Science.gov

Sample records for bandgap fiber laser

  1. A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers.

    PubMed

    Shurgalin, Max; Anastassiou, Charalambos

    2008-01-01

    Carbon dioxide (CO2) lasers have become one of the most common surgical lasers due to excellent tissue interaction properties that offer precise control of cutting and ablation depth, minimal thermal damage to surrounding tissue, and good hemostasis. However, realization of the benefits offered by using surgical CO2 lasers in many endoscopic, minimally invasive surgical procedures has been inhibited by the absence of reliable, flexible fiber laser beam delivery systems. Recently, novel hollow-core photonic bandgap optical fibers for CO2 lasers were developed that offer high flexibility and mechanical robustness with good optical performance under tight bends. These fibers can be used through rigid and flexible endoscopes and various handpieces and will allow surgeons to perform delicate and precise laser surgery procedures in a minimally invasive manner. This paper describes the basic design of laser beam delivery system, different surgical fiber designs and their characteristics, and usage with existing surgical CO2 laser models. A few examples of successful CO2 laser surgeries performed with these fibers are presented.

  2. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R.J.; Colby, E.R.; Ischebeck, R.; McGuinness, C.M.; Noble, R.; Plettner, T.; Sears, C.M.S.; Siemann, R.H.; Spencer, J.E.; Walz, D.; /SLAC

    2011-11-21

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  3. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    SciTech Connect

    England, R. J.; Colby, E. R.; McGuinness, C. M.; Noble, R.; Plettner, T.; Siemann, R. H.; Spencer, J. E.; Walz, D.; Ischebeck, R.; Sears, C. M. S.

    2009-01-22

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50 pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. We will describe the experimental plan and recent simulation studies of candidate fibers.

  4. Experimental and Numerical Investigation of Single Frequency Amplifier with Photonic Bandgap Fiber at 1178 nm

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hua; Cui, Shu-Zhen; Hu, Jin-Meng; Cao, Fen; Fang, Yong; Lu, Hui-Ling

    2014-06-01

    A single frequency photonic bandgap fiber amplifier at 1178 nm is investigated experimentally and numerically. With a pump power of 81 W, a single frequency 1178 nm fiber laser of 10.3 W is obtained with a 3W seed laser and a 20 m gain fiber. Numerical simulation is conducted with a rate equation model taking amplified spontaneous emission and stimulated Brillouin scattering (SBS) into consideration. Temperature distribution along the fiber is applied for SBS suppression, more than 50 W single frequency fiber laser at 1178 nm is predicted theoretically with a 5W seed laser and a 40 m long gain fiber with five temperature steps.

  5. Calculation of Coupling Efficiencies for Laser-Driven Photonic Bandgap Structures

    SciTech Connect

    England, R. J.; Ng, C.; Noble, R.; Spencer, J. E.

    2010-11-04

    We present a technique for calculating the power coupling efficiency for a laser-driven photonic bandgap structure using electromagnetic finite element simulations, and evaluate the efficiency of several coupling scenarios for the case of a hollow-core photonic bandgap fiber accelerator structure.

  6. Broadband optically controlled switching effect in a microfluid-filled photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Guo, Junqi; Liu, Yan-ge; Wang, Zhi; Luo, Mingming; Huang, Wei; Han, Tingting; Liu, Xiaoqi

    2016-05-01

    Broadband optically controlled switching in a microfluid-filled photonic bandgap fiber (MF-PBGF) was observed and investigated. The MF-PBGF was formed by infusing a temperature-sensitive high-index fluid into all of the cladding holes of a microstructured optical fiber (MOF). The fiber was then side pumped with a 532 nm continuous wave laser. An extinction ratio of greater than 20 dB at most of the bandgap wavelengths (more than 200 nm) was obtained with a switching power of ∼147 mW. Theoretical and experimental investigations revealed that the effect originated from changes in the temperature gradient induced by heat absorption of the fiber coating with laser illumination. These investigations offer a new and simple approach to achieve wideband and flexible all-optical fiber switching devices without using any photosensitive materials.

  7. Photonic bandgap narrowing in conical hollow core Bragg fibers

    SciTech Connect

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet; Bayindir, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  8. High power fiber delivery for laser ignition applications.

    PubMed

    Yalin, Azer P

    2013-11-01

    The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted.

  9. Spectral characterization of a photonic bandgap fiber for sensing applications.

    PubMed

    Aref, S Hashem; Amezcua-Correac, Rodrigo; Carvalho, Joel P; Frazão, Orlando; Santos, José L; Araújo, Francisco M; Latifi, Hamid; Farahi, Faramarz; Ferreira, Luis A; Knight, Jonathan C

    2010-04-01

    We study the measurand-induced spectral shift of the photonic bandgap edge of a hollow-core photonic crystal fiber. The physical measurands considered are strain, temperature, curvature, and twist. A noticeable sensitivity to strain, temperature, and twist is observed, with a blueshift to increase strain and twist. An increase in temperature induces a redshift. On the other hand, curvature has no observable effect on the spectral position of the photonic bandgap edge. PMID:20357872

  10. Transmission and Propagation of an Accelerating Mode in a Photonic Bandgap Fiber

    SciTech Connect

    Ng, C.-K.; England, R.J.; Lee, L.-Q.; Noble, R.; Rawat, V.; Spencer, J.; /SLAC

    2010-08-26

    A hollow core photonic bandgap (PBG) lattice in a dielectric fiber can provide high gradient acceleration in the optical regime, where the accelerating mode resulting from a defect in the PBG fiber can be excited by high-power lasers. Efficient methods of coupling laser power into the PBG fiber are an area of active research. In this paper, we develop a simulation method using the parallel finite-element electromagnetic suite ACE3P to study the propagation of the accelerating mode in the PBG fiber and determine the radiation pattern into free space at the end of the PBG fiber. The far-field radiation will be calculated and the mechanism of coupling power from an experimental laser setup will be discussed.

  11. High-power narrow-linewidth large mode area photonic bandgap fiber amplifier

    NASA Astrophysics Data System (ADS)

    Pulford, Benjamin; Dajani, Iyad; Ehrenreich, Thomas; Holten, Roger; Vergien, Christopher; Naderi, Nader; Mart, Cody; Gu, Guancheng; Kong, Fanting; Hawkins, Thomas; Dong, Liang

    2015-03-01

    Ytterbium-doped large mode area all-solid photonic bandgap fiber amplifiers were used to demonstrate <400 W of output power at 1064 nm. In an initial set of experiments, a fiber with a core diameter of ~50 μm, and a calculated effective area of 1450 μm2 in a straight fiber, was used to generate approximately 600 W. In this case, the input seed was modulated using a sinusoidal format at a frequency of 400 MHz. The output, however, was multimode as the fiber design did not allow for single-mode operation at this wavelength. A second fiber was then fabricated to operate predominantly in single mode at 1064 nm by having the seed closer to the short wavelength edge of the bandgap. This fiber was used to demonstrate 400 W of single-frequency output with excellent beam quality. As the signal power exceeded 450 W, there was significant degradation in the beam quality due to the modal instability. Nevertheless, to the best of our knowledge, the power scaling results obtained in this work far exceed results from prior state of the art all-solid photonic bandgap fiber lasers.

  12. Surface-emitting fiber lasers

    NASA Astrophysics Data System (ADS)

    Shapira, Ofer; Kuriki, Ken; Orf, Nicholas D.; Abouraddy, Ayman F.; Benoit, Gilles; Viens, Jean F.; Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, John D.; Fink, Yoel; Brewster, Megan M.

    2006-05-01

    All fiber lasers to date emit radiation only along the fiber axis. Here a fiber that exhibits laser emission that is radially directed from its circumferential surface is demonstrated. A unique and controlled azimuthally anisotropic optical wave front results from the interplay between a cylindrical photonic bandgap fiber resonator, anisotropic organic dye gain, and a linearly polarized axial pump. Low threshold (86nJ) lasing at nine different wavelengths is demonstrated throughout the visible and near-infrared spectra. We also report the experimental realization of unprecedented layer thicknesses of 29.5 nm maintained throughout meter-long fibers. Such a device may have interesting medical applications ranging from photodynamic therapy to in vivo molecular imaging, as well as textile fabric displays.

  13. Thermal tunability of photonic bandgaps in liquid crystal filled polymer photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Doudou; Chen, Guoxiang; Wang, Lili

    2016-05-01

    A highly tunable bandgap-guiding polymer photonic crystal fiber is designed by infiltrating the cladding air holes with liquid crystal 5CB. Structural parameter dependence and thermal tunability of the photonic bandgaps, mode properties and confinement losses of the designed fiber are investigated. Bandgaps red shift as the temperature goes up. Average thermal tuning sensitivity of 30.9 nm/°C and 20.6 nm/°C is achieved around room temperature for the first and second photonic bandgap, respectively. Our results provide theoretical references for applications of polymer photonic crystal fiber in sensing and tunable fiber-optic devices.

  14. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  15. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  16. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm.

    PubMed

    Olausson, C B; Shirakawa, A; Chen, M; Lyngsø, J K; Broeng, J; Hansen, K P; Bjarklev, A; Ueda, K

    2010-08-01

    An ytterbium-doped photonic bandgap fiber amplifier operating at the long wavelength edge of the ytterbium gain band is investigated for high power amplification. The spectral filtering effect of the photonic bandgap efficiently suppresses amplified spontaneous emission at the conventional ytterbium gain wavelengths and thus enables high power amplification at 1178 nm. A record output power of 167 W, a slope efficiency of 61% and 15 dB saturated gain at 1178 nm have been demonstrated using the ytterbium-doped photonic bandgap fiber.

  17. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOEpatents

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  18. A vector boundary matching technique for efficient and accurate determination of photonic bandgaps in photonic bandgap fibers.

    PubMed

    Dong, Liang

    2011-06-20

    A vector boundary matching technique has been proposed and demonstrated for finding photonic bandgaps in photonic bandgap fibers with circular nodes. Much improved accuracy, comparing to earlier works, comes mostly from using more accurate cell boundaries for each mode at the upper and lower edges of the band of modes. It is recognized that the unit cell boundary used for finding each mode at band edges of the 2D cladding lattice is not only dependent on whether it is a mode at upper or lower band edge, but also on the azimuthal mode number and lattice arrangements. Unit cell boundaries for these modes are determined by mode symmetries which are governed by the azimuthal mode number as well as lattice arrangement due to mostly geometrical constrains. Unit cell boundaries are determined for modes at both upper and lower edges of bands of modes dominated by m = 1 and m = 2 terms in their longitudinal field Fourier-Bessel expansion series, equivalent to LP0s and LP1s modes in the approximate LP mode representations, for hexagonal lattice to illustrate the technique. The novel technique is also implemented in vector form and incorporates a transfer matrix algorithm for the consideration of nodes with arbitrary refractive index profiles. Both are desired new capabilities for further explorations of advanced new designs of photonic bandgap fibers. PMID:21716499

  19. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  20. Detailed study of macrobending effects in a wide transmission bandwidth hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Sandoghchi, S. R.; Numkam, E.; Bradley, T. D.; Hayes, J. R.; Wheeler, N. V.; Jasion, G.; Gray, D. R.; Poletti, F.; Petrovich, M. N.; Richardson, D. J.

    2016-04-01

    We study in detail the macrobending effects in a wide transmission bandwidth (~200nm) 19 cell hollow-core photonic bandgap fiber operating at 1550nm. Our results indicate low bend sensitivity over a ~130nm wide interval within the transmission window, with negligible loss (<0.1dB) for bending radii down to 5mm. The "red shift" and "blue shift" of the bandgap edge have been observed at the short and long wavelength edges, respectively. The cutoff wavelengths where air-guiding modes stop guiding can be extracted from the bending loss spectra, which matches well with the simulated effective refractive index map of such fiber.

  1. Reflection-induced bias error in an air-core photonic bandgap fiber optic gyroscope.

    PubMed

    Zhang, Zuchen; Xu, Xiaobin; Zhang, Zhihao; Song, Ningfang; Zhang, Chunxi

    2016-01-15

    Analysis of the bias error induced by reflections in an air-core photonic bandgap fiber gyroscope is performed by both simulation and experiment. The bias error is sinusoidally periodic under modulation, and its intensity is related to the relative positions of the reflection points. A simple and effective method for the suppression of the error is proposed, and it has been verified experimentally.

  2. Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope.

    PubMed

    Xu, Xiaobin; Zhang, Zuchen; Zhang, Zhihao; Jin, Jing; Song, Ningfang

    2014-11-01

    Air-core photonic bandgap fiber (PBF) is an excellent choice for fiber optic gyroscope owing to its incomparable adaptability of environment. Strong and continuous polarization mode coupling is found in PBFs with an average intensity of ~-30 dB, but the coupling arrives at the limit when the maximum optical path difference between the primary waves and the polarization-mode-coupling-induced secondary waves reaches ~10mm, which is corresponding to the PBF length of ~110 m according to the birefringence in the PBF. Incident light with the low extinction ratio (ER) can suppress the birth of the polarization-mode-coupling-induced secondary waves, but the low-ER light obtained by the conventional Lyot depolarizers does not work here. Consequently, a large nonreciprocity and a bias error of ~13°/h are caused in the air-core photonic bandgap fiber optical gyroscope (PBFOG) with a PBF coil of ~268 m.

  3. Discrete bisoliton fiber laser

    PubMed Central

    Liu, X. M.; Han, X. X.; Yao, X. K.

    2016-01-01

    Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats. PMID:27767075

  4. Reflection-induced bias error in an air-core photonic bandgap fiber optic gyroscope.

    PubMed

    Zhang, Zuchen; Xu, Xiaobin; Zhang, Zhihao; Song, Ningfang; Zhang, Chunxi

    2016-01-15

    Analysis of the bias error induced by reflections in an air-core photonic bandgap fiber gyroscope is performed by both simulation and experiment. The bias error is sinusoidally periodic under modulation, and its intensity is related to the relative positions of the reflection points. A simple and effective method for the suppression of the error is proposed, and it has been verified experimentally. PMID:26766701

  5. Ultrafast fiber lasers for homeland security

    NASA Astrophysics Data System (ADS)

    Okhotnikov, O. G.

    2005-09-01

    properties, technical challenges and methods to achieve stable short pulse operation with high average and peak powers from all-fiber devices. The important aspects of the mode-locked fiber lasers relevant to practical security systems are presented. Particularly, the effect of the amplified spontaneous emission (ASE) on the performance of the SESAMs in mode-locked fiber lasers has been investigated. We show that high level of ASE intensity typical for fiber lasers can saturate the absorption and degrade significantly the nonlinear response of the SESAM. We studied the effect of the absorber recovery time and demonstrated that the ion-irradiated SESAMs with fast nonlinear response are less affected by the ASE radiation and, consequently, in the presence of the high-power ASE they exhibit better self-starting capability compared with slow absorbers. The promising method for noise suppression based on the cavity-enhanced optical limiting is another important issue described. Optical limiting and saturable absorption are studied by placing two-photon absorption material and InGaAs quantum wells in a microcavity. We show that field enhancement that occurs in a cavity affects strongly the limiting threshold and dynamic range of roll-over in the nonlinear response. To achieve energy levels sufficient for different security systems, power scaling technique should be employed. We present a stretched-pulse double-clad ytterbium-doped fiber laser mode-locked with SESAM. High modulation depth in the nonlinear response of the SESAM allows for self-starting pulse operation without any dispersion compensation in the laser cavity. The chirp on the output pulses is highly linear and can be compensated for with dispersion in photonic bandgap fiber. The results is a fully self-starting source of 150-fs pulse with 63-nJ of energy at a 8-MHz repetition rate.

  6. Fiber Laser Development for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.

    2009-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  7. Fiber laser development for LISA

    NASA Astrophysics Data System (ADS)

    Numata, Kenji; Chen, Jeffrey R.; Camp, Jordan

    2010-05-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064 nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100 kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  8. Scattering loss analysis and structure optimization of hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Song, Jingming; Wu, Rong; Sun, Kang; Xu, Xiaoliang

    2016-06-01

    Effects of core structure in 7 cell hollow-core photonic bandgap fibers (HC-PBGFs) on scattering loss are analyzed by means of investigating normalized interface field intensity. Fibers with different core wall thickness, core radius and rounding corner of air hole are simulated. Results show that with thick core wall and expanded core radius, scattering loss could be greatly reduced. The scattering loss of the HC-PBGFs in the wavelength range of 1.5-1.56 μm could be decreased by about 50 % of the present level with optimized core structure design.

  9. Freedom from band-gap slavery: from diode lasers to quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Capasso, Federico

    2010-02-01

    Semiconductor heterostructure lasers, for which Alferov and Kromer received part of the Nobel Prize in Physics in 2000, are the workhorse of technologies such as optical communications, optical recording, supermarket scanners, laser printers and fax machines. They exhibit high performance in the visible and near infrared and rely for their operation on electrons and holes emitting photons across the semiconductor bandgap. This mechanism turns into a curse at longer wavelengths (mid-infrared) because as the bandgap, shrinks laser operation becomes much more sensitive to temperature, material defects and processing. Quantum Cascade Laser (QCL), invented in 1994, rely on a radically different process for light emission. QCLs are unipolar devices in which electrons undergo transitions between quantum well energy levels and are recycled through many stages emitting a cascade of photons. Thus by suitable tailoring of the layers' thickness, using the same heterostructure material, they can lase across the molecular fingerprint region from 3 to 25 microns and beyond into the far-infrared and submillimiter wave spectrum. High power cw room temperature QCLs and QCLs with large continuous single mode tuning range have found many applications (infrared countermeasures, spectroscopy, trace gas analysis and atmospheric chemistry) and are commercially available. )

  10. Multichannel laser-fiber vibrometer

    NASA Astrophysics Data System (ADS)

    Dudzik, Grzegorz; Waz, Adam; Kaczmarek, Pawel; Antonczak, Arkadiusz; Sotor, Jaroslaw; Krzempek, Karol; Sobon, Grzegorz; Abramski, Krzysztof M.

    2013-01-01

    For the last few years we were elaborating the laser-fiber vibrometer working at 1550 nm. Our main stress was directed towards different aspects of research: analysis of scattered light, efficient photodetection, optimization of the fiber-free space interfaces and signal processing. As a consequence we proposed the idea of a multichannel fiber vibrometer based on well developed telecommunication technique - Wavelength Division Multiplexing (WDM). One of the most important parts of a fiber-laser vibrometer is demodulation electronic section. The distortion, nonlinearity, offset and added noise of measured signal come from electronic circuits and they have direct influence on finale measuring results. We present the results of finished project "Developing novel laser-fiber monitoring technologies to prevent environmental hazards from vibrating objects" where we have constructed a 4-channel WDM laser-fiber vibrometer.

  11. Investigation on single taper-based all-solid photonic bandgap fiber modal interferometers.

    PubMed

    Li, Jie; Geng, Mengmei; Sun, Li-Peng; Fan, Pengcheng; Liu, Bo; Guan, Bai-Ou

    2016-04-18

    We demonstrate a single taper-based all-solid photonic bandgap (AS-PBG) fiber modal interferometer that consists of a central tapered fiber region connected to the untapered via two abrupt transitions. Modal interference is given by superimposing the bandgap-guided fundamental core mode with a lower effective index and a specific index-guided cladding supermode with a higher effective index. A series of interferometers with taper diameter of 50μm ~60μm and device length of ~3mm are fabricated and studied in contrast to the conventional counterparts. The temperature coefficient of the interferometer is closely determined by the fraction of the cladding supermode energy localized within the index-raised regions of the fiber. The refractive index (RI) responsivities associated to fiber taper sizes are investigated. The measured maximal RI sensitivity is ~3512.36nm/RIU at the taper diameter of 50μm around RI = 1.423. This research gives a deep understanding to the modal-interferometric AS-PBG structure, which we believe to be valuable for the future application of the related device. PMID:27137292

  12. Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber.

    PubMed

    Li, Haisu; Ren, Guobin; Lian, Yudong; Zhu, Bofeng; Tang, Min; Zhao, Yuanchu; Jian, Shuisheng

    2016-08-01

    We present the viability of exploiting a current hollow-core photonic bandgap fiber (HC-PBGF) to support orbital angular momentum (OAM) states. The photonic bandgap intrinsically provides a large refractive index spacing for guiding light, leading to OAM transmission with low crosstalk. From numerical simulations, a broad OAM±1 mode transmission window with satisfied effective index separations between vector modes (>10-4) and low confinement loss (<3  dB/km) covering 240 nm bandwidth is observed. The OAM purity (defined as normalized power weight for OAM mode) is found to be affected by the modal effective area. Simulation results also show HC-PBGF based OAM transmission is immune to fabrication inaccuracies near the hollow core. This work illustrates that HC-PBGF is a competitive candidate for high-capacity communication harnessing OAM multiplexing.

  13. Fabrication and characterization of an all-solid tellurite-phosphate photonic bandgap fiber.

    PubMed

    Cheng, Tonglei; Sakai, Yukiko; Suzuki, Takenobu; Ohishi, Yasutake

    2015-05-01

    We present an all-solid tellurite-phosphate photonic bandgap fiber (PBGF) with two layers of high-index rods (TeO2-Li2O-WO3-MoO3-Nb2O5, TLWMN) in the cladding (TeO2-ZnO-Li2O-K2O-Al2O3-P2O5, TZLKAP). TLWMN and TZLKAP glasses have good compatibility for fabricating the all-solid PBGF. Photonic bandgap (PBG) properties are calculated by the plane wave expansion method (PWM), and the results agree well with the measured transmission spectrum. Furthermore, the modal field patterns are measured at ∼1300 and 1520 nm, respectively. The light is confined to the core at ∼1300  nm and lost in the cladding at ∼1520  nm, which match well with the calculated modal field intensities.

  14. Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber.

    PubMed

    Li, Haisu; Ren, Guobin; Lian, Yudong; Zhu, Bofeng; Tang, Min; Zhao, Yuanchu; Jian, Shuisheng

    2016-08-01

    We present the viability of exploiting a current hollow-core photonic bandgap fiber (HC-PBGF) to support orbital angular momentum (OAM) states. The photonic bandgap intrinsically provides a large refractive index spacing for guiding light, leading to OAM transmission with low crosstalk. From numerical simulations, a broad OAM±1 mode transmission window with satisfied effective index separations between vector modes (>10-4) and low confinement loss (<3  dB/km) covering 240 nm bandwidth is observed. The OAM purity (defined as normalized power weight for OAM mode) is found to be affected by the modal effective area. Simulation results also show HC-PBGF based OAM transmission is immune to fabrication inaccuracies near the hollow core. This work illustrates that HC-PBGF is a competitive candidate for high-capacity communication harnessing OAM multiplexing. PMID:27472626

  15. Novel fiber lasers and applications

    NASA Astrophysics Data System (ADS)

    Zenteno, Luis A.; Walton, Donnell T.

    2003-07-01

    Glass fiber lasers were invented in the 60's by Elias Snitzer at Americal Optical, soon after the invention of the first solid-state glass laser. However, it was not until the 80's when these waveguide devices were deployed in industrial applications, driven largely by the technological success of the semiconductor laser diode, which provided practical and efficient pumps, and by the advent of low loss rare-earth-doped optical fiber.

  16. Continuous generation of rubidium vapor in hollow-core photonic bandgap fibers.

    PubMed

    Donvalkar, Prathamesh S; Ramelow, Sven; Clemmen, Stéphane; Gaeta, Alexander L

    2015-11-15

    We demonstrate high optical depths (50±5) that last for hours in rubidium-filled hollow-core photonic bandgap fibers, which represent a 1000× improvement over the operation times previously reported. We investigate the vapor generation mechanism using both a continuous wave and a pulsed light source, and find that the mechanism for generating the rubidium atoms is primarily due to thermal vaporization. The continuous generation of large vapor densities should enable measurements at the single-photon level by averaging over longer time scales. PMID:26565879

  17. Backward Secondary-Wave Coherence Errors in Photonic Bandgap Fiber Optic Gyroscopes

    PubMed Central

    Xu, Xiaobin; Song, Ningfang; Zhang, Zuchen; Jin, Jing

    2016-01-01

    Photonic bandgap fiber optic gyroscope (PBFOG) is a novel fiber optic gyroscope (FOG) with excellent environment adaptability performance compared to a conventional FOG. In this work we find and investigate the backward secondary-wave coherence (BSC) error, which is a bias error unique to the PBFOG and caused by the interference between back-reflection-induced and backscatter-induced secondary waves. Our theoretical and experimental results show a maximum BSC error of ~4.7°/h for a 300-m PBF coil with a diameter of 10 cm. The BSC error is an important error source contributing to bias instability in the PBFOG and has to be addressed before practical applications of the PBFOG can be implemented. PMID:27338388

  18. Backward Secondary-Wave Coherence Errors in Photonic Bandgap Fiber Optic Gyroscopes.

    PubMed

    Xu, Xiaobin; Song, Ningfang; Zhang, Zuchen; Jin, Jing

    2016-01-01

    Photonic bandgap fiber optic gyroscope (PBFOG) is a novel fiber optic gyroscope (FOG) with excellent environment adaptability performance compared to a conventional FOG. In this work we find and investigate the backward secondary-wave coherence (BSC) error, which is a bias error unique to the PBFOG and caused by the interference between back-reflection-induced and backscatter-induced secondary waves. Our theoretical and experimental results show a maximum BSC error of ~4.7°/h for a 300-m PBF coil with a diameter of 10 cm. The BSC error is an important error source contributing to bias instability in the PBFOG and has to be addressed before practical applications of the PBFOG can be implemented. PMID:27338388

  19. Backward Secondary-Wave Coherence Errors in Photonic Bandgap Fiber Optic Gyroscopes.

    PubMed

    Xu, Xiaobin; Song, Ningfang; Zhang, Zuchen; Jin, Jing

    2016-01-01

    Photonic bandgap fiber optic gyroscope (PBFOG) is a novel fiber optic gyroscope (FOG) with excellent environment adaptability performance compared to a conventional FOG. In this work we find and investigate the backward secondary-wave coherence (BSC) error, which is a bias error unique to the PBFOG and caused by the interference between back-reflection-induced and backscatter-induced secondary waves. Our theoretical and experimental results show a maximum BSC error of ~4.7°/h for a 300-m PBF coil with a diameter of 10 cm. The BSC error is an important error source contributing to bias instability in the PBFOG and has to be addressed before practical applications of the PBFOG can be implemented.

  20. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  1. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  2. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  3. Wedged Fibers Suppress Feedback of Laser Beam

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1986-01-01

    When injected laser is coupled into optical fiber, emission instabilities arise because of optical feedback losses from fiber into laser. Coupling efficiencies as high as 80 percent, however, obtained by shaping end of multimode fiber into obtuse-angled wedge. Because slanted sides eliminate back reflection, such wedged fiber achieves high coupling efficiency.

  4. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  5. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    at undesirably low levels, and scattering of light from dopants. In designing a given fiber laser for reduced ASE, care must be taken to maintain a correct fiber structure for eventual scaling to an array of many such lasers such that the interactions among all the members of the array would cause them to operate in phase lock. Hence, the problems associated with improving a single-fiber laser are not entirely separate from the bundling problem, and some designs for individual fiber lasers may be better than others if the fibers are to be incorporated into bundles. Extensive calculations, expected to take about a year, must be performed in order to determine design parameters before construction of prototype individual and fiber lasers can begin. The design effort can be expected to include calculations to optimize overlaps between the electromagnetic modes and the gain media and calculations of responses of PBG materials to electromagnetic fields. Design alternatives and physical responses that may be considered include simple PBG fibers with no intensity-dependent responses, PBG fibers with intensity- dependent band-gap shifting (see figure), and broad-band pumping made possible by use of candidate broad-band pumping media in place of the air or vacuum gaps used in prior PBG fibers.

  6. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    SciTech Connect

    Franta, Benjamin Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric; Rekemeyer, Paul H.; Gradečak, Silvija

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  7. Optical turbulence in fiber lasers.

    PubMed

    Wabnitz, Stefan

    2014-03-15

    We analyze the nonlinear stage of modulation instability in passively mode-locked fiber lasers leading to chaotic or noise-like emission. We present the phase-transition diagram among different regimes of chaotic emission in terms of the key cavity parameters: amplitude or phase turbulence, and spatio-temporal intermittency. PMID:24690788

  8. The road to kilowatt fiber lasers

    NASA Astrophysics Data System (ADS)

    Carter, Adrian; Samson, Bryce N.; Tankala, Kanishka; Machewirth, David P.; Manyam, Upendra H.; Abramczyk, Jaroslaw; Farroni, Julia; Guertin, Douglas P.; Jacobson, Nils

    2004-06-01

    Although fiber amplifiers have been employed in communications systems for many years, until very recently the fiber laser was little more than a scientific curiosity. However the fiber laser format has a number of intrinsic advantages over lamp and diode pumped YAG lasers including size, reliability, wavelength selectivity, heat dissipation, wallplug efficiency and operational cost; and with kiloWatt output powers now possible fiber lasers are beginning to replace lamp and diode pumped YAG lasers in many industrial applications. In this paper we review the recent and ongoing advances in fiber design that have facilitated this revolution.

  9. Plasma-Enhanced Pulsed Laser Deposition of Wide Bandgap Nitrides for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Triplett, G. E., Jr.; Durbin, S. M.

    2004-01-01

    The need for a reliable, inexpensive technology for small-scale space power applications where photovoltaic or chemical battery approaches are not feasible has prompted renewed interest in radioisotope-based energy conversion devices. Although a number of devices have been developed using a variety of semiconductors, the single most limiting factor remains the overall lifetime of the radioisotope battery. Recent advances in growth techniques for ultra-wide bandgap III-nitride semiconductors provide the means to explore a new group of materials with the promise of significant radiation resistance. Additional benefits resulting from the use of ultra-wide bandgap materials include a reduction in leakage current and higher operating voltage without a loss of energy transfer efficiency. This paper describes the development of a novel plasma-enhanced pulsed laser deposition system for the growth of cubic boron nitride semiconducting thin films, which will be used to construct pn junction devices for alphavoltaic applications.

  10. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  11. Controllable Dual-Wavelength Fiber Laser

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhou, Jun; He, Bing; Liu, Hou-Kang; Liu, Chi; Wei, Yun-Rong; Dong, Jing-Xing; Lou, Qi-Hong

    2012-07-01

    We demonstrate a controllable dual-wavelength fiber laser which contains a master laser and a slave laser. The master laser is a kind of ring cavity laser which can be injected into by the slave laser. The output laser wavelength is controlled by injected power of the slave laser; both single- and dual-wavelength operation can be achieved. Under free running, the master laser generates 1064 nm laser output. Here the slave laser is a 1072 nm fiber laser. The 1064 nm and 1072 nm laser coexist in output spectrum for relatively low injected power. Dual-wavelength and power-ratio-tunable operation can be achieved. If the injected power of the slave laser is high enough, the 1064 nm laser is extinguished automatically and there is only 1072 nm laser output.

  12. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers.

    PubMed

    Scolari, Lara; Alkeskjold, Thomas; Riishede, Jesper; Bjarklev, Anders; Hermann, David; Anawati, Anawati; Nielsen, Martin; Bassi, Paolo

    2005-09-19

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle.

  13. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers

    NASA Astrophysics Data System (ADS)

    Scolari, Lara; Tanggaard Alkeskjold, Thomas; Riishede, Jesper; Bjarklev, Anders; Sparre Hermann, David; Anawati, Anawati; Dybendal Nielsen, Martin; Bassi, Paolo

    2005-09-01

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle.

  14. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers.

    PubMed

    Scolari, Lara; Alkeskjold, Thomas; Riishede, Jesper; Bjarklev, Anders; Hermann, David; Anawati, Anawati; Nielsen, Martin; Bassi, Paolo

    2005-09-19

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle. PMID:19498773

  15. All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber.

    PubMed

    Hu, Xiongwei; Shen, Xiang; Wu, Jianjun; Peng, Jinggang; Yang, Lvyun; Li, Jinyan; Li, Haiqin; Dai, Nengli

    2016-09-19

    We proposed and experimentally demonstrated a high temperature fiber sensor using a hetero-structured cladding solid-core photonic bandgap fiber (HCSC-PBGF) for the first time to our knowledge. A hetero-structured cladding solid-core photonic bandgap fiber is designed and fabricated that supports vibrant core mode and cladding mode transmission. Then, an all fiber M-Z interference sensor is constructed by splicing single mode fiber at both ends of HCSC-PBGF without any other micromachining. The transmission characteristics of HCSC-PBGF are analyzed with a full-vector beam propagation method and a full-vector finite element method, and the simulation results are consistent with experiment results. The sensitivity of this fiber sensor is as high as 0.09 nm/°C when operating from room temperature to 1000 °C, and the fringe contrast keeps stable and clear. It is obvious that this all fiber sensor will have great application prospects in fiber sensing with the advantages of a compact structure, high sensitivity, and cost-effectiveness. PMID:27661907

  16. Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers.

    PubMed

    Li, Jingwen; Qu, Hang; Skorobogatiy, Maksim

    2015-09-01

    We demonstrate simultaneous monitoring of the real and imaginary parts of the liquid analyte refractive index by using a hollow-core Bragg fiber. We apply this two-channel fiber sensor to monitor concentrations of various commercial cooling oils. The sensor operates using spectral monitoring of the fiber bandgap center wavelength, as well as monitoring of the fiber transmission amplitude at mid-bandgap position. The sensitivity of the fiber sensor to changes in the real part of the core refractive index is found to be 1460nm/Refractive index unit (RIU). By using spectral modality and effective medium theory, we determine the concentrations of the two commercial fluids from the measured refractive indices with an accuracy of ~0.57% for both low- and high-loss oils. Moreover, using an amplitude-based detection modality allows determination of the oil concentration with accuracy of ~1.64% for low-loss oils and ~2.81% for the high-loss oils.

  17. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  18. Crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Florea, C.; Gibson, D.; Peele, J.; Askins, C.; Shaw, B.; Bowman, S.; O'Connor, S.; Bayya, S.; Aggarwal, I.; Sanghera, J. S.

    2013-02-01

    In this paper, we present our recent progress in developing single crystal fibers for high power single frequency fiber lasers. The optical, spectral and morphological properties as well as the loss and gain measured from these crystal fibers drawn by Laser Heated Pedestal Growth (LHPG) system are also discussed. Results on application of various cladding materials on the crystal core and the methods of fiber end-face polishing are also presented.

  19. Mode-locked fiber lasers based on doped fiber arrays.

    PubMed

    Zhang, Xiao; Song, Yanrong

    2014-05-10

    We designed a new kind of mode-locked fiber laser based on fiber arrays, where the central core is doped. A theoretical model is given for an all-fiber self-starting mode-locked laser based on this kind of doped fiber array. Two different kinds of fiber lasers with negative dispersion and positive dispersion are simulated and discussed. The stable mode-locked pulses are generated from initial noise conditions by the realistic parameters. The process of self-starting mode-locking multipulse transition and the relationship between the energy of the central core and the propagation distance of the pulses are discussed. Finally, we analyze the difference between the averaged mode-locked laser and the discrete mode-locked laser.

  20. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  1. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  2. Ultraviolet laser quantum well intermixing based prototyping of bandgap tuned heterostructures for the fabrication of superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2016-04-01

    The ultraviolet laser induced quantum well intermixing process has been investigated for prototyping of multiple bandgap quantum well (QW) wafers designed for the fabrication of superluminescent diodes (SLDs). The process takes advantage of a krypton fluoride excimer laser (λ=248 nm) that by irradiating an InP layer capping GaInAs/GaInAsP QW heterostructure leads to the modification of its surface chemical composition and formation of point defects. A subsequent rapid thermal annealing step results in the selective area intermixing of the investigated heterostructures achieving a high quality bandgap tuned material for the fabrication of broad spectrum SLDs. The devices made from a 3-bandgap material are characterized by ~100 nm wide emission spectra with relatively flat profiles and emission exceeding 1 mW.

  3. 2-μm fiber laser sources for sensing

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Geng, Jihong; Jiang, Shibin

    2014-06-01

    2-μm fiber lasers have become a research topic with an increased emphasis due to a variety of applications including eye-safe LIDAR, spectroscopy, remote sensing, and mid-infrared (mid-IR) frequency generation. We review our latest development on various 2-μm fiber laser sources, including single-frequency fiber lasers, Q-switched fiber lasers, mode-locked fiber lasers, and mid-IR supercontinuum fiber sources. All these fiber laser sources are based on thulium and holmium ions using our proprietary glass fiber technology. Potential applications of these fiber laser sources for sensing are also briefly discussed.

  4. Multiwavelength fiber laser for the fiber link monitoring system

    NASA Astrophysics Data System (ADS)

    Peng, Peng-Chun; Lee, Wei-Yun; Wu, Shin-Shian; Hu, Hsuan-Lun

    2013-10-01

    This work proposes a novel fiber link monitoring system that uses a multiwavelength fiber laser for wavelength-division-multiplexed (WDM) passive optical network (PON). The multiwavelength fiber laser is based on an erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA). Experimental results show the feasibility using the system to monitor a fiber link with a high and stable signal-to-noise ratio (SNR) of over 26 dB. The link quality of downstream signals as well as the fiber link on WDM channels can be monitored in real time. Favorable carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple beat (CTB) performance metrics were obtained for cable television (CATV) signals that were transported through 25 km of standard single-mode fiber (SMF).

  5. Nanosecond laser damage of optical multimode fibers

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Krüger, Jörg

    2016-07-01

    For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and selffocusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254-2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile.

  6. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  7. Microring embedded hollow polymer fiber laser

    SciTech Connect

    Linslal, C. L. Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M.

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  8. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  9. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  10. Self-tuning fiber lasers

    NASA Astrophysics Data System (ADS)

    Brunton, Steven L.; Kutz, J. N.; Fu, Xing

    2016-03-01

    Advanced methods in data science are driving the characterization and control of nonlinear dynamical systems in optics. In this work, we investigate the use of machine learning, sparsity methods and adaptive control to develop a self-tuning fiber laser, which automatically learns and adapts to maintain high-energy ultrashort pulses. In particular, a two-stage procedure is introduced consisting of a machine learning algorithm to recognize different dynamical regimes with distinct behavior, followed by an adaptive control algorithm to reject disturbances and track optimal solutions despite stochastically varying system parameters. The machine learning algorithm, called sparse representation for classification, comes from machine vision and is typically used for image recognition. The adaptive control algorithm is extremum-seeking control, which has been applied to a wide range of systems in engineering; extremum-seeking is beneficial because of rigorous stability guarantees and ease of implementation.

  11. Measurement and suppression of secondary waves caused by high-order modes in a photonic bandgap fiber-optic gyroscope.

    PubMed

    Xu, Xiaobin; Gao, Fuyu; Song, Ningfang; Jin, Jing

    2016-05-16

    Air-core photonic bandgap fiber (PBF) is a good choice for fiber-optic gyroscopes (FOGs) owing to the fact that it can be adapted to a wide variety of environments. However, its multimode properties are disadvantageous for the application to FOGs. An interference-based method is proposed to precisely determine the secondary waves caused by the high-order modes and their coupling. Based on the method, two groups of secondary waves have been found, having optical path differences (OPDs) of ~1.859 m and ~0.85 m, respectively, relative to the primary waves in a PBFOG that consists of a 7-cell PBF coil, approximately 180 m in length. Multi-turn bends of the PBF at both ends of the PBF coil after the fusion splicing points are shown to suppress the intensity of these secondary waves by approximately 10 dB.

  12. Measurement and suppression of secondary waves caused by high-order modes in a photonic bandgap fiber-optic gyroscope.

    PubMed

    Xu, Xiaobin; Gao, Fuyu; Song, Ningfang; Jin, Jing

    2016-05-16

    Air-core photonic bandgap fiber (PBF) is a good choice for fiber-optic gyroscopes (FOGs) owing to the fact that it can be adapted to a wide variety of environments. However, its multimode properties are disadvantageous for the application to FOGs. An interference-based method is proposed to precisely determine the secondary waves caused by the high-order modes and their coupling. Based on the method, two groups of secondary waves have been found, having optical path differences (OPDs) of ~1.859 m and ~0.85 m, respectively, relative to the primary waves in a PBFOG that consists of a 7-cell PBF coil, approximately 180 m in length. Multi-turn bends of the PBF at both ends of the PBF coil after the fusion splicing points are shown to suppress the intensity of these secondary waves by approximately 10 dB. PMID:27409849

  13. Mobile fiber-optic laser Doppler anemometer.

    PubMed

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  14. Fiber-optic technologies in laser-based therapeutics: threads for a cure.

    PubMed

    Wang, Zheng; Chocat, Noémie

    2010-06-01

    In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.

  15. Visible fiber lasers excited by GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  16. In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber

    SciTech Connect

    Wu Zhifang; Liu Yange; Wang Zhi; Han Tingting; Li Shuo; Jiang Meng; Ping Shum, Perry

    2012-10-01

    We report a compact in-line Mach-Zehnder interferometer combining a microtaper with a long-period grating (LPG) in a section of all-solid photonic bandgap fiber. Theoretical and experimental investigations reveal that the interferometer works from the interference between the fundamental core mode and the LP{sub 01} cladding supermodes. The mechanism underlying the mode coupling caused by the microtaper can be attributed to a bandgap-shifting as the fiber diameter is abruptly scaled down. In addition, the interferometer designed to strengthen the coupling ratio of the long-period grating has a promising practical application in the simultaneous measurement of curvature and temperature.

  17. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  18. Amplifier/compressor fiber Raman lasers.

    PubMed

    Islam, M N; Mollenauer, L F; Stolen, R H; Simpson, J R; Shang, H T

    1987-10-01

    We show that the chirp from cross-phase modulation (XPM) dominates the operation of fiber Raman lasers (FRL's). Thus a FRL in the anomalous group-velocity regime is best described as a XPM-chirped Raman amplifier followed by a linear fiber compressor. While the output of such a laser is generally a narrow pulse with a broad pedestal, we show both experimentally and by computer simulation that negligible background is achievable.

  19. Temperature dependence of beat-length and confinement loss in an air-core photonic band-gap fiber

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Li, Xuyou; Hong, Yong; Liu, Pan; Yang, Hanrui; Ling, Weiwei

    2016-05-01

    The temperature dependence of polarization-maintaining (PM) property and loss in a highly-birefringent air-core photonic band-gap fiber (PBF) is investigated. The effects of temperature variation on the effective index, beat-length and confinement loss are studied numerically by using the full-vector finite element method (FEM). It is found that, the PM property of this PBF is insensitive to the temperature, and the temperature-dependent beat-length coefficient can be as low as 2.86×10-8 m/°C, which is typically 200 times less than those of conventional panda fibers, the PBF has a stable confinement loss of 0.01 dB/m over the temperature range of -30 to 20 °C for the slow axis at the wavelength of 1.55 μm. The PBF with ultra-low temperature-dependent PM property and low loss can reduce the thermally induced polarization instability apparently in interferometric applications such as resonant fiber optic gyroscope (RFOG), optical fiber sensors, and so on.

  20. Wideband ultrafast fiber laser sources for OCT and metrology

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko

    2016-09-01

    Fiber lasers, which use optical fibers as ideal waveguides, have been attracting a great deal of attention as stable, practical, and maintenance-free lasers. Using a combination of an ultrashort-pulse fiber laser and a nonlinear fiber, we can realize wideband highly functional ultrafast fiber laser sources. The generation of ultrashort pulses with wide wavelength tunability and supercontinua based on fiber lasers and nonlinear fibers has been demonstrated. These techniques are useful for laser applications, especially for imaging and metrology. In this topical review, the fundamentals of and recent progress in wideband ultrafast fiber laser sources and their applications are reviewed mainly based on the author’s work. First, a new pulse source based on a passively-mode-locked ultrashort-pulse fiber laser using carbon nanotubes is explained. Next, the development of wideband ultrafast fiber laser sources and their applications in ultrahigh-resolution optical coherence tomography, optical frequency combs, and nonlinear microscopy are reviewed.

  1. Nonlinear Silicon Waveguides for Integrated Fiber Laser Systems

    NASA Astrophysics Data System (ADS)

    Wong, Chi Yan

    clocks for high speed applications and coherent optical comb source for high spectral efficiency modulation schemes such as orthogonal frequency division multiplexing (OFDM). Besides the parametric processes, we study a graphene based saturable absorber which can be used to achieve ultrafast passive mode-locked laser for SOI sensing platform. Graphene based photonic devices have attracted considerable interest because of their unique zero bandgap and linear electronic dispersion. The graphene on silicon waveguide structure offers the advantage of greatly increasing the interaction length compared to the geometry with light incident normal to the graphene plane. We describe a mode-locked fiber laser using graphene on silicon saturable absorber. Finally, we study the possibility of expanding the working wavelengths to mid-infrared (mid-IR) for chemical sensing or free-space communications. MRRs were fabricated on silicon-on-sapphire (SOS) wafer and characterized at 2.75 microm. We developed a characterization technique to measure the Q of MRRs using a fixed wavelength source by only varying the temperature of the device. The proposed method provides an alternative method of Q measurement for MRRs in mid-IR where tunable lasers may not be easily available.

  2. Actively mode-locked Raman fiber laser.

    PubMed

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking. PMID:26367642

  3. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Lv, Jingsheng; Qi, Haifeng; Song, Zhiqiang; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding

    2016-09-01

    A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

  4. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  5. Fiber Delivery of mid-IR lasers

    SciTech Connect

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, James P.

    2011-08-24

    Fiber optics for the visible to near infrared (NIR) wavelength regimes (i.e. = 0.42 {mu}m) have proven to be extremely useful for a myriad of applications such as telecommunications, illumination, and sensors because they enable convenient, compact, and remote delivery of laser beams. Similarly, there is a need for fiber optics operating at longer wavelengths. For example, systems operating in the mid-IR regime (i.e., = 314 {mu}m) are being developed to detect trace molecular species with far-reaching applications, such as detecting explosives on surfaces, pollutants in the environment, and biomarkers in the breath of a patient. Furthermore, with the increasing availability of quantum cascade lasers (QCLs) which are semiconductor lasers that operate in the mid-IR regime additional uses are rapidly being developed. Here, we describe the development of hollow-core fibers for delivery of high-quality mid-IR laser beams across a broad spectral range.

  6. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  7. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  8. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2011-11-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  9. Technology and applications of ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  10. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  11. Ho:YLF Laser Pumped by TM:Fiber Laser

    NASA Astrophysics Data System (ADS)

    Mizutani, Kohei; Ishii, Shoken; Itabe, Toshikazu; Asai, Kazuhiro; Sato, Atsushi

    2016-06-01

    A 2-micron Ho:YLF laser end-pumped by 1.94-micron Tm:fiber laser is described. A ring resonator of 3m length is adopted for the oscillator. The laser is a master oscillator and an amplifier system. It is operated at high repetition rate of 200-5000 Hz in room temperature. The laser outputs were about 9W in CW and more than 6W in Q-switched operation. This laser was developed to be used for wind and CO2 measurements.

  12. The crucial fiber components and gain fiber for high power ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Liao, Lei; Liu, Peng; Xing, Ying-Bin; Wang, Yi-Bo; Dai, Neng-Li; Li, Jin-Yan; He, Bing; Zhou, Jun

    2015-08-01

    We have demonstrated a kW continuous-wave ytterbium-doped all-fiber laser oscillator with 7×1 fused fiber bundle combiner, fiber Bragg grating (FBG) and double-clad gain fiber fabricated by corresponding technologies. The results of experiment that the oscillator had operated at 1079.48nm with 80.94% slope efficiency without the influence of temperature and non-linear effects indicate that fiber components and gain fiber were suitable to high power environment. No evidence of the signal power roll-over showed that this oscillator possess the capacity to highest output with available pump power.

  13. Ceramic bracket debonding with ytterbium fiber laser.

    PubMed

    Sarp, Ayşe Sena Kabaş; Gülsoy, Murat

    2011-09-01

    Since the early 1990 s, lasers have been used experimentally for debonding ceramic brackets. Lasers reduce the required debonding force and risk of enamel damage. However, the thermal effect during the laser radiation on dental tissues can cause undesirable results. The aim of this study is to develop a laser debonding technique for ceramic brackets that is better than mechanical debonding and also to minimize the side-effects of laser applications. A new fiber laser (1,070-nm ytterbium fiber laser) was tested, debonding procedure was quantified with a universal testing machine, and intrapulpal temperature was monitored for limiting the injury or pain. Experiments were performed in two sections according to the type of lasing mode: continuous wave (CW) and modulated mode. In continuous wave (CW) mode, a laser was applied on samples with different constant power levels continuously. In the second set of experiments, brackets were irradiated in modulated mode, in which the laser energy was delivered with on-and-off cycles. Laser power and duty cycles were adjusted by controlling the current, which was set to 4.99 A of current for 18 W of emission. Debonding force, debonding time, and work done by a universal testing machine were all significantly decreased for both modalities of laser irradiation compared to the control group. When laser parameters were set to proper doses, a 50% of reduction in required load for debonding and a three-fold decrease in debonding time were observed. Intrapulpal temperature changes were below the accepted threshold value (5.5°C) until the level of 3.5 W of laser power in continuous wave mode. During debonding, the work done by the universal testing machine is decreased up to five times by irradiation. Parameters were compared for both modes of operations and it was concluded that modulated mode laser application (Group 300/900) provided faster and easier debonding with less temperature change.

  14. Hybrid fiber-rod laser

    DOEpatents

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  15. Supercontinuum fiber lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Devine, Adam; Hooper, Lucy; Clowes, John

    2016-05-01

    In this talk we give an overview of recent advances in the development of high power supercontinuum fiber lasers with powers exceeding 50W and spectral brightness of tens of mW/nm. We also discuss the fundamental limitations of power scaling and spectral broadening and review the existing and emerging applications of this unique light source which combines the broadband properties of a light bulb with the spatial properties of a laser.

  16. Coiled Fiber Pulsed Laser Simulator

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  17. Excess carrier generation in femtosecond-laser processed sulfur doped silicon by means of sub-bandgap illumination

    SciTech Connect

    Guenther, Kay-Michael; Gimpel, Thomas; Ruibys, Augustinas; Kontermann, Stefan; Tomm, Jens W.; Winter, Stefan; Schade, Wolfgang

    2014-01-27

    With Fourier-transform photocurrent spectroscopy and spectral response measurements, we show that silicon doped with sulfur by femtosecond laser irradiation generates excess carriers, when illuminated with infrared light above 1100 nm. Three distinct sub-bandgap photocurrent features are observed. Their onset energies are in good agreement with the known sulfur levels S{sup +}, S{sup 0}, and S{sub 2}{sup 0}. The excess carriers are separated by a pn-junction to form a significant photocurrent. Therefore, this material likely demonstrates the impurity band photovoltaic effect.

  18. Ribbon Fiber Laser-Theory and Experiment

    SciTech Connect

    Beach, R J; Feit, M D; Brasure, L D; Payne, S A

    2002-05-10

    A scalable fiber laser approach is described based on phase-locking multiple gain cores in an antiguided structure. The waveguide is comprised of periodic sequences of gain- and no-gain-loaded segments having uniform index, within the cladding region. Initial experimental results are presented.

  19. Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings.

    PubMed

    Willis, Christina C C; McKee, Erik; Böswetter, Pascal; Sincore, Alex; Thomas, Jens; Voigtländer, Christian; Krämer, Ria G; Bradford, Joshua D; Shah, Lawrence; Nolte, Stefan; Tünnermann, Andreas; Richardson, Martin

    2013-05-01

    We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.

  20. Tapered fiber based high power random laser.

    PubMed

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  1. Actively Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Podivilov, E. V.; Babin, S. A.

    2015-03-01

    A new scheme providing actively Q-switched operation of a Raman fiber laser (RFL) has been proposed and tested. The RFL consists of a 1 km single-mode fiber with a switchable loop mirror at one end and an angled cleaved output end. An 1080 nm pulse with microsecond duration is generated at the output by means of acousto-optic switching of the mirror at ~30 kHz in the presence of 6 W backward pumping at 1030 nm. In the proposed scheme, the generated pulse energy is defined by the pump energy distributed along the passive fiber, which amounts to 30 μJ in our case. The available pump energy may be increased by means of fiber lengthening. Pulse shortening is also expected.

  2. All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Filatova, S. A.; Kamynin, V. A.; Zhluktova, I. V.; Trikshev, A. I.; Tsvetkov, V. B.

    2016-11-01

    We report an all-fiber mode-lock holmium-doped ring laser passively mode-locked by nonlinear polarization rotation without dispersion compensation. The laser produced picosecond pulses at 2.057 µm. The average output power was 4.5 mW.

  3. Design of single-polarization coupler based on dual-core photonic band-gap fiber implied in resonant fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Xu, Zhenlong; Li, Xuyou; Zhang, Chunmei; Ling, Weiwei; Liu, Pan; Xia, Linlin; Yang, Hanrui

    2016-12-01

    A novel (to our knowledge) type of single-polarization (SP) coupler based on a dual-core photonic band-gap fiber (PBF) is proposed. The effects of structure parameters on the performance of this coupler are studied numerically based on the full vector finite element method (FEM). Finally, an optimal design with a length of 0.377 mm at the wavelength of 1.55 μm is achieved, and its implication in PBF-based fiber ring resonator (FRR), the effect of angular misalignment on the SP coupler are analyzed as well. When the SP coupler is incorporated into a PBF-based FRR, it functions as the power splitter and the polarizer simultaneously, and can extinct the secondary eigenstate of polarization (ESOP) propagating in the FRR. The mode field of SP coupler can match with the polarization-maintaining (PM) PBF with ultra-low temperature sensitivity proposed in previous study, and an all PM-PBF based FRR can be established, which is of great significance in suppressing the temperature-related polarization fluctuation and improving the long-term stability for RFOG, and the SP coupler has high angular misalignment tolerance as well.

  4. Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases

    SciTech Connect

    Joshi, Sachin; Yalin, Azer P.; Galvanauskas, Almantas

    2007-07-01

    The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity ({approx}200 GW/cm2 for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2 m long coated hollow fibers and find an optimum launch f of {approx}55 allowing spark formation with {approx}98% reliability for bends up to a radius of curvature of 1.5 m in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is described, and delivery of 0.55 mJ pulses through PCFs is shown.

  5. Fiber Coupled Laser Diodes with Even Illumination Pattern

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2007-01-01

    An optical fiber for evenly illuminating a target. The optical fiber is coupled to a laser emitting diode and receives laser light. The la ser light travels through the fiber optic and exits at an exit end. T he exit end has a diffractive optical pattern formed thereon via etch ing, molding or cutting, to reduce the Gaussian profile present in co nventional fiber optic cables The reduction of the Gaussian provides an even illumination from the fiber optic cable.

  6. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser.

    PubMed

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-01-01

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342

  7. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser

    PubMed Central

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-01-01

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s–2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342

  8. All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber Laser.

    PubMed

    Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli

    2016-07-27

    In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.

  9. All fiber laser using a ring cavity

    NASA Astrophysics Data System (ADS)

    Flores, Alberto Varguez; Pérez, Georgina Beltrán; Aguirre, Severino Muñoz; Mixcóatl, Juan Castillo

    2008-04-01

    Mode-locked laser have a number of potential applications, depending on the wavelength and pulse width. They could be used as sources in communications systems for time division multiplexing (TDM) or wavelength-division-multiplexing (WDM) as spectroscopic tools in the laboratory for time-resolved studies of fast nonlinear phenomena in semiconductors, or as seeds for solid-state amplifers such as Nd:Glass, color center alexandrite, or Ti:Sapphire. Short pulses also have potential use in electro-optic sampling systems, as a source for pulsed sensors, or as tunable seed pulses for lasers in medical applications. Applications such as optical coherent tomography could take advantage of the broad bandwidth of a mode-locked fiber laser rather that the temporal ultra-short pulse width. This work shows the characterization of active mode-locking all-fiber laser by using an acousto-optic frequency shifter to the ring cavity, an erbium doped fiber (EDF) and polarization controllers (PC). The results shows a highly stable mode-locked, low noise of pulse generation with repetition rate of 10 MHz and width of 1.6 ns

  10. Polarization-modulated random fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Han; Wang, Zinan; He, Qiheng; Fan, Mengqiu; Li, Yunqi; Sun, Wei; Zhang, Li; Li, Yi; Rao, Yunjiang

    2016-05-01

    In this letter, we propose and experimentally demonstrate a polarization-modulated random fiber laser (RFL) for the first time. It is found that the output power of the half-opened RFL with polarized pumping is sensitive to the state of polarization (SOP) of the Stokes light in a fiber loop acting as a mirror. By inserting a polarization switch (PSW) in the loop mirror, the state of the random lasing can be switched between on/off states, thus such a polarization-modulated RFL can generate pulsed output with high extinction ratio.

  11. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  12. Multiwavelength erbium fiber ring laser using Sagnac loop and Fabry-Perot laser diode

    NASA Astrophysics Data System (ADS)

    Yeh, C.-H.; Shih, F.-Y.; Chen, C.-T.; Lee, C.-N.; Chi, S.

    2008-03-01

    We propose and demonstrate experimentally a simply multiple-wavelength erbium compound ring fiber laser employing a Sagnac interferometer with erbium-doped fiber amplifier (EDFA) and Fabry-Perot laser diode (FP-LD). The proposed laser has the advantage of simply structure and easy fabrication, lower insertion loss and cost-effective. Based on the Sagnac fiber laser scheme, the proposed laser can lase eight wavelengths simultaneously. Moreover, the optical output stability of the ring laser has been also discussed.

  13. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  14. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

  15. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  16. Blackening of metals using femtosecond fiber laser.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-01-10

    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine. PMID:25967633

  17. Broad-Area Laser Diode With Fiber-Optic Injection

    NASA Technical Reports Server (NTRS)

    Hazel, Geoffrey; Mead, Patricia; Davis, Christopher; Cornwell, Donald

    1992-01-01

    Fiber-optic injection-locked broad-area laser diode features single-mode output via fiber-optic injection and serves as compact, rugged, high-power near-infrared source. Useful in free-space and fiber-optic communication links, as communication-receiver preamplifier, and pump source for solid-state lasers.

  18. Laser and Optical Fiber Metrology in Romania

    SciTech Connect

    Sporea, Dan; Sporea, Adelina

    2008-04-15

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  19. Drilling with fiber-transmitted, visible lasers

    SciTech Connect

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.; Werve, M.E.; Warner, B.E.

    1994-02-17

    High power and radiance copper-vapor laser technology developed at Lawrence Livermore National Laboratory shows great promise for many materials processing tasks. The authors recently transmitted the visible light produced by these lasers through fiber optics to perform hole drilling experiments. They found the tolerances on the hole circulatory and cylindricity to be excellent when compared to that produced by conventional optics. This technique lends itself to many applications that are difficult to perform when using conventional optics, including robotic manipulation and hole drilling in non-symmetric parts.

  20. Laser and Optical Fiber Metrology in Romania

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Sporea, Adelina

    2008-04-01

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  1. Laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) by single-mode fiber laser irradiation

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Kurosaki, Ryozo; Muramatsu, Mayu; Harada, Yoshihisa; Anzai, Kenji; Aoyama, Mitsuaki; Matsushita, Masafumi; Furukawa, Koichi; Nishino, Michiteru; Fujisaki, Akira; Miyato, Taizo; Kayahara, Takashi

    2014-03-01

    We report on the laser cutting of carbon fiber reinforced thermo-plastics (CFRTP) with a cw IR fiber laser (single-mode fiber laser, average power: 350 W). CFRTP is a high strength composite material with a lightweight, and is increasingly being used various applications. A well-defined cutting of CFRTP which were free of debris and thermal-damages around the grooves, were performed by the laser irradiation with a fast beam galvanometer scanning on a multiple-scanpass method.

  2. Theory of a random fiber laser

    SciTech Connect

    Kolokolov, I. V. Lebedev, V. V.; Podivilov, E. V.; Vergeles, S. S.

    2014-12-15

    We develop the theory explaining the role of nonlinearity in generation of radiation in a fiber laser that is pumped by external light. The pumping energy is converted into the generating signal due to the Raman scattering supplying an effective gain for the signal. The signal is generated with frequencies near the one corresponding to the maximum value of the gain. Generation conditions and spectral properties of the generated signal are examined. We focus mainly on the case of a random laser where reflection of the signal occurs on impurities of the fiber. From the theoretical standpoint, kinetics of a wave system close to an integrable one are investigated. We demonstrate that in this case, the perturbation expansion in the kinetic equation has to use the closeness to the integrable case.

  3. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  4. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber

    PubMed Central

    Zhang, M.; Hu, Guohua; Hu, Guoqing; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T.

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm2 saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  5. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber.

    PubMed

    Zhang, M; Hu, Guohua; Hu, Guoqing; Howe, R C T; Chen, L; Zheng, Z; Hasan, T

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm(2) saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  6. Blue Pr{sup 3+}-doped ZBLAN fiber upconversion laser

    SciTech Connect

    Baney, D.M.; Rankin, G.; Chang, K.

    1996-09-01

    We demonstrate blue laser emission from a direct semiconductor laser-diode-pumped Pr{sup 3+}-doped upconversion fiber laser. This laser produced more than 1 mW of power at a wavelength of 492 nm from pump lasers operating at 830 and 1020 nm. {copyright} {ital 1996 Optical Society of America.}

  7. Multi-wavelength fiber laser based on a fiber Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Estudillo-Ayala, J. M.; Jauregui-Vazquez, D.; Haus, J. W.; Perez-Maciel, M.; Sierra-Hernandez, J. M.; Avila-Garcia, M. S.; Rojas-Laguna, R.; Lopez-Dieguez, Y.; Hernandez-Garcia, J. C.

    2015-12-01

    In this work we report experimental studies of an erbium-doped fiber laser design that simultaneously emits up to three wavelengths. The laser cavity configuration has an all-fiber, Fabry-Perot interferometer, based on the insertion of air cavities in the fiber, near one end of a conventional single-mode fiber. The laser emissions have a side-mode suppression ratio over 25 dB, wavelength variations around 0.04 nm, and 2 dB power fluctuations. By using a simple, controlled fiber curvature technique cavity losses are varied over a section of convectional single-mode fiber and the laser output is switched between single-, dual-, and triple-wavelength emission. Moreover, by applying a refractive index change over the fiber filter the emission wavelengths are shifted. The fiber laser offers a compact, simple, and low-cost design for a multiple wavelength outputs that can be adopted in future applications.

  8. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  9. A random Q-switched fiber laser.

    PubMed

    Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520

  10. Thulium fiber laser damage to the ureter

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-07-01

    Our laboratory is studying experimental thulium fiber laser (TFL) as a potential alternative lithotripter to the clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to ureter tissue have been previously reported. Similarly, this study characterizes TFL induced ureter and stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 150-500 Hz was delivered through a 100-μm-core, low-OH, silica optical fiber to the porcine ureter wall, in vitro. Ureter perforation times were measured and gross, histological, and optical coherence tomography images of the ablation zone were acquired. TFL operation at 150, 300, and 500 Hz produced mean ureter perforation times of 7.9, 3.8, and 1.8 s, respectively. Collateral damage averaged 510, 370, and 310 μm. TFL mean perforation time exceeded 1 s at each setting, which is a greater safety margin than previously reported during Holmium laser ureter perforation studies.

  11. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  12. Novel fiber optic tip designs and devices for laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  13. Property and Shape Modulation of Carbon Fibers Using Lasers.

    PubMed

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes. PMID:27227575

  14. Property and Shape Modulation of Carbon Fibers Using Lasers.

    PubMed

    Blaker, Jonny J; Anthony, David B; Tang, Guang; Shamsuddin, Siti-Ros; Kalinka, Gerhard; Weinrich, Malte; Abdolvand, Amin; Shaffer, Milo S P; Bismarck, Alexander

    2016-06-29

    An exciting challenge is to create unduloid-reinforcing fibers with tailored dimensions to produce synthetic composites with improved toughness and increased ductility. Continuous carbon fibers, the state-of-the-art reinforcement for structural composites, were modified via controlled laser irradiation to result in expanded outwardly tapered regions, as well as fibers with Q-tip (cotton-bud) end shapes. A pulsed laser treatment was used to introduce damage at the single carbon fiber level, creating expanded regions at predetermined points along the lengths of continuous carbon fibers, while maintaining much of their stiffness. The range of produced shapes was quantified and correlated to single fiber tensile properties. Mapped Raman spectroscopy was used to elucidate the local compositional and structural changes. Irradiation conditions were adjusted to create a swollen weakened region, such that fiber failure occurred in the laser treated region producing two fiber ends with outwardly tapered ends. Loading the tapered fibers allows for viscoelastic energy dissipation during fiber pull-out by enhanced friction as the fibers plough through a matrix. In these tapered fibers, diameters were locally increased up to 53%, forming outward taper angles of up to 1.8°. The tensile strength and strain to failure of the modified fibers were significantly reduced, by 75% and 55%, respectively, ensuring localization of the break in the expanded region; however, the fiber stiffness was only reduced by 17%. Using harsher irradiation conditions, carbon fibers were completely cut, resulting in cotton-bud fiber end shapes. Single fiber pull-out tests performed using these fibers revealed a 6.75-fold increase in work of pull-out compared to pristine carbon fibers. Controlled laser irradiation is a route to modify the shape of continuous carbon fibers along their lengths, as well as to cut them into controlled lengths leaving tapered or cotton-bud shapes.

  15. Fiber laser front end for high energy petawatt laser systems

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J; Siders, C; Lucianetti, A; Crane, J K; Barty, C J

    2006-06-15

    We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier

  16. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  17. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  18. Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques

    DOEpatents

    Phomsakha, Vongvilay; Chang, Robert S. F.; Djeu, Nicholas I.

    1997-03-04

    An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.

  19. CW single transverse mode all-fiber Tm3+-doped silica fiber laser

    NASA Astrophysics Data System (ADS)

    Song, E. Z.; Li, W. H.; You, L.

    2012-04-01

    The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.

  20. Design of highly doped Yb3+ fiber ring laser

    NASA Astrophysics Data System (ADS)

    Huang, Xiu-jiang; Liu, Yong-zhi; Sui, Zhan; Li, Ming-zhong; Lin, Hong-huan; Wang, Jian-jun; Zhao, De-shuang; Wang, Feng-rui; Chen, Ji-xin

    2005-01-01

    Ytterbium-doped silica fibers exhibit very broad absorption and emission bands, from 800nm to 1064nm for absorption and 970nm to 1200nm for emission. Therefore wide band lasers can be obtained using a wide variety of pump lasers. In this paper, the characteristics of high-doped Yb3+ fiber are analyzed and verified by experiment and a highly-doped Yb3+ fiber ring laser with short cavity has been presented. Comparing with normal Yb3+doped fiber, the relationship between the important characteristics of the Yb3+doped fiber laser such as threshold power, output power and laser parameters such as pump power, fiber length, output couple ratio is analyzed. Numerical results are coincident with the experiment phenomenon very well. A 1053 nm pulse has been achieved in our fiber laser. The output power is 6mW as pump power is 110mW and the slope efficiency is 17%. The Yb3+ fiber laser we produced can be used as a stable source in obtaining ultrafast pulse, fiber sense and optical communications.

  1. Visible upconversion lasers in praseodymium-ytterbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Zellmer, H.; Riedel, P.; Tünnermann, A.

    We report on a ZBLAN-fiber-based praseodymium-ytterbium-doped upconversion fiber laser operating in the blue-green with diffraction-limited beam quality. cw output powers of more than 150 mW at 491 nm are achieved for several hours without degradation. The spectroscopic data of the active material and laser parameters including the amplitude noise are discussed.

  2. Latest developments of ultrafast fiber laser and its material applications

    NASA Astrophysics Data System (ADS)

    Cho, G. C.; Liu, B.; Shah, L.; Liu, Z.; Che, Y.; Xu, J.

    2009-02-01

    We address recent fiber-based femtosecond laser technology. Specifically, fiber-chirped pulse amplifier is discussed for the enabling the concept of real-world applications. We review recent selected material applications demonstrating advantages of ultrafast dynamics of highly repetitive pulse train in nanoparticle generation in pulsed-laser deposition and reliable Si wafer singulation.

  3. Profiling atmospheric water vapor using a fiber laser lidar system.

    PubMed

    De Young, Russell J; Barnes, Norman P

    2010-02-01

    A compact, lightweight, and efficient fiber laser lidar system has been developed to measure water vapor profiles in the lower atmosphere of Earth or Mars. The line narrowed laser consist of a Tm:germanate fiber pumped by two 792 nm diode arrays. The fiber laser transmits approximately 0.5 mJ Q- switched pulses at 5 Hz and can be tuned to water vapor lines near 1.94 microm with linewidth of approximately 20 pm. A lightweight lidar receiver telescope was constructed of carbon epoxy fiber with a 30 cm Fresnel lens and an advanced HgCdTe APD detector. This system has made preliminary atmospheric measurements.

  4. Polarization dependence of laser interaction with carbon fibers and CFRP.

    PubMed

    Freitag, Christian; Weber, Rudolf; Graf, Thomas

    2014-01-27

    A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.

  5. 2μm single frequency fiber laser based on thulium-doped silica fiber

    NASA Astrophysics Data System (ADS)

    Fu, Shijie; Shi, Wei; Lin, Jichao; Fang, Qiang; Sheng, Quan; Zhang, Haiwei; Wen, Jinwei; Yao, Jianquan

    2016-03-01

    Single-frequency fiber laser operating at 1950 nm has been demonstrated in an all-fiber distributed Bragg reflection (DBR) laser cavity by using a 1.9-cm commercial available Thulium-doped silica fiber, for the first time. The laser was pumped by a 793-nm single-mode diode laser and had a threshold pump power of 75 mW. The maximum output power of the single longitudinal mode laser was 18 mW and the slope efficiency with respect to the launched pump power was 11%. Moreover, the linewidth and relative intensity noise (RIN) at different pump power has been measured and analyzed. The successful demonstration with the Thulium-doped silica fiber used here is considered to further promote the commercialization of single frequency fiber laser at 2 μm.

  6. 150 W highly-efficient Raman fiber laser.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-12-21

    We report a more than 150 W spectrally-clean continuous wave Raman fiber laser at 1120 nm with an optical efficiency of 85%. A approximately 30 m standard single mode silica fiber is used as Raman gain fiber to avoid second Stokes emission. A spectrally asymmetric resonator (in the sense of mirror reflection bandwidth) with usual fiber Bragg gratings is designed to minimize the laser power lost into the unwanted direction, even when the effective reflectivity of the rear fiber Bragg grating becomes as low as 81.5%. PMID:20052078

  7. 150 W highly-efficient Raman fiber laser.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-12-21

    We report a more than 150 W spectrally-clean continuous wave Raman fiber laser at 1120 nm with an optical efficiency of 85%. A approximately 30 m standard single mode silica fiber is used as Raman gain fiber to avoid second Stokes emission. A spectrally asymmetric resonator (in the sense of mirror reflection bandwidth) with usual fiber Bragg gratings is designed to minimize the laser power lost into the unwanted direction, even when the effective reflectivity of the rear fiber Bragg grating becomes as low as 81.5%.

  8. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    PubMed Central

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475

  9. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-07-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately ‑0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically).

  10. High performance distributed feedback fiber laser sensor array system

    NASA Astrophysics Data System (ADS)

    He, Jun; Li, Fang; Xu, Tuanwei; Wang, Yan; Liu, Yuliang

    2009-11-01

    Distributed feedback (DFB) fiber lasers have their unique properties useful for sensing applications. This paper presents a high performance distributed feedback (DFB) fiber laser sensor array system. Four key techniques have been adopted to set up the system, including DFB fiber laser design and fabrication, interferometric wavelength shift demodulation, digital phase generated carrier (PGC) technique and dense wavelength division multiplexing (DWDM). Experimental results confirm that a high dynamic strain resolution of 305 fɛ/√Hz (@ 1 kHz) has been achieved by the proposed sensor array system. And the multiplexing of eight channel DFB fiber laser sensor array has been demonstrated. The proposed DFB fiber laser sensor array system is suitable for ultra-weak signal detection, and has potential applications in the field of petroleum seismic explorations, earthquake prediction, and security.

  11. Nanosecond square pulse generation in fiber lasers with normal dispersion

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Lu, C.

    2007-04-01

    We report on the generation of nanosecond square pulses in a passively mode-locked fiber ring laser made of purely normal dispersive fibers. Different to the noise-like pulse operation of the laser, the generated square pulses are stable and have no internal structures. We show that the formation of the square pulse is due to the combined action of the pulse peak clamping effect caused by the cavity and the almost linear pulse propagation in the normal dispersive fibers.

  12. 280  GHz dark soliton fiber laser.

    PubMed

    Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y

    2014-06-15

    We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280  GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.

  13. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  14. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    NASA Astrophysics Data System (ADS)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  15. Characteristics research on self-amplified distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2014-09-01

    A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.

  16. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  17. Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2013-07-01

    The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the ureteroscope for increased saline irrigation rates and allow maximum ureteroscope deflection. However, distal fiber tip degradation and "burn-back" increase as fiber diameter decreases due to both excessive temperatures and mechanical stress experienced during stone ablation. To eliminate fiber tip burn-back, the distal tip of a 150-μm core silica fiber was glued inside 1-cm-long steel tubing with fiber tip recessed 100, 250, 500, 1000, or 2000 μm inside the steel tubing to create the hollow-tip fiber. TFL pulse energy of 34 mJ with 500-μs pulse duration and 150-Hz pulse rate was delivered through the hollow-tip fibers in contact with human calcium oxalate monohydrate urinary stones during ex vivo studies. Significant fiber tip burn-back and degradation was observed for bare 150-μm core-diameter fibers. However, hollow steel tip fibers experienced minimal fiber burn-back without compromising stone ablation rates. A simple, robust, compact, and inexpensive hollow fiber tip design was characterized for minimizing distal fiber burn-back during the TFL lithotripsy. Although an increase in stone retropulsion was observed, potential integration of the hollow fiber tip into a stone basket may provide rapid stone vaporization, while minimizing retropulsion.

  18. Raman soliton generation in microstructured tellurite fiber pumped by hybrid Erbium/Thulium fiber laser system

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Koptev, M. Y.; Muravyev, S. V.; Dorofeev, V. V.; Andrianov, A. V.; Kim, A. V.

    2016-08-01

    We demonstrate a fibre laser source generating ultrashort pulses tunable in the range 2-2.5 μm. The source is based on a hybrid Er/Tm fiber laser system and microstructured suspended-core tellurite fiber where Raman soliton shifting occurs. Nonlinear soliton dynamics is studied and possibility of tuning beyond 3 μm is shown.

  19. Endovenous laser ablation with TM-fiber laser

    NASA Astrophysics Data System (ADS)

    Somunyudan, Meral Filiz; Topaloglu, Nermin; Ergenoglu, Mehmet Umit; Gulsoy, Murat

    2011-03-01

    Endovenous Laser Ablation (EVLA) has become a popular minimally invasive alternative to stripping in the treatment of saphenous vein reflux. Several wavelengths have been proposed; of which 810, 940 and 980- nm are the most commonly used. However, the most appropriate wavelength is still the subject of debate. Thermal shrinkage of collagenous tissue during EVLA plays a significant role in the early and late results of the treatment. The aim of this study is to compare the efficacy of 980 and 1940-nm laser wavelengths in the treatment of varicose veins. In this study, 980 and 1940-nm lasers at different power settings (8/10W for 980-nm, 2/3W for 1940-nm) were used to irradiate stripped human veins. The most prominent contraction and narrowing in outer and inner diameter were observed with the 1940-nm at 2W, following 980-nm at 8W, 1940-nm at 3W and finally 980-nm at 10W. The minimum carbonization was observed with the 1940-nm at 2W. As a conclusion, 1940-nm Tm-fiber laser which has a significant effect in the management of varicose veins due to more selective energy absorption in water and consequently in the vein is a promising method in the management of varicose veins.

  20. OSNR enhancement utilizing large effective area fiber in a multiwavelength Brillouin-Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Sonee Shargh, R.; Al-Mansoori, M. H.; Anas, S. B. A.; Sahbudin, R. K. Z.; Mahdi, M. A.

    2011-02-01

    We propose a simple Brillouin-Raman multi-channel fiber laser with supportive Rayleigh scattering in a linear cavity without employing any feedback mirrors at the end of cavity. Brillouin and the consequences of Rayleigh scattering work as virtual mirrors. We employ a section of large effective area fiber in addition to a section of dispersion compensating fiber to enhance the optical signal-to-noise ratio of multi-channel Brillouin-Raman comb fiber laser. We able to produce a flat comb fiber laser with 37 nm bandwidth from 1539 to 1576 nm built-in 460 Stokes lines with 0.08 nm spacing. Furthermore, this Brillouin-Raman comb fiber laser has acceptable optical signal-to-noise ratio value of 16.8 dB for the entire bandwidth with excellent flatness and low discrepancies in power levels of about 2.3 dB between odd and even channels.

  1. Influence of the UV-induced fiber loss on the distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Chen, Bai; Qiao, Qiquan; Chen, Jialing; Lin, Zunqi

    2003-06-01

    It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.

  2. Microscopic analysis of laser-induced proximal fiber tip damage during holmium:YAG and thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-04-01

    The thulium fiber laser (TFL) is being studied as an alternative to the standard holmium:YAG laser for lithotripsy. The TFL beam originates within an 18-μm-core thulium-doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller (e.g., 50- to 150-μm core) fibers than possible during holmium laser lithotripsy. This study examines whether the more uniform TFL beam profile also reduces proximal fiber tip damage compared with the holmium laser multimodal beam. Light and confocal microscopy images were taken of the proximal surface of each fiber to inspect for possible laser-induced damage. A TFL beam at a wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, and 500-μs pulse duration, and 100,000 pulses were delivered at each pulse rate setting of 50, 100, 200, 300, and 400 Hz. For comparison, single use, 270-μm-core fibers were collected after clinical holmium laser lithotripsy procedures performed with standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output pulse energy and average power were stable, and no proximal fiber damage was observed at settings up to 35 mJ, 400 Hz, and 14 W average power (n=5). In contrast, confocal microscopy images of fiber tips after holmium lithotripsy showed proximal fiber tip degradation, indicated by small ablation craters on the scale of several micrometers in all fibers (n=20). In summary, the proximal fiber tip of a 105-μm-core fiber transmitted up to 14 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially translate into lower costs for the surgical disposables as well.

  3. Design and refinement of rare earth doped multicore fiber lasers

    NASA Astrophysics Data System (ADS)

    Prudenzano, F.; Mescia, L.; Di Tommaso, A.; Surico, M.; De Sario, M.

    2013-09-01

    A novel multicore ytterbium doped fiber laser is designed, with the target of maximizing both the effective mode area and the beam quality, by means of a complete home-made computer code. It can be employed to construct high power and Quasi-Gaussian beam lasers. The novel laser configuration exploits a single mode multicore fiber and does not need Talbot cavity or other in-phase mode selection mechanisms. This is an innovative solution, because to the best of our knowledge, for the first time, we have designed a truly single-mode multicore fiber laser. For comparison we have optimized two other laser configurations which are well known in literature, both employing a multimode multicore fiber and a Talbot cavity as a feedback for the in-phase supermode selection. All three multicore fibers, constituted by the same glass, are doped with the same ytterbium ion concentration and pumped with the same input power. Multimodal fiber lasers exhibit lower beam quality, i.e. a higher beam quality factor M2, with respect to the single mode one, even if suitable Talbot cavities are designed, but they are very competitive when a more compact laser cavity is required for the same output power. The novel single mode nineteen core laser exhibits a simulated effective mode area Aeff = 703 μm2 and a beam quality factor M2 = 1.05, showing better characteristics than the other two lasers.

  4. High Strength, Large Core Pure Silica Fibers For Laser Surgery

    NASA Astrophysics Data System (ADS)

    Skutnik, B. J.; Hodge, M. H.; Clarkin, J. P.

    1988-06-01

    Recently many researchers, doctors and instrument companies have begun developing fiber optic laser power delivery systems to accomplish less traumatic surgery or localized irradiation treatment(1). With high power levels, particularly in short bursts, large core fibers are needed to keep the power densities from approaching the damage threshold of silica. Among the many advantages of using optical fibers in laser surgery are the following: microsurgery can be employed, trauma is reduced, access to interior through catheter introduction into vascular, gastrointestinal or respiratory tracts, accurate application of laser power through a flexible lightweight medium to provide localized irradiation as well as surgical removal, and the devices are sterilizable and of moderate cost permitting one-time use (disposable) probes. To achieve these wonderful gains in surgical procedures, the optical fibers must satisfy many optical and mechanical requirements. In use the optical fibers are often required to bend around curves or obstructions to reach the desired application area. Large tensile stresses can occur on the outer radius of the bent fiber, especially with large core fibers, thus high strength fibers are needed. Furthermore, since body fluids are primarily water, stress corrosion and fatigue(2-6) will occur. Therefore, the fibers should have excellent fatigue resistance as well as high strength. This paper further describes these requirements and presents details about an optical fiber which meets these requirements and provides additional very useful properties. These fibers with pure silica cores are called Hard Clad Silica, HCS*, fibers because of their hard bonded cladding over silica structure.

  5. Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials.

    PubMed

    Lu, Junpeng; Wu, Jing; Carvalho, Alexandra; Ziletti, Angelo; Liu, Hongwei; Tan, Junyou; Chen, Yifan; Castro Neto, A H; Özyilmaz, Barbaros; Sow, Chorng Haur

    2015-10-27

    We demonstrate a straightforward and effective laser pruning approach to reduce multilayer black phosphorus (BP) to few-layer BP under ambient condition. Phosphorene oxides and suboxides are formed and the degree of laser-induced oxidation is controlled by the laser power. Since the band gaps of the phosphorene suboxide depend on the oxygen concentration, this simple technique is able to realize localized band gap engineering of the thin BP. Micropatterns of few-layer phosphorene suboxide flakes with unique optical and fluorescence properties are created. Remarkably, some of these suboxide flakes display long-term (up to 2 weeks) stability in ambient condition. Comparing against the optical properties predicted by first-principle calculations, we develop a "calibration" map in using focused laser power as a handle to tune the band gap of the BP suboxide flake. Moreover, the surface of the laser patterned region is altered to be sensitive to toxic gas by way of fluorescence contrast. Therefore, the multicolored display is further demonstrated as a toxic gas monitor. In addition, the BP suboxide flake is demonstrated to exhibit higher drain current modulation and mobility comparable to that of the pristine BP in the electronic application.

  6. OEM fiber laser rangefinder for long-distance measurement

    NASA Astrophysics Data System (ADS)

    Corman, Alexandre; Chiquet, Frédéric; Avisse, Thomas; Le Flohic, Marc

    2015-05-01

    SensUp designs and manufactures electro-optical systems based on laser technology, in particular from fiber lasers. Indeed, that kind of source enables us to get a significant peak power with huge repetition rates at the same time, thus combining some characteristics of the two main technologies on the telemetry field today: laser diodes and solid-state lasers. The OEM (Original Equipment Manufacturer) fiber Laser RangeFinder (LRF) set out below, aims to fit the SWaP (Size Weight and Power) requirements of military markets, and might turn out to be a real alternative to other technologies usually used in range finding systems.

  7. Characteristics research of self-amplified distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding

    2013-09-01

    A distributed feedback (DFB) fiber laser with a ratio of backward to forward output power of 1:100 was composed by a 45mm length asymmetrical phase-shifted fiber grating fabricated on 50mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL980-Hp erbium-doped fiber to absorb surplus pump power after the active phase-shifted fiber grating and get population inversion. Using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with narrow line-width and low noise, a narrow-band light filter consisted of a FBG with the same Bragg wavelength as the laser and an optical circulator was used to filter the ASE noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, a DFB fiber laser of 32.5mW output power, 11.5 kHz line width, and -87dB/Hz relative intensity noise (RIN) at 300mW of 980 nm pump power was brought out.

  8. Hole drilling with fiber-optically delivered visible lasers

    SciTech Connect

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.

    1994-12-31

    The use of lasers for high-speed drilling of holes in materials is well documented. To allow easier use of lasers in manufacturing processes, fiber-optically delivered beams are preferable to the use of conventional optics. Lawrence Livermore National Laboratory (LLNL) has adapted fiber-optic technology to its visible light, copper vapor lasers for use in hole drilling studies. Visible lasers afford better coupling of light to the workpiece and when fiber-optically delivered, allow high quality holes to be drilled in difficult accessibility areas and with easier setup. A fiber-optic delivery system was attached to the presently hard-optic copper vapor laser system. This system consisted of a 0.6 mm (0.024 in.) fiber that was then telescoped and refocused by a hard optics package at the workstation end of the fiber. The optics package produced a 0.2 mm (0.008 in.) focused spot size at the workpiece. This system was then run down to a 3-axis CNC machining table to allow part movement for these studies. The fiber-optically delivered light was found to work extremely well for drilling small diameter holes. In summary, it was found that fiber-optically delivered, visible laser beams have several advantages in drilling over those same beams delivered through conventional hard optics. These include much easier setup, reduced system maintenance, and typically higher hole quality.

  9. Fiber Optic Laser Delivery For Endarterectomy Of Experimental Atheromas

    NASA Astrophysics Data System (ADS)

    Eugene, John; Pollock, Marc E.; McColgan, Stephen J.; Hammer-Wilson, Marie; Berns, Michael W.

    1986-08-01

    Fiber optic delivery of argon ion laser energy and Nd-YAG laser energy were compared by the performance of open laser endarterectomy in the rabbit arteriosclerosis model. In Group I, 6 open laser endarterectomies were performed with an argon ion laser (488 nm and 514.5 nm) with the laser beam directed through a 400 pm quartz fiber optic. In Group II, 6 open laser endarterectomies were performed with a Nd-YAG laser (1.06 pm) with the laser beam directed through a 600 pm quartz fiber optic. Gross and light microscopic examination revealed smooth endarterectomy surfaces with tapered end points in Group I. In Group II, the endarterectomy surfaces were uneven and perforation occurred at 5/6 end points. Although energy could be precisely delivered with each laser by fiber optics, satisfactory results could only be achieved with the argon ion laser because argon ion energy was well absorbed by atheromas. Successful intravascular laser use requires a strong interaction between wavelength and atheroma as well as a precise delivery system.

  10. Process observation in fiber laser-based selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the

  11. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  12. UV laser-surface interactions relevant to analytic spectroscopy of wide bandgap materials

    SciTech Connect

    Dickinson, J.T.

    1993-12-31

    Laer ablation has application in materials analysis, surface modification, and thin film deposition. Processes that lead to emission and formation of particles when wide band gap materials are irradiated with pulsed uv laser light. These materials are often difficult to transport into the gas phase for analysis. Such materials are alkali halides, MgO.

  13. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  14. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

    PubMed Central

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-01-01

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices. PMID:25758749

  15. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

    NASA Astrophysics Data System (ADS)

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-03-01

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices.

  16. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition.

    PubMed

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-01-01

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices.

  17. Mechanical loss of laser-welded fused silica fibers

    NASA Astrophysics Data System (ADS)

    Harry, Gregory; Corbitt, Thomas; Freytsis, Marat; Ottaway, David; Mavalvala, Nergis; Penn, Steve

    2006-02-01

    The mechanical quality factor of a carbon dioxide laser-welded fiber was measured and compared to flame-welded fibers to determine the suitability of laser welding for attaching suspension fibers to test masses in precision experiments. The loss in the fiber was found to be limited primarily by thermoelastic damping and surface loss, rather than loss from the weld. This technique is attractive for the attachment of fused silica suspensions where low thermal noise and precision location of the weld are considered.

  18. High power 938 nanometer fiber laser and amplifier

    DOEpatents

    Dawson, Jay W.; Liao, Zhi Ming; Beach, Raymond J.; Drobshoff, Alexander D.; Payne, Stephen A.; Pennington, Deanna M.; Hackenberg, Wolfgang; Calia, Domenico Bonaccini; Taylor, Luke

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  19. Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Becker, Frank; Neumann, Benjamin; Winkelmann, Lutz; Belke, Steffen; Ruppik, Stefan; Hefter, Ulrich; Köhler, Bernd; Wolf, Paul; Biesenbach, Jens

    2013-02-01

    High power Yb doped fiber laser sources are beside CO2- and disk lasers one of the working horses of industrial laser applications. Due to their inherently given robustness, scalability and high efficiency, fiber laser sources are best suited to fulfill the requirements of modern industrial laser applications in terms of power and beam quality. Pumping Yb doped single-mode fiber lasers at 976nm is very efficient. Thus, high power levels can be realized avoiding limiting nonlinear effects like SRS. However the absorption band of Yb doped glass around 976nm is very narrow. Therefore, one has to consider the wavelength shift of the diode lasers used for pumping. The output spectrum of passively cooled diode lasers is mainly defined by the applied current and by the heat sink temperature. Furthermore the overall emission line width of a high power pump source is dominated by the large number of needed diode laser emitters, each producing an individual spectrum. Even though it is possible to operate multi-kW cw single-mode fiber lasers with free running diode laser pumps, wavelength stabilizing techniques for diode lasers (e.g. volume holographic gratings, VHG) can be utilized in future fiber laser sources to increase the output power level while keeping the energy consumption constant. To clarify the benefits of wavelength stabilized diode lasers with integrated VHG for wavelength locking the performance of a dual side pumped fiber oscillator is discussed in this article. For comparison, different pumping configurations consisting of stabilized and free-running diode lasers are presented.

  20. Below band-gap laser ablation of diamond for transmission electron microscopy

    NASA Technical Reports Server (NTRS)

    George, T.; Foote, M. C.; Vasquez, R. P.; Fortier, E. P.; Posthill, J. B.

    1993-01-01

    A 248 nm excimer laser was used to thin naturally occurring type 1a diamond substrates at normal and glancing (22 deg) incidence. Perforation of a 250-micron-thick substrate was achieved in about 15 min at normal incidence. While the substrate thinned at glancing incidence was found to have large electron-transparent areas, that thinned at normal incidence required additional argon-ion milling to achieve electron transparency. X-ray photoelectron spectroscopy of the back surface of the diamond failed to detect any graphite or glassy carbon, confirming that damage due to laser ablation occurs only at the incident surface. Samples prepared using this technique imaged in the transmission electron microscope were observed to have retained the nitrogen platelets characteristic of such type 1a diamonds.

  1. Reflectivity variation in asymmetric random distributed feedback Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Abidin, N. H. Z.; Abu Bakar, M. H.; Tamchek, N.; Mahamd Adikan, F. R.; Mahdi, M. A.

    2016-01-01

    This paper demonstrates and discusses the effect of reflectivity on the intracavity power development and spectral profile of a 41.1 km asymmetric (half-opened cavity) random distributed feedback fiber laser with different pumping schemes. The laser cavity is confined by a fiber Bragg grating and the Rayleigh feedback amplified by Raman scattering effect that serves as virtual random distributed mirrors. The laser performance was observed by integrating a variety of power couplers while employing forward and backward pumping schemes. Forward pumping exhibits greater susceptibility to reflectivity variation compared to backward pumping. Meanwhile, higher reflectivity produced better threshold conditions but at the expense of lower saturation power. A power-saturated laser also manifested a broader spectrum than a laser conducted outside the saturation regime. These research findings will be beneficial in understanding the role of reflectivity and pumping configurations in enhancing asymmetric random distributed feedback fiber laser.

  2. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  3. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  4. Laser transmission welding of long glass fiber reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Engelmann, Christoph; Olowinsky, Alexander; Gillner, Arnold

    2015-03-01

    Joining fiber reinforced polymers is an important topic for lightweight construction. Since classical laser transmission welding techniques for polymers have been studied and established in industry for many years joint-strengths within the range of the base material can be achieved. Until now these processes are only used for unfilled and short glass fiber-reinforced thermoplastics using laser absorbing and laser transparent matrices. This knowledge is now transferred to joining long glass fiber reinforced PA6 with high fiber contents without any adhesive additives. As the polymer matrix and glass fibers increase the scattering of the laser beam inside the material, their optical properties, changing with material thickness and fiber content, influence the welding process and require high power lasers. In this article the influence of these material properties (fiber content, material thickness) and the welding parameters like joining speed, laser power and clamping pressure are researched and discussed in detail. The process is also investigated regarding its limitations. Additionally the gap bridging ability of the process is shown in relation to material properties and joining speed.

  5. The development of novel Ytterbium fiber lasers and their applications

    NASA Astrophysics Data System (ADS)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  6. Fiber ring laser incorporating a pair of rotary long-period fiber gratings for torsion measurement

    NASA Astrophysics Data System (ADS)

    Shi, Leilei; Zhu, Tao; Chen, Fangyuan; Chiang, Kinseng; Rao, Yunjiang

    2012-02-01

    We demonstrate a fiber ring laser for high-resolution torsion measurement, where the laser cavity consists of a Mach-Zehnder interferometer (MZI) formed with a pair of long-period fiber gratings written in a twisted single-mode fiber (SMF) by a CO2 laser. The emitting wavelength of the laser provides a measure of the rate of the torsion applied to the grating pair, while the direction of the wavelength shift indicates the sense direction of the applied torsion. The narrow linewidth and the large side-mode suppression ratio of the laser can provide a much more precise measurement of torsion, compared with passive fiber-optic torsion sensors. The torsion sensitivity achieved is 0.084 nm/(rad/m) in the torsion range +/-100 rad/m, which corresponds to a torsion resolution of 0.12 rad/m, assuming a wavelength resolution of 10 pm for a typical optical spectrum analyzer.

  7. All fiber actively mode-locked fiber laser emitting cylindrical vector beam

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Wang, Anting; Gu, Chun; Xu, Lixin; Zhan, Qiwen

    2015-08-01

    We demonstrated an all fiber actively mode-locked laser emitting cylindrical vector beam. A few-mode fiber Bragg grating is adopted to achieve mode selecting and spectrum filtering. An offset splicing of single-mode fiber with fourmode fiber is utilized as a mode coupler in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode locking in the laser. The laser operates at 1547nm with 30 dB spectrum width of 0.3nm. The emitted modelocked pulses have a duration of 1ns and repetition of 12.06MHz. Both radially and azimuthally polarized beams have been obtained with very good modal symmetry by adjusting the polarization in the laser cavity.

  8. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  9. Polarimetric optical fiber sensor using a frequency stabilized semiconductor laser

    SciTech Connect

    Tsuchida, H.; Mitsuhashi, Y.; Ishihara, S. )

    1989-05-01

    The authors discuss the performance of a polarimetric optical fiber sensor for remote temperature measurement improved by the use of a frequency stabilized semiconductor laser. The temperature change is measured from the phase delay between two orthogonally polarized modes in a polarization maintaining fiber. The sensor output signal is demodulated utilizing direct modulation of the laser frequency. The center frequency of the modulated laser is locked to a Fabry-Perot interferometer by controlling the injection current. The minimum detectable temperature change is evaluated experimentally to be less than 0.005{sup 0}C, which is seven times smaller than that obtained with the freerunning laser.

  10. Small core fiber coupled 60-W laser diode

    NASA Astrophysics Data System (ADS)

    Fernie, Douglas P.; Mannonen, Ilkka; Raven, Anthony L.

    1995-05-01

    Semiconductor laser diodes are compact, efficient and reliable sources of laser light and 25 W fiber coupled systems developed by Diomed have been in clinical use for over three years. For certain applications, particularly in the treatment of benign prostatic hyperplasia and flexible endoscopy, higher powers are desirable. In these applications the use of flexible optical fibers of no more than 600 micrometers core diameter is essential for compatibility with most commercial delivery fibers and instrumentation. A high power 60 W diode laser system for driving these small core fibers has been developed. The design requirements for medical applications are analyzed and system performance and results of use in gastroenterology and urology with small core fibers will be presented.

  11. Wavelength switchable graphene Q-switched fiber laser with cascaded fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wu, Man; Chen, Shuqing; Chen, Yu; Li, Ying

    2016-06-01

    We have demonstrated a wavelength switchable graphene Q-switched fiber laser with two cascaded fiber Bragg gratings. Stable Q-switching operation with central wavelength 1542.9 nm (1543.7 nm), repetition rate 28.4 kHz (22.58 kHz), and pulse duration 2.16 μs (2.65 μs) can be obtained by adjusting the intra-cavity birefringence. Moreover, stable dual-wavelength operation with wavelength spacing 0.8 nm can also be observed. The cascaded fiber gratings combined with the graphene saturable absorber provide a simple and feasible way to get versatile pulsed fiber laser.

  12. Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies

    PubMed Central

    Fu, Hongyan; Chen, Daru; Cai, Zhiping

    2012-01-01

    Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591

  13. Novel technique for mode selection in a multimode fiber laser.

    PubMed

    Daniel, J M O; Chan, J S P; Kim, J W; Sahu, J K; Ibsen, M; Clarkson, W A

    2011-06-20

    A simple technique for transverse mode selection in a large-mode-area (multimode) fiber laser is described. The technique exploits the different spectral responses of feedback elements based on a fiber Bragg grating and a volume Bragg grating to achieve wavelength-dependent mode filtering. This approach has been applied to a cladding-pumped thulium-doped fiber laser with a multimode core to achieve a single-spatial-mode output beam with a beam propagation factor (M2) of 1.05 at 1923 nm. Without mode selection the free-running fiber laser has a multimode output beam with an M2 parameter of 3.3. Selective excitation of higher order modes is also possible via the technique and preliminary results for laser oscillation on the LP11 mode are also discussed along with the prospects for scaling to higher power levels.

  14. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  15. Application of fiber laser for a Higgs factory

    SciTech Connect

    Chou, W.

    2014-06-04

    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  16. A contribution to the development of wide band-gap nonlinear optical laser materials

    NASA Astrophysics Data System (ADS)

    Stone-Sundberg, Jennifer Leigh

    The primary focus of this work is on examining structure-property relationships of interest for high-power nonlinear optical and laser crystals. An intuitive and simply illustrated method for assessing the nonlinear optical potential of structurally characterized noncentrosymmetric materials is introduced. This method is applied to materials including common quartz and tourmaline and then extended to synthetic materials including borates, silicates, aluminates, and phosphates. Particularly, the contributions of symmetric tetrahedral and triangular anionic groups are inspected. It is shown that both types of groups significantly contribute to the optical frequency converting abilities of noncentrosymmetric crystals. In this study, several known materials are included as well as several new materials. The roles of the orientation, composition, and packing density of these anionic groups are also discussed. The structures and optical properties of the known materials BPO 4, NaAlO2, LaCa4O(BO3)3, and tourmaline; the new compounds La0.8Y0.2Sc3 (BO3)4 and Ba2B10O 17; and the laser host Sr3Y0.75Yb0.25(BO 3)3 are described.

  17. High-brightness fiber-coupled diode laser module

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Hennig, Petra; Nickel, Michael

    1998-05-01

    Based on a pair of step-mirrors for beam rearranging we coupled the emission of three high-power diode laser arrays into an optical fiber of 800 micrometer diameter. We compressed the fast axis collimated beams of three diode lasers in respect to their fast axes by means of a step prism and symmetrized the beam parameter product by reordering the radiation which is focused into a fiber then. By simple optimization a coupling efficiency of 70% can be obtained.

  18. Even Illumination from Fiber-Optic-Coupled Laser Diodes

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    A method of equipping fiber-optic-coupled laser diodes to evenly illuminate specified fields of view has been proposed. The essence of the method is to shape the tips of the optical fibers into suitably designed diffractive optical elements. One of the main benefits afforded by the method would be more nearly complete utilization of the available light. Diffractive optics is a relatively new field of optics in which laser beams are shaped by use of diffraction instead of refraction.

  19. Simplified method for numerical modeling of fiber lasers.

    PubMed

    Shtyrina, O V; Yarutkina, I A; Fedoruk, M P

    2014-12-29

    A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.

  20. Self-Frequency-Doubling Glass-Fiber Laser

    NASA Technical Reports Server (NTRS)

    Selker, Mark D.; Dallas, Joseph L.

    1993-01-01

    Specially prepared germanium and phosphorous-doped glass optical fiber doped with neodymium shown to act as self-frequency-doubling laser. Self-frequency-doubling fiber laser with further refinements, eliminates need for expensive, easily damaged, nonlinear crystals currently used. Enables one to avoid loss and damage mechanisms associated with interfaces of nonlinear crystals as well as to eliminate angle/temperature phase-matching tuning.

  1. Ho-doped fiber for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Friebele, E. Joseph; Askins, Charles G.; Peele, John R.; Wright, Barbara Marcheschi; Condon, Nicholas J.; O'Connor, Shawn; Brown, Christopher G.; Bowman, Steven R.

    2014-03-01

    Ho-doped fiber lasers are of interest for high energy laser applications because they operate in the eye safer wavelength range and in a window of high atmospheric transmission. Because they can be resonantly pumped for low quantum defect operation, thermal management issues are anticipated to be tractable. A key issue that must be addressed in order to achieve high efficiency and minimize thermal issues is parasitic absorption in the fiber itself. Hydroxyl contamination arising from the process for making the Ho-doped fiber core is the principal offender due to a combination band of Si-O and O-H vibrations that absorbs at 2.2 μm in the Ho3+ emission wavelength region. We report significant progress in lowering the OH content to 0.16 ppm, which we believe is a record level. Fiber experiments using a 1.94 μm thulium fiber laser to resonantly clad pump a triple clad Ho-doped core fiber have shown a slope efficiency of 62%, which we also believe is a record for a cladding-pumped laser. Although pump-power limited, the results of these studies demonstrate the feasibility of power scaling Ho-doped fiber lasers well above the currently-reported 400-W level.1

  2. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  3. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-qian; Němec, Petre; Nazabal, Virginie; Jin, Yu-qi

    2016-05-01

    Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

  4. Applications Of Plastic Hollow Fibers In CO2 Laser Surgery

    NASA Astrophysics Data System (ADS)

    Kaplan, Isaac; Giller, Shamai; Dror, Jacob; Gannot, Israel; Croitoru, Nathan I.

    1989-06-01

    Plastic hollow fibers for the transmission of CO2 laser energy in curved path were produced by plating the inner face of plastic tubes with a metal film and a dielectric film. These fibers could transmit high power (25 watts) with low losses even through bendings. Bleeding ulcers in dogs' stomachs were successfully treated with the fibers which were inserted into the stomach through the oesophagus.

  5. Picosecond laser surface micropatterning of ceramics by optical fiber induction

    NASA Astrophysics Data System (ADS)

    Li, Jian; Ji, Lingfei; Hu, Yan; Wu, Yan; Yan, Yinzhou

    2015-06-01

    Parallel microgrooves and mesh structure with a line width of about 16 μm, which is much smaller than the diameter of the laser focus spot of 50 μm, are fabricated on Al2O3 ceramic surfaces by picosecond laser patterning with optical fiber induction. The patterned grooves are of high quality without burr, recasting or thermally induced cracks. Grain refinement of the groove surfaces caused by the rapid condensation and redeposition during picosecond laser irradiation with optical fiber induction improved the smoothness and mechanical strength of the grooves. Different patterns can be fabricated by adjusting the optical fiber layout, which is independent of the laser scanning direction. The regions etched by the laser are kept in near-field contact with the optical fibers when the laser beam passes through the fibers and irradiates the ceramic surface. This results in localized field enhancement between the transparent optic fiber and ceramic surface, which produces the precise microgrooves. The developed technique allows high-resolution micromachining of the surfaces of hard and brittle ceramic-type materials.

  6. New laser side fiber linked with resectoscope for transurethral surgery

    NASA Astrophysics Data System (ADS)

    Tasca, Andrea; Guazzieri, Stefano; Cecchetti, Walter; Zattoni, Filiberto; Pagano, Francesco

    1994-12-01

    Optical fiber systems with lateral emission of laser radiation are currently used for laser treatment of benign prostatic hyperplasia (BPH). They can be classified in reflective or refractive systems in which a mirror or a prism, respectively, is connected to the fiber tip. Both systems are disposable making the cost of treatment too high. An alternative solution for refractive systems is the prismatic cut of the fiber tip. A side fiber of this type was conceived at the Department of Chemical Physics of the University of Venice and then patented. An Olympus 27ch transurethral resectoscope was also modified for use with our side fiber as well as with the resecting blade. Our modified resectoscope with a Nd-YAG laser has been clinically used for the laser treatment of BPH (6 cases), as well as in high risk patients with bulky bleeding bladder tumors (4 cases), and in transitional tumors of the prostate infiltrating the parenchyma (2 cases). Laser treatment with our resectoscope resembles traditional endoscopic treatment, guarantees the precision of fiber tip translation, and permits combined treatments with laser and traditional blade.

  7. A high efficiency architecture for cascaded Raman fiber lasers.

    PubMed

    Supradeepa, V R; Nichsolson, Jeffrey W; Headley, Clifford E; Yan, Man F; Palsdottir, Bera; Jakobsen, Dan

    2013-03-25

    We demonstrate a new high efficiency architecture for cascaded Raman fiber lasers based on a single pass cascaded amplifier configuration. Conversion is seeded at all intermediate Stokes wavelengths using a multi-wavelength seed source. A lower power Raman laser based on the conventional cascaded Raman resonator architecture provides a convenient seed source providing all the necessary wavelengths simultaneously. In this work we demonstrate a 1480nm laser pumped by an 1117nm Yb-doped fiber laser with maximum output power of 204W and conversion efficiency of 65% (quantum-limited efficiency is ~75%). We believe both the output power and conversion efficiency (relative to quantum-limited efficiency) are the highest reported for cascaded Raman fiber lasers.

  8. Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber.

    PubMed

    Nicholson, J W; Bise, R; Alonzo, J; Stockert, T; Trevor, D J; Dimarcello, F; Monberg, E; Fini, J M; Westbrook, P S; Feder, K; Grüner-Nielsen, L

    2008-01-01

    Supercontinuum extending to visible wavelengths is generated in a hybrid silica nonlinear fiber pumped at 1560 nm by a femtosecond, erbium-doped fiber laser. The hybrid nonlinear fiber consists of a short length of highly nonlinear, germano-silicate fiber (HNLF) spliced to a length of photonic crystal fiber (PCF). A 2 cm length of HNLF provides an initial stage of continuum generation due to higher-order soliton compression and dispersive wave generation before launching into the PCF. The visible radiation is generated in the fundamental mode of the PCF. PMID:18157247

  9. High-brightness, fiber-coupled pump modules in fiber laser applications

    NASA Astrophysics Data System (ADS)

    Hemenway, Marty; Urbanek, Wolfram; Hoener, Kylan; Kennedy, Keith W.; Bao, Ling; Dawson, David; Cragerud, Emily S.; Balsley, David; Burkholder, Gary; Reynolds, Mitch; Price, Kirk; Haden, Jim; Kanskar, Manoj; Kliner, Dahv A.

    2014-03-01

    High-power, high-brightness, fiber-coupled pump modules enable high-performance industrial fiber lasers with simple system architectures, multi-kW output powers, excellent beam quality, unsurpassed reliability, and low initial and operating costs. We report commercially available (element™), single-emitter-based, 9xx nm pump sources with powers up to 130 W in a 105 μm fiber and 250 W in a 200 μm fiber. This combination of high power and high brightness translates into improved fiber laser performance, e.g., simultaneously achieving high nonlinear thresholds and excellent beam quality at kW power levels. Wavelength-stabilized, 976 nm versions of these pumps are available for applications requiring minimization of the gain-fiber length (e.g., generation of high-peak-power pulses). Recent prototypes have achieved output powers up to 300 W in a 200 μm fiber. Extensive environmental and life testing at both the chip and module level under accelerated and real-world operating conditions have demonstrated extremely high reliability, with innovative designs having eliminated package-induced-failure mechanisms. Finally, we report integrated Pump Modules that provide < 1.6 kW of fiber-coupled power conveniently formatted for fiber-laser pumping or direct-diode applications; these 19" rack-mountable, 2U units combine the outputs of up to 14 elements™ using fused-fiber combiners, and they include high-efficiency diode drivers and safety sensors.

  10. Ceramic bracket debonding with Tm:fiber laser

    NASA Astrophysics Data System (ADS)

    Demirkan, İrem; Sarp, Ayşe Sena Kabaş; Gülsoy, Murat

    2016-06-01

    Lasers have the potential for reducing the required debonding force and can prevent the mechanical damage given to the enamel surface as a result of conventional debonding procedure. However, excessive thermal effects limit the use of lasers for debonding purposes. The aim of this study was to investigate the optimal parameters of 1940-nm Tm:fiber laser for debonding ceramic brackets. Pulling force and intrapulpal temperature measurements were done during laser irradiation simultaneously. A laser beam was delivered in two different modes: scanning the fiber tip on the bracket surface with a Z shape movement or direct application of the fiber tip at one point in the center of the bracket. Results showed that debonding force could be decreased significantly compared to the control samples, in which brackets were debonded by only mechanical force. Intrapulpal temperature was kept equal or under the 5.5°C threshold value of probable thermal damage to pulp. Scanning was found to have no extra contribution to the process. It was concluded that using 1940-nm Tm:fiber laser would facilitate the debonding of ceramic brackets and can be proposed as a promising debonding tool with all the advantageous aspects of fiber lasers.

  11. Surface and bulk effects in silica fibers caused by 405 nm CW diode laser irradiation and means for mitigation

    NASA Astrophysics Data System (ADS)

    Gonschior, C. P.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2012-11-01

    Surface and bulk effects in silica optics due to high intensity laser light are well known using short pulse and high power laser systems. Surfaces are quickly destroyed mechanically if not properly prepared and thoroughly cleaned. Linear and non-linear absorption of high intensity laser light in the bulk of the optics causes material modifications, like voids, cracks and UV defects. In ablation experiments with very short pulses on wide band-gap dielectrics, periodic surface structures in the form of ripples were found. Surprisingly, we found similar structures on fiber end-faces after long-term irradiation with 405 nm CW laser light. Power densities on the end-face are in the range of 1 MW/cm2, three magnitudes of order below the power threshold at which the described damages occur. Nevertheless a ripple structure perpendicular to the polarization direction of the laser was formed and grows with irradiation time. An increased absorption band at 214 nm (E' center) along the fiber was discovered by spectral absorption measurements. E' centers can be generated by 405 nm laser light in the bulk, therefore defects on the surface are possible as well. The generation of defect centers on the silica surface can enhance the formation of an unstable surface layer.

  12. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2012-04-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  13. Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Cong, Shan; Sun, Yunxu; Zhao, Yuxi; Pan, Lifeng

    2011-11-01

    A fiber Bragg grating (FBG) sensors system utilizing a multi-wavelength erbium-doped fiber lasers (EDFL) with frequency shifter is proposed. The system is one fiber laser cavity with two FBG sensors as its filters. One is for strain sensing, and the other one is for temperature compensation. A frequency shifter is used to suppress the mode competition to lase two wavelengths that correspond with FBGs. The wavelength shift of the EDFL represents the sensing quantity, which is demodulated by Fiber Fabry-Perot (FFP) filter. The sensor's response to strain is measured by experiment. Because of exploiting the dual-wavelength fiber laser with a frequency shifter forming the feedback as the light source, many advantages of this system are achieved, especially high signal-to-noise ratio, high detected power, and low power consuming comparing with conventional FBG sensor system utilizing broadband light as the light source. What's more, this structure is also easy to combine with FBG array.

  14. Infrared glass fiber cables for CO laser medical applications

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro

    1993-05-01

    We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.

  15. Optical power supply unit utilizing high power laser diode module developed for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akira; Kiyoyama, Wataru; Yamauchi, Ryozo

    2014-05-01

    High power laser diode developed for fiber laser pumping is evaluated as a light source for an optical power supply unit. The output power of the newly developed laser diode module exceeds 15 W with 105 μm core fiber. It is estimated that more than 1600 mW power supply can be achieved with the single emitter laser diode module and a polycrystalline silicon cell over 1 km away from the light source. This unit can be used for sensor nodes in the fiber sensor network.

  16. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  17. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  18. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  19. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  20. Detachable fiber optic tips for use in thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Blackmon, Richard L.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    The thulium fiber laser (TFL) has recently been proposed as an alternative to the Holmium:YAG (Ho:YAG) laser for lithotripsy. The TFL's Gaussian spatial beam profile provides higher power transmission through smaller optical fibers with reduced proximal fiber tip damage, and improved saline irrigation and flexibility through the ureteroscope. However, distal fiber tip damage may still occur during stone fragmentation, resulting in disposal of the entire fiber after the procedure. A novel design for a short, detachable, distal fiber tip that can fit into an ureteroscope's working channel is proposed. A prototype, twist-lock, spring-loaded mechanism was constructed using micromachining methods, mating a 150-μm-core trunk fiber to 300-μm-core fiber tip. Optical transmission measuring 80% was observed using a 30-mJ pulse energy and 500-μs pulse duration. Ex vivo human calcium oxalate monohydrate urinary stones were vaporized at an average rate of 187 μg/s using 20-Hz modulated, 50% duty cycle 5 pulse packets. The highest stone ablation rates corresponded to the highest fiber tip degradation, thus providing motivation for use of detachable and disposable distal fiber tips during lithotripsy. The 1-mm outer-diameter prototype also functioned comparable to previously tested tapered fiber tips.

  1. Detachable fiber optic tips for use in thulium fiber laser lithotripsy.

    PubMed

    Hutchens, Thomas C; Blackmon, Richard L; Irby, Pierce B; Fried, Nathaniel M

    2013-03-01

    The thulium fiber laser (TFL) has recently been proposed as an alternative to the Holmium:YAG (Ho:YAG) laser for lithotripsy. The TFL's Gaussian spatial beam profile provides higher power transmission through smaller optical fibers with reduced proximal fiber tip damage, and improved saline irrigation and flexibility through the ureteroscope. However, distal fiber tip damage may still occur during stone fragmentation, resulting in disposal of the entire fiber after the procedure. A novel design for a short, detachable, distal fiber tip that can fit into an ureteroscope's working channel is proposed. A prototype, twist-lock, spring-loaded mechanism was constructed using micromachining methods, mating a 150-μm-core trunk fiber to 300-μm-core fiber tip. Optical transmission measuring 80% was observed using a 30-mJ pulse energy and 500-μs pulse duration. Ex vivo human calcium oxalate monohydrate urinary stones were vaporized at an average rate of 187  μg/s using 20-Hz modulated, 50% duty cycle 5 pulse packets. The highest stone ablation rates corresponded to the highest fiber tip degradation, thus providing motivation for use of detachable and disposable distal fiber tips during lithotripsy. The 1-mm outer-diameter prototype also functioned comparable to previously tested tapered fiber tips.

  2. Frequency noise induced by fiber perturbations in a fiber-linked stabilized laser

    NASA Technical Reports Server (NTRS)

    Pang, YI; Hamilton, Jeffrey J.; Richard, Jean-Paul

    1992-01-01

    The effects of acoustic perturbations on an optical fiber that links a stabilized laser to its reference cavity are studied. An extrapolation indicates that 69 dB of acoustic noise impinging on a 1-m segment of the 10-m fiber contribute frequency noise at the level of 1 Hz/(Hz)1/2 in the 1100-2100-Hz band.

  3. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  4. New fiber laser for lidar developments in disaster management

    NASA Astrophysics Data System (ADS)

    Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.

    2014-10-01

    Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.

  5. Mode Selection for a Single-Frequency Fiber Laser

    NASA Technical Reports Server (NTRS)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  6. A 1-Joule laser for a 16-fiber injection system

    SciTech Connect

    Honig, J

    2004-04-06

    A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In addition, results showing the improvement that can be obtained by proper laser beam formatting will also be presented.

  7. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber.

    PubMed

    Fu, Shijie; Shi, Wei; Lin, Jichao; Fang, Qiang; Sheng, Quan; Zhang, Haiwei; Wen, Jinwei; Yao, Jianquan

    2015-11-15

    A single-frequency fiber laser operating at 1950 nm has been demonstrated in an all-fiber distributed Bragg reflection laser cavity by using a 1.9 cm commercially available thulium-doped silica fiber, for the first time, to the best of our knowledge. The laser was pumped by a 793 nm single-mode diode laser and had a threshold pump power of 75 mW. The maximum output power of the single longitudinal mode laser was 18 mW and the slope efficiency with respect to the launched pump power was 11%. Moreover, the linewidth and relative intensity noise at different pump power have been measured and analyzed. PMID:26565855

  8. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  9. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  10. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-10-12

    We report on a 25 W continuous wave narrow linewidth (< 2.3 MHz) 589 nm laser by efficient (> 95%) coherent beam combination of two narrow linewidth (< 1.5 MHz) Raman fiber amplifiers with a Mach-Zehnder interferometer scheme and frequency doubling in an external resonant cavity with an efficiency of 86%. The results demonstrate the narrow linewidth Raman fiber amplifier technology as a promising solution for developing laser for sodium laser guide star adaptive optics. PMID:20372636

  11. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star.

    PubMed

    Feng, Yan; Taylor, Luke R; Calia, Domenico Bonaccini

    2009-10-12

    We report on a 25 W continuous wave narrow linewidth (< 2.3 MHz) 589 nm laser by efficient (> 95%) coherent beam combination of two narrow linewidth (< 1.5 MHz) Raman fiber amplifiers with a Mach-Zehnder interferometer scheme and frequency doubling in an external resonant cavity with an efficiency of 86%. The results demonstrate the narrow linewidth Raman fiber amplifier technology as a promising solution for developing laser for sodium laser guide star adaptive optics.

  12. Recent Advances in Fiber Lasers for Nonlinear Microscopy

    PubMed Central

    Xu, C.; Wise, F. W.

    2013-01-01

    Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to dominate applications of nonlinear microscopy. Fiber lasers offer attractive features for biological and biomedical imaging, and recent advances are leading to high-performance sources with the potential for robust, inexpensive, integrated instruments. This article discusses recent advances, and identifies challenges and opportunities for fiber lasers in nonlinear bioimaging. PMID:24416074

  13. Laser based microstructuring of polymer optical fibers for sensors optimization

    NASA Astrophysics Data System (ADS)

    Athanasekos, Loukas; Vasileiadis, Miltiadis; El Sachat, Alexandros; Vainos, Nikolaos A.; Riziotis, Christos

    2015-03-01

    Microstructuring of Polymer Optical Fibers-POF through surface modification with UV excimer laser radiation has been performed and studied. The laser modified surface cavities on fibers act as material receptors of exact volume allowing highly controllable and repeatable structures. The effect of Laser writing conditions on different etching characteristics of cladding and core materials of the fibres are presented. Ablated structures on the fibres are examined for optimised sensors' response characteristics. As a case study humidity and ammonia sensors are demonstrated by employing sensitive block copolymer materials on suitably micromachined segments of fibres.

  14. Tm:germanate Fiber Laser: Tuning And Q-switching

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Walsh, Brian M.; Reichle, Donald J.; DeYoung, R. J.; Jiang, Shibin

    2007-01-01

    A Tm:germanate fiber laser produced >0.25 mJ/pulse in a 45 ns pulse. It is capable of producing multiple Q-switched pulses from a single p ump pulse. With the addition of a diffraction grating, Tm:germanate f iber lasers produced a wide, but length dependent, tuning range. By s electing the fiber length, the tuning range extends from 1.88 to 2.04 ?m. These traits make Tm:germanate lasers suitable for remote sensin g of water vapor.

  15. Linearly polarized random fiber laser with ultimate efficiency.

    PubMed

    Zlobina, E A; Kablukov, S I; Babin, S A

    2015-09-01

    Linearly polarized pumping of a random fiber laser made of a 500-m PM fiber with PM fiber-loop mirror at one fiber end results in generation of linearly polarized radiation at 1.11 μm with the polarization extinction ratio as high as 25 dB at the output power of up to 9.4 W. The absolute optical efficiency of pump-to-Stokes wave conversion reaches 87%, which is close to the quantum limit and sets a record for Raman fiber lasers with random distributed feedback and with a linear cavity as well. Herewith, the output linewidth at high powers tends to saturation at a level of 1.8 nm. PMID:26368715

  16. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths. PMID:26371923

  17. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths.

  18. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles.

    PubMed

    Nadkarni, Seemantini K; Bouma, Brett E; Yelin, Dvir; Gulati, Amneet; Tearney, Guillermo J

    2008-01-01

    Laser speckle imaging (LSI), a new technique that measures an index of plaque viscoelasticity, has been investigated recently to characterize atherosclerotic plaques. These prior studies demonstrated the diagnostic potential of LSI for detecting high-risk plaques and were conducted ex vivo. To conduct intracoronary LSI in vivo, the laser speckle pattern must be transmitted from the coronary wall to the image detector in the presence of cardiac motion. Small-diameter, flexible optical fiber bundles, similar to those used in coronary angioscopy, may be incorporated into an intravascular catheter for this purpose. A key challenge is that laser speckle is influenced by inter-fiber leakage of light, which may be exacerbated during bundle motion. In this study, we tested the capability of optical fiber bundles to transmit laser speckle patterns obtained from atherosclerotic plaques and evaluated the influence of motion on the diagnostic accuracy of fiber bundle-based LSI. Time-varying helium-neon laser speckle images of aortic plaques were obtained while cyclically moving the flexible length of the bundle to mimic coronary motion. Our results show that leached fiber bundles may reliably transmit laser speckle images in the presence of cardiac motion, providing a viable option to conduct intracoronary LSI. PMID:19021396

  19. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  20. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  1. All-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Hua, Dacheng; Su, Jianjia; Cui, Wei; Yan, Yaxi; Jiang, Peipei

    2014-12-01

    We report an all-fiberized SBS-based high repetition rate sub-nanosecond Yb fiber laser for supercontinuum generation. The high repetition rate ns laser pulses were produced from a fiber Bragg grating (FBG)-constructed fiber laser cavity consisting of a piece of double cladding Yb fiber as the gain medium and a short piece of Bi/Cr-doped fiber as a saturable absorber (SA). By optimizing the fiber length of the Bi/Cr-doped fiber and the reflectivity of the FBG, the Q-switching state of the fiber laser can be adjusted so that the energy storing condition within the fiber cavity can assure the start of stimulated Brillouin scattering (SBS) and as a result, compress the laser pulse duration. The fiber laser had an average laser power output of 1.2 W at 1064 nm with pulse repetition rate of about 80 kHz, almost four times the reported results. The pulse duration was about 1 ns with peak power of about 15 kW. After one stage of amplification, the laser power was raised to about 3 W and was used to pump a 20 m long photonic crystal fiber (PCF). Supercontiuum (SC) laser output was obtained with average power up to 1.24 W and spectrum spanning from 550 to 2200 nm.

  2. Laser fiber migration into the pelvic cavity: A rare complication of endovenous laser ablation.

    PubMed

    Lun, Yu; Shen, Shikai; Wu, Xiaoyu; Jiang, Han; Xin, Shijie; Zhang, Jian

    2015-10-01

    Endovenous laser ablation is an established alternative to surgery with stripping for the treatment of varicose veins. Ecchymoses and pain are frequently reported side effects of endovenous laser ablation. Device-related complications are rare but serious. We describe here an exceptional complication, necessitating an additional surgical procedure to remove a segment of laser fiber that had migrated into the pelvic cavity. Fortunately, severe damage had not occurred. This case highlights the importance of checking the completeness of the guidewire, catheter, and laser fiber after endovenous laser ablation.

  3. Making custom fiber lasers for use in an atomic physics experiment

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Cameron, Garnet; Nault, Kyla; Shiner, David

    2016-05-01

    Fiber lasers can be a reasonable choice for a laser source in atomic physics. Our particular applications involve the optical pumping and in some applications cooling of various transitions in atomic helium. Doped fiber with emission at the required wavelengths is necessary. Readily available fiber and approximate wavelength emission ranges include Yb (990 - 1150 nm), Er/Yb (1530 - 1625 nm) and Th (1900 -2100 nm). High efficiency conversion of pump photons into stable single frequency laser emission at the required wavelength is the function of the fiber laser. A simple fiber laser cavity uses a short (~ few mm) fiber grating high reflector mirror, a doped fiber section for the laser cavity, and a long (~ few cm) fiber grating output coupler. To ensure reliable single frequency operation, the laser cavity length should be within 2-3 times the output grating length. However the cavity length must be long enough for round trip gains to compensate for the output mirror transmission loss. Efficiency can be maximized by avoiding fiber splices in the fiber laser cavity. This requires that the gratings be written into the doped fiber directly. In our previous designs, back coupling of the fiber laser into the pump laser contributes to instability and sometimes caused catastrophic pump failure. Current designs use a fiber based wavelength splitter (WDM) to study and circumvent this problem. Data will be presented on the fiber lasers at 1083 nm. Work on a Thulium 2057 nm fiber laser will also be discussed. This work is supported by NSF Grant # 1404498.

  4. All-fiber passively mode-locked laser based on a chiral fiber grating.

    PubMed

    Du, Yueqing; Shu, Xuewen; Xu, Zuowei

    2016-01-15

    A novel passively mode-locked all-fiber laser using a chiral fiber grating as a polarization-selective element is demonstrated for the first time, to the best of our knowledge. The chiral fiber grating serves as a key component to form an artificial saturable absorber to realize mode locking through nonlinear polarization rotation in the cavity. The laser generates stable short pulses with energy of 0.34 nJ, a fundamental repetition rate of 3.27 MHz, and an FWHM bandwidth of 28 nm. We also show that harmonic mode-locked pulse trains of different orders can be obtained by increasing the pump power.

  5. 954 nm Raman fiber laser with multimode laser diode pumping

    NASA Astrophysics Data System (ADS)

    Zlobina, E. A.; Kablukov, S. I.; Skvortsov, M. I.; Nemov, I. N.; Babin, S. A.

    2016-03-01

    CW Raman fiber laser emitting at 954 nm under direct pumping by a high-power multimode laser diode at 915 nm is demonstrated. A cavity of the laser is formed with 2.5 km-long multimode graded-index fiber and two mirrors: highly reflective fiber Bragg grating (FBG) at one side and normally cleaved fiber end at the other side. The laser generates low-index transverse modes at the Stokes wavelength with output power above 4 W at a slope efficiency above 40%. It is shown that utilization of a narrowband FBG mirror with low reflectivity instead of the cleaved fiber end with Fresnel reflection leads to stronger spectral mode selection, but the generated power is reduced in this case.

  6. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  7. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  8. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-01

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique. PMID:25836159

  9. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery

    PubMed Central

    Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela

    2014-01-01

    Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of

  10. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery.

    PubMed

    Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela

    2014-07-01

    Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of

  11. All-fiber amplifier similariton laser based on a fiber Bragg grating filter.

    PubMed

    Olivier, Michel; Gagnon, Mathieu; Duval, Simon; Bernier, Martin; Piché, Michel

    2015-12-01

    This article presents, for the first time to our knowledge, an all-fiber amplifier similariton laser based on a fiber Bragg grating filter. The laser emits 2.9 nJ pulses at a wavelength of 1554 nm with a repetition rate of 31 MHz. The dechirped pulses have a duration of 89 fs. The characteristic features of the pulse profile and spectrum along with the dynamics of the laser are highlighted in representative simulations. These simulations also address the effect of the filter shape and detuning with respect to the gain spectral peak. PMID:26625073

  12. Cavitation bubble dynamics during thulium fiber laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.

  13. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  14. A phase-stabilized carbon nanotube fiber laser frequency comb.

    PubMed

    Lim, Jinkang; Knabe, Kevin; Tillman, Karl A; Neely, William; Wang, Yishan; Amezcua-Correa, Rodrigo; Couny, François; Light, Philip S; Benabid, Fetah; Knight, Jonathan C; Corwin, Kristan L; Nicholson, Jeffrey W; Washburn, Brian R

    2009-08-01

    A frequency comb generated by a 167 MHz repetition frequency erbium-doped fiber ring laser using a carbon nanotube saturable absorber is phase-stabilized for the first time. Measurements of the in-loop phase noise show an integrated phase error on the carrier envelope offset frequency of 0.35 radians. The carbon nanotube fiber laser comb is compared with a CW laser near 1533 nm stabilized to the nu(1) + nu(3) overtone transition in an acetylene-filled kagome photonic crystal fiber reference, while the CW laser is simultaneously compared to another frequency comb based on a Cr:Forsterite laser. These measurements demonstrate that the stability of a GPS-disciplined Rb clock is transferred to the comb, resulting in an upper limit on the locked comb's frequency instability of 1.2 x 10(-11) in 1 s, and a relative instability of <3 x 10(-12) in 1 s. The carbon nanotube laser frequency comb offers much promise as a robust and inexpensive all-fiber frequency comb with potential for scaling to higher repetition frequencies.

  15. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  16. All-fiber 7 × 1 signal combiner for high power fiber lasers.

    PubMed

    Zhou, Hang; Chen, Zilun; Zhou, Xuanfeng; Hou, Jing; Chen, Jinbao

    2015-04-10

    We present an all-fiber 7×1 signal combiner for high power fiber lasers. Through theoretical analysis, the fabrication method is confirmed and the taper length of the fiber bundle is chosen to be 1 cm to ensure a high transmission efficiency of the combiner. Based on the theoretical results, an all-fiber 7×1 signal combiner with high transmission efficiency is fabricated. A capillary with low refractive index is fused around the bundle of signal fibers to make an additional cladding layer. Then the fiber bundle is tapered to match the core of the output fiber and then spliced with the output fiber. The combiner is tested with a 500 W fiber laser and a temperature increase of 13°C/kW without any active cooling is observed in the combiner. The power transmission efficiency is measured to be close to 99% for each input port and the beam quality M2 is around 10. PMID:25967291

  17. Thin gas cell with GRIN fiber lens for intra-cavity fiber laser gas sensors

    NASA Astrophysics Data System (ADS)

    Li, Mo; Dai, Jing-min; Peng, Gang-ding

    2009-07-01

    Fiber laser gas sensors based on the intra-cavity absorption spectroscopy require the use of gas cells. We propose a simple and reliable gas cell using graded-index fiber lens (GFL) based all-fiber collimator. Conventional gas cells usually utilize direct fiber-to-fiber coupling without collimators or graded-index (GRIN) lens as collimators. Direct fiberto- fiber gas cell has simple configuration, but it suffers from high coupling loss and stray light interference. Gas cells applying fiber pigtailed GRIN lens are advantageous to achieve low coupling loss. However, fiber pigtailed GRIN lens requires accurate and complicated alignment and glue packaging which could compromise long term reliability and thermal stability. The proposed technique fabricates all-fiber collimators by simply splicing a short section of gradedindex fiber to single mode fiber which is both compact and durable. With that collimator, the gas cell can be fabricated very thin and are suitable for extreme environments with high temperature and vibration. In this paper, we have carried out experiment and analysis to evaluate the proposed technique. The coupling efficiency is studied versus different GFL gradient parameter profiles using ray matrix transformation of the complex beam parameter. Experiments are also done to prove the practical feasibility of the collimator. The analysis indicates that gas cell using GFLs can overcome the disadvantages of traditional design; it may replace the conventional gas cells in practical applications.

  18. Double nanosecond pulses generation in ytterbium fiber laser.

    PubMed

    Veiko, V P; Lednev, V N; Pershin, S M; Samokhvalov, A A; Yakovlev, E B; Zhitenev, I Yu; Kliushin, A N

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode. PMID:27370433

  19. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  20. Long-term laser frequency stabilization using fiber interferometers

    SciTech Connect

    Kong, Jia; Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Mitchell, Morgan W.

    2015-07-15

    We report long-term laser frequency stabilization using only the target laser and a pair of 5 m fiber interferometers, one as a frequency reference and the second as a sensitive thermometer to stabilize the frequency reference. When used to stabilize a distributed feedback laser at 795 nm, the frequency Allan deviation at 1000 s drops from 5.6 × 10{sup −8} to 6.9 × 10{sup −10}. The performance equals that of an offset lock employing a second, atom-stabilized laser in the temperature control.

  1. Reference beam laser Doppler velocimeter incorporating fiber optic components

    SciTech Connect

    James, S.W.; Lockey, R.A.; Egan, D.; Tatam, R.P.

    1995-12-31

    A compact reference beam laser Doppler velocimeter, constructed using a semiconductor laser diode, optical fiber components and semiconductor detectors, is reported. The device has been designed to overcome many of the problems commonly associated with reference beam configurations. The anemometer may be operated with the laser diode operating in cw and pulsed modes, demonstrating its applicability to wavelength and time division multiplexing schemes for 3D laser Doppler velocimetry. The probe is used to measure the velocity of a spinning disk in the range {minus}20 m/s to +20 m/s.

  2. Highly efficient mid-infrared dysprosium fiber laser.

    PubMed

    Majewski, Matthew R; Jackson, Stuart D

    2016-05-15

    A new, highly efficient and power scalable pump scheme for 3 μm class fiber lasers is presented. Using the free-running 2.8 μm emission from an Er3+-doped fluoride fiber laser to directly excite the upper laser level of the H13/26→H15/26 transition of the Dy3+ ion, output at 3.04 μm was produced with a record slope efficiency of 51%. Using comparatively long lengths of Dy3+-doped fluoride fiber, a maximum emission wavelength of 3.26 μm was measured. PMID:27176955

  3. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  4. A wavelength-tunable fiber laser based on a twin-core fiber comb filter

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Lou, Shuqin; Yin, Guolu

    2013-02-01

    A wavelength-tunable fiber laser based on a twin-core fiber (TCF) comb filter is proposed and demonstrated. The TCF comb filter is fabricated by splicing a 0.85 m long TCF between two standard single mode fibers (SMFs) and with exhibits a good linear strain characteristic with a sensitivity of 1.23 pm/μɛ. The wavelength of the laser can be linearly tuned from 1558.04 nm to 1553.62 nm by applying an axial strain to the TCF comb filter. The optical signal-to-noise ratio (OSNR) of the fiber laser reaches 45 dB. The 3 dB bandwidth is 0.02 nm. The fluctuation of the laser peak in the output power and the wavelength is less than 0.5 dB and within 0.05 nm, respectively. The fiber laser has the advantages of having a simple structure and stable operation under room temperature.

  5. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  6. Wavelength-switchable fiber laser based on temperature-dependent transmittance of a LPFG

    NASA Astrophysics Data System (ADS)

    Anzueto-Sánchez, G.; Castrellon-Uribe, J.; Torres-Gómez, I.; Martínez-Rios, A.; Osuna-Galán, I.

    2011-09-01

    A wavelength-switchable erbium-doped fiber ring laser is demonstrated and reported. The erbium-doped fiber net gain of the fiber laser is modified by controlled heating of a Long Period Fiber Grating (LPFG) inserted into the laser cavity. The rejection band of the LPFG is altered in the resonant wavelength and loss according to the exposed temperature and consequently, the operating wavelength of the fiber laser can be switched from a single wavelength operation at 1563 nm to a simultaneous operation at 1527 and 1563 nm. The laser system can be used as a temperature fiber sensor as well.

  7. Laser diode pumped high efficiency Yb:YAG crystalline fiber waveguide lasers

    NASA Astrophysics Data System (ADS)

    Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    Single-clad and double-clad Yb:YAG crystalline fiber waveguides (CFWs) have been prepared with Adhesive-Free Bonding (AFB®) technology. By using a fiber coupled laser diode as pump source, a single-mode laser with near diffraction limited beam quality M2=1.02 has been demonstrated in a double-clad CFW. The laser output power and efficiency are 13.2 W and 34%, respectively. In a single-clad CFW, core pumping was used. The laser output has top-hat beam profile. An output power of 28 W and a slope efficiency of 78% have been achieved respectively.

  8. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping.

    PubMed

    Peterka, P; Honzátko, P; Koška, P; Todorov, F; Aubrecht, J; Podrazký, O; Kašík, I

    2014-12-01

    We present a method for the estimation of the reflection spectra of transient gratings in rare-earth doped fiber lasers having a self-sweeping of laser wavelength. We show that high reflectivities of several tens of percent can be achieved. An example of this is demonstrated through the use of an experimental Yb-doped Fabry-Perot fiber laser. The gratings' spectra are highly asymmetric due to the apodization of the refractive index modulation. The importance of the self-sweeping regime for triggering self-Q-switched laser instabilities is discussed. PMID:25606932

  9. Microstructured optical fiber for in-phase mode selection in multicore fiber lasers.

    PubMed

    Chuncan, Wang; Fan, Zhang; Chu, Liu; Shuisheng, Jian

    2008-04-14

    The mode-selection method based on a single-mode microstructured optical fiber (MOF) in the multicore fiber (MCF) lasers is presented. With an appropriate choice of the designed parameters of the MOF, the power coupling coefficient between the fundamental mode (FM) of the MOF and the in-phase mode can be much higher than those between the FM and the other supermodes. As a result, the in-phase mode has the highest power reflection on the right-hand side of the MCF laser cavity, and dominates the output laser power. Compared to the MCF lasers based on the free-space Talbot cavity method, the MCF lasers with the MOF as a mode-selection component have higher effectiveness of the in-phase mode selection.

  10. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  11. Diffusing fiber tips for high-power medical laser applications

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph H.; Spaniol, Stefan B.; Abraham, Volkhard; Ashraf, Naim; Neuberger, Wolfgang; Ertmer, Wolfgang

    1995-01-01

    For most applications in laser medicine suitable delivery systems are required. We developed fiber optic based diffusing tips especially for photodynamic therapy (PDT) and laser induced thermotherapy (LITT). To realize an adequate emitting cylindrical diffuser the fiber core was abraded by a precision cutter. Hence, the use of scattering media such as TiO2-doped polymers is avoided. Because the diffuser size is mainly determined by the manipulated fiber and a surrounding glass capillary, one can realize small diameters ((phi) approximately equals 3 mm). The laser light is distributed mainly by surface scattering and total reflection at the fiber air boundary. Because the use of absorbing media is avoided, it is possible to apply high laser power as necessary in LITT and pulsed PDT. We produced diffusing tips with lengths of several centimeters and typical diameters of 3 mm. By controlling the fiber-shaping process, a homogeneous intensity profile or even special designs can be achieved. The control is done by either on-line camera surveillance or calculated predictions. A delivery system especially for the photodynamical treatment of female cervix dysplasia has been designed.

  12. Laser heated pedestal growth system commissioning and fiber processing

    NASA Astrophysics Data System (ADS)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  13. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1992-01-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  14. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  15. Multichannel polarization stabilization for coherently combined fiber laser arrays.

    PubMed

    Goodno, Gregory D; McNaught, Stuart J; Weber, Mark E; Weiss, S Benjamin

    2012-10-15

    We demonstrate a simplified approach toward active polarization control in coherently combined laser architectures. By leveraging optical phase dithers applied by a phase controller, polarization error signals are generated for an entire laser array from a single beam sample of the combined output, enabling closed-loop polarization locking of non-polarization-maintaining fibers. The concept is shown to be compatible with both hill-climbing and synchronous multidither phase control methods. Simultaneous phase locking and polarization locking was demonstrated for a five-fiber array with >99% phasing efficiency and >20 dB polarization extinction ratio.

  16. A novel fiber laser development for photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yavas, Seydi; Aytac-Kipergil, Esra; Arabul, Mustafa U.; Erkol, Hakan; Akcaalan, Onder; Eldeniz, Y. Burak; Ilday, F. Omer; Unlu, Mehmet B.

    2013-03-01

    Photoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components.

  17. Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Chen, H.; Leblanc, M.; Schinn, G. W.

    2003-02-01

    We report on the experimental investigation of gain enhanced L-band erbium-doped fiber amplifiers (EDFA) by either recycling residual ASE or using a second C-band wavelength pump laser and on the experimental demonstration of L-band tunable erbium-doped fiber ring lasers. We observed that by reflecting ASE from pumped erbium-doped fiber (EDF) the L-band EDFA gain can be enhanced of 2-15 dB depending on amplifier designs. We also studied wavelength and power dependence of second pump laser on the gain enhanced L-band EDFA and found that an optimum wavelength for second pump laser was between 1550 and 1560 nm. Finally, a L-band tunable erbium-doped fiber laser was also constructed in which lazing oscillation was observed closed to 1624 nm by recycling residual ASE. This L-band tunable laser has a line-width of about 300 MHz, an output power of 1 mW, and a signal to source spontaneous emission ratio of 60 dB.

  18. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    SciTech Connect

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura; Kawaguchi, Isao; Miura, Yasuhiko; Ino, Tooru

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  19. Regimes of operation states in passively mode-locked fiber soliton ring laser

    NASA Astrophysics Data System (ADS)

    Gong, Y. D.; Shum, P.; Tang, D. Y.; Lu, C.; Guo, X.; Paulose, V.; Man, W. S.; Tam, H. Y.

    2004-06-01

    The principal of passively mode-locked fiber soliton ring lasers is summarized, including its three output operation states: normal soliton, bound-solitons and noise-like pulse. The experimental results of the passively mode-locked fiber soliton ring lasers developed by us are given. Bound-solitons with different discrete separations and three-bound-solitons state have been observed in our fiber laser for the first time. The relationship among three operation states in fiber soliton laser is analyzed.

  20. Single-Frequency Narrow Linewidth 2 Micron Fiber Laser

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)

    2006-01-01

    A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.

  1. Ultrafast pulses from a mid-infrared fiber laser.

    PubMed

    Hu, Tomonori; Jackson, Stuart D; Hudson, Darren D

    2015-09-15

    Ultrafast laser pulses at mid-infrared wavelengths (2-20 μm) interact strongly with molecules due to the resonance with their vibration modes. This enables their application in frequency comb-based sensing and laser tissue surgery. Fiber lasers are ideal to achieve these pulses, as they are compact, stable, and efficient. We extend the performance of these lasers with the production of 6.4 kW at a wavelength of 2.8 μm with complete electric field retrieval using frequency-resolved optical gating techniques. Contrary to the problems associated with achieving a high average power, fluoride fibers have now shown the capability of operating in the ultrafast, high-peak-power regime. PMID:26371902

  2. Fiber-laser-based photoacoustic microscopy and melanoma cell detection

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Maslov, Konstantin; Zhang, Yu; Hu, Song; Yang, Lihmei; Xia, Younan; Liu, Jian; Wang, Lihong V.

    2011-01-01

    For broad applications in biomedical research involving functional dynamics and clinical studies, a photoacoustic microscopy system should be compact, stable, and fast. In this work, we use a fiber laser as the photoacoustic irradiation source to meet these goals. The laser system measures 45×56×13 cm3. The stability of the laser is attributed to the intrinsic optical fiber-based light amplification and output coupling. Its 50-kHz pulse repetition rate enables fast scanning or extensive signal averaging. At the laser wavelength of 1064 nm, the photoacoustic microscope still has enough sensitivity to image small blood vessels while providing high optical absorption contrast between melanin and hemoglobin. Label-free melanoma cells in flowing bovine blood are imaged in vitro, yielding measurements of both cell size and flow speed.

  3. Defect visualization in carbon fiber composite using laser ultrasound

    SciTech Connect

    Dewhurst, R.J.; He, Ruhua; Shan, Qing . Dept. of Instrumentation and Analytical Science)

    1993-08-01

    A non-contacting laser ultrasound system has been developed to visualize laminar defects in carbon fiber composite materials. Laser-generated ultrasound (LGU) was produced from a Nd:YAG Q-switched laser. Ultrasound was detected with the use of an actively stabilized Fabry-Perot interferometer using a 400 mW argon-ion laser source. It detected ultrasound in a typical frequency range of 1 to 10 MHz. Through-transmission C-scan measurements were made in carbon fiber composite materials of thickness 1 to 20 mm. Peak-to-peak amplitudes of the first longitudinal ultrasonic pulse were measured, with attenuation used as the basis of defect examination. Digital filtering was adopted to enhance defect visibility. Results showed that images with size resolution better than 1 mm can be achieved. Such measurements take into account any variation of surface reflectivity which can arise in industrial materials.

  4. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  5. Fiber laser beam combining and power scaling progress: Air Force Research Laboratory Laser Division

    NASA Astrophysics Data System (ADS)

    Wagner, T. J.

    2012-02-01

    Numerous achievements have been made recently by researchers in the areas of fiber laser beam combining and power scaling. Industry has demonstrated multi-kW power from a single fiber amplifier, and a US national laboratory has coherently combined eight fiber amplifiers totaling 4 kW. This paper will survey the recent literature and then focus on fiber laser results from the Laser Division, Directed Energy Directorate of the Air Force Research Laboratory (AFRL). Progress has been made in the power scaling of narrow-linewidth fiber amplifiers, and we are transitioning lessons learned from PCF power scaling into monolithic architectures. SBS suppression has been achieved using a variety of techniques to lower the Brillioun gain, including acoustically tailored fiber, laser gain competition resulting from multitone seeding and inducing a longitudinal thermal gradient. We recently demonstrated a 32-channel coherent beam combination result using AFRL's phaselocking technique and are focused on exploring the limitations of this technique including linewidth broadening, kW-induced phase nonlinearities and auto-tuning methods for large channel counts. Additionally, we have recently refurbished our High Energy Laser Joint Technology Office-sponsored 16-amplifier fiber testbed to meet strict PER, spatial drift, power stability and beam quality requirements.

  6. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers.

    PubMed

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yuan, Yijun; Sun, Yunxu; Gu, Yinglong; Yao, Yong

    2016-08-10

    A new hybrid Brillouin erbium fiber laser scheme that employs cascaded multiple Brillouin gain fibers in a ring cavity to realize multiwavelength laser output with switchable frequency spacing is proposed and experimentally investigated. The multiple frequency downshifting processes introduced by multiple stimulated Brillouin scattering (SBS) effects in one round-trip of the cavity make it possible to realize multiwavelength output with frequency spacing that is an integer multiple of the SBS frequency shifting. With two cascaded SBS fibers, the frequency spacing can be switched between single and double SBS frequency shifting by properly adjusting the Brillouin pump power. Multiwavelength outputs with triple or quadruple SBS frequency spacing are also demonstrated by employing three or four SBS gain fibers, respectively. PMID:27534498

  7. [INVITED] Multiwavelength operation of erbium-doped fiber-ring laser for temperature measurements

    NASA Astrophysics Data System (ADS)

    Diaz, S.; Lopez-Amo, M.

    2016-04-01

    In this work, simultaneous lasing at up to eight wavelengths is demonstrated in a multi-wavelength erbium-doped fiber ring laser previously reported. This is achieved by introducing a feedback fiber loop in a fiber ring cavity. Eight-wavelength laser emission lines were obtained simultaneously in single-longitudinal mode operation showing a power instability lower than 0.8 dB, and an optical signal-to-noise ratio higher than 42 dB for all the emitted wavelengths. The fiber Bragg gratings give this source the possibility to be also used as sensor-network multiplexing scheme. The application of this system for remote temperature measurements has been demonstrated obtaining good time stability results.

  8. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    NASA Astrophysics Data System (ADS)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  9. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers.

    PubMed

    Wang, Xiaorui; Yang, Yanfu; Liu, Meng; Yuan, Yijun; Sun, Yunxu; Gu, Yinglong; Yao, Yong

    2016-08-10

    A new hybrid Brillouin erbium fiber laser scheme that employs cascaded multiple Brillouin gain fibers in a ring cavity to realize multiwavelength laser output with switchable frequency spacing is proposed and experimentally investigated. The multiple frequency downshifting processes introduced by multiple stimulated Brillouin scattering (SBS) effects in one round-trip of the cavity make it possible to realize multiwavelength output with frequency spacing that is an integer multiple of the SBS frequency shifting. With two cascaded SBS fibers, the frequency spacing can be switched between single and double SBS frequency shifting by properly adjusting the Brillouin pump power. Multiwavelength outputs with triple or quadruple SBS frequency spacing are also demonstrated by employing three or four SBS gain fibers, respectively.

  10. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  11. Chaotic dynamics in erbium-doped fiber ring lasers

    SciTech Connect

    Abarbanel, H.D.; Kennel, M.B.; Buhl, M.; Lewis, C.T. )

    1999-09-01

    Chaotically oscillating rare-earth-doped fiber ring lasers (DFRLs) may provide an attractive way to exploit the broad bandwidth available in an optical communications system. Recent theoretical and experimental investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscillations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical fiber[emdash]one made of passive fiber alone. The typical round-trip time for the passive optical ring connecting the erbium-doped amplifier to itself is 200 ns, so [approx]10[sup 5] round-trips are required to see the slow effects of the population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscillations of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and not from interplay between the atomic population inversion and radiation dynamics. thinsp [copyright] [ital 1999] [ital The American Physical Society

  12. Characterization of holmium fibers with various concentrations for fiber laser applications around 2.1 μm

    NASA Astrophysics Data System (ADS)

    Aubrecht, Jan; Peterka, Pavel; Honzatko, Pavel; Baravets, Yauhen; Jelinek, Michal; Kubecek, Vaclav; Pawliszewska, Maria; Sotor, Jaroslaw; Sobon, Grzegorz; Abramski, Krzysztof M.; Kasik, Ivan

    2016-04-01

    In this work, we present experimental results of characterization of the developed holmium-doped silica-based optical fibers with holmium ions concentrations in the range from 1000 to 10000 ppm. The fibers were fabricated by the modified chemical vapor deposition and solution doping method. They were characterized in terms of their spectral attenuation, refractive index profile, and especially performance in fiber laser. Simultaneously, two different fiber laser setups were tested. In the first one, holmium-doped fiber in Fabry-Perot configuration was pumping by in house developed thulium-doped fiber laser in ring arrangement. In the second one, bulk-optic pump-coupling configuration, consisted of a commercially available thulium fiber laser emitting at 1940 nm and system of lenses and mirrors was used. We have focused on comparison of laser output powers, slope efficiencies, and laser thresholds for individual holmiumdoped fiber in these different laser arrangements. Finally, the application of the developed fiber in subpicosecond fiber laser with graphene-based saturable absorber for mode-locking operation was investigated.

  13. Advanced experiments with an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Marques, Paulo V. S.; Marques, Manuel B.; Rosa, Carla C.

    2014-07-01

    This communication describes an optical hands-on fiber laser experiment aimed at advanced college courses. Optical amplifiers and laser sources represent very important optical devices in numerous applications ranging from telecommunications to medicine. The study of advanced photonics experiments is particularly relevant at undergraduate and master level. This paper discusses the implementation of an optical fiber laser made with a cavity built with two tunable Bragg gratings. This scheme allows the students to understand the laser working principles as a function of the laser cavity set-up. One or both of the gratings can be finely tuned in wavelength through applied stress; therefore, the degree of spectral mismatch of the two gratings can be adjusted, effectively changing the cavity feedback. The impact of the cavity conditions on the laser threshold, spectrum and efficiency is analyzed. This experiment assumes that in a previous practice, the students should had already characterized the erbium doped fiber in terms of absorption and fluorescent spectra, and the spectral gain as a function of pump power.

  14. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  15. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  16. Fiber-coupled laser-driven flyer plates system.

    PubMed

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  17. Fiber-coupled laser-driven flyer plates system

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  18. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  19. Distributed feedback imprinted electrospun fiber lasers.

    PubMed

    Persano, Luana; Camposeo, Andrea; Del Carro, Pompilio; Fasano, Vito; Moffa, Maria; Manco, Rita; D'Agostino, Stefania; Pisignano, Dario

    2014-10-01

    Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips.

  20. Diode-pumped, electrically tunable erbium-doped fiber-ring laser with fiber Fabry-Perot etalon

    SciTech Connect

    Zyskind, J.L.; Sulfoff, J.W.; Stone, J.; DiGiovanni, D.J.; Stulz, L.W.

    1992-05-22

    An all fiber, diode-pumped, electrically tunable ring laser is reported. Gain is provided by an erbium-doped fiber and tuning by a Fiber Fabry-Perot etalon. The threshold at 1.566 um is 2.9 mW, the slope efficiency is 0.15 and the output 4.2 mW with 32 mW of pump power. The output wavelength can be tuned from 1.525 to 1.586 um with a variation in power of less than 3.5 dB.

  1. Multi-parameter sensor based on random fiber lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2016-09-01

    We demonstrate a concept of utilizing random fiber lasers to achieve multi-parameter sensing. The proposed random fiber ring laser consists of an erbium-doped fiber as the gain medium and a random fiber grating as the feedback. The random feedback is effectively realized by a large number of reflections from around 50000 femtosecond laser induced refractive index modulation regions over a 10cm standard single mode fiber. Numerous polarization-dependent spectral filters are formed and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which gives an access for a high-fidelity multi-parameter sensing scheme. The number of sensing parameters can be controlled by the number of the lasing lines via input polarizations and wavelength shifts of each peak can be explored for the simultaneous multi-parameter sensing with one sensing probe. In addition, the random grating induced coupling between core and cladding modes can be potentially used for liquid medical sample sensing in medical diagnostics, biology and remote sensing in hostile environments.

  2. Optical characteristics of side-firing fibers for laser prostatectomy

    NASA Astrophysics Data System (ADS)

    van Vliet, Remco J.; Molenaar, David G.; van Swol, Christiaan F. P.; Boon, Tom A.; Verdaasdonck, Rudolf M.

    1994-12-01

    Various side firing fibers have been developed in the past two years for Nd:YAG laser treatment of Benign Prostatic Hyperplasia (BPH). The method to deflect the beam laterally determines the power density at the urethral wall and consequent tissue effects. In this study the optical characteristics of eight different side firing fibers were evaluated by measuring transmission and bean profiles. A scanning device was developed which consisted of a sensor that was translated in two directions in front of the side firing fiber, while submerged in water. The transmission of the devices was measured by placing them in a transparent water filled tank in front of a power meter. The scans provided a three dimensional power density distribution of the fibers. The exit angle varied from 41 to 100 degrees, with respect to the fiber axis. The divergence of the beams was different in two directions, resulting in an elliptical spot at the urethral wall. The spot size ranged from 6.6 to 17.5 mm2 for a clinically relevant situation at 5 mm from the tip. The transmission of a new side firing fiber ranged from 43 to 83 percent compared to a bare fiber. Due to the unique optical characteristics of each device, there is a large variation in the power density at the tissue and thus a specific dosimetry protocol for each fiber is required.

  3. High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-01-15

    Chirped fiber Bragg gratings control the pulse width and energy in Kerr mode-locked erbium fiber soliton lasers. We create high-energy pulses by providing large amounts of excessive negative dispersion, which increases the pulse width while keeping the nonlinearity of the cavity constant. With a chirped fiber grating of 3.4-ps{sup 2} dispersion, 3-ps pulses with an energy content higher than 1 nJ are generated at a repetition rate of 27 MHz. By controlling the polarization state in the cavity, we obtain a tuning range from 1.550 to 1.562 {mu}m.

  4. Ultra-flat supercontinuum generation in cascaded photonic crystal fiber with picosecond fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Zhang, Huanian; Li, Ping

    2016-08-01

    In this letter, a new method for achieving ultra-flat supercontinuum generation is proposed. A picosecond fiber laser was used as the pump source, in a cascaded photonic crystal fiber, ultra-flat supercontinuum generation spectrum at 3 dB level from 1070 up to 1630 nm is obtained, to our knowledge, the 3 dB bandwidth of 560 nm is the most flat supercontinuum generation obtained in photonic crystal fibers, the results indicated that our method is efficient for achieving ultra-flat supercontinuum, which will promote the technical applications of supercontinuum.

  5. Optical-fiber-coupled optical bistable semiconductor lasers

    SciTech Connect

    Zhing Lichen; Tang Yunxin; Qin Ying; Guo Yili

    1986-12-01

    A compact, low input power optical bistable device, consisting of a photodetector, an optical fiber directional coupler, and a semiconductor laser diode, was presented. The principle is described graphically to explain the observed effects such as hysteresis, differential operational gain and memory functions.

  6. Frequency chirping in semiconductor-optical fiber ring laser

    SciTech Connect

    Zhang, Jiangping; Ye, Peida )

    1990-01-01

    In this letter, a complete small-signal analysis for frequency chirping in the semiconductor-optical fiber ring laser is presented. It shows that chirp-to-power ratio (CPR) strongly depends on the junction phase shift, the optical coupling, and the phase detuning between two cavities, especially if the modulation frequency is below the gigahertz range. 7 refs.

  7. Constant Refractive Index Multi-Core Fiber Laser

    SciTech Connect

    Beach, R J; Feit, M D; Brasure, L D; Payne, S A; Mead, R W; Hayden, J S; Krashkevich, D; Alunni, D A

    2002-03-18

    A scalable fiber laser approach is described based on phase-locking multiple gain cores in an antiguided structure. The waveguide is comprised of periodic sequences of gain- and no-gain-loaded segments having uniform index, within the cladding region. Initial experimental results are presented.

  8. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  9. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  10. Tunable ring laser using a tapered single mode fiber tip.

    PubMed

    Wang, Xiaozhen; Li, Yi; Bao, Xiaoyi

    2009-12-10

    A tunable ring laser using a tapered single mode fiber tip as a bandpass filter has been proposed and demonstrated for the first time to our knowledge. This is a simple and cost-effective tunable source. It is found that the tuning range and bandwidth of the laser are related to the relaxation time of the optical amplifier, the current of the amplifier, and the steepness of the tip shape. The calculations and experimental results show that the laser has a tuning range of 9 nm in the L-band and the spectral linewidth can be varied from 0.06 nm to 0.17 nm. PMID:20011024

  11. Highly Efficient Operation of Tm:fiber Laser Pumped Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Petros, M.; Yu, Jirong; Petzar, Paul; Trieu, Bo; Chen, Sam; Lee, Hyung; Singh, U.

    2006-01-01

    A 19 W, TEM(sub 00) mode, Ho:YLF laser pumped by continuous wave Tm:fiber laser has been demonstrated at the room temperature. The slope efficiency and optical-to-optical efficiency are 65% and 55%, respectively.

  12. 600-Hz linewidth short-linear-cavity fiber laser.

    PubMed

    Mo, Shupei; Huang, Xiang; Xu, Shanhui; Li, Can; Yang, Changsheng; Feng, Zhouming; Zhang, Weinan; Chen, Dongdan; Yang, Zhongmin

    2014-10-15

    We proposed a short-linear-cavity (SLC) fiber laser based on a virtual-folded-ring (VFR) resonator and a fiber Bragg grating Fabry-Perot filter. Spatial hole burning effect was reduced by retarding the polarization state of the counter-propagating light waves utilizing the VFR structure. The photon lifetime of the resonator was extended due to the multi-reflection inside the FBG FP, which increased the intra-cavity power and relatively suppressed the contribution of phase diffusion from spontaneous emission. The relaxation oscillation frequency is around 160 kHz due to the slow light effect. The linewidth of the SLC fiber laser was measured to be less than 600 Hz.

  13. DFB fiber laser hydrophone with band-pass response.

    PubMed

    Zhang, Faxiang; Zhang, Wentao; Li, Fang; Liu, Yuliang

    2011-11-15

    A distributed-feedback fiber laser hydrophone with band-pass response is presented. The design of the hydrophone aims to equalize static pressure and eliminate signal aliasing of high-frequency acoustic components. Theoretical analysis is presented based on electro-acoustic theory. The experimental results agree well with the theory. The measured underwater responses show that the hydrophone has a pressure sensitivity of -170 dB re:pm/μPa over a bandwidth between 100 Hz and 500 Hz. A sensitivity reduction exceeding -35 dB is observed at 2500 Hz. The tested static pressure sensitivity of the hydrophone is -226 dB. The proposed fiber laser hydrophone of this kind is expected to have important application in deep water fiber-optic sonar systems with anti-aliasing, and the understanding gained through this work can be extended to a guide of hydrophone design for required filtering bandwidth.

  14. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  15. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  16. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers

    PubMed Central

    Li, Jianfeng; Luo, Hongyu; Zhai, Bo; Lu, Rongguo; Guo, Zhinan; Zhang, Han; Liu, Yong

    2016-01-01

    Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers. PMID:27457338

  17. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers.

    PubMed

    Li, Jianfeng; Luo, Hongyu; Zhai, Bo; Lu, Rongguo; Guo, Zhinan; Zhang, Han; Liu, Yong

    2016-01-01

    Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers. PMID:27457338

  18. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Luo, Hongyu; Zhai, Bo; Lu, Rongguo; Guo, Zhinan; Zhang, Han; Liu, Yong

    2016-07-01

    Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers.

  19. Influence of laser irradiation on fiber post retention.

    PubMed

    Nagase, Denis Y; de Freitas, Patricia M; Morimoto, Susana; Oda, Margareth; Vieira, Glauco F

    2011-05-01

    The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer's instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p <0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.

  20. Hollow fibers for compact infrared gas sensors

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  1. Compact frequency-quadrupled pulsed 1030nm fiber laser

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Goldberg, Lew; Cole, Brian; DiLazaro, Tom; Hays, Alan D.

    2016-03-01

    A compact 1030nm fiber laser for ultraviolet generation at 257.5nm is presented. The laser employs a short length of highly-doped, large core (20μm), coiled polarization-maintaining ytterbium-doped double-clad fiber pumped by a wavelength-stabilized 975nm diode. It is passively Q-switched via a Cr4+:YAG saturable absorber and generates 2.4W at 1030nm in a 110μJ pulse train. Lithium triborate (LBO) and beta-barium borate (BBO) are used to achieve 325mW average power at the fourth harmonic. The laser's small form factor, narrow linewidth and modest power consumption are suitable for use in a man-portable ultraviolet Raman explosives detection system.

  2. Frequency doubling of Raman fiber lasers with random distributed feedback.

    PubMed

    Dontsova, E I; Kablukov, S I; Vatnik, I D; Babin, S A

    2016-04-01

    This Letter presents what we believe is the first experimental study of frequency doubling of a Raman fiber laser (RFL) with random distributed feedback (RDFB) in an MgO:PPLN crystal. We compared two laser configurations, each with a half-open cavity. The cavity contained either a broadband Sagnac mirror or a narrowband fiber Bragg grating (FBG). We found that spectral broadening in the studied configurations of the RDFB RFLs differed from that found in a conventional RFL with a linear cavity, as well as from each other. We also compared the second harmonic generation (SHG) efficiency for these three types of lasers. The highest SHG efficiency was obtained for the RDFB RFL with the FBG delivering >100  mW power at 654 nm. PMID:27192256

  3. Dual-kind Q-switching of erbium fiber laser

    SciTech Connect

    Barmenkov, Yuri O. Kir'yanov, Alexander V.; Cruz, Jose L.; Andres, Miguel V.

    2014-03-03

    Two different regimes of Q-switching in the same implementation of an actively Q-switched erbium-doped fiber laser are demonstrated. Depending on the active fiber length and repetition rate of an intracavity Q-cell (acousto-optic modulator), the laser operates either in the regime of common, rather long and low-power, pulses composed of several sub-pulses or in the one of very short and powerful stimulated Brillouin scattering-induced pulses. The basic physical reason of the laser system to oscillate in one of these two regimes is the existence or absence of CW narrow-line “bad-cavity” lasing in the intervals when the Q-cell is blocked.

  4. 980 nm narrow linewidth Yb-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Hu, Haowei; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    A narrow-linewidth ytterbium (Yb)-doped phosphate fiber laser based on fiber Bragg grating (FBG) operating around 980 nm is reported. Two different kinds of cavity are applied to obtain the 980 nm narrow-linewidth output. One kind of the cavity consists of a 0.35 nm broadband lindwidth high-reflection FBG and the Yb-doped phosphate fiber end with 0° angle, which generates a maximum output power of 25 mW. The other kind of resonator is composed of a single mode Yb-doped phosphate fiber and a pair of FBGs. Over 10.7 mW stable continuous wave are obtained with two longitudinal modes at 980 nm. We have given a detailed analysis and discussion for the results.

  5. Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing

    NASA Astrophysics Data System (ADS)

    Al-Jabr, A. A.; Majid, M. A.; Alias, M. S.; Anjum, D. H.; Ng, T. K.; Ooi, B. S.

    2016-04-01

    We report on a novel quantum well intermixing (QWI) technique that induces a large degree of bandgap blueshift in the InGaP/InAlGaP laser structure. In this technique, high external compressive strain induced by a thick layer of SiO2 cap with a thickness ≥1 μm was used to enhance QWI in the tensile-strained InGaP/InAlGaP quantum well layer. A bandgap blueshift as large as 200 meV was observed in samples capped with 1-μm SiO2 and annealed at 1000 °C for 120 s. To further enhance the degree of QWI, cycles of annealing steps were applied to the SiO2 cap. Using this method, wavelength tunability over the range of 640 nm to 565 nm (˜250 meV) was demonstrated. Light-emitting diodes emitting at red (628 nm), orange (602 nm), and yellow (585 nm) wavelengths were successfully fabricated on the intermixed samples. Our results show that this new QWI method technique may pave the way for the realization of high-efficiency orange and yellow light-emitting devices based on the InGaP/InAlGaP material system.

  6. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    NASA Astrophysics Data System (ADS)

    Feng, Liefeng; Yang, Xiufang; Li, Yang; Li, Ding; Wang, Cunda; Yao, Dongsheng; Hu, Xiaodong; Li, Hongru

    2015-04-01

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by Ithl and Ithu, as shown in Fig. 2; Ithl is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; Ithu is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (Vj) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at Ithl and Ithu. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  7. Synthesis of Ge1-xSnx alloys by ion implantation and pulsed laser melting: Towards a group IV direct bandgap material

    NASA Astrophysics Data System (ADS)

    Tran, Tuan T.; Pastor, David; Gandhi, Hemi H.; Smillie, Lachlan A.; Akey, Austin J.; Aziz, Michael J.; Williams, J. S.

    2016-05-01

    The germanium-tin (Ge1-xSnx) material system is expected to be a direct bandgap group IV semiconductor at a Sn content of 6.5 - 11 at . % . Such Sn concentrations can be realized by non-equilibrium deposition techniques such as molecular beam epitaxy or chemical vapour deposition. In this report, the combination of ion implantation and pulsed laser melting is demonstrated to be an alternative promising method to produce a highly Sn concentrated alloy with a good crystal quality. The structural properties of the alloys such as soluble Sn concentration, strain distribution, and crystal quality have been characterized by Rutherford backscattering spectrometry, Raman spectroscopy, x ray diffraction, and transmission electron microscopy. It is shown that it is possible to produce a high quality alloy with up to 6.2 at . % Sn . The optical properties and electronic band structure have been studied by spectroscopic ellipsometry. The introduction of substitutional Sn into Ge is shown to either induce a splitting between light and heavy hole subbands or lower the conduction band at the Γ valley. Limitations and possible solutions to introducing higher Sn content into Ge that is sufficient for a direct bandgap transition are also discussed.

  8. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    SciTech Connect

    Feng, Liefeng E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda; Yao, Dongsheng; Li, Yang; Li, Ding; Hu, Xiaodong; Li, Hongru E-mail: lihongru@nankai.edu.cn

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u} is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.

  9. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization.

  10. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser.

    PubMed

    Wang, Shih-Chang; Hsu, Chun-Yang; Yang, Tzu-Te; Jheng, Dong-Yo; Yang, Teng-I; Ho, Tuan-Shu; Huang, Sheng-Lung

    2016-07-15

    Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 μm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization. PMID:27420499

  11. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm. PMID:27416893

  12. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  13. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm.

  14. A dual-wavelength erbium-doped fiber laser based on fiber grating pair

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Wang, Tianshu; Jia, Qingsong; Zhang, Peng; Jiang, Huilin

    2014-12-01

    A dual-wavelength linear cavity erbium-doped fiber (EDF) laser based on a fiber grating pair is demonstrated experimentally. A circulator, a 980nm/1550nm wavelength division multiplexing (WDM) coupler, a 1×2 coupler, a polarization controller, a 6m long erbium-doped fiber and a fiber grating pair for wavelength interval of 0.3nm are included in the structure. A circulator connected at two ports as reflecting mirror structure. A 980nm pump source pump an erbium-doped fiber with a length of 6m consist of an erbium doped fiber amplifier. Through adjusting the state of the polarization controller, the transmission characteristic of cavity is changed. In both polarization and wavelength, the feedback from the fiber grating pair results in the laser operating on two longitudinal modes that are separated. The birefringence induced by the fiber grating pair is beneficial to diversify the polarization states of different wavelength in the erbium-doped fiber. So it is enhanced the polarization hole burning effect. This polarization hole burning effect greatly reduced the wavelength competition. Then, it was possible to achieve stable dual-wavelength. It turns out the structure generated the stable dual-wavelength with the 0.3nm wavelength interval and the output power is 0.13dBm in the end. The whole system have a simple and compact structure, it can work stably and laid a foundation for microwave/millimeter wave generator. It has a good application performance in the future for scientific research and daily life.

  15. Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus.

    PubMed

    Chen, Yu; Chen, Shuqing; Liu, Jun; Gao, Yanxia; Zhang, Wenjing

    2016-06-13

    By using evanescent field optical deposition method, we had successfully fabricated an effective optoelectronic device based on multi-layer black phosphorus (BP), which is been heavily investigating 2 dimensional (2D) semiconducting material with similar structure as graphene and thickness dependent direct band-gap. By placing this BP-based optoelectronic device inside a highly compact all-anomalous dispersion fiber laser cavity, stable passive mode-locking operation could be ensured and eventually a record 280 fs transmission limited soliton pulse with tunable central wavelength had been obtained through finely tailoring the cavity length. Other operation states, like bound soliton and noise-like state, had also been observed as well. This work demonstrates the enormous potential of BP for ultra-short pulse generation as an effective optoelectronic device. PMID:27410348

  16. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    SciTech Connect

    Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  17. Thulium fiber laser lithotripsy in an in vitro ureter model.

    PubMed

    Hardy, Luke A; Wilson, Christopher R; Irby, Pierce B; Fried, Nathaniel M

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/ min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy. PMID:25518001

  18. Thulium fiber laser lithotripsy in an in vitro ureter model

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ=2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  19. Thulium fiber laser lithotripsy in an in vitro ureter model.

    PubMed

    Hardy, Luke A; Wilson, Christopher R; Irby, Pierce B; Fried, Nathaniel M

    2014-12-01

    Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber. Urinary stones (60% calcium oxalate monohydrate/40% calcium phosphate) of uniform mass and diameter (4 to 5 mm) were laser ablated with fibers through a flexible video-ureteroscope under saline irrigation with flow rates of 22.7 and 13.7 ml/ min for the TFL and holmium laser, respectively. The temperature 3 mm from the tube's center and 1 mm above the mesh sieve was measured by a thermocouple and recorded throughout each experiment for both lasers. Total laser and operation times were recorded once all stone fragments passed through a 1.5-mm sieve. The holmium laser time measured 167±41 s (n=12). TFL times measured 111±49, 39±11, and 23±4 s, for pulse rates of 150, 300, and 500 Hz, respectively (n=12 each). Mean peak saline irrigation temperatures reached 24±1°C for holmium, and 33±3°C, 33±7°C, and 39±6°C, for TFL at pulse rates of 150, 300, and 500 Hz, respectively. To avoid thermal buildup and provide a sufficient safety margin, TFL lithotripsy should be performed with pulse rates below 500 Hz and/or increased saline irrigation rates. The TFL rapidly fragmented kidney stones due in part to its high pulse rate, high power density, high average power, and observation of reduced stone retropulsion and may provide a clinical alternative to the conventional holmium laser for lithotripsy.

  20. Environmentally stable high-power soliton fiber lasers that use chirped fiber Bragg gratings

    SciTech Connect

    Fermann, M.E.; Sugden, K.; Bennion, I.

    1995-08-01

    Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  1. Developing high energy dissipative soliton fiber lasers at 2 micron

    PubMed Central

    Huang, Chongyuan; Wang, Cong; Shang, Wei; Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    While the recent discovered new mode-locking mechanism - dissipative soliton - has successfully improved the pulse energy of 1 μm and 1.5 μm fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy at 2 μm due to the anomalous dispersion of the gain fiber. After analyzing the intracavity pulse dynamics, we propose that the gain fiber should be condensed to short lengths in order to generate high energy pulse at 2 μm. Numerical simulation predicts the existence of stable 2 μm dissipative soliton solutions with pulse energy over 10 nJ, comparable to that achieved in the 1 μm and 1.5 μm regimes. Experimental operation confirms the validity of the proposal. These results will advance our understanding of mode-locked fiber lasers at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media. PMID:26348563

  2. Modeling and measurement of ytterbium fiber laser generation spectrum

    NASA Astrophysics Data System (ADS)

    Kablukov, Sergey I.; Zlobina, Ekaterina A.; Podivilov, Evgeniy V.; Babin, Sergey A.

    2012-06-01

    A generation spectrum of a fiber laser becomes broader with increasing generation power. The spectra are rather narrow at low power and become comparable with fiber Bragg gratings (FBG) width at high power. It has been shown that the spectral broadening of a fiber laser can be described analytically if the generation spectrum is much narrower than the FBG width. The developed theory has been compared with experiment. Double clad Yb-doped fiber laser of up to 10 W output power is used in the experiment. Scanning Fabry-Perot interferometer with resolution down to 1.2 pm is applied for accurate spectral measurements. At power level less then 1 W a self-sustained pulsation regime accompanied by a narrow-line self-sweeping is observed. At higher power a quasi-CW generation regime with multiple longitudinal modes is established. Investigation of the regime shows linear increase of the generation width with generation power growth. Slope of the dependence has excellent agreement with the theory, but an additive quantity should be added to describe an absolute value that makes significant contribution at low powers. It has been shown that at low powers a spatial hole burning has to be considered. Theoretical model describing the hole burning effect for multimode cw generation is also developed. After inclusion of the hole burning effect the model starts to agree quantitatively with the linewidth measurements both at low and high powers.

  3. Reflection Effects in Multimode Fiber Systems Utilizing Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Bates, Harry E.

    1991-01-01

    A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.

  4. Influence of cooling on a bismuth-doped fiber laser and amplifier performance.

    PubMed

    Kalita, Mridu P; Yoo, Seongwoo; Sahu, Jayanta K

    2009-11-01

    We characterize bismuth-doped fibers under different excitation wavelengths. The fiber laser performance at 1179 nm was investigated, incorporating different cooling arrangements. Effective heat extraction can reduce the temperature-dependent unsaturable loss in fiber, resulting in increased laser performance. The operation of a bismuth-doped fiber amplifier at 1179 nm, at both low and high input signals, is also examined. The amplifier efficiency and the saturation power both depend on effective fiber cooling. PMID:19881653

  5. Dual-wavelength erbium-doped fiber laser with tunable wavelength spacing using a twin core fiber-based filter

    NASA Astrophysics Data System (ADS)

    Yin, Guolu; Lou, Shuqin; Wang, Xin; Han, Bolin

    2014-05-01

    A dual-wavelength erbium-doped fiber laser with tunable wavelength spacing was proposed and experimentally demonstrated by using a twin core fiber (TCF)-based filter. Benefiting from the polarization dependence of the TCF-based filter, the laser operated in dual-wavelength oscillation with two orthogonal polarization states. By adjusting the polarization controller, the wavelength spacing was tuned from 0.1 nm to 1.2 nm without shifting the centre position of the two wavelengths. By stretching the TCF, the two wavelengths were simultaneously tuned with fixed wavelength spacing. Such a dual-wavelength fiber laser could find applications in optical fiber sensors and microwave photonics generation.

  6. Variation of bandgap with oxygen ambient pressure in Mg xZn 1- xO thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Misra, P.; Bhattacharya, P.; Mallik, K.; Rajagopalan, S.; Kukreja, L. M.; Rustagi, K. C.

    2001-03-01

    Thin films of Mg xZn 1- xO were grown by pulsed laser deposition technique at various oxygen background pressures in the range of 10 -2-10 -5 Torr on single crystal (0001) alumina substrates. The films were found to be c-axis oriented with a high crystalline quality having FWHM of rocking curve of about 0.16°. The bandgap of Mg xZn 1- xO thin films was found to increase from 3.45 to 3.78 eV with decrease of oxygen pressure from 10 -2 to 10 -5 Torr during the deposition. This has been attributed to the increase in the Mg concentration in the films on decreasing the O 2 pressure.

  7. High-brightness 800nm fiber-coupled laser diodes

    NASA Astrophysics Data System (ADS)

    Berk, Yuri; Levy, Moshe; Rappaport, Noam; Tessler, Renana; Peleg, Ophir; Shamay, Moshe; Yanson, Dan; Klumel, Genadi; Dahan, Nir; Baskin, Ilya; Shkedi, Lior

    2014-03-01

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. Single emitters offer reliable multi-watt output power from a 100 m lateral emission aperture. By their combination and fiber coupling, pump powers up to 100 W can be achieved from a low-NA fiber pigtail. Whilst in the 9xx nm spectral range the single emitter technology is very mature with <10W output per chip, at 800nm the reliable output power from a single emitter is limited to 4 W - 5 W. Consequently, commercially available fiber coupled modules only deliver 5W - 15W at around 800nm, almost an order of magnitude down from the 9xx range pumps. To bridge this gap, we report our advancement in the brightness and reliability of 800nm single emitters. By optimizing the wafer structure, laser cavity and facet passivation process we have demonstrated QCW device operation up to 19W limited by catastrophic optical damage to the 100 μm aperture. In CW operation, the devices reach 14 W output followed by a reversible thermal rollover and a complete device shutdown at high currents, with the performance fully rebounded after cooling. We also report the beam properties of our 800nm single emitters and provide a comparative analysis with the 9xx nm single emitter family. Pump modules integrating several of these emitters with a 105 μm / 0.15 NA delivery fiber reach 35W in CW at 808 nm. We discuss the key opto-mechanical parameters that will enable further brightness scaling of multi-emitter pump modules.

  8. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits. PMID:26191688

  9. Latest development of high-power fiber lasers in SPI

    NASA Astrophysics Data System (ADS)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  10. A novel laser angioplasty guided hollow fiber using mid-infrared laser

    NASA Astrophysics Data System (ADS)

    Yoshihashi-Suzuki, Sachiko; Yamada, Shinya; Sato, Izuru; Awazu, Kunio

    2006-02-01

    We have proposed selective removal of cholesterol ester by infrared laser of wavelength with 5.75 μm irradiation; the wavelength of 5.75 μm correspond with the ester bond C=O stretching vibration. The flexible laser guiding line and a compact light source are required for our proposal. We used a compact mid-infrared tunable laser by difference frequency generation; DFG laser was developed for substitute light source of free electron laser. In the present work, first, we have developed hollow optical fiber with a diamond lens-tip to deliver DFG laser in the blood vessel and evaluated the transmission of DFG laser from 5.5 μm to 7.5 μm. The transmission of 5.75 μm is about 65%, the DFG beam was focused on the tip of fiber by diamond lens-tip. Secondly, we performed the selective removal experiment of cholesterol ester using the hollow optical fiber with diamond lens-tip and DFG laser. The sample used a two layer model, cholesterol oleate and gelatin. The cholesterol oleate was decomposed by 5.75 μm DFG irradiation with 3.8 W/cm2.

  11. Optical generation of tunable microwave and millimeter waves by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Meng; Li, Qi; Huang, Kaiqiang; Chen, Haiyan

    2014-10-01

    In this presentation, we propose and experimentally demonstrate a novel optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser, dual-wavelength emission can be achieved with wavelength separation of 0.68nm corresponding to the millimeter wave signal at 85GHz. By appropriately adjusting the operation temperature of intracavity fiber Bragg grating, the frequency of millimeter wave signal generated can be tunable. Our experimental results demonstrate the new concept of optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity dual-wavelength fiber laser and the technical feasibility.

  12. Tunable Brillouin-erbium fiber laser incorporating a low-cost biconic tapered fiber

    NASA Astrophysics Data System (ADS)

    Lin, H. S.; Mansoor, A.; Phua, Y. N.; Mokhtar, M. R.; Abdul-Rashid, H. A.; Yusoff, Z.

    2014-02-01

    A new method of tuning a multi-wavelength Brillouin-erbium fiber laser (BEFL) within a Fabry-Perot cavity by incorporating a low-cost biconic tapered fiber is reported. The biconic tapered fiber was fabricated using a flame elongation technique and it was incorporated into the BEFL system to position the self-lasing cavity modes over a tuning range of 5.5 nm within the erbium-doped fiber gain profile. By injecting the Brillouin pump near to the tunable self-lasing cavity modes, it suppresses the modes and generates stable cascaded Brillouin-Stokes lines with more than 20 dB signal-to-noise ratio.

  13. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  14. Fiber Laser Component Testing for Space Qualification Protocol Development

    NASA Astrophysics Data System (ADS)

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    A test protocol for the space qualifying of Ytterbium-doped diode-pumped fiber laser (DPFL) components was developed under the Bright Light effort, sponsored by AFRL/VSE. A literature search was performed and summarized in an AMOS 2005 conference paper that formed the building blocks for the development of the test protocol. The test protocol was developed from the experience of the Bright Light team, the information in the literature search, and the results of a study of the Telcordia standards. Based on this protocol developed, test procedures and acceptance criteria for a series of vibration, thermal/vacuum, and radiation exposure tests were developed for selected fiber laser components. Northrop Grumman led the effort in vibration and thermal testing of these components at the Aerospace Engineering Facility on Kirtland Air Force Base, NM. The results of the tests conducted have been evaluated. This paper discusses the vibration and thermal testing that was executed to validate the test protocol. The lessons learned will aid in future assessments and definition of space qualification protocols. Components representative of major items within a Ytterbium-doped diode-pumped fiber laser were selected for testing; including fibers, isolators, combiners, fiber Bragg gratings, and laser diodes. Selection of the components was based on guidelines to test multiple models of typical fiber laser components. A goal of the effort was to test two models (i.e. different manufacturers) of each type of article selected, representing different technologies for the same type of device. The test articles did not include subsystems or systems. These components and parts may not be available commercial-off-the-shelf (COTS), and, in fact, many are custom articles, or newly developed by the manufacturer. The primary goal for this effort is a completed taxonomy that lists all relevant laser components, modules, subsystems, and interfaces, and cites the documentation for space

  15. Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator.

    PubMed

    Malmström, Mikael; Margulis, Walter; Tarasenko, Oleksandr; Pasiskevicius, Valdas; Laurell, Fredrik

    2012-01-30

    This work demonstrates an actively mode-locked fiber laser operating in soliton regime and employing an all-fiber electro-optic modulator. Nonlinear polarization rotation is utilized for femtosecond pulse generation. Stable operation of the all-fiber ring laser is readily achieved at a fundamental repetition rate of 2.6 MHz and produces 460 fs pulses with a spectral bandwidth of 5.3 nm.

  16. Fiber-optic laser sensor for mine detection and verification

    SciTech Connect

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to Ep=1 mJ, a repetition rate of frep.=2-20 kHz and a pulse duration of tp=620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis.

  17. Fiber-optic laser sensor for mine detection and verification.

    PubMed

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to E(p) = 1 mJ, a repetition rate of f(rep.) = 2-20 kHz and a pulse duration of t(p) = 620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis. PMID:16724144

  18. Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Lusquiños, F.; Riveiro, A.; Comesaña, R.; Pou, J.

    2009-03-01

    This work presents the results of laser-induced fragmentation of hydroxylapatite microparticles in water dissolution. Calcined fish bones in form of powder, which were previously milled to achieve microsized particles, were used as precursor material. Two different laser sources were employed to reduce the size of the suspended particles: a pulsed Nd:YAG laser and a Ytterbium doped fiber laser working in continuous wave mode. The morphology as well as the composition of the obtained particles was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and conventional and high resolution transmission electron microscopy (TEM, HRTEM). The results show that nanometric particles of hydroxylapatite and β-tricalcium phosphate as small as 10 nm diameter can be obtained.

  19. Study of laser-induced damage to large core silica fiber by Nd:YAG and Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Hokansson, Adam; Whelan, Dan; Clancy, Michael

    2009-02-01

    As a continuation of our earlier study at 2.1 μm wavelength, we have investigated the laser damage to several types of step-index, large core (1500 μm) silica fibers at two new wavelengths by high power long pulsed Nd:YAG (1064 nm) and Alexandrite (755 nm) lasers. It was observed that fibers with different designs showed a significant difference in performance at these wavelengths. We will also report a correlation of damage to the fibers between the two laser wavelengths. The performance analyses of different fiber types under the given test conditions will enable optimization of fiber design for specific applications.

  20. Brillouin-Erbium fiber laser with enhanced feedback coupling using common Erbium gain section.

    PubMed

    Samsuri, N M; Zamzuri, A K; Al-Mansoori, M H; Ahmad, A; Mahdi, M A

    2008-10-13

    We demonstrate an enhanced architecture of Brillouin-Erbium fiber laser utilizing the reverse-S-shaped fiber section as the coupling mechanism. The enhancement is made by locating a common section of Erbium-doped fiber next to the single-mode fiber to amplify the Brillouin pumps and the oscillating Stokes lines. The requirement of having two Erbium gain sections to enhance the multiple Brillouin Stokes lines generation is neglected by the proposed fiber laser structure. The mode competitions arise from the self-lasing cavity modes of the fiber laser are efficiently suppressed by the stronger pre-amplified Brillouin pump power before entering the single mode fiber section. The maximum output power of 20 mW is obtained from the proposed fiber laser with 10 laser lines that equally separated by 0.089 nm spacing.

  1. Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers.

    PubMed

    Li, Huihui; Liu, Jiang; Cheng, Zhaochen; Xu, Jia; Tan, Fangzhou; Wang, Pu

    2015-03-01

    Different pulse-shaping mechanisms were investigated experimentally and numerically in passively mode-locked thulium-doped fiber lasers. Conventional solitons were demonstrated in a passively semiconductor saturable absorber mirror mode-locked anomalous dispersion thulium-doped fiber laser. With normal dispersion fiber and spectral filter added in cavity, pulse-shaping processes were theoretically analyzed in the presence of dispersion map and dissipation in thulium-doped fiber lasers. The existence of parabolic pulse as nonlinear attraction was proved and distinct pulse intensity profiles evolution from Gaussian shape to parabolic shape was proposed in dissipative dispersion-managed thulium-doped fiber lasers.

  2. Beam shaping design for compact and high-brightness fiber-coupled laser-diode system.

    PubMed

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-06-20

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. A compact and high-brightness fiber-coupled system has been designed based on a significant beam shaping method. The laser-diode stack consists of eight mini-bars and is effectively coupled into a standard 100 μm core diameter and NA=0.22 fiber. The simulative result indicates that the module will have an output power over 440 W. Using this technique, compactness and high-brightness production of a fiber-coupled laser-diode module is possible.

  3. Polarization properties of fiber lasers with twist-induced circular birefringence

    SciTech Connect

    Kim, Ho Young; Lee, El Hang Kim, Byoung Yoon

    1997-09-01

    We have experimentally observed and theoretically analyzed the polarization properties of fiber lasers with twist-induced birefringence. Twisting a fiber induces the circular birefringence of a fiber laser cavity, and this birefringence reduces the effects of intrinsic linear birefringence on the polarization properties of fiber lasers. The frequencies of their polarization eigenmodes coincide with each other gradually as the twist rate increases, and the directions of polarization eigenmodes deviate from the birefringence axis at a much larger twist rate than the magnitude of intrinsic linear birefringence. We describe the successful experimental results for Nd and Er fiber lasers. {copyright} 1997 Optical Society of America

  4. Wavelength agile holmium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Simakov, N.; Daniel, J. M. O.; Ward, J.; Clarkson, W. A.; Hemming, A.; Haub, J.

    2016-03-01

    For the first time, an electronically-controlled, wavelength-agile tuneable holmium-doped fibre laser is presented. A narrow-band acousto-optic tuneable filter was characterized and used as the wavelength selective element to avoid any inertial effects associated with opto-mechanical tuning mechanisms. We demonstrate operation over a 90 nm wavelength range spanning 2040 - 2130 nm. The laser produced >150 mW over this entire range with a signal-to-noise ratio of >45 dB and line-width of ~0.16 nm. Switching times of ~35 μs and sweep rates of up to 9 nm/ms were also demonstrated.

  5. All-fiber widely tunable thulium laser

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Legg, T.

    2016-03-01

    We present results from an all-fibre thulium laser system that can be tuned to any wavelength between 1710 - 2110 nm, without using any moving mechanical parts. An Acousto-Optic Tunable Filter (AOTF) is used as the tuning element, which allows for the wavelength to be tuned in ~ 20 μs. Core-pumped and cladding pumped thulium fibres are used to enable lasing action across the wavelength range. We use in-house fabricated fused fibre couplers and combiners that have a flattened coupling response with wavelength to allow for the system to be built in an all fibre design. These couplers have a coupling response that only varies by +/- 10% over the 400 nm operating range. The laser can output powers between 1-5 mW over 1710 - 2110 nm and has a linewidth of <0.2 nm. An Acousto-optic modulator is used as a switch on the output of the laser to switch the signal between core-pumped and cladding-pumped amplifier stages. This allows for the output signals to be amplified to ~1W levels.

  6. Endometrial ablation using SideFire laser fiber

    NASA Astrophysics Data System (ADS)

    Everett, Royice B.

    1996-05-01

    The first successful report using the neodymium:yttrium-aluminum-garnet (Nd:YAG) Laser to control hypermenorrhea was reported in 1981. Variations on the treatment technique have been attempted to improve the amenorrhea rate. Reports using the Nd:YAG laser with the blanching or non-touch technique seem to result in a better outcome and higher rate of total amenorrhea than using the dragging technique. Due to the report of improved rates of amenorrhea when using the blanching technique and the Nd:YAG laser, a fiber was developed to direct the laser energy at right angles to the axis of the fiber, therefore allowing a total treatment of the entire uterus in a perpendicular fashion. The theoretic benefit of this would be a more complete and predictable destruction of the endometrial lining, avoiding fluid overload by coagulating and sealing of the vessels and lymphatic. After a follow-up of 12 to 36 months, 56 of the 60 patients (93%) who underwent complete endometrial ablation with the SideFireTM technique had excellent results. Total absolute amenorrhea resulted in 50 patients (83%). Contrary to earlier reports, using the rollerball electrode, this procedure technique resulted in no decrease in results in younger patients. In conclusion, this seems to be a reasonable alternative which offers improved results when compared to previously available methods using electrosurgery or the Nd:YAG laser without the use of the SideFireTM device.

  7. Study of mid IR fiber transmission and mode patterns under laser induced stimulated Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Yu, C.; Chong, Yat C.; Zhou, Hongyi

    1990-01-01

    Mid IR fiber transmission and exit radiation mode patterns at various incident CO2 laser power levels appear to be effective diagnostic tools for monitoring laser induced stimulated Brillouin scattering in various mid IR fibers. Such processes are deemed to be essential mechanisms for fiber-optic amplifiers and switches as potential replacements of current repeaters and bistable devices.

  8. Dissipative soliton in actively mode-locked fiber laser.

    PubMed

    Wang, Ruixin; Dai, Yitang; Yan, Li; Wu, Jian; Xu, Kun; Li, Yan; Lin, Jintong

    2012-03-12

    A dissipative soliton in an all-normal-dispersion actively mode-locked ytterbium-doped fiber laser is reported for the first time. Pulses with 10-ps duration and edge-to-edge bandwidth of 9 nm are generated, and then extra-cavity compressed down to 560 fs due to the large chirp. Widely wavelength tuning between 1031 and 1080 nm is achieved by adjusting the driving frequency only. Our simulation shows that the proposed laser operates in the dissipative soliton shaping regime.

  9. Dynamic fiber Bragg grating strain sensor using a wavelength-locked tunable fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yinian; Krishnaswamy, Sridhar

    2012-04-01

    The interrogation systems based on fiber-optic sensors are very attractive for the practical applications in structural health monitoring owing to a number of advantages of optical fiber elements over their electronic counterparts. Among the fiber-optic sensors, the fiber Bragg gratings (FBGs) have their own unique features to be widely used for detection of acoustic emission. We have developed a dynamic strain sensing system by using a tunable single longitudinal mode Erbium-doped fiber ring laser to be locked to the middle-reflection wavelength of the FBG as the demodulation technique. A proportional-integral-derivative device continuously controls the laser wavelength that is kept at the FBG middle-reflection wavelength, thus stabilizing the operating point against quasi-static perturbation, while the high frequency dynamic strain shifts the FBG reflection profile. The reflected power varies in proportion to the applied strain which can be derived directly from AC photocurrent of the reflected signal. We have designed and assembled a fourchannel demodulator system for simultaneous high frequency dynamic strain sensing.

  10. Switchable and tunable erbium-doped fiber lasers using a hollow-core Bragg fiber

    NASA Astrophysics Data System (ADS)

    Zhao, Tanglin; Lian, Zhenggang; Wang, Xin; Shen, Yan; Lou, Shuqin

    2016-11-01

    A switchable and tunable erbium-doped fiber laser (EDFL) is proposed and experimentally demonstrated in this paper. A novel comb filter, which consists of a section of hollow-core Bragg fiber cascaded with Sagnac loop based on a polarization-maintaining fiber (PMF), is developed to suppress the mode competition in the EDFL. By carefully adjusting the polarization controllers, switchable and tunable single- or dual-wavelength lasing outputs with side-mode suppression ratios as high as 50 dB can be achieved. Single-wavelength lasing outputs with a 3 dB linewidth of 0.02 nm can be tuned within the wavelength range from 1562.4 nm to 1565.8 nm. Two kinds of dual-wavelength lasing outputs with different wavelength intervals of 1 nm and 2.1 nm can be obtained and the corresponding tunable wavelength range is 0.5 nm. Moreover, the wavelength shift and peak power fluctuation of both the single- and dual-wavelength lasing outputs are less than 0.1 nm and 2 dB over half an hour at room temperature, which indicates that the proposed fiber laser has good stability. To the best of our knowledge, it is the first time that a hollow-core Bragg fiber has been used as a comb filter in the EDFL.

  11. Switchable multi-wavelength fiber laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng

    2015-08-01

    A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.

  12. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser.

    PubMed

    Tang, Yuxing; Chong, Andy; Wise, Frank W

    2015-05-15

    We report a study of a mode-locked thulium (Tm) fiber laser with varying normal dispersion. It is difficult to reach the high-energy dissipative-soliton regime due to the anomalous dispersion of most fibers at 2 μm. With large normal dispersion, the laser exhibits elements of self-similar pulse evolution, and is the first Tm fiber laser to achieve the performance benefits of normal-dispersion operation. The laser generates 7.6 nJ pulses, which can be dechirped to 130 fs duration. The resulting peak power is 4 times higher than that of previous Tm fiber lasers.

  13. Multimode fiber laser beam cleanup based on stochastic parallel gradient descent algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Chuan; Ma, Hao-Tong; Zhou, Pu; Wang, Xiao-Lin; Ma, Yan-Xing; Li, Xiao; Xu, Xiao-Jun; Zhao, Yi-Jun

    2011-01-01

    We present experimental research on multimode fiber laser beam cleanup based on a stochastic parallel gradient descent (SPGD) algorithm. The multimode laser is obtained by injecting a 1064 nm central wavelength single mode fiber laser into a multimode fiber and the system is setup by using phase only liquid crystal spatial light modulators (LC-SLM). The quality evaluation function is increased by a factor of 10.5 and 65% of the laser energy is encircled in the central lobe when the system evolves from open-loop into close-loop state. Experimental results indicate the feasibility of the multimode fiber laser beam cleanup by adaptive optics (AO).

  14. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser.

    PubMed

    Tang, Yuxing; Chong, Andy; Wise, Frank W

    2015-05-15

    We report a study of a mode-locked thulium (Tm) fiber laser with varying normal dispersion. It is difficult to reach the high-energy dissipative-soliton regime due to the anomalous dispersion of most fibers at 2 μm. With large normal dispersion, the laser exhibits elements of self-similar pulse evolution, and is the first Tm fiber laser to achieve the performance benefits of normal-dispersion operation. The laser generates 7.6 nJ pulses, which can be dechirped to 130 fs duration. The resulting peak power is 4 times higher than that of previous Tm fiber lasers. PMID:26393739

  15. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining.

    PubMed

    Debord, B; Alharbi, M; Vincetti, L; Husakou, A; Fourcade-Dutin, C; Hoenninger, C; Mottay, E; Gérôme, F; Benabid, F

    2014-05-01

    We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

  16. Delivery of Erbium:YAG laser radiation through side-firing germanium oxide optical fibers

    NASA Astrophysics Data System (ADS)

    Ngo, Anthony K.; Fried, Nathaniel M.

    2006-02-01

    The Erbium:YAG laser is currently being tested experimentally for endoscopic applications in urology, including more efficient laser lithotripsy and more precise incision of urethral strictures than the Holmium:YAG laser. While side-firing silica fibers are available for use with the Ho:YAG laser in urology, no such fibers exist for use with the Er:YAG laser. These applications may benefit from the availability of a side-firing, mid-infrared optical fiber capable of delivering the laser radiation at a 90-degree angle to the tissue. The objective of this study is to describe the simple construction and characterization of a side-firing germanium oxide fiber for potential use in endoscopic laser surgery. Side-firing fibers were constructed from 450-micron-core germanium oxide fibers of 1.45-m-length by polishing the distal tip at a 45-degree angle and placing a 1-cm-long protective quartz cap over the fiber tip. Er:YAG laser radiation with a wavelength of 2.94 microns, pulse duration of 300 microseconds, pulse repetition rate of 3 Hz, and pulse energies of from 5 to 550 mJ was coupled into the fibers. The fiber transmission rate and damage threshold measured 48 +/- 4 % and 149 +/- 37 mJ, respectively (n = 6 fibers). By comparison, fiber transmission through normal germanium oxide trunk fibers measured 66 +/- 3 %, with no observed damage (n = 5 fibers). Sufficient pulse energies were transmitted through the side-firing fibers for contact tissue ablation. Although these initial tests are promising, further studies will need to be conducted, focusing on assembly of more flexible, smaller diameter fibers, fiber bending transmission tests, long-term fiber reliability tests, and improvement of the fiber output spatial beam profile.

  17. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  18. Intricate solitons state in passively mode-locked fiber lasers.

    PubMed

    Amrani, Foued; Salhi, Mohamed; Leblond, Hervé; Haboucha, Adil; Sanchez, François

    2011-07-01

    We report a novel spontaneous soliton pattern formation in a figure-of-eight passively mode-locked erbium-doped double-clad fiber laser. It consists in a condensate phase in which there is almost periodic arrangement of alternate crystal and liquid soliton phases. Thanks to an adapted ansatz for the electric field, we perform a reconstruction allowing to clearly identify the soliton distribution along the cavity.

  19. Waveform reconstruction for an ultrasonic fiber Bragg grating sensor demodulated by an erbium fiber laser.

    PubMed

    Wu, Qi; Okabe, Yoji

    2015-02-01

    Fiber Bragg grating (FBG) demodulated by an erbium fiber laser (EFL) has been used for ultrasonic detection recently. However, due to the inherent relaxation oscillation (RO) of the EFL, the detected ultrasonic signals have large deformations, especially in the low-frequency range. We proposed a novel data processing method to reconstruct an actual ultrasonic waveform. The noise spectrum was smoothed first; the actual ultrasonic spectrum was then obtained by deconvolution in order to mitigate the influence of the RO of the EFL. We proved by experiment that this waveform reconstruction method has high precision, and demonstrated that the FBG sensor demodulated by the EFL will have large practical applications in nondestructive testing.

  20. Erbium nanoparticle doped fibers for efficient, resonantly-pumped Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Friebele, E. Joseph; Baker, Colin C.; Askins, Charles G.; Fontana, Jake P.; Hunt, Michael P.; Peele, John R.; Marcheschi, Barbara A.; Oh, Euneku; Kim, Woohong; Sanghera, Jasbinder; Zhang, Jun; Pattnaik, Radha K.; Merkle, Larry D.; Dubinskii, Mark

    2015-03-01

    Nanoparticle (NP) doping is a new technique for making erbium-doped fibers (EDFs); the Er ions are surrounded by a cage of aluminum and oxygen ions, substantially reducing Er3+ ion-ion energy exchange and its deleterious effects on laser performance. Er-Al-doped NPs have been synthesized and doped in-situ into the silica soot of the preform core. We report the first known measurements of NP-doped EDFs in a resonantly-core pumped master oscillator-power amplifier (MOPA) configuration; the optical-to-optical slope efficiency was 80.4%, which we believe is a record for this type of fiber.

  1. Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Hutchens, Thomas C.; Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-01-01

    Our laboratory is currently studying the experimental thulium fiber laser (TFL) as a potential alternative laser lithotripter to the gold standard, clinical Holmium:YAG laser. We have previously demonstrated the efficient coupling of TFL energy into fibers as small as 100-μm-core-diameter without damage to the proximal end. Although smaller fibers have a greater tendency to degrade at the distal tip during lithotripsy, fiber diameters (≤200 μm) have been shown to increase the saline irrigation rates through the working channel of a flexible ureteroscope, to maximize the ureteroscope deflection, and to reduce the stone retropulsion during laser lithotripsy. In this study, a 50-μm-core-diameter, 85-μm-outer-diameter, low-OH silica fiber is characterized for TFL ablation of human calcium oxalate monohydrate urinary stones, ex vivo. The 50-μm-core fiber consumes approximately 30 times less cross-sectional area inside the single working channel of a ureteroscope than the standard 270-μm-core fiber currently used in the clinic. The ureteroscope working channel flow rate, including the 50-μm fiber, decreased by only 10% with no impairment of ureteroscope deflection. The fiber delivered up to 15.4±5.9 W under extreme bending (5-mm-radius) conditions. The stone ablation rate measured 70±22 μg/s for 35-mJ-pulse-energy, 500-μs-pulse-duration, and 50-Hz-pulse-rate. Stone retropulsion and fiber burnback averaged 201±336 and 3000±2600 μm, respectively, after 2 min. With further development, thulium fiber laser lithotripsy using ultra-small, 50-μm-core fibers may introduce new integration and miniaturization possibilities and potentially provide an alternative to conventional Holmium:YAG laser lithotripsy using larger fibers.

  2. Detection of rail corrugation based on fiber laser accelerometers

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  3. Flexible high-repetition-rate ultrafast fiber laser

    PubMed Central

    Mao, Dong; Liu, Xueming; Sun, Zhipei; Lu, Hua; Han, Dongdong; Wang, Guoxi; Wang, Fengqiu

    2013-01-01

    High-repetition-rate pulses have widespread applications in the fields of fiber communications, frequency comb, and optical sensing. Here, we have demonstrated high-repetition-rate ultrashort pulses in an all-fiber laser by exploiting an intracavity Mach-Zehnder interferometer (MZI) as a comb filter. The repetition rate of the laser can be tuned flexibly from about 7 to 1100 GHz by controlling the optical path difference between the two arms of the MZI. The pulse duration can be reduced continuously from about 10.1 to 0.55 ps with the spectral width tunable from about 0.35 to 5.7 nm by manipulating the intracavity polarization controller. Numerical simulations well confirm the experimental observations and show that filter-driven four-wave mixing effect, induced by the MZI, is the main mechanism that governs the formation of the high-repetition-rate pulses. This all-fiber-based laser is a simple and low-cost source for various applications where high-repetition-rate pulses are necessary. PMID:24226153

  4. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  5. Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter.

    PubMed

    Fedotov, Y S; Kobtsev, S M; Arif, R N; Rozhin, A G; Mou, C; Turitsyn, S K

    2012-07-30

    We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller. PMID:23038330

  6. An optimized fiber delivery system for Q-switched, Nd:YAG lasers

    SciTech Connect

    Setchell, R.E.

    1996-11-01

    Interest in the transmission of high intensities through optical fibers is being motivated by an increasing number of applications. Using different laser types and fiber materials, various studies are encountering transmission limitations due to laser-induced damage processes. The authors have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. System attributes that will affect breakdown and damage thresholds include laser characteristics, the design and alignment of laser-to-fiber injection optics, and fiber end-face preparation. In the present work the authors have combined insights gained in past studies in order to establish what thresholds can be achieved if all system attributes can be optimized to some degree. The multimode laser utilized past modifications that produced a relatively smooth, quasi-Gaussian profile. The laser-to-fiber injection system achieved a relatively low value for the ratio of peak-to-average fluences at the fiber entrance face, incorporated a mode scrambler to generate a broad mode power distribution within the initial segment of the fiber path, and had improved fixturing to insure that the fiber axis was collinear with the incident laser beam. Fiber end faces were prepared by a careful mechanical polishing schedule followed by surface conditioning using a CO{sub 2} laser. In combination, these factors resulted in higher thresholds for breakdown and damage than they had achieved previously in studies that utilized a simple lens injection system.

  7. Switchable multiwavelength erbium doped fiber laser based on a nonlinear optical loop mirror incorporating multiple fiber Bragg gratings.

    PubMed

    Tran, Thi Van Anh; Lee, Kwanil; Lee, Sang Bae; Han, Young-Geun

    2008-02-01

    We propose and experimentally demonstrate a switchable multiwavelength erbium doped fiber laser based on a highly nonlinear dispersion shifted fiber and multiple fiber Bragg gratings. A nonlinear optical loop mirror based on a highly nonlinear dispersion shifted fiber is implemented in the ring laser cavity to stabilize the multiwavelength output at room temperature. Multiple fiber Bragg gratings with the wavelength spacing of 0.8 nm are connected with an arrayed waveguide grating to establish a multichannel filter. The high quality of the multiwavelength output with a high extinction ratio of ~60 dB and high output flatness of ~0.5 dB is realized. The nonlinear polarization rotation based on the nonlinear optical loop mirror can provide the switching performance of the proposed multiwavelength fiber laser. The lasing wavelength can be switched individually by controlling the polarization controller and the cavity loss.

  8. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression

    NASA Astrophysics Data System (ADS)

    Mashiko, Y.; Nguyen, H. K.; Kashiwagi, M.; Kitabayashi, T.; Shima, K.; Tanaka, D.

    2016-03-01

    A 2 kw single-mode fiber laser with a 20-m long delivery fiber and high back reflection resistance has been demonstrated. An Yb-doped fiber with large core size and differential modal gain is used to realize high SRS suppression and single-mode operation simultaneously. The 20 m-long delivery fiber gives flexibility to the design of processing systems. An output power of 2 kW is achieved at a pump power of 2.86 kW. The slope efficiency is 70%. The power of the Stokes light is less than -50 dB below the laser power at the output power of 2 kW even with a 20-m delivery fiber. Nearly diffraction-limited beam quality is also confirmed (M2 = 1.2). An output power of 3 kW is believed to be achieved by increasing pumping power. The back reflection resistance properties of the fabricated singlemode fiber laser is evaluated numerically by the SRS gain calculated from measured laser output spectra and fiber characteristics. The acceptable power of the back reflection light into the fiber core is estimated to be 500 W which is high enough for processing of highly reflective materials. The output power fluctuation caused by SRS and back reflection in materials processing will be well suppressed. Our high power single-mode fiber lasers can provide high quality and stable processing of highly reflective materials.

  9. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  10. Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks.

    PubMed

    Takenaka, Hideki; Toyoshima, Morio; Takayama, Yoshihisa

    2012-07-01

    Optical communication is a high-capacity method that can handle considerable satellite data. When common-fiber optical devices such as optical fiber amplifiers based on single mode fibers are used in free-space laser communication systems, the laser beam has to be coupled to a single-mode fiber. Under atmospheric turbulence it would be difficult to make the required fiber coupling efficiency in satellite-to-ground laser propagation paths. A fast-steering mirror that can operate at high frequencies under atmospheric turbulence is fabricated, and its tracking performance is verified in real satellite-to-ground laser communication experiments. The measured fiber coupling loss of 10-19 dB in satellite-to-ground laser communication links under atmospheric turbulence shows good agreement with the predicted fiber coupling efficiency of 17 dB.

  11. Galvanometer beam-scanning system for laser fiber drawing.

    PubMed

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS.

  12. Galvanometer beam-scanning system for laser fiber drawing.

    PubMed

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS. PMID:20208750

  13. Study on the characteristics of an Er/Yb co-doped double cladding fiber laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Yan, Mingliang

    2009-07-01

    An Er/Yb co-doped double cladding fiber laser pumped at 980 nm was optimized. The double-cladding fiber laser with whole fiber was obtained by end-pumping and utilizing fiber bragg grating as a resonator. The output power of laser was analyzed along the changes of output grating reflectance (L=10m) as well as the fiber length (R2=4%). Consequently, a fiber with 4 m Er / Yb co-doped double cladding was employed as gain medium while a fiber of which the reflectance was approximately 15% was used as output resonator mirror. Thereafter the technical indexes of EYDF(Er / Yb Double cladding Fiber) were measured. The absorption maximum of fiber core Er3+ was higher than 30dB/m and material gain maximum was observed at 1535nm. Moreover, the diameters of fiber core and inner cladding of double-cladding fiber grating were 6μm and 125μm respectively however the diameters of fiber core and inner cladding of Er/Yb co-doped double cladding fiber were 7μm and 130μm separately.According to the experimental data, a fiber laser with 4 m Er / Yb co-doped double cladding and launched maximum pump power of 3.4 W was set up. Proposed laser shows the maximum output power of 1.25 W and slope efficiency of 40%.

  14. Broadly tunable multiwavelength fiber laser with bismuth-oxide EDF using large effective area fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Mahdi, M. A.

    2011-02-01

    A multiwavelength laser comb using 2.49 m Bismuth-oxide erbium-doped fiber (Bi-EDF) with different lengths of large effective area fiber (LEAF) in a ring cavity configuration is realized. The Bi-EDF is used as the linear gain medium and LEAF is used as the non-linear gain medium for stimulated Brillouin scattering. Out of the four different lengths, the longest length of 25 km LEAF exhibits the widest tuning range of 44 nm (1576 to 1620 nm) in the L-band at 264 mW pump power and 5 mW Brillouin pump power. In addition, a total of 15 output channels are achieved with total average output power of -8 dBm from this laser structure. All Brillouin Stokes signals exhibit high peak power of above -20 dBm per signal and their optical signal-to-noise ratio of greater than 15 dB.

  15. Compact non-cascaded all-fiber Raman laser operating at 1174 nm

    NASA Astrophysics Data System (ADS)

    Wang, Jiachen; Lee, Sang Bae; Lee, Kwanil

    2016-07-01

    We investigate a non-cascaded, all-fiber, single-mode Raman fiber laser (RFL) operating at 1174 nm with an optical slope efficiency of 68%. An ~1-km commercial single-mode fiber is used as the Raman gain medium. The RFL cavity is formed between a high reflectivity fiber Bragg grating (FBG) and a perpendicularly-cleaved fiber facet. The laser is pumped by using a homemade ytterbium-doped fiber laser (YDFL) and can be frequency doubled to generate yellow light. Under the optimum condition, A 6.9-W 1174-nm laser is obtained at maximum available power (24 W) of a laser diode pump. The optical conversion efficiency and the net slope efficiency of the RFL were respectively, 29% and 38%, with respect to launched diode laser power. We also demonstrate yellow-light generation by frequency doubling of the RFL.

  16. Broadly tunable multiwavelength Brillouin-erbium fiber laser using a twin-core fiber coupler

    NASA Astrophysics Data System (ADS)

    Peng, Wanjing; Yan, Fengping; Li, Qi; Liu, Shuo; Tan, Siyu; Feng, Suchun; Feng, Ting

    2014-07-01

    A tunable multiwavelength Brillouin-erbium fiber laser (MW-BEFL) using a twin-core fiber (TCF) coupler is proposed and demonstrated. The TCF coupler is formed by splicing a section of TCF between two single-mode fibers. By simply applying bending curvature on the TCF coupler, the peak net gain is shifted close to the Brillouin pump (BP), which has advantage for suppressing self-lasing cavity modes with low-BP-power injection. In this work, the dependency of the Stokes signals tuning range on the free spectral range (FSR) of TCF coupler is studied. It is also found that the tuning range of MW-BEFL can exceed the FSR of TCF coupler by adopting proper BP power and 980-nm pump power. Up to 40 nm tuning range of MW-BEFL in the absence of self-lasing cavity modes is achieved.

  17. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    NASA Astrophysics Data System (ADS)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  18. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    NASA Astrophysics Data System (ADS)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-11-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  19. Tapered cladding diameter profile design for high-power tandem-pumped fiber lasers

    NASA Astrophysics Data System (ADS)

    Huang, Zhihua; Tang, Xuan; Lin, Honghuan; Wang, Jianjun

    2016-05-01

    The thermal effect has become the biggest limiting factor regarding the further power scaling of single mode fiber lasers, and it can lead to coating failure and transverse mode instability. A tapered cladding diameter profile design is proposed for the tandem-pumped fiber laser in this work, as it can smooth the temperature profile and reduce the maximum temperature rise within the fiber tremendously. The improvement in performance of the fiber design is verified by analytical and numerical results.

  20. Optical fiber configurations for transmission of laser energy over great distances

    SciTech Connect

    Rinzler, Charles C; Zediker, Mark S

    2014-11-04

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  1. Optical fiber configurations for transmission of laser energy over great distances

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  2. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    NASA Astrophysics Data System (ADS)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-09-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  3. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser.

    PubMed

    Luo, Zhi-Chao; Liu, Meng; Guo, Zhi-Nan; Jiang, Xiao-Fang; Luo, Ai-Ping; Zhao, Chu-Jun; Yu, Xue-Feng; Xu, Wen-Cheng; Zhang, Han

    2015-07-27

    Few-layer black phosphorus (BP), as the most alluring graphene analogue owing to its similar structure as graphene and thickness dependent direct band-gap, has now triggered a new wave of research on two-dimensional (2D) materials based photonics and optoelectronics. However, a major obstacle of practical applications for few-layer BPs comes from their instabilities of laser-induced optical damage. Herein, we demonstrate that, few-layer BPs, which was fabricated through the liquid exfoliation approach, can be developed as a new and practical saturable absorber (SA) by depositing few-layer BPs with microfiber. The saturable absorption property of few-layer BPs had been verified through an open-aperture z-scan measurement at the telecommunication band. The microfiber-based BP device had been found to show a saturable average power of ~4.5 mW and a modulation depth of 10.9%, which is further confirmed through a balanced twin detection measurement. By integrating this optical SA device into an erbium-doped fiber laser, it was found that it can deliver the mode-locked pulse with duration down to 940 fs with central wavelength tunable from 1532 nm to 1570 nm. The prevention of BP from oxidation through the "lateral interaction scheme" owing to this microfiber-based few-layer BP SA device might partially mitigate the optical damage problem of BP. Our results not only demonstrate that black phosphorus might be another promising SA material for ultrafast photonics, but also provide a practical solution to solve the optical damage problem of black phosphorus by assembling with waveguide structures such as microfiber.

  4. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Chao; Liu, Meng; Guo, Zhi-Nan; Jiang, Xiao-Fang; Luo, Ai-Ping; Zhao, Chu-Jun; Yu, Xue-Feng; Xu, Wen-Cheng; Zhang, Han

    2015-07-01

    Few-layer black phosphorus (BP), as the most alluring graphene analogue owing to its similar structure as graphene and thickness dependent direct band-gap, has now triggered a new wave of research on two-dimensional (2D) materials based photonics and optoelectronics. However, a major obstacle of practical applications for few-layer BPs comes from their instabilities of laser-induced optical damage. Herein, we demonstrate that, few-layer BPs, fabricated through the liquid exfoliation approach, can be developed as a new and practical saturable absorber (SA) by depositing few-layer BPs with microfiber. The saturable absorption property of few-layer BPs had been verified through an open-aperture z-scan measurement at the telecommunication band and the microfiber-based BP device had been found to show a saturable average power of ~4.5 mW and a modulation depth of 10.9%, which is further confirmed through a balanced twin detection measurement. By further integrating this optical SA device into an erbium-doped fiber laser, it was found that it can deliver the mode-locked pulse with duration down to 940 fs with central wavelength tunable from 1532 nm to 1570 nm. The prevention of BP from oxidation through the 'lateral interaction scheme' owing to this microfiber-based few-layer BP SA device might partially mitigate the optical damage problem of BP. Our results not only demonstrate that black phosphorus might be another promising SA material for ultrafast photonics, but also provide a practical solution to solve the optical damage problem of black phosphorus by assembling with waveguide structures such as microfiber.

  5. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry-Perot cavity with a SESAM

    NASA Astrophysics Data System (ADS)

    Huang, Kaiqiang; Li, Qi; Chen, Haiyan

    2016-04-01

    A switchable dual-wavelength fiber laser with an asymmetric fiber Bragg grating (FBG)-Fabry-Perot (FP) cavity based a semiconductor saturable absorber mirror (SESAM) is proposed and experimentally demonstrated. The proof of concept device consists of a FGB laser with an asymmetric FBG-FP cavity, a SESAM as mode loss modulator, and a intracavity FBG as wavelength selector by changing its operation temperature. The results demonstrate the new concept of dual-wavelength fiber laser based SESAM with asymmetric FBG-FP cavity and the technical feasibility.

  6. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  7. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe₂) for Q-switching Yb-, Er- and Tm-doped fiber lasers.

    PubMed

    Woodward, R I; Howe, R C T; Runcorn, T H; Hu, G; Torrisi, F; Kelleher, E J R; Hasan, T

    2015-07-27

    We fabricate a free-standing molybdenum diselenide (MoSe2) saturable absorber by embedding liquid-phase exfoliated few-layer MoSe2 flakes into a polymer film. The MoSe2-polymer composite is used to Q-switch fiber lasers based on ytterbium (Yb), erbium (Er) and thulium (Tm) gain fiber, producing trains of microsecond-duration pulses with kilohertz repetition rates at 1060 nm, 1566 nm and 1924 nm, respectively. Such operating wavelengths correspond to sub-bandgap saturable absorption in MoSe2, which is explained in the context of edge-states, building upon studies of other semiconducting transition metal dichalcogenide (TMD)-based saturable absorbers. Our work adds few-layer MoSe2 to the growing catalog of TMDs with remarkable optical properties, which offer new opportunities for photonic devices. PMID:26367663

  8. Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis

    DOEpatents

    Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

    2004-07-13

    A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

  9. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power.

    PubMed

    Dawson, Jay W; Messerly, Michael J; Beach, Raymond J; Shverdin, Miroslav Y; Stappaerts, Eddy A; Sridharan, Arun K; Pax, Paul H; Heebner, John E; Siders, Craig W; Barty, C P J

    2008-08-18

    We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.

  10. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power.

    PubMed

    Dawson, Jay W; Messerly, Michael J; Beach, Raymond J; Shverdin, Miroslav Y; Stappaerts, Eddy A; Sridharan, Arun K; Pax, Paul H; Heebner, John E; Siders, Craig W; Barty, C P J

    2008-08-18

    We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers. PMID:18711562

  11. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Zhou, P.; Wang, X. L.; Guo, S. F.; Xu, X. J.

    2012-10-01

    In this letter high power monolithic 1018 nm fiber laser and amplifier are presented. The output characteristics of 1018 nm laser with amplified spontaneous emission (ASE) feedback, fiber Bragg gratings (FBG) reflectivity, gain fiber length and other parameters are experimentally investigated. The difference between 1018 and 1064 nm amplification are also compared in experiment. Based on these experimental results, we find viable approaches to improve the laser and amplifier's performances. 85 W 1018 nm fiber laser with a slope efficiency of 71% and 110 W 1018 nm fiber amplifier with the slope efficiency of 77% are achieved, both of which we believe are the highest output at this wavelength that ever reported in open detail.

  12. Advances in high-power 9XXnm laser diodes for pumping fiber lasers

    NASA Astrophysics Data System (ADS)

    Skidmore, Jay; Peters, Matthew; Rossin, Victor; Guo, James; Xiao, Yan; Cheng, Jane; Shieh, Allen; Srinivasan, Raman; Singh, Jaspreet; Wei, Cailin; Duesterberg, Richard; Morehead, James J.; Zucker, Erik

    2016-03-01

    A multi-mode 9XXnm-wavelength laser diode was developed to optimize the divergence angle and reliable ex-facet power. Lasers diodes were assembled into a multi-emitter pump package that is fiber coupled via spatial and polarization multiplexing. The pump package has a 135μm diameter output fiber that leverages the same optical train and mechanical design qualified previously. Up to ~ 270W CW power at 22A is achieved at a case temperature ~ 30ºC. Power conversion efficiency is 60% (peak) that drops to 53% at 22A with little thermal roll over. Greater than 90% of the light is collected at < 0.12NA at 16A drive current that produces 3.0W/(mm-mr)2 radiance from the output fiber.

  13. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, Raymond J.; Benett, William J.; Mills, Steven T.

    1997-01-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

  14. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, R.J.; Benett, W.J.; Mills, S.T.

    1997-04-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

  15. Switchable multiwavelength thulium-doped fiber ring lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Shui; Lu, Ping; Liu, Deming; Zhang, Jiangshan

    2013-08-01

    Two kinds of thulium-doped fiber ring lasers based on a spatial mode beating filter and comb filtering effect are presented and experimentally demonstrated, which all show multiwavelength laser spectrum around 2 μm. In the implementation of the first type of experiment configuration by the use of a piece of multimode fiber (MMF) as a spatial mode beating filter, dual-,triple-, and quadruple-wavelengths appeared whose extinction noise ratio is 25 dB by adjusting the angle of polarization controller. Different wavelength spaces are obtained by inserting different lengths of MMF. The second type is achieved by inserting a Sagnac loop mirror, which was constructed by a 3-dB coupler and a piece of polarization maintaining fiber. Seven stable wavelengths with channel spacing of 0.65 nm and an extinction ratio of 35 dB was achieved. These systems are simple and easy to construct, which can be useful for 2 μm wavelength-division-multiplexed applications.

  16. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes.

    PubMed

    Martinez, Amos; Yamashita, Shinji

    2011-03-28

    There is an increasing demand for all-fiber passively mode-locked lasers with pulse repetition rates in the order of gigahertz for their potential applications in fields such as telecommunications and metrology. However, conventional mode-locked fiber lasers typically operate at fundamental repetition rates of only a few megahertz. In this paper, we report all-fiber laser operation with fundamental repetition rates of 4.24 GHz, 9.63 GHz and 19.45 GHz. This is, to date and to the best of our knowledge, the highest fundamental repetition rate reported for an all-fiber laser. The laser operation is based on the passive modelocking of a miniature all-fiber Fabry-Pérot laser (FFPL) by a carbon nanotube (CNT) saturable absorber. The key components for such device are a very high-gain Er:Yb phosphosilicate fiber and a fiber compatible saturable absorber with very small foot print and very low losses. The laser output of the three lasers was close to transform-limited with a pulsewidth of approximately 1 ps and low noise. As a demonstration of potential future applications for this laser, we also demonstrated supercontinuum generation with a longitudinal mode-spacing of 0.08 nm by launching the laser operating at 9.63 GHz into 30 m of a highly nonlinear dispersion shifted fiber.

  17. High-power thulium fiber laser ablation of the canine prostate

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Murray, Keith E.

    2005-04-01

    The Thulium fiber laser may have several advantages over current urology lasers, including smaller size, more efficient operation, improved spatial beam quality, more precise tissue incision, and operation in pulsed or continuous-wave modes. However, previous laser-tissue interaction studies utilizing the Thulium fiber laser have been limited to laser powers of less than 5 W. This study describes high-power Thulium fiber laser vaporization of the canine prostate, ex vivo. A continuous-wave, 110-watt Thulium fiber laser operating at a wavelength of 1.91 mm, delivered 88.5 +/- 2.3 W of power through a 600-mm-core silica fiber for non-contact vaporization of canine prostates (n=6). The Thulium fiber laser vaporized prostate tissue at a rate of 0.83 +/- 0.11 g/min. The thermal coagulation zone measured 500-2000 mm. The high-power Thulium fiber laser is capable of rapid vaporization and coagulation of the prostate, ex vivo. In vivo animal studies are currently in development for evaluation of the Thulium fiber laser for prostate vaporization and potential treatment of benign prostate hyperplasia.

  18. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, J. H.; Shin, W.

    2016-03-01

    We experimentally demonstrate a passively mode-locked thulium doped fiber laser using a bismuth telluride deposited multimode interference (MMI) fiber at a wavelength of 1958 nm. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The center wavelength and insertion loss of MMI fiber were measured to be ~ 1958 nm and 3.4 dB. We observed a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm. The temporal pulse width of output pulses is 4.2 ps with repetition rate of 22.7 MHz.

  19. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping: erratum.

    PubMed

    Peterka, P; Honzátko, P; Koška, P; Todorov, F; Aubrecht, J; Podrazký, O; Kašík, I

    2016-07-11

    This erratum presents a correction to the computed reflection spectra of transient fiber Bragg gratings that are spontaneously built-up in the ytterbium-doped fiber of the fiber laser with laser wavelength self-sweeping. The corrected spectra have high reflectivity reaching values up to 100%. Therefore, they still more support the conclusion drawn in the original paper that self-sweeping is an important mechanism for triggering the self-Q-switched regime with giant pulse generation. PMID:27410889

  20. Influence of spectral properties of wavelength-locked and wavelength-unlocked diode laser on fiber laser performances

    NASA Astrophysics Data System (ADS)

    Huang, Zhihua; Tang, Xuan; Zhao, Pengfei; Li, Zebiao; Li, Chengyu; Li, Qi; Guo, Chao; Lin, Honghuan; Wang, Jianjun; Jing, Feng

    2016-07-01

    The influence of the spectral properties of laser diode (LD) pump source, i.e. central wavelength and linewidth, on the fiber laser performances are studied. The absorption degradation ratio (ADR) is introduced and evaluated as a guide for pump selection and fiber laser design. The spectra of wavelength-locked and wavelength-unlocked LDs are measured and they are used for fiber laser amplification. The results show that the efficiency of the wavelength-locked LDs is higher than that of the wavelength-unlocked LDs at full current but the residual pump power of wavelength-locked LDs can be much higher at lower current because of the side band.

  1. Modeling synchronization in networks of delay-coupled fiber ring lasers.

    PubMed

    Lindley, Brandon S; Schwartz, Ira B

    2011-11-21

    We study the onset of synchronization in a network of N delay-coupled stochastic fiber ring lasers with respect to various parameters when the coupling power is weak. In particular, for groups of three or more ring lasers mutually coupled to a central hub laser, we demonstrate a robust tendency toward out-of-phase (achronal) synchronization between the N-1 outer lasers and the single inner laser. In contrast to the achronal synchronization, we find the outer lasers synchronize with zero-lag (isochronal) with respect to each other, thus forming a set of N-1 coherent fiber lasers.

  2. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations

    PubMed Central

    Lehman, John H.; Vayshenker, Igor; Livigni, David J.; Hadler, Joshua

    2004-01-01

    The responsivity of two optical detectors was determined by the method of direct substitution in four different NIST measurement facilities. The measurements were intended to demonstrate the determination of absolute responsivity as provided by NIST calibration services at laser and optical-communication wavelengths; nominally 633 nm, 850 nm, 1060 nm, 1310 nm, and 1550 nm. The optical detectors have been designated as checks standards for the purpose of routine intramural comparison of our calibration services and to meet requirements of the NIST quality system, based on ISO 17025. The check standards are two optical-trap detectors, one based on silicon and the other on indium gallium arsenide photodiodes. The four measurement services are based on: (1) the laser optimized cryogenic radiometer (LOCR) and free field collimated laser light; (2) the C-series isoperibol calorimeter and free-field collimated laser light; (3) the electrically calibrated pyroelectric radiometer and fiber-coupled laser light; (4) the pyroelectric wedge trap detector, which measures light from a lamp source and monochromator. The results indicate that the responsivity of the check standards, as determined independently using the four services, agree to within the published expanded uncertainty ranging from approximately 0.02 % to 1.24 %. PMID:27366611

  3. Optimization of tapered fiber sample for laser cooling of solids

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2009-02-01

    The physical mechanism of radiation cooling by anti-Stokes fluorescence was originally proposed in 1929 and experimentally observed in solid materials in 1995 by Epstein's research team in ytterbium-doped ZBLANP glass. Some specific combinations of the ions, host materials, and the wavelength of the incident radiation can provide anti-Stokes interaction resulting in phonon absorption accompanied by the cooling of the host material. Although the optical cooling of the Yb3+-doped ZBLANP sample was already observed there are broad possibilities for its improvement to increase the temperature-drop of the sample by optimization of the geometrical parameters of the cooling sample. We propose a theoretical model for an optimized tapered fiber structure for use as a sample in anti-Stokes laser cooling of solids. This tapered fiber has a fluorozirconate glass ZBLANP with a core doped with Yb3+ or Tm3+ ions. As evident from the results of our work, the appropriate choice of the fiber core and the fiber cladding radii can significantly increase the temperature-drop of the sample for any fixed pump power. The value of the maximum of the temperature-drop of the sample increases with an increase in the pump power. The depletion of the pump power causes a temperature gradient along the length of the cooled sample.

  4. Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

    2005-01-01

    We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

  5. Tissue effects of Nd:YAG, KTP, and FiberTomeTM lasers with varying fiber tips and power settings

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Snyder, Wendy J.; Pergadia, Vani R.; Fishbein, Michael C.; Weiss, Andrew B.; Duffy, J. T.; Thomas, Reem; Shi, Wei-Qiang; Fry, Stephen M.; Grundfest, Warren S.

    1994-02-01

    This study compared the laser tissue effect of the Dornier FiberTomeTM system, the conventional Nd:YAG and the KTP laser on the stomach and liver. The cutting capabilities, thermal effects of the laser systems, as well as their dependence on power output and tissue type, were evaluated. A motorized fiber holder to maintain constant conditions (cutting speed fiber angle, and pressure) was developed. The results show that the cutting depth and cutting width are inversely proportional to the output level. The thermal damage remained constant as the output increased. Use of the FiberTomeTM system appears to be more advantageous than the conventional Nd:YAG laser in pigmented tissues, in the range of the parameters tested.

  6. Tunable and switchable dual-wavelength erbium-doped fiber laser based on in-line tapered fiber filters

    NASA Astrophysics Data System (ADS)

    Tong, Zheng-rong; Yang, He; Cao, Ye

    2016-07-01

    A tunable and switchable dual-wavelength erbium-doped fiber laser (EDFL) based on all-fiber single-mode tapered fiber structure has been demonstrated. By adjusting the variable optical attenuator (VOA), the laser can be switched between the single-wavelength mode and the dual-wavelength mode. When the temperature applied on the tapered fiber structure varies, the pass-band varies and the wavelength of the output laser shifts correspondingly. When the temperature changes from 30 °C to 180 °C, the central wavelength of the EDFL generated by branch A shifts from 1 550.7 nm to 1 560.3 nm, while that of branch B shifts from 1 530.8 nm to 1 540.4 nm, indicating the wavelength interval is tunable. These advantages enable this laser to be a potential candidate for high-capacity wavelength division multiplexing systems and mechanical sensors.

  7. Broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Sun, H. B.; Liu, X. M.; Gong, Y. K.; Li, X. H.; Wang, L. R.

    2010-02-01

    A broadly tunable dual-wavelength erbium-doped ring fiber laser based on a high-birefringence fiber loop mirror (HiBi-FLM) and a polarization controller is demonstrated experimentally. The measured transmission spectrum of HiBi-FLM covers a wide range from 1525 to 1575 nm. The wavelength of proposed laser can be flexibly tunable during this range of ˜50 nm by adjusting the polarization controller. In addition, the spacing of two wavelengths is adjustable by changing the length of HiBi fiber. The dual-wavelength lasers with the HiBi fiber length of 1 and 2 m are experimentally demonstrated and compared. The experimental results show that the proposed laser can stably operate on two wavelengths simultaneously at room temperature, and the output peak power variation is about 0.5 dB during 40 min.

  8. Mode-locked fiber/waveguide lasers based on a fiber taper embedded in carbon nanotubes/polymer composite

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Khanh, Kieu; Honkanen, Seppo; Kueppers, Franko

    2008-04-01

    We generated 2 nJ, ~690 fs pulses with 10 MHz repetition rate from a linear cavity mode-locked Er 3+-doped fiber laser with a fiber taper embedded in carbon nanotubes (CNTs)/polymer composite. Evanescent field out of the taper section can interact with CNTs to see saturation of absorption. With the fiber based saturable absorber this laser has simple and robust all-fiber configuration comparing to traditional linear cavity mode-locked lasers with semiconductor saturable absorbers. In addition, we have demonstrated a mode-locked ring laser, with a similar saturable absorber, by using an ion-exchanged Er 3+-Yb 3+-codoped planar waveguide as the gain medium.

  9. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  10. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm.

    PubMed

    Fang, Qiang; Xu, Yang; Fu, Shijie; Shi, Wei

    2016-04-15

    We report a single-frequency distributed Bragg reflector (DBR) fiber laser at 930 nm for the first time, to the best of our knowledge. A ∼2.5 cm long commercial highly neodymium-doped silica fiber was utilized as the gain medium to achieve ∼1.9 mW laser output. The single longitudinal mode operation of this laser was verified by a scanning Fabry-Perot interferometer. This fiber laser is suited for seeding high-power 930 nm narrow-linewidth laser amplifiers, which can be used to generate coherent single-frequency pure blue light through frequency doubling. PMID:27082356

  11. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings.

    PubMed

    Antipov, Sergei; Ams, Martin; Williams, Robert J; Magi, Eric; Withford, Michael J; Fuerbach, Alexander

    2016-01-11

    We compare and contrast novel techniques for the fabrication of chirped broadband fiber Bragg gratings by ultrafast laser inscription. These methods enable the inscription of gratings with flexible period profiles and thus tailored reflection and dispersion characteristics in non-photosensitive optical fibers. Up to 19.5 cm long chirped gratings with a spectral bandwidth of up to 30 nm were fabricated and the grating dispersion was characterized. A maximum group delay of almost 2 ns was obtained for linearly chirped gratings with either normal or anomalous group velocity dispersion, demonstrating the potential for using these gratings for dispersion compensation. Coupling to cladding modes was reduced by careful design of the inscribed modification features. PMID:26832235

  12. Frequency-resolved coherent lidar using a femtosecond fiber laser.

    PubMed

    Swann, W C; Newbury, N R

    2006-03-15

    We demonstrate a coherent lidar that uses a broadband femtosecond fiber laser as a source and resolves the returning heterodyne signal into N spectral channels by using an arrayed-waveguide grating. The data are processed incoherently to yield an N-times improvement in the Doppler measurement of a surface vibration. For N=6, we achieve a sensitivity of 153 Hz, corresponding to a 0.12 mm/s motion, in 10 ms despite a signal that is speckle broadened to 14 kHz. Alternatively, the data are processed coherently to form a range image. For a flat target, we achieve a 60 microm range resolution, limited mainly by the source bandwidth, despite the dispersion of 1 km of optical fiber in the signal path.

  13. Nanoparticle doping for improved Er-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Baker, Colin C.; Friebele, E. Joseph; Askins, Charles G.; Hunt, Michael P.; Marcheschi, Barbara A.; Fontana, Jake; Peele, John R.; Kim, Woohong; Sanghera, Jasbinder; Zhang, Jun; Pattnaik, Radha K.; Merkle, Larry D.; Dubinskii, Mark; Chen, Youming; Dajani, Iyad A.; Mart, Cody

    2016-03-01

    A nanoparticle (NP) doping technique was used for making erbium-doped fibers (EDFs) for high energy lasers. The nanoparticles were doped into the silica soot of preforms, which were drawn into fibers. The Er luminescence lifetimes of the NP-doped cores are longer than those of corresponding solution-doped silica, and substantially less Al is incorporated into the NP-doped cores. Optical-to-optical slope efficiencies of greater than 71% have been measured. Initial investigations of stimulated Brillouin scattering (SBS) have indicated that SBS suppression is achieved by NP doping, where we observed a low intrinsic Brillouin gain coefficient, of ~1× 10-11 m/W and the Brillouin bandwidth was increased by 2.5x compared to fused silica.

  14. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  15. All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror.

    PubMed

    Ahmad, Harith; Dernaika, Mohamad; Harun, Sulaiman Wadi

    2014-09-22

    This paper describes a proposal and successful demonstration of a dual wavelength all-fiber passively Q-switched erbium-doped fiber ring laser. The Q-switch operation was realized by using a nonlinear loop mirror that incorporated an unbalanced dispersion-decreasing taper fiber to act as a saturable absorber without additional elements. This setup enabled a fiber ring laser to achieve a performance of 48.7 kHz repetition rate with pulse duration of around 3.2 μs and approximate pulse energy of 20 nJ. PMID:25321748

  16. Fiber Lasers and Amplifiers for Space-based Science and Exploration

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.; Riris, Haris

    2012-01-01

    We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.

  17. An all-fiber high-energy cladding-pumped 93 nanosecond Q-switched fiber laser using an Y 3+-doped fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Patterson, Brian D.; Soh, Daniel B.; Bisson, Scott E.

    2014-03-01

    We report an all-fiber passively Q-switched laser using a large mode area (LMA) Yb3+ -doped fiber claddingpumped at 915 nm and an unpumped single-mode (SM) Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber SM fiber and LMA gain fiber were coupled with a fiber taper designed to match the fundamental spatial mode of the LMA fiber and the expanded LP01 mode of the single mode fiber. The amplified spontaneous (ASE) intensity propagating in the single mode SA saturates the absorption before the onset of gain depletion in the pumped fiber, switching the fiber cavity to a high Q-state and producing a pulse. Using this scheme we demonstrate a Q-switched all-fiber oscillator with 32 μJ 93 ns pulses at 1030 nm. The associated peak power is nearly two orders of magnitude larger than that reported in previous experimental studies using a single Yb+3 saturable absorber fiber. The pulse energy was amplified to 0.230 mJ using an Yb3+-doped cladding pumped fiber amplifier fusion spliced to the fiber oscillator, increasing the energy by eight fold while preserving the all-fiber architecture.

  18. 2013 R&D 100 Award: New tech could mean more power for fiber lasers

    ScienceCinema

    Dawson, Jay

    2016-07-12

    An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless the core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.

  19. 2013 R&D 100 Award: New tech could mean more power for fiber lasers

    SciTech Connect

    Dawson, Jay

    2014-04-03

    An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless the core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.

  20. A high-energy cladding-pumped 80 nanosecond Q-switched fiber laser using a tapered fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Moore, Sean W.; Soh, Daniel B. S.; Bisson, Scott E.; Patterson, Brian D.; Hsu, Wen L.

    2013-02-01

    We report a passively Q-switched all-fiber laser using a large mode area (LMA) Yb3+-doped fiber cladding-pumped at 915 nm and an unpumped single-mode Yb3+-doped fiber as the saturable absorber (SA). The saturable absorber and gain fibers were first coupled with a free-space telescope to better study the composite system, and then fusion spliced with fiber tapers to match the mode field diameters. ASE generated in the LMA gain fiber preferentially bleaches the SA fiber before depleting the gain, thereby causing the SA fiber to act as a passive saturable absorber. Using this scheme we first demonstrate a Q-switched oscillator with 40 μJ 79 ns pulses at 1026 nm using a free-space taper, and show that pulses can be generated from 1020 nm to 1040 nm. We scale the pulse energy to 0.40 mJ using an Yb3+-doped cladding pumped fiber amplifier. Experimental studies in which the saturable absorber length, pump times, and wavelengths are independently varied reveal the impact of these parameters on laser performance. Finally, we demonstrate 60 μJ 81 ns pulses at 1030 nm in an all fiber architecture using tapered mode field adaptors to match the mode filed diameters of the gain and SA fibers.

  1. Holograms for laser diode: Single mode optical fiber coupling

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  2. Laser ultrasound technology for fault detection on carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Seyrkammer, Robert; Reitinger, Bernhard; Grün, Hubert; Sekelja, Jakov; Burgholzer, Peter

    2014-05-01

    The marching in of carbon fiber reinforced polymers (CFRPs) to mass production in the aeronautic and automotive industry requires reliable quality assurance methods. Laser ultrasound (LUS) is a promising nondestructive testing technique for sample inspection. The benefits compared to conventional ultrasound (US) testing are couplant free measurements and an easy access to complex shapes due to remote optical excitation and detection. Here the potential of LUS is present on composite test panels with relevant testing scenarios for industry. The results are evaluated in comparison to conventional ultrasound used in the aeronautic industry.

  3. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  4. Refractive index sensitivity of long-period fiber gratings written in thinned cladding fiber by CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhao, Yunhe; Liu, Yunqi; Guo, Qiang; Wang, Tingyun

    2014-05-01

    We demonstrate the fabrication of the long-period fiber gratings (LPFGs) in the thinned cladding fiber (TCF) using CO2 laser. The sensing response of the gratings to surrounding refractive index has been investigated experimentally. The LPFGs written in the TCF could be used as the high sensitive refractive index sensors.

  5. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  6. Micro-hole drilling and cutting using femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2014-05-01

    Micro-hole drilling and cutting in ambient air are presented by using a femtosecond fiber laser. At first, the micro-hole drilling was investigated in both transparent (glasses) and nontransparent (metals and tissues) materials. The shape and morphology of the holes were characterized and evaluated with optical and scanning electron microscopy. Debris-free micro-holes with good roundness and no thermal damage were demonstrated with the aspect ratio of 8∶1. Micro-hole drilling in hard and soft tissues with no crack or collateral thermal damage is also demonstrated. Then, trench micromachining and cutting were studied for different materials and the effect of the laser parameters on the trench properties was investigated. Straight and clean trench edges were obtained with no thermal damage.

  7. Fiber-optic laser Doppler turbine tip clearance probe.

    PubMed

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades. PMID:16642064

  8. Innovative fiber-laser architecture-based compact wind lidar

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ

    2016-03-01

    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  9. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    SciTech Connect

    Milewski, John O; Bernal, John E

    2009-01-01

    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts in testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.

  10. Optical fiber sensing and communication systems using fiber and microchip laser sources

    NASA Astrophysics Data System (ADS)

    Chen, Junewen; Chien, Pie-Yau; Lin, Jun-Ting

    2004-05-01

    Fiber optic strain sensor systems using fiber Bragg grating have been developed in our Section with time demultiplexing phase stabilized feed back Fabry-Perot tunable filter and signal processing technologies. The system can resolve < 1 μ strain, with measuring range of 4000 μ strain; and can monitor 20 points simultaneously. It has been used in real time long term hazard investigation and warning system on the bridges and traffic high-pass ways. The data from these smart fiber optic distributed stress and strain sensing systems had constantly been observed with satisfactory results. Our fiber optic communication system is a bi-directional audio-video and data signal transmission system. The source laser diodes are TE cooled with temperature control circuits. The system is dual audio bi-directional transmission and receiving channel with bandwidth 4.8 KHz. Video one direction transmission and receiving, meets NTSC specification with bandwidth 6 MHz. Dual data signals bi-directional transmission adn receiving channel, meets RS-232C specification and the Buad rate are 9.6 Kbps. The sstems are carefully designed and fabricated to meet the environmental wide temperature range conditions as well as high vibration and shock mobile transportation.

  11. Ablation of selected conducting layers by fiber laser

    NASA Astrophysics Data System (ADS)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria

    2014-08-01

    Laser Direct Writing (LDW) are used in the manufacture of electronic circuits, pads, and paths in sub millimeter scale. They can also be used in the sensors systems. Ablative laser writing in a thin functional layer of material deposited on the dielectric substrate is one of the LDW methods. Nowadays functional conductive layers are composed from graphene paint or nanosilver paint, indium tin oxide (ITO), AgHTTM and layers containing carbon nanotubes. Creating conducting structures in transparent layers (ITO, AgHT and carbon nanotubes layers) may have special importance e.g. for flexi electronics. The paper presents research on the fabrication of systems of paths and appropriate pattern systems of paths and selected electronic circuits in AgHTTM and ITO layers deposited on glass and polymer substrates. An influence of parameters of ablative fiber laser treatment in nanosecond regime as well as an influence of scanning mode of laser beam on the pattern fidelity and on electrical parameters of a generated circuit was investigated.

  12. Fiber optic illumination by laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Hartwig, Ulrich

    2012-10-01

    For some fiber optic applications, like high-end endoscopy, light sources with high luminance are necessary. Currently, short arc discharge lamps are being used. However, more and more LED solutions are trying to compete, but they can not yet reach the performance obtainable by 300 W Xenon short arc discharge lamps. To make this field of application accessible for solid state light sources, a new approach is necessary. Diode lasers have rapidly advanced in the past years. This is particularly true for multimode laser diodes emitting at around 445 nm wavelength. Single diodes emitting more than 1 W of optical power are already available. These laser sources exhibit extremely high radiance, thus they can be focused onto very small areas. Phosphors placed near the focus can result in high luminance sources. On the basis of this idea, a device has been developed to match the performance of a state of the art 300 W Xenon lamp system. An array of laser diodes is used to illuminate a phosphor plate which converts the blue pump light into yellow light. The converted light is collected and adapted to the application by a tapered TIR rod. To achieve a color point on the Planckian locus at 6000 K, the light of an LED emitting at around 460 nm is superimposed to the converted light.

  13. Studies on output characteristics of stable dual-wavelength ytterbium-doped photonic crystal fiber laser

    NASA Astrophysics Data System (ADS)

    Tian, Hongchun; Zhang, Sa; Hou, Zhiyun; Xia, Changming; Zhou, Guiyao; Zhang, Wei; Liu, Jiantao; Wu, Jiale; Fu, Jian

    2016-06-01

    A stable dual-wavelength ytterbium-doped photonic crystal fiber laser pumped by a 976 nm laser diode has been demonstrated at room temperature. Single-wavelength, dual-wavelength laser oscillations are observed when the fiber laser operates under different pump power by using different length of fibers. Stable dual-wavelength radiation around 1045 nm and 1075 nm has been generated simultaneously at a high pump power directly from an ytterbium-doped fiber laser without using any spectral control mechanism. A small core ytterbium-doped PCF fabricated by the powder sinter direction drawn rod technology is used as gain medium. The pump power and fiber length which can affect the output characteristics of dual-wavelength fiber laser are analyzed in the experiment. Experiments confirm that higher pump power and longer fiber length favors 1075 nm output; lower pump power and shorter fiber length favors 1045 nm output. Those results have a good reference in multi-wavelength fiber laser.

  14. Waveform reconstruction for an ultrasonic fiber Bragg grating sensor demodulated by an erbium fiber laser.

    PubMed

    Wu, Qi; Okabe, Yoji

    2015-02-01

    Fiber Bragg grating (FBG) demodulated by an erbium fiber laser (EFL) has been used for ultrasonic detection recently. However, due to the inherent relaxation oscillation (RO) of the EFL, the detected ultrasonic signals have large deformations, especially in the low-frequency range. We proposed a novel data processing method to reconstruct an actual ultrasonic waveform. The noise spectrum was smoothed first; the actual ultrasonic spectrum was then obtained by deconvolution in order to mitigate the influence of the RO of the EFL. We proved by experiment that this waveform reconstruction method has high precision, and demonstrated that the FBG sensor demodulated by the EFL will have large practical applications in nondestructive testing. PMID:25967776

  15. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  16. Cavity dumping of fiber lasers by phase-modulated optical loop mirrors

    SciTech Connect

    Okhotnikov, O.G.; Araujo, F.M.

    1996-01-01

    We report the generation of high-repetition-rate pulses from an erbium-doped fiber laser with a phase-driven optical loop mirror as a cavity dumper. The result demonstrates the potential of this novel method for efficient and ultrafast cavity dumping of fiber lasers. {copyright} {ital 1996 Optical Society of America.}

  17. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  18. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress.

    PubMed

    Chong, Andy; Wright, Logan G; Wise, Frank W

    2015-11-01

    Self-similar fiber oscillators are a relatively new class of mode-locked lasers. In these lasers, the self-similar evolution of a chirped parabolic pulse in normally-dispersive passive, active, or dispersion-decreasing fiber (DDF) is critical. In active (gain) fiber and DDF, the novel role of local nonlinear attraction makes the oscillators fundamentally different from any mode-locked lasers considered previously. In order to reconcile the spectral and temporal expansion of a pulse in the self-similar segment with the self-consistency required by a laser cavity's periodic boundary condition, several techniques have been applied. The result is a diverse range of fiber oscillators which demonstrate the exciting new design possibilities based on the self-similar model. Here, we review recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-similar evolution for surpassing the limits of rare-earth gain media. We discuss some key remaining research questions and important future directions. Self-similar oscillators are capable of exceptional performance among ultrashort pulsed fiber lasers, and may be of key interest in the development of future ultrashort pulsed fiber lasers for medical imaging applications, as well as for low-noise fiber-based frequency combs. Their uniqueness among mode-locked lasers motivates study into their properties and behaviors and raises questions about how to understand mode-locked lasers more generally.

  19. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress

    PubMed Central

    Chong, Andy; Wright, Logan G; Wise, Frank W

    2016-01-01

    Self-similar fiber oscillators are a relatively new class of mode-locked lasers. In these lasers, the self-similar evolution of a chirped parabolic pulse in normally-dispersive passive, active, or dispersion-decreasing fiber (DDF) is critical. In active (gain) fiber and DDF, the novel role of local nonlinear attraction makes the oscillators fundamentally different from any mode-locked lasers considered previously. In order to reconcile the spectral and temporal expansion of a pulse in the self-similar segment with the self-consistency required by a laser cavity's periodic boundary condition, several techniques have been applied. The result is a diverse range of fiber oscillators which demonstrate the exciting new design possibilities based on the self-similar model. Here, we review recent progress on self-similar oscillators both in passive and active fiber, and extensions of self-similar evolution for surpassing the limits of rare-earth gain media. We discuss some key remaining research questions and important future directions. Self-similar oscillators are capable of exceptional performance among ultrashort pulsed fiber lasers, and may be of key interest in the development of future ultrashort pulsed fiber lasers for medical imaging applications, as well as for low-noise fiber-based frequency combs. Their uniqueness among mode-locked lasers motivates study into their properties and behaviors and raises questions about how to understand mode-locked lasers more generally. PMID:26496377

  20. Time division multiplexed laser Doppler anemometry using pulsed laser diodes and optical fibers

    SciTech Connect

    Lockey, R.A.; Tatam, R.P.

    1995-12-31

    Laser Doppler anemometry (LDA) is a well established technique for non-invasive measurement of fluid flow, by measuring the frequency shift of light scattered by particles entrained in the flow. A time division multiplexed laser Doppler anemometer is reported, using a single high frequency pulsed laser diode as a source. Time division multiplexing requires a single detector channel, removing the need for multiple detectors and wavelength separation optics found in conventional CW laser Doppler systems. By incorporating optical fibers into the system to distribute the pulses into each channel and impose a delay between channels, the electronic requirements of such an instrument are reduced. Results for a two-dimensional system are presented, measured on a water-seeded air jet. Individual velocity components of up to 16 ms{sup {minus}1} and overall velocities of up to 20 ms{sup {minus}1} have been detected, but the potential range of the instrument is very much greater.

  1. Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode.

    PubMed

    Yeh, Chien-Hung; Shih, Fu Y; Wang, Chia H; Chow, Chi W; Chi, Sien

    2008-01-01

    We propose and experimentally demonstrate a continuous wave (CW) tunable-wavelength fiber laser using self-seeding Fabry-Perot laser diode (FP-LD) without optical amplifier inside gain cavity. By employing a tunable bandpass filter (TBF) and a fiber reflected mirror (FRM) within a gain cavity, the fiber laser can lase a single-longitudinal wavelength due to the self-seeding operation. The proposed tunable wavelength laser has a good performance of the output power (> -15 dBm) and optical side-mode suppression ratio (> 40 dB) in the wavelength tuning range of 1533.75 to 1560.95 nm. In addition, the output stabilities of the fiber laser are also investigated. PMID:18521175

  2. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity.

    PubMed

    Jiang, Man; Xu, Haiyang; Zhou, Pu; Zhao, Guomin; Gu, Xijia

    2016-08-01

    We report the design of an all-fiber, linearly polarized Yb-doped fiber laser at 1064 nm with a narrow linewidth and high output power required by the master oscillator of the amplifier for high-power spectral beam combining. The laser has achieved linearly polarized output with a polarization extinction ratio of 23 dB, a narrow linewidth of ≤52  pm, and an output power of 32.7 W. Such performance was obtained by the cavity design that incorporated a wavelength-shifted PM fiber Bragg grating pair and single-mode-multimode-single-mode structure. PMID:27505397

  3. Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser.

    PubMed

    Woodward, R I; Kelleher, E J R; Runcorn, T H; Loranger, S; Popa, D; Wittwer, V J; Ferrari, A C; Popov, S V; Kashyap, R; Taylor, J R

    2015-02-01

    We demonstrate that the giant chirp of coherent, nanosecond pulses generated in an 846 m long, all-normal dispersion, nanotube mode-locked fiber laser can be compensated using a chirped fiber Bragg grating compressor. Linear compression to 11 ps is reported, corresponding to an extreme compression factor of ∼100. Experimental results are supported by numerical modeling, which is also used to probe the limits of this technique. Our results unequivocally conclude that ultra-long cavity fiber lasers can support stable dissipative soliton attractors and highlight the design simplicity for pulse-energy scaling through cavity elongation.

  4. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  5. Fiber laser source/analyzer for Bragg grating sensor array interrogation

    SciTech Connect

    Ball, G.A.; Morey, W.W.; Cheo, P.K.

    1994-04-01

    This paper reports on the application of a calibrated, narrow-linewidth, single-frequency, continuously wavelength-tunable erbium fiber laser to the interrogation of a multipoint Bragg grating temperature sensor. The fiber laser was wavelength-tuned, through an array of three fiber Bragg grating sensors, to determine the temperature of each individual grating. The temperatures of the three gratings were measured as a function of grating Bragg wavelength. The minimum wavelength resolution, due to electro-mechanical repeatability, of the fiber laser source/analyzer was determined to be approximately 2.3 picometers. This corresponds to a frequency resolution of approximately 300 MHz. 10 refs.

  6. Eye-diagram and Q factor evaluation of fiber ring laser in lightwave transmission

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Lin; Liaw, Shien-Kuei; Lee, Yin-Wen

    2016-09-01

    A C-band erbium doped fiber ring laser is proposed and investigated. With the use of two sub-ring cavities and a saturable absorber, a high quality and stable fiber ring laser is obtained for high optical signal to noise ratio operation in lightwave transmission. As different fiber Bragg gratings are employed as the wavelength filter, a narrow 3 dB-bandwidth is necessary for the high quality operation. The fiber ring laser is evaluated in lightwave transmission. The Q factor and eye diagrams are also measured and discussed.

  7. An LD-pumped Raman fiber laser operating below 1 μm

    NASA Astrophysics Data System (ADS)

    Kablukov, S. I.; Dontsova, E. I.; Zlobina, E. A.; Nemov, I. N.; Vlasov, A. A.; Babin, S. A.

    2013-08-01

    A CW Raman fiber laser (RFL) operating below 1 μm with direct pumping by a high-power multimode laser diode at 938 nm has been demonstrated for the first time. The laser cavity is formed by a normally cleaved fiber end and a highly reflective fiber Bragg grating (FBG) inscribed at the opposite end of a 4.5 km long multimode graded-index fiber. Low-index transverse modes are generated at the first Stokes wavelength of ˜980 nm with an output power of ˜3 W, while the second Stokes wave at 1025 nm also starts to be generated, thus limiting the 980 nm output.

  8. 120 nm Bandwidth noise-like pulse generation in an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.; Cheng, T. H.; Tam, H. Y.; Lu, C.

    2008-01-01

    We report on the generation of noise-like pulses with up to 120 nm bandwidth in a passively mode-locked erbium-doped fiber ring laser. By inserting a segment of slightly normal dispersion fiber in a mode-locked fiber laser cavity, we found that the spectrum of the noise-like pulse emission of the laser can be significantly broadened as a result of the four-wave-mixing and the soliton self-frequency shift effects in the inserted fiber.

  9. WS2 mode-locked ultrafast fiber laser

    PubMed Central

    Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin

    2015-01-01

    Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729

  10. Phosphate Yb3+ photonic crystal fiber single-mode laser with enormous high pump absorption

    NASA Astrophysics Data System (ADS)

    Franczyk, M.; Stepien, R.; Pysz, D.; Kujawa, I.; Buczynski, R.

    2014-08-01

    We demonstrate a single-mode 6 cm long, phosphate fiber laser with maximum power of 9.0 W. Laser action output power per fiber length of 150 W m-1 was achieved and this is the highest value ever reported in a single-mode fiber laser using a phosphate glass fiber. The slope efficiency of the laser was 36.2% and lasing wavelength was 1028 nm. We used a 6% mol ytterbium-doped, air-clad photonic crystal fiber with the core of 30 µm in diameter. Estimated pump absorption in the fiber exceeded 400 dB m-1.

  11. Industrial fiber beam delivery system for ultrafast lasers: applications and recent advances

    NASA Astrophysics Data System (ADS)

    Eilzer, Sebastian; Funck, Max C.; Wedel, Björn

    2016-03-01

    Fiber based laser beam delivery is the method of choice for high power laser applications whenever great flexibility is required. For cw-lasers fiber beam delivery has long been established but has recently also become available for ultrafast lasers. Using micro-structured hollow core fibers that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion. In addition, the technology opens new possibilities for beam delivery systems as the pulse propagation inside the fiber can be altered on purpose. For example to shorten the pulse duration of picosecond lasers down into the femtosecond regime. We present a modular fiber beam delivery system for micromachining applications with industrial pico- and femtosecond lasers that is flexibly integrated into existing applications. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. Robust and stable beam transport during dynamic operation as in robot or gantry systems will be discussed together with optional pulse compression.

  12. Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability.

    PubMed

    Zhang, Congzhe; Yang, Yuanhong; Wang, Chao; Liao, Changrui; Wang, Yiping

    2016-02-22

    We have successfully fabricated a series of sampled fiber Bragg gratings with easily adjustable sampling periods and duty cycles using an 800 nm femtosecond laser point-by-point inscription. The thermal stability of the fabricated fiber gratings was investigated using isochronal annealing tests, which indicated that the fiber gratings are capable of maintaining high reflectivity at temperatures of up to 1000°C for 8 h. This demonstrates the potential of the developed sampled fiber Bragg gratings for use in multi-wavelength fiber lasers and a variety of high temperature applications. PMID:26907050

  13. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

    DOE PAGES

    Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-08

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  14. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.

    PubMed

    Xiao, Feng; Alameh, Kamal; Lee, Yong Tak

    2009-12-01

    A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

  15. Fiber-Based Lasers as an Option for GRACE Follow-On Light Source

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2010-01-01

    Fiber based lasers offer a number of attractive characteristics for space application: state of the art laser technology, leverage of design and reliability from the substantial investments of the telecon industry, and convenient redundancy of higher risk components through fiber splicing. At NASA/Goddard we are currently investigating three GFO fiber-based laser options: a fiber oscillator built in our laboratory; an effort to space qualify a commercial design that uses a proprietary high-gain fiber cavity; and the space qualification of a promising new commercial external cavity laser, notable for its low-mass, compact design. In my talk I will outline these efforts, and suggest that the GFO Project may soon have the option of a US laser vendor for its light source.

  16. Suppression of thermal frequency noise in erbium-doped fiber random lasers.

    PubMed

    Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang

    2014-02-15

    Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6  Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.

  17. Actively mode-locked all fiber laser with cylindrical vector beam output.

    PubMed

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen

    2016-02-01

    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity.

  18. 976 nm single-frequency distributed Bragg reflector fiber laser.

    PubMed

    Zhu, Xiushan; Shi, Wei; Zong, Jie; Nguyen, Dan; Norwood, Robert A; Chavez-Pirson, Arturo; Peyghambarian, N

    2012-10-15

    A single-frequency distributed Bragg reflector (DBR) fiber laser at 976 nm was developed with a 2 cm long highly ytterbium-doped phosphate fiber and a pair of silica fiber Bragg gratings. More than 100 mW of linearly polarized output was achieved from the all-fiber DBR laser with a linewidth less than 3 kHz. The outstanding features of this single-frequency laser also include ultralow relative intensity noise and high wavelength stability. This fiber laser is an excellent seeder for high-power 976 nm narrow-linewidth laser amplifiers that can be used for efficient coherent blue-light generation through frequency doubling. PMID:23073399

  19. Actively mode-locked all fiber laser with cylindrical vector beam output.

    PubMed

    Zhou, Yong; Wang, Anting; Gu, Chun; Sun, Biao; Xu, Lixin; Li, Feng; Chung, Dick; Zhan, Qiwen

    2016-02-01

    We demonstrated an all fiber actively mode-locked laser that emits a cylindrical vector beam. An intra-cavity few-mode fiber Bragg grating inscribed in a short section of four-mode fiber is employed to provide mode selection and spectrum filtering functions. Mode coupling is achieved by offset splicing between the single-mode fiber and the four-mode fiber in the laser cavity. A LiNbO3 Mach-Zehnder modulator is used to achieve active mode-locking in the laser. The laser operates at 1547 nm with 30 dB spectrum width of 0.2 nm. The mode-locked pulses have a duration of 2 ns and repetition of 12.06 MHz. Through adjusting the polarization state in the laser cavity, both radially and azimuthally polarized beams have been obtained with high mode purity. PMID:26907420

  20. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator.

    PubMed

    Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang

    2016-05-30

    We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.

  1. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator.

    PubMed

    Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang

    2016-05-30

    We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated. PMID:27410147

  2. Tunable multiwavelength erbium-doped fiber laser based on nonlinear optical loop mirror and birefringence fiber filter

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-05-01

    A tunable multiwavelength erbium-doped fiber laser (MWEDFL) based on nonlinear optical loop mirror (NOLM) and tunable birefringence fiber filter (BFF) is proposed and demonstrated. By combination of intensity-dependent loss modulation induced by NOLM and pump power adjustment, the proposed laser can achieve independent control over the number of lasing lines, without affecting other important characteristics such as channel spacing and peak location. In addition, the laser allows wavelength tuning with both the peak location and the spectral range of lasing lines controllable. Specifically, the peak location of lasing lines can be controlled to scan the whole spectral range between adjacent channels of comb filter by adjusting the BFF. Moreover, the spectral range of lasing lines can be controlled by adjusting NOLM. This tunable MWEDFL may be useful for fiber-optic communication and fiber-optic sensing.

  3. A fiber-laser-based stimulated Raman scattering spectral microscope

    NASA Astrophysics Data System (ADS)

    Nose, Keisuke; Ozeki, Yasuyuki; Kishi, Tatsuya; Sumimura, Kazuhiko; Kanematsu, Yasuo; Itoh, Kazuyoshi

    2013-02-01

    Stimulated Raman scattering (SRS) spectral microscopy is a powerful technique for label-free biological imaging because it allows us to distinguish chemical species with overlapping Raman bands. Here we present an SRS spectral microscope based only on fiber lasers (FL's), which offer the possibilities of downsizing and simplification of the system. A femtosecond figure-8 Er-FL at a repetition rate of 54.4 MHz is used to generate pump pulses. After amplified by an Er doped fiber amplifier, Er-FL pulses are spectrally compressed to 2-ps second harmonic pulses. For generating Stokes pulses, a femtosecond Yb-FL pulses at a repetition rate of 27.2 MHz is used. Then these lasers are synchronized by a phase locked loop, which consists of a two-photon absorption photodetector, a loop filter, a phase modulator in the Er- FL cavity, and a piezo electric transducer in the Yb-FL cavity. The intensity noise of pump pulses is reduced by the collinear balanced detection (CBD) technique based on delay-and-add fiber lines. Experimentally, we confirmed that the intensity noise level of probe pulses was close to the shot noise limit. The Stokes pulses are introduced to a wavelength tunable band pass filter (BPF), which consists of a galvanomirror scanner, a 4-f optical system, a reflection grating, and a collimator. This system is able to scan the wavenumber from 2850 cm-1 to 3100 cm-1 by tuning the BPF. We succeeded in the spectral imaging of a mixture of polystyrene beads and poly(methyl methacrylate) beads.

  4. Observation of central wavelength dynamics in erbium-doped fiber ring laser.

    PubMed

    Xu, Huiwen; Lei, Dajun; Wen, Shuangchun; Fu, Xiquan; Zhang, Jinggui; Shao, Yufeng; Zhang, Lifu; Zhang, Hua; Fan, Dianyuan

    2008-05-12

    We report on the observation of central wavelength dynamics in an erbium-doped fiber ring laser by using the nonlinear polarization rotating technique. The evolution of central wavelength with the laser operation state was observed experimentally. Numerical simulations confirmed the experimental observation and further demonstrated that the dynamics of wavelength evolution is due to the combined effects of fiber birefringence, fiber nonlinearity, and cavity filter.

  5. Self-similar erbium-doped fiber laser with large normal dispersion.

    PubMed

    Liu, Hui; Liu, Zhanwei; Lamb, Erin S; Wise, Frank

    2014-02-15

    We report a large normal dispersion erbium-doped fiber laser with self-similar pulse evolution in the gain fiber. The cavity is stabilized by the local nonlinear attractor in the gain fiber through the use of a narrow filter. Experimental results are accounted for by numerical simulations. This laser produces 3.5 nJ pulses, which can be dechirped to 70 fs with an external grating pair.

  6. High-energy picosecond hybrid fiber/crystal laser for thin films solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, Jean-Bernard; Boivinet, Simon; Bertrand, Anthony; Lekime, Didier; Hernandez, Yves

    2015-05-01

    We report on an hybrid fiber/crystal ultra-short pulsed laser delivering high pulse energy and high peak power in the picosecond regime. The laser is composed of a mode-lock fiber oscillator, a pulse picker and subsequent fiber amplifiers. The last stage of the laser is a single pass Nd:YVO4 solid-state amplifier. We believe that this combination of both technologies is a very promising approach for making efficient, compact and low cost lasers compatible with industrial requirements.

  7. Pulse dynamics in a mode-locked fiber laser and its quantum limited comb frequency uncertainty.

    PubMed

    Bao, Chengying; Funk, Andrew C; Yang, Changxi; Cundiff, Steven T

    2014-06-01

    We present an experimental study of pulse dynamics in a mode-locked Er:fiber laser. By injecting a continuous wave laser with sinusoidal intensity modulation into the fiber laser, we are able to modulate the gain. Measuring the response of the pulse energy, central frequency, central pulse time, and phase to the gain modulation allows determination of the parameters that describe their coupling. Based on the experimentally derived parameters, we evaluate the free running comb linewidth and frequency uncertainty with feedback included, assuming quantum noise is the limiting factor. Optimization of fiber lasers is also discussed.

  8. Watts-level super-compact narrow-linewidth Tm-doped silica all-fiber laser near 1707 nm with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Xiao, X. S.; Guo, H. T.; Lu, M.; Yan, Z. J.; Wang, H. S.; Wang, Y. S.; Xu, Y. T.; Gao, C. X.; Cui, X. X.; Guo, Q.; Peng, B.

    2016-11-01

    Watts-level ultra-short wavelength operation of a Tm-doped all fiber laser was developed by using a 1550 nm Er-doped fiber laser pump source and a pair of fiber Bragg gratings (FBGs). The laser yielded 1.28 W of continuous-wave output at 1707.01 nm with a narrow linewidth of ~44 pm by means of a 20 cm Tm-doped fiber. The dependencies of the slope efficiencies and pump threshold of the Tm-doped fiber laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail, in which the maximum average slope efficiency was 36.1%. There is no doubt that this all fiber laser will be a perfect pump source for mid-IR laser output.

  9. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    PubMed

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  10. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    PubMed

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  11. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  12. Large anomalous-dispersion mode-locked fiber laser based on a chirped fiber Bragg grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Yan, Yaxi; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2016-10-01

    A carbon-nanotube mode-locked erbium fiber laser with large net anomalous dispersion is presented. A chirped fiber Bragg grating (CFBG) pair is incorporated to increase the net-cavity anomalous dispersion and soliton splitting threshold. Self-started mode-locked laser produces stable pulses with repetition rate of 9.26 MHz. Laser spectrum is centered at ~1560 nm with 3 dB bandwidth of 0.43 nm. The typical output pulse energy and duration is 0.21 nJ and 8.05 ps, respectively.

  13. Self-similar pulse evolution in a fiber laser with a comb-like dispersion-decreasing fiber.

    PubMed

    Tang, Yuxing; Liu, Zhanwei; Fu, Walter; Wise, Frank W

    2016-05-15

    We demonstrate an erbium fiber laser with self-similar pulse evolution inside a comb-like dispersion-decreasing fiber. We show numerically and experimentally that the comb-like dispersion-decreasing fiber works as well as an ideal one, and offers major practical advantages. The existence of a nonlinear attractor is verified by the invariant pulse chirp over a wide range of net cavity dispersion in experiments. The laser generates 1.3 nJ pulses with parabolic shapes and linear chirps, which can be dechirped to 37 fs. Comb-like dispersion-decreasing fiber should enable the generation of high-energy few-cycle pulses directly from a fiber oscillator. PMID:27176985

  14. Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber.

    PubMed

    Chen, Tao; Liao, Changrui; Wang, D N; Wang, Yiping

    2014-05-01

    We demonstrate a monolayer graphene saturable absorber (SA) based on D-shaped fiber for operation of the mode-locked fiber laser. The monolayer graphene is grown by chemical vapor deposition (CVD) on Cu substrate and transferred onto the polymer, and then covered with D-shaped fiber, which allows light-graphene interaction via the evanescent field of the fiber. Due to the side-coupled interaction, the length of graphene is long enough to avoid optical power-induced thermal damage. Using such a graphene-based SA, stable mode-locked solitons with 4.5 nm spectral bandwidth and 713 fs pulsewidth at the 1563 nm wavelength have been obtained under 280 mW pump power. The influence of total cavity dispersion on the optical spectrum and pulse is also investigated by adding different lengths of single-mode fiber in the laser cavity.

  15. Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure

    NASA Astrophysics Data System (ADS)

    Qi, Yanhui; Kang, Zexin; Sun, Jiang; Ma, Lin; Jin, Wenxing; Lian, Yudong; Jian, Shuisheng

    2016-07-01

    We propose a wavelength-switchable erbium-doped fiber ring laser based on the few-mode fiber filter with core-offset structure. The filter is constructed by splicing a section of few-mode fiber with two segments of single mode fiber. Meanwhile, the excited modes are effectively selected by controlling the core-offset splicing carefully. The novel filter is based on the interference between fundamental mode and LP11 mode. The single-, dual-, triple- and quad-wavelength fiber laser is accomplished by adjusting the states of polarization controller at room temperature. The principle of operation is mainly based on the saturated spectral hole-burning effect and the balance between the gain and loss in the cavity.

  16. Effects of intermodal dispersion and fiber length on the mode-locking of a dual-core fiber laser

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohui; Song, Yanrong

    2016-06-01

    We investigate theoretically how the intermodal dispersion and the fiber length influence the formation of ultrashort pulses in a dual-core fiber laser. Our simulation using the Ginzburg-Landau equation found that stable self-starting of mode-locking can be achieved with a fiber length deviating from integer multiples of the linear coupling length. Furthermore, the intermodal dispersion will not lead to pulse splitting, in contrast, it will induce asymmetry in the pulse shape and increase the modulation instability. Consequently, a filter is found necessary to stabilize the mode-locking operation when the fiber length is longer than the linear coupling length.

  17. Laser-modulated scatter from optical surfaces using fiber detection

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Deumie, Carole; Amra, Claude

    2000-03-01

    The improvement of optical components for high power laser applications is still topical. Indeed the different signal cant progress made these last years, had allowed to improve the damage resistance of optical components by in particular, the identification of micronic precursors centers. A new challenge today is the identification of precursor centers of damage with size in the range of few nanometers. This kind of defects seems to play an important role in the laser damage process. In any case the challenge is to find an efficient tool able to detect these defects which are invisible with usual techniques as optical microscope or standard scattering. The technique of Laser Modulated Scattering (LMS) has been performed to reach this challenge. This new tool presented last year in the Boulder symposium, is based on a very high sensitivity detection of photothermal response of the defect. The LMS has been performed via two different setup arrangements. The first one uses tow beams as in the configuration of a standard Photothermal microscope, and the second one uses only one beam. In this article we first briefly remind the principle of the LMS technique with one and two beams. Then we will show by different results, the advantages of using an optical fiber to collect the scatted light instead of a block beam system used before. One of the main advantages of the setup using a fiber, is that it is easily possible to realize an angular study of scattering which allows a best understanding of the physical origin of the defect-induced scattered signal. The last part of this work consists of a series of stimulation of angular scattering LMS curve, in order to quantify the sensitivity and the powerfulness of this technique.

  18. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber.

    PubMed

    Zhu, Gongwen; Geng, Lixiang; Zhu, Xiushan; Li, Li; Chen, Qian; Norwood, R A; Manzur, T; Peyghambarian, N

    2015-03-23

    Raman lasers based on mid-infrared fibers operating at 3-5 µm atmospheric transparency window are attractive sources for several applications. Compared to fluoride and chalcogenide fibers, tellurite fibers are more advantageous for high power Raman fiber laser sources at 3-5 µm because of their broader Raman gain bandwidth, much larger Raman shift and better physical and chemical properties. Here we report on our simulations for the development of 10-watt-level 3-5 µm Raman lasers using tellurite fibers as the nonlinear gain medium and readily available continuous-wave (cw) and Q-switched erbium-doped fluoride fiber lasers at 2.8 µm as the pump sources. Our results show that a watt-level or even ten-watt-level fiber laser source in the 3-5 µm atmospheric transparency window can be achieved by utilizing the 1st- and 2nd-order Raman scattering in the tellurite fiber. The presented numerical study provides valuable guidance for future 3-5 um Raman fiber laser development. PMID:25837094

  19. Single-frequency gain-switched Ho-doped fiber laser.

    PubMed

    Geng, Jihong; Wang, Qing; Luo, Tao; Case, Bryson; Jiang, Shibin; Amzajerdian, Farzin; Yu, Jirong

    2012-09-15

    We demonstrate a single-frequency gain-switched Ho-doped fiber laser based on heavily doped silicate glass fiber fabricated in-house. A Q-switched Tm-doped fiber laser at 1.95 μm was used to gain-switch the Ho-doped fiber laser via in-band pumping. Output power of the single-frequency gain-switched pulses has been amplified in a cladding-pumped Tm-Ho-codoped fiber amplifier with 1.2 m active fiber pumped at 803 nm. Two different nonlinear effects, i.e., modulation instability and stimulated Brillouin scattering, could be seen in the 10 μm-core fiber amplifier when the peak power exceeds 3 kW. The single-frequency gain-switched fiber laser was operated at 2.05 μm, a popular laser wavelength for Doppler lidar application. This is the first demonstration of this kind of fiber laser.

  20. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power

    NASA Astrophysics Data System (ADS)

    Leich, M.; Jäger, M.; Grimm, S.; Hoh, D.; Jetschke, S.; Becker, M.; Hartung, A.; Bartelt, H.

    2014-04-01

    We report on a tapered large-core Yb fiber laser operating at 976 nm emission wavelength. It was realized using a high-numerical aperture large-core fiber with 126 μm core diameter, which was fabricated by powder-sinter technology and shows a very homogeneous step-index profile. The end of the fiber is tapered down to match a single-mode fiber containing a fiber Bragg grating. Using the benefits of core-pumping and the feedback of the spliced fiber Bragg grating, we achieved efficient pump light absorption and wavelength stable 976 nm lasing with single-mode performance. We could demonstrate 10 W laser power out of a 10 μm fiber core with a slope efficiency of 31% with respect to the launched pump power. The presented device is well-suited for fiber-coupled pumping of amplifiers for high peak power.