially metallizes the semiconductor. This metallization of the semiconductor can be tested experimentally through the measurement of the band shift.

  13. Nonlinear Bloch waves in metallic photonic band-gap filaments

    NASA Astrophysics Data System (ADS)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  14. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    PubMed

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  15. Design considerations for λ ˜ 3.0- to 3.5-μm-emitting quantum cascade lasers on metamorphic buffer layers

    NASA Astrophysics Data System (ADS)

    Rajeev, Ayushi; Sigler, Chris; Earles, Tom; Flores, Yuri V.; Mawst, Luke J.; Botez, Dan

    2018-01-01

    Quantum cascade lasers (QCLs) that employ metamorphic buffer layers as substrates of variable lattice constant have been designed for emission in the 3.0- to 3.5-μm wavelength range. Theoretical analysis of the active-region (AR) energy band structure, while using an 8-band k•p model, reveals that one can achieve both effective carrier-leakage suppression as well as fast carrier extraction in QCL structures of relatively low strain. Significantly lower indium-content quantum wells (QWs) can be employed for the AR compared to QWs employed for conventional short-wavelength QCL structures grown on InP, which, in turn, is expected to eliminate carrier leakage to indirect-gap valleys (X, L). An analysis of thermo-optical characteristics for the complete device design indicates that high-Al-content AlInAs cladding layers are more effective for both optical confinement and thermal dissipation than InGaP cladding layers. An electroluminescence-spectrum full-width half-maximum linewidth of 54.6 meV is estimated from interface roughness scattering and, by considering both inelastic and elastic scattering, the threshold-current density for 3.39-μm-emitting, 3-mm-long back-facet-coated QCLs is projected to be 1.40 kA/cm2.

  16. Interfacial properties of stanene-metal contacts

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Pan, Feng; Ye, Meng; Wang, Yangyang; Pan, Yuanyuan; Zhang, Xiuying; Li, Jingzhen; Zhang, Han; Lu, Jing

    2016-09-01

    Recently, two-dimensional buckled honeycomb stanene has been manufactured by molecular beam epitaxy growth. Free-standing stanene is predicted to have a sizable opened band gap of 100 meV at the Dirac point due to spin-orbit coupling (SOC), resulting in many fascinating properties such as quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. In the first time, we systematically study the interfacial properties of stanene-metal interfaces (metals = Ag, Au, Cu, Al, Pd, Pt, Ir, and Ni) by using ab initio electronic structure calculations considering the SOC effects. The honeycomb structure of stanene is preserved on the metal supports, but the buckling height is changed. The buckling of stanene on the Au, Al, Ag, and Cu metal supports is higher than that of free-standing stanene. By contrast, a planar graphene-like structure is stabilized for stanene on the Ir, Pd, Pt, and Ni metal supports. The band structure of stanene is destroyed on all the metal supports, accompanied by a metallization of stanene because the covalent bonds between stanene and the metal supports are formed and the structure of stanene is distorted. Besides, no tunneling barrier exists between stanene and the metal supports. Therefore, stanene and the eight metals form a good vertical Ohmic contact.

  17. Band gap structures for 2D phononic crystals with composite scatterer

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-qiao; Li, Tuan-jie; Zhang, Jia-long; Zhang, Zhen; Tang, Ya-qiong

    2018-05-01

    We investigated the band gap structures in two-dimensional phononic crystals with composite scatterer. The composite scatterers are composed of two materials (Bragg scattering type) or three materials (locally resonance type). The finite element method is used to calculate the band gap structure, eigenmodes and transmission spectrum. The variation of the location and width of band gap are also investigated as a function of material ratio in the scatterer. We have found that the change trends the widest band gap of the two phononic crystals are different as the material ratio changing. In addition to this, there are three complete band gaps at most for the Bragg-scattering-type phononic crystals in the first six bands; however, the locally resonance-type phononic crystals exist only two complete band gap at most in the first six bands. The gap-tuning effect can be controlled by the material ratio in the scatterer.

  18. Opening complete band gaps in two dimensional locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Wang, Longqi

    2018-05-01

    Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.

  19. Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics.

    PubMed

    Tavakoli, Mohammad Mahdi; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2018-04-11

    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO 2 nanoparticles covered by a thin film of SnO 2 , either in amorphous (a-SnO 2 ), crystalline (c-SnO 2 ), or nanocrystalline (quantum dot) form (SnO 2 -NC). We find that the band gap of a-SnO 2 is larger than that of the crystalline (tetragonal) polymorph leading to a corresponding lift in its conduction band edge energy which aligns it perfectly with the conduction band edge of both the triple cation perovskite and the TiO 2 scaffold. This enables very fast electron extraction from the light perovskite, suppressing the notorious hysteresis in the current-voltage ( J-V) curves and retarding nonradiative charge carrier recombination. As a result, we gain a remarkable 170 mV in open circuit photovoltage ( V oc ) by replacing the crystalline SnO 2 by an amorphous phase. Because of the quantum size effect, the band gap of our SnO 2 -NC particles is larger than that of bulk SnO 2 causing their conduction band edge to shift also to a higher energy thereby increasing the V oc . However, for SnO 2 -NC there remains a barrier for electron injection into the TiO 2 scaffold decreasing the fill factor of the device and lowering the PCE. Introducing the a-SnO 2 coated mp-TiO 2 scaffold as electron extraction layer not only increases the V oc and PEC of the solar cells but also render them resistant to UV light which forebodes well for outdoor deployment of these new PSC architectures.

  20. Charge Carrier Dynamics of Quantum Confined Semiconductor Nanoparticles Analyzed via Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thibert, Arthur Joseph, III

    Semiconductor nanoparticles are tiny crystalline structures (typically range from 1 - 100 nm) whose shape in many cases can be dictated through tailored chemical synthesis with atomic scale precision. The small size of these nanoparticles often results in quantum confinement (spatial confinement of wave functions), which imparts the ability to manipulate band-gap energies thus allowing them to be optimally engineered for different applications (i.e., photovoltaics, photocatalysis, imaging). However, charge carriers excited within these nanoparticles are often involved in many different processes: trapping, trap migration, Auger recombination, non-radiative relaxation, radiative relaxation, oxidation / reduction, or multiple exciton generation. Broadband ultrafast transient absorption laser spectroscopy is used to spectrally resolve the fate of excited charge carriers in both wavelength and time, providing insight as to what synthetic developments or operating conditions will be necessary to optimize their efficiency for certain applications. This thesis outlines the effort of resolving the dynamics of excited charge carriers for several Cd and Si based nanoparticle systems using this experimental technique. The thesis is organized into five chapters and two appendices as indicated below. Chapter 1 provides a brief introduction to the photophysics of semiconductor nanoparticles. It begins by defining what nanoparticles, semiconductors, charge carriers, and quantum confinement are. From there it details how the study of charge carrier dynamics within nanoparticles can lead to increased efficiency in applications such as photocatalysis. Finally, the experimental methodology associated with ultrafast transient absorption spectroscopy is introduced and its power in mapping charge carrier dynamics is established. Chapter 2 (JPCC, 19647, 2011) introduces the first of the studied samples: water-solubilized 2D CdSe nanoribbons (NRs), which were synthesized in the Osterloh laboratory (UCD). The measured signals were decomposed into the constituent dynamics of three transient populations: hot tightly bound excitons, relaxed tightly bound excitons, and separated trapped carriers (holes and electrons). The influenes of three external factors affecting the observed dynamics were explored: (1) excitation wavelength, (2) excitation fluence, and (3) presence of the hole scavenger HS -. Both higher-energy excitation photons and higher-intensity excitation induce slower relaxation of charge carriers to the band edge due to the need to dissipate excess excitation energy. Nonlinear decay kinetics of the relaxed exciton population is observed and demonstrated to arise from bimolecular trapping of excitons with low-density trap sites located at CdSe NR surface sites instead of the commonly resolved multiparticle Auger recombination mechanism. This is supported by the observed linear excitation-fluence dependence of the trapped-carrier population that is n umerically simulated and found to deviate from the excitation fluence dependence expected of Auger recombination kinetics. Introducing hole scavenging HS- has a negligible effect on the exciton kinetics, including migration and dissociation, and instead passivates surface trap states to induce the rapid elimination of holes after exciton dissociation. This increases the lifetime of the reactive electron population and increases measured photocatalytic H2 generation activity. A broad (200 nm) and persistent (20 ps) stimulated emission observed in the tightly bound excitons suggests their potential use as broadband microlasers. In chapter 3 (JPCL, 2688, 2011), the photocatalytic H2O splitting activities of CdSe and CdSe/CdS core/shell quantum dots, which were also synthesized in the Osterloh laboratory (UCD) are contrasted. CdSe/CdS core/shell quantum dots constructed from 4.0 nm CdSe quantum dots are shown to be strongly active for visible-light-driven photocatalytic H2 evolution in 0.1M Na 2S/Na2SO3 solution with a turnover number of 9.94 after 5 h at 103.9 μmol/h. CdSe quantum dots themselves are only marginally active in 0.1 M Na2S/Na2SO3 solution with a turnover number of 1.10 after 5 h at 11.53 μmol/h, while CdSe quantum dots in pure H2O are found to be completely inactive. Broad-band transient absorption spectroscopy is used to elucidate the mechanisms that facilitate the enhancement in the CdSe core/shell quantum dots, which is attributed to passivation of surface-deep trap states with energies lying below the reduction potential necessary for H2O reduction. Thus, it is shown that surface trapping dynamics and energetics can be manipulated to dictate the photocatalytic activities of novel CdSe quantum dot based photocatalytic materials. Chapter 4 builds upon this work examining the differences in dynamics that occur upon passivation of water soluble CdZnS alloy cores with ZnS shells, which were produced in the Snee laboratory (UI Chicago), via 400 nm pump broadband probe ultrafast transient absorption spectroscopy, and global analysis modeling. We also examine the perturbation invoked on charge carrier dynamics caused by growing Pd nanoparticles on the CdZnS/ZnS shell surface in-situ and note the cyclical charge carrier transfer that takes place. Both the CdZnS core and CdZnS/ZnS core/shell quantum dots exhibit unusually long lived excited states (much > 8 ns) while the CdZnS/ZnS.Pd tandem core/shell quantum dots recover much quicker (~3 ns). Additionally, ultrafast excitation fluence dependencies are used to characterize Auger recombination and the presence of two different trap state populations observable in the visible spectrum. In chapter 5 (JACS, 20664, 2011), we switch from examining direct band-gap chalcogenide based quantum dots to Si quantum dots synthesized in the Kauzlarich laboratory (UCD), which exhibit an indirect band-gap. Here a microwave-assisted reaction to produce hydrogen-terminated silicon quantum dots is discussed. The Si quantum dots were passivated for water solubility via two different methods: hydrosilylation produced 3-aminopropenyl-terminated Si quantum dots, and a modified Stöber process produced silica-encapsulated Si quantum dots. Both methods produce water-soluble quantum dots with maximum emission at 414 nm, and after purification, the quantum dots exhibit intrinsic fluorescence quantum yield efficiencies of 15 and 23%, respectively. Even though the quantum dots have different surfaces, they exhibit nearly identical absorption and fluorescence spectra. Femtosecond transient absorption spectroscopy was used for temporal resolution of the photoexcited carrier dynamics between the quantum dots and ligand. The transient dynamics of the 3-aminopropenyl-terminated Si quantum dots is interpreted as a formation and decay of a charge-transfer excited state between the delocalized π electrons of the carbon linker and the Si core excitons. This charge transfer state is stable for ~4 ns before reverting back to a more stable, long-living species. The silica-encapsulated Si QDs show a simpler spectrum without charge transfer dynamics. Appendix I (Chem. Mat., 1220, 2010), addresses the long-time (μs) transient kinetics associated with TiO2 and layered titanates (TBA2 2Ti4O9), which were synthesized in the Osterloh laboratory (UCD). Transient absorption data reveal that photogenerated electrons become trapped in mid band-gap states, from which they decay exponentially with a time-constant of 43.67 + 0.28 ms in titanates, which is much slower than the 68 + 1 ns observed for TiO2 nanocrystals. The slower kinetics observed for the TBA 2Ti4O9 nanosheets originates either from the presence of deeper trap sites on the sheets vs. the nanoparticles, more trap sites, or from more effective electron-hole separation because of the micrometer dimensions of the 2D lattice. Appendix II, depicts the visible solar spectrum at sea level detailing the percentage of photons and energy that exist within certain wavelength ranges.

  1. Magneto-Optics of Massive Dirac Fermions in Bulk Bi2Se3

    NASA Astrophysics Data System (ADS)

    Orlita, M.; Piot, B. A.; Martinez, G.; Kumar, N. K. Sampath; Faugeras, C.; Potemski, M.; Michel, C.; Hankiewicz, E. M.; Brauner, T.; Drašar, Č.; Schreyeck, S.; Grauer, S.; Brunner, K.; Gould, C.; Brüne, C.; Molenkamp, L. W.

    2015-05-01

    We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental band gap and the band velocity. In a magnetic field, this model implies a unique property—spin splitting equal to twice the cyclotron energy: Es=2 Ec. This explains the extensive magnetotransport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es=2 Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es=Ec always holds.

  2. Negative thermal quenching of photoluminescence in zinc oxide nanowire-core/graphene-shell complexes.

    PubMed

    Lin, S S; Chen, B G; Xiong, W; Yang, Y; He, H P; Luo, J

    2012-09-10

    Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.

  3. Quantum phase transitions and phase diagram for a one-dimensional p-wave superconductor with an incommensurate potential.

    PubMed

    Cai, X

    2014-04-16

    The effect of the incommensurate potential is studied for the one-dimensional p-wave superconductor. It is determined by analyzing various properties, such as the superconducting gap, the long-range order of the correlation function, the inverse participation ratio and the Z2 topological invariant, etc. In particular, two important aspects of the effect are investigated: (1) as disorder, the incommensurate potential destroys the superconductivity and drives the system into the Anderson localized phase; (2) as a quasi-periodic potential, the incommensurate potential causes band splitting and turns the system with certain chemical potential into the band insulator phase. A full phase diagram is also presented in the chemical potential-incommensurate potential strength plane.

  4. Effect of nitrogen ion implantation on the structural and optical properties of indium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethi, Riti; Aziz, Anver; Siddiqui, Azher M., E-mail: amsiddiqui@jmi.ac.in

    2016-06-10

    : We report here synthesis and subsequent nitrogen ion implantation of indium oxide (In{sub 2}O{sub 3}) thin films. The films were implanted with 25 keV N{sup +} beam for different ion doses between 3E15 to 1E16 ions/cm{sup 2}. The resulting changes in structural and optical properties were investigated using XRD, SEM-EDAX and UV-Vis Spectrometry. XRD studies reveal decrease in crystallite size from 20.06 to 12.42 nm with increase in ion dose. SEM micrographs show an increase in the grain size from 0.8 to 1.35 µm with increase in ion dose because of the agglomeration of the grains. Also, from EDAXmore » data on pristine and N-implanted thin films the presence of indium and oxygen without any traces of impurity elements could be seen. However, at lower ion doses such as 3E15 and 5E15 ions/cm{sup 2}, no evidence of the presence of nitrogen ion was seen. However, for the ion dose of 1E16 ions/cm{sup 2}, evidence of presence of nitrogen can be seen in the EDAX data. Band gap calculations reveal a decrease in band gap from 3.54 to 3.38 eV with increasing ion dose. However, the band gap was found to again show an increase to 3.58 eV at the highest ion dose owing to quantum confinement effect.« less

  5. Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material.

    PubMed

    Song, Xin; Fan, Meijie; Zhang, Kaili; Ding, Dakang; Chen, Weiye; Li, Yonghai; Yu, Liangmin; Sun, Mingliang; Yang, Renqiang

    2018-04-01

    Benzo[c][1,2,5]oxadiazole (BO) moiety is a strong electron-withdrawing unit compared to benzo[c][1,2,5]thiadiazole (BT). It is usually introduced as an acceptor to construct narrow band-gap donor-acceptor (D-A) materials. Herein, the π-extended conjugated moiety dithieno[3',2':3,4″;2,3″:5,6]benzo[1,2-c][1,2,5]oxadiazole (BOT) was adopted as the acceptor moiety to design D-A polymers. Considering the more extended π-conjugated molecular system of BOT compared to the BO unit, a narrower optical band-gap is expected for BOT-based IDT polymer (PIDT-BOT). Unexpectedly, the UV-vis absorption spectra of PIDT-BOT films display a great hypochromatic shift of about 60 nm compared to a BO-based analog (PIDT-BO). The optical band-gaps of the materials are broadened from 1.63 eV (PIDT-BO) to 2.00 eV (PIDT-BOT) accordingly. Although the range of external quantum efficiency (EQE) of PIDT-BOT-based polymer solar cell (PSC) devices is not as wide as for PIDT-BO-based devices, the EQE response intensities of the PIDT-BOT based device are evidently high. As a result, PSC devices based on PIDT-BOT reveal the best power conversion efficiency at 6.08%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  7. Relating the defect band gap and the density functional band gap

    NASA Astrophysics Data System (ADS)

    Schultz, Peter; Edwards, Arthur

    2014-03-01

    Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  8. Graph theory data for topological quantum chemistry.

    PubMed

    Vergniory, M G; Elcoro, L; Wang, Zhijun; Cano, Jennifer; Felser, C; Aroyo, M I; Bernevig, B Andrei; Bradlyn, Barry

    2017-08-01

    Topological phases of noninteracting particles are distinguished by the global properties of their band structure and eigenfunctions in momentum space. On the other hand, group theory as conventionally applied to solid-state physics focuses only on properties that are local (at high-symmetry points, lines, and planes) in the Brillouin zone. To bridge this gap, we have previously [Bradlyn et al., Nature (London) 547, 298 (2017)NATUAS0028-083610.1038/nature23268] mapped the problem of constructing global band structures out of local data to a graph construction problem. In this paper, we provide the explicit data and formulate the necessary algorithms to produce all topologically distinct graphs. Furthermore, we show how to apply these algorithms to certain "elementary" band structures highlighted in the aforementioned reference, and thus we identified and tabulated all orbital types and lattices that can give rise to topologically disconnected band structures. Finally, we show how to use the newly developed bandrep program on the Bilbao Crystallographic Server to access the results of our computation.

  9. Phonon-induced topological transition to a type-II Weyl semimetal

    DOE PAGES

    Wang, Lin-Lin; Jo, Na Hyun; Wu, Yun; ...

    2017-04-11

    Given the importance of crystal symmetry for the emergence of topological quantum states, we have studied here, as exemplified in NbNiTe 2, the interplay of crystal symmetry, atomic displacements (lattice vibration), band degeneracy, and band topology. For the NbNiTe 2 structure in space-group 53 (Pmna)$-$ having an inversion center arising from two glide planes and one mirror plane with a two-fold rotation and screw axis$-$a full gap opening exists between two band manifolds near the Fermi energy. Upon atomic displacements by optical phonons, the symmetry lowers to space-group 28 (Pma2), eliminating one glide plane along c, the associated rotation andmore » screw axis, and the inversion center. As a result, 20 Weyl points emerge, including four type-IIWeyl points in the Γ-X direction at the boundary between a pair of adjacent electron and hole bands. Thus, optical phonons may offer control of the transition to a Weyl fermion state.« less

  10. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Zhi-Gang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou; Heinke, Lars, E-mail: Lars.Heinke@KIT.edu

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast tomore » common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.« less

  11. Confinement-induced InAs/GaSb heterojunction electron-hole bilayer tunneling field-effect transistor

    NASA Astrophysics Data System (ADS)

    Padilla, J. L.; Medina-Bailon, C.; Alper, C.; Gamiz, F.; Ionescu, A. M.

    2018-04-01

    Electron-Hole Bilayer Tunneling Field-Effect Transistors are typically based on band-to-band tunneling processes between two layers of opposite charge carriers where tunneling directions and gate-induced electric fields are mostly aligned (so-called line tunneling). However, the presence of intense electric fields associated with the band bending required to trigger interband tunneling, along with strong confinement effects, has made these types of devices to be regarded as theoretically appealing but technologically impracticable. In this work, we propose an InAs/GaSb heterostructure configuration that, although challenging in terms of process flow design and fabrication, could be envisaged for alleviating the electric fields inside the channel, whereas, at the same time, making quantum confinement become the mechanism that closes the broken gap allowing the device to switch between OFF and ON states. The utilization of induced doping prevents the harmful effect of band tails on the device performance. Simulation results lead to extremely steep slope characteristics endorsing its potential interest for ultralow power applications.

  12. Near-field three-terminal thermoelectric heat engine

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; Imry, Yoseph

    2018-03-01

    We propose a near-field inelastic thermoelectric heat engine where quantum dots are used to effectively rectify the charge flow of photocarriers. The device converts near-field heat radiation into useful electrical power. Heat absorption and inelastic transport can be enhanced by introducing two continuous spectra separated by an energy gap. The thermoelectric transport properties of the heat engine are studied in the linear-response regime. Using a small band-gap semiconductor as the absorption material, we show that the device achieves very large thermopower and thermoelectric figure of merit, as well as considerable power factor. By analyzing thermal-photocarrier generation and conduction, we reveal that the Seebeck coefficient and the figure of merit have oscillatory dependence on the thickness of the vacuum gap. Meanwhile, the power factor, the charge, and thermal conductivity are significantly improved by near-field radiation. Conditions and guiding principles for powerful and efficient thermoelectric heat engines are discussed in details.

  13. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer.

    PubMed

    Yan, Wei; He, Wen-Yu; Chu, Zhao-Dong; Liu, Mengxi; Meng, Lan; Dou, Rui-Fen; Zhang, Yanfeng; Liu, Zhongfan; Nie, Jia-Cai; He, Lin

    2013-01-01

    It is well established that strain and geometry could affect the band structure of graphene monolayer dramatically. Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature, which are found to strongly affect the local band structures of the twisted graphene bilayer. The energy difference of the two low-energy van Hove singularities decreases with increasing lattice deformation and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive chiral fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.

  14. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe{sub 2}O{sub 3}) nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luna, Carlos, E-mail: carlos.lunacd@uanl.edu.mx; Cuan-Guerra, Aída D.; Barriga-Castro, Enrique D.

    2016-08-15

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that thesemore » nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects.« less

  15. Dibenzopyran-Based Wide Band Gap Conjugated Copolymers: Structural Design and Application for Polymer Solar Cells.

    PubMed

    Zhou, Yuanyuan; Li, Miao; Guo, Yijing; Lu, Heng; Song, Jinsheng; Bo, Zhishan; Wang, Hua

    2016-11-16

    With the efficient synthesis of the crucial dibenzopyran building block, a series of PDBPTBT polymers containing different alkyl side chains and/or fluorine substitution were designed and synthesized via the microwave-assisted Suzuki polycondensation. Quantum chemistry calculations based on density functional theory indicated that different substitutions have significant impacts on the planarity and rigidity of the polymer backbones. Interestingly, the alkyloxy chains of PDBPTBT-4 tend to stay in the same plane with the benzothiadiazole unit, but the others appear to be out of plane. With the S···O and F···H/F···S supramolecular interactions, the conformations of the four polymers will be locked in different ways as predicted by the quantum chemistry calculation. Such structural variation resulted in varied solid stacking and photophysical properties as well as the final photovoltaic performances. Conventional devices based on these four polymers were fabricated, and PDBPTBT-5 displayed the best PCE of 5.32%. After optimization of the additive types, ratios, and the interlayers at the cathode, a high PCE of 7.06% (V oc = 0.96 V, J sc = 11.09 mA/cm 2 , and FF = 0.67) is obtained for PDBPTBT-5 with 2.0% DIO as the additive and PFN-OX as the electron-transporting layer. These results indicated DBP-based conjugated polymers are promising wide band gap polymer donors for high-efficiency polymer solar cells.

  16. First principles study of size and external electric field effects on the atomic and electronic properties of gallium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hulusi

    A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.

  17. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy.

    PubMed

    Dessovic, P; Mohn, P; Jackson, R A; Winkler, G; Schreitl, M; Kazakov, G; Schumm, T

    2014-03-12

    The (229)thorium isotope presents an extremely low-energy isomer state of the nucleus which is expected around 7.8 eV, in the vacuum ultraviolet (VUV) regime. This unique system may bridge between atomic and nuclear physics, enabling coherent manipulation and precision spectroscopy of nuclear quantum states using laser light. It has been proposed to implant (229)thorium into VUV transparent crystal matrices to facilitate laser spectroscopy and possibly realize a solid-state nuclear clock. In this work, we validate the feasibility of this approach by computer modelling of thorium doping into calcium fluoride single crystals. Using atomistic modelling and full electronic structure calculations, we find a persistent large band gap and no additional electronic levels emerging in the middle of the gap due to the presence of the dopant, which should allow direct optical interrogation of the nuclear transition.Based on the electronic structure, we estimate the thorium nuclear quantum levels within the solid-state environment. Precision laser spectroscopy of these levels will allow the study of a broad range of crystal field effects, transferring Mössbauer spectroscopy into the optical regime.

  18. Optimizing surface defects for atomic-scale electronics: Si dangling bonds

    NASA Astrophysics Data System (ADS)

    Scherpelz, Peter; Galli, Giulia

    2017-07-01

    Surface defects created and probed with scanning tunneling microscopes are a promising platform for atomic-scale electronics and quantum information technology applications. Using first-principles calculations we demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1-2 nm) lead to an isolated impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new methods for tuning the properties of defects on surfaces for electronic and quantum information applications. Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and simulations.

  19. Loop-gap microwave resonator for hybrid quantum systems

    NASA Astrophysics Data System (ADS)

    Ball, Jason R.; Yamashiro, Yu; Sumiya, Hitoshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Konstantinov, Denis; Kubo, Yuimaru

    2018-05-01

    We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogen-vacancy (NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer.

  20. In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khiar, A., E-mail: amir.khiar@jku.at; Witzan, M.; Hochreiner, A.

    2014-06-09

    Optical in-well pumped mid-infrared vertical external cavity surface emitting lasers based on PbTe quantum wells embedded in CdTe barriers are realized. In contrast to the usual ternary barrier materials of lead salt lasers such as PbEuTe of PbSrTe, the combination of narrow-gap PbTe with wide-gap CdTe offers an extremely large carrier confinement, preventing charge carrier leakage from the quantum wells. In addition, optical in-well pumping can be achieved with cost effective and readily available near infrared lasers. Free carrier absorption, which is a strong loss mechanism in the mid-infrared, is strongly reduced due to the insulating property of CdTe. Lasingmore » is observed from 85 K to 300 K covering a wavelength range of 3.3–4.2 μm. The best laser performance is achieved for quantum well thicknesses of 20 nm. At low temperature, the threshold power is around 100 mW{sub P} and the output power more than 700 mW{sub P}. The significance of various charge carrier loss mechanisms are analyzed by modeling the device performance. Although Auger losses are quite low in IV–VI semiconductors, an Auger coefficient of C{sub A} = 3.5 × 10{sup −27} cm{sup 6} s{sup −1} was estimated for the laser structure, which is attributed to the large conduction band offset.« less

  1. Demonstration of a quantum controlled-NOT gate in the telecommunications band.

    PubMed

    Chen, Jun; Altepeter, Joseph B; Medic, Milja; Lee, Kim Fook; Gokden, Burc; Hadfield, Robert H; Nam, Sae Woo; Kumar, Prem

    2008-04-04

    We present the first quantum controlled-not (cnot) gate realized using a fiber-based indistinguishable photon-pair source in the 1.55 microm telecommunications band. Using this free-space cnot gate, all four Bell states are produced and fully characterized by performing quantum-state tomography, demonstrating the gate's unambiguous entangling capability and high fidelity. Telecom-band operation makes this cnot gate particularly suitable for quantum-information-processing tasks that are at the interface of quantum communication and linear optical quantum computing.

  2. Quantum communication and information processing

    NASA Astrophysics Data System (ADS)

    Beals, Travis Roland

    Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.

  3. Effect of uniaxial stress on electroluminescence, valence band modification, optical gain, and polarization modes in tensile strained p-AlGaAs/GaAsP/n-AlGaAs laser diode structures: Numerical calculations and experimental results

    NASA Astrophysics Data System (ADS)

    Bogdanov, E. V.; Minina, N. Ya.; Tomm, J. W.; Kissel, H.

    2012-11-01

    The effects of uniaxial compression in [110] direction on energy-band structures, heavy and light hole mixing, optical matrix elements, and gain in laser diodes with "light hole up" configuration of valence band levels in GaAsP quantum wells with different widths and phosphorus contents are numerically calculated. The development of light and heavy hole mixing caused by symmetry lowering and converging behavior of light and heavy hole levels in such quantum wells under uniaxial compression is displayed. The light or heavy hole nature of each level is established for all considered values of uniaxial stress. The results of optical gain calculations for TM and TE polarization modes show that uniaxial compression leads to a significant increase of the TE mode and a minor decrease of the TM mode. Electroluminescence experiments were performed under uniaxial compression up to 5 kbar at 77 K on a model laser diode structure (p-AlxGa1-xAs/GaAs1-yPy/n-AlxGa1-xAs) with y = 0.16 and a quantum well width of 14 nm. They reveal a maximum blue shift of 27 meV of the electroluminescence spectra that is well described by the calculated change of the optical gap and the increase of the intensity being referred to a TE mode enhancement. Numerical calculations and electroluminescence data indicate that uniaxial compression may be used for a moderate wavelength and TM/TE intensity ratio tuning.

  4. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration.

    PubMed

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-04

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  5. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    PubMed Central

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-01-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035

  6. Dark gap solitons in exciton-polariton condensates in a periodic potential.

    PubMed

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  7. Dark gap solitons in exciton-polariton condensates in a periodic potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  8. Structural analysis and characterization of layer perovskite oxynitrides made from Dion Jacobson oxide precursors

    NASA Astrophysics Data System (ADS)

    Schottenfeld, Joshua A.; Benesi, Alan J.; Stephens, Peter W.; Chen, Gugang; Eklund, Peter C.; Mallouk, Thomas E.

    2005-07-01

    A three-layer oxynitride Ruddlesden-Popper phase Rb 1+xCa 2Nb 3O 10-xN x· yH 2O ( x=0.7-0.8, y=0.4-0.6) was synthesized by ammonialysis at 800 °C from the Dion-Jacobson phase RbCa 2Nb 3O 10 in the presence of Rb 2CO 3. Incorporation of nitrogen into the layer perovskite structure was confirmed by XPS, combustion analysis, and MAS NMR. The water content was determined by thermal gravimetric analysis and the rubidium content by ICP-MS. A similar layered perovskite interconversion occurred in the two-layer Dion-Jacobson oxide RbLaNb 2O 7 to yield Rb 1+xLaNb 2O 7-xN x· yH 2O ( x=0.7-0.8, y=0.5-1.0). Both compounds were air- and moisture-sensitive, with rapid loss of nitrogen by oxidation and hydrolysis reactions. The structure of the three-layer oxynitride Rb 1.7Ca 2Nb 3O 9.3N 0.7·0.5H 2O was solved in space group P4 /mmm with a=3.887(3) and c=18.65(1) Å, by Rietveld refinement of X-ray powder diffraction data. The two-layer oxynitride structure Rb 1.8LaNb 2O 6.3N 0.7·1.0H 2O was also determined in space group P4 /mmm with a=3.934(2) and c=14.697(2) Å. GSAS refinement of synchrotron X-ray powder diffraction data showed that the water molecules were intercalated between a double layer of Rb+ ions in both the two- and three-layer Ruddlesden-Popper structures. Optical band gaps were measured by diffuse reflectance UV-vis for both materials. An indirect band gap of 2.51 eV and a direct band gap of 2.99 eV were found for the three-layer compound, while an indirect band gap of 2.29 eV and a direct band gap of 2.84 eV were measured for the two-layer compound. Photocatalytic activity tests of the three-layer compound under 380 nm pass filtered light with AgNO 3 as a sacrificial electron acceptor gave a quantum yield of 0.025% for oxygen evolution.

  9. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.S.; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090; Yang, J.

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reducemore » the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.« less

  10. Efficiency droop in GaN LEDs at high injection levels: Role of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, N. I.; Sheremet, I. A.; Shreter, Yu. G., E-mail: y.shreter@mail.ioffe.ru

    2016-10-15

    Point defects in GaN and, in particular, their manifestation in the photoluminescence, optical absorption, and recombination current in light-emitting diodes with InGaN/GaN quantum wells are analyzed. The results of this analysis demonstrate that the wide tail of defect states in the band gap of GaN facilitates the trap-assisted tunneling of thermally activated carriers into the quantum well, but simultaneously leads to a decrease in the nonradiative-recombination lifetime and to an efficiency droop as the quasi-Fermi levels intersect the defect states with increasing forward bias. The results reveal the dominant role of hydrogen in the recombination activity of defects with danglingmore » bonds and in the efficiency of GaN-based devices.« less

  11. Homojunction GaAs solar cells grown by close space vapor transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping,more » and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.« less

  12. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladysiewicz, M.; Wartak, M. S.; Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be usedmore » to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.

    One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band-gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, nonoptimal absorption energies, and difficulties for implementing in practical devices. We show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. Thismore » process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. When compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the “productive” Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localized excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter.« less

  14. Compositional Dependence of Optical and Structural Properties of Nanogranular Mixed ZrO2/ZnO/SnO2 Thin Film

    NASA Astrophysics Data System (ADS)

    Salari, S.; Ghodsi, F. E.

    2018-06-01

    A study on the optical properties and photoluminescence (PL) spectra of ternary oxide nanogranular thin films comprising Zr, Zn, and Sn revealed that the change in component ratio could direct the roadmap to improve characteristics of the films. Grazing angle X-ray diffraction analysis showed that incorporation of Sn atoms into the tetragonal structure of Zn/Zr thin film resulted in an amorphous structure. The band gap of film was tunable by precisely controlling the concentration of components. The widening of band gap could correlate to the quantum confinement effect. PL spectra of the composite thin films under excitation at 365 nm showed a sharp red emission with relatively Gaussian line shape, which was intensified in the optimum percentage ratio of 50/30/20. This nearly red emission is attributed to the radiative emission of electrons captured at low-energy traps located near the valence band. An optimum red emission is strongly desirable for use in white LEDs. The comparative study on FTIR spectra of unary, binary, and ternary thin films confirmed successful composition of three different metal oxides in ternary thin films. Detailed investigation on FTIR spectra of ternary compounds revealed that the quenching in PL emission at higher percentage of Sn was originally due to the hydroxyl group.

  15. Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kim, Ju H.

    In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.

  16. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.

    PubMed

    Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih

    2013-05-01

    2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.

  17. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahariya, Vikas

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blendmore » crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.« less

  18. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin; Xie, Guohua

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2′})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy tomore » balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.« less

  19. Structural and electronic properties of armchair graphene nanoribbons under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Qu, Li-Hua; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent

    2014-02-01

    We theoretically investigate the structures, relative stabilities and electronic properties of the armchair graphene nanoribbons (AGNRs) under uniaxial strain via first-principles calculations. The results show that, although each bond length decreases (increases) with increasing compression (tension) strain especially for the axial bonds a1, a4 and a7, the ribbon geometrical width d increases (decreases) with increasing compression (tension) strain due to the rotation of the zigzag bonds a2, a3, a5 and a6. For each nanoribbon, as expected, the lowest average energy corresponds to the unstrained state and the larger contract (elongate) deformation corresponds to the higher average energy. At a certain strain, the average energy increases with decreasing the ribbon width n. The average energy increases quadratically with the absolute value of the uniaxial strain, showing an elastic behavior. The dependence of the band gap on the strain is sensitive to the ribbon width n which can be classified into three distinct families n=3I, 3I+1 and 3I+2, where I is an integer. The ribbon width leads to oscillatory band gaps due to quantum confinement effect.

  20. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  1. Dirac electrons in quantum rings

    NASA Astrophysics Data System (ADS)

    Gioia, L.; Zülicke, U.; Governale, M.; Winkler, R.

    2018-05-01

    We consider quantum rings realized in materials where the dynamics of charge carriers mimics that of two-dimensional (2D) Dirac electrons. A general theoretical description of the ring-subband structure is developed that applies to a range of currently available 2D systems, including graphene, transition-metal dichalcogenides, and narrow-gap semiconductor quantum wells. We employ the scattering-matrix approach to calculate the electronic two-terminal conductance through the ring and investigate how it is affected by Dirac-electron interference. The interplay of pseudospin chirality and hard-wall confinement is found to distinctly affect the geometric phase that is experimentally accessible in mesoscopic-conductance measurements. We derive an effective Hamiltonian for the azimuthal motion of charge carriers in the ring that yields deeper insight into the physical origin of the observed transport effects, including the unique behavior exhibited by the lowest ring subband in the normal and topological (i.e., band-inverted) regimes. Our paper provides a unified approach to characterizing confined Dirac electrons, which can be used to explore the design of valley- and spintronic devices based on quantum interference and the confinement-tunable geometric phase.

  2. Efficient Carrier Multiplication in Colloidal Silicon Nanorods

    DOE PAGES

    Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan; ...

    2017-08-01

    In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less

  3. Exotic ferromagnetism in the two-dimensional quantum material C3N

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong

    2018-04-01

    The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan

    In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less

  5. Electron tunneling characteristics of a cubic quantum dot, (PbS){sub 32}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Sanjeev K., E-mail: sanjeevg@mtu.edu, E-mail: haiying.he@valpo.edu; Banyai, Douglas; Pandey, Ravindra

    The electron transport properties of the cubic quantum dot, (PbS){sub 32}, are investigated. The stability of the quantum dot has been established by recent scanning tunneling microscope experiments [B. Kiran, A. K. Kandalam, R. Rallabandi, P. Koirala, X. Li, X. Tang, Y. Wang, H. Fairbrother, G. Gantefoer, and K. Bowen, J. Chem. Phys. 136(2), 024317 (2012)]. In spite of the noticeable energy band gap (∼2 eV), a relatively high tunneling current for (PbS){sub 32} is predicted affirming the observed bright images for (PbS){sub 32}. The calculated I-V characteristics of (PbS){sub 32} are predicted to be substrate-dependent; (PbS){sub 32} on themore » Au (001) exhibits the molecular diode-like behavior and the unusual negative differential resistance effect, though this is not the case with (PbS){sub 32} on the Au (110). Appearance of the conduction channels associated with the hybridized states of quantum dot and substrate together with their asymmetric distribution at the Fermi level seem to determine the tunneling characteristics of the system.« less

  6. Selecting the optimal synthesis parameters of InP/CdxZn1-xSe quantum dots for a hybrid remote phosphor white LED for general lighting applications.

    PubMed

    Ryckaert, Jana; Correia, António; Tessier, Mickael D; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri

    2017-11-27

    Quantum dots can be used in white LEDs for lighting applications to fill the spectral gaps in the combined emission spectrum of the blue pumping LED and a broad band phosphor, in order to improve the source color rendering properties. Because quantum dots are low scattering materials, their use can also reduce the amount of backscattered light which can increase the overall efficiency of the white LED. The absorption spectrum and narrow emission spectrum of quantum dots can be easily tuned by altering their synthesis parameters. Due to the re-absorption events between the different luminescent materials and the light interaction with the LED package, determining the optimal quantum dot properties is a highly non-trivial task. In this paper we propose a methodology to select the optimal quantum dot to be combined with a broad band phosphor in order to realize a white LED with optimal luminous efficacy and CRI. The methodology is based on accurate and efficient simulations using the extended adding-doubling approach that take into account all the optical interactions. The method is elaborated for the specific case of a hybrid, remote phosphor white LED with YAG:Ce phosphor in combination with InP/CdxZn 1-x Se type quantum dots. The absorption and emission spectrum of the quantum dots are generated in function of three synthesis parameters (core size, shell size and cadmium fraction) by a semi-empirical 'quantum dot model' to include the continuous tunability of these spectra. The sufficiently fast simulations allow to scan the full parameter space consisting of these synthesis parameters and luminescent material concentrations in terms of CRI and efficacy. A conclusive visualization of the final performance allows to make a well-considered trade-off between these performance parameters. For the hybrid white remote phosphor LED with YAG:Ce and InP/CdxZn 1-x Se quantum dots a CRI Ra = 90 (with R9>50) and an overall efficacy of 110 lm/W is found.

  7. Breakdown of Strong Coupling Expansions for doped Mott Insulators

    NASA Astrophysics Data System (ADS)

    Phillips, Philip; Galanakis, Dimitrios; Stanescu, Tudor

    2005-03-01

    We show that doped Mott insulators, such as the copper-oxide superconductors, are asymptotically slaved in that the quasiparticle weight, Z, near half-filling depends critically on the existence of the high energy scale set by the upper Hubbard band. In particular, near half filling, the following dichotomy arises: Z0 when the high energy scale is integrated out but Z=0 in the thermodynamic limit when it is retained. Slavery to the high energy scale arises from quantum interference between electronic excitations across the Mott gap.

  8. Nonlinear properties of gated graphene in a strong electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am; Moulopoulos, K., E-mail: cos@ucy.ac.cy

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  9. (QC Themes) Type-Two Quantum Computing in PBG-Based Cavities for Efficient Simulation of Lattice Gas Dynamics

    DTIC Science & Technology

    2008-04-26

    substrate Si3N4 Diameter : 540 nm Pitch : 760 nm Diamond Holes in Diamond (HID) Pillars of Diamond (POD) POD with Electrooptic Polymer at Center 3D ...Diamond film : 2 um Si- substrate Al : 0.2 um PMMA : 0.5um 1. Deposit UNCD film 2. Deposit Al metal 3. Deposit PMMA on Al 4. E-beam Lithography 5...band-gap (PBG) based cavities. The cavities are etched directly on to the diamond substrate . The set of coupled qubits in each spot represents an

  10. Synthesis of nanodimensional orthorhombic SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Kanjilal, D.; Bhattacharyya, V.

    2018-04-01

    Amorphous thin films of SnO2 are irradiated by swift heavy ions at two different fluences. Unirradiated as well as irradiated films are characterized by glancing angle X-ray diffraction (GAXRD), UV-Vis spectroscopy and atomic force microscopy (AFM). GAXRD study reveals formation of orthorhombic nanophases of SnO2. Nanophase formation is also confirmed by the quantum size effect manifested by blue shift in terms of increase in band gap energy. The size and shape of the irradiation induced surface structures depend on ion fluence.

  11. Wide Band Gap Semiconductors Symposium Held in Boston, Massachusetts on 2-6 December 1991. Materials Research Society Symposium Proceedings. Volume 242

    DTIC Science & Technology

    1992-01-01

    equation and taking into account the phase changes which occur at the surface of the irradiated solid. Intense pulsed laser irradiation induces rapid...resulted in the realization of pn junction light emitting devices operating in the blue and blue/green portion of the spectrum such as pulsed lasers (3M...such as pulse lasers [3-51 and multiple quantum well light emitting devices 16). It is expected that these recent developments will open a new stage of

  12. Temperature shift of intraband absorption peak in tunnel-coupled QW structure

    NASA Astrophysics Data System (ADS)

    Akimov, V.; Firsov, D. A.; Duque, C. A.; Tulupenko, V.; Balagula, R. M.; Vinnichenko, M. Ya.; Vorobjev, L. E.

    2017-04-01

    An experimental study of the intersubband light absorption by the 100-period GaAs/Al0.25Ga0.75As double quantum well heterostructure doped with silicon is reported and interpreted. Small temperature redshift of the 1-3 intersubband absorption peak is detected. Numerical calculations of the absorption coefficient including self-consistent Hartree calculations of the bottom of the conduction band show good agreement with the observed phenomena. The temperature dependence of energy gap of the material and the depolarization shift should be accounted for to explain the shift.

  13. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    PubMed

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  14. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)<{{E}{{BQD}}}~≲ 1800 meV for different kinds of TMDC QDs) ensures that the many body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and radiative lifetime of excitons are strongly size-dependent and indicate a giant oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from a few tens of femtoseconds to a few picoseconds. We found that the spin-dependent band gap, spin-valley coupling, binding energy and excitonic effects can be tuned by quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  16. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    PubMed

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production of free charges that can contribute to the photocurrent in a device. We show that free mobile charges can be efficiently produced via CM in solids of strongly coupled PbSe QDs. Strong electronic coupling between the QDs resulted in a charge carrier mobility of the order of 1 cm(2) V(-1) s(-1). This mobility is sufficiently high so that virtually all electron-hole pairs escape from recombination. The impact of temperature on the CM efficiency in PbSe QD solids was also studied. We inferred that temperature has no observable effect on the rate of cooling of hot charges nor on the CM rate. We conclude that exploitation of CM requires that charges have sufficiently high mobility to escape from recombination. The contribution of CM to the efficiency of photovoltaic devices can be further enhanced by an increase of the CM efficiency above the energetic threshold of twice the band gap. For large-scale applications in photovoltaic devices, it is important to develop abundant and nontoxic materials that exhibit efficient CM.

  17. QWIP focal plane arrays performances from MWIR up to VLWIR

    NASA Astrophysics Data System (ADS)

    Robo, J. A.; Costard, E.; Truffer, J. P.; Nedelcu, A.; Marcadet, X.; Bois, P.

    2009-05-01

    Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures at various wavelengths in MWIR, LWIR and VLWIR. An overview of the available performances of QWIPs in the whole infrared spectrum is presented here. We also discuss about the under-development products such as dual band and polarimetric structures.

  18. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    PubMed

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  19. Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system

    NASA Astrophysics Data System (ADS)

    Michon, E.; Cabrera-Gutiérrez, C.; Fortun, A.; Berger, M.; Arnal, M.; Brunaud, V.; Billy, J.; Petitjean, C.; Schlagheck, P.; Guéry-Odelin, D.

    2018-05-01

    The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a staggered state with alternating sign in its wavefunction is experimentally studied using a one-dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative agreement with numerical simulations based on the truncated Wigner method, we experimentally investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density, and the driving frequency. The effective inverted energy band in the driven lattice is identified as the key ingredient which explains the emergence of gap solitons as observed in numerics and the possibility to nucleate staggered states from interband excitations as reported experimentally.

  20. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less

  1. Improved photoluminescence characteristics of order-disorder AlGaInP quantum wells at room and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Kunal; Fitzgerald, Eugene A.; Deotare, Parag B.

    2015-04-06

    A set of nominally undoped CuPt-B type ordered (Al{sub x}Ga{sub 1−x}){sub 0.5}In{sub 0.5}P quantum-wells with disordered (Al{sub 0.7}Ga{sub 0.3}){sub 0.5}In{sub 0.5}P barriers were grown and characterized using transmission electron microscopy and photoluminescence spectroscopy. Such structures are potentially beneficial for light emitting devices due to the possibility of greater carrier confinement, reduced scattering into the indirect valleys, and band-offset adjustment beyond what is possible with strain and composition. Furthermore, the possibility of independently tuning the composition and the order-parameter of the quantum-well allows for the decoupling of the carrier confinement and the aluminum content and aids in the identification of carriermore » loss mechanisms. In this study, sharp order-disorder interfaces were achieved via the control of growth temperature between 650 °C and 750 °C using growth pauses. Improved high-temperature (400 K) photoluminescence intensity was obtained from quantum-wells with ordered Ga{sub 0.5}In{sub 0.5}P as compared to disordered Ga{sub 0.5}In{sub 0.5}P due to greater confinement. Additionally, in the ordered samples with a higher Al/Ga ratio to counter the band-gap reduction, the photoluminescence intensity at high temperature was as bright as that from conventional disordered heterostructures and had slightly improved wavelength stability. Room-temperature time-resolved luminescence measurements indicated a longer radiative lifetime in the ordered quantum-well with reduced scattering into the barrier. These results show that in samples of good material quality, the property controlling the luminescence intensity is the carrier confinement and not the presence of ordering or the aluminum content.« less

  2. Understanding chemically processed solar cells based on quantum dots

    NASA Astrophysics Data System (ADS)

    Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2017-12-01

    Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.

  3. Decoupling the effects of confinement and passivation on semiconductor quantum dots.

    PubMed

    Rudd, Roya; Hall, Colin; Murphy, Peter J; Reece, Peter J; Charrault, Eric; Evans, Drew

    2016-07-20

    Semiconductor (SC) quantum dots (QDs) have recently been fabricated by both chemical and plasma techniques for specific absorption and emission of light. Their optical properties are governed by the size of the QD and the chemistry of any passivation at their surface. Here, we decouple the effects of confinement and passivation by utilising DC magnetron sputtering to fabricate SC QDs in a perfluorinated polyether oil. Very high band gaps are observed for fluorinated QDs with increasing levels of quantum confinement (from 4.2 to 4.6 eV for Si, and 2.5 to 3 eV for Ge), with a shift down to 3.4 eV for Si when oxygen is introduced to the passivation layer. In contrast, the fluorinated Si QDs display a constant UV photoluminescence (3.8 eV) irrespective of size. This ability to tune the size and passivation independently opens a new opportunity to extending the use of simple semiconductor QDs.

  4. Interplay of Chiral and Helical States in a Quantum Spin Hall Insulator Lateral Junction

    DOE PAGES

    Calvo, M. R.; de Juan, F.; Ilan, R.; ...

    2017-11-29

    Here, we study the electronic transport across an electrostatically-gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without applied magnetic field. We control carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the 2D gap, magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus which reflect the equilibration between 1D chiral modes across the junction. As carrier density approaches zero inmore » the central region and at moderate fields, we observe oscillations in resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.« less

  5. Interplay of Chiral and Helical States in a Quantum Spin Hall Insulator Lateral Junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, M. R.; de Juan, F.; Ilan, R.

    Here, we study the electronic transport across an electrostatically-gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without applied magnetic field. We control carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the 2D gap, magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus which reflect the equilibration between 1D chiral modes across the junction. As carrier density approaches zero inmore » the central region and at moderate fields, we observe oscillations in resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.« less

  6. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    PubMed

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  7. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening

    PubMed Central

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-01-01

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications. PMID:26138830

  8. Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells

    PubMed Central

    Adhyaksa, Gede Widia Pratama; Lee, Ga In; Baek, Se-Woong; Lee, Jung-Yong; Kang, Jeung Ku

    2013-01-01

    The efficiency of solar cells depends on absorption intensity of the photon collectors. Herein, mobile quantum dots (QDs) functionalized with thiol ligands in electrolyte are utilized into dye–sensitized solar cells. The QDs serve as mediators to receive and re–transmit energy to sensitized dyes, thus amplifying photon collection of sensitizing dyes in the visible range and enabling up–conversion of low-energy photons to higher-energy photons for dye absorption. The cell efficiency is boosted by dispersing QDs in electrolyte, thereby obviating the need for light scattering1 or plasmonic2 structures. Furthermore, optical spectroscopy and external quantum efficiency data reveal that resonance energy transfer due to the overlap between QD emission and dye absorption spectra becomes dominant when the QD bandgap is higher than the first excitonic peak of the dye, while co–sensitization resulting in a fast reduction of oxidized dyes is pronounced in the case of lower QD band gaps. PMID:24048384

  9. Understanding chemically processed solar cells based on quantum dots.

    PubMed

    Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2017-01-01

    Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO 2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.

  10. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-05

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  11. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  12. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Adame, J.; Warzel, S.

    2015-11-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  13. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adame, J.; Warzel, S., E-mail: warzel@ma.tum.de

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  14. Prediction of weak and strong topological insulators in layered semiconductors.

    NASA Astrophysics Data System (ADS)

    Felser, Claudia

    2013-03-01

    We investigate a new class of ternary materials such as LiAuSe and KHgSb with a honeycomb structure in Au-Se and Hg-Sb layers. We demonstrate the band inversion in these materials similar to HgTe, which is a strong precondition for existence of the topological surface states. In contrast with graphene, these materials exhibit strong spin-orbit coupling and a small direct band gap at the point. Since these materials are centrosymmetric, it is straightforward to determine the parity of their wave functions, and hence their topological character. Surprisingly, the compound with strong spin-orbit coupling (KHgSb) is trivial, whereas LiAuSe is found to be a topological insulator. However KHgSb is a weak topological insulators in case of an odd number of layers in the primitive unit cell. Here, the single-layered KHgSb shows a large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Although the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as prototypes to aid in the finding of new weak topological insulators in layered small-gap semiconductors. In collaboration with Binghai Yan, Lukas Müchler, Hai-Jun Zhang, Shou-Cheng Zhang and Jürgen Kübler.

  15. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%.

    PubMed

    Du, Jun; Du, Zhonglin; Hu, Jin-Song; Pan, Zhenxiao; Shen, Qing; Sun, Jiankun; Long, Donghui; Dong, Hui; Sun, Litao; Zhong, Xinhua; Wan, Li-Jun

    2016-03-30

    The enhancement of power conversion efficiency (PCE) and the development of toxic Cd-, Pb-free quantum dots (QDs) are critical for the prosperity of QD-based solar cells. It is known that the properties (such as light harvesting range, band gap alignment, density of trap state defects, etc.) of QD light harvesters play a crucial effect on the photovoltaic performance of QD based solar cells. Herein, high quality ∼4 nm Cd-, Pb-free Zn-Cu-In-Se alloyed QDs with an absorption onset extending to ∼1000 nm were developed as effective light harvesters to construct quantum dot sensitized solar cells (QDSCs). Due to the small particle size, the developed QD sensitizer can be efficiently immobilized on TiO2 film electrode in less than 0.5 h. An average PCE of 11.66% and a certified PCE of 11.61% have been demonstrated in the QDSCs based on these Zn-Cu-In-Se QDs. The remarkably improved photovoltaic performance for Zn-Cu-In-Se QDSCs vs Cu-In-Se QDSCs (11.66% vs 9.54% in PCE) is mainly derived from the higher conduction band edge, which favors the photogenerated electron extraction and results in higher photocurrent, and the alloyed structure of Zn-Cu-In-Se QD light harvester, which benefits the suppression of charge recombination at photoanode/electrolyte interfaces and thus improves the photovoltage.

  16. Novel BTlGaN semiconducting materials for infrared opto-electronic devices

    NASA Astrophysics Data System (ADS)

    Assali, Abdenacer; Bouslama, M'hamed

    2017-03-01

    BTlGaN quaternary alloys are proposed as new semiconductor materials for infrared opto-electronic applications. The structural and opto-electronic properties of zinc blende BxTlyGa1-x-yN alloys lattice matched to GaN with (0 ⩽ x and y ⩽ 0.187) are studied using density functional theory (DFT) within full-potential linearized augmented plane wave (FP-LAPW) method. The calculated structural parameters such as lattice constant a0 and bulk modulus B0 are found to be in good agreement with experimental data using the new form of generalized gradient approximation (GGA-WC). The band gaps of the compounds are also found very close to the experimental results using the recently developed Tran-Blaha-modified Becke-Johnson (TB-mBJ) exchange potential. A quaternary BxTlyGa1-x-yN is expected to be lattice matched to the GaN substrate with concentrations x = 0.125 and y = 0.187 allows to produce high interface layers quality. It has been found that B incorporation into BTlGaN does not significantly affect the band gap, while the addition of dilute Tl content leads to induce a strong reduction of the band gap, which in turn increases the emission wavelengths to the infrared region. The refractivity, reflectivity and absorption coefficient of these alloys were investigated. BTlGaN/GaN is an interesting new material to be used as active layer/barriers in quantum wells suitable for realizing advanced Laser Diodes and Light-Emitting Diodes as new sources of light emitting in the infrared spectrum region.

  17. Photoelectrochemical studies of InGaN/GaN MQW photoanodes

    NASA Astrophysics Data System (ADS)

    Butson, Joshua; Reddy Narangari, Parvathala; Krishna Karuturi, Siva; Yew, Rowena; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati

    2018-01-01

    The research interest in photoelectrochemical (PEC) water splitting is ever growing due to its potential to contribute towards clean and portable energy. However, the lack of low energy band gap materials with high photocorrosion resistance is the primary setback inhibiting this technology from commercialisation. The ternary alloy InGaN shows promise to meet the photoelectrode material requirements due to its high chemical stability and band gap tunability. The band gap of InGaN can be modulated from the UV to IR regions by adjusting the In concentration so as to absorb the maximum portion of the solar spectrum. This paper reports on the influence of In concentration on the PEC properties of planar and nanopillar (NP) InGaN/GaN multi-quantum well (MQW) photoanodes, where NPs were fabricated using a top-down approach. Results show that changing the In concentration, while having a minor effect on the PEC performance of planar MQWs, has an enormous impact on the PEC performance of NP MQWs, with large variations in the photocurrent density observed. Planar photoanodes containing MQWs generate marginally lower photocurrents compared to photoanodes without MQWs when illuminated with sunlight. NP MQWs with 30% In generated the highest photocurrent density of 1.6 mA cm-2, 4 times greater than that of its planar counterpart and 1.8 times greater than that of the NP photoanode with no MQWs. The InGaN/GaN MQWs also slightly influenced the onset potential of both the planar and NP photoanodes. Micro-photoluminescence, diffuse reflectance spectroscopy and IPCE measurements are used to explain these results.

  18. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less

  19. Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain

    NASA Astrophysics Data System (ADS)

    Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang

    2018-05-01

    SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.

  20. Effects of electric and magnetic fields on the electronic properties of zigzag carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh; Ahmadi, Eghbal

    2012-04-01

    We have investigated the electronic properties of zigzag CNTs and BNNTs under the external transverse electric field and axial magnetic field, using tight binding approximation. It was found that after switching on the electric and magnetic fields, the band modification such as distortion of the degeneracy, change in energy dispersion, subband spacing and band gap size reduction occurs. The band gap of zigzag BNNTs decreases linearly with increasing the electric field strength but the band gap variation for CNTs increases first and later decreases (Metallic) or first hold constant and then decreases (semiconductor). For type (II) CNTs, at a weak magnetic field, by increasing the electric field strength, the band gap remains constant first and then decreases and in a stronger magnetic field the band gap reduction becomes parabolic. For type (III) CNTs, in any magnetic field, the band gap increases slowly until reaches a maximum value and then decreases linearly. Unlike to CNTs, the magnetic field has less effects on the BNNTs band gap variation.

  1. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.

    PubMed

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-08-16

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.

  2. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  3. Theoretical study of charge and spin-resolved quantum transport in III-V semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Botha, Andre Erasmus

    2003-07-01

    This thesis is a theoretical investigation into the spin-resolved transport properties of III-V semiconductor quantum wells. Based on a modified 8 x 8 k · p matrix Hamiltonian, a theory is developed to study the recombination rate in type-II semi metallic quantum wells. The non-parabolicity of the energy band structure and its anisotropy is included via the interband matrix elements and the addition of an anisotropic crystal field potential (parameterized by delta). The effects of externally applied electric and magnetic fields are incorporated into the theory. The electric field is incorporated using a WKB-type approximation. In order to study the anisotropy, the magnetic field is incorporated so that it can be applied at an arbitrary angle theta, with respect to the crystallographic direction c[001]. The case of oblique tunneling (k|| ≠ 0), is also considered. Several interesting results, from calculations of the transmission coefficient, recombination rate, and electron-spin polarization, are presented and discussed for both n-type and p-type single and double quantum wells made from clean InAs and GaSb. For example, in the case of a 150 A wide GaSb/InAs/GaSb quantum well, with B = 4 T, and theta = pi/8, the two maxima in the electron-spin polarization, from the ground and first excited resonant states, are found to be approximately 75%, and 35%, respectively. As theta is varied, a maximum polarization is achieved for a given magnetic field, and this maximum depends on the value of the anisotropy parameter, delta. By using a more sophisticated 14 x 14 band k · p formalism, which explicitly takes into account the coupling between higher bands ( Gc15-Gu 15,Gc1-G u15 , and Gc1-Gc15 ), a theory is developed for the total zero-field spin-splitting and resulting electron-spin polarization in symmetric and asymmetric type-II quantum wells. This theory includes the non-parabolicity, non sphericity, and anisotropy of the energy band structure. The anisotropy in the band structure is introduced via the addition of an anisotropic crystal potential. In the case of an asymmetric GaSb/InAs/GaSb quantum well, it is predicted that the two contributions to the total spin-splitting will be roughly of equal importance. It is also shown that the polarization maxima and minima, for a given resonance state, may not be equal in magnitude. If the resonant state lies close to the forbidden energy gap, the transmission peaks for spin-up and spin-down are skewed. This feature may have potential applications in the design of spintronic filtering and switching devices, in which it is desirable to filter unpolarized electrons (with respect to energy and spin) in order to produce highly polarized, adjustable low-energy beams.

  4. Effect of p–d hybridization, structural distortion and cation electronegativity on electronic properties of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in

    2013-04-15

    Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductorsmore » in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively due to cation electronegativity.« less

  5. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  6. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.

    We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III–V semiconductors leading to a small effective mass (0.014 m{sub 0}) and a large g–factor (−51). As a result, the Landau level spacing is large at relatively small magnetic fields (<8 T), and one can observe spin-splitting of the Landau levels. We examine two structures: (i) a multiple-square-well structure and (ii) a structure containing multiple parabolic wells. The energies and intensities of the strongest featuresmore » are well explained by a modified Pidgeon-Brown model based on an 8-band k•p model that explicitly incorporates pseudomorphic strain. The strain is essential for obtaining agreement between theory and experiment. While modeling the square well is relatively straight-forward, the parabolic well consists of 43 different layers of various thickness to approximate a parabolic potential. Agreement between theory and experiment for the parabolic well validates the applicability of the model to complicated structures, which demonstrates the robustness of our model and confirms its relevance for developing electronic and spintronic devices that seek to exploit the properties of the InSb band structure.« less

  7. High-Throughput Design of Two-Dimensional Electron Gas Systems Based on Polar/Nonpolar Perovskite Oxide Heterostructures

    PubMed Central

    Yang, Kesong; Nazir, Safdar; Behtash, Maziar; Cheng, Jianli

    2016-01-01

    The two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides such as LaAlO3 and SrTiO3 (STO) is of fundamental and practical interest because of its novel interfacial conductivity and its promising applications in next-generation nanoelectronic devices. Here we show that a group of combinatorial descriptors that characterize the polar character, lattice mismatch, band gap, and the band alignment between the perovskite-oxide-based band insulators and the STO substrate, can be introduced to realize a high-throughput (HT) design of SrTiO3-based 2DEG systems from perovskite oxide quantum database. Equipped with these combinatorial descriptors, we have carried out a HT screening of all the polar perovskite compounds, uncovering 42 compounds of potential interests. Of these, Al-, Ga-, Sc-, and Ta-based compounds can form a 2DEG with STO, while In-based compounds exhibit a strain-induced strong polarization when deposited on STO substrate. In particular, the Ta-based compounds can form 2DEG with potentially high electron mobility at (TaO2)+/(SrO)0 interface. Our approach, by defining materials descriptors solely based on the bulk materials properties, and by relying on the perovskite-oriented quantum materials repository, opens new avenues for the discovery of perovskite-oxide-based functional interface materials in a HT fashion. PMID:27708415

  8. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  9. First-principles study of the covalently functionalized graphene

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv Kumar

    Theoretical investigations of nanoscale systems, such as functionalized graphene, present major challenges to conventional computational methods employed in quantum chemistry and solid state physics. The properties of graphene can be affected by chemical functionalization. The surface functionalization of graphene offers a promising way to increase the solubility and reactivity of graphene for use in nanocomposites and chemical sensors. Covalent functionalization is an efficient way to open band-gap in graphene for applications in nanoelectronics. We apply ab initio computational methods based on density functional theory to study the covalent functionalization of graphene with benzyne (C6H4), tetracyanoethylene oxide (TCNEO), and carboxyl (COOH) groups. Our calculations are carried out using the SIESTA and Quantum-ESPRESSO electronic structure codes combined with the generalized gradient (GGA) and local density approximations (LDA) for the exchange correlation functionals and norm-conserving Troullier-Martins pseudopotentials. Calculated binding energies, densities of states (DOS), band structures, and vibrational spectra of functionalized graphene are analyzed in comparison with the available experimental data. Our calculations show that the reactions of [2 + 2] and [2 + 4] cycloaddition of C6H4 to the surface of pristine graphene are exothermic, with binding energies of --0.73 eV and --0.58 eV, respectively. Calculated band structures indicate that the [2 + 2] and [2 + 4] attachments of benzyne results in opening small band gap in graphene. The study of graphene--TCNEO interactions suggests that the reaction of cycloaddition of TCNEO to the surface of pristine graphene is endothermic. On the other hand, the reaction of cycloaddition of TCNEO is found to be exothermic for the edge of an H-terminated graphene sheet. Simulated Raman and infrared spectra of graphene functionalized with TCNEO are consistent with experimental results. The Raman (non-resonant) and infrared (IR) spectra of graphene functionalized with carboxyl (COON) groups are studied in graphene with no surface defects, di-vacancies (DV), and Stone-Wales (SW) defects. Simulated Raman and IR spectra of carboxylated graphene are consistent with available experimental results. Computed vibrational spectra of carboxylated graphene show that the presence of point defects near the functionalization site affect the Raman and IR spectroscopic signatures of the functionalized graphene.

  10. Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides

    NASA Astrophysics Data System (ADS)

    Masteri-Farahani, M.; Mahdavi, S.; Khanmohammadi, H.

    2018-03-01

    Surface chemical functionalization of ZnS quantum dots (ZnS-QDs) with cysteamine hydrochloride resulted in the preparation of an optical nanosensor for detection of herbicides. Characterization of the functionalized ZnS-QDs was performed with physicochemical methods such as x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive x-ray (EDX) analysis, ultraviolet-visible (UV–vis) and photoluminescence (PL) spectroscopies. The optical band gap of the functionalized ZnS-QDs was determined by using Tauc plot as 4.1 eV. Addition of various herbicides resulted in the linearly fluorescence quenching of the functionalized ZnS-QDs according to the Stern-Volmer equation. The functionalized ZnS-QDs can be used as simple, rapid, and inexpensive nanosensor for practical detection and measurement of various herbicides.

  11. Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei

    2018-05-01

    Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.

  12. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    PubMed

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  13. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures

    PubMed Central

    Warmuth, Franziska; Körner, Carolin

    2015-01-01

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713

  14. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    PubMed

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  15. Electronic transport in Thue-Morse gapped graphene superlattice under applied bias

    NASA Astrophysics Data System (ADS)

    Wang, Mingjing; Zhang, Hongmei; Liu, De

    2018-04-01

    We investigate theoretically the electronic transport properties of Thue-Morse gapped graphene superlattice under an applied electric field. The results indicate that the combined effect of the band gap and the applied bias breaks the angular symmetry of the transmission coefficient. The zero-averaged wave-number gap can be greatly modulated by the band gap and the applied bias, but its position is robust against change of the band gap. Moreover, the conductance and the Fano factor are strongly dependent not only on the Fermi energy but also on the band gap and the applied bias. In the vicinity of the new Dirac point, the minimum value of the conductance obviously decreases and the Fano factor gradually forms a Poissonian value plateau with increasing of the band gap.

  16. Approximate symmetries of Hamiltonians

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  17. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas

    2017-12-01

    Ultralong linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes (DWCNTs), and they show a promising route to one-atom-wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chain's bond-length alternation.

  18. Study of the back recombination processes of PbS quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Badawi, Ali; Al-Hosiny, N.; Merazga, Amar; Albaradi, Ateyyah M.; Abdallah, S.; Talaat, H.

    2016-12-01

    In this study, the back recombination processes of PbS quantum dots sensitized solar cells (QDSSCs) has been investigated. PbS QDs were adsorbed onto titania electrodes to act the role of sensitizers using successive ionic layer adsorption and reaction (SILAR) technique. The energy band gaps of the synthesized PbS QDs/titania are ranged from 1.64 eV (corresponding to 756 nm) to 3.12 eV (397 nm) matching the whole visible solar spectrum. The hyperbolic band model (HBM) was used to calculate PbS QDs size and it ranges from 1.76 to 3.44 nm. The photovoltaic parameters (open circuit voltage Voc, short circuit current density Jsc, fill factor FF and efficiency η) of the assembled PbS QDs sensitized solar cells (QDSSCs) were determined under a solar illumination of 100 mW/cm2 (AM 1.5 conditions). The open circuit voltage-decay (OCVD) rates of the assembled PbS QDSSCs were measured. The time constant (τ) for PbS QDSSCs (4 SILAR cycles) shows one order of magnitude larger than that of PbS QDSSCs (8 SILAR cycles) as a result of a decreased electron-hole back recombination.

  19. The furan microsolvation blind challenge for quantum chemical methods: First steps

    NASA Astrophysics Data System (ADS)

    Gottschalk, Hannes C.; Poblotzki, Anja; Suhm, Martin A.; Al-Mogren, Muneerah M.; Antony, Jens; Auer, Alexander A.; Baptista, Leonardo; Benoit, David M.; Bistoni, Giovanni; Bohle, Fabian; Dahmani, Rahma; Firaha, Dzmitry; Grimme, Stefan; Hansen, Andreas; Harding, Michael E.; Hochlaf, Majdi; Holzer, Christof; Jansen, Georg; Klopper, Wim; Kopp, Wassja A.; Kröger, Leif C.; Leonhard, Kai; Mouhib, Halima; Neese, Frank; Pereira, Max N.; Ulusoy, Inga S.; Wuttke, Axel; Mata, Ricardo A.

    2018-01-01

    Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-π interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication.

  20. Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Tan, Yaohua; Novakovic, Bozidar; Klimeck, Gerhard; Rahman, Rajib; Appenzeller, Joerg

    2015-12-01

    In this work, the performance of Tunnel Field-Effect Transistors (TFETs) based on two-dimensional Transition Metal Dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2D material based TFETs can have tight gate control and high electric fields at the tunnel junction, and can in principle generate high ON-currents along with a sub-threshold swing smaller than 60 mV/dec. Our simulations reveal that high performance TMD TFETs, not only require good gate control, but also rely on the choice of the right channel material with optimum band gap, effective mass and source/drain doping level. Unlike previous works, a full band atomistic tight binding method is used self-consistently with 3D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the subthreshold swing and energy-delay of these TFETs are compared with conventional CMOS devices.

Top