Tan, Chih-Shan; Huang, Michael H
2017-09-04
Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ab-initio study on electronic properties of rocksalt SnAs
NASA Astrophysics Data System (ADS)
Babariya, Bindiya; Vaghela, M. V.; Gajjar, P. N.
2018-05-01
Within the frame work of Local Density Approximation of Exchange and Correlation, ab-initio method of density functional theory with Abinit code is used to compute electronic energy band structure, density of States and charge density of SnAs in rocksalt phase. Our result after optimization for lattice constant agrees with experimental value within 0.59% deviation. The computed electronic energy bands in high symmetry directions Γ→K→X→Γ→L→X→W→L→U shown metallic nature. The lowest band in the electronic band structure is showing band-gap approximately 1.70 eV from next higher band and no crossing between lowest two bands are seen. The density of states revels p-p orbit hybridization between Sn and As atoms. The spherical contour around Sn and As in the charge density plot represent partly ionic and partly covalent bonding. Fermi surface topology is the resultant effect of the single band crossing along L direction at Ef.
Band structure and phonon properties of lithium fluoride at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh
2016-05-23
High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.
Tan, Chih-Shan; Huang, Michael Hsuan-Yi
2018-05-21
To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical band structure calculations of plasma metamaterials
NASA Astrophysics Data System (ADS)
Pederson, Dylan; Kourtzanidis, Konstantinos; Raja, Laxminarayan
2015-09-01
Metamaterials (MM) are materials engineered to display negative macroscopic permittivity and permeability. These materials allow for designed control over electromagnetic energy flow, especially at frequencies where natural materials do not interact. Plasmas have recently found application in MM as a negative permittivity component. The permittivity of a plasma depends on its electron density, which can be controlled by an applied field. This means that plasmas can be used in MM to actively control the transmission or reflection of incident waves. This work focuses on a plasma MM geometry in which microplasmas are generated in perforations in a metal plate. We characterizethis material by its band structure, which describes its interaction with incident waves. The plasma-EM interactions are obtained by coupling Maxwell's equations to a simplified plasma momentum equation. A plasma density profile is prescribed, and its effect on the band structure is investigated. The band structure calculations are typically done for static structures, whereas our current density responds to the incident waves. The resulting band structures are compared with experimental results.
Density functional theory calculations of III-N based semiconductors with mBJLDA
NASA Astrophysics Data System (ADS)
Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi
2017-02-01
In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.
Origin of the 20-electron structure of Mg3 MnH7 : Density functional calculations
NASA Astrophysics Data System (ADS)
Gupta, M.; Singh, D. J.; Gupta, R.
2005-03-01
The electronic structure and stability of the 20-electron complex hydride, Mg3MnH7 is studied using density functional calculations. The heat of formation is larger in magnitude than that of MgH2 . The deviation from the 18-electron rule is explained by the predominantly ionic character of the band structure and a large crystal-field splitting of the Mn d bands. In particular, each H provides one deep band accomodating two electrons, while the Mn t2g bands hold an additional six electrons per formula unit.
Electronic and thermal properties of germanene and stanene by first-principles calculations
NASA Astrophysics Data System (ADS)
Jomehpour Zaveh, S.; Roknabadi, M. R.; Morshedloo, T.; Modarresi, M.
2016-03-01
The electronic, vibrational and thermal properties of germanene and stanene have been investigated based on density functional theory (DFT) and density functional perturbation theory (DFPT). The electronic band structure, total and partial density of states and phonon dispersion spectrum and states are analyzed. The phonon spectrum is positive for all modes in the first Brillouin zone and there is a phonon energy band gap between acoustic and optical modes which is around 50 cm-1 for both structure. The constant-volume specific heats of two structures are calculated by using phonon spectrum and density of states. The spin-orbit coupling (SOC) opens a direct energy band gap at the Dirac point, softens phonon spectrum and decreases phonon group velocity of ZA mode.
First-principle calculation of the electronic structure, DOS and effective mass TlInSe2
NASA Astrophysics Data System (ADS)
Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.
2017-05-01
The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.
Density Measurements in Air by Optically Exciting the Cordes Bands of I2
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Exton, Reginald J.
2000-01-01
We describe an optical method based on laser-induced fluorescence for obtaining instantaneous measurements of density along a line in low-density air seeded with I2. The Cordes bands of I2 (D(sup 1)sigma(sup +, sub u)) left arrow X(sup 1)sigma(sup +, sub g)) are excited with a tunable ArF excimer laser. air densities in the range (0.1-6.5) x 10(exp 17) cm(exp -3) are measured over 295-583 K using the density-dependent emission ratio of two emission bands of I2; the 340 nm bands and the diffuse-structured McLennan bands near 320 nm.
Li, Wenqing; Walther, Christian F J; Kuc, Agnieszka; Heine, Thomas
2013-07-09
The performance of a wide variety of commonly used density functionals, as well as two screened hybrid functionals (HSE06 and TB-mBJ), on predicting electronic structures of a large class of en vogue materials, such as metal oxides, chalcogenides, and nitrides, is discussed in terms of band gaps, band structures, and projected electronic densities of states. Contrary to GGA, hybrid functionals and GGA+U, both HSE06 and TB-mBJ are able to predict band gaps with an appreciable accuracy of 25% and thus allow the screening of various classes of transition-metal-based compounds, i.e., mixed or doped materials, at modest computational cost. The calculated electronic structures are largely unaffected by the choice of basis functions and software implementation, however, might be subject to the treatment of the core electrons.
NASA Astrophysics Data System (ADS)
Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash
2018-04-01
Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.
Reshak, Ali H; Shalaginov, Mikhail Y; Saeed, Yasir; Kityk, I V; Auluck, S
2011-03-31
We report a first-principles study of structural and phase stability in three different structures of perovskite-types KMgH(3) according to H position. While electronic and optical properties were measured only for stable perovskite-type KMgH(3), our calculated structural parameters are found in good agreement with experiment and other theoretical results. We also study the electronic charge density space distribution contours in the (200), (101), and (100) crystallographic planes, which gives better insight picture of chemical bonding between K-H, K-Mg-H, and Mg-H. Moreover, we have calculated the electronic band structure dispersion, total, and partial density of electron states to study the band gap origin and the contribution of s-band of H, s and p-band of Mg in the valence band, and d-band of K in the conduction band. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, and loss functions of stable KMgH(3) were calculated for photon energies up to 40 eV.
NASA Astrophysics Data System (ADS)
Vaitheeswaran, G.; Kanchana, V.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Christensen, N. E.
2016-08-01
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent GW approximation. The GW calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E
2016-08-10
A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.
NASA Astrophysics Data System (ADS)
Tan, Guiping; Lu, Junzhe; Zhu, Hengjiang; Li, Fangfang; Ma, Miaomiao; Wang, Xiaoning
2018-07-01
Using density functional theory (DFT), we have studied the structure of a zigzag silicene nanoribbons (SiNRs) with periodically embedded with four- and eight-membered rings, and studied their electronic properties by calculating its band structures and density of states (DOS). The results showed that the zigzag SiNRs have a sp2 hybridization, in addition, the band gap gradually decreased with the increase of the width by layer, and gradually changed from semiconductor properties to metal properties. The existence of vacancy defects increased the band gap and energies, but their positions could not change the structure and the electronic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying
By using a rigid dicarboxylate ligand, 4,5-di(4′-carboxylphenyl)benzene (H{sub 2}L), two complexes formulated as SrL(DMF)(H{sub 2}O)·(CH{sub 3}CN) (DMF=N,N′-dimethylformamide) (1) and BaL(H{sub 2}O){sub 2} (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV–vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density thanmore » complex 1. The Mott–Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations. - Graphical abstract: Two alkaline earth metal(II) complexes with 2D layer structures are p-type semiconductors, they possess different band structures and density of states. And the Ba(II) complex 2 exhibits much higher photocurrent density than the Sr(II) complex 1.« less
NASA Astrophysics Data System (ADS)
Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.
2018-04-01
Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.
Electrical and optical properties of Si-doped Ga2O3
NASA Astrophysics Data System (ADS)
Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru
2017-05-01
The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.
NASA Astrophysics Data System (ADS)
Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram
2010-11-01
The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .
First-principles study of the structural, electronic and thermal properties of CaLiF3
NASA Astrophysics Data System (ADS)
Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.
2013-09-01
Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
NASA Astrophysics Data System (ADS)
Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad
In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
NASA Astrophysics Data System (ADS)
Garwood, T.; Modine, N. A.; Krishna, S.
2017-03-01
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.
Zhao, Dan; Cheng, Wen-Dan; Zhang, Hao; Hang, Shu-Ping; Fang, Ming
2008-07-28
The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Cheong, S.W.; Kim, Bog G., E-mail: boggikim@pusan.ac.kr
We have studied the properties of SnO{sub 6} octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO{sub 6} containing perovskites. We also have expended the hybrid density functional calculation to the ASnO{sub 3}/A'SnO{sub 3} system with different cation orderings. We propose an empirical relationshipmore » between the tolerance factor and the band gap of SnO{sub 6} containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO{sub 3} for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO{sub 6} octahedrons are plotted as polyhedron. (b) Band gap of ASnO{sub 3} as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO{sub 3}/A'SnO{sub 3} superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO{sub 3}, [001] ordered superlattices, and [111] ordered superlattices of ASnO{sub 3}/A'SnO{sub 3} as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO{sub 3} and ASnO{sub 3}/A'SnO{sub 3}. • The band gap of ASnO{sub 3} using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap.« less
NASA Astrophysics Data System (ADS)
Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.
2015-01-01
Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garwood, Tristan; Modine, Normand A.; Krishna, S.
2016-12-18
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structuresmore » calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.« less
Electronic structure of BaNi2As2
NASA Astrophysics Data System (ADS)
Zhou, Bo; Xu, Min; Zhang, Yan; Xu, Gang; He, Cheng; Yang, L. X.; Chen, Fei; Xie, B. P.; Cui, Xiao-Yu; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Dai, X.; Feng, D. L.
2011-01-01
BaNi2As2, with a first-order phase transition around 131 K, is studied by the angle-resolved photoemission spectroscopy. The measured electronic structure is compared to the local-density approximation calculations, revealing similar large electronlike bands around M¯ and differences along Γ¯-X¯. We further show that the electronic structure of BaNi2As2 is distinct from that of the sibling iron pnictides. Particularly, there is no signature of band folding, indicating no collinear spin-density-wave-related magnetic ordering. Moreover, across the strong first-order phase transition, the band shift exhibits a hysteresis, which is directly related to the significant lattice distortion in BaNi2As2.
NASA Astrophysics Data System (ADS)
Zuluaga, Luisa F.; Fossen, Haakon; Rotevatn, Atle
2014-11-01
Monoclinal fault propagation folds are a common type of structure in orogenic foreland settings, particularly on the Colorado Plateau. We have studied a portion of the San Rafael monocline, Utah, assumed to have formed through pure thrust- or reverse-slip (blind) fault movement, and mapped a particular sequence of subseismic cataclastic deformation structures (deformation bands) that can be related in terms of geometry, density and orientation to the dip of the forelimb or fold interlimb angle. In simple terms, deformation bands parallel to bedding are the first structures to form, increasing exponentially in number as the forelimb gets steeper. At about 30° rotation of the forelimb, bands forming ladder structures start to cross-cut bedding, consolidating themselves into a well-defined and regularly spaced network of deformation band zones that rotate with the layering during further deformation. In summary, we demonstrate a close relationship between limb dip and deformation band density that can be used to predict the distribution and orientation of such subseismic structures in subsurface reservoirs of similar type. Furthermore, given the fact that these cataclastic deformation bands compartmentalize fluid flow, this relationship can be used to predict or model fluid flow across and along comparable fault-propagation folds.
Electronic properties of hexagonal gallium phosphide: A DFT investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vipin; Shah, Esha V.; Roy, Debesh R., E-mail: drr@ashd.svnit.ac.in
2016-05-23
A detail density functional investigation is performed to develop hexagonal 2D gallium phosphide material. The geometry, band structure and density of states (total and projected) of 2D hexagonal GaP are reported in detail. It is heartening to note that the developed material is identified as an indirect band gap semiconductor. The indirect gap for this material is predicted as 1.97 eV at K-Γ, and a direct gap of 2.28 eV at K point is achieved, which is very close to the reported direct band gap for zinc blende and buckled structures of GaP.
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
Liu, C.; Roddatis, V.; Kenesei, P.; ...
2017-08-14
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
Shear-band thickness and shear-band cavities in a Zr-based metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Roddatis, V.; Kenesei, P.
Strain localization into shear bands in metallic glasses is typically described as a mechanism that occurs at the nano-scale, leaving behind a shear defect with a thickness of 10–20 nm. Here we sample the structure of a single system-spanning shear band that has carried all plastic flow with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and high-energy x-ray tomography (XRT). It is found that the shear-band thickness and the density change relative to the matrix sensitively depend on position along the shear band. A wide distribution of shear-band thickness (10 nm–210 nm) and density change (–1% to –12%)more » is revealed. There is no obvious correlation between shear-band thickness and density change, but larger thicknesses correspond typically to higher density changes. More than 100 micron-size shear-band cavities were identified on the shear-band plane, and their three-dimensional arrangement suggests a strongly fluctuating local curvature of the shear plane. As a result, these findings urge for a more complex view of a shear band than a simple nano-scale planar defect.« less
Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2
NASA Astrophysics Data System (ADS)
Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.
2018-04-01
Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.
Electron momentum density and band structure calculations of α- and β-GeTe
NASA Astrophysics Data System (ADS)
Vadkhiya, Laxman; Arora, Gunjan; Rathor, Ashish; Ahuja, B. L.
2011-12-01
We have measured isotropic experimental Compton profile of α-GeTe by employing high energy (662 keV) γ-radiation from a 137Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of α- and β-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree-Fock/DFT.
Density-functional energy gaps of solids demystified
NASA Astrophysics Data System (ADS)
Perdew, John P.; Ruzsinszky, Adrienn
2018-06-01
The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?
Dissepiments, density bands and signatures of thermal stress in Porites skeletons
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Cohen, Anne L.
2017-09-01
The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the underlying cause of high-density stress bands.
NASA Astrophysics Data System (ADS)
Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying; Gong, Yun; Lin, Jian Hua
2017-01-01
By using a rigid dicarboxylate ligand, 4,5-di(4‧-carboxylphenyl)benzene (H2L), two complexes formulated as SrL(DMF)(H2O)·(CH3CN) (DMF=N,N‧-dimethylformamide) (1) and BaL(H2O)2 (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV-vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density than complex 1. The Mott-Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations.
Electronic and optical properties of Fe2SiO4 under pressure effect: ab initio study
NASA Astrophysics Data System (ADS)
Xiao, Lingping; Li, Xiaobin; Yang, Xue
2018-05-01
We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.
High-Density Amorphous Ice, the Frost on Interstellar Grains
NASA Technical Reports Server (NTRS)
Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.
1995-01-01
Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.
NASA Astrophysics Data System (ADS)
Bachoo, Richard; Bridge, Jacqueline
2018-06-01
Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.
Photonic band structures of two-dimensional magnetized plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, L.
By using modified plane wave method, photonic band structures of the transverse electric polarization for two types of two-dimensional magnetized plasma photonic crystals are obtained, and influences of the external magnetic field, plasma density, and dielectric materials on the dispersion curves are studied, respectively. Results show that two areas of flat bands appear in the dispersion curves due to the role of external magnetic field, and the higher frequencies of the up and down flat bands are corresponding to the right-circled and left-circled cutoff frequencies, respectively. Adjusting external magnetic field and plasma density can not only control positions of themore » flat bands, but also can control the location and width of the local gap; increasing relative dielectric constant of the dielectric materials makes omni-direction gaps appear.« less
Electronic structure of Ag7GeS5I superionic compound
NASA Astrophysics Data System (ADS)
Bletskan, Dmytro; Studenyak, Ihor; Bletskan, Mykhailo; Vakulchak, Vasyl
2018-05-01
This paper presents the originally results of ab initio calculations of electronic structure, total and partial densities of electronic states as well as electronic charge density distribution of Ag7GeS5I crystal performed within the density functional theory (DFT) in the local density approximation (LDA) for exchange-correlation potential. According to performed calculations, Ag7GeS5I is the direct-gap semiconductor with the valence band top and the conductivity band bottom in the Γ point of Brillouin zone. The band gap width calculated in the LDA-approximation is Egd = 0.73 eV. The analysis of total and partial densities of electronic states allow us to identify the atomic orbital contributions into the crystal orbitals as well as the formation data of chemical bond in the studied crystal. In the top part of Ag7GeS5I valence band it was revealed the considerable mixing (hybridization) of the occupied d-states of Ag noble metal and the delocalized p-states of sulfur and iodine, which is undoubtedly associated with the covalent character of chemical bond between S, I atoms and noble metal atom.
NASA Technical Reports Server (NTRS)
Mazur, V.; Gerlach, J. C.; Rust, W. D.
1984-01-01
The UHF-(70.5 cm wavelength) and S-band (10 cm wavelength) radar at NASA/Wallops Island Research Facility in Virginia, U.S.A. have been used to relate lightning activity with altitude and with the reflectivity structure of thunderstorms. Two centers of lightning flash density were found; one between 6 and 8 km altitude and another between 11 and 15 km. Previously announced in STAR as N83-31206
NASA Astrophysics Data System (ADS)
da Silva Filho, J. G.; Freire, V. N.; Caetano, E. W. S.; Ladeira, L. O.; Fulco, U. L.; Albuquerque, E. L.
2013-11-01
In this letter, we study the electronic structure and optical properties of the active medicinal component γ-aminobutyric acid (GABA) and its cocrystals with oxalic (OXA) and benzoic (BZA) acid by means of the density functional theory formalism. It is shown that the cocrystallization strongly weakens the zwitterionic character of the GABA molecule leading to striking differences among the electronic band structures and optical absorption spectra of the GABA crystal and GABA:OXA, GABA:BZA cocrystals, originating from distinct sets of hydrogen bonds. Calculated band widths and Δ-sol band gap estimates indicate that both GABA and GABA:OXA, GABA:BZA cocrystals are indirect gap insulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Ram Sevak, E-mail: singh915@gmail.com
2015-11-15
Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to havemore » metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.« less
Electron band structure of the high pressure cubic phase of AlH3
NASA Astrophysics Data System (ADS)
Shi, Hongliang; Zarifi, Niliffar; Yim, Wai-Leung; Tse, J. S.
2012-07-01
The electronic band structure of the cubic Pm3n phase of AlH3 stable above 100 GPa is examined with semi-local, Tran-Blaha modified Becke-Johnson local density approximation (TB-mBJLDA), screened hybrid density functionals and GW methods. The shift of the conduction band to higher energy with increasing pressure is predicted by all methods. However, there are significant differences in detail band structure. In the pressure range from 90 to160 GPa, semi-local, hybrid functional and TB-mBJLDA calculations predicted that AlH3 is a poor metal. In comparison, GW calculations show a gap opening at 160 GPa and AlH3 becomes a small gap semi-conductor. From the trends of the calculated band shifts, it can be concluded that the favourable conditions leading to the nesting of Fermi surfaces predicted by semi-local calculation have disappeared if the exchange term is included. The results highlight the importance of the correction to the exchange energy on the band structure of hydrogen dominant dense metal hydrides at high pressure hydrides and may help to rationalize the absence of superconductivity in AlH3 from experimental measurements.
Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2
NASA Astrophysics Data System (ADS)
Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang
2018-02-01
Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.
Electronic structure and electron momentum densities of Ag2CrO4
NASA Astrophysics Data System (ADS)
Meena, Seema Kumari; Ahuja, B. L.
2018-05-01
We present the first-ever experimental electron momentum density of Ag2CrO4 using 661.65 keV γ-rays from 20 Ci 137Cs source. To validate our experimental data, we have also deduced theoretical Compton profiles, energy bands and density of states using linear combination of atomic orbitals (LCAO) method in the framework of density functional theory. It is seen that the DFT-LDA gives a better agreement with experimental data than free atom model. The energy bands and density of states are also discussed.
Photoemission study of the electronic structure and charge density waves of Na₂Ti₂Sb₂O
Tan, S. Y.; Jiang, J.; Ye, Z. R.; ...
2015-04-30
The electronic structure of Na₂Ti₂Sb₂O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na₂Ti₂Sb₂O in the non-magnetic state, which indicates that there is no magnetic order in Na₂Ti₂Sb₂O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na₂Ti₂Sb₂O. Photon energy dependent ARPES results suggest that the electronic structure of Na₂Ti₂Sb₂O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV atmore » 7 K, indicating that Na₂Ti₂Sb₂O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)« less
The DUV Stability of Superlattice-Doped CMOS Detector Arrays
NASA Technical Reports Server (NTRS)
Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.
2013-01-01
In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.
NASA Astrophysics Data System (ADS)
Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin
2018-03-01
In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.
Theoretical prediction of low-density hexagonal ZnO hollow structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi
2016-10-14
Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less
Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.
Dixit, H; Lamoen, D; Partoens, B
2013-01-23
CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
NASA Astrophysics Data System (ADS)
Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki
2018-06-01
A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.
First-principles study of direct and narrow band gap semiconducting β -CuGaO 2
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...
2015-04-16
Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less
NASA Astrophysics Data System (ADS)
Strak, Pawel; Kempisty, Pawel; Sakowski, Konrad; Krukowski, Stanislaw
2014-09-01
Density functional theory studies were conducted to determine an influence of the carrier concentration on the optical and electronic properties of InN/GaN superlattice system. The oscillator strength values, energy gaps and the band profiles were obtained. The band profiles were found to be strongly affected for technically possible heavy n-type doping while for p-type doping the carrier influence, both screening and band shift, is negligible. Blue shift of the transition energy between conduction band minima and valence band maxima was observed for high concentrations of both type carriers.
Structural and electronic properties of GaAs and GaP semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Anita; Kumar, Ranjan
2015-05-15
The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.
Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2
NASA Astrophysics Data System (ADS)
Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam
2017-09-01
Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.
Bulk and surface electronic structures of MgO
NASA Astrophysics Data System (ADS)
Schönberger, U.; Aryasetiawan, F.
1995-09-01
The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.
The dependence of graphene Raman D-band on carrier density.
Liu, Junku; Li, Qunqing; Zou, Yuan; Qian, Qingkai; Jin, Yuanhao; Li, Guanhong; Jiang, Kaili; Fan, Shoushan
2013-01-01
Raman spectroscopy has been an integral part of graphene research and can provide information about graphene structure, electronic characteristics, and electron-phonon interactions. In this study, the characteristics of the graphene Raman D-band, which vary with carrier density, are studied in detail, including the frequency, full width half-maximum, and intensity. We find the Raman D-band frequency increases for hole doping and decreases for electron doping. The Raman D-band intensity increases when the Fermi level approaches half of the excitation energy and is higher in the case of electron doping than that of hole doping. These variations can be explained by electron-phonon interaction theory and quantum interference between different Raman pathways in graphene. The intensity ratio of Raman D- and G-band, which is important for defects characterization in graphene, shows a strong dependence on carrier density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Nasim; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir; Mirzaie, Reza
2015-11-15
The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.
Band structures of TiO2 doped with N, C and B*
Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong
2006-01-01
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532
Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass
Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd
2012-01-01
This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711
Zhang, Yubo; Wang, Youwei; Xi, Lili; Qiu, Ruihao; Shi, Xun; Zhang, Peihong; Zhang, Wenqing
2014-02-21
The traditional photon absorbers Cu2-xX (X = S, Se, and Te) have regained significant research attention in the search of earth-abundant photovoltaic materials. These moderate- and narrow-gap materials have also been shown to exhibit excellent thermoelectric properties recently. However, semimetallic band structures with inverted band orderings are predicted for antifluorite structure Cu2X using density functional theory with the local density approximation or the generalized gradient approximation. We find that semiconducting band structures and normal band orderings can be obtained using the modified Becke-Johnson potential plus an on-site Coulomb U (the mBJ+U approach), which is consistent with our earlier finding for diamond-like Cu-based multinary semiconductors [Y. Zhang, J. Zhang, W. Gao, T. A. Abtew, Y. Wang, P. Zhang, and W. Zhang, J. Chem. Phys. 139, 184706 (2013)]. The trend of the chemical bonding of Cu2X is analyzed, which shows that the positions of the valence band maximum and conduction band minimum are strongly affected by the inter-site pd and intra-site sp hybridizations, respectively. The calculated gaps of Cu2S and Cu2Se still seem to be underestimated compared with experimental results. We also discuss the effects of different structural phases and Cu disordering and deficiency on the bandgaps of these materials.
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-31
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang
2015-07-01
We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X =N ,P ,As ,Sb , and II-VI compounds, (Zn or Cd)X , with X =O ,S ,Se ,Te . By correcting (1) the binary band gaps at high-symmetry points Γ , L , X , (2) the separation of p -and d -orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.
NASA Astrophysics Data System (ADS)
Li, L. L.; Partoens, B.; Peeters, F. M.
2018-04-01
By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
NASA Astrophysics Data System (ADS)
Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars
2013-05-01
The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.
NASA Astrophysics Data System (ADS)
Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Vang, T.; Patten, E. A.; Radford, W. A.; Johnson, S. M.
2010-07-01
This paper describes molecular-beam epitaxy growth of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) dual-band device structures on large-area (6 cm × 6 cm) CdZnTe substrates. Wafer-level composition and defect mapping techniques were used to investigate the limiting mechanisms in improving the cutoff wavelength ( λ c) uniformity and reducing the defect density. Structural quality of epitaxial layers was monitored using etch pit density (EPD) measurements at various depths in the epitaxial layers. Finally, 640 × 480, 20- μm-pixel-pitch dual-band focal-plane arrays (FPAs) were fabricated to demonstrate the overall maturity of growth and fabrication processes of epitaxial layers. The MWIR/LWIR dual-band layers, at optimized growth conditions, show a λ c variation of ±0.15 μm across a 6 cm × 6 cm CdZnTe substrate, a uniform low macrodefect density with an average of 1000 cm-2, and an average EPD of 1.5 × 105 cm-2. FPAs fabricated using these layers show band 1 (MWIR) noise equivalent temperature difference (NETD) operability of 99.94% and band 2 (LWIR) NETD operability of 99.2%, which are among the highest reported to date.
Mapping the conduction band edge density of states of γ-In2Se3 by diffuse reflectance spectra
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Vedeshwar, Agnikumar G.
2018-03-01
It is demonstrated that the measured diffuse reflectance spectra of γ-In2Se3 can be used to map the conduction band edge density of states through Kubelka-Munk analysis. The Kubelka-Munk function derived from the measured spectra almost mimics the calculated density of states in the vicinity of conduction band edge. The calculation of density of states was carried out using first-principles approach yielding the structural, electronic, and optical properties. The calculations were carried out implementing various functionals and only modified Tran and Blaha (TB-MBJ) results tally closest with the experimental result of band gap. The electronic and optical properties were calculated using FP-LAPW + lo approach based on the Density Functional Theory formalism implementing only TB-mBJ functional. The electron and hole effective masses have been calculated as me * = 0.25 m 0 and mh * = 1.11 m 0 , respectively. The optical properties clearly indicate the anisotropic nature of γ-In2Se3.
Dhaka, Kapil; Bandyopadhyay, Debashis
2016-08-02
The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.
Riffet, Vanessa; Vidal, Julien
2017-06-01
The search for functional materials is currently hindered by the difficulty to find significant correlation between constitutive properties of a material and its functional properties. In the case of amorphous materials, the diversity of local structures, chemical composition, impurities and mass densities makes such a connection difficult to be addressed. In this Letter, the relation between refractive index and composition has been investigated for amorphous AlO x materials, including nonstoichiometric AlO x , emphasizing the role of structural defects and the absence of effect of the band gap variation. It is found that the Newton-Drude (ND) relation predicts the refractive index from mass density with a rather high level of precision apart from some structures displaying structural defects. Our results show especially that O- and Al-based defects act as additive local disturbance in the vicinity of band gap, allowing us to decouple the mass density effects from defect effects (n = n[ND] + Δn defect ).
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
NASA Astrophysics Data System (ADS)
Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey
2017-02-01
The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor:
Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O.
Tan, S Y; Jiang, J; Ye, Z R; Niu, X H; Song, Y; Zhang, C L; Dai, P C; Xie, B P; Lai, X C; Feng, D L
2015-04-30
The electronic structure of Na2Ti2Sb2O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na2Ti2Sb2O in the non-magnetic state, which indicates that there is no magnetic order in Na2Ti2Sb2O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na2Ti2Sb2O. Photon energy dependent ARPES results suggest that the electronic structure of Na2Ti2Sb2O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV at 7 K, indicating that Na2Ti2Sb2O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr
2016-03-25
The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less
NASA Astrophysics Data System (ADS)
Frosch, Torsten; Popp, Jürgen
2010-07-01
The structure of the antimalarial drug halofantrine is analyzed by means of density functional theory (DFT) calculations, IR, and Raman spectroscopy. Strong, selective enhancements of the Raman bands of halofantrine at 1621 and 1590 cm-1 are discovered by means of UV resonance Raman spectroscopy with excitation wavelength λexc=244 nm. These signal enhancements can be exploited for a localization of small concentrations of halofantrine in a biological environment. The Raman spectrum of halofantrine is calculated by means of DFT calculations [B3LYP/6-311+G(d,p)]. The calculation is very useful for a thorough mode assignment of the Raman bands of halofantrine. The strong bands at 1621 and 1590 cm-1 in the UV Raman spectrum are assigned to combined C=C stretching vibrations in the phenanthrene ring of halofantrine. These bands are considered as putative marker bands for ππ interactions with the biological target molecules. The calculation of the electron density demonstrates a strong distribution across the phenanthrene ring of halofantrine, besides the electron withdrawing effect of the Cl and CF3 substituents. This strong and even electron density distribution supports the hypothesis of ππ stacking as a possible mode of action of halofantrine. Complementary IR spectroscopy is performed for an investigation of vibrations of polar functional groups of the halofantrine molecule.
Theoretical Study of α-V2O5 -Based Double-Wall Nanotubes.
Porsev, Vitaly V; Bandura, Andrei V; Evarestov, Robert A
2015-10-05
First-principles calculations of the atomic and electronic structure of double-wall nanotubes (DWNTs) of α-V2 O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk-type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single-wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single-layer gaps). The main reason for this effect is the shift of the inner- and outer-wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction-band edges is localized on vanadium atoms of the bulk-type regions, whereas the electron density corresponding to shoulders at the valence-band edges belongs to oxygen atoms of both regions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daga, Avinash; Sharma, Smita
First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO{sub 3} where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO{sub 3} and SrZrO{sub 3} to be insulating. A small band gap is observed in SrMoO{sub 3} perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all themore » calculations.« less
The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arikan, Nihat; Özduran, Mustafa
2014-10-06
The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comesmore » from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koryazhkina, M. N., E-mail: mahavenok@mail.ru; Tikhov, S. V.; Gorshkov, O. N.
It is shown that the formation of Au nanoparticles at the insulator–silicon interface in structures with a high density of surface states results in a shift of the Fermi-level pinning energy at this interface towards the valence-band ceiling in silicon and in increasing the surface-state density at energies close to the Fermi level. In this case, a band with a peak at 0.85 eV arises on the photosensivity curves of the capacitor photovoltage, which is explained by the photoemission of electrons from the formed Au-nanoparticle electron states near the valence-band ceiling in silicon.
NASA Astrophysics Data System (ADS)
Polash, Md. Mobarak Hossain; Alam, M. Shah; Biswas, Saumya
2018-03-01
A single quantum well semiconductor laser based on wurtzite-nitride is designed and analyzed for short distance communication wavelength (at around 1300 nm). The laser structure has 12 Å well layer of InN, 15 Å barrier layer of In0.25Ga0.75N, and 54 Å separate confinement heterostructure layer of GaN. To calculate the electronic characteristics of the structure, a self-consistent method is used where Hamiltonian with effective mass approximation is solved for conduction band while six-bands Hamiltonian matrix with k · p formalism including the polarization effect, valence-band mixing effect, and strain effect is solved for valence band. The interband optical transition elements, optical gain, differential gain, radiative current density, spontaneous emission rate, and threshold characteristics have been calculated. The wave function overlap integral is found to be 45.93% for TE-polarized structure. Also, the spontaneous emission rate is found to be 6.57 × 1027 s - 1 cm - 3 eV - 1 at 1288.21 nm with the carrier density of 5 × 1019 cm - 3. Furthermore, the radiative current density and the radiative recombination rate are found to be 121.92 A cm - 2 and 6.35 × 1027 s - 1 cm - 3, respectively, while the TE-polarized optical gain of the structure is 3872.1 cm - 1 at 1301.7 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, Ziya S., E-mail: ziyasaliev@gmail.com; Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku; Donostia International Physics Center
Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and aremore » narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.« less
NASA Astrophysics Data System (ADS)
Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.
2017-09-01
Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.
NASA Astrophysics Data System (ADS)
Lu, M. F.; Zhou, C. P.; Li, Q. Q.; Zhang, C. L.; Shi, H. F.
2018-01-01
In order to improve the photocatalytic activity under visible-light irradiation, we adopted first principle calculations based on density functional theory (DFT) to calculate the electronic structures of B site transition metal element doped InNbO4. The results indicated that the complete hybridization of Nb 4d states and some Ti 3d states contributed to the new conduction band of Ti doped InNbO4, barely changing the position of band edge. For Cr doping, some localized Cr 3d states were introduced into the band gap. Nonetheless, the potential of localized levels was too positive to cause visible-light reaction. When it came to Cu doping, the band gap was almost same with that of InNbO4 as well as some localized Cu 3d states appeared above the top of VB. The introduction of localized energy levels benefited electrons to migrate from valence band (VB) to conduction band (CB) by absorbing lower energy photons, realizing visible-light response.
Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.
2016-01-01
Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808
Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.
Knutson, Jeremy L; Martin, James D; Mitzi, David B
2005-06-27
Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yubo; Wang, Youwei; Xi, Lili
The traditional photon absorbers Cu{sub 2−x}X (X = S, Se, and Te) have regained significant research attention in the search of earth-abundant photovoltaic materials. These moderate- and narrow-gap materials have also been shown to exhibit excellent thermoelectric properties recently. However, semimetallic band structures with inverted band orderings are predicted for antifluorite structure Cu{sub 2}X using density functional theory with the local density approximation or the generalized gradient approximation. We find that semiconducting band structures and normal band orderings can be obtained using the modified Becke-Johnson potential plus an on-site Coulomb U (the mBJ+U approach), which is consistent with our earliermore » finding for diamond-like Cu-based multinary semiconductors [Y. Zhang, J. Zhang, W. Gao, T. A. Abtew, Y. Wang, P. Zhang, and W. Zhang, J. Chem. Phys. 139, 184706 (2013)]. The trend of the chemical bonding of Cu{sub 2}X is analyzed, which shows that the positions of the valence band maximum and conduction band minimum are strongly affected by the inter-site pd and intra-site sp hybridizations, respectively. The calculated gaps of Cu{sub 2}S and Cu{sub 2}Se still seem to be underestimated compared with experimental results. We also discuss the effects of different structural phases and Cu disordering and deficiency on the bandgaps of these materials.« less
Chen, Lei; Chen, Xiuling; Liu, Fayong; Chen, Haohong; Wang, Hui; Zhao, Erlong; Jiang, Yang; Chan, Ting-Shan; Wang, Chia-Hsin; Zhang, Wenhua; Wang, Yu; Chen, Shifu
2015-01-01
The deficiency of Y3Al5O12:Ce (YAG:Ce) luminescence in red component can be compensated by doping Gd3+, thus lead to it being widely used for packaging warm white light-emitting diode devices. This article presents a systematic study on the photoluminescence properties, crystal structures and electronic band structures of (Y1−xGdx)3Al5O12: Ce3+ using powerful experimental techniques of thermally stimulated luminescence, X-ray diffraction, X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and ultraviolet photoelectron spectra (UPS) of the valence band, assisted with theoretical calculations on the band structure, density of states (DOS), and charge deformation density (CDD). A new interpretation from the viewpoint of compression deformation of electron cloud in a rigid structure by combining orbital hybridization with solid-state energy band theory together is put forward to illustrate the intrinsic mechanisms that cause the emission spectral shift, thermal quenching, and luminescence intensity decrease of YAG: Ce upon substitution of Y3+ by Gd3+, which are out of the explanation of the classic configuration coordinate model. The results indicate that in a rigid structure, the charge deformation provides an efficient way to tune chromaticity, but the band gaps and crystal defects must be controlled by comprehensively accounting for luminescence thermal stability and efficiency. PMID:26175141
NASA Astrophysics Data System (ADS)
Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng
2017-12-01
Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.
Manipulation of Dirac cones in intercalated epitaxial graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.
Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less
Manipulation of Dirac cones in intercalated epitaxial graphene
Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.; ...
2017-07-12
Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less
NASA Astrophysics Data System (ADS)
Wu, Kongping; Liao, Meiyong; Sang, Liwen; Liu, Jiangwei; Imura, Masataka; Ye, Haitao; Koide, Yasuo
2018-04-01
Tailoring the electronic states of the dielectric oxide/diamond interface is critical to the development of next generation semiconductor devices like high-power high-frequency field-effect transistors. In this work, we investigate the electronic states of the TiO2/diamond 2 × 1-(100) interface by using first principles total energy calculations. Based on the calculation of the chemical potentials for the TiO2/diamond interface, it is observed that the hetero-interfaces with the C-OTi configuration or with two O vacancies are the most energetically favorable structures under the O-rich condition and under Ti-rich condition, respectively. The band structure and density of states of both TiO2/diamond and TiO2/H-diamond hetero-structures are calculated. It is revealed that there are considerable interface states at the interface of the anatase TiO2/diamond hetero-structure. By introducing H on the diamond surface, the interface states are significantly suppressed. A type-II alignment band structure is disclosed at the interface of the TiO2/diamond hetero-structure. The valence band offset increases from 0.6 to 1.7 eV when H is introduced at the TiO2/diamond interface.
Experimental and theoretical XANES of CdSxSe1-x nanostructures
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Murphy, M. W.; Liu, L.; Hu, Y.; Sham, T. K.
2014-03-01
The morphology and electronic properties of the CdSxSe1-x nanostructures with varying alloy compositions have been acquired experimentally by X-ray Absorption Near-Edge Structures (XANES) at the Cd, Se and S K-edge and L3,2-edges. The theoretical XANES spectra have been calculated using the density functional approach. It is found that the optical band-gap emission of these CdSxSe1-x nano-ribbons can be tuned to the range between that of pure CdS (2.43 eV) and CdSe (1.74 eV) by changing the S and Se ratio. This gradual shift in (optical and structural) properties from CdS character to CdSe character is also seen in the electronic structures. The densities of states and band structures show that with the addition of Se replacing S in CdS, the band gap shrinks. The K and L3,2 edges of Cd, Se, and S of the XANES structures of both the CdS and CdSe in B4 (wurtzite) and B3 (cubic zinc-blende) structures have been calculated and compared.
Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.
Su, Kang; Wang, Yuhua
2010-03-01
As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.
Electronic properties of graphene and effect of doping on the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com
2015-05-15
The electronic structure of pure and doped two dimensional crystalline material graphene have been computed and analyzed. Density functional theory has been employed to perform calculations. The electronic exchange and correlations are considered using local density approximation (LDA). The doped material is studied within virtual crystal approximation (VCA) upto 0.15e excess as well as deficient charge per unit cell. Full Potential Linear Augmented Plane Wave basis as implemented in ELK code has been used to perform the calculations. To ensures the monolayer of graphene, distance after which energy is almost constant when interlayer seperation is varied, is taken as separatingmore » distance between the layers. The obtained density of states and band structure is analyzed. Results show that there is zero band gap in undoped graphene and conduction and valence band meets at fermi level at symmetry point K. PDOS graph shows that near the fermi level the main contribution is due to 2p{sub z} electrons. By using VCA, calculations for doped graphene are done and the results for doped graphene are compared with undoped graphene. We found that by electron or hole doping, the point where conduction and valence bands meet can shift below or above the fermi level. The shift in bands seems almost as per rigid band model upto doping concentration studied.« less
Modification of the band offset in boronitrene
NASA Astrophysics Data System (ADS)
Obodo, K. O.; Andrew, R. C.; Chetty, N.
2011-10-01
Using density functional methods within the generalized gradient approximation implemented in the Quantum Espresso codes, we modify the band offset in a single layer of boronitrene by substituting a double line of carbon atoms. This effectively introduces a line of dipoles at the interface. We considered various junctions of this system within the zigzag and armchair orientations. Our results show that the “zigzag-short” structure is energetically most stable, with a formation energy of 0.502 eV and with a band offset of 1.51 eV. The “zigzag-long” structure has a band offset of 1.99 eV. The armchair structures are nonpolar, while the zigzag-single structures show a charge accumulation for the C-substituted B and charge depletion for the C-substituted N at the junction. Consequently there is no shifting of the bands.
Electronic Properties of Curved and Defective 2-D BN Nanostructures
NASA Astrophysics Data System (ADS)
Beach, Kory; Terrones, Humberto; Raeliarijaona, Aldo; Siegel, Ross; Florio, Fred
Density functional theory (DFT) with local density approximation (LDA) pseudopotentials is used to calculate the band structure and density of states of various novel 2-D BN nanostructures. Three types of systems are studied: Schwarzites, a Haeckelite, and an h-BN monolayer. Schwarzites are negatively curved structures in which the curvature is due to the introduction of octagonal rings of alternating boron and nitrogen atoms. In particular, three families of Schwarzites are analyzed: P, G and IWP. The Haeckelites on the other hand, are flat layers composed of squares and octagons of BN. It is found that all these BN allotropes are metastable in which the band gap is direct and smaller than the most stable system, h-BN. National Science Foundation (EFRI-1433311).
Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys
NASA Astrophysics Data System (ADS)
Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.
2012-02-01
Band structures of GaAs1-xNx and GaSb1-xNx alloys are studied in the framework of the density functional theory within the hybrid functional scheme (HSE06). We find that the scheme gives a clear improvement over the traditional (semi)local functionals in describing, in a qualitative agreement with experiments, the bowing of electron energy band gap in GaAs1-xNx alloys. In the case of GaSb1-xNx alloys, the hybrid functional used makes the study of band structures possible ab initio without any empirical parameter fitting. We explain the trends in the band gap reductions in the two materials that result mainly from the positions of the nitrogen-induced states with respect to the bottoms of the bulk conduction bands.
NASA Astrophysics Data System (ADS)
Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola
We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2014 CFR
2014-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
47 CFR 15.257 - Operation within the band 92-95 GHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... meters from the radiating structure, and the peak power density of any emission shall not exceed 18 uW/sq... an RF detector that has a detection bandwidth that encompasses the band being used and has a video...
NASA Astrophysics Data System (ADS)
Alay-e-Abbas, S. M.; Shaukat, A.
2011-05-01
First-principles density functional theory calculations have been performed for structural, electronic and optical properties of three polymorphic forms of rubidium telluride. Our calculations show that the sequence of pressure induced phase transitions for Rb 2Te is Fm3¯m → Pnma → P6 3/mmc which is governed by the coordination numbers of the anions. From our calculated low transition pressure value for the Fm3¯m phase to the Pnma phase transition of Rb 2Te, the experimentally observed meta-stability of Fm3¯m phase at ambient conditions seems reasonable. The electronic band structure has been calculated for all the three phases and the change in the energy band gap is discussed for the transitioning phases. The energy band gaps obtained for the three phases of Rb 2Te decrease on going from the meta-stable phase to the high-pressure phases. Total and partial density of states for the polymorphs of Rb 2Te has been computed to elucidate the contribution of various atomic states on the electronic band structure. Furthermore, optical properties for all the polymorphic forms have been presented in form of the complex dielectric function.
NASA Astrophysics Data System (ADS)
Bastos, Carlos M. O.; Sabino, Fernando P.; Sipahi, Guilherme M.; Da Silva, Juarez L. F.
2018-02-01
Despite the large number of theoretical III-V semiconductor studies reported every year, our atomistic understanding is still limited. The limitations of the theoretical approaches to yield accurate structural and electronic properties on an equal footing, is due to the unphysical self-interaction problem that mainly affects the band gap and spin-orbit splitting (SOC) in semiconductors and, in particular, III-V systems with similar magnitude of the band gap and SOC. In this work, we report a consistent study of the structural and electronic properties of the III-V semiconductors by using the screening hybrid-density functional theory framework, by fitting the α parameters for 12 different III-V compounds, namely, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb, to minimize the deviation between the theoretical and experimental values of the band gap and SOC. Structural relaxation effects were also included. Except for AlP, whose α = 0.127, we obtained α values that ranged from 0.209 to 0.343, which deviate by less than 0.1 from the universal value of 0.25. Our results for the lattice parameter and elastic constants indicate that the fitting of α does not affect those structural parameters when compared with the HSE06 functional, where α = 0.25. Our analysis of the band structure based on the k ṡ p method shows that the effective masses are in agreement with the experimental values, which can be attributed to the simultaneous fitting of the band gap and SOC. Also, we estimate the values of g-factors, extracted directly from the band structure, which are close to experimental results, which indicate that the obtained band structure produced a realistic set of k ṡ p parameters.
Computational predictions of the new Gallium nitride nanoporous structures
NASA Astrophysics Data System (ADS)
Lien, Le Thi Hong; Tuoc, Vu Ngoc; Duong, Do Thi; Thu Huyen, Nguyen
2018-05-01
Nanoporous structural prediction is emerging area of research because of their advantages for a wide range of materials science and technology applications in opto-electronics, environment, sensors, shape-selective and bio-catalysis, to name just a few. We propose a computationally and technically feasible approach for predicting Gallium nitride nanoporous structures with hollows at the nano scale. The designed porous structures are studied with computations using the density functional tight binding (DFTB) and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with their parent’s bulk stable phase. The electronic band structures of these nanoporous structures are finally examined in detail.
How the laser-induced ionization of transparent solids can be suppressed
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2013-12-01
A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.
Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping
2016-05-01
The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.
Pair Formation of Hard Core Bosons in Flat Band Systems
NASA Astrophysics Data System (ADS)
Mielke, Andreas
2018-05-01
Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Anita; Kaur, Kulwinder; Kumar, Ranjan
In this paper we present the results obtained from first principle calculations of the effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 1-x}Cr{sub x}S diluted magnetic semiconductor in Zinc Blende (B3) phase at x=0.25. High pressure behavior of Cd{sub 1-x}Cr{sub x}S has been investigated between 0 GPa to 100 GPa The calculations have been performed using Density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation as exchange-correlation (XC) potential. Calculated electronic band structures of Cd{sub 1-x}Cr{sub x}S are discussed in terms of contribution ofmore » Cr 3d{sup 5} 4s{sup 1}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbital’s. Study of band structures shows half-metallic ferromagnetic nature of Cd{sub 0.75}Cr{sub 0.25}S with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted upward which leads to modification of electronic structure.« less
Ab - initio study of rare earth magnesium alloy: TbMg
NASA Astrophysics Data System (ADS)
Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2018-05-01
The structural, electronic and magnetic properties of TbMg were analyzed by using full-potential linearized augmented plane wave method. This intermetallic is stable in structure CsCl (B2 phase) with space group Pm-3m. In electronic properties, we show the electronic band structure and density of states plots. These plots show that this alloy have metallic character because there is no band gap between the valance band and conduction band at Fermi level. The structural properties, i.e. equilibrium lattice constant, bulk modulus and its pressure derivative, energy and volume show good agreement with available data. In this paper, we also present the total magnetic moment along with the magnetic moment on the atomic and interstitial sites of TbMg intermetallic in B2 phase.
Band structure of the quasi two-dimensional purple molybdenum bronze
NASA Astrophysics Data System (ADS)
Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.
2006-09-01
The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.
Characterization of electronic structure of periodically strained graphene
Aslani, Marjan; Garner, C. Michael; Kumar, Suhas; ...
2015-11-03
We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands.more » Furthermore, we measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain.« less
Yb5Ga2Sb6: a mixed valent and narrow-band gap material in the RE5M2X6 family.
Subbarao, Udumula; Sarkar, Sumanta; Gudelli, Vijay Kumar; Kanchana, V; Vaitheeswaran, G; Peter, Sebastian C
2013-12-02
A new compound Yb5Ga2Sb6 was synthesized by the metal flux technique as well as high frequency induction heating. Yb5Ga2Sb6 crystallizes in the orthorhombic space group Pbam (no. 55), in the Ba5Al2Bi6 structure type, with a unit cell of a = 7.2769(2) Å, b = 22.9102(5) Å, c = 4.3984(14) Å, and Z = 2. Yb5Ga2Sb6 has an anisotropic structure with infinite anionic double chains (Ga2Sb6)(10-) cross-linked by Yb(2+) and Yb(3+) ions. Each single chain is made of corner-sharing GaSb4 tetrahedra. Two such chains are bridged by Sb2 groups to form double chains of 1/∞ [Ga2Sb6(10-)]. The compound satisfies the classical Zintl-Klemm concept and is a narrow band gap semiconductor with an energy gap of around 0.36 eV calculated from the electrical resistivity data corroborating with the experimental absorption studies in the IR region (0.3 eV). Magnetic measurements suggest Yb atoms in Yb5Ga2Sb6 exist in the mixed valent state. Temperature dependent magnetic susceptibility data follows the Curie-Weiss behavior above 100 K and no magnetic ordering was observed down to 2 K. Experiments are accompanied by all electron full-potential linear augmented plane wave (FP-LAPW) calculations based on density functional theory to calculate the electronic structure and density of states. The calculated band structure shows a weak overlap of valence band and conduction band resulting in a pseudo gap in the density of states revealing semimetallic character.
Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7
NASA Astrophysics Data System (ADS)
Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.
1997-02-01
The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.
Conduction band edge effective mass of La-doped BaSnO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming; Raghavan, Santosh
2016-06-20
BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.
Experiment and density functional theory analyses of GdTaO4 single crystal
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Kinross, Ashlie; Wang, Xiaofei; Yang, Huajun; Zhang, Qingli; Liu, Wenpeng; Sun, Dunlu
2018-05-01
GdTaO4 is a type of excellent materials that can be used as scintillation, laser matrix as well as self-activated phosphor has generated significant interest. Whereas its band structure, electronic structure and optical properties are still need elucidation. To solve this intriguing problem, high-quality GdTaO4 single crystal (M-type) was grown successfully using Czochralski method. Its structure as well as optical properties was determined in experiment. Moreover, a systematic theoretical calculation based on the density function theory methods were performed on M-type and M‧-type GdTaO4 and their band structure, density of state as well as optical properties were obtained. Combine with the performed experiment results, the calculated results were proved with high reliability. Hence, the calculated results obtained in this work could provide a deep understanding of GdTaO4 material, which also useful for the further investigation on GdTaO4 material.
Jonnal, Ravi S; Gorczynska, Iwona; Migacz, Justin V; Azimipour, Mehdi; Zawadzki, Robert J; Werner, John S
2017-09-01
Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length.
Jonnal, Ravi S.; Gorczynska, Iwona; Migacz, Justin V.; Azimipour, Mehdi; Zawadzki, Robert J.; Werner, John S.
2017-01-01
Purpose Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Methods Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Results Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Conclusions Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length. PMID:28877320
Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.
2015-01-01
The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075
47 CFR 15.253 - Operation within the bands 46.7-46.9 GHz and 76.0-77.0 GHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-77.0 GHz is restricted to vehicle-mounted field disturbance sensors used as vehicle radar systems... the radiating structure. (c) The power density of any emissions outside the operating band shall... GHz shall not exceed the general limits in § 15.209. (2) Radiated emissions outside the operating band...
Advanced structural multimodal imaging of a patient with subcortical band heterotopia.
Kini, Lohith G; Nasrallah, Ilya M; Coto, Carlos; Ferraro, Lindsay C; Davis, Kathryn A
2016-12-01
Subcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug-resistant epilepsy. We describe a patient with SBH and drug-resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.
Band-gap corrected density functional theory calculations for InAs/GaSb type II superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianwei; Zhang, Yong
2014-12-07
We performed pseudopotential based density functional theory (DFT) calculations for GaSb/InAs type II superlattices (T2SLs), with bandgap errors from the local density approximation mitigated by applying an empirical method to correct the bulk bandgaps. Specifically, this work (1) compared the calculated bandgaps with experimental data and non-self-consistent atomistic methods; (2) calculated the T2SL band structures with varying structural parameters; (3) investigated the interfacial effects associated with the no-common-atom heterostructure; and (4) studied the strain effect due to lattice mismatch between the two components. This work demonstrates the feasibility of applying the DFT method to more exotic heterostructures and defect problemsmore » related to this material system.« less
Guo, Weiyan; Guo, Yating; Dong, Hao; Zhou, Xin
2015-02-28
A systematic study using density functional theory has been performed for β-Ga2O3 doped with non-metal elements X (X = C, N, F, Si, P, S, Cl, Se, Br, and I) to evaluate the effect of doping on the band edges and photocatalytic activity of β-Ga2O3. The utilization of a more reliable hybrid density functional, as prescribed by Heyd, Scuseria and Ernzerhof, is found to be effective in predicting the band gap of β-Ga2O3 (4.5 eV), in agreement with the experimental result (4.59 eV). Based on the relaxed structures of X-doped systems, the defect formation energies and the plots of density of states have been calculated to analyze the band edges, the band gap states and the preferred doping sites. Our results show that the doping is energetically favored under Ga-rich growth conditions with respect to O-rich growth conditions. It is easier to replace the threefold coordinated O atom with non-metal elements compared to the fourfold coordinated O atom. X-doped systems (X = C, Si, P) show no change in the band gap, with the presence of discrete midgap states, which have adverse effect on the photocatalytic properties. The photocatalytic redox ability can be improved to a certain extent by doping with N, S, Cl, Se, Br, and I. The band alignments for Se-doped and I-doped β-Ga2O3 are well positioned for the feasibility of both photo-oxidation and photo-reduction of water, which are promising photocatalysts for water splitting in the visible region.
Electronic transport properties of Ti-impurity band in Si
NASA Astrophysics Data System (ADS)
Olea, J.; González-Díaz, G.; Pastor, D.; Mártil, I.
2009-04-01
In this paper we show that pulsed laser melted high dose implantation of Ti in Si, above the Mott transition, produces an impurity band (IB) in this semiconductor. Using the van der Pauw method and Hall effect measurements we find strong laminated conductivity at the implanted layer and a temperature dependent decoupling between the Ti implanted layer (TIL) and the substrate. The conduction mechanism from the TIL to the substrate shows blocking characteristics that could be well explained through IB theory. Using the ATLAS code we can estimate the energetic position of the IB at 0.36 eV from the conduction band, the density of holes in this band which is closely related to the Ti atomic density and the hole mobility in this band. Band diagrams of the structure at low and high temperatures are also simulated in the ATLAS framework. The simulation obtained is fully coherent with experimental results.
Intersubband Transitions in InAs/AlSb Quantum Wells
NASA Technical Reports Server (NTRS)
Li, J.; Koloklov, K.; Ning, C. Z.; Larraber, D. C.; Khodaparast, G. A.; Kono, J.; Ueda, K.; Nakajima, Y.; Sasa, S.; Inoue, M.
2003-01-01
We have studied intersubband transitions in InAs/AlSb quantum wells experimentally and theoretically. Experimentally, we performed polarization-resolved infrared absorption spectroscopy to measure intersubband absorption peak frequencies and linewidths as functions of temperature (from 4 K to room temperature) and quantum well width (from a few nm to 10 nm). To understand experimental results, we performed a self-consistent 8-band k-p band-structure calculation including spatial charge separation. Based on the calculated band structure, we developed a set of density matrix equations to compute TE and TM optical transitions self-consistently, including both interband and intersubband channels. This density matrix formalism is also ideal for the inclusion of various many-body effects, which are known to be important for intersubband transitions. Detailed comparison between experimental data and theoretical simulations is presented.
NASA Technical Reports Server (NTRS)
Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)
2002-01-01
We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka
2011-05-01
We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. Our simulation shows that the valence band width calculated within the SIC is narrower than that calculated without the SIC because the SIC makes the d-band potential deeper. The energy gap calculated within the SIC expands and is close to experimental data.
Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S
2009-04-30
An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.
Hybrid density functional theory band structure engineering in hematite
NASA Astrophysics Data System (ADS)
Pozun, Zachary D.; Henkelman, Graeme
2011-06-01
We present a hybrid density functional theory (DFT) study of doping effects in α-Fe2O3, hematite. Standard DFT underestimates the band gap by roughly 75% and incorrectly identifies hematite as a Mott-Hubbard insulator. Hybrid DFT accurately predicts the proper structural, magnetic, and electronic properties of hematite and, unlike the DFT+U method, does not contain d-electron specific empirical parameters. We find that using a screened functional that smoothly transitions from 12% exact exchange at short ranges to standard DFT at long range accurately reproduces the experimental band gap and other material properties. We then show that the antiferromagnetic symmetry in the pure α-Fe2O3 crystal is broken by all dopants and that the ligand field theory correctly predicts local magnetic moments on the dopants. We characterize the resulting band gaps for hematite doped by transition metals and the p-block post-transition metals. The specific case of Pd doping is investigated in order to correlate calculated doping energies and optical properties with experimentally observed photocatalytic behavior.
Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange
NASA Astrophysics Data System (ADS)
Gillen, Roland; Robertson, John
2011-07-01
We report density functional theory band structure calculations on the transparent conducting oxides CuAlO2, CuGaO2, CuInO2, and CuCrO2. The use of the hybrid functional screened-exchange local density approximation (sX-LDA) leads to considerably improved electronic properties compared to standard LDA and generalized gradient approximation (GGA) approaches. We show that the resulting electronic band gaps compare well with experimental values and previous quasiparticle calculations, and show the correct trends with respect to the atomic number of the cation (Al, Ga, In). The resulting energetic depths of Cu d and O p levels and the valence-band widths are considerable improvements compared to LDA and GGA and are in good agreement with available x-ray photoelectron spectroscopy data. Lastly, we show the calculated imaginary part of the dielectric function for all four systems.
Rabilloud, Franck
2014-10-14
Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.
Mott Transition in GdMnO3: an Ab Initio Study
NASA Astrophysics Data System (ADS)
Ferreira, W. S.; Moreira, E.; Frazão, N. F.
2018-04-01
Orthorhombic GdMnO3 is studied using density functional theory considering the pseudo-potential plane-wave method within local-spin-density approximation, LSDA. The electronic band structure and density of states, for several hydrostatic pressures, are studied. The Mott transition was observed at 60 GPa. Calculated lattice parameters are close to the experimental measurements, and some indirect band gaps (S→Γ) were obtained within the LSDA level of calculation, between the occupied O-2 p and unoccupied Gd-4 f states. The variation of the gap reduces with increasing pressure, being well fitted to a quadratic function.
Srimathi, U; Nagarajan, V; Chandiramouli, R
2018-06-01
We report the density functional application of adsorption behavior of volatile organic compounds (VOCs) emitted from the different ripening stages of banana fruit on germanene nanotube (GNT). Initially, the geometric structural stability of GNT is ascertained and the tunable electronic properties lead to the application of GNT as a base material in order to know the adsorption features of VOCs. We further explored the adsorption behavior of VOCs on to GNT through charge transfer, adsorption energy and band gap variation. The energy band structure and density of states (DOS) spectrum shows a noteworthy variation upon adsorption of different VOCs on to the GNT. Also, the electron density variation is noticed upon adsorption of VOCs emitted from the banana on to the GNT base material. Besides, the difference in the energy band gap of GNT upon emission of VOCs from banana leads to the use of GNT as a chemiresistor to assess fruit freshness with adsorption studies. Moreover, we suggest the use of GNT to discriminate the fruit freshness of banana through the adsorption process of VOCs on to GNT. Copyright © 2018 Elsevier Inc. All rights reserved.
Oxygen holes and hybridization in the bismuthates
NASA Astrophysics Data System (ADS)
Khazraie, Arash; Foyevtsova, Kateryna; Elfimov, Ilya; Sawatzky, George A.
2018-02-01
Motivated by the recently renewed interest in the superconducting bismuth perovskites, we investigate the electronic structure of the parent compounds A BiO3 (A = Sr, Ba) using ab initio methods and tight-binding (TB) modeling. We use the density functional theory (DFT) in the local density approximation (LDA) to understand the role of various interactions in shaping the A BiO3 band structure near the Fermi level. It is established that interatomic hybridization involving Bi-6 s and O-2 p orbitals plays the most important role. Based on our DFT calculations, we derive a minimal TB model and demonstrate that it can describe the properties of the band structure as a function of lattice distortions, such as the opening of a charge gap with the onset of the breathing distortion and the associated condensation of holes onto a1 g-symmetric molecular orbitals formed by the O-2 pσ orbitals on collapsed octahedra. We also derive a single band model involving the hopping of an extended molecular orbital involving both Bi-6 s and a linear combination of six O-2 p orbitals which provides a very good description of the dispersion and band gaps of the low energy scale bands straddling the chemical potential.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
Structural and electronic properties of low-index stoichiometric Cu2ZnSnS4 surfaces
NASA Astrophysics Data System (ADS)
Jia, Zhan-Ju; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qing-Ju
2018-05-01
Over the past few years, quaternary Cu2ZnSnS4 (CZTS) has attracted a great deal of attention as the most promising photovoltaic absorber layer, due to its abundance and non-toxic properties. However, the significant surface structures and properties for photo-catalytic absorption layers have not yet been studied in detail for CZTS. Hence, the surface structure and electronic properties of low-index stoichiometric CZTS surfaces are calculated based on density functional theory. The relaxation is much large for the (001), (100), (101) and (112) surfaces. Moreover, more surface states appear at the bottom of conduction band and the top of valence band. The conduction band is mainly composed of S-3p and Sn-5p orbits. The valence band top is mainly composed of S-3p and Cu-3d orbits. The band gap values of five surfaces do not vary greatly. The dangling bond density for the (112) surfaces is minimal, resulting in minimum surface energy. Finally, the equilibrium morphology of CZTS is constructed by the Wulff rule. It is found that the {101} surface is the dominant surface (72.6%). These results will help us to better understand the surface properties of absorption layer that is related to CZTS surface and provide theoretical support for future experimental studies.
Band gap and electronic structure of MgSiN2
NASA Astrophysics Data System (ADS)
Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.
2014-09-01
Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.
Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P
2008-07-25
Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.
Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris
NASA Technical Reports Server (NTRS)
Lang, K. R.; Willson, R. F.
1986-01-01
Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.
Spin-resolved band structure of a densely packed Pb monolayer on Si(111)
NASA Astrophysics Data System (ADS)
Brand, C.; Muff, S.; Fanciulli, M.; Pfnür, H.; Tringides, M. C.; Dil, J. H.; Tegenkamp, C.
2017-07-01
Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 4/3 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016), 10.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K¯√{3} points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3 v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior.
NASA Astrophysics Data System (ADS)
Shi, Z.; Zhang, Z. H.; Chen, Q. B.; Zhang, S. Q.; Meng, J.
2018-03-01
The shell-model-like approach is implemented to treat the cranking many-body Hamiltonian based on the covariant density functional theory including pairing correlations with exact particle number conservation. The self-consistency is achieved by iterating the single-particle occupation probabilities back to the densities and currents. As an example, the rotational structures observed in the neutron-rich nucleus 60Fe are investigated and analyzed. Without introducing any ad hoc parameters, the bandheads, the rotational spectra, and the relations between the angular momentum and rotational frequency for the positive-parity band A and negative-parity bands B and C are well reproduced. The essential role of the pairing correlations is revealed. It is found that for band A, the band crossing is due to the change of the last two occupied neutrons from the 1 f5 /2 signature partners to the 1 g9 /2 signature partners. For the two negative-parity signature partner bands B and C, the band crossings are due to the pseudocrossing between the 1 f7 /2 ,5 /2 and the 1 f5 /2 ,1 /2 orbitals. Generally speaking, the deformation parameters β for bands A, B, and C decrease with rotational frequency. For band A, the deformation jumps from β ≈0.19 to β ≈0.29 around the band crossing. In comparison with its signature partner band C, band B exhibits appreciable triaxial deformation.
NASA Astrophysics Data System (ADS)
Hassan, M.; Shahid, A.; Mahmood, Q.
2018-02-01
Density functional theory study of the structural, electrical, optical and thermoelectric behaviors of very less investigated anti-perovskites A3SnO (A = Ca, Sr, Ba) is performed with FP-LAPW technique. The A3SnO exhibit narrow direct band gap, in contrast to the wide indirect band gap of the respective perovskites. Hence, indirect to direct band gap transformation can be realized by the structural transition from perovskite to anti-perovskite. The p-p hybridization between A and O states result in the covalent bonding. The transparency and maximum reflectivity to the certain energies, and the verification of the Penn's model indicate potential optical device applications. Thermoelectric behaviors computed within 200-800 K depict that Ca3SnO exhibits good thermoelectric performance than Ba3SnO and Sr3SnO, and all three operate at their best at 800 K suggesting high temperature thermoelectric device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com; Azam, Sikander
The electronic band structure, valence electron charge density and optical susceptibilities of tetrabarium gallium trinitride (TGT) were calculated via first principle study. The electronic band structure calculation describes TGT as semiconductor having direct band gap of 1.38 eV. The valence electronic charge density contour verified the non-polar covalent nature of the bond. The absorption edge and first peak of dielectric tensor components showed electrons transition from N-p state to Ba-d state. The calculated uniaxial anisotropy (0.4842) and birefringence (−0.0061) of present paper is prearranged as follow the spectral components of the dielectric tensor. The first peak in energy loss functionmore » (ELOS) shows the energy loss of fast traveling electrons in the material. The first sharp peak produced in ELOS around 10.5 eV show plasmon loss having plasma frequencies 0.1536, 0.004 and 0.066 of dielectric tensor components. This plasmon loss also cause decrease in reflectivity spectra.« less
Electronic structures of Plutonium compounds with the NaCl-type monochalcogenides structure
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Tatetsu, Yasutomi
2012-12-01
We calculate the energy band structure and the Fermi surface of PuS, PuSe and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5/ and monochalcogenide p electrons. The obtained main Fermi surfaces are composed of two hole sheets and one electron sheet, all of which are constructed from the band having the Pu 5/ state and the monochalcogenide p state.
Quasiparticle band gap in the topological insulator Bi2Te3
NASA Astrophysics Data System (ADS)
Nechaev, I. A.; Chulkov, E. V.
2013-10-01
We present a theoretical study of dispersion of states that form the bulk band-gap edges in the three-dimensional topological insulator Bi2Te3. Within density functional theory, we analyze the effect of atomic positions varied within the error range of the available experimental data and approximation chosen for the exchange-correlation functional on the bulk band gap and k-space location of valence- and conduction-band extrema. For each set of the positions with different exchange-correlation functionals, we show how many-body corrections calculated within a one-shot GW approach affect the mentioned characteristics of electronic structure of Bi2Te3. We thus also illustrate to what degree the one-shot GW results are sensitive to the reference one-particle band structure in the case of bismuth telluride. We found that for this topological insulator the GW corrections enlarge the fundamental band gap and for certain atomic positions and reference band structure bring its value in close agreement with experiment.
Complex band structure and electronic transmission eigenchannels
NASA Astrophysics Data System (ADS)
Jensen, Anders; Strange, Mikkel; Smidstrup, Søren; Stokbro, Kurt; Solomon, Gemma C.; Reuter, Matthew G.
2017-12-01
It is natural to characterize materials in transport junctions by their conductance length dependence, β. Theoretical estimations of β are made employing two primary theories: complex band structure and density functional theory (DFT) Landauer transport. It has previously been shown that the β value derived from total Landauer transmission can be related to the β value from the smallest |ki| complex band; however, it is an open question whether there is a deeper relationship between the two. Here we probe the details of the relationship between transmission and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two molecular junctions. The molecular junctions show that both the length dependence of the total transmission and the individual transmission eigenvalues can be, almost always, found through the complex band structure. The complex band structure of the semi-conducting material, however, does not predict the length dependence of the total transmission but only of the individual channels, at some k-points, due to multiple channels contributing to transmission. We also observe instances of vertical bands, some of which are the smallest |ki| complex bands, that do not contribute to transport. By understanding the deeper relationship between complex bands and individual transmission eigenchannels, we can make a general statement about when the previously accepted wisdom linking transmission and complex band structure will fail, namely, when multiple channels contribute significantly to the transmission.
Actinide electronic structure and atomic forces
NASA Astrophysics Data System (ADS)
Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.
2000-07-01
We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.
NASA Astrophysics Data System (ADS)
Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong
2015-10-01
This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.
NASA Astrophysics Data System (ADS)
Yedukondalu, N.; Kunduru, Lavanya; Roshan, S. C. Rakesh; Sainath, M.
2018-04-01
Assessment of band gaps for nine alkaline-earth chalcogenides namely MX (M = Ca, Sr, Ba and X = S, Se Te) compounds are reported using Tran Blaha-modified Becke Johnson (TB-mBJ) potential and its new parameterization. From the computed electronic band structures at the equilibrium lattice constants, these materials are found to be indirect band gap semiconductors at ambient conditions. The calculated band gaps are improved using TB-mBJ and its new parameterization when compared to local density approximation (LDA) and Becke Johnson potentials. We also observe that TB-mBJ new parameterization for semiconductors below 7 eV reproduces the experimental trends very well for the small band gap semiconducting alkaline-earth chalcogenides. The calculated band profiles look similar for MX compounds (electronic band structures are provided for BaS for representation purpose) using LDA and new parameterization of TB-mBJ potentials.
NASA Astrophysics Data System (ADS)
Hüger, E.; Osuch, K.
2005-03-01
We investigate the possibility of inducing ferromagnetic order in 4d and 5d late transition metals through crystal symmetry change. First principles, self-consistent density functional theory calculations, with spin-orbit coupling included, performed at 0 K show that ferromagnetism occurs in the bulk of Rh and Pd at the optimum lattice constant if Rh is in the bcc and Pd in the hcp/dhcp phase. The ferromagnetic order originates in the d-band occupancy of Rh or Pd which locates the Fermi energy at the top of the highest peak of the respective (paramagnetic) density of states induced by the bcc or hcp/dhcp structure. This peak in the density of states is caused by flat bands which lie at the surface of the respective Brillouin zone. For a bcc crystal these flat bands have the eg character and are positioned at the surface of the bcc Brillouin zone along the N-P line. The origin of the flatness of the bands was found to be the translation symmetry of the cubic lattice which causes the bands with the eg character to be narrow along the k-lines whose k-vector directions are furthest off the directions to which the orbitals of the eg symmetry point. Due to the d-band occupancy of Rh these flat bands lie in the paramagnetic state at the Fermi energy, whereas in the ferromagnetic state they exhibit the largest energetic split. This indicates that a smaller degree of orbital overlap narrows electronic bands enhancing the tendency of the system for ferromagnetic band split. For the hcp/dhcp structure the states contributing to the high density of para-magnetic states at the Fermi level of Pd lie in the vicinity of the M-L line of the hcp Brillouin zone boundary, which possesses a high number of symmetry (M and L) points. Moreover, the M-L line is aligned with the stacking sequence direction ([0001]) which is furthest off the densest-packed atomic chain direction of an hcp-crystal and, consequently, the weakest-bond direction in the crystal. This makes the narrow bands along the M-L line flat. The instability of the bcc and the meta-stability of the hcp crystal phase modifications for metals with native close-packed crystal structures is subsequently analysed in order to find whether they can be grown as films on suitable substrates.
Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses
NASA Astrophysics Data System (ADS)
Kulkarni, Shilpa; Jali, V. M.
2018-02-01
This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.
NASA Astrophysics Data System (ADS)
Saad, H.-E.; Musa, M.; Elhag, Ahmed
2018-06-01
In this paper, we study the crystal, electronic and magnetic structures of three tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe). All calculations were performed using the full-potential linear augmented plane-wave (PF-LAPW) method based on the first-principles density functional theory (DFT). For the exchange correlation potential, the generalized gradient approximation (GGA) and GGA plus on-site Coulomb parameter (GGA + U) were employed. The structural optimization reveals that the three compounds are stable in cubic structure (space group Fm-3m; tilt system a0a0a0). The band structure, density of states (DOS), charge density and spin magnetic moments were calculated and analyzed in details. By analysis the band structure and DOS, Ba2MTaO6 exhibits an insulating behavior (M = Cr, Fe) and a half-metallic (HM) nature (M = Mn). GGA + U method yields quite accurate results for the band-gap (Eg) as compared with GGA. We found that all three compounds have stable ferromagnetic (FM) ground state within GGA and GGA + U calculations. The M3+ (3d) ions contribute the majority in the total spin magnetic-moments, while, the empty T5+ (5d) ions carry very small induced magnetic moment via the M (3d)-O (2p)-Ta (5d) hybridization.
NASA Astrophysics Data System (ADS)
Bouchenafa, M.; Sidoumou, M.; Halit, M.; Benmakhlouf, A.; Bouhemadou, A.; Maabed, S.; Bentabet, A.; Bin-Omran, S.
2018-02-01
Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.
The extension of a uniform canopy reflectance model to include row effects
NASA Technical Reports Server (NTRS)
Suits, G. H. (Principal Investigator)
1981-01-01
The effect of row structure is assumed to be caused by the variation in density of vegetation across rows rather than to a profile in canopy height. The calculation of crop reflectance using vegetation density modulation across rows follows a parallel procedure to that for a uniform canopy. Predictions using the row model for wheat show that the effect of changes in sun to row azimuth are greatest in Landsat Band 5 (red band) and can result in underestimation of crop vigor.
Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.
Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G
2017-09-01
Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.
Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl Semimetals NbP and TaP
Sapkota, Deepak; Mukherjee, Rupam; Mandrus, David
2016-12-06
We have successfully synthesized niobium monophosphide and tantalum monophosphide crystals by a chemical vapor transport technique. We report resistivity vs. temperature of both materials in the temperature range from 2 K to 300 K. We have also performed electronic structure calculations and present the band structure and density of states of these two compounds. The calculations show that both compounds are semimetals, as their conduction and valence bands overlap near the Fermi energy.
Electronic structure and magneto-optical effects in CeSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liechtenstein, A.I.; Antropov, V.P.; Harmon, B.N.
1994-04-15
The electronic structure and magneto-optical spectra of CeSb have been calculated using the self-consistent local-density approximation with explicit on-site Coulomb parameters for the correlated [ital f] state of cerium. The essential electronic structure of cerium antimonide consists of one occupied [ital f] band, predominantly with orbital [ital m]=[minus]3 character and spin [sigma]=1 located 2 eV below the Fermi level and interacting with broad Sb [ital p] bands crossing [ital E][sub [ital F
Luo, Jun-Wei; Franceschetti, Alberto; Zunger, Alex
2008-10-01
Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states rho XX. Here we introduce a DCM "figure of merit" R2(E) which is proportional to the ratio between the biexciton density of states rhoXX and the single-exciton density of states rhoX, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions. Using R2(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states. Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E0 (the energy at which R2(E) becomes >or=1) is reduced, suggesting improved DCM. However, whether the normalized E0/epsilong increases or decreases as the dot size increases depends on dot material.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.
2015-04-01
High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo
2016-05-15
4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H{sub 2}L) and three H{sub 2}L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H{sub 2}O)·H{sub 2}O (DPE=(E)-1, 2-di(pyridine −4-yl)ethene) (1), CdL(H{sub 2}O){sub 2} (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H{sub 2}L ligand shows an enol-form and the L{sup 2−} ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H{sub 2}L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower thanmore » those of H{sub 2}L. And MOF 1 yielded much larger photocurrent density than H{sub 2}L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L{sup 2−}, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1. - Graphical abstract: The free ligand, 4-(4-oxopyridin-1(4H)-yl)phthalic acid (H{sub 2}L) shows different configuration from its three MOFs, and they possess different band structures. MOF 1 yielded much larger visible-light-driven photocurrent density than H{sub 2}L. The hydrous MOF 2 and the anhydrous MOF 3 can be transformed to each other, and they have larger band gaps than MOF 1.« less
Evolution of lightning flash density and reflectivity structure in a multicell thunderstorm
NASA Technical Reports Server (NTRS)
Mazur, V.; Rust, W. D.; Gerlach, J. C.
1986-01-01
The radar reflectivity structure and the distribution of lightning in a storm cell was investigated using S-band and UHF-band radar data for six storm cells over Wallops Island. The S-band scans were vertical and continuous, while the UHF data were taken in steps of 2.5 deg elevation. The peak in lightning activity during the study corresponded to a merging of two storm cells. A minimum height of 7 km was found necessary for the appearance of a 40 dBZ core with lightning, which first appears in a multicell thunderstorm at the leading edge of the 50 dBZ core of the cell and between a cell and its decaying neighbor. The lightning moves further into the cell during cell decay and decreases in density. Finally, the lightning is offset horizontally from the precipitation core during cell growth but colocates with the precipitation core as the cell dissipates.
Research on local resonance and Bragg scattering coexistence in phononic crystal
NASA Astrophysics Data System (ADS)
Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong
2017-04-01
Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-01
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-19
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
The electronic structure of lithium metagallate.
Johnson, N W; McLeod, J A; Moewes, A
2011-11-09
Herein we present a study of the electronic structure of lithium metagallate (LiGaO(2)), a material of interest in the field of optoelectronics. We use soft x-ray spectroscopy to probe the electronic structure of both the valence and conduction bands and compare our measurements to ab initio density functional theory calculations. We use several different exchange-correlation functionals, but find that no single theoretical approach used herein accurately quantifies both the band gap and the Ga 3d(10) states in LiGaO(2). We derive a band gap of 5.6 eV, and characterize electron hybridization in both the valence and conduction bands. Our study of the x-ray spectra may prove useful in analysing spectra from more complicated LiGaO(2) heterostructures. © 2011 IOP Publishing Ltd
NASA Astrophysics Data System (ADS)
Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias
2017-12-01
We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.
Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua
2017-12-06
A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.
Quantum linear magnetoresistance in NbTe2
NASA Astrophysics Data System (ADS)
Chen, Hongxiang; Li, Zhilin; Fan, Xiao; Guo, Liwei; Chen, Xiaolong
2018-07-01
NbTe2 is a quasi-2D layered semimetal with charge density wave ground state showing a distorted-1T structure at room temperature. Here we report the anisotropic magneto-transport properties of NbTe2. An anomalous linear magnetoresistance up to 30% at 3 K in 9 T was observed, which can be well explained by a quantum linear magnetoresistance model. Our results reveal that a large quasi-2D Fermi surface and small Fermi pockets with linearly dispersive bands coexist in NbTe2. The comparison with the isostructural TaTe2 provides more information about the band structure evolution with charge density wave transitions in NbTe2 and TaTe2.
Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)
NASA Astrophysics Data System (ADS)
Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.
Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.
NASA Astrophysics Data System (ADS)
Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.
2017-12-01
Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.
A first principles study of the mechanical, electronic, and vibrational properties of lead oxide
NASA Astrophysics Data System (ADS)
Zhuravlev, Yu. N.; Korabel'nikov, D. V.
2017-11-01
The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.
Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study
NASA Astrophysics Data System (ADS)
Marsusi, F.; Fedorov, I. A.; Gerivani, S.
2018-01-01
Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.
NASA Astrophysics Data System (ADS)
Terao, Takamichi
2018-04-01
Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.
Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study
NASA Astrophysics Data System (ADS)
Camacho-Mojica, Dulce C.; López-Urías, Florentino
2016-04-01
BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation effect due to a lattice mismatch. It was found that zigzag heterojunctions are more energetically favored than armchair heterojunctions. Furthermore, the formation energy presents a maximum at the point where the heterojunction becomes a planar structure. Electronic charge density results yielded a more ionic behavior in Alsbnd N bonds than the Bsbnd As bonds in accordance with monolayer results. It was observed that the conduction band minimum for both heterojunctions exhibit confined states located mainly at the entire AlN strips whereas the valence band maximum exhibits confined states located mainly at BAs strips. We expect that the present investigation will motivate more experimental and theoretical studies on new layered materials made of III-V semiconductors.
Electronic structures of of PuX (X=S, Se, Te)
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi
2013-08-01
We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.
Heptagraphene: Tunable dirac cones in a graphitic structure
Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.
2016-09-13
Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a directmore » consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.« less
NASA Astrophysics Data System (ADS)
Khomyakov, Petr A.; Luisier, Mathieu; Schenk, Andreas
2015-08-01
Using first-principles calculations, we show that the conduction and valence band energies and their deformation potentials exhibit a non-negligible compositional bowing in strained ternary semiconductor alloys such as InGaAs. The electronic structure of these compounds has been calculated within the framework of local density approximation and hybrid functional approach for large cubic supercells and special quasi-random structures, which represent two kinds of model structures for random alloys. We find that the predicted bowing effect for the band energy deformation potentials is rather insensitive to the choice of the functional and alloy structural model. The direction of bowing is determined by In cations that give a stronger contribution to the formation of the InxGa1-xAs valence band states with x ≳ 0.5, compared to Ga cations.
Electronic properties of B and Al doped graphane: A hybrid density functional study
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.
2018-04-01
Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.
NASA Astrophysics Data System (ADS)
Chen, M. X.; Chen, Wei; Zhang, Zhenyu; Weinert, M.
2017-12-01
The effects of Fe dopants on the electronic bands structure of (Li0.8Fe0.2OH )FeSe are investigated by a band unfolding (k -projection) technique and first-principles supercell calculations. Doping 20% Fe into the LiOH layers causes electron donation to the FeSe layers, significantly changing the profile of bands around the Fermi level. Because of the weak bonding between the LiOH and FeSe layers the magnetic configuration of the dopants has only minor effects on the band structure. The electronic bands for the surface FeSe layer of (Li0.8Fe0.2OH )FeSe show noticeable differences compared to those of the inner layers, both in the location of the Fermi level and in details of the bands near the high symmetry points, resulting from different effective doping levels and the broken symmetry at the surface. The band structure for the surface FeSe layer with checkerboard antiferromagnetic order is reasonably consistent with angle-resolved photoemission results. The 3 d transition metals Mn and Co have similar doping effects on the band structure of (LiOH)FeSe.
NASA Astrophysics Data System (ADS)
Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2017-12-01
Ferromagnetic Heusler compounds have vast and imminent applications for novel devices, smart materials thanks to density functional theory (DFT) based simulations, which have scored out a new approach to study these materials. We forecast the structural stability of Co2TaZ alloys on the basis of total energy calculations and mechanical stability criteria. The elastic constants, robust spin-polarized ferromagnetism and electron densities in these half-metallic alloys are also discussed. The observed structural aspects calculated to predict the stability and equilibrium lattice parameters agree well with the experimental results. The elastic parameters like elastic constants, bulk, Young’s and shear moduli, poison’s and Pugh ratios, melting temperatures, etc have been put together to establish their mechanical properties. The elaborated electronic band structures along with indirect band gaps and spin polarization favour the application of these materials in spintronics and memory device technology.
NASA Astrophysics Data System (ADS)
Gu, Xiaofeng
Multicomponent Zr-based bulk metallic glasses are the most promising metallic glass forming systems. They exhibit great glass forming ability and fascinating mechanical properties, and thus are considered as potential structural materials. One potential application is that they could be replacements of the depleted uranium for making kinetic energy armor-piercing projectiles, but the density of existing Zr-based alloys is too low for this application. Based on the chemical and crystallographic similarities between Zr and Hf, we have developed two series of bulk metallic glasses with compositions of (HfxZr1-x) 52.5Cu17.9Ni14.6Al10Ti5 and (HfxZr1-x) 57Cu20Ni8Al10Ti5 ( x = 0--1) by gradually replacing Zr by Hf. Remarkably increased density and improved mechanical properties have been achieved in these alloys. In these glasses, Hf and Zr play an interchangeable role in determining the short range order. Although the glass forming ability decreases continuously with Hf addition, most of these alloys remain bulk glass-forming. Recently, nanocomposites produced from bulk metallic glasses have attracted wide attention due to improved mechanical properties. However, their crystalline microstructure (the grain size and the crystalline volume fraction) has to be optimized. We have investigated crystallization of (Zr, Hf)-based bulk metallic glasses, including the composition dependence of crystallization paths and crystallization mechanisms. Our results indicate that the formation of high number density nanocomposites from bulk metallic glasses can be attributed to easy nucleation and slowing-down growth processes, while the multistage crystallization behavior makes it more convenient to control the microstructure evolution. Metallic glasses are known to exhibit unique plastic deformation behavior. At low temperature and high stress, plastic flow is localized in narrow shear bands. Macroscopic investigations of shear bands (e.g., chemical etching) suggest that the internal structure of shear bands is different from that of undeformed surroundings, but the direct structural characterization of shear bands down to the atomic level has been lacking. In this work, we have used transmission electron microscopy to explore the structural and chemical changes inside the shear bands. Nanometer-scale defects (void-like and high density regions) have been identified as a result of plastic deformation. It is these defects that distinguish shear bands from undeformed regions. Processes occurring in an active shear band and after stress removal are analogous to a thermally activated relaxation except that the relaxation time is much shorter in the former case.
NASA Astrophysics Data System (ADS)
Indari, E. D.; Wungu, T. D. K.; Hidayat, R.
2017-07-01
Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.
Electronic properties of epitaxial silicene: a LT-STM/STS study
NASA Astrophysics Data System (ADS)
Fleurence, Antoine; Lee, Chi-Cheng; Ozaki, Taisuke; Yamada-Takamura, Yukiko; Yoshida, Yasuo; Hasegawa, Yukio
2013-03-01
The astonishing properties of silicene, the Si-counterpart of graphene, together with pioneering experimental observations, triggered in the very recent years, an exponentially increasing interest for this atom-thick material, both at fundamental level and for applications in high-speed electronic devices. We demonstrated, that the spontaneous segregation of silicon on (0001) surface of zirconium diboride (ZrB2) thin films epitaxied on Si(111) wafers gives rise to a wide-scale uniform two-dimensional silicene sheet. The silicene nature of the honeycomb structure imaged by scanning tunneling microscopy is evidenced by the observation of gap-opened π-electronic bands. The band gap opening is primarily due the specifically imprinted buckling. Here, we present the results of a low-temperature scanning tunneling spectroscopy investigation, which evidences the n-doped nature of silicene. The mapping of the local density of states, together with density functional theory give precious insights into the microscopic origin of the electronic bands of silicene. In particular, it shows the correlation between the degree of sp2 hybridization of different Si atoms in the internal structure and the character of the electronic bands.
NASA Astrophysics Data System (ADS)
Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.
Structural, electronic and vibrational properties of lanthanide monophosphide at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh
2016-05-06
A first-principles plane wave self-consistent method with the ultra-soft-pseudopotential scheme in the framework of the density functional theory (DFT) is performed to study structural, electronic and vibrational properties of LaP for Rock-salt (NaCl/Bl) and Cesium-chloride (CsCl/B2) phases. The instability of Rock-salt (NaCl/Bl) phases around the transition is discussed. Conclusions based on electronic energy band structure, density of state, phonon dispersion and phonon density of states in both phases are outlined. The calculated results are consistence and confirm the successful applicability of quasi-harmonic phonon theory for structural instability studies for the alloys.
NASA Astrophysics Data System (ADS)
He, Jiaming; Zhang, Yiran; Wen, Libin; Yang, Yusen; Liu, Jinyu; Wu, Yueshen; Lian, Hailong; Xing, Hui; Wang, Shun; Mao, Zhiqiang; Liu, Ying
2017-07-01
Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here, we report our results of the magnetoresistance (MR) on Ta2NiSe7. A breakdown of Kohler's rule is found upon entering the CDW state. Concomitantly, a clear change in curvature in the field dependence of MR is observed. We show that the curvature change is well described by the two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the p orbitals from Se atoms dominate the change in transport through CDW transition.
Quasiparticle energy bands and Fermi surfaces of monolayer NbSe2
NASA Astrophysics Data System (ADS)
Kim, Sejoong; Son, Young-Woo
2017-10-01
A quasiparticle band structure of a single layer 2 H -NbSe2 is reported by using first-principles G W calculation. We show that a self-energy correction increases the width of a partially occupied band and alters its Fermi surface shape when comparing those using conventional mean-field calculation methods. Owing to a broken inversion symmetry in the trigonal prismatic single layer structure, the spin-orbit interaction is included and its impact on the Fermi surface and quasiparticle energy bands are discussed. We also calculate the doping dependent static susceptibilities from the band structures obtained by the mean-field calculation as well as G W calculation with and without spin-orbit interactions. A complete tight-binding model is constructed within the three-band third nearest neighbor hoppings and is shown to reproduce our G W quasiparticle energy bands and Fermi surface very well. Considering variations of the Fermi surface shapes depending on self-energy corrections and spin-orbit interactions, we discuss the formations of charge density wave (CDW) with different dielectric environments and their implications on recent controversial experimental results on CDW transition temperatures.
Structural, electronic and magnetic properties of metal thiophosphate InPS4
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Nayak, Vikas; Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2017-05-01
The non-centrosymmetric crystal, InPS4, has been investigated by means of density functional theory (DFT). In this paper we have calculated the structural parameters, electronic band structures, density of states plot and magnetic properties using full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation has been solved employing the generalised gradient approximation due to Perdew-Burke-Ernzerhof. The calculations are performed both without spin as well as spin polarized. The results show that InPS4 is an indirect band gap semiconductor with (N-Г) energy gap of 2.32eV (without spin) and 1.86eV in spin up and down channels.The obtained lattice parameters and energy gap agree well with the experimental results. Our reported magnetic moment results show that the property of InPS4is nonmagnetic.
NASA Astrophysics Data System (ADS)
Li, Guo-Ling; Zhang, Fabi; Cui, Yi-Tao; Oji, Hiroshi; Son, Jin-Young; Guo, Qixin
2015-07-01
By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga2O3 were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga2O3.
Band structure and unconventional electronic topology of CoSi
NASA Astrophysics Data System (ADS)
Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.
2018-04-01
Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \
NASA Astrophysics Data System (ADS)
Kumar, Akash; Balasubramaniam, K. R.; Kangsabanik, Jiban; Vikram, Alam, Aftab
2016-11-01
Structural stability, electronic structure, and optical properties of CH3NH3BaI3 hybrid perovskite are examined from theory as well as experiment. Solution-processed thin films of CH3NH3BaI3 exhibited a high transparency in the wavelength range of 400-825 nm (1.5-3.1 eV for which the photon current density is highest in the solar spectrum) which essentially justifies a high band gap of 4 eV obtained by theoretical estimation. Also, the x-ray diffraction patterns of the thin films match well with the {00 l } peaks of the simulated pattern obtained from the relaxed unit cell of CH3NH3BaI3 , crystallizing in the I 4 /m c m space group, with lattice parameters, a =9.30 Å, c =13.94 Å. Atom projected density of state and band structure calculations reveal the conduction and valence band edges to be comprised primarily of barium d orbitals and iodine p orbitals, respectively. The larger band gap of CH3NH3BaI3 compared to CH3NH3PbI3 can be attributed to the lower electronegativity coupled with the lack of d orbitals in the valence band of Ba2 +. A more detailed analysis reveals the excellent chemical and mechanical stability of CH3NH3BaI3 against humidity, unlike its lead halide counterpart, which degrades under such conditions. We propose La to be a suitable dopant to make this compound a promising candidate for transparent conductor applications, especially for all perovskite solar cells. This claim is supported by our calculated results on charge concentration, effective mass, and vacancy formation energies.
Single crystal growth, electronic structure and optical properties of Cs2HgBr4
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.
2015-10-01
We report on successful synthesis of high-quality single crystal of cesium mercury tetrabromide, Cs2HgBr4, by using the vertical Bridgman-Stockbarger method as well as on studies of its electronic structure. For the Cs2HgBr4 crystal, we have recorded X-ray photoelectron spectra for both pristine and Ar+ ion-bombarded surfaces. Our data indicate that the Cs2HgBr4 single crystal surface is rather sensitive with respect to Ar+ ion-bombardment. In particular, such a treatment of the Cs2HgBr4 single crystal surface alters its elemental stoichiometry. To explore peculiarities of the energy distribution of total and partial densities of states within the valence band and the conduction band of Cs2HgBr4, we have made band-structure calculations based on density functional theory (DFT) employing the augmented plane wave+local orbitals (APW+lo) method as incorporated in the WIEN2k package. The APW+lo calculations allow for concluding that the Br 4p states make the major contributions in the upper portion of the valence band, while its lower portion is dominated by contributors of the Hg 5d and Cs 5p states. Further, the main contributors to the bottom of the conduction band of Cs2HgBr4 are the unoccupied Br p and Hg s states. In addition, main optical characteristics of Cs2HgBr4 such as dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity have been explored from the first-principles band-structure calculations.
NASA Astrophysics Data System (ADS)
Walter, Andrew L.; Sahin, Hasan; Kang, Jun; Jeon, Ki-Joon; Bostwick, Aaron; Horzum, Seyda; Moreschini, Luca; Chang, Young Jun; Peeters, Francois M.; Horn, Karsten; Rotenberg, Eli
2016-02-01
The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of ˜5 eV , however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half -fluorinated carbon on Sic(0001), i.e., the (6 √{3 }×6 √{3 } ) R 30∘ C/SiC "buffer layer," graphene on this (6 √{3 }×6 √{3 } ) R 30∘ C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (˜2.5 -eV band gap) and metallic regions, respectively.
NASA Astrophysics Data System (ADS)
Beesley, Ramon; Panapitiya, Gihan; Lewis, James; Lewis Group Team
Delafossite oxides are a family of materials with the form ABO2 , where the A-site is a monovalent cation (Cu , Ag , Au) and the B-site is a trivalent cation (Ga , Al , In). Delafossites typically have a wide optical band gap, this band gap may be tuned by adding a second B-site element forming an AB(1- x) 1B(x)2O2 alloy. We investigate changes in the electronic structure of CuAlO2 , CuGaO2 , and CuInO2 when alloyed with CuFeO2 . Using the FIREBALL program to optimize the atomic structure, calculate the total and partial density of states, calculate the valence band edge for each alloy level, and investigate the clustering factor of the second B-site atom, it is found that alloying with Fe creates midgap states caused by Fe - O interactions. From the partial density of state, each type of atoms contribution to the change in the valence band edge can be seen. Observed changes to the materials include increased optical absorption in the visible range, and symmetry breaking because of the deformation in the crystal structure. The CuFeO2 alloying percentages range from 0-5%. We are synthesizing these alloys to experimentally verify the changes in the optical absorption spectra.
NASA Astrophysics Data System (ADS)
Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert
2013-08-01
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Continuously controlled optical band gap in oxide semiconductor thin films
Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac
2016-02-02
The optical band gap of the prototypical semiconducting oxide SnO 2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion,more » charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less
Reshak, Ali Hussain; Kityk, I V; Auluck, S; Chen, Xuean
2009-05-14
The all-electron full-potential linearized augmented plane-wave method has been used for an ab initio theoretical study of the band structure, the spectral features of the optical susceptibilities, the density of states, and the electron charge density for PbBiBO4. Our calculations show that the valence-band maximum (VBM) and conduction-band minimum (CBM) are located at the center of the Brillouin zone, resulting in a direct energy gap of about 3.2 eV. We have synthesized the PbBiBO4 crystal by employing a conventional solid-state reaction method. The theoretical calculations in this work are based on the structure built from our measured atomic parameters. We should emphasize that the observed experimental X-ray diffraction (XRD) pattern is in good agreement with the theoretical one, confirming that our structural model is valid. Our calculated bond lengths show excellent agreement with the experimental data. This agreement is attributed to our use of full-potential calculations. The spectral features of the optical susceptibilities show a small positive uniaxial anisotropy.
Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity
NASA Astrophysics Data System (ADS)
Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.
2016-07-01
We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu
2018-04-01
The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.
Ab-initio calculations of electronic, transport, and structural properties of boron phosphide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.
2014-09-14
We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less
DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shatendra, E-mail: shatendra@gmai.com; Sharma, Jyotsna; Sharma, Yogita
2016-05-06
The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by usingmore » other methods.« less
Band Gap Tuning in 2D Layered Materials by Angular Rotation.
Polanco-Gonzalez, Javier; Carranco-Rodríguez, Jesús Alfredo; Enríquez-Carrejo, José L; Mani-Gonzalez, Pierre G; Domínguez-Esquivel, José Manuel; Ramos, Manuel
2017-02-08
We present a series of computer-assisted high-resolution transmission electron (HRTEM) simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using density functional methods (DFT) methods was completed using Cambridge serial total energy package (CASTEP) with a generalized gradient approximation to determine both the band structure and density of states on honeycomb-like new superlattices. Our results indicated metallic transitions when the rotation approached 8° with respect to each other laminates for most of the two-dimensional systems that were analyzed.
Band Gap Tuning in 2D Layered Materials by Angular Rotation
Polanco-Gonzalez, Javier; Carranco-Rodríguez, Jesús Alfredo; Enríquez-Carrejo, José L.; Mani-Gonzalez, Pierre G.; Domínguez-Esquivel, José Manuel; Ramos, Manuel
2017-01-01
We present a series of computer-assisted high-resolution transmission electron (HRTEM) simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using density functional methods (DFT) methods was completed using Cambridge serial total energy package (CASTEP) with a generalized gradient approximation to determine both the band structure and density of states on honeycomb-like new superlattices. Our results indicated metallic transitions when the rotation approached 8° with respect to each other laminates for most of the two-dimensional systems that were analyzed. PMID:28772507
First principle study of transport properties of a graphene nano structure
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Sharma, Munish; Sharma, Jyoti Dhar; Ahluwalia, P. K.
2013-06-01
The first principle quantum transport calculations have been performed for graphene using Tran SIESTA which calculates transport properties using nonequilibrium Green's function method in conjunction with density-functional theory. Transmission functions, electron density of states and current-voltage characteristic have been calculated for a graphene nano structure using graphene electrodes. Transmission function, density of states and projected density of states show a discrete band structure which varies with applied voltage. The value of current is very low for applied voltage between 0.0 V to 5.0 V and lies in the range of pico ampere. In the V-I characteristic current shows non-linear fluctuating pattern with increase in voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Feng; Wang, Li, E-mail: wangliresearch@163.com; Stoumpos, Constantinos C.
2016-08-15
The synthesis, structure, and characterization of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra are reported. Pb{sub 2}O[BO{sub 2}(OH)] crystallizes in monoclinic space group C2/m with a=12.725(7) Å, b=5.698(3) Å, c=7.344(4) Å, β=116.277(6)°. The electronic band structure and density of states of Pb{sub 2}O[BO{sub 2}(OH)] have been calculated via the density functional theory (DFT). Electron density difference calculation indicates that lone-pair electrons of Pb{sup 2+} cation should be stereoactive. - Graphical abstract: An indirect gap compound of Pb{sub 2}O[BO{sub 2}(OH)] with 2D inorganic layers motif based on OPb{sub 4} tetrahedra has been synthesized and fullmore » characterized by crystallographic, IR, TG, UV–vis-NIR Diffuse Reflectance, and theoretical calculations. Display Omitted - Highlights: • A centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] was synthesized and characterized. • The crystalstructure, electronic band and density states was analyzed. • The lone-pair electrons of Pb{sup 2+} were proved to be stereoactive.« less
NASA Astrophysics Data System (ADS)
Lian, Chao; Meng, Sheng
2017-06-01
Using density functional theory combined with orbital-selective band unfolding techniques, we study the effective band structure of silicene (3 ×3 )/Ag(111) (4 ×4 ) structure. Consistent with the ARPES spectra recently obtained by [Feng et al. Proc. Natl. Acad. Sci. USA 113, 14656 (2016), 10.1073/pnas.1613434114], we observe six pairs of Dirac cones near the boundary of the Brillouin zone (BZ) of Ag (1 ×1 ) , while no Dirac cone is observed inside the BZ. Furthermore, we find that these Dirac cones are induced by the interfacial Si-Ag hybridization, mainly composed of Si pz orbitals and Ag s p bands, which is intrinsically different from the Dirac cones in free-standing silicene.
Thin SOI lateral IGBT with band-to-band tunneling mechanism
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Zhaohuan; Tan, Kaizhou; Wang, Zhikuan; Mei, Yong
2017-06-01
In this paper, a novel 200V lateral IGBT on thin SOI layer with a band-to-band tunneling junction near the anode is proposed. The structure and the operating mechanism of the proposed IGBT are described and discussed. Its main feature is that the novel IGBT structure has a unique abrupt doped p++/n++ tunneling junction in the side of the anode. By utilizing the reverse bias characteristics of the tunneling junction, the proposed IGBT can achieve excellent reverse conducting performance. Numerical simulations suggest that a low reverse conduction voltage drop VR=-1.6V at a current density of 100A/cm2 and a soft factor S=0.63 of the build-in diode are achieved.
Electronic structure of scandium-doped MgB2
NASA Astrophysics Data System (ADS)
de La Peña, Omar; Agrestini, Stefano
2005-03-01
Recently has been reported the synthesis of a new superconducting alloy based on MgB2, where Mg is partially substituted with Sc. In order to analyze the effect of Sc doping on the structural and superconducting properties of Mg1-xScxB2, we have performed a detailed study of the electronic structure for this new diboride. The calculations have been done using the first-principles LAPW method, within the supercell approach for modeling the doping. In this work we report results for the electronic band structure, Fermi surface, and density of states. The effect of the Sc-d orbitals on the structural and electronic properties of Mg1-xScxB2 is analyzed. Increasing the Sc concentration (x) the σ-band is gradually filled, because Sc have one valence electron more than Mg. Interestingly, the analysis of the band structure shows that even for ScB2 the top of the σ-band remain above the Fermi level, nevertheless the σ-band presents high dispersion and has an important contribution of d states. In this way, in addition to the band filling effect, Sc doping gradually reduces the two-dimensional character of the σ- band in Mg1-xScxB2 as a result of increasing the sp(B)-d(Sc) hybridization. This research was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F
NASA Astrophysics Data System (ADS)
Mohebpour, Mohammad Ali; Saffari, Mohaddeseh; Soleimani, Hamid Rahimpour; Tagani, Meysam Bagheri
2018-03-01
To be able to increase the efficiency of perovskite solar cells which is one of the most substantial challenges ahead in photovoltaic industry, the structural and optical properties of perovskite CH3NH3PbI3-xBrx for values x = 1-3 have been studied employing density functional theory (DFT). Using the optical constants extracted from DFT calculations, the amount of light reflectance and ideal current density of a simulated single-junction perovskite solar cell have been investigated. The results of DFT calculations indicate that adding halogen bromide to CH3NH3PbI3 compound causes the relocation of energy bands in band structure which its consequence is increasing the bandgap. In addition, the effect of increasing Br in this structure can be seen as a reduction in lattice constant, refractive index, extinction and absorption coefficient. As well, results of the simulation suggest a significant current density enhancement as much as 22% can be achieved by an optimized array of Platinum nanoparticles that is remarkable. This plan is able to be a prelude for accomplishment of solar cells with higher energy conversion efficiency.
Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator.
Balcı, Erdem; Akkuş, Ünal Özden; Berber, Savas
2018-04-18
The electronic structures of Si and Ge substitutionally doped Sc 2 C(OH) 2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc 2 C(OH) 2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.
Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator
NASA Astrophysics Data System (ADS)
Balcı, Erdem; Özden Akkuş, Ünal; Berber, Savas
2018-04-01
The electronic structures of Si and Ge substitutionally doped Sc2C(OH)2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc2C(OH)2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.
NASA Astrophysics Data System (ADS)
Yelgel, Celal
2016-02-01
The structural and electronic properties of multilayer graphene adsorbed on monolayer hexagonal boron nitride (h-BN)/Ni(111) interface system are investigated using the density functional theory with a recently developed non-local van der Waals density functional (rvv10). The most energetically favourable configuration for a monolayer h-BN/Ni(111) interface is found to be N atom atop the Ni atoms and B atom in fcc site with the interlayer distance of 2.04 Å and adsorption energy of 302 meV/BN. Our results show that increasing graphene layers on a monolayer h-BN/Ni(111) interface leads to a weakening of the interfacial interaction between the monolayer h-BN and Ni(111) surface. The adsorption energy of graphene layers on the h-BN/Ni(111) interface is found to be in the range of the 50-120 meV/C atom as the vertical distance from h-BN to the bottommost graphene layers decreases. With the adsorption of a multilayer graphene on the monolayer h-BN/Ni(111) interface system, the band gap of 0.12 eV and 0.25 eV opening in monolayer graphene and bilayer graphene near the K point is found with an upward shifting of the Fermi level. However, a stacking-sensitive band gap is opened in trilayer graphene. We obtain the band gap of 0.35 eV close to the K point with forming a Mexican hat band structure for ABC-stacked trilayer graphene.
Triaxial-band structures, chirality, and magnetic rotation in La 133
Petrache, C. M.; Chen, Q. B.; Guo, S.; ...
2016-12-05
The structure of 133La has been investigated using the 116Cd( 22Ne,4pn) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of themore » active particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. As a result, it is shown that the h 11/2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in
2014-09-21
By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD.more » With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.« less
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2018-02-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler; ...
2017-03-31
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
Band structure and optical properties of opal photonic crystals
NASA Astrophysics Data System (ADS)
Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.
2005-07-01
A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.
Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.
Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing
2016-09-09
In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.
NASA Astrophysics Data System (ADS)
Erkişi, Aytaç
2018-06-01
The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.
Electronic compressibility of bilayer graphene
NASA Astrophysics Data System (ADS)
Henriksen, Erik
2011-03-01
We have recently measured the electronic compressibility of bilayer graphene, allowing exploration of the thermodynamic density of states as a function of applied electric and magnetic fields. Utilizing dual-gated field-effect devices, we can independently vary both the carrier density and the size of the tunable band gap. An oscillating voltage applied to a back gate generates corresponding signals in the top gate via electric fields lines which penetrate the graphene, thereby allowing a direct measurement of the inverse compressibility, K-1 , of the bilayer. We have mapped K-1 , which is proportional to the inverse density of states, as a function of the top and back gate voltages in zero and finite magnetic field. A sharp increase in K-1 near zero density is observed with increasing electric field strength, signaling the controlled opening of a band gap. At high magnetic fields, broad Landau level (LL) oscillations are observed, directly revealing the doubled degeneracy of the lowest LL and allowing for a determination of the disorder broadening of the levels. We compare our results to tight-binding calculations of the bilayer band structure, and to recent theoretical studies of the compressibility of bilayer graphene. Together, these clearly illustrate the unusual hyperbolic nature of the low energy band structure, reveal a sizeable electron-hole asymmetry, and suggest that many-body interactions play only a small role in bilayer-on-substrate devices. This work is a collaboration with J. P. Eisenstein of Caltech, and is supported by the NSF under Grant No. DMR-0552270 and the DOE under Grant No. DE-FG03-99ER45766.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.
2017-04-01
We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie
2018-05-01
The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.
NASA Astrophysics Data System (ADS)
Yao, Wenzhi; Zhang, Jihua; Wang, Yuanxu; Ren, Fengzhu
2018-03-01
To investigate the origin of the high photocatalytic performance of experimentally synthesized g-C3N4/ BiOCl, we studied its geometry structure, electronic structure, and photocatalytic properties by means of hybrid density-functional theory (DFT). The calculated band alignment of g-C3N4 and few-layer BiOCl sheets clearly shows that g-C3N4/ BiOCl is a standard type-II nanocomposite. The density of states, Bader charge, partial charge density, charge density difference, and the effective masses show that electron-hole pair can be effectively separated in the g-C3N4/BiOCl interface. The calculated absorption coefficients indicate an obvious redshift of the absorption edge. The band gap of g-C3N4/BiOCl can be modulated by external electric field, and a semiconductor-semimetal transition is observed. The type-II vdW heterostructure is still maintained during the changes of external electric field. Especially, when the electric field reaches to +0.7 V/Å, the impurity states have been eliminated with the band gap of 2.3 eV. An analysis of optical properties shows that the absorption coefficient in the visible-light region is enhanced considerably as the electric-field strength increases. Our calculation results suggest that the ultrathin hybrid layered g-C3N4/BiOCl nanocomposite may have significant advantages for visible-light photocatalysis.
Electronic transport in disordered MoS2 nanoribbons
NASA Astrophysics Data System (ADS)
Ridolfi, Emilia; Lima, Leandro R. F.; Mucciolo, Eduardo R.; Lewenkopf, Caio H.
2017-01-01
We study the electronic structure and transport properties of zigzag and armchair monolayer molybdenum disulfide nanoribbons using an 11-band tight-binding model that accurately reproduces the material's bulk band structure near the band gap. We study the electronic properties of pristine zigzag and armchair nanoribbons, paying particular attention to the edges states that appear within the MoS2 bulk gap. By analyzing both their orbital composition and their local density of states, we find that in zigzag-terminated nanoribbons these states can be localized at a single edge for certain energies independent of the nanoribbon width. We also study the effects of disorder in these systems using the recursive Green's function technique. We show that for the zigzag nanoribbons, the conductance due to the edge states is strongly suppressed by short-range disorder such as vacancies. In contrast, the local density of states still shows edge localization. We also show that long-range disorder has a small effect on the transport properties of nanoribbons within the bulk gap energy window.
NASA Astrophysics Data System (ADS)
Grosset, L.; Rouan, D.; Gratadour, D.; Pelat, D.; Orkisz, J.; Marin, F.; Goosmann, R.
2018-04-01
Aims: In this paper we aim to constrain the properties of dust structures in the central first parsecs of active galactic nuclei (AGN). Our goal is to study the required optical depth and composition of different dusty and ionised structures. Methods: We developed a radiative transfer code called Monte Carlo for Active Galactic Nuclei (MontAGN), which is optimised for polarimetric observations in the infrared. With both this code and STOKES, designed to be relevant from the hard X-ray band to near-infrared wavelengths, we investigate the polarisation emerging from a characteristic model of the AGN environment. For this purpose, we compare predictions of our models with previous infrared observations of NGC 1068, and try to reproduce several key polarisation patterns revealed by polarisation mapping. Results: We constrain the required dust structures and their densities. More precisely, we find that the electron density inside the ionisation cone is about 2.0 × 109 m-3. With structures constituted of spherical grains of constant density, we also highlight that the torus should be thicker than 20 in term of K-band optical depth to block direct light from the centre. It should also have a stratification in density: a less dense outer rim with an optical depth at 2.2 μm typically between 0.8 and 4 for observing the double scattering effect previously proposed. Conclusions: We bring constraints on the dust structures in the inner parsecs of an AGN model supposed to describe NGC 1068. When compared to observations, this leads to an optical depth of at least 20 in the Ks band for the torus of NGC 1068, corresponding to τV ≈ 170, which is within the range of current estimation based on observations. In the future, we will improve our study by including non-uniform dust structures and aligned elongated grains to constrain other possible interpretations of the observations.
Strain-induced topological quantum phase transition in phosphorene oxide
NASA Astrophysics Data System (ADS)
Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun
Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x < 0.5, and then to decrease with x > 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.
NASA Astrophysics Data System (ADS)
Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.
2015-11-01
The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.
Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra
2016-12-21
The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.
NASA Astrophysics Data System (ADS)
Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo; Li, Hongjiang; Gong, Yun; Lin, Jianhua
2016-05-01
4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H2L) and three H2L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H2O)·H2O (DPE=(E)-1, 2-di(pyridine -4-yl)ethene) (1), CdL(H2O)2 (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H2L ligand shows an enol-form and the L2- ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H2L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower than those of H2L. And MOF 1 yielded much larger photocurrent density than H2L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H2L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L2-, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1.
Understanding band gaps of solids in generalized Kohn-Sham theory.
Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas
2017-03-14
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.
Understanding band gaps of solids in generalized Kohn–Sham theory
Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas
2017-01-01
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Electronic band structure of LaCoO3/Y/Mn compounds
NASA Astrophysics Data System (ADS)
Rahnamaye Aliabad, H. A.; Hesam, V.; Ahmad, Iftikhar; Khan, Imad
2013-02-01
Spin polarization effects on electronic properties of pure LaCoO3 and doped compounds (La0.5Y0.5CoO3, LaCo0.5Mn0.5O3) in the rhombohedral phase have been studied. We have employed the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA+U) under density functional theory (DFT). The calculated band structures along with total as well as partial densities of states reveal that Y and Mn impurities have a significant effect on the structural and electronic properties of LaCoO3. It is found that Mn alters insulating behavior of this compound to the half metallic for spin up state. Obtained results show that the magnetic moment for the Co-3d state is near 3.12μB in LaCoO3 compound which increases and decreases with addition of Y and Mn dopants respectively.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2009-06-01
We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.
Band gap engineering of BC2N for nanoelectronic applications
NASA Astrophysics Data System (ADS)
Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali
2017-12-01
The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesz, Sabina, E-mail: sabina.lesz@polsl.pl
The experiments demonstrate that ductility of the samples of bulk metallic glass (BMG) with the same chemical composition increased with decreasing sample size. It is shown that microhardness and density increases with decreasing the cooling rate. The fracture morphology of rods after compressive fracture were different on the cross section. Two characteristic features of the compressive fracture morphologies of metallic glasses (MGs) were observed in samples: smooth region and the vein pattern. Many parallel shear bands were observed on the deformed specimen with ϕ = 2 mm in diameter. The results provide more understanding on the relationship among the coolingmore » rate, structure and micro-indentation behavior of the Fe-Co-based BMGs. - Highlights: •Fracture morphology and micro-indentation behavior is studied. •The smaller BMG sample exhibits the larger plasticity. •Microhardness and density increase with decreasing the cooling rate. •Formation of shear bands has been reported in deformed specimens. •Structure and mechanical properties of BMGs can be controlled by the cooling rate.« less
Effect of strain on the electronic structure and optical properties of germanium
NASA Astrophysics Data System (ADS)
Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu
2018-05-01
The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.
NASA Astrophysics Data System (ADS)
Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.
Quashie, Edwin E.; Saha, Bidhan C.; Correa, Alfredo A.
2016-10-05
Here, we present an ab initio study of the electronic stopping power of protons in copper over a wide range of proton velocities v = 0.02–10a.u. where we take into account nonlinear effects. Time-dependent density functional theory coupled with molecular dynamics is used to study electronic excitations produced by energetic protons. A plane-wave pseudopotential scheme is employed to solve the time-dependent Kohn-Sham equations for a moving ion in a periodic crystal. The electronic excitations and the band structure determine the stopping power of the material and alter the interatomic forces for both channeling and off-channeling trajectories. Our off-channeling results aremore » in quantitative agreement with experiments, and at low velocity they unveil a crossover region of superlinear velocity dependence (with a power of ~1.5) in the velocity range v = 0.07–0.3a.u., which we associate to the copper crystalline electronic band structure. The results are rationalized by simple band models connecting two separate regimes. We find that the limit of electronic stopping v → 0 is not as simple as phenomenological models suggest and it is plagued by band-structure effects.« less
NASA Astrophysics Data System (ADS)
Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.
2016-05-01
The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.
NASA Astrophysics Data System (ADS)
Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao
2018-04-01
A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki
We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less
Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...
2016-09-01
We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less
NASA Astrophysics Data System (ADS)
Liu, Wei-wei; Chen, Hong-xia; Liu, Cheng-lin; Wang, Rong
2017-02-01
Effect of N doping concentration on the electronic structure of N-doped CuAlO2 was investigated by density functional theory based on generalized-gradient approximation plus orbital potential. Lattice parameters a and c both increase with increasing N-doping concentration. Formation energies increase with increasing N doping concentration and all N-doped CuAlO2 were structurally stable. The calculated band gaps for N-doped CuAlO2 narrowed compared to pure CuAlO2, which was attributed to the stronger hybridization between Cu-3d and N-2p states and the downward shift of Cu-3p states in conduction bands. The higher the N-doping concentration is, the narrower the band gap. N-doped CuAlO2 shows a typical p-type semiconductor. The band structure changed from indirect to direct after N doping which will benefit the application of the CuAlO2 materials in optoelectronic and electronic devices.
NASA Astrophysics Data System (ADS)
Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.
2017-05-01
This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.
Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles
NASA Astrophysics Data System (ADS)
Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.
2015-11-01
Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.
Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles
Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; ...
2015-11-24
Complex doping schemes in R 3Al 5O 12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimummore » (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu 3B 5O 12 where B is Al, Ga, In, As, and Sb, and R 3Al 5O 12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less
Effect of Long-Period Ordering of the Structure of a Plant on the Initial Stages of Photosynthesis
NASA Astrophysics Data System (ADS)
Korshunov, M. A.; Shabanov, A. V.; Bukhanov, E. R.; Shabanov, V. F.
2018-01-01
Using data on the structure of plant leaves, specific features of light propagation in biophotoniccrystal structures have been established by the transfer matrix method. Splitting of the stopband in two bands has been found. The density of photonic states and the electromagnetic field value have been calculated. The occurrence of two photosystems (splitting of the stopband in two bands), the peculiarity of the long-wavelength quantum yield and its enhancement (Emerson effect), and water dissociation in the soft mode due to an increase in the electromagnetic field on the layers are explained.
Helical quantum states in HgTe quantum dots with inverted band structures.
Chang, Kai; Lou, Wen-Kai
2011-05-20
We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.
Investigation of thermoelectricity in KScSn half-Heusler compound
NASA Astrophysics Data System (ADS)
Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.
2018-05-01
The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Z.; Ching, W.Y.
Based on the Sterne-Inkson model for the self-energy correction to the single-particle energy in the local-density approximation (LDA), we have implemented an approximate energy-dependent and [bold k]-dependent [ital GW] correction scheme to the orthogonalized linear combination of atomic orbital-based local-density calculation for insulators. In contrast to the approach of Jenkins, Srivastava, and Inkson, we evaluate the on-site exchange integrals using the LDA Bloch functions throughout the Brillouin zone. By using a [bold k]-weighted band gap [ital E][sub [ital g
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-10-01
By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2015-09-01
The electronic and optical properties of bundled armchair and zigzag silicon carbide nanotubes (SiCNTs) are investigated by using density functional theory. The effects of inter-tube coupling on the electronic dispersions of SiCNT bundles are demonstrated. It was found that the band structure of (6, 0) SiCNT bundle shows metallic feature. The calculated dielectric functions of the armchair and zigzag bundles are similar to that of the isolated tubes, except for the appearance of broadened peaks, small shifts of peak positions about 0.1 eV and increasing of peak intensities. For (6, 0) SiCNT with smaller radius, by considering interband and interaband transitions, the band structure coupling causes an extra peak at low energies.
Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze
NASA Astrophysics Data System (ADS)
Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.
2008-03-01
High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.
Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia
2010-02-05
We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.
Zn-VI quasiparticle gaps and optical spectra from many-body calculations.
Riefer, A; Weber, N; Mund, J; Yakovlev, D R; Bayer, M; Schindlmayr, Arno; Meier, C; Schmidt, W G
2017-06-01
The electronic band structures of hexagonal ZnO and cubic ZnS, ZnSe, and ZnTe compounds are determined within hybrid-density-functional theory and quasiparticle calculations. It is found that the band-edge energies calculated on the [Formula: see text] (Zn chalcogenides) or GW (ZnO) level of theory agree well with experiment, while fully self-consistent QSGW calculations are required for the correct description of the Zn 3d bands. The quasiparticle band structures are used to calculate the linear response and second-harmonic-generation (SHG) spectra of the Zn-VI compounds. Excitonic effects in the optical absorption are accounted for within the Bethe-Salpeter approach. The calculated spectra are discussed in the context of previous experimental data and present SHG measurements for ZnO.
The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat
2014-10-06
We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso programmore » package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.« less
Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar
2017-12-01
A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr; Bin-Omran, S.; Department of Physics, Faculty of Science & Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942
Highlights: • Electronic and optical properties of the LiCdX compounds have been predicted. • Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap. • We predict a direct band gap in all of the considered LiCdX compounds. • Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able tomore » accurately describe the electronic structure of semiconductors, namely the Tran–Blaha-modified Becke–Johnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.« less
New insights into the opening band gap of graphene oxides
NASA Astrophysics Data System (ADS)
Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa
Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.
Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong
2016-04-15
The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electronmore » interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.« less
First principle study of electronic structures and optical properties of Ce-doped SiO2
NASA Astrophysics Data System (ADS)
Cong, Wei-Yan; Lu, Ying-Bo; Zhang, Peng; Guan, Cheng-Bo
2018-05-01
Electronic structures and optical properties of Silicon dioxide (SiO2) systems with and without cerium(Ce) dopant were calculated using the density functional theory. We find that after the Ce incorporation, a new localized impurity band appears between the valance band maximum (VBM) and the conduction band minimum (CBM) of SiO2 system, which is induced mainly by the Ce-4f orbitals. The localized impurity band constructs a bridge between the valence band and the conduction band, making the electronic transition much easier. The calculated optical properties show that in contrast from the pure SiO2 sample, absorption in the visible-light region is found in Ce-doped SiO2 system, which originates from the transition between the valence band and Ce-4f dominated impurity band, as well as the electronic transition from Ce-4f states to Ce-5d states. All calculated results indicate that Ce doping is an effective strategy to improve the optical performance of SiO2 sample, which is in agreement with the experimental results.
NASA Astrophysics Data System (ADS)
El Mrabet, R.; Kassou, S.; Tahiri, O.; Belaaraj, A.; Guionneau, P.
2016-10-01
In the current study, a combination between theoretical and experimental studies has been made for the hybrid perovskite [NH3-(CH2)10-NH3]ZnCl4. The density functional theory (DFT) was performed to investigate structural and electronic properties of the tilted compound. A local approximation (LDA) and semi-local approach (GGA) were employed. The results are obtained using, respectively, the local exchange correlation functional of Perdew-Wang 92 (PW92) and semi local functional of Perdew-Burke-Ernzerhof (PBE). The optimized cell parameters are in good agreement with the experimental results. Electronic properties have been studied through the calculation of band structures and density of state (DOS), while structural properties are investigated by geometry optimization of the cell. Fritz-Haber-Institute (FHI) pseudopotentials were employed to perform all calculations. The optical diffuse reflectance spectra was mesured and applied to deduce the refractive index ( n), the extinction coefficient ( k), the absorption coefficient (α), the real and imaginary dielectric permittivity parts (ɛr,ɛi)) and the optical band gap energy Eg. The optical band gap energy value shows good consistent with that obtained from DFT calculations and reveals the insulating behavior of the material.
The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-07-01
In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.
NASA Astrophysics Data System (ADS)
Arbiol, Jordi; Estradé, Sònia; Prades, Joan D.; Cirera, Albert; Furtmayr, Florian; Stark, Christoph; Laufer, Andreas; Stutzmann, Martin; Eickhoff, Martin; Gass, Mhairi H.; Bleloch, Andrew L.; Peiró, Francesca; Morante, Joan R.
2009-04-01
We report on the effect of Mg doping on the properties of GaN nanowires grown by plasma assisted molecular beam epitaxy. The most significant feature is the presence of triple-twin domains, the density of which increases with increasing Mg concentration. The resulting high concentration of misplaced atoms gives rise to local changes in the crystal structure equivalent to the insertion of three non-relaxed zinc-blende (ZB) atomic cells, which result in quantum wells along the wurtzite (WZ) nanowire growth axis. High resolution electron energy loss spectra were obtained exactly on the twinned (zinc-blende) and wurtzite planes. These atomically resolved measurements, which allow us to identify modifications in the local density of states, revealed changes in the band to band electronic transition energy from 3.4 eV for wurtzite to 3.2 eV in the twinned lattice regions. These results are in good agreement with specific ab initio atomistic simulations and demonstrate that the redshift observed in previous photoluminescence analyses is directly related to the presence of these zinc-blende domains, opening up new possibilities for band-structure engineering.
Electronic, magnetic and structural properties of Co3O4 (100) surface: a DFT+U study
NASA Astrophysics Data System (ADS)
Hashim, Ameerul Hazeeq; Zayed, Ala'Omar Hasan; Zain, Sharifuddin Md; Lee, Vannajan Sanghiran; Said, Suhana Mohd
2018-01-01
The three most stable (100), (110), and (111) surfaces exposed by Co3O4 are effective catalysts for various oxidation reactions. Among these surfaces, (100) has not yet received ample attention. In this study, we investigated the structural, electronic and magnetic properties of Co3O4 (100) surface using density functional theory calculations. By considering both stoichiometric and nonstoichiometric surface structures of the two possible terminations, A and B. Besides the greater stability of the newly proposed stoichiometric models compared to nonstoichiometric models reported in previous studies, the results show that the B termination is energetically preferred over the entire range of oxygen chemical potentials. Unlike the bulk, Co3+ octahedral ions become magnetic at the surface, which leads to interesting surface magnetic properties. Density of states (DOS) indicate a small band gap of 1.15 eV for the B-stoichiometric model, due to the presence of surface states in the bulk band gap. More polar surface with a very narrow band gap is found in the A-nonstoichiometric model. These surface states may play an important role in the magnetism and metallicity observed experimentally in several Co3O4 systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liang; Dongare, Avinash M., E-mail: dongare@uconn.edu; Namburu, Raju R.
2014-02-03
The strain dependence of the electronic properties of bilayer sheets of 2H-MoS{sub 2} is studied using ab initio simulations based on density functional theory. An indirect band gap for bilayer MoS{sub 2} is observed for all variations of strain along the basal plane. Several transitions for the indirect band gap are observed for various strains for the bilayer structure. The variation of the band gap and the carrier effective masses for the holes and the electrons for the bilayer MoS{sub 2} structure under conditions of uniaxial strain, biaxial strain, as well as uniaxial stress is investigated.
Bonding, moment formation, and magnetic interactions in Ca14MnBi11 and Ba14MnBi11
NASA Astrophysics Data System (ADS)
Sánchez-Portal, D.; Martin, Richard M.; Kauzlarich, S. M.; Pickett, W. E.
2002-04-01
``14-1-11'' phase compounds, based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11, show an unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local-orbital-based method within the local-spin-density approximation to study the electronic structure, we find a gap between a bonding valence-band complex and an antibonding conduction-band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit, and partially compensates for the high-spin d5 Mn moment, leaving a net spin near 4μB that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating ``jungle gym'' networks of spin-4/2 MnBi9-4 units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferromagnetic and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftci, Yasemin O.; Mahanti, Subhendra D.
Electronic band structure and structural properties of two representative half-Heusler (HH) compounds with 8 electron valence count (VC), KScC and KScGe, have been studied using first principles methods within density functional theory and generalized gradient approximation. These systems differ from the well studied class of HH compounds like ZrNiSn and ZrCoSb which have VC = 18 because of the absence of d electrons of the transition metal atoms Ni and Co. Electronic transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (κ{sub e}) (the latter two scaled by electronic relaxation time), and the power factor (S{sup 2}σ) havemore » been calculated using semi-classical Boltzmann transport theory within constant relaxation time approximation. Both the compounds are direct band gap semiconductors with band extrema at the X point. Their electronic structures show a mixture of heavy and light bands near the valance band maximum and highly anisotropic conduction and valence bands near the band extrema, desirable features of good thermoelectric. Optimal p- or n-type doping concentrations have been estimated based on thermopower and maximum power factors. The optimum room temperature values of S are ∼1.5 times larger than that of the best room temperature thermoelectric Bi{sub 2}Te{sub 3}. We also discuss the impact of the band structure on deviations from Weidemann-Franz law as one tunes the chemical potential across the band gap.« less
NASA Astrophysics Data System (ADS)
Ueda, Shigenori; Hamada, Ikutaro
2017-12-01
The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.
Pavarini, E; Andreani, L C
2002-09-01
The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.
NASA Astrophysics Data System (ADS)
Watanabe, Gentaro; Pethick, C. J.
2017-08-01
Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.
NASA Astrophysics Data System (ADS)
Janprapa, Nuttaporn; Vchirawongkwin, Viwat; Kritayakornupong, Chinapong
2018-06-01
The structural, electronic and photovoltaic properties of furan-phenylene copolymer ((Fu-co-Ph)4) and its derivatives were evaluated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The calculated band gaps of pristine furan and phenylene are in good agreement with the available experimental data. The lower band gap value of 2.72 eV was obtained from -NO2 and -NHCH3 substituents, leading to broader solar absorption range. With respected to the reorganization energy, -OCH3, -NHCH3, -OH, -SCH3, -CH3, -CF3, -NO2, and -F substituted (Fu-co-Ph)4 structures were classified as better electron donor materials. For combination with PC61BM, -NO2, -CN, -CF3 and -F functionalized copolymers demonstrated significantly higher open circuit voltage (Voc) values ranging from 1.07 to 2.10 eV. Our results revealed that electron withdrawing group substitution on furan-phenylene copolymers was an effective way for improving electronic and optical properties of donor materials used in photovoltaic applications.
Interference evidence for Rashba-type spin splitting on a semimetallic WT e 2 surface
Li, Qing; Yan, Jiaqiang; Yang, Biao; ...
2016-09-13
Here, semimetallic tungsten ditelluride displays an extremely large nonsaturating magnetoresistance, which is thought to arise from the perfect n–p charge compensation with low carrier densities in WTe 2. We find a strong Rashba spin-orbit effect in density functional calculations due to the noncentrosymmetric structure. This lifts twofold spin degeneracy of the bands. A prominent umklapp interference pattern is observed by our scanning tunneling microscopic measurements at 4.2 K, which differs distinctly from the surface atomic structure demonstrated at 77 K. The energy dependence of umklapp interference shows a strong correspondence with densities of states integrated from ARPES measurement, manifesting amore » fact that the bands are spin-split on the opposite sides of Γ. Spectroscopic survey reveals the electron/hole asymmetry changes alternately with lateral locations along the b axis, providing a microscopic picture for double-carrier transport of semimetallic WTe 2. The conclusion is further supported by our ARPES results and Shubnikov–de Haas (SdH) oscillations measurements.« less
Watanabe, Gentaro; Pethick, C J
2017-08-11
Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)PRVCAN0556-2813] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.
Titanium α-ω phase transformation pathway and a predicted metastable structure
Zarkevich, Nickolai A.; Johnson, Duane D.
2016-01-15
A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.
NASA Astrophysics Data System (ADS)
Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya
2018-06-01
We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.
NASA Astrophysics Data System (ADS)
Ghosh, Anima; Thangavel, R.
2017-11-01
In present work, the electronic structure and optical properties of the FeX2 (X = S, Se, Te) compounds have been evaluated by the density functional theory based on the scalar-relativistic full potential linear augmented plane wave method via Wien2K. From the total energy calculations, it has been found that all the compounds have direct band nature, which determined by iron 3 d states at valance band edge and anion p dominated at conduction band at Γ-point and the fundamental band gap between the valence band and conduction band are estimated 1.40, 1.02 and 0.88 eV respectively with scissor correction for FeS2, FeSe2 and FeTe2 which are close to the experimental values. The optical properties such as dielectric tensor components and the absorption coefficient of these materials are determined in order to investigate their usefulness in photovoltaic applications.
AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS
NASA Astrophysics Data System (ADS)
Noor, N. A.; Shaukat, A.
2012-12-01
This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.
σ–π-Band Inversion in a Novel Two-Dimensional Material
Lopez-Bezanilla, Alejandro; Littlewood, Peter B.
2015-07-24
In this paper, we present a theoretical study of a new type of two-dimensional material exhibiting a pentagonal arrangement of C and Si atoms. Pentagonal SiC 2 is investigated with density functional theory-based calculations to show that the buckled nanostructure is dynamically stable, and exhibits an indirect energy band gap and an enhanced electronic dispersion with respect to the all-carbon counterpart. Computed Born effective charges exhibit a significant anisotropy for C and Si atoms that deviates substantially from their static effective charges. We establish an accurate tunability of the vertical location of the p-p-σ and p-p-π bands and show thatmore » under compressive biaxial strain the density of states decreases, and conversely for tensile biaxial strain. Finally, this coupling between the tunability of strain-mediated density of states and semiconducting properties in a monolayered structure may allow for the development of applications in semiconducting stretchable electronics.« less
NASA Astrophysics Data System (ADS)
Romanyuk, O.; Supplie, O.; Susi, T.; May, M. M.; Hannappel, T.
2016-10-01
The atomic and electronic band structures of GaP/Si(001) heterointerfaces were investigated by ab initio density functional theory calculations. Relative total energies of abrupt interfaces and mixed interfaces with Si substitutional sites within a few GaP layers were derived. It was found that Si diffusion into GaP layers above the first interface layer is energetically unfavorable. An interface with Si/Ga substitution sites in the first layer above the Si substrate is energetically the most stable one in thermodynamic equilibrium. The electronic band structure of the epitaxial GaP/Si(001) heterostructure terminated by the (2 ×2 ) surface reconstruction consists of surface and interface electronic states in the common band gap of two semiconductors. The dispersion of the states is anisotropic and differs for the abrupt Si-Ga, Si-P, and mixed interfaces. Ga 2 p , P 2 p , and Si 2 p core-level binding-energy shifts were computed for the abrupt and the lowest-energy heterointerface structures. Negative and positive core-level shifts due to heterovalent bonds at the interface are predicted for the abrupt Si-Ga and Si-P interfaces, respectively. The distinct features in the heterointerface electronic structure and in the core-level shifts open new perspectives in the experimental characterization of buried polar-on-nonpolar semiconductor heterointerfaces.
Computational research on lithium ion battery materials
NASA Astrophysics Data System (ADS)
Tang, Ping
Crystals of LiFePO4 and related materials have recently received a lot of attention due to their very promising use as cathodes in rechargeable lithium ion batteries. This thesis studied the electronic structures of FePO 4 and LiMPO4, where M=Mn, Fe, Co and Ni within the framework of density-functional theory. The first study compared the electronic structures of the LiMPO 4 and FePO4 materials in their electrochemically active olivine form, using the LAPW (linear augmented plane wave) method [1]. A comparison of results for various spin configurations suggested that the ferromagnetic configuration can serve as a useful approximation for studying general features of these systems. The partial densities of states for the LiMPO4 materials are remarkably similar to each other, showing the transition metal 3d states forming narrow bands above the O 2p band. By contrast, in absence of Li, the majority spin transition metal 3d states are well-hybridized with the O 2p band in FePO4. The second study compared the electronic structures of FePO4 in several crystal structures including an olivine, monoclinic, quartz-like, and CrVO4-like form [2,3]. For this work, in addition to the LAPW method, PAW (Projector Augmented Wave) [4], and PWscf (plane-wave pseudopotential) [5] methods were used. By carefully adjusting the computational parameters, very similar results were achieved for the three independent computational methods. Results for the relative stability of the four crystal structures are reported. In addition, partial densities of state analyses show qualitative information about the crystal field splittings and bond hybridizations and help rationalize the understanding of the electrochemical and stability properties of these materials.
Hu, Chongze; Ni, Peter; Zhan, Li; ...
2018-01-30
We report that CoSb 3-based skutterudites have been a benchmark mid-temperature thermoelectric material under intensive experimental and theoretical studies for decades. Doping and filling, to the first order, alter the crystal lattice constant of CoSb 3 in the context of “chemical pressure.” In this work, we employed ab initio density functional theory in conjunction with semiclassical Boltzmann transport theory to investigate the mechanical properties and especially how hydrostatic loadings, i.e., “physical pressure,” impact the electronic band structure, Seebeck coefficient, and power factor of pristine CoSb 3. It is found that hydrostatic pressure enlarges the band gap, suppresses the density ofmore » states (DOS) near the valence band edge, and fosters the band convergence between the valley bands and the conduction band minimum (CBM). By contrast, hydrostatic tensile reduces the band gap, increases the DOS near the valence band edge, and diminishes the valley bands near the CBM. Therefore, applying hydrostatic pressure provides an alternative avenue for achieving band convergence to improve thermoelectric properties of N-type CoSb 3, which is further supported by our carrier concentration studies. Lastly, these results provide valuable insight into the further improvement of thermoelectric performance of CoSb 3-based skutterudites via a synergy of physical and chemical pressures.« less
NASA Astrophysics Data System (ADS)
Kaneko, Tatsuya; Ohta, Yukinori; Yunoki, Seiji
2018-04-01
We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer TiSe2 using a realistic multiorbital d -p model with electron-phonon coupling and intersite Coulomb (excitonic) interactions. First, we estimate the tight-binding bands of Ti 3 d and Se 4 p orbitals in the monolayer TiSe2 on the basis of the first-principles band-structure calculations. We thereby show orbital textures of the undistorted band structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability of the triple-q CDW state is thus examined to show that the transverse phonon modes at the M1, M2, and M3 points are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor Ti and Se atoms that lead to the excitonic instability between the valence Se 4 p and conduction Ti 3 d bands. Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and excitonic interactions cooperatively stabilize the triple-q CDW state in TiSe2. We also calculate a single-particle spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies. Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show that the CDW state in TiSe2 is of a bond type and induces a vortexlike antiferroelectric polarization in the kagome network of Ti atoms.
Computational Modeling | Bioenergy | NREL
molecules dissociates and an H-H pair is formed. The atomic structure of state 3 is shown in the lower inset -dissociation of the first H2 molecule. The structure and partial charge density (at the highest occupied band depicted by the illustration to the left determined the structure and binding orientation of several
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.
2016-10-01
A high-quality single crystal of cesium mercury tetrabromide, Cs2HgCl4, was synthesized by using the vertical Bridgman-Stockbarger method and its electronic structure was studied from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectra were measured for both pristine and Ar+ ion-bombarded Cs2HgCl4 single crystal surfaces. The present XPS measurements indicate that the Cs2HgCl4 single crystal surface is sensitive with respect to Ar+ ion-bombardment: such a treatment changes substantially its elemental stoichiometry. With the aim of exploring total and partial densities of states within the valence band and conduction band regions of the Cs2HgCl4 compound, band-structure calculations based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method as incorporated within the WIEN2k package are performed. The calculations indicate that the Cl 3p states are the principal contributors in the upper portion of the valence band, while the Hg 5d and Cs 5p states dominate in its lower portion. In addition, the calculations allow for concluding that the unoccupied Cl p and Hg s states are the main contributors to the bottom of the conduction band. Furthermore, main optical characteristics of Cs2HgCl4, namely dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity, are elucidated based on the DFT calculations.
NASA Astrophysics Data System (ADS)
Ruiz-Delgado, Mª Carmen; Vieira, Jenyffer Vierheller; Veloso, Valéria Gomes; Reyes-Martínez, Mª José; Sallorenzo, Ilana Azevedo; Borzone, Carlos Alberto; Sánchez-Moyano, Juan Emilio; García García, Francisco José
2014-01-01
Wrack deposits, as accumulated detritus, are a common feature on beaches worldwide and significantly contribute to the shaping of supralittoral arthropod communities. The composition and relative age of upper-shore deposits influence the structure and taxonomic composition of invertebrate assemblages. Moreover, these influences may vary geographically, depending on the locally prevailing climatic and hydrodynamic conditions. The amount and composition of wrack deposits as well as community attributes (total density, species richness and diversity) were determined on sandy beaches in three distinct geographical regions: South (Paraná) and Southeast (Rio de Janeiro) of Brazil and SW Spain. These parameters were compared between upper and lower wrack bands on each beach and between beaches in each region. Wrack deposits were composed of mangrove propagules in the Paraná region, by macrophytes, dead invertebrates and macroalgae in Rio de Janeiro region and by seagrass and macroalgae in the SW Spain region. In all regions, the total amount of stranded wrack differed between beaches, but the amount accumulated between bands (i.e upper and lower band) was similar between beaches. Wrack bands shaped the density of common taxa (Talitridae, Tenebrionidae, and Staphylinidae), with consequences for community structures. This result could be due to their preference for specific microhabitats and food sources, which might differ according to the relative age of the wrack deposits. The results suggest that, independent of wrack composition, the distribution of wrack deposits in bands and their relative ages seems to play a role on the structure of supralittoral arthropod assemblages.
Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites
Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei; ...
2017-04-25
Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3 skutterudite, a class of materials with important fundamental and application implications for thermoelectrics and spintronics.« less
Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei
Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3 skutterudite, a class of materials with important fundamental and application implications for thermoelectrics and spintronics.« less
Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field
NASA Astrophysics Data System (ADS)
Chen, S. C.; Wang, T. S.; Lee, C. H.; Lin, M. F.
2008-09-01
The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric field along the y-axis. A uniform perpendicular magnetic field could make energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about k=0, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.
NASA Astrophysics Data System (ADS)
Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi
2018-06-01
The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.
Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones
NASA Astrophysics Data System (ADS)
Nguyen, H. S.; Dubois, F.; Deschamps, T.; Cueff, S.; Pardon, A.; Leclercq, J.-L.; Seassal, C.; Letartre, X.; Viktorovitch, P.
2018-02-01
We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.
Experiment and simulation on one-dimensional plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lin; Ouyang, Ji-Ting, E-mail: jtouyang@bit.edu.cn
2014-10-15
The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend onmore » the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.« less
A variable circular-plot method for estimated bird numbers
Reynolds, R.T.; Scott, J.M.; Nussbaum, R.A.
1980-01-01
A bird census method is presented that is designed for tall, structurally complex vegetation types, and rugged terrain. With this method the observer counts all birds seen or heard around a station, and estimates the horizontal distance from the station to each bird. Count periods at stations vary according to the avian community and structural complexity of the vegetation. The density of each species is determined by inspecting a histogram of the number of individuals per unit area in concentric bands of predetermined widths about the stations, choosing the band (with outside radius x) where the density begins to decline, and summing the number of individuals counted within the circle of radius x and dividing by the area (Bx2). Although all observations beyond radius x are rejected with this procedure, coefficients of maximum distance.
Asmuruf, Frans A; Besley, Nicholas A
2008-08-14
The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.
Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones.
Nguyen, H S; Dubois, F; Deschamps, T; Cueff, S; Pardon, A; Leclercq, J-L; Seassal, C; Letartre, X; Viktorovitch, P
2018-02-09
We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.
First-principles studies of electric field effects on the electronic structure of trilayer graphene
NASA Astrophysics Data System (ADS)
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel; ...
2016-01-04
We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a function of oligomer length by scanning tunnelling spectroscopy, with Fermi level crossings observed for chains longer than ten phenyl rings. Angle-resolved photoelectron spectroscopy reveals a quasi-one-dimensional valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the organic band-structure, includingmore » the k-dispersion, the gap size and electron charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour. In summary, we have fully characterized the band structure of a carbon-based conducting wire. This model system may be considered as a fingerprint of -conjugation of surface organic frameworks.« less
Electronic structure of YbB 6 : Is it a topological insulator or not?
Kang, Chang -Jong; Denlinger, J. D.; Allen, J. W.; ...
2016-03-17
Here, to finally resolve the controversial issue of whether or not the electronic structure of YbB6 is nontrivially topological, we have made a combined study using angle-resolved photoemission spectroscopy (ARPES) of the nonpolar (110) surface and density functional theory (DFT). The flat-band conditions of the (110) ARPES avoid the strong band bending effects of the polar (001) surface and definitively show that YbB 6 has a topologically trivial B 2p–Yb 5d semiconductor band gap of ~0.3 eV. Accurate determination of the low energy band topology in DFT requires the use of a modified Becke-Johnson exchange potential incorporating spin-orbit coupling andmore » an on-site Yb 4f Coulomb interaction U as large as 7 eV. The DFT result, confirmed by a more precise GW band calculation, is similar to that of a small gap non-Kondo nontopological semiconductor. Additionally, the pressure-dependent electronic structure of YbB 6 is investigated theoretically and found to transform into a p–d overlap semimetal with small Yb mixed valency.« less
Electron Localization States in Asymmetric Shape Carbon Nanotubes Caused by Hydrogen Adsorption
NASA Astrophysics Data System (ADS)
Pan, L. J.; Chen, W. G.
2017-12-01
In this paper, we presented pseudopotential-based density functional theory studies on energy, structure, energy band structure of hydrogenated single-walled carbon nanotube. The stability of the configuration mainly depends on hydrogen coverage. According to the adsorption energies, the stability deteriorates with the increase of the hydrogen adsorption. The cross section of configurations become various shapes such as “beetle” or “lip” appearance without the balanced effects of hydrogen atoms. We also explored the energy band structures of configurations in three typical adsorption patterns, showing that the disparate trends of energy band gap as the hydrogen atoms concentrate. For C32H24, the band gap may reach the large value of 2.79 eV for the adsorption pattern A configuration and reduce to be zero for the adsorption pattern C case, the values of band gap for pattern A configurations decrease, which is opposite of the pattern B configurations as the adsorption hydrogen becomes more disperse. It is deduced that the hydrogen adsorption has significant effect on the electrical properties of the carbon nanotube.
Electronic structure of silver doped As2S3
NASA Astrophysics Data System (ADS)
Kaur, Veerpal; Khatta, Swati; Tripathi, S. K.; Prakash, S.
2018-04-01
We have studied the band structure, density of states and partial density of states for pure arsenic trisulfide (As2S3) and silver (Ag) doped arsenic trisulfide (As2S3) using DFT based GGA approach. It is observed that with the introduction of silver in As2S3, some extra states are observed in the gap region hence modifying the semiconducting gap in As2S3. These extra states in the gap region are due to 4d-states of silver.
Ab-initio study of electronic structure and elastic properties of ZrC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.
2016-05-23
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
Electronic Structures of Strained InAs x P1-x by Density Functional Theory.
Lee, Seung Mi; Kim, Min-Young; Kim, Young Heon
2018-09-01
We investigated the effects of strain on the electronic structures of InAsxP1-x using quantum mechanical density functional theory calculations. The electronic band gap and electron effective mass decreased with the increase of the uniaxial tensile strain along the [0001] direction of wurtzite InAs0.75P0.25. Therefore, faster electron movements are expected. These theoretical results are in good agreement with the experimental measurements of InAs0.75P0.25 nanowire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrache, C. M.; Chen, Q. B.; Guo, S.
The structure of 133La has been investigated using the 116Cd( 22Ne,4pn) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of themore » active particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. As a result, it is shown that the h 11/2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.« less
Optical, Structural, and Thermal Properties of Cerium-Doped Zinc Borophosphate Glasses.
Choi, Su-Yeon; Ryu, Bong-Ki
2015-11-01
In this study, we verify the relationship between the optical properties and structure of cerium-doped zinc borophosphate glasses that have concurrence of non-bridging oxygen (NBO) and bridging oxygen (BO), Ce3+ and Ce4+, and BO3 structure and BO4 structure. We prepared cerium-doped zinc borophosphate glass with various compositions, given by xCeO2-(100-x)[50ZnO-10B2O3 -40P2O5] (x = 1 mol% to 6 mol%), and analyzed their optical band energy, glass transition temperature, crystallization temperature, density, and molar volume. Some of the techniques used for analysis were Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In the investigated glasses, the optical band gap energy decreased from 3.28 eV to 1.73 eV. From these results, we can deduce the changes when transitions occur from BO to NBO, from Ce3+ to Ce4+, and from the BO3 structure to the BO4 structure with increasing CeO2 content using FT-IR and XPS analysis. We also verified the changes in structural and physical properties from quantitative properties such as glass transition temperature, crystallization temperature, density, and molar volume.
Exploring the effect of nanoholes on arsenene: a density functional theory study
NASA Astrophysics Data System (ADS)
Mushtaq, M.; Zhou, Y. G.; Xiang, X.
2018-05-01
Effectively modulating the electronic and magnetic properties of a two-dimensional system is critical for the application of it in nanoscale devices. In this work, we explore the effect of nanohole on arsenene on the basis of density functional theory calculations. Our calculations show that, except slight distortion at the corner of nanoholes, geometries of both un-hydrogenated nanohole-embedded arsenene (As-NH) structure and hydrogenated nanohole-embedded arsenene (H-As-NH) structure are well maintained after optimization. Interestingly, the As-NH structure can be magnetized so that it can represent ferromagnetic, ferrimagnetic or antiferromagnetic behavior depending on the shape of the nanoholes. Furthermore, As-NH structure with triangle nanoholes is expected to exhibit remarkable magnetism. Besides, owning to the induction of flat defect levels by the nanoholes, As-NH structure can represent a relatively small band gap. In contrast, the H-As-NH structure is shown to lack the magnetism due to the saturation of unpaired As atoms. In this case, the H-As-NH structure exhibits a relatively large band gap due to the quantum confinement effect. These results indicate an opportunity for the design of arsenene-based nanoscale devices with potential applications in spintronic and optical fields.
Exploring the effect of nanoholes on arsenene: a density functional theory study.
Mushtaq, M; Zhou, Y G; Xiang, X
2018-05-16
Effectively modulating the electronic and magnetic properties of a two-dimensional system is critical for the application of it in nanoscale devices. In this work, we explore the effect of nanohole on arsenene on the basis of density functional theory calculations. Our calculations show that, except slight distortion at the corner of nanoholes, geometries of both un-hydrogenated nanohole-embedded arsenene (As-NH) structure and hydrogenated nanohole-embedded arsenene (H-As-NH) structure are well maintained after optimization. Interestingly, the As-NH structure can be magnetized so that it can represent ferromagnetic, ferrimagnetic or antiferromagnetic behavior depending on the shape of the nanoholes. Furthermore, As-NH structure with triangle nanoholes is expected to exhibit remarkable magnetism. Besides, owning to the induction of flat defect levels by the nanoholes, As-NH structure can represent a relatively small band gap. In contrast, the H-As-NH structure is shown to lack the magnetism due to the saturation of unpaired As atoms. In this case, the H-As-NH structure exhibits a relatively large band gap due to the quantum confinement effect. These results indicate an opportunity for the design of arsenene-based nanoscale devices with potential applications in spintronic and optical fields.
NASA Astrophysics Data System (ADS)
Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko
2018-06-01
We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.
Structural and electronic properties of monolayer group III monochalcogenides
NASA Astrophysics Data System (ADS)
Demirci, S.; Avazlı, N.; Durgun, E.; Cahangirov, S.
2017-03-01
We investigate the structural, mechanical, and electronic properties of the two-dimensional hexagonal structure of group III-VI binary monolayers, M X (M =B , Al, Ga, In and X =O , S, Se, Te) using first-principles calculations based on the density functional theory. The structural optimization calculations and phonon spectrum analysis indicate that all of the 16 possible binary compounds are thermally stable. In-plane stiffness values cover a range depending on the element types and can be as high as that of graphene, while the calculated bending rigidity is found to be an order of magnitude higher than that of graphene. The obtained electronic band structures show that M X monolayers are indirect band-gap semiconductors. The calculated band gaps span a wide optical spectrum from deep ultraviolet to near infrared. The electronic structure of oxides (M O ) is different from the rest because of the high electronegativity of oxygen atoms. The dispersions of the electronic band edges and the nature of bonding between atoms can also be correlated with electronegativities of constituent elements. The unique characteristics of group III-VI binary monolayers can be suitable for high-performance device applications in nanoelectronics and optics.
Phonon dispersions, band structures, and dielectric functions of BeO and BeS polymorphs
NASA Astrophysics Data System (ADS)
Wang, Ke-Long; Gao, Shang-Peng
2018-07-01
Structures, phonon dispersions, electronic structures, and dielectric functions of beryllium oxide (BeO) and beryllium sulfide (BeS) polymorphs are investigated by density functional theory and many-body perturbation theory. Phonon calculations indicate that both wurtzite (w-) and zincblende (zb-) structures are dynamically stable for BeO and BeS, whereas rocksalt (rs-) structures for both BeO and BeS have imaginary phonon frequencies and thus are dynamically unstable at zero pressure. Band structures for the 4 dynamically stable phases show that only w-BeO has a direct band gap. Both the one-shot G0W0 and quasiparticle self-consistent GW methods are used to correct band energies at high symmetry k-points. Bethe-Salpeter equation (BSE), which considers Coulomb correlated electron-hole pairs, is employed to deal with the computation of macroscopic dielectric functions. It is shown that BSE calculation, employing scissors operator derived by self-consistent GW method, can give dielectric functions agreeing very well with experimental measurement of w-BeO. Weak anisotropic characters can be observed for w-BeO and w-BeS. Both zb-BeS and w-BeS show high optical transition probabilities within a narrow ultraviolet energy range.
Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys
NASA Astrophysics Data System (ADS)
Rizwan, M.; Afaq, A.; Aneeza, A.
2018-05-01
In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, Edoardo; Kowalski, Karol
The NorthWest Chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers[6, 28, 49]. It contains an umbrella of modules that today includes Self Consistent Field (SCF), second order Mller-Plesset perturbation theory (MP2), Coupled Cluster, multi-conguration selfconsistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics, Car-Parrinello molecular dynamics, classical molecular dynamics (MD), QM/MM,more » AIMD/MM, GIAO NMR, COSMO, COSMO-SMD, and RISM solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities[ 22]. Moreover new capabilities continue to be added with each new release.« less
Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.
Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun
2017-06-21
Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.
NASA Astrophysics Data System (ADS)
Weng, Yakui; Dong, Shuai
2015-05-01
In this study, the magnetism and electronic structure of LaTiO3 bilayers along both the (001) and (111) orientations are calculated using the density functional theory. The band insulator LaScO3 is chosen as the barrier layer and substrate to obtain the isolating LaTiO3 bilayer. For both the (001)- and (111)-oriented cases, LaTiO3 demonstrates the G-type antiferromagnetism as the ground state, similar to the bulk material. However, the electronic structure is significantly changed. The occupied bands of Ti are much narrower in the (111) case, giving a nearly flat band. As a result, the exchange coupling between nearest-neighbor Ti ions is reformed in these superlattices, which will affect the Néel temperature significantly.
Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3
NASA Astrophysics Data System (ADS)
Tariq, Saad; Saad, Saher; Jamil, M. Imran; Sohail Gilani, S. M.; Mahmood Ramay, Shahid; Mahmood, Asif
2018-03-01
By using the density functional theory (DFT) the systematic study of the structural, electronic and thermodynamic properties of lanthanum ferrite (LaFeO3) has been conducted. The elastic stability criterion and structural tolerance factor reveal that LaFeO3 exists in the cubic phase and is found to be stable under the ambient conditions. In electronic properties, the optical spectrum of the compound has been found to fall in the range of 488 to 688nm which has been calculated from the electronic band gap values by using the PBE-GGA and mBJ-GGA techniques. The light between 488 to 688nm would cause the valence electrons to jump in the conduction band showing the photoconductivity. The pronounced half-metallic character has been discussed by using the projected electronic density of states. The ferromagnetic response has been observed which may be attributed to the Fe-O bonding situation. The compound exhibits ductile, indirect band gap and half-metallic traits in the bulk phase. We expect the compound to be felicitous for the novel spintronic applications.
The size effect to O2- -Ce4+ charge transfer emission and band gap structure of Sr2 CeO4.
Wang, Wenjun; Pan, Yu; Zhang, Wenying; Liu, Xiaoguang; Li, Ling
2018-04-24
Sr 2 CeO 4 phosphors with different crystalline sizes were synthesized by the sol-gel method or the solid-state reaction. Their crystalline size, luminescence intensity of O 2- -Ce 4+ charge transfer and energy gaps were obtained through the characterization by X-ray diffraction, photoluminescence spectra, as well as UV-visible diffuse reflectance measurements. An inverse relationship between photoluminescence (PL) spectra and crystalline size was observed when the heating temperature was from 1000°C to 1300°C. In addition, band energy calculated for all samples showed that a reaction temperature of 1200°C for the solid-state method and 1100°C for sol-gel method gave the largest values, which corresponded with the smallest crystalline size. Correlation between PL intensity and crystalline size showed an inverse relationship. Band structure, density of states and partial density of states of the crystal were calculated to analyze the mechanism using the cambrige sequential total energy package (CASTEP) module integrated with Materials Studio software. Copyright © 2018 John Wiley & Sons, Ltd.
Cathodoluminescent UV-radiation sources
NASA Astrophysics Data System (ADS)
Vereschagina, N. Y.; Danilkin, M. I.; Kazaryan, M. A.; Ozol, D. I.; Sheshin, E. P.; Spassky, D. A.
2018-04-01
Mercury-free UV-radiation sources are described. An electron beam similar to cathode-ray tubes (CRT) excites a luminescent material in a vacuum bulb. A high density of excitation requires the cathode and the luminescent material to be resistant for that and provide the extended lifetime of the UV-radiation source. Carbon fibre and nano-carbon based field-emission cathodes produce long lasting stable emission with a high current density (up to 0.3-0.5 A/cm2 ). Li2B4O7:Cu and Li2B4O7:Ag luminescent ceramics survive under high radiation doses and provide UV luminescence bands peaked at 360-370 nm and 270 nm, respectively. The luminescence band at 360-370 nm has a good overlap with the fundamental absorption edge of TiO2, which is known as a photo-catalyst in air and water cleaning systems. The luminescence band at 270 nm overlaps with DNA absorption and provides a direct disinfection effect. We suggest the structure of complex luminescence centres and energy transfer mechanisms. The electron structure of lithium tetraborate and the contribution of impurities are also discussed in paper.
Modulation of band gap by an applied electric field in BN-based heterostructures
NASA Astrophysics Data System (ADS)
Luo, M.; Xu, Y. E.; Zhang, Q. X.
2018-05-01
First-principles density functional theory (DFT) calculations are performed on the structural and electronic properties of the SiC/BN van der Waals (vdW) heterostructures under an external electric field (E-field). Our results reveal that the SiC/BN vdW heterostructure has a direct band gap of 2.41 eV in the raw. The results also imply that electrons are likely to transfer from BN to SiC monolayer due to the deeper potential of BN monolayer. It is also observed that, by applying an E-field, ranging from -0.50 to +0.65 V/Å, the band gap decreases from 2.41 eV to zero, which presents a parabola-like relationship around 0.0 V/Å. Through partial density of states (PDOS) plots, it is revealed that, p orbital of Si, C, B, and N atoms are responsible for the significant variations of band gap. These obtained results predict that, the electric field tunable band gap of the SiC/BN vdW heterostructures carries potential applications for nanoelectronics and spintronic device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankar, A., E-mail: amitshan2009@gmail.com; Rai, D.P.; Chettri, Sandeep
2016-08-15
We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconductingmore » nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Zhi-Gang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou; Heinke, Lars, E-mail: Lars.Heinke@KIT.edu
The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast tomore » common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.« less
X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.
1997-04-01
X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.
Hybrid functional study of α-uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Gurpreet, E-mail: gurpreet@igcar.gov.in; Chinnappan, Ravi; Panigrahi, B. K.
2016-05-23
We have used the hybrid density functionals to study the structural and electronic properties of alpha-U. The fraction of exact Hartree Folk exchange used is varied from 0.0 to 0.6. The equilibrium volume is found to be underestimated and bulk modulus overestimated with HSE as compared to both calculated by PBE and the experimental values. Electronic bands below the Fermi level are found to shift to lower energy with respect to PBE electronic bands which itself gives the bands shifted to lower energies as compared to UPS experiments.
Defect reduction in MBE-grown AlN by multicycle rapid thermal annealing
NASA Astrophysics Data System (ADS)
Greenlee, Jordan D.; Gunning, Brendan; Feigelson, Boris N.; Anderson, Travis J.; Koehler, Andrew D.; Hobart, Karl D.; Kub, Francis J.; Doolittle, W. Alan
2016-01-01
Multicycle rapid thermal annealing (MRTA) is shown to reduce the defect density of molecular beam epitaxially grown AlN films. No damage to the AlN surface occurred after performing the MRTA process at 1520°C. However, the individual grain structure was altered, with the emergence of step edges. This change in grain structure and diffusion of AlN resulted in an improvement in the crystalline structure. The Raman E2 linewidth decreased, confirming an improvement in crystal quality. The optical band edge of the AlN maintained the expected value of 6.2 eV throughout MRTA annealing, and the band edge sharpened after MRTA annealing at increased temperatures, providing further evidence of crystalline improvement. X-ray diffraction shows a substantial improvement in the (002) and (102) rocking curve FWHM for both the 1400 and 1520°C MRTA annealing conditions compared to the as-grown films, indicating that the screw and edge type dislocation densities decreased. Overall, the MRTA post-growth annealing of AlN lowers defect density, and thus will be a key step to improving optoelectronic and power electronic devices. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Haifeng; Nanjing Artillery Academy, Nanjing 211132; Liu Shaobin
2012-11-15
In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonicmore » band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.« less
Band-like transport in highly crystalline graphene films from defective graphene oxides.
Negishi, R; Akabori, M; Ito, T; Watanabe, Y; Kobayashi, Y
2016-07-01
The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm(2)/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.
Band-like transport in highly crystalline graphene films from defective graphene oxides
NASA Astrophysics Data System (ADS)
Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.
2016-07-01
The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.
NASA Astrophysics Data System (ADS)
Jiang, Xuefan; Guo, G. Y.
2004-04-01
The electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite, the iron-rich end member of the olivine-type silicate, one of the most abundant minerals in Earth’s upper mantle, have been studied by density-functional theory within the generalized gradient approximation (GGA) with the on-site Coulomb energy U=4.5 eV taken into account (GGA+U). The stable insulating antiferromagnetic solution with an energy gap ˜1.49 eV and a spin magnetic moment of 3.65μB and an orbital magnetic moment of 0.044μB per iron atom is obtained. It is found that the gap opening in this fayalite results mainly from the strong on-site Coulomb interaction on the iron atoms. In this band structure, the top of valence bands consists mainly of the 3d orbitals of Fe2 atoms, and the bottom of the conduction bands is mainly composed of the 3d orbitals of Fe1 atoms. Therefore, since the electronic transition from the Fe2 3d to Fe1 3d states is weak, significant electronic transitions would appear only about 1 eV above the absorption edge when Fe-O orbitals are involved in the final states. In addition, our band-structure calculations can explain the observed phenomena including redshift near the absorption edge and the decrease of the electrical resistivity of Fe2SiO4 upon compression. The calculated Fe p partial density of states agree well with Fe K-edge x-ray absorption spectrum. The calculated lattice constants and atomic coordinates for Fe2SiO4 fayalite in orthorhombic structure are in good agreement with experiments.
One-Dimensional Nature of InAs/InP Quantum Dashes Revealed by Scanning Tunneling Spectroscopy.
Papatryfonos, Konstantinos; Rodary, Guillemin; David, Christophe; Lelarge, François; Ramdane, Abderrahim; Girard, Jean-Christophe
2015-07-08
We report on low-temperature cross-sectional scanning tunneling microscopy and spectroscopy on InAs(P)/InGaAsP/InP(001) quantum dashes, embedded in a diode-laser structure. The laser active region consists of nine InAs(P) quantum dash layers separated by the InGaAsP quaternary alloy barriers. The effect of the p-i-n junction built-in potential on the band structure has been evidenced and quantified on large-scale tunneling spectroscopic measurements across the whole active region. By comparing the tunneling current onset channels, a consistent energy shift has been measured in successive quantum dash or barrier layers, either for the ground state energy of similar-sized quantum dashes or for the conduction band edge of the barriers, corresponding to the band-bending slope. The extracted values are in good quantitative agreement with the theoretical band structure calculations, demonstrating the high sensitivity of this spectroscopic measurement to probe the electronic structure of individual nanostructures, relative to local potential variations. Furthermore, by taking advantage of the potential gradient, we compared the local density of states over successive quantum dash layers. We observed that it does not vanish while increasing energy, for any of the investigated quantum dashes, in contrast to what would be expected for discrete level zero-dimensional (0D) structures. In order to acquire further proof and fully address the open question concerning the quantum dash dimensionality nature, we focused on individual quantum dashes obtaining high-energy-resolution measurements. The study of the local density of states clearly indicates a 1D quantum-wirelike nature for these nanostructures whose electronic squared wave functions were subsequently imaged by differential conductivity mapping.
Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei
Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...
2015-09-10
Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less
Local spin-density-wave order inside vortex cores in multiband superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Vivek; Koshelev, Alexei E.
Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less
Local spin-density-wave order inside vortex cores in multiband superconductors
Mishra, Vivek; Koshelev, Alexei E.
2015-08-13
Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Kim, Sunghyun; Walsh, Aron
2018-01-01
We investigated stability and the electronic structure of extended defects including antisite domain boundaries and stacking faults in the kesterite-structured semiconductors, Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Our hybrid density functional theory calculations show that stacking faults in CZTS and CZTSe induce a higher conduction band edge than the bulk counterparts, and thus the stacking faults act as electron barriers. Antisite domain boundaries, however, accumulate electrons as the conduction band edge is reduced in energy, having an opposite role. An Ising model was constructed to account for the stability of stacking faults, which shows the nearest-neighbor interaction is stronger in the case of the selenide.
Carbon Nanotube Field Emission Arrays
2011-06-01
K , and M [14]. Using the tight binding energy model, the energy dispersion relations for graphene can be calculated for the triangle formed from...The corresponding reciprocal lattice vectors, b1 and b2, and Brillouin zone of graphene [14]. 19 graphene band structure is the six K ...points where the two bands are degenerate and the Fermi level passes. It has been shown through thorough calculations that at T = 0 K , the density
NASA Astrophysics Data System (ADS)
Kishore, N.; Nagarajan, V.; Chandiramouli, R.
2018-04-01
Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0-100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.
Valence Band Control of Metal Silicide Films via Stoichiometry.
Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W
2016-07-07
The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.
Lattice structures and electronic properties of CIGS/CdS interface: First-principles calculations
NASA Astrophysics Data System (ADS)
Tang, Fu-Ling; Liu, Ran; Xue, Hong-Tao; Lu, Wen-Jiang; Feng, Yu-Dong; Rui, Zhi-Yuan; Huang, Min
2014-07-01
Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
47 CFR 15.255 - Operation within the band 57-64 GHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 18 μW/cm2, as measured 3 meters from the radiating structure. (2) For fixed field disturbance sensors... emission shall not exceed 18 μW/cm2, as measured 3 meters from the radiating structure. In addition, the... radiating structure, and the peak power density of any emission shall not exceed 18 nW/cm2, as measured...
Structural and electronic properties of high pressure phases of lead chalcogenides
NASA Astrophysics Data System (ADS)
Petersen, John; Scolfaro, Luisa; Myers, Thomas
2012-10-01
Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.
Bands dispersion and charge transfer in β-BeH2
NASA Astrophysics Data System (ADS)
Trivedi, D. K.; Galav, K. L.; Joshi, K. B.
2018-04-01
Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.
Mavrogordatos, Th K; Morris, S M; Wood, S M; Coles, H J; Wilkinson, T D
2013-06-01
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.
Effect of doping on electronic properties of HgSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com
2016-05-23
First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Krieger, J.B.; Norman, M.R.
1991-11-15
The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it ismore » believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.« less
NASA Astrophysics Data System (ADS)
Cui, Ying; Lee, Sangheon; Freysoldt, Christoph; Neugebauer, Jörg
2015-08-01
The structural and electronic properties of InxGa1 -xN alloys are studied as a function of c -plane biaxial strain and In ordering by density functional theory with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. A nonlinear variation of the c lattice parameter with In content is observed in biaxial strain and should be taken into account when deducing In content from interplanar distances. From compressive to tensile strain, the character of the top valence-band state changes, leading to a nonlinear variation of the band gap in InxGa1 -xN . Interestingly, the well-known bowing of the InxGa1 -xN band gap is largely removed for alloys grown strictly coherently on GaN, while the actual values for band gaps at x <0.33 are hardly affected by strain. Ordering plays a minor role for lattice constants but may induce changes of the band gap up to 0.15 eV.
NASA Astrophysics Data System (ADS)
Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A.; Krinitsin, P. G.; Khyzhun, O. Y.
2016-11-01
X-ray photoelectron core-level and valence-band spectra are measured for pristine and Ar+ ion-bombarded surfaces of LiGaGe2Se6 single crystal grown by Bridgman-Stockbarger technique. Further, electronic structure of LiGaGe2Se6 is elucidated from both theoretical and experimental viewpoints. Density functional theory (DFT) calculations are made using the augmented plane wave +local orbitals (APW+lo) method to study total and partial densities of states in the LiGaGe2Se6 compound. The present calculations indicate that the principal contributors to the valence band are the Se 4p states: they contribute mainly at the top and in the central portion of the valence band of LiGaGe2Se6, with also their significant contributions in its lower portion. The Ge 4s and Ge 4p states are among other significant contributors to the valence band of LiGaGe2Se6, contributing mainly at the bottom and in the central portion, respectively. In addition, the calculations indicate that the bottom of the conduction band is composed mainly from the unoccupied Ge s and Se p states. The present DFT calculations are supported experimentally by comparison on a common energy scale of the X-ray emission bands representing the energy distribution of the 4p states associated with Ga, Ge and Se and the XPS valence-band spectrum of the LiGaGe2Se6 single crystal. The main optical characteristics of the LiGaGe2Se6 compound are elucidated by the first-principles calculations.
Zhang, W. -L.; Richard, P.; van Roekeghem, A.; ...
2016-10-31
We performed an angle-resolved photoemission spectroscopy study of BaMn 2As 2 and BaMn 2Sb 2, which are isostructural to the parent compound BaFe 2As 2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly k z-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Finally, our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play amore » role in tuning the electronic correlations in these compounds.« less
NASA Astrophysics Data System (ADS)
Yelgel, Celal
2016-04-01
We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.
Lee, Eunsook; Kim, D. H.; Kim, Hyun Woo; ...
2016-07-25
The electronic structure of a charge density wave (CDW) system PrTe 3 and its modulated structure in the CDW phase have been investigated by employing ARPES, XAS, Pr 4 f RPES, and first-principles band structure calculation. Pr ions are found to be nearly trivalent, supporting the CDW instability in the metallic Te sheets through partial filling. Finite Pr 4 f spectral weight is observed near the Fermi level, suggesting the non-negligible Pr 4 f contribution to the CDW formation through the Pr 4 f -Te 5p hybridization. The two-fold symmetric features in the measured Fermi surface (FS) of PrTe 3more » are explained by the calculated FS for the assumed 7 × 1 CDW supercell formation in Te sheets. The shadow bands and the corresponding very weak FSs are observed, which originate from both the band folding due to the 3D interaction of Te sheets with neighboring Pr-Te layers and that due to the CDW-induced FS reconstruction. The straight vertical FSs are observed along k z, demonstrating the nearly 2D character for the near-EF states. The observed linear dichroism reveals the in-plane orbital character of the near-E F Te 5p states.« less
Design on the wide band absorber with low density based on the particle distribution
NASA Astrophysics Data System (ADS)
Zheng, Dianliang; Liu, Ting; Liu, Longbin; Xu, Yonggang
2018-04-01
In order to widen the absorbing band, an equivalent gradient structure absorber was designed based on the particle distribution. Firstly, the electromagnetic parameter of the absorbent with uniform dispersion was tested using the vector network analyzer in 8-18 GHz. Three different equivalent materials of the spherical, square and hexagon empty shape were designed. The scattering parameters and the monostatic reflection loss (RL) of the periodic structural materials were simulated in the commercial software. Then the effective permittivity and the permeability was derived by the Nicolson-Ross-Weir algorithm and fitted by Maxwell-Garnett mixing rule. The results showed that the simulated reflectance and transmission parameters of equivalent composites with the different shapes were very close. The derived effective permittivity and permeability of the composite with different absorbent content was also close, and the average deviation was about 0.52 + j0.15 and 0.15 + j0.01 respectively. Finally, the wide band absorbing material was designed using the genetic algorithm. The optimized RL result showed that the absorbing composites with thickness 3 mm had an excellent absorbing property (RL <-10 dB) in 8-18 GHz, the equivalent absorber density could be decreased 30.7% compared with the uniform structure.
Valence-band-edge shift due to doping in p + GaAs
NASA Astrophysics Data System (ADS)
Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.
1991-05-01
Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.
Electronic structure and weak itinerant magnetism in metallic Y 2 Ni 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, David J.
2015-11-03
We describe a density functional study of the electronic structure and magnetism of Y₂Ni₇. The results show itinerant magnetism very similar to that in the weak itinerant ferromagnet Ni₃Al. The electropositive Y atoms in Y₂Ni₇ donate charge to the Ni host mostly in the form of s electrons. The non-spin-polarized state shows a high density of states at the Fermi level, N (E F), due to flat bands. This leads to a ferromagnetic instability. However, there are also several much more dispersive bands crossing E(F), which should promote the conductivity. Spin fluctuation effects appear to be comparable to or weakermore » than Ni₃Al, based on comparison with experimental data. Y₂Ni₇ provides a uniaxial analog to cubic Ni₃Al, for studying weak itinerant ferromagnetism, suggesting detailed measurements of its low temperature physical properties and spin fluctuations, as well as experiments under pressure.« less
Formation of orbital-selective electron states in LaTiO3/SrTiO3 superlattices
NASA Astrophysics Data System (ADS)
Lechermann, Frank; Boehnke, Lewin; Grieger, Daniel
2013-06-01
The interface electronic structure of correlated LaTiO3/SrTiO3 superlattices is investigated by means of the charge self-consistent combination of the local density approximation (LDA) to density functional theory with dynamical mean-field theory. Utilizing a pseudopotential technique together with a continuous-time quantum Monte Carlo approach, the resulting complex multiorbital electronic states are addressed in a coherent fashion beyond static mean field. General structural relaxations are taken into account on the LDA level and cooperate with the driving forces from strong electronic correlations. This alliance leads to a Ti(3dxy) dominated low-energy quasiparticle peak and a lower Hubbard band in line with photoemission studies. Furthermore correlation effects close to the band-insulating bulk SrTiO3 limit as well as the Mott-insulating bulk LaTiO3 limit are studied via realistic single-layer embeddings.
Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe 2
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2016-11-29
Charge density wave (CDW) formation, a key physics issue for materials, arises from interactions among electrons and phonons that can also lead to superconductivity and other competing or entangled phases. The prototypical system TiSe 2, with a particularly simple (2 × 2 × 2) transition and no Kohn anomalies caused by electron-phonon coupling, is a fascinating but unsolved case after decades of research. Our angle-resolved photoemission measurements of the band structure as a function of temperature, aided by first-principles calculations, reveal a hitherto undetected but crucial feature: a (2 × 2) electronic order in each layer sets in at ~232more » K before the widely recognized three-dimensional structural order at ~205 K. The dimensional crossover, likely a generic feature of such layered materials, involves renormalization of different band gaps in two stages.« less
Experimental and theoretical study of topology and electronic correlations in PuB4
NASA Astrophysics Data System (ADS)
Choi, Hongchul; Zhu, Wei; Cary, S. K.; Winter, L. E.; Huang, Zhoushen; McDonald, R. D.; Mocko, V.; Scott, B. L.; Tobash, P. H.; Thompson, J. D.; Kozimor, S. A.; Bauer, E. D.; Zhu, Jian-Xin; Ronning, F.
2018-05-01
We synthesize single crystals of PuB4 using an Al-flux technique. Single-crystal diffraction data provide structural parameters for first-principles density functional theory (DFT) calculations. By computing the density of states, the Z2 topological invariant using the Wilson loop method, and the surface electronic structure from slab calculations, we find that PuB4 is a nonmagnetic strong topological insulator with a band gap of 254 meV. Our magnetic susceptibility, heat capacity, and resistivity measurements are consistent with this analysis, albeit with a smaller gap of 35 meV. DFT plus dynamical mean-field theory calculations show that electronic correlations reduce the size of the band gap, and provide better agreement with the value determined by resistivity. These results demonstrate that PuB4 is a promising actinide material to investigate the interplay of electronic correlations and nontrivial topology.
Positron-annihilation study of the electronic structure of URu2Si2
NASA Astrophysics Data System (ADS)
Rozing, G. J.; Mijnarends, P. E.; Menovsky, A. A.; de Chtel, P. F.
1991-04-01
Measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed on oriented single crystals of URu2Si2. The spectra, obtained with integration along four different symmetry directions, display anisotropic structure in fair agreement with a previous calculation of the two-photon momentum distribution. In particular, the contribution of the f-ligand hybridized electron states is clearly observed and reasonably well described by the band calculation. The 2D-ACAR distribution remains unchanged as the temperature is increased from 6 K in the Fermi-liquid state to 72 K, which is just above the coherence temperature. The inhomogeneity of the positron density in the unit cell complicates the Lock-Crisp-West (LCW) analysis of the experiments in terms of Fermi-surface features. Nevertheless, the disagreement between theory and experiment after LCW folding indicates that the Fermi surface as predicted by local-density-approximation band theory does not apply.
Mnasri, S; Abdi-Ben Nasrallahl, S; Sfina, N; Lazzari, J L; Saïd, M
2012-11-01
Theoretical studies on spin-dependent transport in magnetic tunneling diodes with giant Zeeman splitting of the valence band are carried out. The studied structure consists of two nonmagnetic layers CdMgTe separated by a diluted magnetic semiconductor barrier CdMnTe, the hole is surrounded by two p-doped CdTe layers. Based on the parabolic valence band effective mass approximation and the transfer matrix method, the magnetization and the current densities for holes with spin-up and spin-down are studied in terms of the Mn concentration, the well and barrier thicknesses as well as the voltage. It is found that, the current densities depend strongly on these parameters and by choosing suitable values; this structure can be a good spin filter. Such behaviors are originated from the enhancement and suppression in the spin-dependent resonant states.
Observation of Dirac-like band dispersion in LaAgSb 2
Shi, X.; Richard, P.; Wang, Kefeng; ...
2016-02-16
In this paper, we present a combined angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations study of the electronic structure of LaAgSb 2 in the entire first Brillouin zone. We observe a Dirac-cone-like structure in the vicinity of the Fermi level formed by the crossing of two linear energy bands, as well as the nested segments of a Fermi surface pocket emerging from the cone. In conclusion, our ARPES results show the close relationship of the Dirac cone to the charge-density-wave ordering, providing consistent explanations for exotic behaviors in this material.
Effect of lattice defects on the electronic structures and floatability of pyrites
NASA Astrophysics Data System (ADS)
Xian, Yong-jun; Wen, Shu-ming; Chen, Xiu-ming; Deng, Jiu-shuai; Liu, Jian
2012-12-01
The electronic structures of three types of lattice defects in pyrites (i.e., As-substituted, Co-substituted, and intercrystalline Au pyrites) were calculated using the density functional theory (DFT). In addition, their band structures, density of states, and difference charge density were studied. The effect of the three types of lattice defects on the pyrite floatability was explored. The calculated results showed that the band-gaps of pyrites with Co-substitution and intercrystalline Au decreased significantly, which favors the oxidation of xanthate to dixanthogen and the adsorption of dixanthogen during pyrite flotation. The stability of the pyrites increased in the following order: As-substituted < perfect < Co-substituted < intercrystalline Au. Therefore, As-substituted pyrite is easier to be depressed by intensive oxidization compared to perfect pyrite in a strongly alkaline medium. However, Co-substituted and intercrystalline Au pyrites are more difficult to be depressed compared to perfect pyrite. The analysis of the Mulliken bond population and the electron density difference indicates that the covalence characteristic of the S-Fe bond is larger compared to the S-S bond in perfect pyrite. In addition, the presence of the three types of lattice defects in the pyrite bulk results in an increase in the covalence level of the S-Fe bond and a decrease in the covalence level of the S-S bond, which affect the natural floatability of the pyrites.
Electronic and transport properties of fluorite structure of La2Ce2O7
NASA Astrophysics Data System (ADS)
Mahida, H. R.; Singh, Deobrat; Gupta, Sanjeev K.; Sonvane, Yogesh; Thakor, P. B.
2017-05-01
In this paper, we have symmetrically investigated the structural, electronic and transport properties of fluorite structure of lanthanum cerate oxide (La2Ce2O7) using density functional theory (DFT). The electronic band structure of La2Ce2O7 show semiconducting in nature with band gap of 1.54 eV (indirect at R-X points) and 1.71 eV (direct at R points). We have also calculated the susceptibility, hall resistance, electrical, and thermal conductivity by using Boltztrap equation. The electrical conductivity decreases where as thermal conductivity increases with increase in the temperature. Our result shows that La2Ce2O7 has application in Proton exchange membrane (PEM) fuel cells applications.
Yoder, Bruce L; Maze, Joshua T; Raghavachari, Krishnan; Jarrold, Caroline Chick
2005-03-01
The competitive structural isomers of the Mo(2)O(y) (-)Mo(2)O(y) (y=2, 3, and 4) clusters are investigated using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. The PE spectrum and calculations for MoO(3) (-)MoO(3) are also presented to show the level of agreement to be expected between the spectra and calculations. For MoO(3) (-) and MoO(3), the calculations predict symmetric C(3v) structures, an adiabatic electron affinity of 3.34 eV, which is above the observed value 3.17(2) eV. However, there is good agreement between observed and calculated vibrational frequencies and band profiles. The PE spectra of Mo(2)O(2) (-) and Mo(2)O(3) (-) are broad and congested, with partially resolved vibrational structure on the lowest energy bands observed in the spectra. The electron affinities (EA(a)s) of the corresponding clusters are 2.24(2) and 2.33(7) eV, respectively. Based on the calculations, the most stable structure of Mo(2)O(2) (-) is Y shaped, with the two Mo atoms directly bonded. Assignment of the Mo(2)O(3) (-) spectrum is less definitive, but a O-Mo-O-Mo-O structure is more consistent with overall electronic structure observed in the spectrum. The PE spectrum of Mo(2)O(4) (-) shows cleanly resolved vibrational structure and electronic bands, and the EA of the corresponding Mo(2)O(4) is determined to be 2.13(4) eV. The structure most consistent with the observed spectrum has two oxygen bridge bonds between the Mo atoms.
Correlated flux densities from VLBI observations with the DSN
NASA Technical Reports Server (NTRS)
Coker, R. F.
1992-01-01
Correlated flux densities of extragalactic radio sources in the very long baseline interferometry (VLBI) astrometric catalog are required for the VLBI tracking of Galileo, Mars Observer, and future missions. A system to produce correlated and total flux density catalogs was developed to meet these requirements. A correlated flux density catalog of 274 sources, accurate to about 20 percent, was derived from more than 5000 DSN VLBI observations at 2.3 GHz (S-band) and 8.4 GHz (X-band) using 43 VLBI radio reference frame experiments during the period 1989-1992. Various consistency checks were carried out to ensure the accuracy of the correlated flux densities. All observations were made on the California-Spain and California-Australia DSN baselines using the Mark 3 wideband data acquisition system. A total flux density catalog, accurate to about 20 percent, with data on 150 sources, was also created. Together, these catalogs can be used to predict source strengths to assist in the scheduling of VLBI tracking passes. In addition, for those sources with sufficient observations, a rough estimate of source structure parameters can be made.
2012-01-01
A computational study of the dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using ab initio density functional theory and the supercell method. The effects of the porosity and the surface chemistry composition on the energetic stability of pSiC were also investigated. The porous structures were modeled by removing atoms in the [001] direction to produce two different surface chemistries: one fully composed of silicon atoms and one composed of only carbon atoms. The changes in the electronic states of the porous structures as a function of the oxygen (O) content at the surface were studied. Specifically, the oxygen content was increased by replacing pairs of hydrogen (H) atoms on the pore surface with O atoms attached to the surface via either a double bond (X = O) or a bridge bond (X-O-X, X = Si or C). The calculations show that for the fully H-passivated surfaces, the forbidden energy band is larger for the C-rich phase than for the Si-rich phase. For the partially oxygenated Si-rich surfaces, the band gap behavior depends on the O bond type. The energy gap increases as the number of O atoms increases in the supercell if the O atoms are bridge-bonded, whereas the band gap energy does not exhibit a clear trend if O is double-bonded to the surface. In all cases, the gradual oxygenation decreases the band gap of the C-rich surface due to the presence of trap-like states. PMID:22913486
Electronic structure and p-type doping of ZnSnN2
NASA Astrophysics Data System (ADS)
Wang, Tianshi; Janotti, Anderson; Ni, Chaoying
ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.
Zn(x)Cd(1-x)Se nanomultipods with tunable band gaps: synthesis and first-principles calculations.
Wei, Hao; Su, Yanjie; Han, Ziyi; Li, Tongtong; Ren, Xinglong; Yang, Zhi; Wei, Liangming; Cong, Fengsong; Zhang, Yafei
2013-06-14
In this paper, we demonstrate that ZnxCd1-xSe nanomultipods can be synthesized via a facile and nontoxic solution-based method. Interesting aspects of composition, morphology and optical properties were deeply explored. The value of Zn/(Zn+Cd) could be altered across the entire range from 0.08 to 0.86 by varying the ratio of cation precursor contents. The band gap energy could be linearly tuned from 1.88 to 2.48 eV with respect to the value of Zn/(Zn+Cd). The experiment also showed that oleylamine played a dominant role in the formation of multipod structure. A possible growth mechanism was further suggested. First-principles calculations of band gap energy and density of states in the Vienna ab initio simulation package code were performed to verify the experimental variation tendency of the band gap. Computational results indicated that dissimilarities of electronic band structures and orbital constitutions determined the tunable band gap of the as-synthesized nanomultipod, which might be promising for versatile applications in relevant areas of solar cells, biomedicine, sensors, catalysts and so on.
Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods
NASA Technical Reports Server (NTRS)
Stott, Amanda C.; Brauer, Jonathan I.; Garg, Anita; Pepper, Stephen V.; Abel, Phillip B.; DellaCorte, Christopher; Noebe, Ronald D.; Glennon, Glenn; Bylaska, Eric; Dixon, David A.
2010-01-01
Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory.
Berger, Robert F
2018-02-09
In the current decade, perovskite solar cell research has emerged as a remarkably active, promising, and rapidly developing field. Alongside breakthroughs in synthesis and device engineering, halide perovskite photovoltaic materials have been the subject of predictive and explanatory computational work. In this Minireview, we focus on a subset of this computation: density functional theory (DFT)-based work highlighting the ways in which the electronic structure and band gap of this class of materials can be tuned via changes in atomic structure. We distill this body of computational literature into a set of underlying design principles for the band gap engineering of these materials, and rationalize these principles from the viewpoint of band-edge orbital character. We hope that this perspective provides guidance and insight toward the rational design and continued improvement of perovskite photovoltaics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamical and thermoelectric properties of boron doped YPd{sub 3} and YRh{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com; Sharma, Ramesh
2016-05-23
The structural, electronic, thermal, and optical properties of borides of cubic non-magnetic YX{sub 3} (X=Rh, Pd) compounds and their borides which crystallize in the AuCu{sub 3} structure have been studied using the density functional theory (DFT). The flat bands in the vicinity of E{sub F} which are associated with superconductivity appear in YPd{sub 3} and YRh{sub 3} band structures. However, the B s-states enhance the flat band only in YRh{sub 3}B. The optical properties clearly show that boron insertion modifies the absorption and transmittance. The YX{sub 3} alloys and their borides exhibit valuable changes in the thermopower and ZT. Itmore » is observed that the properties of the Y-X intermetallics change significantly for the Y-Rh and Y-Pd alloys and the presence of single boron atom modifies the properties to a great extent.« less
Stable Weyl points, trivial surface states, and particle-hole compensation in WP2
NASA Astrophysics Data System (ADS)
Razzoli, E.; Zwartsenberg, B.; Michiardi, M.; Boschini, F.; Day, R. P.; Elfimov, I. S.; Denlinger, J. D.; Süss, V.; Felser, C.; Damascelli, A.
2018-05-01
A possible connection between extremely large magnetoresistance and the presence of Weyl points has garnered much attention in the study of topological semimetals. Exploration of these concepts in transition-metal diphosphides WP2 has been complicated by conflicting experimental reports. Here we combine angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to disentangle surface and bulk contributions to the ARPES intensity, the superposition of which has plagued the determination of the band structure in WP2. Our results show that while the hole- and electronlike Fermi surface sheets originating from surface states have different areas, the bulk-band structure of WP2 is electron-hole compensated in agreement with DFT. Furthermore, the ARPES band structure is compatible with the presence of at least four temperature-independent Weyl points, confirming the topological nature of WP2 and its stability against lattice distortions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O.
New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude thatmore » the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.« less
Pressure driven topological semi metallic phase in SrTe
NASA Astrophysics Data System (ADS)
Kunduru, Lavanya; Roshan, S. C. Rakesh; Yedukondalu, N.; Sainath, M.
2018-05-01
We have investigated the structural, electronic properties and Fermi surface topology of SrTe under high pressure up to 50 GPa based on density functional theory calculations. We predict that SrTe undergoes a structural phase transition from NaCl (B1) to CsCl (B2)-type structure at 14.7 GPa which is consistent with the experimental observations as well as with previous theoretical studies. The ambient (B1) and high pressure (B2) phases are found to be indirect band gap semiconductors and upon further compression B2 phase turns into a nontrivial topological semimetal. Interestingly, we have observed that B2 phase of SrTe has band inversion at Γ and M symmetry directions which lead to formation of 3D topological nodal line semimetal at high pressure which is analogous to CaTe and Cu3PdN due to nontrivial band topology.
Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems
NASA Astrophysics Data System (ADS)
Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.
2005-08-01
Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming “tungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.
Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi
2016-04-27
Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.
Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys
NASA Astrophysics Data System (ADS)
Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet
2018-02-01
The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.
Coutin-Churchman, Pedro; Moreno, Rocío
2008-04-01
To assess possible differences in intracranial source distribution of surface QEEG power between depressed and non-depressed alcoholic patients in order to find any symptom-related topographic features of physiopathologic relevance. Low-Resolution Electromagnetic Tomography (LORETA) for the delta, theta, alpha and beta bands of EEG spectra was estimated from 38 alcoholic patients, 20 with and 18 without clinical depression, in which QEEG showed decreased slow and increased beta activity diffusely. Statistical non-parametric mapping was used to compare depressed and non-depressed groups. Measures of intracranial current density in individual patients at areas of significant differences were correlated with BDI scores. Patients with clinical depression showed areas of significantly lower current density than non-depressed patients in delta band at left anterior temporal, left midtemporal (including amygdala and hippocampus), and both frontopolar cortices mostly on the right; and in theta band at bilateral parietal lobe, anterior cingulate and medial frontal cortex. No differences were found at alpha and beta band. Intracranial current density in delta band at left parahippocampal, left midfrontal cortex and right frontopolar cortex was negatively correlated with BDI score. Theta band also showed negative correlations with BDI at sites of significant differences. Diffusely decreased delta and theta activity in the surface QEEG of alcoholic patients has a different intracranial distribution linked to the presence or not of clinical depression that seems to reveal a dysfunctional neuronal state at several specific limbic and other cortical locations that have been related to a specific clinical disorder such as depression. These results provided further evidence on the effects of depression in the context of alcohol dependence, in this case decreased slow activity as a possible marker of neuronal damage secondary to alcohol toxicity, clinically expressed as depressive symptoms when present in structures that are known to be related to clinical depression.
Optical properties of an indium doped CdSe nanocrystal: A density functional approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas
2016-05-06
We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
Pb chains on reconstructed Si(335) surface
NASA Astrophysics Data System (ADS)
Krawiec, Mariusz
2009-04-01
The structural and electronic properties of Si(335)-Au surface decorated with Pb atoms are studied by means of density-functional theory. The resulting structural model features Pb atoms bonded to neighboring Si and Au surface atoms, forming monoatomic chain located 0.2 nm above the surface. The presence of Pb chain leads to a strong rebonding of Si atoms at the step edge. The fact that Pb atoms occupy positions in the middle of terrace is consistent with scanning tunneling microscopy (STM) data and also confirmed by simulated STM images. The calculated band structure clearly shows one-dimensional metallic character. The calculated electronic bands remain in very good agreement with photoemission data.
Study of electronic and magnetic properties of h-BN on Ni surfaces: A DFT approach
NASA Astrophysics Data System (ADS)
Sahoo, M. R.; Sahu, S.; Kushwaha, A. K.; Nayak, S.
2018-04-01
Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and close-packedsurfaces of fcc-Ni(111). Electronic and magnetic properties of single layer hexagonal Boron Nitride (h-BN) on Ni (111) surface have been studied with density functional calculation. Since lattice constants of nickel surfaces are very close to that of h-BN, nickel acts as a good substrate. We found that the interaction between 2Pz - 3dz2 orbitals leads to change in electronic band structure as well as density of states which results spin polarization in h-BN.
Molecular adsorbates on HOPG: Toward modulation of graphene density of states
NASA Astrophysics Data System (ADS)
Groce, Michelle; Einstein, Theodore; Cullen, William
2013-03-01
Ordered molecular superlattices, particularly those made of planar aromatics with their attendant pi orbitals, have the potential to break the graphene sublattice degeneracy and create a band gap. Trimesic acid (TMA) is a promising candidate due to its self-assembly into symmetry-breaking superlattices nearly commensurate with that of graphene. We have used the graphite (0001) surface as a model system to explore the impact of TMA thin films on band structure. By examining correlations between STM topography and STS maps of corresponding regions, we are able to investigate the effects of TMA on the local density of states. Work supported by the University of Maryland NSF-MRSEC, DMR 0520471 and Shared Experimental Facilities.
Experimental and first principle studies on electronic structure of BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagdeo, Archna, E-mail: archnaj@rrcat.gov.in; Ghosh, Haranath, E-mail: archnaj@rrcat.gov.in; Chakrabarti, Aparna, E-mail: archnaj@rrcat.gov.in
2014-04-24
We have carried out photoemission experiments to obtain valence band spectra of various crystallographic symmetries of BaTiO{sub 3} system which arise as a function of temperature. We also present results of a detailed first principle study of these symmetries of BaTiO{sub 3} using generalized gradient approximation for the exchange-correlation potential. Here we present theoretical results of density of states obtained from DFT based simulations to compare with the experimental valence band spectra. Further, we also perform calculations using post density functional approaches like GGA + U method as well as non-local hybrid exchange-correlation potentials like PBE0, B3LYP, HSE in ordermore » to understand the extent of effect of correlation on band gaps of different available crystallographic symmetries (5 in number) of BaTiO{sub 3}.« less
NASA Astrophysics Data System (ADS)
Yan, Z.; Gohil, P.; McKee, G. R.; Eldon, D.; Grierson, B.; Rhodes, T.; Petty, C. C.
2017-12-01
Measurements of long wavelength ({{k}\\bot }{{ρ }i} < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 1019 m-3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 1019 m-3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 1019 m-3, where P LH is similar for both D and H plasmas. The increased edge fluctuations, increased flow shear, and the dual-band nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of P LH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiaodong; Martin, Richard L.; Roy, Lindsay E.
2012-10-21
We present a systematic comparison of the lattice structures, electronic density of states, and band gaps of actinide dioxides, AnO₂ (An=Th, Pa, U, Np, Pu, and Am) predicted by the Heyd-Scuseria-Ernzerhof screened hybrid density functional (HSE) with the self-consistent inclusion of spin-orbit coupling(SOC). The computed HSE lattice constants and band gaps of AnO₂ are in consistently good agreement with the available experimental data across the series, and differ little from earlier HSE results without SOC. ThO₂ is a simple band insulator (f⁰), while PaO₂, UO₂, and NpO₂ are predicted to be Mott insulators. The remainders (PuO₂ and AmO₂) show considerablemore » O2p/An5f mixing and are classified as charge-transfer insulators. We also compare our results for UO₂, NpO₂, and PuO₂with the PBE+U, self interaction correction (SIC), and dynamic mean-field theory (DMFT) many-body approximations.« less
NASA Astrophysics Data System (ADS)
Sadeghi, K. H.; Ahmadian, F.
2018-02-01
The first-principle density functional theory (DFT) calculations were employed to investigate the electronic structures, magnetic properties and half-metallicity of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys with {AlCu}2 {Mn}- and {CuHg}2 {Ti}-type structures within local density approximation and generalised gradient approximation for the exchange correlation potential. It was found that {CuHg}2 {Ti}-type structure in ferromagnetic state was energetically more favourable than {AlCu}2 {Mn}-type structure in all compounds except {Ti}2 {IrB} which was stable in {AlCu}2 {Mn}-type structure in non-magnetic state. {Ti}2 {IrZ} (Z = B, Al, Ga, and In) alloys in {CuHg}2 {Ti}-type structure were half-metallic ferromagnets at their equilibrium lattice constants. Half-metallic band gaps were respectively equal to 0.87, 0.79, 0.75, and 0.73 eV for {Ti}2 {IrB}, {Ti}2 {IrAl}, {Ti}2 {IrGa}, and {Ti}2 {IrIn}. The origin of half-metallicity was discussed for {Ti}2 {IrGa} using the energy band structure. The total magnetic moments of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) compounds in {CuHg}2 {Ti}-type structure were obtained as 2μ B per formula unit, which were in agreement with Slater-Pauling rule (M_{tot} =Z_{tot}-18). All the four compounds were half-metals in a wide range of lattice constants indicating that they may be suitable and promising materials for future spintronic applications.
NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/
NASA Technical Reports Server (NTRS)
Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.
1983-01-01
The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).
Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr
2015-08-07
We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less
Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G., E-mail: agni@physics.du.ac.in, E-mail: agvedeshwar@gmail.com
2013-11-21
The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different sixmore » (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.« less
Electronic, thermoelectric and transport properties of cesium cadmium trifluoride: A DFT study
NASA Astrophysics Data System (ADS)
Abraham, Jisha Annie; Pagare, G.; Sanyal, Sankar P.
2018-04-01
The full potential linearized augmented plane wave method based on density functional theory is employed to investigate the electronic structure of CsCdF3. The electronic properties of this compound have been studied from the band structure plot and density of states. The presence of indirect energy gap reveals its insulating nature. Using constant relaxation time, the electrical conductivity, electronic thermal conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory. We have also studied the temperature dependence of thermoelectric properties of this compound.
NASA Astrophysics Data System (ADS)
Shi, Guangsha; Kioupakis, Emmanouil
2018-02-01
We apply density functional and many-body perturbation theory calculations to consistently determine and parameterize the relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn, and predict the Seebeck coefficient as a function of doping and temperature. The quasiparticle band gaps, including spin-orbit coupling effects, are determined to be 0.728 eV, 0.555 eV, and 0.142 eV for Mg2Si, Mg2Ge, and Mg2Sn, respectively. The inclusion of the semicore electrons of Mg, Ge, and Sn in the valence is found to be important for the accurate determination of the band gaps of Mg2Ge and Mg2Sn. We also developed a Luttinger-Kohn Hamiltonian and determined a set of band parameters to model the near-edge relativistic quasiparticle band structure consistently for all three compounds that can be applied for thermoelectric device simulations. Our calculated values for the Seebeck coefficient of all three compounds are in good agreement with the available experimental data for a broad range of temperatures and carrier concentrations. Our results indicate that quasiparticle corrections are necessary for the accurate determination of Seebeck coefficients at high temperatures at which bipolar transport becomes important.
Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.
Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran
2010-06-30
Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.
Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy T; Al-Mahboob, Abdullah; van der Zande, Arend M; Chenet, Daniel A; Dadap, Jerry I; Herman, Irving P; Sutter, Peter; Hone, James; Osgood, Richard M
2013-09-06
We report on the evolution of the thickness-dependent electronic band structure of the two-dimensional layered-dichalcogenide molybdenum disulfide (MoS2). Micrometer-scale angle-resolved photoemission spectroscopy of mechanically exfoliated and chemical-vapor-deposition-grown crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, for the case of MoS2 having more than one layer, to the case of single-layer MoS2, as predicted by density functional theory. This evolution of the electronic structure from bulk to few-layer to monolayer MoS2 had earlier been predicted to arise from quantum confinement. Furthermore, one of the consequences of this progression in the electronic structure is the dramatic increase in the hole effective mass, in going from bulk to monolayer MoS2 at its Brillouin zone center, which is known as the cause for the decreased carrier mobility of the monolayer form compared to that of bulk MoS2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2013-03-14
We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less
NASA Astrophysics Data System (ADS)
Hembree, Robert H.; Vazhappilly, Tijo; Micha, David A.
2017-12-01
The conductivity of holes and electrons photoexcited in Si slabs is affected by the slab thickness and by adsorbates. The mobilities of those charged carriers depend on how many layers compose the slab, and this has important scientific and technical consequences for the understanding of photovoltaic materials. A previously developed general computational procedure combining density matrix and electronic band structure treatments has been applied to extensive calculations of mobilities of photoexcited electrons and holes at Si(111) nanostructured surfaces with varying slab thickness and for varying photon energies, to investigate the expected change in mobility magnitudes as the slab thickness is increased. Results have been obtained with and without adsorbed silver clusters for comparison of their optical and photovoltaic properties. Band states were generated using a modified ab initio density functional treatment with the PBE exchange and correlation density functionals and with periodic boundary conditions for large atomic supercells. An energy gap correction was applied to the unoccupied orbital energies of each band structure by running more accurate HSE hybrid functional calculations for a Si(111) slab. Photoexcited state populations for slabs with 6, 8, 10, and 12 layers were generated using a steady state reduced density matrix including dissipative effects due to energy exchange with excitons and phonons in the medium. Mobilities have been calculated from the derivatives of voltage-driven electronic energies with respect to electronic momentum, for each energy band and for the average over bands. Results show two clear trends: (a) adding Ag increases the hole photomobilities and (b) decreasing the slab thickness increases hole photomobilities. The increased hole populations in 6- and 8-layer systems and the large increase in hole mobility for these thinner slabs can be interpreted as a quantum confinement effect of hole orbitals. As the slab thickness increases to ten and twelve layers, the effect of silver adsorbates decreases leading to smaller relative enhancements to the conduction electron and hole mobilities, but the addition of the silver nanoclusters still increases the absorbance of light and the mobility of holes compared to their mobilities in the pure Si slabs.
NASA Astrophysics Data System (ADS)
Colmenero, Francisco; Timón, Vicente
2018-07-01
Natroxalate mineral, Na2C2O4, is a fundamental oxalate mineral widespread in nature, present in humans, animals and plants, as well as in naturally occurring minerals. The characterization of oxalate minerals is extraordinarily important since these organic minerals are indicators of environmental events and of the presence of biological activity, because they are commonly of biological origin. These minerals are currently under study to investigate the possible biological activity on Mars. The identification of these compounds is usually performed by X-ray diffraction and Raman spectroscopy. Theoretical calculations are of great value for the study and interpretation of the results of these experimental techniques. In this work, natroxalate mineral structure and Raman spectrum was studied by first principle calculations based on the density functional theory. The computed structure of natroxalate reproduces the one determined experimentally by X-ray diffraction (monoclinic symmetry, space group P21/c; lattice parameters a = 3.449 Å, b = 5.243 Å; c = 10.375 Å). Lattice parameters, bond lengths, bond angles and X-ray powder pattern were found to be in very good agreement with their experimental counterparts. Raman spectrum was then computed by means of density functional perturbation theory and compared with the experimental spectrum. Since the results were also found in agreement with the experimental data, a normal mode analysis of the theoretical spectra was carried out and used in order to assign the main bands of the Raman spectrum. The band found at about 567 cm-1, described as a single peak in previous experimental works, is shown clearly to have two contributing bands. Finally, two bands of the observed spectrum, located at the wavenumbers 1750 and 1358 cm-1, were not found in the theoretical spectrum. This is because these bands correspond to an overtone, 2ν1 (ν1 = 875 cm-1), and a combination band, ν1 + ν2 (ν1,ν2 = 875, 481 cm-1), respectively. Finally, the fundamental thermodynamic properties of natroxalate mineral were determined. The calculated specific heat at 298.15 K is in excellent agreement with the experimental value, the difference being less than 1%. Since for most of these properties there are not experimental values to compare with, their values were predicted.
NASA Astrophysics Data System (ADS)
Shuang, Zhou; Guili, Liu; Dazhi, Fan
2017-02-01
The electronic structure and optical properties of adsorbing O atoms on graphene with different O coverage are researched using the density functional theory based upon the first-principle study to obtain further insight into properties of graphene. The adsorption energies, band structures, the density of states, light absorption coefficient and reflectivity of each system are calculated theoretically after optimizing structures of each system with different O coverage. Our calculations show that adsorption of O atoms on graphene increases the bond length of C-C which adjacent to the O atoms. When the O coverage is 9.4%, the adsorption energy (3.91 eV) is the maximum, which only increases about 1.6% higher than that of 3.1% O coverage. We find that adsorbed O atoms on pristine graphene opens up indirect gap of about 0.493-0.952 eV. Adsorbing O atoms make pristine graphene from metal into a semiconductor. When the O coverage is 9.4%, the band gap (0.952 eV) is the maximum. Comparing with pristine graphene, we find the density of states at Fermi level of O atoms adsorbing on graphene with different coverage are significantly increased. We also find that light absorption coefficient and reflectivity peaks are significantly reduced, and the larger the coverage, the smaller the absorption coefficient and reflectivity peaks are. And the blue shift phenomenon appears.
NASA Astrophysics Data System (ADS)
Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.
2012-12-01
Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.
Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S
2013-05-14
We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material has a considerable optical anisotropy.
NASA Astrophysics Data System (ADS)
Bakkari, Karim; Fersi, Riadh; Kebir Hlil, El; Bessais, Lotfi; Thabet Mliki, Najeh
2018-03-01
First-principle calculations combining density functional theory and the full-potential linearized augmented plane wave (FP-LAPW) method are performed to investigate the electronic and magnetic structure of Pr2Co7 in its two polymorphic forms, (2:7 H) and (2:7 R), for the first time. This type of calculation was also performed for PrCo5 and PrCo2 intermetallics. We have computed the valence density of states separately for spin-up and spin-down states in order to investigate the electronic band structure. This is governed by the strong contribution of the partial DOS of 3d-Co bands compared to the partial DOS of the 4f-Pr bands. Such a high ferromagnetic state is discussed in terms of the strong spin polarization observed in the total DOS. The magnetic moments carried by the Co and Pr atoms located in several sites for all compounds are computed. These results mainly indicate that cobalt atoms make a dominant contribution to the magnetic moments. The notable difference in the atomic moments of Pr and Co atoms between different structural slabs is explained in terms of the magnetic characteristics of the PrCo2 and PrCo5 compounds and the local chemical environments of the Pr and Co atoms in different structural slabs of Pr2Co7. From spin-polarized calculations we have simulated the 3d and 4f band population to estimate the local magnetic moments. These results are in accordance with the magnetic moments calculated using the FP-LAPW method. In addition, the exchange interactions J ij are calculated and used as input for M(T) simulations. Involving the data obtained from the electronic structure calculations, the appropriate Padé Table is applied to simulate the magnetization M(T) and to estimate the mean-field Curie temperature. We report a fairly good agreement between the ab initio calculation of magnetization and Curie temperature with the experimental data.
Thermodynamical study of boron doped CeX{sub 3} (X=Pd, Rh)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com
2016-05-06
The structural, electronic, thermal, and optical properties of cubic non magnetic CeX{sub 3}(X=Pd, Rh) compounds which crystallize in the Au{sub 3}Cu structure have been studied using the projected augmented wave (PAW) method within the density functional theory (DFT) with generalized gradient approximation (GGA) for exchange correlation potential. In this paper we have calculated the band structure which are interpreted using the density of states. The optical properties such as extinction coefficients clearly illustrate the changes in CeX{sub 3} due to intercalation of boron. Lattice instability is observed in CePd{sub 3}B from the calculated dynamical properties.
An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers
NASA Astrophysics Data System (ADS)
Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.
2017-09-01
Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.
Electronic structure properties of UO2 as a Mott insulator
NASA Astrophysics Data System (ADS)
Sheykhi, Samira; Payami, Mahmoud
2018-06-01
In this work using the density functional theory (DFT), we have studied the structural, electronic and magnetic properties of uranium dioxide with antiferromagnetic 1k-, 2k-, and 3k-order structures. Ordinary approximations in DFT, such as the local density approximation (LDA) or generalized gradient approximation (GGA), usually predict incorrect metallic behaviors for this strongly correlated electron system. Using Hubbard term correction for f-electrons, LDA+U method, as well as using the screened Heyd-Scuseria-Ernzerhof (HSE) hybrid functional for the exchange-correlation (XC), we have obtained the correct ground-state behavior as an insulator, with band gaps in good agreement with experiment.
NASA Astrophysics Data System (ADS)
Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling
2018-04-01
The optical properties and condensation degree (structure) of polymeric g-C3N4 depend strongly on the process temperature. For polymeric g-C3N4, its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C3N4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C3N4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C3N4. The edge shape also has a distinct effect on the electronic structure of the crystallized g-C3N4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C3N4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C3N4 nanoribbon and the relationship between the structure and properties of g-C3N4.
Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling
2018-04-18
The optical properties and condensation degree (structure) of polymeric g-C 3 N 4 depend strongly on the process temperature. For polymeric g-C 3 N 4 , its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C 3 N 4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C 3 N 4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C 3 N 4 . The edge shape also has a distinct effect on the electronic structure of the crystallized g-C 3 N 4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C 3 N 4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C 3 N 4 nanoribbon and the relationship between the structure and properties of g-C 3 N 4 .
Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei
2016-08-24
As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.
New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure
NASA Astrophysics Data System (ADS)
Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing
2015-10-01
Two new hybrid lead halides (H2BDA)[PbI4] (1) (H2BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI3] (2) (HNPEIM=N-phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively.
NASA Astrophysics Data System (ADS)
Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei
2018-05-01
C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.
Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere
Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun
2015-01-01
By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less
NASA Astrophysics Data System (ADS)
Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.
2018-01-01
A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.
Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert
2017-11-29
Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.
Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain.
Song, Chaoyu; Fan, Fengren; Xuan, Ningning; Huang, Shenyang; Zhang, Guowei; Wang, Chong; Sun, Zhengzong; Wu, Hua; Yan, Hugen
2018-01-31
Because of the strong quantum confinement effect, few-layer γ-InSe exhibits a layer-dependent band gap, spanning the visible and near infrared regions, and thus recently has been drawing tremendous attention. As a two-dimensional material, the mechanical flexibility provides an additional tuning knob for the electronic structures. Here, for the first time, we engineer the band structures of few-layer and bulk-like InSe by uniaxial tensile strain and observe a salient shift of photoluminescence peaks. The shift rate of the optical gap is approximately 90-100 meV per 1% strain for four- to eight-layer samples, which is much larger than that for the widely studied MoS 2 monolayer. Density functional theory calculations well reproduce the observed layer-dependent band gaps and the strain effect and reveal that the shift rate decreases with the increasing layer number for few-layer InSe. Our study demonstrates that InSe is a very versatile two-dimensional electronic and optoelectronic material, which is suitable for tunable light emitters, photodetectors, and other optoelectronic devices.
Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.
Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati
2014-12-10
Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.
NASA Astrophysics Data System (ADS)
Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra
2018-04-01
We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.
NASA Astrophysics Data System (ADS)
Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.
2015-11-01
The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.
NASA Astrophysics Data System (ADS)
Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker
We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.
NASA Astrophysics Data System (ADS)
Biagini, M.; Calandra, C.; Ossicini, Stefano
1995-10-01
Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa2Cu3O7 (PBCO). We have performed linear muffin-tin orbital-atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a CuII oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between CuI and CuII. The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa2Cu3O7.
Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation
NASA Astrophysics Data System (ADS)
Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.
2018-05-01
By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.
Electronic properties of ZnPSe3-MoS2 Van der Waals heterostructure
NASA Astrophysics Data System (ADS)
Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.
2018-04-01
We present a comparative study of electronic properties of ZnPSe3-MoS2 heterostructure using GGA-PBE functional and DFT-D2 method within the framework of density functional theory (DFT). Electronic band structure for the considered heterostructure shows a direct band gap semiconducting character. A decrease in band gap is observed with the heterostructuring as compared to their constituent pristine monolayers. The alignment of valance band maxima and conduction band minima on different layers in heterostructure indicate the physical separation of charge carriers. A work function of 5.31 eV has been calculated for ZnPSe3-MoS2 heterostructure. These results provide a physical basis for the potential applications of these ZnPSe3-MoS2 heterostructure in optoelectronic devices.
Observation of a novel stapler band in 75As
NASA Astrophysics Data System (ADS)
Li, C. G.; Chen, Q. B.; Zhang, S. Q.; Xu, C.; Hua, H.; Li, X. Q.; Wu, X. G.; Hu, S. P.; Meng, J.; Xu, F. R.; Liang, W. Y.; Li, Z. H.; Ye, Y. L.; Jiang, D. X.; Sun, J. J.; Han, R.; Niu, C. Y.; Chen, X. C.; Li, P. J.; Wang, C. G.; Wu, H. Y.; Li, G. S.; He, C. Y.; Zheng, Y.; Li, C. B.; Chen, Q. M.; Zhong, J.; Zhou, W. K.
2017-03-01
The heavy ion fusion-evaporation reaction study for the high-spin spectroscopy of 75As has been performed via the reaction channel 70Zn(9Be, 1p3n)75As at a beam energy of 42 MeV. The collective structure especially a dipole band in 75As is established for the first time. The properties of this dipole band are investigated in terms of the self-consistent tilted axis cranking covariant density functional theory. Based on the theoretical description and the examination of the angular momentum components, this dipole band can be interpreted as a novel stapler band, where the valence neutrons in (1g9/2) orbital rather than the collective core are responsible for the closing of the stapler of angular momentum.
NASA Astrophysics Data System (ADS)
Turkulets, Yury; Shalish, Ilan
2018-01-01
Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.
NASA Astrophysics Data System (ADS)
Dabhi, Shweta D.; Jha, Prafulla K.
2017-09-01
The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.
Effect of disorder on the optical properties of short period superlattices
NASA Technical Reports Server (NTRS)
Strozier, J. A.; Zhang, Y. A.; Horton, C.; Ignatiev, A.; Shih, H. D.
1993-01-01
The optical properties of disordered short period superlattices are studied using a one-dimensional tight-binding model. A difference vector and disorder structure factor are proposed to characterize the disordered superlattice. The density of states, participation number, and optical absorption coefficients for both ordered and disordered superlattices are calculated as a function of energy. The results show that introduction of disorder into an indirect band gap material enhances the optical transition near the indirect band edge.
STRONG EVIDENCE FOR THE DENSITY-WAVE THEORY OF SPIRAL STRUCTURE IN DISK GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia
2016-08-10
The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy’s image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range ofmore » wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image ( B -band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 μ m) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B -band and 3.6 μ m images have smaller pitch angles than the infrared 8.0 μ m image in all cases, in agreement with the prediction of density-wave theory. We also used images in the ultraviolet from Galaxy Evolution Explorer , whose pitch angles agreed with the measurements made at 8 μ m.« less
Temperature-dependent band structure of SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Raslan, Amany; Lafleur, Patrick; Atkinson, W. A.
2017-02-01
We build a theoretical model for the electronic properties of the two-dimensional (2D) electron gas that forms at the interface between insulating SrTiO3 and a number of polar cap layers, including LaTiO3, LaAlO3, and GdTiO3. The model treats conduction electrons within a tight-binding approximation and the dielectric polarization via a Landau-Devonshire free energy that incorporates strontium titanate's strongly nonlinear, nonlocal, and temperature-dependent dielectric response. The self-consistent band structure comprises a mix of quantum 2D states that are tightly bound to the interface and quasi-three-dimensional (3D) states that extend hundreds of unit cells into the SrTiO3 substrate. We find that there is a substantial shift of electrons away from the interface into the 3D tails as temperature is lowered from 300 K to 10 K. This shift is least important at high electron densities (˜1014cm-2 ) but becomes substantial at low densities; for example, the total electron density within 4 nm of the interface changes by a factor of two for 2D electron densities ˜1013cm-2 . We speculate that the quasi-3D tails form the low-density high-mobility component of the interfacial electron gas that is widely inferred from magnetoresistance measurements.
NASA Astrophysics Data System (ADS)
Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar
2014-07-01
In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.
Viñes, Francesc; Illas, Francesc
2017-03-30
The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
New insights from coral growth band studies in an era of rapid environmental change
NASA Astrophysics Data System (ADS)
Lough, Janice M.; Cooper, Timothy F.
2011-10-01
The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.
Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotsenko, V.P., E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Voloshinovskii, A.S.
2015-04-15
Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions havemore » been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.« less
NASA Astrophysics Data System (ADS)
Rajaji, V.; Pal, Koushik; Sarma, Saurav Ch.; Joseph, B.; Peter, Sebastian C.; Waghmare, Umesh V.; Narayana, Chandrabhas
2018-04-01
We report high-pressure Raman scattering measurements on the tetragonal phase of InTe corroborated with the first-principles density functional theory and synchrotron x-ray diffraction measurements. Anomalous pressure-dependent linewidths of the A1 g and Eg phonon modes provide evidence of an isostructural electronic transition at ˜3.6 GPa . The first-principles theoretical analysis reveals that it is associated with a semiconductor-to-metal transition due to increased density of states near the Fermi level. Further, this pressure induced metallization acts as a precursor for structural phase transition to a face centered cubic phase (F m 3 ¯m ) at ˜6.0 GPa . Interestingly, theoretical results reveal a pressure induced band inversion at the Z and M points of the Brillouin zone corresponding to pressures ˜1.0 and ˜1.4 GPa , respectively. As the parity of bands undergoing inversions is the same, the topology of the electronic state remains unchanged, and hence InTe retains its trivial band topology (Z2=0 ) . The pressure dependent behavior of the A1 g and Eg modes can be understood based on the results from the synchrotron x-ray diffraction, which shows anisotropic compressibility of the lattice in the a and c directions. Our Raman measurements up to ˜19 GPa further confirms the pressure induced structural phase transition from a face-centered to primitive cubic (F m 3 ¯m to P m 3 ¯m ) at P ˜15 GPa .
Self-interaction correction in multiple scattering theory: application to transition metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daene, Markus W; Lueders, Martin; Ernst, Arthur
2009-01-01
We apply to transition metal monoxides the self-interaction corrected (SIC) local spin density (LSD) approximation, implemented locally in the multiple scattering theory within the Korringa-Kohn-Rostoker (KKR) band structure method. The calculated electronic structure and in particular magnetic moments and energy gaps are discussed in reference to the earlier SIC results obtained within the LMTO-ASA band structure method, involving transformations between Bloch and Wannier representations to solve the eigenvalue problem and calculate the SIC charge and potential. Since the KKR can be easily extended to treat disordered alloys, by invoking the coherent potential approximation (CPA), in this paper we compare themore » CPA approach and supercell calculations to study the electronic structure of NiO with cation vacancies.« less
Supercoiled circular DNA of an insect granulosis virus
Tweeten, Kathleen A.; Bulla, Lee A.; Consigli, Richard A.
1977-01-01
The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of 3H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 × 106 by sedimentation in neutral sucrose and 78 × 106 by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 × 106. The buoyant density of the granulosis virus DNA was 1.703 g/cm3 and that of its insect host DNA was 1.697 g/cm3. Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively. Images PMID:198791
Supercoiled circular DNA of an insect granulosis virus.
Tweeten, K A; Bulla, L A; Consigli, R A
1977-08-01
The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of (3)H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 x 10(6) by sedimentation in neutral sucrose and 78 x 10(6) by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 x 10(6). The buoyant density of the granulosis virus DNA was 1.703 g/cm(3) and that of its insect host DNA was 1.697 g/cm(3). Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively.
Temperature-driven band inversion in Pb 0.77 Sn 0.23 Se : Optical and Hall effect studies
Anand, Naween; Buvaev, Sanal; Hebard, A. F.; ...
2014-12-23
Optical and Hall-effect measurements have been performed on single crystals of Pb₀.₇₇Sn₀.₂₃Se, a IV-VI mixed chalcogenide. The temperature dependent (10–300 K) reflectance was measured over 40–7000 cm⁻¹ (5–870 meV) with an extension to 15,500 cm⁻¹ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy opticalmore » spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Thus, density function theory calculation for the electronic band structure also make similar predictions.« less
An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic
NASA Astrophysics Data System (ADS)
Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.
2018-04-01
The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
Electronic response of rare-earth magnetic-refrigeration compounds GdX2 (X = Fe and Co)
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Ahuja, Ushma; Kumar, Kishor; Heda, N. L.
2018-05-01
We present the Compton profiles (CPs) of rare-earth-transition metal compounds GdX2 (X = Fe and Co) using 740 GBq 137Cs Compton spectrometer. To compare the experimental momentum densities, we have also computed the CPs, electronic band structure, density of states (DOS) and Mulliken population (MP) using linear combination of atomic orbitals (LCAO) method. Local density and generalized gradient approximations within density functional theory (DFT) along with the hybridization of Hartree-Fock and DFT (B3LYP and PBE0) have been considered under the framework of LCAO scheme. It is seen that the LCAO-B3LYP based momentum densities give a better agreement with the experimental data for both the compounds. The energy bands and DOS for both the spin-up and spin-down states show metallic like character of the reported intermetallic compounds. The localization of 3d electrons of Co and Fe has also been discussed in terms of equally normalized CPs and MP data. Discussion on magnetization using LCAO method is also included.
Study of electronic structure and Compton profiles of transition metal diborides
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Heda, N. L.; Kumar, Kishor; Ahuja, B. L.
2017-08-01
We report Compton profiles (CPs) of transition metal diborides (MB2; M= Ti and Zr) using a 740 GBq 137Cs Compton spectrometer measured at an intermediate resolution of 0.34 a.u. To validate the experimental momentum densities, we have employed the linear combination of atomic orbitals (LCAO) method to compute the theoretical CPs along with the energy bands, density of states (DOS) and Mulliken's population response. The LCAO computations have been performed in the frame work of density functional theory (DFT) and hybridization of Hartree-Fock and DFT (namely B3LYP and PBE0). For both the diborides, the CPs based on revised Perdew-Burke-Ernzerhof exchange and correlation functions (DFT-PBESol) lead to a better agreement with the experimental momentum densities than other reported approximations. Energy bands, DOS and real space analysis of CPs confirm a metallic-like character of both the borides. Further, a comparison of DFT-PBESol and experimental data on equal-valence-electron-density scale shows more ionicity in ZrB2 than that in TiB2, which is also supported by the Mulliken's population based charge transfer data.
UTa 2O(S 2) 3Cl 6: A ribbon structure containing a heterobimetallic 5 d-5 f M 3 cluster
NASA Astrophysics Data System (ADS)
Wells, Daniel M.; Chan, George H.; Ellis, Donald E.; Ibers, James A.
2010-02-01
A new solid-state compound containing a heterobimetallic cluster of U and Ta, UTa 2O(S 2) 3Cl 6, has been synthesized and its structure has been characterized by single-crystal X-ray diffraction methods. UTa 2O(S 2) 3Cl 6 was synthesized from UCl 4 and Ta 1.2S 2 at 883 K. The O is believed to have originated in the Ta 1.2S 2 reactant. The compound crystallizes in the space group P1¯ of the triclinic system. The structure comprises a UTa 2 unit bridged by μ 2-S 2 and μ 3-O groups. Each Ta atom bonds to two μ 2-S 2, the μ 3-O, and two terminal Cl atoms. Each U atom bonds to two μ 2-S 2, the μ 3-O, and four Cl atoms. The Cl atoms bridge in pairs to neighboring U atoms to form a ribbon structure. The bond distances are normal and are consistent with formal oxidation states of +IV/+V/-II/-I/-I for U/Ta/O/S/Cl, respectively. The optical absorbance spectrum displays characteristic transition peaks near the absorption edge. Density functional theory was used to assign these peaks to transitions between S 1- valence-band states and empty U 5 f-6 d hybrid bands. Density-of-states analysis shows overlap between Ta 5 d and U bands, consistent with metal-metal interactions.
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2014-01-01
The structural, electronic, magnetic and optical properties of Co-based Heusler compounds, Co2CrZ (Z = Si, Ge), are studied using first-principle density functional theory. The calculations are performed within the generalized gradient approximation. Our calculated structural parameters at 0 GPa agree well with previous available results. The calculated magnetic moment agrees well with the Slater-Pauling (SP) rule. We have studied the effect of pressure on the electronic and magnetic properties of Co2CrSi and Co2CrGe. With an increase in applied pressure, a decrease in cell volume is observed. Under application of external pressure, the valence band and conduction band are shifted downward which leads to a modification of electronic structure. There exists an indirect band gap along Γ-X for both the alloys. Co2CrSi and Co2CrGe retain 100% spin polarization up to 60 and 50 GPa, respectively. The local magnetic moments of the Co and Si (Ge) atoms increase with an increase in pressure whereas the local magnetic moment of the Cr atom decreases. In addition, the optical properties such as dielectric function, absorption spectra, optical conductivity and energy loss function of these alloys have also been investigated. To our knowledge this is the first theoretical prediction of the pressure dependence of the structural, electronic, magnetic and optical properties of Co2CrSi and Co2CrGe.
Electronic structure of the organic semiconductor copper phthalocyanine: experiment and theory.
Aristov, V Yu; Molodtsova, O V; Maslyuk, V V; Vyalikh, D V; Zhilin, V M; Ossipyan, Yu A; Bredow, T; Mertig, I; Knupfer, M
2008-01-21
The electronic structure of the organic semiconductor copper-phthalocyanine (CuPc) has been determined by a combination of conventional and resonant photoemission, near-edge x-ray absorption, as well as by the first-principles calculations. The experimentally obtained electronic valence band structure of CuPc is in very good agreement with the calculated density of states results, allowing the derivation of detailed site specific information.
NASA Astrophysics Data System (ADS)
Umamaheswari, R.; Yogeswari, M.; Kalpana, G.
2013-02-01
Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.
2007-01-01
Teleost gut associated lymphoid tissue (GALT) consists of leucocyte populations located both intraepithelially and in the lamina propria with no structural organization. The present study aims to assess different protocols for the isolation of GALT cells from an important fish species in the Mediterranean aquaculture, the gilthead seabream. Mechanical, chemical and enzymatic treatments were assayed. Nylon wool columns and continuous density gradients were used for further separation of cell subpopulations. Light microscopy and flow cytometry showed that the highest density band (HD) consisted of a homogeneous lymphocytic population, whereas the intermediate density band (ID) corresponded to epithelial and secretory cells and some lymphocytes. Respiratory burst activity of total cell suspensions revealed very low numbers of potential phagocytic cells, reflecting results from light microscopy and reports in other teleost species. The present data set up the basis for future functional characterization of GALT in seabream. PMID:18213363
The nature of the Fe–graphene interface at the nanometer level
Cattelan, M.; Peng, G. W.; Cavaliere, E.; ...
2014-12-22
The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This paper reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, near edge X-ray absorption fine structure, scanning tunnelling microscopy and spin polarized density functional theory calculations. Quasi-free-standing graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Here, calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.
Electronic Structure of HgBa2CaCu2O(6+delta) Epitaxial films measured by x-ray Photoemission
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Rupp, M.; Gupta, A.; Tsuei, C. C.
1995-01-01
The electronic structure and chemical states of HgBa2CaCu20(sub 6 + delta), epitaxial films have been studied with x-ray photelectron spectroscopy. Signals from the superconducting phase dominate all the core-level spectra, and a clear Fermi edge is observed in the valence-band region. The Ba, Ca, Cu, and O core levels are similar to those of Tl2Ba2CaCu208(+)O(sub 6 + delta), but distinct differences are observed in the valence bands which are consistent with differences in the calculated densities of states.
NASA Astrophysics Data System (ADS)
Mašek, J.
1991-05-01
A comparative study of the electronic structure of (Zn,Co)Se and (Zn,Mn)Se is done by using a tight-binding version of the coherent potential approximation. The densities of states, relevant for a photoemission experiment, are calculated for a magnetically disordered phase. The exchange constant Jpd is obtained from the splitting of the valence band top in the ferromagnetic phase of the mixed crystal; Jdd is estimated from the energy of a spin reversal. We explain the large exchange constant in the Co-based systems as a result of efficient hybridization of the d-states with the valence band.
Electronic structure of LiGaS 2
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lobanov, S.; Huang, H.; Lin, Z. S.
2009-04-01
X-ray photoelectron spectroscopy (XPS) measurement has been performed to determine the valence band structure of LiGaS 2 crystals. The experimental measurement is compared with the electronic structure obtained from the density functional calculations. It is found that the Ga 3d states in the XPS spectrum are much higher than the calculated results. In order to eliminate this discrepancy, the LDA+ U method is employed and reasonable agreement is achieved. Further calculations show that the difference of the linear and nonlinear optical coefficients between LDA and LDA+ U calculations is negligibly small, indicating that the Ga 3d states are actually independent of the excited properties of LiGaS 2 crystals since they are located at a very deep position in the valence bands.
Preliminary study of near surface detections at geothermal field using optic and SAR imageries
NASA Astrophysics Data System (ADS)
Kurniawahidayati, Beta; Agoes Nugroho, Indra; Syahputra Mulyana, Reza; Saepuloh, Asep
2017-12-01
Current remote sensing technologies shows that surface manifestation of geothermal system could be detected with optical and SAR remote sensing, but to assess target beneath near the surface layer with the surficial method needs a further study. This study conducts a preliminary result using Optic and SAR remote sensing imagery to detect near surface geothermal manifestation at and around Mt. Papandayan, West Java, Indonesia. The data used in this study were Landsat-8 OLI/TIRS for delineating geothermal manifestation prospect area and an Advanced Land Observing Satellite(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) level 1.1 for extracting lineaments and their density. An assumption was raised that the lineaments correlated with near surface structures due to long L-band wavelength about 23.6 cm. Near surface manifestation prospect area are delineated using visual comparison between Landsat 8 RGB True Colour Composite band 4,3,2 (TCC), False Colour Composite band 5,6,7 (FCC), and lineament density map of ALOS PALSAR. Visual properties of ground object were distinguished from interaction of the electromagnetic radiation and object whether it reflect, scatter, absorb, or and emit electromagnetic radiation based on characteristic of their molecular composition and their macroscopic scale and geometry. TCC and FCC composite bands produced 6 and 7 surface manifestation zones according to its visual classification, respectively. Classified images were then compared to a Normalized Different Vegetation Index (NDVI) to obtain the influence of vegetation at the ground surface to the image. Geothermal area were classified based on vegetation index from NDVI. TCC image is more sensitive to the vegetation than FCC image. The later composite produced a better result for identifying visually geothermal manifestation showed by detail-detected zones. According to lineament density analysis high density area located on the peak of Papandayan overlaid with zone 1 and 2 of FCC. Comparing to the extracted lineament density, we interpreted that the near surface manifestation is located at zone 1 and 2 of FCC image.
NASA Astrophysics Data System (ADS)
Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.
2018-02-01
Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.
Wu, Tao; Deng, Kaiming; Deng, Wei-Qiao; Lu, Ruifeng
2017-09-19
BNCX monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNCX (x=1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNCX monolayers are semiconductors with band gap ranging from 0.51 to 1.32 eV. The carrier mobility of BNCX varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNCX monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along y direction and electron mobility along x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNCX layered materials with proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices. © 2017 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho
We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was alsomore » clarified.« less
Modak, Brindaban; Srinivasu, K; Ghosh, Swapan K
2014-08-28
In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.
Electronic structure and optical property of boron doped semiconducting graphene nanoribbons
NASA Astrophysics Data System (ADS)
Chen, Aqing; Shao, Qingyi; Wang, Li; Deng, Feng
2011-08-01
We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C-B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nanoribbons gets lower than that of intrinsic semiconducting graphene nanoribbons. Our results also show that the boron doped semiconducting graphene nanoribbons behave as p-type semiconducting and that the absorption coefficient of boron doped armchair graphene nanoribbons is generally enhanced between 2.0 eV and 3.3 eV. Therefore, our results have a great significance in developing nano-material for fabricating the nano-photovoltaic devices.
Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, S.; Zunger, A.
1993-09-01
Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N
NASA Astrophysics Data System (ADS)
Karabutov, A. A.; Kozhushko, V. V.; Pelivanov, I. M.; Podymova, N. B.
2001-03-01
The propagation of ultrasound in a one-dimensional model and actual periodic structures (PSs) is studied experimentally by the method of optoacoustic spectroscopy based on the laser thermooptical excitation and wide-band piezodetection of short acoustic pulses. It is shown that the ultrasound transmission spectrum of a PS has stop and pass bands, and the greater the number of layers in the PSs, the deeper the stop bands. The case where the thickness, density, and ultrasound velocity of one or several layers in the PS are modified is studied in detail. In this case, a narrow local maximum of ultrasound transmission appears in the stop band, whose location depends considerably on the position of the "defective" layer in the PS. The experimental data obtained coincide well with the theoretical calculation. The nondestructive evaluation of actual PSs consisting of two epoxy-glued identical aluminum plates is carried out by the optoacoustic method. Such materials are widely used in aircraft industry. It is shown that the ultrasound transmission spectrum for these materials depends considerably on the thickness of the epoxy-glue layer.
Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion
NASA Astrophysics Data System (ADS)
Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak
2018-02-01
The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.
2013-01-01
The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appalakondaiah, S.; Vaitheeswaran, G., E-mail: gvaithee@gmail.com; Lebègue, S.
The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant incrementmore » in the N–H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.« less
Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene
NASA Astrophysics Data System (ADS)
Menezes, Marcos G.; Capaz, Rodrigo B.
2015-08-01
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
Electronic and Structural Properties of Vacancies and Hydrogen Adsorbates on Trilayer Graphene
NASA Astrophysics Data System (ADS)
Menezes, Marcos; Capaz, Rodrigo
2015-03-01
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external electrical field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui
2016-12-01
In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p (2) hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.
Ba 2TeO as an optoelectronic material: First-principles study
Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...
2015-05-21
The band structure, optical and defects properties of Ba 2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba 2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba 2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneousmore » formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-24
The electronic and optical properties of the rare earth metal atom-doped anatase TiO₂ have been investigated systematically via density functional theory calculations. The results show that TiO₂ doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron-hole recombination. This effect of band change originates from the 4 f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO₂ is tuned by the introduction of impurity atoms.
Xie, Kefeng; Jia, Qiangqiang; Wang, Yizhe; Zhang, Wenxue; Xu, Jingcheng
2018-01-01
The electronic and optical properties of the rare earth metal atom-doped anatase TiO2 have been investigated systematically via density functional theory calculations. The results show that TiO2 doped by Ce or Pr is the optimal choice because of its small band gap and strong optical absorption. Rare earth metal atom doping induces several impurity states that tune the location of valence and conduction bands and an obvious lattice distortion that should reduce the probability of electron–hole recombination. This effect of band change originates from the 4f electrons of the rare earth metal atoms, which leads to an improved visible light absorption. This finding indicates that the electronic structure of anatase TiO2 is tuned by the introduction of impurity atoms. PMID:29364161
Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Su2
NASA Astrophysics Data System (ADS)
Yamagami, Hiroshi
2011-01-01
In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu2Si2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu2Si2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like "curing-stone", "rugby-ball " and "ball". The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.
NASA Astrophysics Data System (ADS)
Zahedifar, Maedeh; Kratzer, Peter
2018-01-01
Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0 method is required to perform a reliable computational search for the optimum material.
Li, Tsung-Lung; Lu, Wen-Cai
2015-10-05
In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.
A new silicon phase with direct band gap and novel optoelectronic properties
Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; ...
2015-09-23
Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. Additionally, this new allotrope displays large carrier mobility (~10 4 cm/V · s) at room temperature and a low mass density (1.71 g/cm 3), making it amore » promising material for optoelectronic applications.« less
Bandyopadhyay, Arka; Nandy, Atanu; Chakrabarti, Arunava; Jana, Debnarayan
2017-08-16
Tetragonal graphene (T-graphene) is a theoretically proposed dynamically stable, metallic allotrope of graphene. In this theoretical investigation, a tight binding (TB) model is used to unravel the metal to semiconductor transition of this 2D sheet under the influence of an external magnetic flux. In addition, the environment under which the sheet exposes an appreciable direct band gap of 1.41 ± 0.01 eV is examined. Similarly, the electronic band structure of the narrowest armchair T-graphene nanoribbon (NATGNR) also gets modified with different combinations of magnetic fluxes through the elementary rings. The band tuning parameters are critically identified for both systems. It is observed that the induced band gaps vary remarkably with the tuning parameters. We have also introduced an exact analytical approach to address the band structure of the NATGNR in the absence of any magnetic flux. Finally, the optical properties of the sheet and NATGNR are also critically analysed for both parallel and perpendicular polarizations with the help of density functional theory (DFT). Our study predicts that this material and its nanoribbons can be used in optoelectronic devices.
NASA Astrophysics Data System (ADS)
Guechi, N.; Bouhemadou, A.; Bin-Omran, S.; Bourzami, A.; Louail, L.
2018-02-01
We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA-PBEsol) and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. Because of the presence of heavy elements in the studied compounds, we include the spin-orbit coupling (SOC) effect. Our calculated structural parameters agree very well with the available experimental and theoretical findings. Single-crystal and polycrystalline elastic constants are predicted using the total-energy versus strain approach. Three-dimensional representations of the crystallographic direction dependence on the shear modulus, Young's modulus and Poisson's ratio demonstrate a noticeable elastic anisotropy. The TB-mBJ potential with SOC yields an indirect band gap of 2.44 (1.93) eV for Cs2AgBiCl6 (Cs2AgBiBr6), in good agreement with the existing experimental data. The chemical bonding features are probed via density of states and valence electron density distribution calculations. Optical response functions were predicted from the calculated band structure. Both of the investigated compounds have a significant absorption coefficient (˜ 25 × 104 {cm}^{ - 1} ) in the visible range of sunlight. The thermoelectric properties of the title compounds were investigated using the FP-LAPW approach in combination with the semi-classical Boltzmann transport theory. The Cs2AgBiCl6 and Cs2AgBiBr6 compounds have a large thermopower S, which makes them potential candidates for thermoelectric applications.
Electronic structure of ZrX2 (X = Se, Te)
NASA Astrophysics Data System (ADS)
Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.
2018-03-01
The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.
Wavefunction Properties and Electronic Band Structures of High-Mobility Semiconductor Nanosheet MoS2
NASA Astrophysics Data System (ADS)
Baik, Seung Su; Lee, Hee Sung; Im, Seongil; Choi, Hyoung Joon; Ccsaemp Team; Edl Team
2014-03-01
Molybdenum disulfide (MoS2) nanosheet is regarded as one of the most promising alternatives to the current semiconductors due to its significant band-gap and electron-mobility enhancement upon exfoliating. To elucidate such thickness-dependent properties, we have studied the electronic band structures of bulk and monolayer MoS2 by using the first-principles density-functional method as implemented in the SIESTA code. Based on the wavefunction analyses at the conduction band minimum (CBM) points, we have investigated possible origins of mobility difference between bulk and monolayer MoS2. We provide formation energies of substitutional impurities at the Mo and S sites, and discuss feasible electron sources which may induce a significant difference in the carrier lifetime. This work was supported by NRF of Korea (Grant Nos. 2009-0079462 and 2011-0018306), Nano-Material Technology Development Program (2012M3a7B4034985), and KISTI supercomputing center (Project No. KSC-2013-C3-008). Center for Computational Studies of Advanced Electronic Material Properties.
Sato, T; Tanaka, Y; Nakayama, K; Souma, S; Takahashi, T; Sasaki, S; Ren, Z; Taskin, A A; Segawa, Kouji; Ando, Yoichi
2013-05-17
We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.
NASA Astrophysics Data System (ADS)
Nagatani, Hiraku; Mizuno, Yuki; Suzuki, Issei; Kita, Masao; Ohashi, Naoki; Omata, Takahisa
2017-06-01
Band-gap engineering of β-CuGaO2 was demonstrated by the alloying of gallium with aluminum, that is, Cu(Ga1-xAlx)O2. The ternary wurtzite β-NaFeO2-type alloys were obtained in the range 0 ≤ x ≤ 0.7, and γ-LiAlO2-type phase appeared in the range 0.7 ≤ x ≤ 1. The energy band gap of wurtzite β-CuGaO2 was controlled in the range between 1.47 and 2.09 eV. A direct band gap for x < 0.6 and indirect band gap for x ≥ 0.6 were proposed based on the structural distortion in the β-NaFeO2-type phase and density functional theory (DFT) calculation of β-CuAlO2. The DFT calculation also indicated that the γ-LiAlO2-type phases appeared in 0.7 ≤ x ≤ 1 are also indirect-gap semiconductors.
Structural investigation of the C-O complex in GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, H. Ch.; Kersch, A.; Wagner, H. E.
A carbon-oxygen complex occurring in gallium arsenide crystals after annealing at around 700 °C is studied. Fourier transform infrared absorption measurements on the associated vibrational band at 2060 cm-1 under uniaxial stress reveal that the center has tetragonal symmetry. From the intensity of the {sup 18}O-related satellite band it is concluded that four oxygen atoms are involved. Ab initio local density calculations show that a tetragonal CO{sub 4} molecule forms a stable entity in the gallium arsenide lattice.
Graphene symmetry-breaking with molecular adsorbates: modeling and experiment
NASA Astrophysics Data System (ADS)
Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.
2012-02-01
Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.
2014-06-19
the AlGaN is unintentionally doped . Figure 2.3. AlGaN/GaN band diagram showing polarization charges. The band diagram in Figure 2.3 shows...intentionally doped as are MESFETS, and the channel gets its electrons from the unintentional doping . There is less Coulomb scattering in the...temperature measurements are often used to provide spatial PL maps of doping and trap densities. Laser excitation (quasi-monochromatic) is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisti, F.; Stroppa, A.; Picozzi, S.
The electronic structure of Croconic Acid in the condensed phase has been studied by comparing core level and valence band x-ray photoelectron spectroscopy experiments and first principles density functional theory calculations using the Heyd-Scuseria-Ernzerhof screened hybrid functional and the GW approximation. By exploring the photoemission spectra for different deposition thicknesses, we show how the formation of the hydrogen bond network modifies the O 1s core level lineshape. Moreover, the valence band can be explained only if the intermolecular interactions are taken into account in the theoretical approach.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.
NASA Astrophysics Data System (ADS)
Pour-Imani, Hamed; Kennefick, Daniel; Kennefick, Julia; Shameer Abdeen, Mohammad; Monson, Erick; Shields, Douglas William; Davis, Benjamin L.
2018-01-01
The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C. Lin and F. Shu, continues to be challenged by rival theories, such as the manifold theory. One test between these theories which has been proposed is that the pitch angle of spiral arms for galaxies should vary with the wavelength of the image in the density-wave theory, but not in the manifold theory. The reason is that stars are born in the density wave but move out of it as they age. In this study, we combined large sample size with a wide range of wavelengths to investigate this issue. For each galaxy, we used wavelength FUV151nm, U-band, H-alpha, optical wavelength B-band and infrared 3.6 and 8.0μm. We measured the pitch angle with the 2DFFT and Spirality codes (Davis et al. 2012; Shields et al. 2015). We find that the B-band and 3.6μm images have smaller pitch angles than the infrared 8.0μm image in all cases, in agreement with the prediction of the density-wave theory. We also find that the pitch angle at FUV and H-alpha are close to the measurements made at 8.0μm. The Far-ultraviolet wavelength at 151nm shows very young, very bright UV stars still in the star-forming region (they are so bright as to be visible there and so short-lived that they never move out of it). We find that for both sets of measurements (2dFFT and Spirality) the 8.0μm, H-alpha and ultraviolet images agree in their pitch angle measurements, suggesting that they are, in fact, sensitive to the same region. By contrast, the 3.6μm and B-band images are uniformly tighter in pitch angle measurements than these wavelengths, suggesting that the density-wave picture is correct.
Design issues for optimum solar cell configuration
NASA Astrophysics Data System (ADS)
Kumar, Atul; Thakur, Ajay D.
2018-05-01
A computer based simulation of solar cell structure is performed to study the optimization of pn junction configuration for photovoltaic action. The fundamental aspects of photovoltaic action viz, absorption, separation collection, and their dependence on material properties and deatails of device structures is discussed. Using SCAPS 1D we have simulated the ideal pn junction and shown the effect of band offset and carrier densities on solar cell performance. The optimum configuration can be achieved by optimizing transport of carriers in pn junction under effect of field dependent recombination (tunneling) and density dependent recombination (SRH, Auger) mechanisms.
The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model
NASA Technical Reports Server (NTRS)
Kazior, T. E.; Lagowski, J.; Gatos, H. C.
1983-01-01
The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.
NASA Astrophysics Data System (ADS)
Ahn, Hyung-Woo; Seok Jeong, Doo; Cheong, Byung-ki; Lee, Hosuk; Lee, Hosun; Kim, Su-dong; Shin, Sang-Yeol; Kim, Donghwan; Lee, Suyoun
2013-07-01
We investigated the effect of nitrogen (N) doping on the threshold voltage of an ovonic threshold switching device using amorphous GeSe. Using the spectroscopic ellipsometry, we found that the addition of N brought about significant changes in electronic structure of GeSe, such as the density of localized states and the band gap energy. Besides, it was observed that the characteristics of OTS devices strongly depended on the doping of N, which could be attributed to those changes in electronic structure suggesting a method to modulate the threshold voltage of the device.
Effects of Vacancy Cluster Defects on Electrical and Thermodynamic Properties of Silicon Crystals
Huang, Pei-Hsing; Lu, Chi-Ming
2014-01-01
A first-principle plane-wave pseudopotential method based on the density function theory (DFT) was employed to investigate the effects of vacancy cluster (VC) defects on the band structure and thermoelectric properties of silicon (Si) crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature (θ D) for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (C v) value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell·K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10), the heat capacity decreased by approximately 17%. PMID:24526923
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobulnicky, Henry A.; Alexander, Michael J.; Babler, Brian L.
We characterize the completeness of point source lists from Spitzer Space Telescope surveys in the four Infrared Array Camera (IRAC) bandpasses, emphasizing the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) programs (GLIMPSE I, II, 3D, 360; Deep GLIMPSE) and their resulting point source Catalogs and Archives. The analysis separately addresses effects of incompleteness resulting from high diffuse background emission and incompleteness resulting from point source confusion (i.e., crowding). An artificial star addition and extraction analysis demonstrates that completeness is strongly dependent on local background brightness and structure, with high-surface-brightness regions suffering up to five magnitudes of reduced sensitivity to pointmore » sources. This effect is most pronounced at the IRAC 5.8 and 8.0 {mu}m bands where UV-excited polycyclic aromatic hydrocarbon emission produces bright, complex structures (photodissociation regions). With regard to diffuse background effects, we provide the completeness as a function of stellar magnitude and diffuse background level in graphical and tabular formats. These data are suitable for estimating completeness in the low-source-density limit in any of the four IRAC bands in GLIMPSE Catalogs and Archives and some other Spitzer IRAC programs that employ similar observational strategies and are processed by the GLIMPSE pipeline. By performing the same analysis on smoothed images we show that the point source incompleteness is primarily a consequence of structure in the diffuse background emission rather than photon noise. With regard to source confusion in the high-source-density regions of the Galactic Plane, we provide figures illustrating the 90% completeness levels as a function of point source density at each band. We caution that completeness of the GLIMPSE 360/Deep GLIMPSE Catalogs is suppressed relative to the corresponding Archives as a consequence of rejecting stars that lie in the point-spread function wings of saturated sources. This effect is minor in regions of low saturated star density, such as toward the Outer Galaxy; this effect is significant along sightlines having a high density of saturated sources, especially for Deep GLIMPSE and other programs observing closer to the Galactic center using 12 s or longer exposure times.« less
NASA Astrophysics Data System (ADS)
Bauernfeind, Daniel; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus; Evertz, Hans Gerd
2018-03-01
We investigate the electronic structure of SrMnO3 with density functional theory plus dynamical mean-field theory (DMFT). Within this scheme the selection of the correlated subspace and the construction of the corresponding Wannier functions is a crucial step. Due to the crystal-field splitting of the Mn-3 d orbitals and their separation from the O -2 p bands, SrMnO3 is a material where on first sight a three-band d -only model should be sufficient. However, in the present work we demonstrate that the resulting spectrum is considerably influenced by the number of correlated orbitals and the number of bands included in the Wannier function construction. For example, in a d -d p model we observe a splitting of the t2 g lower Hubbard band into a more complex spectral structure, not observable in d -only models. To illustrate these high-frequency differences we employ the recently developed fork tensor product state (FTPS) impurity solver, as it provides the necessary spectral resolution on the real-frequency axis. We find that the spectral structure of a five-band d -d p model is in good agreement with PES and XAS experiments. Our results demonstrate that the FTPS solver is capable of performing full five-band DMFT calculations directly on the real-frequency axis.
NASA Astrophysics Data System (ADS)
Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2018-04-01
Ternary skutterudites materials exhibit good electronic properties due to the unpaired d- and f- electrons of the transition and rare-earth metals, respectively. In this communication, we have performed the structural optimization of Pr-based filled skutterudite (PrCo4P12) for the first time and obtained the electronic band structure, density of states and magnetic moments by using the full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). Our obtained magnetic moment of PrCo4P12 is ˜ 1.8 µB in which main contribution is due to Pr atom. Behavior of this material is metallic and it is most stable in body centered cubic (BCC) structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A J; van Buuren, T; Bostedt, C
X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure was used to evaluate the density of occupied states of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N{sub 4,5}-edge), Sr 3d (M{sub 4,5}-edge), P 2p (L{sub 2,3}-edge), F 1s and O 1s (K-edges) absorption edges. These results provide the first measurements of the electronic structure and surface chemistry of this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in
2013-04-15
Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductorsmore » in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively due to cation electronegativity.« less
Extending the ICRF to Higher Radio Frequencies
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.
2002-01-01
The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.
Correlation and nuclear distortion effects of Cr-substituted ZnSe.
Tablero, C
2007-04-28
There is a great deal of interest in the effect of the correlation and effect of the atomic distortion in materials with a metallic intermediate band. This band, situated within the semiconductor band gaps, would be split, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition. This basic electronic band structure corresponds to intermediate band materials and is characteristic of transparent-conducting oxides, up and down converters, and intermediate band solar cells. A sufficiently high density of Cr in ZnSe substituting the Zn atoms leads to a microscopic intermediate band, in which these effects will be analyzed. A Hubbard term has been included to improve the description of the many-body effect. This term modifies the bandwidth of the intermediate band, the Fermi energy, and breaks the orbital-occupation degeneracy. From the results, the intermediate band is not split within the range of Hubbard term values analyzed and for Cr substituting Zn from 0.463% to 3.125% of Cr atomic concentration.
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer.
Dong, Chuan-Ding; Beenken, Wichard J D
2016-10-10
In this work, we report an in-depth investigation on the π-stacking and interdigitating structures of poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymer with octyl and ethyl-hexyl side chains and the resulting electronic band structures using density functional theory calculations. We found that in the π-stacking direction, the preferred stacking structure, determined by the steric effect of the branched ethyl-hexyl side chains, is featured by the anthracene-ethynylene units stacking on the phenylene-vinylene units of the neighboring chains and vice versa. This stacking structure, combined with the interdigitating structure where the branched side chains of the laterally neighboring chains are isolated, defines the energetically favorable structure of the ordered copolymer phase, which provides a good compromise between light absorption and charge-carrier transport.
Density functional theory investigation of the LiIn 1-xGa xSe 2 solid solution
Wiggins, Brenden; Batista, Enrique; Burger, Arnold; ...
2016-06-07
Here, the electronic structure and optical properties of the LiIn 1-xGa xSe 2 (x=0, 0.25, 0.5, 0.75, 1) solid solution were studied by density functional theory (DFT) with pure functionals. The exchange-correlation is treated within the local density approximation (LDA) and generalized-gradient approximation (GGA). The electronic structures for each respective compound are discussed in detail. Calculations reveal that gallium incorporation can be used to tune the optical-electrical properties of the solid solution and correlates with the lattice parameter. The band gap trend of the LiIn 1-xGa xSe 2 system follows a nonlinear behavior between the LiInSe 2 and LiGaSe 2more » ternary boundaries. The bowing parameter is estimated to be on the order of 0.1- 0.3 eV at the point. Low-temperature optical absorption revealed a 30% change in the temperature dependence of the band gap for the intermediate compound LiIn 0.6Ga 0.4Se 2 compared to ternary boundaries and suggests the heat capacity to be another control element through strain.« less
First-principles studies of electron transport in Ga2O3
NASA Astrophysics Data System (ADS)
Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; van de Walle, Chris G.
Ga2O3 is a wide-gap semiconductor with a monoclinic crystal structure and a band gap of 4.8 eV. Its high carrier mobility and large band gap have attracted a lot of attention for use in high power electronics and transparent conductors. Despite its potential for adoption in these applications, an understanding of its carrier transport properties is still lacking. In this study we use first-principles calculations to analyze and compute the electron scattering rates in Ga2O3. Scattering due to ionized impurities and polar longitudinal-optical (LO) phonon is taken into account. We find that the electron mobility is nearly isotropic, despite the low-symmetry monoclinic structure of Ga2O3. At low carrier densities ( 1017 cm-3), the mobility is limited by LO phonon scattering. Scattering by ionized impurities becomes increasingly important at higher carrier densities. This type of scattering is enhanced when compensating native point defects are present; in particular, gallium vacancies, which are triply negatively charged, can have a strong effect on mobility. These effects explain the downturn in mobility observed in experiments at high carrier densities. This work was supported by ARO and NSF.
Sizable band gap in organometallic topological insulator
NASA Astrophysics Data System (ADS)
Derakhshan, V.; Ketabi, S. A.
2017-01-01
Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.
NASA Astrophysics Data System (ADS)
Walrath, Jenna Cherie
Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in comparison to that of the 2D alloy layer. The surface composition and band structure of ordered horizontal Sb2Te3 nanowires induced by femtosecond laser irradiation of a thin film are investigated, revealing a band gap modulation between buried Sb2Te3 nanowires and the surrounding insulating material. Finally, STM and STS are used to investigate the band structure of BiSbTe alloys at room temperature, revealing both the Fermi level and Dirac point located inside the bulk bandgap, indicating bulk-like insulating behavior with accessible surface states.