Proton Tolerance of SiGe Precision Voltage References for Extreme Temperature Range Electronics
NASA Astrophysics Data System (ADS)
Najafizadeh, Laleh; Bellini, Marco; Prakash, A. P. Gnana; Espinel, Gustavo A.; Cressler, John D.; Marshall, Paul W.; Marshall, Cheryl J.
2006-12-01
A comprehensive investigation of the effects of proton irradiation on the performance of SiGe BiCMOS precision voltage references intended for extreme environment operational conditions is presented. The voltage reference circuits were designed in two distinct SiGe BiCMOS technology platforms (first generation (50 GHz) and third generation (200 GHz)) in order to investigate the effect of technology scaling. The circuits were irradiated at both room temperature and at 77 K. Measurement results from the experiments indicate that the proton-induced changes in the SiGe bandgap references are minor, even down to cryogenic temperatures, clearly good news for the potential application of SiGe mixed-signal circuits in emerging extreme environments
Four-terminal circuit element with photonic core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less
Band structures in a two-dimensional phononic crystal with rotational multiple scatterers
NASA Astrophysics Data System (ADS)
Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele
2017-03-01
In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.
NASA Astrophysics Data System (ADS)
Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi
2018-04-01
To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.
NASA Technical Reports Server (NTRS)
Curtis, H. B.; Hart, R. E., Jr.
1982-01-01
Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.
An 1.4 ppm/°C bandgap voltage reference with automatic curvature-compensation technique
NASA Astrophysics Data System (ADS)
Zhou, Zekun; Yu, Hongming; Shi, Yue; Zhang, Bo
2017-12-01
A high-precision Bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. Firstly, an exponential curvature compensation method is adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Experiment results of the BGR proposed in this paper, which is implemented in 0.35-μm BCD process, illustrate that the TC of 1.4ppm/°C is realized under the power supply voltage of 3.6V and the power supply rejection of the proposed circuit is -67dB.
Open-Circuit Voltage Deficit, Radiative Sub-Bandgap States, and Prospects in Quantum Dot Solar Cells
Chuang, Chia-Hao Marcus; Maurano, Andrea; Brandt, Riley E.; Hwang, Gyu Weon; Jean, Joel; Buonassisi, Tonio; Bulović, Vladimir; Bawendi, Moungi G.
2016-01-01
Quantum dot photovoltaics (QDPV) offer the potential for low-cost solar cells. To develop strategies for continued improvement in QDPVs, a better understanding of the factors that limit their performance is essential. Here, we study carrier recombination processes that limit the power conversion efficiency of PbS QDPVs. We demonstrate the presence of radiative sub-bandgap states and sub-bandgap state filling in operating devices by using photoluminescence (PL) and electroluminescence (EL) spectroscopy. These sub-bandgap states are most likely the origin of the high open-circuit-voltage (VOC) deficit and relatively limited carrier collection that have thus far been observed in QDPVs. Combining these results with our perspectives on recent progress in QDPV, we conclude that eliminating sub-bandgap states in PbS QD films has the potential to show a greater gain than may be attainable by optimization of interfaces between QDs and other materials. We suggest possible future directions that could guide the design of high-performance QDPVs. PMID:25927871
Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Cui, Xiao; Zhang, Can; Liang, Song; Zhu, Hong-Liang; Hou, Lian-Ping
2014-04-01
Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.
Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage
NASA Astrophysics Data System (ADS)
Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner
2017-10-01
Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.
Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.; ...
2017-06-21
High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less
Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W
2017-07-20
High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83 Cs 0.17 Pb(I 0.66 Br 0.34 ) 3 , resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.
Zhao, Dewei; Yu, Yue; Wang, Changlei; ...
2017-03-01
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dewei; Yu, Yue; Wang, Changlei
Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less
Polymer solar cells with enhanced open-circuit voltage and efficiency
NASA Astrophysics Data System (ADS)
Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang
2009-11-01
Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.
Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J
2015-06-03
Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2016-01-05
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2014-07-08
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
Wanlass, Mark W.; Carapella, Jeffrey J.
2016-03-22
Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.
High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less
NASA Astrophysics Data System (ADS)
Wang, Gang; Cheng, Jianqing; Chen, Jingwei; He, Yunze
2017-02-01
Instead of analog electronic circuits and components, digital controllers that are capable of active multi-resonant piezoelectric shunting are applied to elastic metamaterials integrated with piezoelectric patches. Thanks to recently introduced digital control techniques, shunting strategies are possible now with transfer functions that can hardly be realized with analog circuits. As an example, the ‘pole-zero’ method is developed to design single- or multi-resonant bandgaps by adjusting poles and zeros in the transfer function of piezoelectric shunting directly. Large simultaneous attenuations in up to three frequency bands at deep subwavelength scale (with normalized frequency as low as 0.077) are achieved. The underlying physical mechanism is attributable to the negative group velocity of the flexural wave within bandgaps. As digital controllers can be readily adapted via wireless broadcasting, the bandgaps can be tuned easily unlike the electric components in analog shunting circuits, which must be tuned one by one manually. The theoretical results are verified experimentally with the measured vibration transmission properties, where large insulations of up to 20 dB in low-frequency ranges are observed.
NASA Technical Reports Server (NTRS)
Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.
1979-01-01
Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.
Recent progress in GeSn growth and GeSn-based photonic devices
NASA Astrophysics Data System (ADS)
Zheng, Jun; Liu, Zhi; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming
2018-06-01
The GeSn binary alloy is a new group IV material that exhibits a direct bandgap when the Sn content exceeds 6%. It shows great potential for laser use in optoelectronic integration circuits (OEIC) on account of its low light emission efficiency arising from the indirect bandgap characteristics of Si and Ge. The bandgap of GeSn can be tuned from 0.6 to 0 eV by varying the Sn content, thus making this alloy suitable for use in near-infrared and mid-infrared detectors. In this paper, the growth of the GeSn alloy is first reviewed. Subsequently, GeSn photodetectors, light emitting diodes, and lasers are discussed. The GeSn alloy presents a promising pathway for the monolithic integration of Si photonic circuits by the complementary metal–oxide–semiconductor (CMOS) technology. Project supported by the Beijing Natural Science Foundation (No. 4162063) and the Youth Innovation Promotion Association of CAS (No. 2015091).
Use of chemical-mechanical polishing for fabricating photonic bandgap structures
Fleming, James G.; Lin, Shawn-Yu; Hetherington, Dale L.; Smith, Bradley K.
1999-01-01
A method is disclosed for fabricating a two- or three-dimensional photonic bandgap structure (also termed a photonic crystal, photonic lattice, or photonic dielectric structure). The method uses microelectronic integrated circuit (IC) processes to fabricate the photonic bandgap structure directly upon a silicon substrate. One or more layers of arrayed elements used to form the structure are deposited and patterned, with chemical-mechanical polishing being used to planarize each layer for uniformity and a precise vertical tolerancing of the layer. The use of chemical-mechanical planarization allows the photonic bandgap structure to be formed over a large area with a layer uniformity of about two-percent. Air-gap photonic bandgap structures can also be formed by removing a spacer material separating the arrayed elements by selective etching. The method is useful for fabricating photonic bandgap structures including Fabry-Perot resonators and optical filters for use at wavelengths in the range of about 0.2-20 .mu.m.
Duong, The; Mulmudi, Hemant Kumar; Wu, YiLiang; Fu, Xiao; Shen, Heping; Peng, Jun; Wu, Nandi; Nguyen, Hieu T; Macdonald, Daniel; Lockrey, Mark; White, Thomas P; Weber, Klaus; Catchpole, Kylie
2017-08-16
Perovskite material with a bandgap of 1.7-1.8 eV is highly desirable for the top cell in a tandem configuration with a lower bandgap bottom cell, such as a silicon cell. This can be achieved by alloying iodide and bromide anions, but light-induced phase-segregation phenomena are often observed in perovskite films of this kind, with implications for solar cell efficiency. Here, we investigate light-induced phase segregation inside quadruple-cation perovskite material in a complete cell structure and find that the magnitude of this phenomenon is dependent on the operating condition of the solar cell. Under short-circuit and even maximum power point conditions, phase segregation is found to be negligible compared to the magnitude of segregation under open-circuit conditions. In accordance with the finding, perovskite cells based on quadruple-cation perovskite with 1.73 eV bandgap retain 94% of the original efficiency after 12 h operation at the maximum power point, while the cell only retains 82% of the original efficiency after 12 h operation at the open-circuit condition. This result highlights the need to have standard methods including light/dark and bias condition for testing the stability of perovskite solar cells. Additionally, phase segregation is observed when the cell was forward biased at 1.2 V in the dark, which indicates that photoexcitation is not required to induce phase segregation.
A Integrated Circuit for a Biomedical Capacitive Pressure Transducer
NASA Astrophysics Data System (ADS)
Smith, Michael John Sebastian
Medical research has an urgent need for a small, accurate, stable, low-power, biocompatible and inexpensive pressure sensor with a zero to full-scale range of 0-300 mmHg. An integrated circuit (IC) for use with a capacitive pressure transducer was designed, built and tested. The random pressure measurement error due to resolution and non-linearity is (+OR-)0.4 mmHg (at mid-range with a full -scale of 300 mmHg). The long-term systematic error due to falling battery voltage is (+OR-)0.6 mmHg. These figures were calculated from measurements of temperature, supply dependence and non-linearity on completed integrated circuits. The sensor IC allows measurement of temperature to (+OR-)0.1(DEGREES)C to allow for temperature compensation of the transducer. Novel micropower circuit design of the system components enabled these levels of accuracy to be reached. Capacitance is measured by a new ratiometric scheme employing an on -chip reference capacitor. This method greatly reduces the effects of voltage supply, temperature and manufacturing variations on the sensor circuit performance. The limits on performance of the bandgap reference circuit fabricated with a standard bipolar process using ion-implanted resistors were determined. Measurements confirm the limits of temperature stability as approximately (+OR-)300 ppm/(DEGREES)C. An exact analytical expression for the period of the Schmitt trigger oscillator, accounting for non-constant capacitor charging current, was formulated. Experiments to test agreement with theory showed that prediction of the oscillator period was very accurate. The interaction of fundamental and practical limits on the scaling of the transducer size was investigated including a correction to previous theoretical analysis of jitter in an RC oscillator. An areal reduction of 4 times should be achievable.
Structure and Optical Bandgap Relationship of π-Conjugated Systems
Botelho, André Leitão; Shin, Yongwoo; Liu, Jiakai; Lin, Xi
2014-01-01
In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH) Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any -conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination , a mean error of −0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics. PMID:24497944
Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells
Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...
2015-11-03
The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less
Yu, Yue; Wang, Changlei; Grice, Corey R.; ...
2017-04-26
Here, we show that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of mixed-cation lead mixed-halide perovskite thin films while avoiding excess lead iodide formation. As a result, the average grain size of the wide-bandgap mixed-cation lead perovskite thin films increases from 66 ± 24 to 1036 ± 111 nm, and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. Consequently, the average open-circuit voltage of wide-bandgap perovskite solar cells increases by 80 (70) mV, and the average power conversion efficiency (PCE) increasesmore » from 13.44 ± 0.48 (11.75 ± 0.34) to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap perovskite solar cell, with a bandgap of 1.75 eV, achieves a stabilized PCE of 17.18%.« less
100-period InGaAsP/InGaP superlattice solar cell with sub-bandgap quantum efficiency approaching 80%
Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.; ...
2017-08-25
Here, InGaAsP/InGaP quantum well (QW) structures are promising materials for next generation photovoltaic devices because of their tunable bandgap (1.50-1.80 eV) and being aluminum-free. However, the strain-balance limitations have previously limited light absorption in the QW region and constrained the external quantum efficiency (EQE) values beyond the In 0.49Ga 0.51P band-edge to less than 25%. In this work, we show that implementing a hundred period lattice matched InGaAsP/InGaP superlattice solar cell with more than 65% absorbing InGaAsP well resulted in more than 2x improvement in EQE values than previously reported strain balanced approaches. In addition, processing the devices with amore » rear optical reflector resulted in strong Fabry-Perot resonance oscillations and the EQE values were highly improved in the vicinity of these peaks, resulting in a short circuit current improvement of 10% relative to devices with a rear optical filter. These enhancements have resulted in an InGaAsP/InGaP superlattice solar cell with improved peak sub-bandgap EQE values exceeding 75% at 700 nm, an improvement in the short circuit current of 26% relative to standard InGaP devices, and an enhanced bandgap-voltage offset (W oc) of 0.4 V.« less
Nanometer-scale surface potential and resistance mapping of wide-bandgap Cu(In,Ga)Se2 thin films
NASA Astrophysics Data System (ADS)
Jiang, C.-S.; Contreras, M. A.; Mansfield, L. M.; Moutinho, H. R.; Egaas, B.; Ramanathan, K.; Al-Jassim, M. M.
2015-01-01
We report microscopic characterization studies of wide-bandgap Cu(In,Ga)Se2 photovoltaic thin films using the nano-electrical probes of scanning Kelvin probe force microscopy and scanning spreading resistance microscopy. With increasing bandgap, the potential imaging shows significant increases in both the large potential features due to extended defects or defect aggregations and the potential fluctuation due to unresolvable point defects with single or a few charges. The resistance imaging shows increases in both overall resistance and resistance nonuniformity due to defects in the subsurface region. These defects are expected to affect open-circuit voltage after the surfaces are turned to junction upon device completion.
NASA Astrophysics Data System (ADS)
Sugino, C.; Ruzzene, M.; Erturk, A.
2018-07-01
Locally resonant metamaterials are characterized by bandgaps at wavelengths much larger than the lattice size. Such locally resonant bandgaps can be formed using mechanical or electromechanical resonators. However, the nature of bandgap formation in mechanical and electromechanical (particularly piezoelectric) metamaterials is fundamentally different since the former is associated with a dynamic modal mass, while the latter is due to a dynamic modal stiffness. Next-generation metamaterials and resulting metastructures (i.e. finite configurations with specified boundary conditions) hosting mechanical resonators as well as piezoelectric interfaces connected to resonating circuits can enable the formation of two bandgaps, right above and below the design frequency of the mechanical and electrical resonators, respectively, yielding a wider bandgap and enhanced design flexibility as compared to using a purely mechanical, or a purely electromechanical configuration. In this work, we establish a fully coupled framework for hybrid mechanical-electromechanical metamaterials and finite metastructures. Combined bandgap size is approximated in closed form as a function of the added mass ratio of the resonators and the system-level electromechanical coupling for the infinite resonators approximation. Case studies are presented for a hybrid metamaterial cantilever under bending vibration to understand the interaction of these two locally resonant metamaterial domains in bandgap formation. Specifically, it is shown that the mechanical and electromechanical bandgaps do not fully merge for a finite number of resonators in an undamped setting. However, the presence of even light damping in the resonators suppresses the intermediate resonances emerging within the combined bandgap, enabling seamless merging of the two bandgaps in real-world structures that have damping. The overall concept of combining mechanical and electromechanical bandgaps in the same single metastructure can be leveraged in more complex topologies of piezoelectric metamaterial-based solids and structures.
Precision Voltage Referencing Techniques in MOS Technology.
NASA Astrophysics Data System (ADS)
Song, Bang-Sup
With the increasing complexity of functions on a single MOS chip, precision analog cicuits implemented in the same technology are in great demand so as to be integrated together with digital circuits. The future development of MOS data acquisition systems will require precision on-chip MOS voltage references. This dissertation will probe two most promising configurations of on-chip voltage references both in NMOS and CMOS technologies. In NMOS, an ion-implantation effect on the temperature behavior of MOS devices is investigated to identify the fundamental limiting factors of a threshold voltage difference as an NMOS voltage source. For this kind of voltage reference, the temperature stability on the order of 20ppm/(DEGREES)C is achievable with a shallow single-threshold implant and a low-current, high-body bias operation. In CMOS, a monolithic prototype bandgap reference is designed, fabricated and tested which embodies a curvature compensation and exhibits a minimized sensitivity to the process parameter variation. Experimental results imply that an average temperature stability on the order of 10ppm/(DEGREES)C with a production spread of less than 10ppm/(DEGREES)C feasible over the commercial temperature range.
Graded bandgap perovskite solar cells.
Ergen, Onur; Gilbert, S Matt; Pham, Thang; Turner, Sally J; Tan, Mark Tian Zhi; Worsley, Marcus A; Zettl, Alex
2017-05-01
Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ∼75% and high short-circuit current densities up to 42.1 mA cm -2 . The cells are based on an architecture of two perovskite layers (CH 3 NH 3 SnI 3 and CH 3 NH 3 PbI 3-x Br x ), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.
Project: Micromachined High-Frequency Circuits For Sub-mm-wave Sensors
NASA Technical Reports Server (NTRS)
Papapolymerou, Ioannis John
2004-01-01
A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.
Wang, Dong Hwan; Kyaw, Aung Ko Ko; Park, Jong Hyeok
2015-01-01
We demonstrate that reproducible results can be obtained from tandem solar cells based on the wide-bandgap poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and the diketopyrrolopyrrole (DPP)-based narrow bandgap polymer (DT-PDPP2T-TT) with a decyltetradecyl (DT) and an electron-rich 2,5-di-2-thienylthieno[3,2-b]thiophene (2T-TT) group fabricated using an optimized interlayer (ZnO NPs/ph-n-PEDOT:PSS) [NPs: nanoparticles; ph-n: pH-neutral PEDOT: poly(3,4-ethylenedioxythiophene); PSS: polystyrene sulfonate]. The tandem cells are fabricated by applying a simple process without thermal annealing. The ZnO NP interlayer operates well when the ZnO NPs are dispersed in 2-methoxyethanol, as no precipitation and chemical reactions occur. In addition to the ZnO NP film, we used neutral PEDOT:PSS as a second interlayer which is not affect to the sequential deposited bulk heterojunction (BHJ) active layer of acidification. The power conversion efficiency (PCE) of a tandem device reaches 7.4 % (open-circuit voltage VOC =1.53 V, short-circuit current density JSC =7.3 mA cm(-2) , and fill factor FF=67 %). Furthermore, FF is increased to up to 71 % when another promising large bandgap (bandgap ∼1.94 eV) polymer (PBnDT-FTAZ) is used. The surface of each layer with nanoscale morphology (BHJ1/ZnO NPs film/ph-n-PEDOT:PSS/BHJ2) was examined by means of AFM analysis during sequential processing. The combination of these factors, efficient DPP-based narrow bandgap material and optimized interlayer, leads to the high FF (average approaches 70 %) and reproducibly operating tandem BHJ solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mitani, Yusuke; Miyaji, Kousuke; Kaneko, Satoshi; Uekura, Takaharu; Momose, Hideya; Johguchi, Koh
2018-04-01
This paper presents a compact wearable perspiration meter system using a 180-nm CMOS technology. With custom chip and board design, the proposed perspiration meter, which can measure a qualitative sweating rate, is integrated into 15 × 20 mm2. From the experimental results, the capacitances of the humidity sensors with analog-to-digital converter and band-gap reference circuits can operate accurately without hysteresis. In addition, a demonstration with simulated human skin is carried out to investigate the sensor’s performance under real environments. The proposed perspiration meter can output values equivalent to a conventional meter. As a result, it is verified that the proposed system can be used as a human sweat sensor for wearable application.
Chochos, Christos L; Drakopoulou, Sofia; Katsouras, Athanasios; Squeo, Benedetta M; Sprau, Christian; Colsmann, Alexander; Gregoriou, Vasilis G; Cando, Alex-Palma; Allard, Sybille; Scherf, Ullrich; Gasparini, Nicola; Kazerouni, Negar; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos
2017-04-01
Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A 1 -D-A 2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A 1 -D-A 2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm -2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy
Perl, Emmett E.; Simon, John; Geisz, John F.; ...
2016-03-29
AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000more » W/m 2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.« less
Subwavelength wave manipulation in a thin surface-wave bandgap crystal.
Gao, Zhen; Wang, Zhuoyuan; Zhang, Baile
2018-01-01
It has been recently reported that the unit cell of wire media metamaterials can be tailored locally to shape the flow of electromagnetic waves at deep-subwavelength scales [Nat. Phys.9, 55 (2013)NPAHAX1745-247310.1038/nphys2480]. However, such bulk structures have a thickness of at least the order of wavelength, thus hindering their applications in the on-chip compact plasmonic integrated circuits. Here, based upon a Sievenpiper "mushroom" array [IEEE Trans. Microwave Theory Tech.47, 2059 (1999)IETMAB0018-948010.1109/22.798001], which is compatible with standard printed circuit board technology, we propose and experimentally demonstrate the subwavelength manipulation of surface waves on a thin surface-wave bandgap crystal with a thickness much smaller than the wavelength (1/30th of the operating wavelength). Functional devices including a T-shaped splitter and sharp bend are constructed with good performance.
Single-graded CIGS with narrow bandgap for tandem solar cells.
Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N
2018-01-01
Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.
Single-graded CIGS with narrow bandgap for tandem solar cells
Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.
2018-01-01
Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066
NASA Technical Reports Server (NTRS)
Broekaert, T. P. E.; Tang, S.; Wallace, R. M.; Beam, E. A., III; Duncan, W. M.; Kao, Y. -C.; Liu, H. -Y.
1995-01-01
A new material system is proposed for silicon based opto-electronic and heterostructure devices; the silicon lattice matched compositions of the (In,Ga,Al)-(As,P)N 3-5 compounds. In this nitride alloy material system, the bandgap is expected to be direct at the silicon lattice matched compositions with a bandgap range most likely to be in the infrared to visible. At lattice constants ranging between those of silicon carbide and silicon, a wider bandgap range is expected to be available and the high quality material obtained through lattice matching could enable applications such as monolithic color displays, high efficiency multi-junction solar cells, opto-electronic integrated circuits for fiber communications, and the transfer of existing 3-5 technology to silicon.
NASA Astrophysics Data System (ADS)
Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas
2016-02-01
Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.
Recent Advances in Wide-Bandgap Photovoltaic Polymers.
Cai, Yunhao; Huo, Lijun; Sun, Yanming
2017-06-01
The past decade has witnessed significant advances in the field of organic solar cells (OSCs). Ongoing improvements in the power conversion efficiency of OSCs have been achieved, which were mainly attributed to the design and synthesis of novel conjugated polymers with different architectures and functional moieties. Among various conjugated polymers, the development of wide-bandgap (WBG) polymers has received less attention than that of low-bandgap and medium-bandgap polymers. Here, we briefly summarize recent advances in WBG polymers and their applications in organic photovoltaic (PV) devices, such as tandem, ternary, and non-fullerene solar cells. Addtionally, we also dissuss the application of high open-circuit voltage tandem solar cells in PV-driven electrochemical water dissociation. We mainly focus on the molecular design strategies, the structure-property correlations, and the photovoltaic performance of these WBG polymers. Finally, we extract empirical regularities and provide invigorating perspectives on the future development of WBG photovoltaic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Chin-Lung; Zheng, Gou-Tsun
2015-11-20
This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.
Here, InGaAsP/InGaP quantum well (QW) structures are promising materials for next generation photovoltaic devices because of their tunable bandgap (1.50-1.80 eV) and being aluminum-free. However, the strain-balance limitations have previously limited light absorption in the QW region and constrained the external quantum efficiency (EQE) values beyond the In 0.49Ga 0.51P band-edge to less than 25%. In this work, we show that implementing a hundred period lattice matched InGaAsP/InGaP superlattice solar cell with more than 65% absorbing InGaAsP well resulted in more than 2x improvement in EQE values than previously reported strain balanced approaches. In addition, processing the devices with amore » rear optical reflector resulted in strong Fabry-Perot resonance oscillations and the EQE values were highly improved in the vicinity of these peaks, resulting in a short circuit current improvement of 10% relative to devices with a rear optical filter. These enhancements have resulted in an InGaAsP/InGaP superlattice solar cell with improved peak sub-bandgap EQE values exceeding 75% at 700 nm, an improvement in the short circuit current of 26% relative to standard InGaP devices, and an enhanced bandgap-voltage offset (W oc) of 0.4 V.« less
NASA Astrophysics Data System (ADS)
Li, Xiaohan; Dasika, Vaishno D.; Li, Ping-Chun; Ji, Li; Bank, Seth R.; Yu, Edward T.
2014-09-01
The use of InGaAs quantum wells with composition graded across the intrinsic region to increase open-circuit voltage in p-i-n GaAs/InGaAs quantum well solar cells is demonstrated and analyzed. By engineering the band-edge energy profile to reduce photo-generated carrier concentration in the quantum wells at high forward bias, simultaneous increases in both open-circuit voltage and short-circuit current density are achieved, compared to those for a structure with the same average In concentration, but constant rather than graded quantum well composition across the intrinsic region. This approach is combined with light trapping to further increase short-circuit current density.
High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu
2002-01-01
It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.
Catalysts for Lightweight Solar Fuels Generation
2017-03-10
single bandgap solar cells to OER catalysts could lead to very high solar -to-fuel efficiencies. Figure 3 illustrates a PV -EC utilizing a PV , an...3- or 4 -single junction c-Si solar cells connected in series. Considering a PV -EC device based on commercially available single junction-Si solar ...30.8%) with open circuit voltage and short circuit current density ; total plot area is scaled to incident solar power (100 mW cm–2). The PV -EC
Design and modeling of an SJ infrared solar cell approaching upper limit of theoretical efficiency
NASA Astrophysics Data System (ADS)
Sahoo, G. S.; Mishra, G. P.
2018-01-01
Recent trends of photovoltaics account for the conversion efficiency limit making them more cost effective. To achieve this we have to leave the golden era of silicon cell and make a path towards III-V compound semiconductor groups to take advantages like bandgap engineering by alloying these compounds. In this work we have used a low bandgap GaSb material and designed a single junction (SJ) cell with a conversion efficiency of 32.98%. SILVACO ATLAS TCAD simulator has been used to simulate the proposed model using both Ray Tracing and Transfer Matrix Method (under 1 sun and 1000 sun of AM1.5G spectrum). A detailed analyses of photogeneration rate, spectral response, potential developed, external quantum efficiency (EQE), internal quantum efficiency (IQE), short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF) and conversion efficiency (η) are discussed. The obtained results are compared with previously reported SJ solar cell reports.
Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...
2016-09-13
Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI 3) and methylammonium lead iodide (MAPbI 3). The best-performing cell fabricated using a (FASnI 3) 0.6(MAPbI 3) 0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm 2, and a fill factormore » of 70.6(70.0)% when measured under forward (reverse) voltage scan. In conclusion, the average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.« less
GaAs nanopillar-array solar cells employing in situ surface passivation
Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong; Huffaker, Diana L.
2013-01-01
Arrays of III–V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p–n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm−2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode. PMID:23422665
Lan, Liuyuan; Chen, Zhiming; Hu, Qin; Ying, Lei; Zhu, Rui; Liu, Feng; Russell, Thomas P; Huang, Fei; Cao, Yong
2016-09-01
A novel donor-acceptor type conjugated polymer based on a building block of 4,8-di(thien-2-yl) - 6-octyl-2-octyl-5 H- pyrrolo[3,4- f ]benzotriazole-5,7(6 H )-dione (TZBI) as the acceptor unit and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo-[1,2- b :4,5- b' ]dithiophene as the donor unit, named as PTZBIBDT, is developed and used as an electron-donating material in bulk-heterojunction polymer solar cells. The resulting copolymer exhibits a wide bandgap of 1.81 eV along with relatively deep highest occupied molecular orbital energy level of -5.34 eV. Based on the optimized processing conditions, including thermal annealing, and the use of a water/alcohol cathode interlayer, the single-junction polymer solar cell based on PTZBIBDT:PC 71 BM ([6,6]-phenyl-C 71 -butyric acid methyl ester) blend film affords a power conversion efficiency of 8.63% with an open-circuit voltage of 0.87 V, a short circuit current of 13.50 mA cm -2 , and a fill factor of 73.95%, which is among the highest values reported for wide-bandgap polymers-based single-junction organic solar cells. The morphology studies on the PTZBIBDT:PC 71 BM blend film indicate that a fibrillar network can be formed and the extent of phase separation can be mani-pulated by thermal annealing. These results indicate that the TZBI unit is a very promising building block for the synthesis of wide-bandgap polymers for high-performance single-junction and tandem (or multijunction) organic solar cells.
McMahon, William E.; Friedman, Daniel J.; Geisz, John F.
2017-05-23
This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less
Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas
2016-01-01
Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters. PMID:26842997
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, William E.; Friedman, Daniel J.; Geisz, John F.
This paper re-examines the impact of atmospheric absorption bands on series-connected multijunction cell design, motivated by the numerous local efficiency maxima that appear as the number of junctions is increased. Some of the local maxima are related to the bottom subcell bandgap and are already well understood: As the bottom subcell bandgap is varied, a local efficiency maximum is produced wherever the bottom cell bandgap crosses an atmospheric absorption band. The optimal cell designs at these local maxima are generally current matched, such that all subcells have nearly the same short-circuit current. We systematically describe additional local maxima that occurmore » wherever an upper subcell bandgap encounters an atmospheric absorption band. Moreover, these local maxima are not current matched and become more prevalent as the number of junctions increases, complicating the solution space for five-junction and six-junction designs. A systematic framework for describing this complexity is developed, and implications for numerical convergence are discussed.« less
Wide-bandgap epitaxial heterojunction windows for silicon solar cells
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland; Sekula-Moise, Patricia A.; Vernon, Stanley M.
1990-01-01
It is shown that the efficiency of a solar cell can be improved if minority carriers are confined by use of a wide-bandgap heterojunction window. For silicon (lattice constant a = 5.43 A), nearly lattice-matched wide-bandgap materials are ZnS (a = 5.41 A) and GaP (a = 5.45 A). Isotype n-n heterojuntions of both ZnS/Si and GaP/Si were grown on silicon n-p homojunction solar cells. Successful deposition processes used were metalorganic chemical vapor deposition (MO-CVD) for GaP and ZnS, and vacuum evaporation of ZnS. Planar (100) and (111) and texture-etched - (111)-faceted - surfaces were used. A decrease in minority-carrier surface recombination compared to a bare surface was seen from increased short-wavelength spectral response, increased open-circuit voltage, and reduced dark saturation current, with no degradation of the minority carrier diffusion length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braly, Ian L.; Hillhouse, Hugh W.
The development of stable high-bandgap hybrid perovskites (HPs) with high optoelectronic quality may enable tandem solar cells with power conversion efficiencies approaching 30%. The halide composition of HPs has been observed to effect bandgap, carrier lifetime, and material stability. Here we report optoelectronic quality and stability under illumination of thousands of compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide (CH3NH3PbI2Br). Hyperspectral maps of steady-state absolute intensity photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS) at each point after synthesis. The QFLS upon first illumination increases with bandgap and reaches a maximum of 1.27 eV undermore » 1 sun illumination intensity for a bandgap of 1.75 eV. However, the optoelectronic quality (χ), defined as the ratio of the QFLS to the maximum theoretical QFLS for bandgap, decreases with bandgap from around 88% for 1.60 eV bandgap down to 82% for 1.84 eV bandgap. Further, we show that a reversible light induced defect forms that reduces the optoelectronic quality, particularly for high-bandgap materials. Composition analysis shows that the halide to lead ratio, (I + Br)/Pb, decreases from 3 for the pure iodide to 2.5 for the diiodomonobromide, suggesting a role of halide vacancies or halide substitution defects in the light-induced instability for this synthesis route. Even with the light-induced defect, a stable QFLS of about 1.17 eV is possible. Comparing our QFLS to Voc values from HP devices reported in the literature indicates that higher open circuit voltages are possible but may require optimization of band alignment. Further, the spectral shape of the PL emission is found to be more commensurate with Franz–Keldysh broadening from local electric fields or from a screened Thomas–Fermi density of states (as opposed to a joint density of states due to Urbach disorder).« less
Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos
2017-01-01
Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Periodic shunted arrays for the control of noise radiation in an enclosure
NASA Astrophysics Data System (ADS)
Casadei, Filippo; Dozio, Lorenzo; Ruzzene, Massimo; Cunefare, Kenneth A.
2010-08-01
This work presents numerical and experimental investigations of the application of a periodic array of resistive-inductive (RL) shunted piezoelectric patches for the attenuation of broadband noise radiated by a flexible plate in an enclosed cavity. A 4×4 lay-out of piezoelectric patches is bonded to the surface of a rectangular plate fully clamped to the top face of a rectangular cavity. Each piezo-patch is shunted through a single RL circuit, and all shunting circuits are tuned at the same frequency. The response of the resulting periodic structure is characterized by frequency bandgaps where vibrations and associated noise are strongly attenuated. The location and extent of induced bandgaps are predicted by the application of Bloch theorem on a unit cell of the periodic assembly, and they are controlled by proper selection of the shunting circuit impedance. A coupled piezo-structural-acoustic finite element model is developed to evaluate the noise reduction performance. Strong attenuation of multiple panel-controlled modes is observed over broad frequency bands. The proposed concept is tested on an aluminum plate mounted in a wooden box and driven by a shaker. Experimental results are presented in terms of pressure responses recorded using a grid of microphones placed inside the acoustic box.
Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin
2017-02-01
Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.
NASA Astrophysics Data System (ADS)
Bao, Fei-Hong; Bao, Lei-Lei; Li, Xin-Yi; Ammar Khan, Muhammad; Wu, Hua-Ye; Qin, Feng; Zhang, Ting; Zhang, Yi; Bao, Jing-Fu; Zhang, Xiao-Sheng
2018-06-01
Thin-film piezoelectric-on-silicon acoustic wave resonators are promising for the development of system-on-chip integrated circuits with micro/nano-engineered timing reference. However, in order to realize their large potentials, a further enhancement of the quality factor (Q) is required. In this study, a novel approach, based on a multi-stage phononic crystal (PnC) structure, was proposed to achieve an ultra-high Q. A systematical study revealed that the multi-stage PnC structure formed a frequency-selective band-gap to effectively prohibit the dissipation of acoustic waves through tethers, which significantly reduced the anchor loss, leading to an insertion-loss reduction and enhancement of Q. The maximum unloaded Q u of the fabricated resonators reached the value of ∼10,000 at 109.85 MHz, indicating an enhancement by 19.4 times.
Xu, Xiaopeng; Bi, Zhaozhao; Ma, Wei; Wang, Zishuai; Choy, Wallace C H; Wu, Wenlin; Zhang, Guangjun; Li, Ying; Peng, Qiang
2017-12-01
In this work, highly efficient ternary-blend organic solar cells (TB-OSCs) are reported based on a low-bandgap copolymer of PTB7-Th, a medium-bandgap copolymer of PBDB-T, and a wide-bandgap small molecule of SFBRCN. The ternary-blend layer exhibits a good complementary absorption in the range of 300-800 nm, in which PTB7-Th and PBDB-T have excellent miscibility with each other and a desirable phase separation with SFBRCN. In such devices, there exist multiple energy transfer pathways from PBDB-T to PTB7-Th, and from SFBRCN to the above two polymer donors. The hole-back transfer from PTB7-Th to PBDB-T and multiple electron transfers between the acceptor and the donor materials are also observed for elevating the whole device performance. After systematically optimizing the weight ratio of PBDB-T:PTB7-Th:SFBRCN, a champion power conversion efficiency (PCE) of 12.27% is finally achieved with an open-circuit voltage (V oc ) of 0.93 V, a short-circuit current density (J sc ) of 17.86 mA cm -2 , and a fill factor of 73.9%, which is the highest value for the ternary OSCs reported so far. Importantly, the TB-OSCs exhibit a broad composition tolerance with a high PCE over 10% throughout the whole blend ratios. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.
1976-01-01
An experimental method is presented that can be used to interpret the relative roles of bandgap narrowing and recombination processes in the diffused layer. This method involves measuring the device time constant by open-circuit voltage decay and the base region diffusion length by X-ray excitation. A unique illuminated diode method is used to obtain the diode saturation current. These data are interpreted using a simple model to determine individually the minority carrier lifetime and the excess charge. These parameters are then used to infer the relative importance of bandgap narrowing and recombination processes in the diffused layer.
SiC JFET Transistor Circuit Model for Extreme Temperature Range
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2008-01-01
A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.
Braly, Ian L.; Hillhouse, Hugh W.
2015-12-22
The development of stable high-bandgap hybrid perovskites (HPs) with high optoelectronic quality may enable tandem solar cells with power conversion efficiencies approaching 30%. The halide composition of HPs has been observed to effect bandgap, carrier lifetime, and material stability. Here we report optoelectronic quality and stability under illumination of thousands of compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide (CH3NH3PbI2Br). Hyperspectral maps of steady-state absolute intensity photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS) at each point after synthesis. The QFLS upon first illumination increases with bandgap and reaches a maximum of 1.27 eV undermore » 1 sun illumination intensity for a bandgap of 1.75 eV. However, the optoelectronic quality (χ), defined as the ratio of the QFLS to the maximum theoretical QFLS for bandgap, decreases with bandgap from around 88% for 1.60 eV bandgap down to 82% for 1.84 eV bandgap. Further, we show that a reversible light induced defect forms that reduces the optoelectronic quality, particularly for high-bandgap materials. Composition analysis shows that the halide to lead ratio, (I + Br)/Pb, decreases from 3 for the pure iodide to 2.5 for the diiodomonobromide, suggesting a role of halide vacancies or halide substitution defects in the light-induced instability for this synthesis route. Even with the light-induced defect, a stable QFLS of about 1.17 eV is possible. Comparing our QFLS to Voc values from HP devices reported in the literature indicates that higher open circuit voltages are possible but may require optimization of band alignment. Further, the spectral shape of the PL emission is found to be more commensurate with Franz–Keldysh broadening from local electric fields or from a screened Thomas–Fermi density of states (as opposed to a joint density of states due to Urbach disorder).« less
Harvesting the Full Potential of Photons with Organic Solar Cells.
Ran, Niva A; Love, John A; Takacs, Christopher J; Sadhanala, Aditya; Beavers, Justin K; Collins, Samuel D; Huang, Ye; Wang, Ming; Friend, Richard H; Bazan, Guillermo C; Nguyen, Thuc-Quyen
2016-02-17
A low-bandgap polymer:fullerene blend that has significantly reduced energetic losses from photon absorption to VOC is described. The charge-transfer state and polymer singlet are of nearly equal energy, yet the short-circuit current still reaches 14 mA cm(-2). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superstructures and multijunction cells for high efficiency energy conversion
NASA Technical Reports Server (NTRS)
Wagner, M.; Leburton, J. P.
1985-01-01
Potential applications of superlattices to photovoltaic structures are discussed. A single-bandgap, multijunction cell with selective electrodes for lateral transport of collected carriers is proposed. The concept is based on similar doping superlattice (NIPI) structures. Computer simulations show that by reducing bulk recombination losses, the spectral response of such cells is enhanced, particularly for poor quality materials with short diffusion lengths. Dark current contributions of additional junctions result in a trade-off between short-circuit current and open-circuit voltage as the number of layers is increased. One or two extra junctions appear to be optimal.
Bandgap engineering of InGaAsP/InP laser structure by photo-absorption-induced point defects
NASA Astrophysics Data System (ADS)
Kaleem, Mohammad; Nazir, Sajid; Saqib, Nazar Abbas
2016-03-01
Integration of photonic components on the same photonic wafer permits future optical communication systems to be dense and advanced performance. This enables very fast information handling between photonic active components interconnected through passive optical low loss channels. We demonstrate the UV-Laser based Quantum Well Intermixing (QWI) procedure to engineer the band-gap of compressively strained InGaAsP/InP Quantum Well (QW) laser material. We achieved around 135nm of blue-shift by simply applying excimer laser (λ= 248nm). The under observation laser processed material also exhibits higher photoluminescence (PL) intensity. Encouraging experimental results indicate that this simple technique has the potential to produce photonic integrated devices and circuits.
Studies of silicon p-n junction solar cells
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Lindholm, F. A.
1979-01-01
To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.
Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu
A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or a photon-assisted tunneling mechanism (Franz-Keldysh). A Gaussian distribution of bandgaps (local E{sub g} fluctuation) is found to be inconsistent with the data. The sub-bandgap absorption of the CZTSSe absorber is found to be larger than that for CIGSSe for materials that yield roughly equivalent photovoltaic devices (8% efficient). Further, it is shown that fitting only portions of the PL spectrum (e.g., low energy for energy broadening parameter and high energy for quasi-Fermi level splitting) may lead to significant errors for materials with substantial sub-bandgap absorption and emission.« less
Integrated Optoelectronic Position Sensor for Scanning Micromirrors.
Cheng, Xiang; Sun, Xinglin; Liu, Yan; Zhu, Lijun; Zhang, Xiaoyang; Zhou, Liang; Xie, Huikai
2018-03-26
Scanning micromirrors have been used in a wide range of areas, but many of them do not have position sensing built in, which significantly limits their application space. This paper reports an integrated optoelectronic position sensor (iOE-PS) that can measure the linear displacement and tilting angle of electrothermal MEMS (Micro-electromechanical Systems) scanning mirrors. The iOE-PS integrates a laser diode and its driving circuits, a quadrant photo-detector (QPD) and its readout circuits, and a band-gap reference all on a single chip, and it has been fabricated in a standard 0.5 μm CMOS (Complementary Metal Oxide Semiconductor) process. The footprint of the iOE-PS chip is 5 mm × 5 mm. Each quadrant of the QPD has a photosensitive area of 500 µm × 500 µm and the spacing between adjacent quadrants is 500 μm. The iOE-PS chip is simply packaged underneath of an electrothermally-actuated MEMS mirror. Experimental results show that the iOE-PS has a linear response when the MEMS mirror plate moves vertically between 2.0 mm and 3.0 mm over the iOE-PS chip or scans from -5 to +5°. Such MEMS scanning mirrors integrated with the iOE-PS can greatly reduce the complexity and cost of the MEMS mirrors-enabled modules and systems.
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.
Bhattacharyya, Mayukh; Gruenwald, Waldemar; Jansen, Dirk; Reindl, Leonhard; Aghassi-Hagmann, Jasmin
2018-05-07
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications
Gruenwald, Waldemar; Jansen, Dirk; Aghassi-Hagmann, Jasmin
2018-01-01
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches. PMID:29735939
2003-05-28
Rodrigues-Girones, M. Saglam, A. Megej, H.L. Hartnagel vi Recent Advances, Remaining Challenges in Wide Bandgap Semiconductors Colin ...R. H. Friend, and H. Sirringhaus, Science, 299, pp. 1881-1884, 2003. 19. C. J. Drury , C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw
NASA Technical Reports Server (NTRS)
Minnucci, J. A.; Matthei, K. W.
1980-01-01
The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.
Development of a 2.0 eV AlGaInP Solar Cell Grown by OMVPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Geisz, John F.
2015-06-14
AlGaInP solar cells with a bandgap (Eg) of ~2.0 eV are developed for use in next-generation multijunction photovoltaic devices. This material system is of great interest for both space and concentrator photovoltaics due to its high bandgap, which enables the development of high-efficiency five-junction and six-junction devices and is also useful for solar cells operated at elevated temperatures. In this work, we explore the conditions for the Organometallic Vapor Phase Epitaxy (OMVPE) growth of AlGaInP and study their effects on cell performance. A ~2.0 eV AlGaInP solar cell is demonstrated with an open circuit voltage (VOC) of 1.59V, a bandgap-voltagemore » offset (WOC) of 420mV, a fill factor (FF) of 88.0%, and an efficiency of 14.8%. These AlGaInP cells have attained a similar FF, WOC and internal quantum efficiency (IQE) to the best upright GaInP cells grown in our lab to date.« less
Hyperuniform Disordered photonic bandgap materials, from 2D to 3D, and their applications
NASA Astrophysics Data System (ADS)
Man, Weining; Florescu, Marian; Sahba, Shervin; Sellers, Steven
Recently, hyperuniform disordered systems attracted increasing attention due to their unique physical properties and the potential possibilities of self-assembling them. We had introduced a class of 2D hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's isotropic photonic bandgap. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. Beyond our previous experimental work using macroscopic samples with microwave radiation, we demonstrated functional devices based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. We further extended the design, fabrication, and characterization of the disordered photonic system into 3D. We also identify local self-uniformity as a novel measure of a disordered network's internal structural similarity, which we found crucial for photonic band gap formation. National Science Foundations award DMR-1308084.
A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamichhane, Ranjan; Ericson, Milton Nance; Frank, Steven Shane
2014-01-01
Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz tomore » 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.« less
Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.
Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli
2016-03-15
A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.
Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.
Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh
2017-02-01
Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Waferscale nanophotonic circuits made from diamond-on-insulator substrates.
Rath, P; Gruhler, N; Khasminskaya, S; Nebel, C; Wild, C; Pernice, W H P
2013-05-06
Wide bandgap dielectrics are attractive materials for the fabrication of photonic devices because they allow broadband optical operation and do not suffer from free-carrier absorption. Here we show that polycrystalline diamond thin films deposited by chemical vapor deposition provide a promising platform for the realization of large scale integrated photonic circuits. We present a full suite of photonic components required for the investigation of on-chip devices, including input grating couplers, millimeter long nanophotonic waveguides and microcavities. In microring resonators we measure loaded optical quality factors up to 11,000. Corresponding propagation loss of 5 dB/mm is also confirmed by measuring transmission through long waveguides.
Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2012-01-01
"Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.
Mixed-Halide Perovskites with Stabilized Bandgaps.
Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P
2017-11-08
One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.
Integrated Optoelectronic Position Sensor for Scanning Micromirrors
Cheng, Xiang; Sun, Xinglin; Liu, Yan; Zhu, Lijun; Zhang, Xiaoyang; Zhou, Liang
2018-01-01
Scanning micromirrors have been used in a wide range of areas, but many of them do not have position sensing built in, which significantly limits their application space. This paper reports an integrated optoelectronic position sensor (iOE-PS) that can measure the linear displacement and tilting angle of electrothermal MEMS (Micro-electromechanical Systems) scanning mirrors. The iOE-PS integrates a laser diode and its driving circuits, a quadrant photo-detector (QPD) and its readout circuits, and a band-gap reference all on a single chip, and it has been fabricated in a standard 0.5 μm CMOS (Complementary Metal Oxide Semiconductor) process. The footprint of the iOE-PS chip is 5 mm × 5 mm. Each quadrant of the QPD has a photosensitive area of 500 µm × 500 µm and the spacing between adjacent quadrants is 500 μm. The iOE-PS chip is simply packaged underneath of an electrothermally-actuated MEMS mirror. Experimental results show that the iOE-PS has a linear response when the MEMS mirror plate moves vertically between 2.0 mm and 3.0 mm over the iOE-PS chip or scans from −5 to +5°. Such MEMS scanning mirrors integrated with the iOE-PS can greatly reduce the complexity and cost of the MEMS mirrors-enabled modules and systems. PMID:29587451
High-Frequency, 6.2 Angstrom pN Heterojunction Diodes
2012-01-01
this paper were grown by solid- source molecular beam epitaxy (MBE). Here, the use of a lower- case letter (p) for the narrow bandgap layer and upper...electron and hole mobilities. High electron mobil- ity transistors ( HEMTs ) fabricated from these materials have shown good operating characteristics [1,2...Furthermore, the first monolithic microwave integrated circuits (MMICs) fabricated using 6.1 Å based HEMTs have been demonstrated [3]. New mate- rials
Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 $${}^{\\circ}$$ C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Geisz, John F.
2016-09-01
In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased,more » we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.« less
Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.
A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less
InGaAs concentrator cells for laser power converters and tandem cells
NASA Technical Reports Server (NTRS)
Wojtczuk, S.; Vernon, S.; Gagnon, E.
1993-01-01
In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.
Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes
Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; ...
2017-03-01
A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less
Quantum-engineered interband cascade photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razeghi, Manijeh; Tournié, Eric; Brown, Gail J.
2013-12-18
Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collectedmore » with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less
Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells.
Lin, Yuze; Chen, Bo; Zhao, Fuwen; Zheng, Xiaopeng; Deng, Yehao; Shao, Yuchuan; Fang, Yanjun; Bai, Yang; Wang, Chunru; Huang, Jinsong
2017-07-01
Efficient wide-bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky-Queisser limit, but they suffer from a larger open circuit voltage (V OC ) deficit than narrower bandgap ones. Here, it is shown that one major limitation of V OC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene-C60 bisadduct (ICBA) with higher-lying lowest-unoccupied-molecular-orbital is needed for WBG perovskite solar cells, while its energy-disorder needs to be minimized before a larger V OC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA-tran3 from the as-synthesized ICBA-mixture. WBG perovskite solar cells with ICBA-tran3 show enhanced V OC by 60 mV, reduced V OC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental study of an adaptive elastic metamaterial controlled by electric circuits
NASA Astrophysics Data System (ADS)
Zhu, R.; Chen, Y. Y.; Barnhart, M. V.; Hu, G. K.; Sun, C. T.; Huang, G. L.
2016-01-01
The ability to control elastic wave propagation at a deep subwavelength scale makes locally resonant elastic metamaterials very relevant. A number of abilities have been demonstrated such as frequency filtering, wave guiding, and negative refraction. Unfortunately, few metamaterials develop into practical devices due to their lack of tunability for specific frequencies. With the help of multi-physics numerical modeling, experimental validation of an adaptive elastic metamaterial integrated with shunted piezoelectric patches has been performed in a deep subwavelength scale. The tunable bandgap capacity, as high as 45%, is physically realized by using both hardening and softening shunted circuits. It is also demonstrated that the effective mass density of the metamaterial can be fully tailored by adjusting parameters of the shunted electric circuits. Finally, to illustrate a practical application, transient wave propagation tests of the adaptive metamaterial subjected to impact loads are conducted to validate their tunable wave mitigation abilities in real-time.
Total Dose Effects on Bipolar Integrated Circuits at Low Temperature
NASA Technical Reports Server (NTRS)
Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.
2012-01-01
Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.
Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters.
Zhao, Chao; Ebaid, Mohamed; Zhang, Huafan; Priante, Davide; Janjua, Bilal; Zhang, Daliang; Wei, Nini; Alhamoud, Abdullah A; Shakfa, Mohammad Khaled; Ng, Tien Khee; Ooi, Boon S
2018-06-13
p-Type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity, while Mott-Schottky experiments measured a hole concentration of 1.3 × 1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and an optimized p-type AlGaN contact layer for UV-transparency. The ∼335 nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate the electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.
Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong
2017-03-01
Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.
Ka-Band Wide-Bandgap Solid-State Power Amplifier: Hardware Validation
NASA Technical Reports Server (NTRS)
Epp, L.; Khan, P.; Silva, A.
2005-01-01
Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solid-state power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents proof-of-concept hardware used to validate power-combining technologies that may enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results in previous articles [1-3] indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. Previous architecture performance analyses and estimates indicate that the proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This combining efficiency would correspond to MMIC requirements of 5- to 10-W output power and >48 percent PAE. In order to validate the performance estimates of the three proposed architectures, measurements of proof-of-concept hardware are reported here.
Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells
Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong
2017-01-01
Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043
Graphene-based non-Boolean logic circuits
NASA Astrophysics Data System (ADS)
Liu, Guanxiong; Ahsan, Sonia; Khitun, Alexander G.; Lake, Roger K.; Balandin, Alexander A.
2013-10-01
Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of "conventional" design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance—observed under certain biasing schemes—is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale—although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing.
Studies of silicon pn junction solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.
1977-01-01
Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.
Bandgap opening in hydrogenated germanene
NASA Astrophysics Data System (ADS)
Yao, Q.; Zhang, L.; Kabanov, N. S.; Rudenko, A. N.; Arjmand, T.; Rahimpour Soleimani, H.; Klavsyuk, A. L.; Zandvliet, H. J. W.
2018-04-01
We have studied the hydrogenation of germanene synthesized on Ge2Pt crystals using scanning tunneling microscopy and spectroscopy. The germanene honeycomb lattice is buckled and consists of two hexagonal sub-lattices that are slightly displaced with respect to each other. The hydrogen atoms adsorb exclusively on the Ge atoms of the upward buckled hexagonal sub-lattice. At a hydrogen exposure of about 100 L, the (1 × 1) buckled honeycomb structure of germanene converts to a (2 × 2) structure. Scanning tunneling spectra recorded on this (2 × 2) structure reveal the opening of a bandgap of about 0.2 eV. A fully (half) hydrogenated germanene surface is obtained after an exposure of about 9000 L hydrogen. The hydrogenated germanene, also referred to as germanane, has a sizeable bandgap of about 0.5 eV and is slightly n-type.
Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania
NASA Astrophysics Data System (ADS)
Li, Jingfeng; Lazzari, Rémi; Chenot, Stéphane; Jupille, Jacques
2018-01-01
The spectroscopic fingerprints of the point defects of titanium dioxide remain highly controversial. Seemingly indisputable experiments lead to conflicting conclusions in which oxygen vacancies and titanium interstitials are alternately referred to as the primary origin of the Ti 3 d band-gap states. We report on experiments performed by electron energy loss spectroscopy whose key is the direct annealing of only the very surface of rutile TiO2(110 ) crystals and the simultaneous measurement of its temperature via the Bose-Einstein loss/gain ratio. By surface preparations involving reactions with oxygen and water vapor, in particular, under electron irradiation, vacancy- and interstitial-related band-gap states are singled out. Off-specular measurements reveal that both types of defects contribute to a unique charge distribution that peaks in subsurface layers with a common dispersive behavior.
Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration
Mohammad, N.; Schulz, M.; Wang, P.; ...
2016-09-16
In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5μm. Electrical measurements under directmore » sunlight demonstrated an increase of ~25% in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. As a result, this system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.« less
Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammad, N.; Schulz, M.; Wang, P.
In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5μm. Electrical measurements under directmore » sunlight demonstrated an increase of ~25% in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. As a result, this system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.« less
Chen, Yao; Zhu, Youqin; Yang, Daobin; Luo, Qian; Yang, Lin; Huang, Yan; Zhao, Suling; Lu, Zhiyun
2015-04-11
An asymmetrical squaraine dye (Py-3) with its two electron-donating aryl groups directly linked to the electron-withdrawing squaric acid core possesses an ideal bandgap of 1.33 eV, together with an intense and broad absorption band in the range 550-950 nm. Hence, the resulting solution-processed solar cells display an impressive Jsc of 12.03 mA cm(-2) and a PCE of 4.35%.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Schwartz, Zachary D.; Alterovitz, Samuel A.; Downey, Alan N.
2004-01-01
Wireless sensors for high temperature applications such as oil drilling and mining, automobiles, and jet engine performance monitoring require circuits built on wide bandgap semiconductors. In this paper, the characteristics of microwave transmission lines on 4H-High Purity Semi-Insulating SiC and 6H, p-type SiC is presented as a function of temperature and frequency. It is shown that the attenuation of 6H, p-type substrates is too high for microwave circuits, large leakage current will flow through the substrate, and that unusual attenuation characteristics are due to trapping in the SiC. The 4H-HPSI SiC is shown to have low attenuation and leakage currents over the entire temperature range.
Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui
2017-06-01
Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele
2017-09-01
The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.
p- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, Fabian, E-mail: fabian.langer@physik.uni-wuerzburg.de; Perl, Svenja; Kamp, Martin
2015-02-09
In this work, we report a p- to n-type conductivity transition of GaInNAs (1.0 eV bandgap) layers in p-i-n dilute nitride solar cells continuously controlled by the V/III ratio during growth. Near the transition region, we were able to produce GaInNAs layers with very low effective electrically active doping concentrations resulting in wide depleted areas. We obtained internal quantum efficiencies (IQEs) up to 85% at 0.2 eV above the bandgap. However, the high IQE comes along with an increased dark current density resulting in a decreased open circuit voltage of about 0.2 V. This indicates the formation of non-radiant defect centers related tomore » the p-type to n-type transition. Rapid-thermal annealing of the solar cells on the one hand helps to anneal some of these defects but on the other hand increases the effective doping concentrations.« less
8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer.
Cnops, Kjell; Rand, Barry P; Cheyns, David; Verreet, Bregt; Empl, Max A; Heremans, Paul
2014-03-07
In order to increase the power conversion efficiency of organic solar cells, their absorption spectrum should be broadened while maintaining efficient exciton harvesting. This requires the use of multiple complementary absorbers, usually incorporated in tandem cells or in cascaded exciton-dissociating heterojunctions. Here we present a simple three-layer architecture comprising two non-fullerene acceptors and a donor, in which an energy-relay cascade enables an efficient two-step exciton dissociation process. Excitons generated in the remote wide-bandgap acceptor are transferred by long-range Förster energy transfer to the smaller-bandgap acceptor, and subsequently dissociate at the donor interface. The photocurrent originates from all three complementary absorbing materials, resulting in a quantum efficiency above 75% between 400 and 720 nm. With an open-circuit voltage close to 1 V, this leads to a remarkable power conversion efficiency of 8.4%. These results confirm that multilayer cascade structures are a promising alternative to conventional donor-fullerene organic solar cells.
High-efficiency solar cell and method for fabrication
Hou, Hong Q.; Reinhardt, Kitt C.
1999-01-01
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).
High-efficiency solar cell and method for fabrication
Hou, H.Q.; Reinhardt, K.C.
1999-08-31
A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Ashley R.; Young, Matthew R.; Nozik, Arthur J.
2015-08-06
We explored the uptake of metal chloride salts with +1 to +3 metals of Na+, K+, Zn2+, Cd2+, Sn2+, Cu2+, and In3+ by PbSe QD solar cells. We also compared CdCl2 to Cd acetate and Cd nitrate treatments. PbSe QD solar cells fabricated with a CdCl2 treatment are stable for more than 270 days stored in air. We studied how temperature and immersion times affect optoelectronic properties and photovoltaic cell performance. Uptake of Cd2+ and Zn2+ increase open circuit voltage, whereas In3+ and K+ increase the photocurrent without influencing the spectral response or first exciton peak position. Using the mostmore » beneficial treatments we varied the bandgap of PbSe QD solar cells from 0.78 to 1.3 eV and find the improved VOC is more prevalent for lower bandgap QD solar cells.« less
Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.
Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon
2013-01-01
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.
Manipulation of photons at the surface of three-dimensional photonic crystals.
Ishizaki, Kenji; Noda, Susumu
2009-07-16
In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.
Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin
2015-03-01
We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.
InGaP Heterojunction Barrier Solar Cells
NASA Technical Reports Server (NTRS)
Welser, Roger E.
2010-01-01
A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.
2013-01-01
Low-bandgap diketopyrrolopyrrole- and carbazole-based polymer bulk-heterojunction solar cells exhibit much faster charge carrier recombination kinetics than that encountered for less-recombining poly(3-hexylthiophene). Solar cells comprising these polymers exhibit energy losses caused by carrier recombination of approximately 100 mV, expressed as reduction in open-circuit voltage, and consequently photovoltaic conversion efficiency lowers in more than 20%. The analysis presented here unravels the origin of that energy loss by connecting the limiting mechanism governing recombination dynamics to the electronic coupling occurring at the donor polymer and acceptor fullerene interfaces. Previous approaches correlate carrier transport properties and recombination kinetics by means of Langevin-like mechanisms. However, neither carrier mobility nor polymer ionization energy helps understanding the variation of the recombination coefficient among the studied polymers. In the framework of the charge transfer Marcus theory, it is proposed that recombination time scale is linked with charge transfer molecular mechanisms at the polymer/fullerene interfaces. As expected for efficient organic solar cells, small electronic coupling existing between donor polymers and acceptor fullerene (Vif < 1 meV) and large reorganization energy (λ ≈ 0.7 eV) are encountered. Differences in the electronic coupling among polymer/fullerene blends suffice to explain the slowest recombination exhibited by poly(3-hexylthiophene)-based solar cells. Our approach reveals how to directly connect photovoltaic parameters as open-circuit voltage to molecular properties of blended materials. PMID:23662167
Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukrittanon, Supanee; Liu, Ren; Pan, Janet L.
2016-08-07
We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in themore » GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.« less
Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current
NASA Astrophysics Data System (ADS)
Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; Pan, Janet L.; Jungjohann, K. L.; Tu, Charles W.; Dayeh, Shadi A.
2016-08-01
We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.
Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current
Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; ...
2016-08-07
Here, we report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We also show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface andmore » in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. Finally, we present performance benefits of dilute nitride microwire solar cells and show that it can be achieved by further tuning of the epitaxial quality of the underlying materials.« less
Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites.
Kim, Junghwan; Saidaminov, Makhsud I; Tan, Hairen; Zhao, Yicheng; Kim, Younghoon; Choi, Jongmin; Jo, Jea Woong; Fan, James; Quintero-Bermudez, Rafael; Yang, Zhenyu; Quan, Li Na; Wei, Mingyang; Voznyy, Oleksandr; Sargent, Edward H
2018-03-01
Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) lead iodide-bromide mixed perovskites are promising materials for front cells well-matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open-circuit voltage (V oc ) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA-Cs WBG perovskite with the aid of a formamide cosolvent, light-induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (E g ≈ 1.75 eV) exhibit a high V oc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm 2 solar cells, the highest among the reported efficiencies for large-area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long-term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication of PbS quantum dots and their applications in solar cells based on ZnO nanorod arrays
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.
2018-05-01
An efficient, inexpensive and large area scalable approach based on sol-gel technique is presented to fabricate quantum dots (QDs) of PbS. Size of the QDs is tuned by the varying the bath concentrations in the range of 50-200 mM. Transmission electron microscopy (TEM) studies confirm the growth of spherically shaped ˜5.6 nm QDs at 50 mM bath concentration. The optical bandgap of the QDs is found to be ˜0.9 eV and corresponds to the size obtained from TEM studies. ZnO/PbS solar cells are fabricated by sensitizing the ZnO nanorods with PbS QDs. The fabricated solar cells demonstrate the highest open circuit voltage ˜200 mV and short circuit current density ˜0.81 µA/cm2.
Frequency control circuit for all-digital phase-lock loops
NASA Technical Reports Server (NTRS)
Anderson, T. O.
1973-01-01
Phase-lock loop references all its operations to fixed high-frequency service clock operating at highest speed which digital circuits permit. Wide-range control circuit provides linear control of frequency of reference signal. It requires only two counters in combination with control circuit consisting only of flip-flop and gate.
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1999-08-24
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou
1997-07-08
High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.
A novel combination of PBG cell for achieving HPF, BPF, and LPF in an electro-optic system
NASA Astrophysics Data System (ADS)
Tsao, Shyh-Lin; Lee, Wen-Ching
2004-10-01
In this paper, a novel Frequency Division Multiplexer (FDM) using Photonic Band Gap (PBG) cell combination concept circuit is proposed for achieving a 3-band FDM. The preliminary 3-band FDM structure is the combination of three PBG cells. The observable frequency response experimental results are presented. We also simulate and measure all the scattering parameters for the novel 3-band FDM. The disclosed method in this paper demonstrates the possibility for applying photonic bandgap structure in designing a frequency division device.
NASA Astrophysics Data System (ADS)
Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.
2016-07-01
In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.
Reconfigurable exciton-plasmon interconversion for nanophotonic circuits
Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee
2016-01-01
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits. PMID:27892463
Adaptive sequential controller
El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso
1994-01-01
An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.
Lee, Ji Hyung; Park, Chang Geun; Kim, Aesun; Kim, Hyung Jong; Kim, Youngseo; Park, Sungnam; Cho, Min Ju; Choi, Dong Hoon
2018-06-06
We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm 2 , demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.
Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong
2018-05-09
We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.
Shin, Jae Cheol; Kim, Kyou Hyun; Yu, Ki Jun; Hu, Hefei; Yin, Leijun; Ning, Cun-Zheng; Rogers, John A; Zuo, Jian-Min; Li, Xiuling
2011-11-09
We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (∼30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (∼4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ∼ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics.
NASA Astrophysics Data System (ADS)
De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio
2018-02-01
Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.
NASA Astrophysics Data System (ADS)
Ren, Guanghui; Yudistira, Didit; Nguyen, Thach G.; Khodasevych, Iryna; Schoenhardt, Steffen; Berean, Kyle J.; Hamm, Joachim M.; Hess, Ortwin; Mitchell, Arnan
2017-07-01
Nanoscale plasmonic structures can offer unique functionality due to extreme sub-wavelength optical confinement, but the realization of complex plasmonic circuits is hampered by high propagation losses. Hybrid approaches can potentially overcome this limitation, but only few practical approaches based on either single or few element arrays of nanoantennas on dielectric nanowire have been experimentally demonstrated. In this paper, we demonstrate a two dimensional hybrid photonic plasmonic crystal interfaced with a standard silicon photonic platform. Off resonance, we observe low loss propagation through our structure, while on resonance we observe strong propagation suppression and intense concentration of light into a dense lattice of nanoscale hot-spots on the surface providing clear evidence of a hybrid photonic plasmonic crystal bandgap. This fully integrated approach is compatible with established silicon-on-insulator (SOI) fabrication techniques and constitutes a significant step toward harnessing plasmonic functionality within SOI photonic circuits.
NASA Astrophysics Data System (ADS)
Mohajer Iravani, Baharak
Electromagnetic interference (EMI) is a source of noise problems in electronic devices. The EMI is attributed to coupling between sources of radiation and components placed in the same media such as package or chassis. This coupling can be either through conducting currents or through radiation. The radiation of electromagnetic (EM) fields is supported by surface currents. Thus, minimizing these surface currents is considered a major and critical step to suppress EMI. In this work, we present novel strategies to confine surface currents in different applications including packages, enclosures, cavities, and antennas. The efficiency of present methods of EM noise suppression is limited due to different drawbacks. For example, the traditional use of lossy materials and absorbers suffers from considerable disadvantages including mechanical and thermal reliability leading to limited life time, cost, volume, and weight. In this work, we consider the use of Electromagnetic Band Gap (EBG) structures. These structures are suitable for suppressing surface currents within a frequency band denoted as the bandgap. Their design is straight forward, they are inexpensive to implement, and they do not suffer from the limitations of the previous methods. A new method of EM noise suppression in enclosures and cavity-backed antennas using mushroom-type EBG structures is introduced. The effectiveness of the EBG as an EMI suppresser is demonstrated using numerical simulations and experimental measurements. To allow integration of EBGs in printed circuit boards and packages, novel miniaturized simple planar EBG structures based on use of high-k dielectric material (epsilonr > 100) are proposed. The design consists of meander lines and patches. The inductive meander lines serve to provide current continuity bridges between the capacitive patches. The high-k dielectric material increases the effective capacitive load substantially in comparison to commonly used material with much lower dielectric constant. Meander lines can increase the effective inductive load which pushes down the lower edge of bandgap, thus resulting in a wider bandgap. Simulation results are included to show that the proposed EBG structures provide very wide bandgap (˜10GHz) covering the multiple harmonics of of currently available microprocessors and its harmonics. To speed up the design procedure, a model based on combination of lumped elements and transmission lines is proposed. The derived model predicts accurately the starting edge of bandgap. This result is verified with full-wave analysis. Finally, another novel compact wide band mushroom-type EBG structure using magneto-dielectric materials is designed. Numerical simulations show that the proposed EBG structure provides in-phase reflection bandgap which is several times greater than the one obtained from a conventional EBG operating at the same frequency while its cell size is smaller. This type of EBG structure can be used efficiently as a ground plane for low-profile wideband antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Jason R.; Mayo, Jackson R.
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less
Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; Ng, Amy; More, Karren; Leonard, Donovan; Yan, Yanfa
2016-01-01
The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTexSe1−x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTexSe1−x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTexSe1−x alloy with respect to the degree of Se diffusion. The results show that the CdTexSe1−x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations. PMID:27460872
Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap
NASA Astrophysics Data System (ADS)
Cardella, Davide; Celli, Paolo; Gonella, Stefano
2016-08-01
In this work, we propose and test a strategy for tunable, broadband wave attenuation in electromechanical waveguides with shunted piezoelectric inclusions. Our strategy is built upon the vast pre-existing literature on vibration attenuation and bandgap generation in structures featuring periodic arrays of piezo patches, but distinguishes itself for several key features. First, we demystify the idea that periodicity is a requirement for wave attenuation and bandgap formation. We further embrace the idea of ‘organized disorder’ by tuning the circuits as to resonate at distinct neighboring frequencies. In doing so, we create a tunable ‘rainbow trap’ (Tsakmakidis et al 2007 Nature 450 397-401) capable of attenuating waves with broadband characteristics, by distilling (sequentially) seven frequencies from a traveling wavepacket. Finally, we devote considerable attention to the implications in terms of packet distortion of the spectral manipulation introduced by shunting. This work is also meant to serve as a didactic tool for those approaching the field of shunted piezoelectrics, and attempts to provide a different perspective, with abundant details, on how to successfully design an experimental setup involving resistive-inductive shunts.
Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; ...
2016-07-27
The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTe xSe 1₋x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTe xSe 1₋x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTe xSe 1₋xmore » alloy with respect to the degree of Se diffusion. Finally, the results show that the CdTe xSe 1₋x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bolin; Su, Zhijuan; Bennett, Steve
2014-05-07
Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ∼100 μm were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 4.6 ± 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ∼100 Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simplemore » powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.« less
Radiation hard analog circuits for ALICE ITS upgrade
NASA Astrophysics Data System (ADS)
Gajanana, D.; Gromov, V.; Kuijer, P.; Kugathasan, T.; Snoeys, W.
2016-03-01
The ALICE experiment is planning to upgrade the ITS (Inner Tracking System) [1] detector during the LS2 shutdown. The present ITS will be fully replaced with a new one entirely based on CMOS monolithic pixel sensor chips fabricated in TowerJazz CMOS 0.18 μ m imaging technology. The large (3 cm × 1.5 cm = 4.5 cm2) ALPIDE (ALICE PIxel DEtector) sensor chip contains about 500 Kpixels, and will be used to cover a 10 m2 area with 12.5 Gpixels distributed over seven cylindrical layers. The ALPOSE chip was designed as a test chip for the various building blocks foreseen in the ALPIDE [2] pixel chip from CERN. The building blocks include: bandgap and Temperature sensor in four different flavours, and LDOs for powering schemes. One flavour of bandgap and temperature sensor will be included in the ALPIDE chip. Power consumption numbers have dropped very significantly making the use of LDOs less interesting, but in this paper all blocks are presented including measurement results before and after irradiation with neutrons to characterize robustness against displacement damage.
Approximate circuits for increased reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less
A 2.87 ppm/°C 65 nm CMOS bandgap reference with nonlinearity compensation
NASA Astrophysics Data System (ADS)
Xingyuan, Tong; Zhangming, Zhu; Yintang, Yang
2011-09-01
Based on the review and analysis of two recently reported low temperature coefficient (TC) bandgap voltage references (BGRs), a new temperature compensation technique is presented. With the double-end piecewise nonlinearity correction method, the logarithm cancellation technique and the mixed-mode output topology, a BGR with high-temperature stability is realised based on 65 nm CMOS low-leakage process. The post-simulation results using Spectre show that this BGR produces an output voltage of about 953 mV with 2.5 V supply voltage, and the output voltage varies by only 0.16 mV from -40°C to 125°C. This low TC BGR has been used in a 65 nm CMOS touch screen controller, and the measurement shows that the output voltage of this BGR is about 949 mV varying by 0.44 mV from -40°C to 125°C. The TC of this BGR is about 2.87 ppm/°C, meeting the requirement of high-precision SoC application.
NASA Astrophysics Data System (ADS)
Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi
2017-02-01
We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.
Integrating Magnetics for On-Chip Power: A Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, CR; Harburg, DV; Qiu, JZ
Integration of efficient power converters requires technology for efficient, high-power on-chip inductors and transformers. Increases in switching frequency, facilitated by advances in circuit designs and silicon or wide-bandgap semiconductors, can enable miniaturization, but only if the magnetics technology works well at the higher frequencies. Technologies, geometries, and scaling of air-core and magnetic-core inductors and transformers are examined, and their potential for integration is discussed. Air-core inductors can use simpler fabrication, and increasing frequency can always be used to decrease their size, but magnetic cores can decrease the required thickness without requiring as high a frequency.
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
Electrically Tunable Optical Delay Lines
2003-04-01
layers [24]. References [1] Bendickson, J. M., J. P. Dowling, and M. Scalora , “Analytic expressions for the electromagnetic mode density in...finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996). [2] Scalora , M., R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J
Bird, David A.
1983-01-01
A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.
Full wave modulator-demodulator amplifier apparatus. [for generating rectified output signal
NASA Technical Reports Server (NTRS)
Black, J. M. (Inventor)
1974-01-01
A full-wave modulator-demodulator apparatus is described including an operational amplifier having a first input terminal coupled to a circuit input terminal, and a second input terminal alternately coupled to the circuit input terminal. A circuit is ground by a switching circuit responsive to a phase reference signal and the operational amplifier is alternately switched between a non-inverting mode and an inverting mode. The switching circuit includes three field-effect transistors operatively associated to provide the desired switching function in response to an alternating reference signal of the same frequency as an AC input signal applied to the circuit input terminal.
Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond
Tan, Liang Z.; Zheng, Fan; Young, Steve M.; ...
2016-08-26
Here, the bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p–n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorlymore » understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.« less
Circuit Riding: A Method for Providing Reference Services.
ERIC Educational Resources Information Center
Plunket, Linda; And Others
1983-01-01
Discussion of the design and implementation of the Circuit Rider Librarian Program, a shared services project for delivering reference services to eight hospitals in Maine, includes a cost analysis of services and description of user evaluation survey. Five references, composite results of the survey, and postgrant options proposal are appended.…
Tags, wireless communication systems, tag communication methods, and wireless communications methods
Scott,; Jeff W. , Pratt; Richard, M [Richland, WA
2006-09-12
Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.
Bird, D.A.
1981-06-16
A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.
Perl, Emmett E.; Simon, John; Friedman, Daniel J.; ...
2018-01-12
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
Analysis of the attainable efficiency of a direct-bandgap betavoltaic element
NASA Astrophysics Data System (ADS)
Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.; Evstigneev, M.
2015-11-01
Conversion of energy of beta-particles into electric energy in a p-n junction based on direct-bandgap semiconductors, such as GaAs, is analyzed considering realistic semiconductor system parameters. An expression for the collection coefficient, Q, of the electron-hole pairs generated by beta-electrons is derived taking into account the existence of the dead layer. We show that the collection coefficient of beta-electrons emitted by a 3H-source to a GaAs p-n junction is close to 1 in a broad range of electron lifetimes in the junction, ranging from 10-9to 10-7 s. For the combination 147Pm/GaAs, Q is relatively large (≥slant 0.4) only for quite long lifetimes (about 10-7 s) and large thicknesses (about 100 μm) of GaAs p-n junctions. For realistic lifetimes of minority carriers and their diffusion coefficients, the open-circuit voltage realized due to the irradiation of a GaAs p-n junction by beta-particles is obtained. The attainable beta-conversion efficiency η in the case of a 3H/GaAs combination is found to exceed that of the 147Pm/GaAs combination.
NASA Astrophysics Data System (ADS)
Bleuse, Joël; Ducroquet, Frédérique; Mariette, Henri
2018-03-01
Reports on Cu_2 ZnSn(S_x Se_{1-x} )_4 (CZTSSe) solar cell devices all show an open-circuit voltage lower than expected, especially when compared to CuIn_x Ga_{1-x} (S,Se)_2 devices, which reduces their power efficiency and delays their development. A high concentration of intrinsic defects in CZTSSe, and their stabilization through neutral complex formation, which induces some local fluctuations, are at the origin of local energy shifts in the conduction and valence band edges. The implied band tail in Cu_2 ZnSnS_4 is studied in this work by combining three types of optical spectroscopy data: emission spectra compared to photoluminescence excitation spectroscopy, emission spectra as a function of excitation power, and time-resolved photoluminescence spectra. All these data converge to show that both the bandgap and the band tail of localized states just below are dependent on the degree of order/disorder in the Cu/Zn cation sublattice of the quaternary structure: in the more ordered structures, the bandgap increases by about 50 meV, and the energy range of the band tail is decreased from about 110 to 70 meV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Emmett E.; Simon, John; Friedman, Daniel J.
We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less
NASA Astrophysics Data System (ADS)
Baran, Derya; Ashraf, Raja Shahid; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Röhr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain
2017-03-01
Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 +/- 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 +/- 0.4% efficiency and a high open-circuit voltage of 1.03 +/- 0.01 V.
NASA Astrophysics Data System (ADS)
Dai, Mingzhi; Khan, Karim; Zhang, Shengnan; Jiang, Kemin; Zhang, Xingye; Wang, Weiliang; Liang, Lingyan; Cao, Hongtao; Wang, Pengjun; Wang, Peng; Miao, Lijing; Qin, Haiming; Jiang, Jun; Xue, Lixin; Chu, Junhao
2016-06-01
Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spectroscopy. However, they might involve lots of assumptions, calculations, temperature or optical impacts into the intrinsic distribution of DOS along the bandgap of the materials. A direct and simpler method is developed to extract the DOS distribution from amorphous oxide-based thin-film transistors (TFTs) based on Dual gate pulse spectroscopy (GPS), introducing less extrinsic factors such as temperature and laborious numerical mathematical analysis than conventional methods. From this direct measurement, the sub-gap DOS distribution shows a peak value on the band-gap edge and in the order of 1017-1021/(cm3·eV), which is consistent with the previous results. The results could be described with the model involving both Gaussian and exponential components. This tool is useful as a diagnostics for the electrical properties of oxide materials and this study will benefit their modeling and improvement of the electrical properties and thus broaden their applications.
Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng
2017-04-05
A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm -2 under AM 1.5G irradiation (100 mW cm -2 ), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.
Voc Degradation in TF-VLS Grown InP Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yubo; Sun, Xingshu; Johnston, Steve
2016-11-21
Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the wholemore » sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.« less
Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi
2017-01-01
Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al2O3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and VB. PMID:28218234
Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi
2017-02-20
Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al 2 O 3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and V B .
Cho, Ah-Jin; Park, Kee Chan; Kwon, Jang-Yeon
2015-01-01
For several years, graphene has been the focus of much attention due to its peculiar characteristics, and it is now considered to be a representative 2-dimensional (2D) material. Even though many research groups have studied on the graphene, its intrinsic nature of a zero band-gap, limits its use in practical applications, particularly in logic circuits. Recently, transition metal dichalcogenides (TMDs), which are another type of 2D material, have drawn attention due to the advantage of having a sizable band-gap and a high mobility. Here, we report on the design of a complementary inverter, one of the most basic logic elements, which is based on a MoS2 n-type transistor and a WSe2 p-type transistor. The advantages provided by the complementary metal-oxide-semiconductor (CMOS) configuration and the high-performance TMD channels allow us to fabricate a TMD complementary inverter that has a high-gain of 13.7. This work demonstrates the operation of the MoS2 n-FET and WSe2 p-FET on the same substrate, and the electrical performance of the CMOS inverter, which is based on a different driving current, is also measured.
Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Haag, Emily
2013-01-01
A simplified model of solar power in the Venus environment is developed, in which the solar intensity, solar spectrum, and temperature as a function of altitude is applied to a model of photovoltaic performance, incorporating the temperature and intensity dependence of the open-circuit voltage and the temperature dependence of the bandgap and spectral response of the cell. We use this model to estimate the performance of solar cells for both the surface of Venus and for atmospheric probes at altitudes from the surface up to 60 km. The model shows that photovoltaic cells will produce power even at the surface of Venus.
A new approach to high-efficiency multi-band-gap solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnham, K.W.J.; Duggan, G.
1990-04-01
The advantages of using multi-quantum-well or superlattice systems as the absorbers in concentrator solar cells are discussed. By adjusting the quantum-well width, an effective band-gap variation that covers the high-efficiency region of the solar spectrum can be obtained. Higher efficiencies should result from the ability to optimize separately current and voltage generating factors. Suitable structures to ensure good carrier separation and collection and to obtain higher open-circuit voltages are presented using the (AlGa)As/GaAs/(InGa)As system. Efficiencies above existing single-band-gap limits should be achievable, with upper limits in excess of 40%.
Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J; Durrant, James R; McCulloch, Iain
2018-05-25
Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm -2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.
Graphene: an emerging electronic material.
Weiss, Nathan O; Zhou, Hailong; Liao, Lei; Liu, Yuan; Jiang, Shan; Huang, Yu; Duan, Xiangfeng
2012-11-14
Graphene, a single layer of carbon atoms in a honeycomb lattice, offers a number of fundamentally superior qualities that make it a promising material for a wide range of applications, particularly in electronic devices. Its unique form factor and exceptional physical properties have the potential to enable an entirely new generation of technologies beyond the limits of conventional materials. The extraordinarily high carrier mobility and saturation velocity can enable a fast switching speed for radio-frequency analog circuits. Unadulterated graphene is a semi-metal, incapable of a true off-state, which typically precludes its applications in digital logic electronics without bandgap engineering. The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies. Many challenges remain before this relatively new material becomes commercially viable, but laboratory prototypes have already shown the numerous advantages and novel functionality that graphene provides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compensated count-rate circuit for radiation survey meter
Todd, Richard A.
1981-01-01
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
Compensated count-rate circuit for radiation survey meter
Todd, R.A.
1980-05-12
A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.
A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell
NASA Technical Reports Server (NTRS)
Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.
1989-01-01
Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.
Electronic test and calibration circuits, a compilation
NASA Technical Reports Server (NTRS)
1972-01-01
A wide variety of simple test calibration circuits are compiled for the engineer and laboratory technician. The majority of circuits were found inexpensive to assemble. Testing electronic devices and components, instrument and system test, calibration and reference circuits, and simple test procedures are presented.
Shih, Fu-Yu; Wu, Yueh-Chun; Shih, Yi-Siang; Shih, Ming-Chiuan; Wu, Tsuei-Shin; Ho, Po-Hsun; Chen, Chun-Wei; Chen, Yang-Fang; Chiu, Ya-Ping; Wang, Wei-Hua
2017-03-21
Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. This is very challenging because of the ubiquitous presence of adsorbents, which can lead to charged-impurity scattering sites, charge traps, and recombination centers. Here, we show that the short-circuit photocurrent originated from the built-in electric field at the MoS 2 junction is surprisingly insensitive to the gaseous environment over the range from a vacuum of 1 × 10 -6 Torr to ambient condition. The environmental insensitivity of the short-circuit photocurrent is attributed to the characteristic of the diffusion current that is associated with the gradient of carrier density. Conversely, the photocurrent with bias exhibits typical persistent photoconductivity and greatly depends on the gaseous environment. The observation of environment-insensitive short-circuit photocurrent demonstrates an alternative method to design device structure for 2D-material-based optoelectronic applications.
Erbium-doped zinc-oxide waveguide amplifiers for hybrid photonic integrated circuits
NASA Astrophysics Data System (ADS)
O'Neal, Lawrence; Anthony, Deion; Bonner, Carl; Geddis, Demetris
2016-02-01
CMOS logic circuits have entered the sub-100nm regime, and research is on-going to investigate the quantum effects that are apparent at this dimension. To avoid some of the constraints imposed by fabrication, entropy, energy, and interference considerations for nano-scale devices, many have begun designing hybrid and/or photonic integrated circuits. These circuits consist of transistors, light emitters, photodetectors, and electrical and optical waveguides. As attenuation is a limiting factor in any communications system, it is advantageous to integrate a signal amplifier. There are numerous examples of electrical amplifiers, but in order to take advantage of the benefits provided by optically integrated systems, optical amplifiers are necessary. The erbium doped fiber amplifier is an example of an optical amplifier which is commercially available now, but the distance between the amplifier and the device benefitting from amplification can be decreased and provide greater functionality by providing local, on-chip amplification. Zinc oxide is an attractive material due to its electrical and optical properties. Its wide bandgap (≍3.4 eV) and high refractive index (≍2) make it an excellent choice for integrated optics systems. Moreover, erbium doped zinc oxide (Er:ZnO) is a suitable candidate for optical waveguide amplifiers because of its compatibility with semiconductor processing technology, 1.54 μm luminescence, transparency, low resistivity, and amplification characteristics. This research presents the characterization of radio frequency magnetron sputtered Er:ZnO, the design and fabrication of integrated waveguide amplifiers, and device analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babadi, A. S., E-mail: aein.shiri-babadi@eit.lth.se; Lind, E.; Wernersson, L. E.
A qualitative analysis on capacitance-voltage and conductance data for high-κ/InAs capacitors is presented. Our measured data were evaluated with a full equivalent circuit model, including both majority and minority carriers, as well as interface and border traps, formulated for narrow band gap metal-oxide-semiconductor capacitors. By careful determination of interface trap densities, distribution of border traps across the oxide thickness, and taking into account the bulk semiconductor response, it is shown that the trap response has a strong effect on the measured capacitances. Due to the narrow bandgap of InAs, there can be a large surface concentration of electrons and holesmore » even in depletion, so a full charge treatment is necessary.« less
NASA Astrophysics Data System (ADS)
Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo
2018-02-01
First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.
Flexible programmable logic module
Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.
2001-01-01
The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.
A disorder-based strategy for tunable, broadband wave attenuation
NASA Astrophysics Data System (ADS)
Zhang, Weiting; Celli, Paolo; Cardella, Davide; Gonella, Stefano
2017-04-01
One of the most daunting limitations of phononic crystals and acoustic/elastic metamaterials is their passivity: a given configuration is bound to display its phononic properties only around its design point, i.e., working at some pre-determined operating conditions. In the past decade, this shortcoming has inspired the design of phononic media with tunable wave characteristics; noteworthy results have been obtained through a family of methodologies involving shunted piezoelectric elements. Shunting a piezoelectric element means connecting it to a passive electric circuit; tunability stems from the ability to modify the effective mechanical properties of the piezoelectric medium by modifying the circuit characteristics. One of the most popular shunting circuits is the resistor-inductor, which allows the patch-and-shunt system to behave as an electromechanical resonator. A common motif among the works employing shunted piezos for phononic control is periodicity: the patches are typically periodically placed in the domain and the circuits are identically tuned. The objective of this work is to demonstrate that the wave attenuation performance of structures with shunted piezoelectric patches can be improved by leveraging notions of organized disorder. Based on the idea of rainbow trapping broadband wave attenuation obtained by tuning an array of resonators at distinct neighboring frequencies we design and test an electromechanical waveguide structure capable of attenuating waves over broad frequency ranges. In order to emphasize the fact that periodicity is not a binding requirement when working with RL shunts (which induce locally resonant bandgaps), we report on the performance of random arrangements of patches. In an attempt to demonstrate the tunability attribute of our strategy, we take advantage of the reconfigurability of the circuits to show how a single waveguide can attenuate both waves and vibrations over different frequency ranges.
Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO
2012-05-08
Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.
Paths to light trapping in thin film GaAs solar cells.
Xiao, Jianling; Fang, Hanlin; Su, Rongbin; Li, Kezheng; Song, Jindong; Krauss, Thomas F; Li, Juntao; Martins, Emiliano R
2018-03-19
It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures. Here, we study light trapping structures that are implemented in a high-bandgap material on the back of the GaAs active layer, thereby not perturbing the integrity of the GaAs active layer. We study photonic crystal and quasi-random nanostructures both by simulation and by experiment and find that the photonic crystal structures are superior because they exhibit fewer but stronger resonances that are better matched to the narrow wavelength range where GaAs benefits from light trapping. In fact, we show that a 1500 nm thick cell with photonic crystals achieves the same short circuit current as an unpatterned 4000 nm thick cell. These findings are significant because they afford a sizeable reduction in active layer thickness, and therefore a reduction in expensive epitaxial growth time and cost, yet without compromising performance.
Performance evaluation of electro-optic effect based graphene transistors
NASA Astrophysics Data System (ADS)
Gupta, Gaurav; Abdul Jalil, Mansoor Bin; Yu, Bin; Liang, Gengchiau
2012-09-01
Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and ION/IOFF ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.
Performance evaluation of electro-optic effect based graphene transistors.
Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Yu, Bin; Liang, Gengchiau
2012-10-21
Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and I(ON)/I(OFF) ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.
Improving Photovoltaic Performance of a Fused-Ring Azepinedione Copolymer via a D-A-A Design.
Zhang, Honghong; Li, Ting; Xiao, Zuo; Lei, Zhongli; Ding, Liming
2018-04-01
Two conjugated copolymer donors, PTTABDT and PBTTABDT, based on a fused-ring azepinedione acceptor unit, 5-(2-octyldodecyl)-4H-thieno[2',3':4,5]thieno[3,2-c]thieno[2',3':4,5]thieno[2,3-e]azepine-4,6(5H)-dione (TTA), are prepared. PTTABDT possesses a conventional donor-acceptor (D-A) structure with one TTA in the repeat unit, while PBTTABDT has a D-A-A structure with two TTAs in the repeat unit. Compared with PTTABDT, PBTTABDT shows a deeper highest occupied molecular orbital (HOMO) level, a narrower bandgap, and a higher hole mobility, and exhibits better performance in bulk heterojunction solar cells. Power conversion efficiencies of 6.18% and 7.81% are achieved from PTTABDT:PC 71 BM and PBTTABDT:PC 71 BM solar cells, respectively. The higher performance of PBTTABDT:PC 71 BM solar cells results from the enhanced open-circuit voltage (V oc ) and short-circuit current density ( J sc ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tu, Zhengyuan; Wu, Menghao; Zeng, Xiao Cheng
2017-05-04
Coexistence of ferromagnetism and ferroelectricity in a single 2D material is highly desirable for integration of multifunctional units in 2D material-based circuits. We report theoretical evidence of C 6 N 8 H organic network as being the first 2D organic multiferroic material with coexisting ferromagnetic and ferroelectric properties. The ferroelectricity stems from multimode proton-transfer within the 2D C 6 N 8 H network, in which a long-range proton-transfer mode is enabled by the facilitation of oxygen molecule when the network is exposed to the air. Such oxygen-assisted ferroelectricity also leads to a high Curie temperature and coupling between ferroelectricity and ferromagnetism. We also find that hydrogenation and carbon doping can transform the 2D g-C 3 N 4 network from an insulator to an n-type/p-type magnetic semiconductor with modest bandgap. Akin to the dopant induced n/p channels in silicon wafer, a variety of dopant created functional units can be integrated into the g-C 3 N 4 wafer by design for nanoelectronic applications.
NASA Astrophysics Data System (ADS)
Mansouri, S.; Coskun, B.; El Mir, L.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed; Yakuphanoglu, F.
2018-04-01
Graphene is a sheet-structured material that lacks a forbidden band, being a good candidate for use in radiofrequency applications. We have elaborated graphene-oxide-doped poly(3-hexylthiophene) nanocomposite to increase the interlayer distance and thereby open a large bandgap for use in the field of logic circuits. Graphene oxide/poly(3-hexylthiophene) (GO/P3HT) nanocomposite thin-film transistors (TFTs) were fabricated on silicon oxide substrate by spin coating method. The current-voltage ( I- V) characteristics of TFTs with various P3HT compositions were studied in the dark and under light illumination. The photocurrent, charge carrier mobility, subthreshold voltage, density of interface states, density of occupied states, and I ON/ I OFF ratio of the devices strongly depended on the P3HT weight ratio in the composite. The effects of white-light illumination on the electrical parameters of the transistors were investigated. The results indicated that GO/P3HT nanocomposite thin-film transistors have high potential for use in radiofrequency applications, and their feasibility for use in digital applications has been demonstrated.
ZERO SUPPRESSION FOR RECORDERS
Fort, W.G.S.
1958-12-30
A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillhouse, Hugh W.
(1) We successfully developed an ultrasonic spray coating system that can be used to deposit thin chalcogenide films with composition gradients. 4 publications under the contract have been published with the instrument. The instrument was used to reveal the effects of intrinsic composition and examine the effects of 25 different dopant elements. Surprisingly, doping with most elements had little to no effect on the quasi-Fermi level splitting of bare films. Ge and Li were explored in depth, and our best devices utilize lithium doping. (2) We developed a new model of absorption coefficients, that when combined with absolute intensity photoluminescence,more » yield the steady-state quasi-Fermi level splitting and a way to quantify the sub-bandgap absorption. This has resulted in 2 publications on the method, with another in preparation. This is a significant development that should impact other PV technologies. (3) We found that lithium doping has several beneficial effects on CZTSSe. It improves the open-circuit voltage, short circuit current, fill factor, and shunt resistance. By using scanning Kelvin probe microscopy (SKPM) and conductive AFM (along with device measurements, DLPC, and XPS), we discovered that lithium acts to increase the p-type doping in both the grain and grain boundaries (GBs). The effect is stronger in the GBs and changes the direction of the electric field at the GB. In lithium doped devices, an electric field repels minority carrier electrons away from the GB. This resulted in a publication and the fabrication of 11.8% efficient devices from a DMSO-thiourea molecular ink. The mechanism of action is most likely due to the formation of LiCu, which inhibits the formation of the donor defect ZnCu. This reduces compensation and increases the net p-type doping. (4) By alloying with germanium, we have fabricated CZTGSSe devices with the best open-circuit voltage (relative the maximum theoretical open-circuit voltage for the bandgap) for any kesterite solar cell. The Voc/Voc,max is 63%, compared to 58% for the record efficiency cell from hydrazine. The origin of the increased voltage efficiency appears to be related to the conduction band off-set and the suppression of a deep defect (~0.8 eV), most likely due to CuSn, but SnZn or SnCu are also possible. All milestones and go/no-go metrics were met with exception of the device efficiency milestone (15% then 20%). However, under the contract, hydrazine-free CZTSSe device efficiencies increased from 7.2% at the start of the contract to 11.8% upon completion.« less
Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering
NASA Astrophysics Data System (ADS)
Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei
2018-04-01
InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.
Apparatus for controlling the firing of rectifiers in polyphase rectifying circuits
Yarema, R.J.
1979-09-18
A polyphase rectifier is controlled with precision by a circuit that filters and shifts a reference signal associated with each phase and that starts a ramp signal at a zero crossing of the shifted reference signal. The difference between the ramp signal and an external trigger signal is used to generate a pulse that switches power rectifiers into conduction. The circuit reduces effects of variations that introduce subharmonics into a rectified signal and it can be used for constant or time-varying external trigger signals.
Tight binding simulation study on zigzag single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Sharma, Deepa; Jaggi, Neena; Gupta, Vishu
2018-01-01
Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.
Frequency stabilization for multilocation optical FDM networks
NASA Astrophysics Data System (ADS)
Jiang, Quan; Kavehrad, Mohsen
1993-04-01
In a multi-location optical FDM network, the frequency of each user's transmitter can be offset-locked, through a Fabry-Perot, to an absolute frequency standard which is distributed to the users. To lock the local Fabry-Perot to the frequency standard, the standard has to be frequency-dithered by a sinusoidal signal and the sinusoidal reference has to be transmitted to the user location since the lock-in amplifier in the stabilization system requires the reference for synchronous detection. We proposed two solutions to avoid transmitting the reference. One uses an extraction circuit to obtain the sinusoidal signal from the incoming signal. A nonlinear circuit following the photodiode produces a strong second-order harmonic of the sinusoidal signal and a phase-locked loop is locked to it. The sinusoidal reference is obtained by a divide- by-2 circuit. The phase ambiguity (0 degree(s) or 180 degree(s)) is resolved by using a selection- circuit and an initial scan. The other method uses a pseudo-random sequence instead of a sinusoidal signal to dither the frequency standard and a surface-acoustic-wave (SAW) matched-filter instead of a lock-in amplifier to obtain the frequency error. The matched-filter serves as a correlator and does not require the dither reference.
An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient
NASA Astrophysics Data System (ADS)
Hande, Vinayak; Shojaei Baghini, Maryam
2015-08-01
A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2
Cheng, Tonglei; Liao, Meisong; Gao, Weiqing; Duan, Zhongchao; Suzuki, Takenobu; Ohishi, Yasutake
2012-12-17
A new way to suppress stimulated Brillouin scattering by using an all-solid chalcogenide-tellurite photonic bandgap fiber is presented in the paper. The compositions of the chalcogenide and the tellurite glass are As(2)Se(3) and TeO(2)-ZnO-Li(2)O-Bi(2)O(3). The light and the acoustic wave are confined in the fiber by photonic bandgap and acoustic bandgap mechanism, respectively. When the pump wavelength is within the photonic bandgap and the acoustic wave generated by the pump light is outside the acoustic bandgap, the interaction between the optical and the acoustic modes is very weak, thus stimulated Brillouin scattering is suppressed in the photonic bandgap fiber.
Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy
2009-04-14
DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.
NASA Astrophysics Data System (ADS)
Newman, Richard; van der Ventel, Brandon; Hanekom, Crischelle
2017-07-01
Probing university students’ understanding of direct-current (DC) resistive circuits is still a field of active physics education research. We report here on a study we conducted of this understanding, where the cohort consisted of students in a large-enrollment first-year physics module. This is a non-calculus based physics module for students in the life sciences stream. The study involved 366 students enrolled in the physics (bio) 154 module at Stellenbosch University in 2015. Students’ understanding of DC resistive circuits was probed by means of a standardized test instrument. The instrument comprises 29 multiple choice questions that students have to answer in ~40 min. Students were required to first complete the standardized test at the start of semester (July 2015). For ease of reference we call this test the pre-test. Students answered the pre-test having no university-level formal exposure to DC circuits in theory or practice. The pre-test therefore served to probe students’ school level knowledge of DC circuits. As the semester progressed students were exposed to a practical (E1), lectures, a prescribed textbook, a tutorial and online videos focusing on DC circuits. The E1 practical required students to solve DC circuit problems by means of physically constructing circuits, algebraically using Kirchhoff's Rules and Ohm’s Law, and by means of simulating circuits using the app iCircuit running on iPads (iOS platform). Each E1 practical involved ~50 students in a three hour session. The practical was repeated three afternoons per week over an eight week period. Twenty three iPads were distributed among students on a practical afternoon in order for them to do the circuit simulations in groups (of 4-5 students). At the end of the practical students were again required to do the standardized test on circuits and complete a survey on their experience of the use of the iPad and iCircuit app. For ease of reference we refer to this second test as the post-test. The students’ average score on the post-test was found to be ~25% higher than their pre-test score. The results of the iPad use survey show that the majority of students felt that the iCircuit app enhanced their learning of DC circuits.
Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY
2007-01-23
This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.
Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY
2010-09-07
This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.
Bloch-like waves in random-walk potentials based on supersymmetry
NASA Astrophysics Data System (ADS)
Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo
2015-09-01
Bloch's theorem was a major milestone that established the principle of bandgaps in crystals. Although it was once believed that bandgaps could form only under conditions of periodicity and long-range correlations for Bloch's theorem, this restriction was disproven by the discoveries of amorphous media and quasicrystals. While network and liquid models have been suggested for the interpretation of Bloch-like waves in disordered media, these approaches based on searching for random networks with bandgaps have failed in the deterministic creation of bandgaps. Here we reveal a deterministic pathway to bandgaps in random-walk potentials by applying the notion of supersymmetry to the wave equation. Inspired by isospectrality, we follow a methodology in contrast to previous methods: we transform order into disorder while preserving bandgaps. Our approach enables the formation of bandgaps in extremely disordered potentials analogous to Brownian motion, and also allows the tuning of correlations while maintaining identical bandgaps, thereby creating a family of potentials with `Bloch-like eigenstates'.
Gritzo, R.E.
1985-09-12
A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.
Gritzo, Russell E.
1987-01-01
A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.
Circuit II--A Conversational Graphical Interface.
ERIC Educational Resources Information Center
Singer, Ronald A.
1993-01-01
Provides an overview of Circuit II, an interactive system that provides users with a graphical representation of an electronic circuit within which questions may be posed and manipulated, and discusses how mouse selections have analogous roles to certain natural language features, such as anaphora, deixis, and ellipsis. (13 references) (EA)
Skotheim, T.A.
1980-03-04
A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.
Skotheim, Terje A. [Berkeley, CA
1980-03-04
A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.
Cho, Changsoon; Song, Jung Hoon; Kim, Changjo; Jeong, Sohee; Lee, Jung-Yong
2017-12-12
Bandgap tunability and broadband absorption make quantum-dot (QD) photovoltaic cells (PVs) a promising candidate for future solar energy conversion systems. Approaches to improving the electrical properties of the active layer increase efficiency in part. The present study focuses on optical room for enhancement in QD PVs over wide spectrum in the near-infrared (NIR) region. We find that ray-optical light trapping schemes rather than the nanophotonics approach may be the best solution for enhancing broadband QD PVs by suppressing the escape probability of internal photons without spectral dependency. Based on the theoretical study of diverse schemes for various bandgaps, we apply a V-groove structure and a V-groove textured compound parabolic trapper (VCPT) to PbS-based QD PVs along with the measurement issues for PVs with a light scattering layer. The efficiency of the best device is improved from 10.3% to 11.0% (certified to 10.8%) by a V-groove structure despite the possibility of underestimation caused by light scattering in small-area devices (aperture area: 0.0625 cm 2 ). By minimizing such underestimation, even greater enhancements of 13.6% and 15.6% in short circuit current are demonstrated for finger-type devices (0.167 cm 2 without aperture) and large-area devices (2.10 cm 2 with an aperture of 0.350 cm 2 ), respectively, using VCPT.
Dye-sensitized Schottky barrier solar cells
Skotheim, Terje A.
1978-01-01
A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.
Contact and Bandgap Engineering in Two Dimensional Crystal
NASA Astrophysics Data System (ADS)
Chu, Tao
At the heart of semiconductor research, bandgap is one of the key parameters for materials and determine their applications in modern technologies. For traditional bulk semiconductors, the bandgap is determined by the chemical composition and specific arrangement of the crystal lattices, and usually invariant during the device operation. Nevertheless, it is highly desirable for many optoelectronic and electronic applications to have materials with continuously tunable bandgap available. In the past decade, 2D layered materials including graphene and transition metal dichalcogenides (TMDs) have sparked interest in the scientific community, owing to their unique material properties and tremendous potential in various applications. Among many newly discovered properties that are non-existent in bulk materials, the strong in-plane bonding and weak van der Waals inter-planar interaction in these 2D layered structures leads to a widely tunable bandgap by electric field. This provides an extra knob to engineer the fundamental material properties and open a new design space for novel device operation. This thesis focuses on this field controlled dynamic bandgap and can be divided into three parts: (1) bilayer graphene is the first known 2D crystal with a bandgap can be continuously tuned by electric field. However, the electrical transport bandgaps is much smaller than both theoretical predictions and extracted bandgaps from optical measurements. In the first part of the thesis, the limiting factors of preventing achieving a large transport bandgap in bilayer graphene are investigated and different strategies to achieve a large transport bandgap are discussed, including the vertically scaling of gate oxide and patterning channel into ribbon structure. With a record large transport bandgap of ~200meV, a dual-gated semiconducting bilayer graphene P/N junction with extremely scaled gap of 20nm in-between is fabricated. A tunable local maxima feature, associated with 1D vHs DOS at the band edge of bilayer graphene, was experimentally observed in transport for the first time. (2) The bandgap of bilayer MoS2 is also predicted to be continuously tuned to zero by applying a perpendicular electric field. Here, the first experimental realization of tuning the bandgap of bilayer MoS2 by a vertical electric field is presented. An analytical approach utilizing the threshold voltages from ambipolar characteristics is employed to quantitatively extract bandgaps, which is further benchmarked by temperature dependent bandgap measurements and photoluminescence measurements. (3) Few layer graphene is employed as an example to demonstrate a novel self-aligned edge contacting scheme for layered material systems.
NASA Astrophysics Data System (ADS)
Jampana, Balakrishnam R.
The III-nitride semiconductor material system, which consists of InN, GaN, AlN and their alloys, offers a substantial potential in developing ultra-high efficiency photovoltaics mainly due to its wide range of direct-bandgap (0.7 eV -- 3.4 eV), and other electronic, optical and mechanical properties. However, this novel InGaN material system poses technological challenges which extended into the performance of InGaN devices. The development of wide-band gap p--n InGaN homojunction solar cells with bandgap < 2.4 eV is investigated in the present work. The growth, fabrication and characterization of a 2.7 eV bandgap InGaN solar cell with a 1.73 eV open-circuit voltage is demonstrated. Limited solar cell performance, in terms of short-circuit current and efficiency, is observed. The poor performance of the InGaN solar cell is related to the formation of extended crystalline defects in InGaN epilayers of the solar cell structure. To investigate the influence of extended crystalline defects on InGaN epilayer properties, a few In0.12Ga0.88N epilayers with different thicknesses are grown and characterized for structural properties using high-resolution X-ray diffraction. The structural parameters, modeled as mosaic blocks, indicate deterioration in InGaN crystal quality when the film thickness exceeds a critical layer thickness. An associated increase in density of threading dislocations with deteriorated InGaN crystal quality is observed. The critical layer thickness is determined for a few InGaN compositions in the range of 6 -- 21 % In, and it decreases with increasing InGaN composition. Surface roughening and formation of V-defects are observed on InGaN surface beyond the critical layer thickness. An Urbach tail in optical absorption of InGaN epilayer is observed and it is related to the formation of V-defects. The direct consequence of light absorption via V-defects is a decrease in photoluminescence peak intensity with increasing InGaN epilayer thickness beyond critical layer thickness. Two p-i-n InGaN solar cell structures were designed, with InGaN epilayer thickness in one solar cell greater than the critical layer thickness and the other with a lower thickness, to investigate the influence of V-defects on performance of the solar cells. The photoresponse of the p-i-n InGaN solar cell with thicker InGaN epilayer is poor, while the other solar cell had good photoresponse and external quantum efficiency. Extending this investigation to a p-n InGaN solar cell, a solar cell with total InGaN epilayer less than the critical layer thickness is grown. The photoresponse and external quantum efficiency of the present solar cell is superior compared to the initially designed p-n InGaN homojunction solar cells. Solar cell characteristics without p-GaN capping layer in the above p-n InGaN solar cell are also investigated. Good open-circuit voltage is observed, but the short-circuit current and efficiency are limited by the formation of extended crystalline defects, as observed with other initial solar cell designs. A processing sequence is developed to coat III-nitride sidewalls, created during fabrication to form electrical contacts, with SiO2 to maximize the active device area and minimize accidental damage of solar cell during fabrication. Additionally, deposition of current spreading layers on p-type III-nitride epilayer to reduce the series resistance is evaluated. The III-nitrides are primarily grown on sapphire substrate and in a continued effort they are realized later on silicon substrate. InGaN solar cell structures were grown simultaneously on GaN/sapphire and GaN/silicon templates and their photoresponse is compared.
NASA Astrophysics Data System (ADS)
Kephart, Jason Michael
With a growing population and rising standard of living, the world is in need of clean sources of energy at low cost in order to meet both economic and environmental needs. Solar energy is an abundant resource which is fundamentally adequate to meet all human energy needs. Photovoltaics are an attractive way to safely convert this energy to electricity with little to no noise, moving parts, water, or arable land. Currently, thin-film photovoltaic modules based on cadmium telluride are a low-cost solution with multiple GW/year commercial production, but have lower conversion efficiency than the dominant technology, crystalline silicon. Increasing the conversion efficiency of these panels through optimization of the electronic and optical structure of the cell can further lower the cost of these modules. The front contact of the CdTe thin-film solar cell is critical to device efficiency for three important reasons: it must transmit light to the CdTe absorber to be collected, it must form a reasonably passive interface and serve as a growth template for the CdTe, and it must allow electrons to be extracted from the CdTe. The current standard window layer material, cadmium sulfide, has a low bandgap of 2.4 eV which can block over 20% of available light from being converted to mobile charge carriers. Reducing the thickness of this layer or replacing it with a higher-bandgap material can provide a commensurate increase in device efficiency. When the CdS window is made thinner, a degradation in electronic quality of the device is observed with a reduction in open-circuit voltage and fill factor. One commonly used method to enable a thinner optimum CdS thickness is a high-resistance transparent (HRT) layer between the transparent conducting oxide electrode and window layer. The function of this layer has not been fully explained in the literature, and existing hypotheses center on the existence of pinholes in the window layer which are not consistent with observed results. In this work numerous HRT layers were examined beginning with an empirical optimization to create a SnO2-based HRT which allows significantly reduced CdS thickness while maintaining diode quality. The role of this layer was explored through measurement of band alignment parameters via photoemission. These results suggest a negative correlation of work function to device open-circuit voltage, which implies that non-ideal band alignment at the front interface of CdTe is in large part responsible for the loss of electronic quality. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. A sputter-deposited (Mg,Zn)O layer was tested which allows for complete elimination of the CdS window layer with an increase in open-circuit voltage and near complete transmission of all above-bandgap light. An additional window layer material---sputtered, oxygenated CdS---was explored for its transparency. This material was found only to produce high efficiency devices with an effective buffer layer such as the optimized SnO2-base HRT. The dependence of chemical, optical, electrical, and device properties on oxygen content was explored, and the stability of these devices was determined to depend largely on the minimization of copper in the device. Both sputter-deposited alloy window layers appeared to have tunable electron affinity which was critical to optimizing band alignment and therefore device efficiency. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. Both window layers allowed an AM1.5G efficiency increase from a baseline of approximately 13% to 16%.
Russell, J.A.G.
1958-01-01
An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.
Computer-aided linear-circuit design.
NASA Technical Reports Server (NTRS)
Penfield, P.
1971-01-01
Usually computer-aided design (CAD) refers to programs that analyze circuits conceived by the circuit designer. Among the services such programs should perform are direct network synthesis, analysis, optimization of network parameters, formatting, storage of miscellaneous data, and related calculations. The program should be embedded in a general-purpose conversational language such as BASIC, JOSS, or APL. Such a program is MARTHA, a general-purpose linear-circuit analyzer embedded in APL.
Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo
2017-10-01
Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the charge transport in black phosphorus at room temperature; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs). The effect opens up opportunities for future development of electro-mechanical transducers based on black phosphorus, and we demonstrate strain gauges constructed from black phosphorus thin crystals.
Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.
Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo
2017-10-11
Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.
NASA Astrophysics Data System (ADS)
Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui
2013-01-01
P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.
Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang
2017-08-09
We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.
High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W., Jr.
1998-10-01
High performance, lattice-mismatched p/n InGaAs/lnP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1x1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6%more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6x10{sup {minus}6} A/cm{sup 2}. Jo values as low as 4.1x10{sup {minus}7} A/cm{sup 2} were also observed with a conventional planar cell geometry.« less
Multijunction InGaAs thermophotovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1998-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. MIMs were fabricated with an active area of 0.9 {times} 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55more » eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV MIMs demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. Electrical performance results for these MIMs are presented.« less
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.
2017-09-01
Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.
Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
Lim, Sungoh; Kim, Yohan; Lee, Jeongno; Han, Chul Jong; Kang, Jungwon; Kim, Jiwan
2014-12-01
Colloidal quantum dots (QD)-based solar cells with near infrared (NIR) emission have been investigated. Lead sulfide (PbS) QDs, which have narrow band-gap and maximize the absorption of NIR spectrum, were chosen as active materials for efficient solar cells. The inverted structure of indium tin oxide/titanium dioxide/PbS QDs/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/silver (ITO/TiO2/PbS QDs/ PSS/Ag) was applied for favorable electron and hole seperation from the PbS QD. Through the ligand exchange by 1,2-Ethanedithiol (EDT), the interparticle distance of the PbS QDs in thin film became closer and the performance of the PbS QD-based solar cells was improved. Our PbS QD-based inverted solar cells showed open circuit voltages (V(oc)) of 0.33 V, short circuit current density (J(sc)) of 10.89 mA/cm2, fill factor (FF) of 30%, and power conversion efficiency (PCE) of 1.11%. In our PbS QD-based multifunctional solar cell, the NIR light emission intensity was simply detected with photodiode system, which implies the potential of multi-functional diode device for various applications.
A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology.
Padmanabhan, Preethi; Hancock, Bruce; Nikzad, Shouleh; Bell, L Douglas; Kroep, Kees; Charbon, Edoardo
2018-02-03
Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e - , obtaining avalanche gains up to 10³. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.
Research progress of Ge on insulator grown by rapid melting growth
NASA Astrophysics Data System (ADS)
Liu, Zhi; Wen, Juanjuan; Li, Chuanbo; Xue, Chunlai; Cheng, Buwen
2018-06-01
Ge is an attractive material for Si-based microelectronics and photonics due to its high carries mobility, pseudo direct bandgap structure, and the compatibility with complementary metal oxide semiconductor (CMOS) processes. Based on Ge, Ge on insulator (GOI) not only has these advantages, but also provides strong electronic and optical confinement. Recently, a novel technique to fabricate GOI by rapid melting growth (RMG) has been described. Here, we introduce the RMG technique and review recent efforts and progress in RMG. Firstly, we will introduce process steps of RMG. We will then review the researches which focus on characterizations of the GOI including growth dimension, growth mechanism, growth orientation, concentration distribution, and strain status. Finally, GOI based applications including high performance metal–oxide–semiconductor field effect transistors (MOSFETs) and photodetectors will be discussed. These results show that RMG is a promising technique for growth of high quality GOIs with different characterizations. The GOI grown by RMG is a potential material for the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Key Research and Development Program of China (No. 2017YFA0206404) and the National Natural Science Foundation of China (Nos. 61435013, 61534005, 61534004, 61604146).
On electrode pinning and charge blocking layers in organic solar cells
NASA Astrophysics Data System (ADS)
Magen, Osnat; Tessler, Nir
2017-05-01
We use device modelling for studying the losses introduced by metallic electrodes in organic solar cells' device structure. We first discuss the inclusion of pinning at the integer charge transfer state in device models, with and without using the image charge potential. In the presence of disorder, the space charge introduced due to the image potential enhances the pinning by more than 0.2 eV. The explicit introduction of the image potential creates band-gap narrowing at the contact, thus affecting both dark leakage current and photo conversion efficiency. We find that there are two regimes in which the contacts may limit the performance. For low (moderate) barriers, the contacts introduce minority carrier recombination at the contacts that adds to the bulk recombination channels. Only for high barriers, the contacts directly limit the open circuit voltage and impose a value that is equal to the contact's energy difference. Examining the device structures with blocking layers, we find that these are mainly useful for the low to moderate contacts' barriers and that for the high barrier case, the enhancement of open circuit voltage may be accompanied by the introduction of serial resistance or S shape.
Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell
Katerski, Atanas; Oja Acik, Ilona; Mere, Arvo; Mikli, Valdek; Krunks, Malle
2016-01-01
Chemical spray pyrolysis (CSP) is a fast wet-chemical deposition method in which an aerosol is guided by carrier gas onto a hot substrate where the decomposition of the precursor chemicals occurs. The aerosol is produced using an ultrasonic oscillator in a bath of precursor solution and guided by compressed air. The use of the ultrasonic CSP resulted in the growth of homogeneous and well-adhered layers that consist of submicron crystals of single-phase Sb2S3 with a bandgap of 1.6 eV if an abundance of sulfur source is present in the precursor solution (SbCl3/SC(NH2)2 = 1:6) sprayed onto the substrate at 250 °C in air. Solar cells with glass-ITO-TiO2-Sb2S3-P3HT-Au structure and an active area of 1 cm2 had an open circuit voltage of 630 mV, short circuit current density of 5 mA/cm2, a fill factor of 42% and a conversion efficiency of 1.3%. Conversion efficiencies up to 1.9% were obtained from solar cells with smaller areas. PMID:28144515
RF lockout circuit for electronic locking system
NASA Astrophysics Data System (ADS)
Becker, Earl M., Jr.; Miller, Allen
1991-02-01
An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.
Digital automatic gain amplifier
NASA Technical Reports Server (NTRS)
Holley, L. D.; Ward, J. O. (Inventor)
1978-01-01
A circuit is described for adjusting the amplitude of a reference signal to a predetermined level so as to permit subsequent data signals to be interpreted correctly. The circuit includes an operational amplifier having a feedback circuit connected between an output terminal and an input terminal; a bank of relays operably connected to a plurality of resistors; and a comparator comparing an output voltage of the amplifier with a reference voltage and generating a compared signal responsive thereto. Means is provided for selectively energizing the relays according to the compared signal from the comparator until the output signal from the amplifier equals to the reference signal. A second comparator is provided for comparing the output of the amplifier with a second voltage source so as to illuminate a lamp when the output signal from the amplifier exceeds the second voltage.
NASA Astrophysics Data System (ADS)
Gao, Yueyue; Yang, Yulin; Zhang, Yong
2017-12-01
A novel donor-acceptor type conjugated polymer PTBFTPD based on two-dimensional (2D) conjugated alkylthienyl substituted thieno[2,3-f]benzofuran (TBF) and thienopyrroledione (TPD) unit, was synthesized and applied as donor material for bulk heterojunction solar cells. The novol polymer possesses a narrow bandgap of 1.83 eV, a deep HOMO energy level (-5.64 eV) and a closer π-π stacking. After conventional devices were fabricated using PTBFTPD as donor blending with PC70BM as acceptor, a power conversion efficiency (PCE) of 4.33% with a high open circuit voltage (Voc) of 1.09 V was obtained. The result indicates the promising potential of thieno [2, 3-f] benzofuran unit for high efficient polymer solar cells with a high voltage.
High-mobility ambipolar ZnO-graphene hybrid thin film transistors.
Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok
2014-02-11
In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm(2)/V·s, and a high on-off ratio of 10(5). The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs.
Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui
2017-08-16
Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.
Analysis of future generation solar cells and materials
NASA Astrophysics Data System (ADS)
Yamaguchi, Masafumi; Zhu, Lin; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Tampo, Hitoshi; Shibata, Hajime; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki
2018-04-01
The efficiency potentials of future generation solar cells such as wide bandgap chalcopyrite, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe), multi quantum well (MQW) and quantum dot (QD) solar cells are discussed on the basis of external radiative efficiency (ERE), open-circuit voltage loss, fill factor loss, and nonradiative recombination losses. CZTS and CZTSSe solar cells have efficiency potentials of more than 20% owing to the improvement in ERE from about 0.001 to 1%. MQW and QD cells have efficiency potentials of 24.8%, and 25.8% owing to the improvement in ERE from around 0.01 to 0.1%, and 1%, respectively. In this paper, the effects of nonradiative recombination on the properties of future generation solar cells are discussed.
Study on sensing property of one-dimensional ring mirror-defect photonic crystal
NASA Astrophysics Data System (ADS)
Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang
2018-02-01
Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.
Pneumatic oscillator circuits for timing and control of integrated microfluidics.
Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E
2013-11-05
Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.
Investigation of angular dependence on photonic bandgap for 1-D photonic crystal
NASA Astrophysics Data System (ADS)
Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.
2018-05-01
In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.
Tsang, Sai-Wing; Chen, Song; So, Franky
2013-05-07
Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrically dependent bandgaps in graphene on hexagonal boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V.; Recine, G.
2014-03-31
We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for openingmore » and modulating a bandgap in graphene as high as several hundred meV.« less
Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications.
Matsuo, Hiroki; Noguchi, Yuji; Miyayama, Masaru
2017-08-08
Photoferroelectrics offer unique opportunities to explore light energy conversion based on their polarization-driven carrier separation and above-bandgap voltages. The problem associated with the wide bandgap of ferroelectric oxides, i.e., the vanishingly small photoresponse under visible light, has been overcome partly by bandgap tuning, but the narrowing of the bandgap is, in principle, accompanied by a substantial loss of ferroelectric polarization. In this article, we report an approach, 'gap-state' engineering, to produce photoferroelectrics, in which defect states within the bandgap act as a scaffold for photogeneration. Our first-principles calculations and single-domain thin-film experiments of BiFeO 3 demonstrate that gap states half-filled with electrons can enhance not only photocurrents but also photovoltages over a broad photon-energy range that is different from intermediate bands in present semiconductor-based solar cells. Our approach opens a promising route to the material design of visible-light-active ferroelectrics without sacrificing spontaneous polarization.Overcoming the optical transparency of wide bandgap of ferroelectric oxides by narrowing its bandgap tends to result in a loss of polarization. By utilizing defect states within the bandgap, Matsuo et al. report visible-light-active ferroelectrics without sacrificing polarization.
Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2014-12-01
In this paper we propose various types of two-dimensional (2D) square zigzag lattice structures, and we study their bandgaps and directional propagation of elastic waves. The band structures and the transmission spectra of the systems are calculated by using the finite element method. The effects of the geometry parameters of the 2D-zigzag lattices on the bandgaps are investigated and discussed. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. Multiple wide complete bandgaps are found in a wide porosity range owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the systems. The deformed displacement fields of the transient response of finite structures subjected to time-harmonic loads are presented to show the directional wave propagation. The research in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.
NASA Astrophysics Data System (ADS)
Yan, Shi-Li; Xie, Zhi-Jian; Chen, Jian-Hao; Taniguchi, Takashi; Watanabe, Kenji
2017-03-01
The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10V/nm to 0.83V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronics, thermoelectric power generation and thermal imaging.
Common source cascode amplifiers for integrating IR-FPA applications
NASA Technical Reports Server (NTRS)
Woolaway, James T.; Young, Erick T.
1989-01-01
Space based astronomical infrared measurements present stringent performance requirements on the infrared detector arrays and their associated readout circuitry. To evaluate the usefulness of commercial CMOS technology for astronomical readout applications a theoretical and experimental evaluation was performed on source follower and common-source cascode integrating amplifiers. Theoretical analysis indicates that for conditions where the input amplifier integration capacitance is limited by the detectors capacitance the input referred rms noise electrons of each amplifier should be equivalent. For conditions of input gate limited capacitance the source follower should provide lower noise. Measurements of test circuits containing both source follower and common source cascode circuits showed substantially lower input referred noise for the common-source cascode input circuits. Noise measurements yielded 4.8 input referred rms noise electrons for an 8.5 minute integration. The signal and noise gain of the common-source cascode amplifier appears to offer substantial advantages in acheiving predicted noise levels.
Open-loop digital frequency multiplier
NASA Technical Reports Server (NTRS)
Moore, R. C.
1977-01-01
Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Oshima, Ryuji; France, Ryan
To advance the state-of-the-art in III-V multijunction solar cells towards high concentration efficiencies approaching 50%, development of a high-quality ~1.7 eV second junction solar cell is of key interest for integration in five or more junction devices. Quaternary GalnAsP solar cells grown lattice-matched on GaAs allows bandgap tunability in the range from 1.42 to 1.92 eV and offers an attractive Al-free alternative to conventional AlGaAs solar cells. In this work, we investigate the role of growth temperature towards understanding the optimal growth window for realizing high-quality GalnAsP alloys. We demonstrate bandgap tunability from 1.6 to 1.8 eV in GalnAsP alloysmore » for compositions close to the miscibility gap, while still maintaining lattice-matched condition to GaAs. We perform an in-depth investigation to understand the impact of varying base thickness and doping concentration on the carrier collection and performance of these 1.7 eV GalnAsP solar cells. The photo-response of these cells is found to be very sensitive to p-type zinc dopant incorporation in the base layer. We demonstrate prototype 1.7 eV GalnAsP solar cell designs that leverage enhanced depletion width as an effective method to overcome this issue and boost long-wavelength carrier collection. Short-circuit current density (JSC) measured in field-aided devices were as high as 17.25 m A/cm2. The best GalnAsP solar cell in this study achieved an efficiency of 17.2% with a JSC of 17 m A/cm2 and a fill-factor of 86.4%. The corresponding open-circuit voltage (VOC) 1.7 eV measured on this cell represents the highest Voc reported for a 1.7 eV GalnAsP solar cell. These initial cell results are encouraging and highlight the potential of Al-free GalnAsP solar cells for integration in the next generation of III-V multijunction solar cells.« less
High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
Wanlass, Mark W [Golden, CO
2011-11-29
A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.
High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters
Wanlass, Mark W
2014-05-27
A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.
Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells
NASA Astrophysics Data System (ADS)
Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu
2017-07-01
Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.
NASA Astrophysics Data System (ADS)
Vesborg, Peter C.; Bae, Dowon; Seger, Brian J.; Chorkendorff, Ib; Hansen, Ole; Pedersen, Thomas; Mei, Bastian; Frydendal, Rasmus
2016-10-01
Silicon is a promising contender in the race for low-bandgap absorbers for use in a solar driven monolithic water splitting cell (PEC). However, given its role as the low-bandgap material the silicon must sit behind the corresponding high-bandgap material and as such, it will be exposed to (red) light from the dry back-side - not from the wet front side, where the electrochemistry takes place.[1,2] Depending on the configuration of the selective contacts (junctions) this may lead to compromises between high absorption and low recombination.[2,3] We discuss the tradeoffs and compare modeling results to measurements. Regardless of configuration, the wet surface of the silicon is prone to passivation or corrosion and must therefore be carefully protected in service in order to remain active. We demonstrate the use of TiO2 as an effective protection layer for both photoanodes and photocathodes in acid electrolyte [4] and NiCoOx for photoanodes in alkaline electrolyte. [3] References: [1]: B. Seger et alia, Energ. Environ. Sci., 7 (8), 2397-2413 (2014), DOI:10.1039/c4ee01335b [2]: D. Bae et alia, Energ. Environ. Sci., 8 (2), 650-660 (2015), DOI: 10.1039/c4ee03723e [3]: D. Bae et alia, submitted, (2016) [4]: B. Mei et alia, J. Phys. Chem. C., 119 (27), 15019-15027 (2015), DOI: 10.1021/acs.jpcc.5b04407
Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur
2016-06-01
Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1-x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices.
Transparent contacts for stacked compound photovoltaic cells
Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis
2016-11-29
A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.
Efficient CsF interlayer for high and low bandgap polymer solar cell
NASA Astrophysics Data System (ADS)
Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan
2018-02-01
Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.
Johanson, Edward W.; Simms, Richard
1981-01-01
A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.
Johanson, E.W.; Simms, R.
A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.
Lees, G.W.; McCormick, E.D.
1962-05-22
A tripping circuit employing a magnetic amplifier for tripping a reactor in response to power level, period, or instrument failure is described. A reference winding and signal winding are wound in opposite directions on the core. Current from an ion chamber passes through both windings. If the current increases at too fast a rate, a shunt circuit bypasses one or the windings and the amplifier output reverses polarity. (AEC)
A comparative density functional study on electrical properties of layered penta-graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg
We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Dipankar, E-mail: dip2602@gmail.com; Porwal, S.; Sharma, T. K., E-mail: tarun@rrcat.gov.in
Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pumpmore » beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.« less
Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers.
Jana, Dipankar; Porwal, S; Sharma, T K; Kumar, Shailendra; Oak, S M
2014-04-01
Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.
Method of fabricating bifacial tandem solar cells
Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael
2014-10-07
A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.
Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael
2016-06-14
A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.
Bandgap tuning and enhancement of seebeck coefficient in one dimensional GeSe
NASA Astrophysics Data System (ADS)
Kagdada, Hardik L.; Dabhi, Shweta D.; Jha, Prafulla K.
2018-04-01
The first principles based density functional theory is used for tuning the electronic bandgap and thermoelectric properties of bulk, two dimensional (2D) and one dimensional (1D) GeSe. There is an increase in the bandgap going from bulk to 1D with indirect to direct bandgap transition. There is a dramatic change in Seebeck coefficient (S) for GeSe going from bulk to 1D at 300 K. The electrical conductivity and electronic thermal conductivity are lower for 1D GeSe compared to the bulk GeSe due to larger bandgap in the case of 1D GeSe.
Theoretical research on bandgap of H-saturated Ga1-xAlxN nanowires
NASA Astrophysics Data System (ADS)
Xia, Sihao; Liu, Lei; Kong, Yike; Wang, Honggang; Wang, Meishan
2017-01-01
Based on first-principles plane-wave ultra-soft pseudopotential method, bandgaps of Ga1-xAlxN nanowires with different diameters and different Al constituents are calculated. After the optimization of the model, the bandgaps are achieved. According to the results, the bandgap of Ga1-xAlxN decreases with increasing diameter and finally, closed to that of the bulk. In addition, with increasing Al constituent, the bandgaps of Ga1-xAlxN nanowires increase. However, the amount of the increase is lower than that of the bulk Ga1-xAlxN with the increase of Al constituent.
Ultrawide bandgap pentamode metamaterials with an asymmetric double-cone outside profile
NASA Astrophysics Data System (ADS)
Chu, Yangyang; Li, Yucheng; Cai, Chengxin; Liu, Guangshuan; Wang, Zhaohong; Xu, Zhuo
2018-03-01
The band-gap characteristic is an important feature of acoustic metamaterials, which has important theoretical and practical significance in acoustic devices. Pentamode metamaterials (PMs) with phonon band-gap characteristics based on an asymmetric double-cone outside profile are presented and studied in this paper. The phonon band structures of these PMs are calculated by using the finite element method. In addition to the single-mode band-gaps, the complete 3D band-gaps are also obtained by changing the outside profile of the double-cone. Moreover, by adjusting the outside profile and the diameter of the double-cone to reduce the symmetry of the structure, the complete 3D band-gap can be widened. Further parametric analysis is presented to investigate the effect of geometrical parameters on the phonon band-gap property, the numerical simulations show that the maximum relative bandwidth is expanded by 15.14 times through reducing the symmetry of the structure. This study provides a possible way for PMs to control elastic wave propagation in the field of depressing vibration and noise, acoustic filtering and acoustic cloaking.
Bandgaps and directional properties of two-dimensional square beam-like zigzag lattices
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2014-12-01
In this paper we propose four kinds of two-dimensional square beam-like zigzag lattice structures and study their bandgaps and directional propagation of elastic waves. The band structures are calculated by using the finite element method. Both the in-plane and out-of-plane waves are investigated simultaneously via the three-dimensional Euler beam elements. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. The effects of the geometry parameters of the xy- and z-zigzag lattices on the bandgaps are investigated and discussed. Multiple complete bandgaps are found owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the periodic systems. The deformed displacement fields of the harmonic responses of a finite lattice structure subjected to harmonic loads at different positions are illustrated to show the directional wave propagation. An extension of the proposed concept to the hexagonal lattices is also presented. The research work in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.
Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; ...
2017-01-03
Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. We show that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distributionmore » determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. Lastly, the absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.« less
Oversized 250 GHz Traveling Wave Tube with a Photonic Band-Gap Structure
NASA Astrophysics Data System (ADS)
Rosenzweig, Guy; Shapiro, Michael A.; Temkin, Richard J.
2017-10-01
The challenge in manufacturing traveling wave tubes (TWTs) at high frequencies is that the sizes of the structures scale with, and are much smaller than, the wavelength. We have designed and are building a 250 GHz TWT that uses an oversized structure to overcome fabrication and power handling issues that result from the small dimensions. Using a photonic band-gap (PBG) structure, we succeeded to design the TWT with a beam tunnel diameter of 0.72 mm. The circuit consists of metal plates with the beam tunnel drilled down their center. Twelve posts are protruding on one side of each plate in a triangular array and corresponding sockets are drilled on the other side. The posts of each plate are inserted into the sockets of an adjacent plate, forming a PBG lattice. The vacuum spacing between adjacent plates forms the `PBG cavity''. The full structure is a series of PBG coupled cavities, with microwave power coupling through the beam tunnel. The PBG lattice provides confinement of microwave power in each of the cavities and can be tuned to give the right amount of diffraction per cavity so that no sever is needed to suppress oscillations in the operating mode. CST PIC simulations predict over 38 dB gain with 67 W peak power, using a 30 kV, 310 mA electron beam, 0.6 mm in diameter. Research supported by the AFOSR Program on Plasma and Electro-Energetic Physics and by the NIH National Institute of Biomedical Imaging and Bioengineering.
Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers
NASA Astrophysics Data System (ADS)
Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.
Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.
Hyperuniform disordered photonic bandgap materials, from microwave to infrared wavelength regime
NASA Astrophysics Data System (ADS)
Man, Weining
Recently, we have introduced a new class of hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's Fourier transform to be continuous, isotropic and stealthy. Their structure factor S (k) is equal to zero for small kand exhibits a broad ring of maximum values around a characteristic wave-length range. Experimentally, an isotropic complete PBG (at all angles and for all polarizations) in an alumina-based HUD structure and single-polarized PBGs for plastic-based HUD structure have been demonstrated. Using measured and simulated transmission and phase delay information through these HUD structures, we also unfolded their band structures and reconstructed the effective dispersion relations of propagating electromagnetic modes in them. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. In the microwave regime, we have shown the creation of freeform waveguides, which can channel photons robustly along arbitrarily curved paths and around sharp bends, and be decorated with defects to produce sharply resonant structures useful for filtering and frequency splitting. Recent simulation and experimental results for waveguides and modulators based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. NSF DMR-1308084, EPSRC (UK) DTG Grant KD5050, EPSRC (UK) Strategic Equipment Grant EP/M008576/1, NSF SBIR-1345168, NSF MRI-1040444.
NASA Astrophysics Data System (ADS)
Mulder, Watson
Heterojunction with Intrinsic Thin-layer (HIT) solar cells are an important photovoltaic technology, recently reaching record power conversion efficiencies. HIT cells hold advantages over the conventional crystalline Si solar cells, such as their fabrication at lower temperatures and their shorter fabrication time. It is important to understand the electronic characteristics and transport properties of HIT cells to continue to improve their efficiencies. The fundamental measurements of a HIT solar cell with an innovative n+/p/p+ structure are presented. We also report on a series of these HIT cells fabricated on wafers with different doping concentrations, observing the relationship between doping concentration and characteristics such as open-circuit voltage and diffusion length. Nanocrystalline Silicon-Germanium (nc-SiGe) is a useful material for photovoltaic devices and photodetectors. The material features good absorption extending to the infrared region even in thin layers. Its bandgap can be adjusted between that of Si (˜1.1 eV) and Ge (˜0.7 eV) by varying the alloy composition ratio during deposition. However, there has been very little previous work to measure and understand the defect density spectrum of nc-SiGe. Defects are responsible for controlling the recombination and thus the performance of solar cell devices. Capacitance-Frequency measurements at various temperatures are used in order to estimate the trap density profile within the bandgap of nc-SiGe.
Kan, Bin; Zhang, Jiangbin; Liu, Feng; Wan, Xiangjian; Li, Chenxi; Ke, Xin; Wang, Yunchuang; Feng, Huanran; Zhang, Yamin; Long, Guankui; Friend, Richard H; Bakulin, Artem A; Chen, Yongsheng
2018-01-01
Organic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward near-IR region, down to ≈860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the V oc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (≈400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T:NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor
NASA Astrophysics Data System (ADS)
Hazarika, D.; Pegu, D. S.
2013-03-01
This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.
The Art of Electronics - 2nd Edition
NASA Astrophysics Data System (ADS)
Horowitz, Paul; Hill, Winfield
1989-09-01
This is the thoroughly revised and updated second edition of the hugely successful The Art of Electronics. Widely accepted as the single authoritative text and reference on electronic circuit design, both analog and digital, the original edition sold over 125,000 copies worldwide and was translated into eight languages. The book revolutionized the teaching of electronics by emphasizing the methods actually used by citcuit designers - a combination of some basic laws, rules to thumb, and a large nonmathematical treatment that encourages circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits. The best self-teaching book and reference book in electronics Simply indispensable, packed with essential information for all scientists and engineers who build electronic circuits Totally rewritten chapters on microcomputers and microprocessors The first edition of this book has sold over 100,000 copies in seven years, it has a market in virtually all research centres where electronics is important
Simple Electronic Analog of a Josephson Junction.
ERIC Educational Resources Information Center
Henry, R. W.; And Others
1981-01-01
Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)
Review of betavoltaic energy conversion
NASA Astrophysics Data System (ADS)
Olsen, Larry C.
1993-05-01
Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.
Review of betavoltaic energy conversion
NASA Technical Reports Server (NTRS)
Olsen, Larry C.
1993-01-01
Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.
Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications.
Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo; Kamiya, Toshio; Padture, Nitin P
2018-02-16
The bandgap is the most important physical property that determines the potential of semiconductors for photovoltaic (PV) applications. This Minireview discusses the parameters affecting the bandgap of perovskite semiconductors that are being widely studied for PV applications, and the recent progress in the optimization of the bandgaps of these materials. Perspectives are also provided for guiding future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bandgap profiling in CIGS solar cells via valence electron energy-loss spectroscopy
NASA Astrophysics Data System (ADS)
Deitz, Julia I.; Karki, Shankar; Marsillac, Sylvain X.; Grassman, Tyler J.; McComb, David W.
2018-03-01
A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous for relatively narrow bandgap materials and/or STEM systems with modest resolution capabilities (i.e., >100 meV), compromises absolute accuracy to provide a straightforward route for the correlation of local electronic structure trends with nanoscale chemical and physical structure/microstructure within semiconductor materials and devices.
NASA Astrophysics Data System (ADS)
Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal
2016-08-01
Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.
ISO Guest Observer Data Analysis and LWS Instrument Team Activities
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Smith, Howard A.
2003-01-01
We have designed and fabricated infrared filters for use at wavelengths greater than or equal to 15 microns. Unlike conventional dielectric filters used at the short wavelengths, ours are made from stacked metal grids, spaced at a very small fraction of the performance wavelengths. The individual lattice layers are gold, the spacers are polyimide, and they are assembled using integrated circuit processing techniques; they resemble some metallic photonic band-gap structures. We simulate the filter performance accurately, including the coupling of the propagating, near-field electromagnetic modes, using computer aided design codes. We find no anomalous absorption. The geometrical parameters of the grids are easily altered in practice, allowing for the production of tuned filters with predictable useful transmission characteristics. Although developed for astronomical instrumentation, the filters are broadly applicable in systems across infrared and terahertz bands.
High-mobility ambipolar ZnO-graphene hybrid thin film transistors
Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok
2014-01-01
In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm2/V·s, and a high on-off ratio of 105. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs. PMID:24513629
Designer Infrared Filters using Stacked Metal Lattices
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Rebbert, M.; Sternberg, O.
2003-01-01
We have designed and fabricated infrared filters for use at wavelengths greater than or equal to 15 microns. Unlike conventional dielectric filters used at the short wavelengths, ours are made from stacked metal grids, spaced at a very small fraction of the performance wavelengths. The individual lattice layers are gold, the spacers are polyimide, and they are assembled using integrated circuit processing techniques; they resemble some metallic photonic band-gap structures. We simulate the filter performance accurately, including the coupling of the propagating, near-field electromagnetic modes, using computer aided design codes. We find no anomalous absorption. The geometrical parameters of the grids are easily altered in practice, allowing for the production of tuned filters with predictable useful transmission characteristics. Although developed for astronomical instrumentation, the filters arc broadly applicable in systems across infrared and terahertz bands.
Yang, Chengdong; Fang, Renren; Yang, Xiongfa; Chen, Ru; Gao, Jianhua; Fan, Hanghong; Li, Hongxiang; Hu, Wenping
2018-04-04
It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole- and electron-transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron-withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm 2 V -1 s -1 , which suggested that these copolymers are promising ambipolar semiconductor materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Berning, D.
1981-01-01
Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.
1982 International Symposium on Fault-Tolerant Computing (FTCS-12) Preprints.
1982-04-01
fixed figure. This is a big refered to as full weight generators. Circuit NM2 advantage for those applications where the circuits in Fig.2 is a two...codes _ 20__A_ very attractive for practical applications . -- : 12 S1 I--- SACKNOWLEDGMENTS --(2 This work Was supported in part by a research S261-1...Grant --I MCS-790864. The author wishes to thank Professor -: E. J. McCluskey and Professor J. F. Wakerly for their valuable comments. REFERENCES i
Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors
NASA Astrophysics Data System (ADS)
Shi, Fangyi; Si, M. S.; Xie, Jiafeng; Mi, Kui; Xiao, Chuntao; Luo, Qiangjun
2017-12-01
Recently, 27 new half-Heusler compounds XYZ (X = Co, Rh, Fe, Ru, Ni; Y = Sc, Ti, V; Z = P, As, Sb, Si, Ge, Sn, Al, Ga, In) with 18 valence electrons are proposed and their bandgaps span a wide range of 0.10-1.39 eV, which have a great potential of applications in varied areas. Note that the bandgaps are predicted on the gradient-corrected Perdew-Burke-Ernzerhof functional, which underestimates the magnitude of bandgap. To obtain the accurate bandgaps, we recalculate them based on the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. Our results show that the nonlocal correction from the HSE06 functional mainly acts on the two lowest conduction bands. The variation in energy separation between these two bands dominates the relative increment of bandgap. More importantly, the band ordering is distinguished in the presence of HSE06 functional, where the dz2 orbital exhibits. When the lattice constant varies, such a band ordering can be inverted, similar to the case of topological insulators. In addition, we find an abnormal behavior of the bandgap related to the Pauling electronegativity difference between the X- and Z-sites, which arises from the delocalization of charge on the Y-site. We expect that our work can provide guidance to the study of bandgap based on the hybrid density functional theory in the half-Heusler semiconductors.
Circuit increases capability of hysteresis synchronous motor
NASA Technical Reports Server (NTRS)
Markowitz, I. N.
1967-01-01
Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.
Tunable bandgaps in a deployable metamaterial
NASA Astrophysics Data System (ADS)
Nanda, Aditya; Karami, M. Amin
2018-03-01
In this manuscript, we envision deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict profound changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase significantly. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, significant increase in bandwidth of the odd-numbered bandgaps occurs even at small fold angles- the bandwidth for the first and third bandgaps effectively double in size (increase by 100%) at Ψ = 20 deg relative to those at Ψ = 0. This has important ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is an important parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have important ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide important clues about the mechanical parameters of the structure.
Tunable bandgaps in a deployable metamaterial
NASA Astrophysics Data System (ADS)
Nanda, Aditya; Karami, M. A.
2018-06-01
In this manuscript, we investigate deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict notable changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, non-trivial increases in bandwidth of the odd-numbered bandgaps occurs even at small fold angles-the bandwidth for the first and third bandgaps effectively double in size (increase by 100 %) at Ψ = 20 deg relative to those at Ψ = 0. This could have ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is a pertinent parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide clues about the mechanical parameters of the structure.
Kenney, Terry A.
2010-01-01
Operational procedures at U.S. Geological Survey gaging stations include periodic leveling checks to ensure that gages are accurately set to the established gage datum. Differential leveling techniques are used to determine elevations for reference marks, reference points, all gages, and the water surface. The techniques presented in this manual provide guidance on instruments and methods that ensure gaging-station levels are run to both a high precision and accuracy. Levels are run at gaging stations whenever differences in gage readings are unresolved, stations may have been damaged, or according to a pre-determined frequency. Engineer's levels, both optical levels and electronic digital levels, are commonly used for gaging-station levels. Collimation tests should be run at least once a week for any week that levels are run, and the absolute value of the collimation error cannot exceed 0.003 foot/100 feet (ft). An acceptable set of gaging-station levels consists of a minimum of two foresights, each from a different instrument height, taken on at least two independent reference marks, all reference points, all gages, and the water surface. The initial instrument height is determined from another independent reference mark, known as the origin, or base reference mark. The absolute value of the closure error of a leveling circuit must be less than or equal to ft, where n is the total number of instrument setups, and may not exceed |0.015| ft regardless of the number of instrument setups. Closure error for a leveling circuit is distributed by instrument setup and adjusted elevations are determined. Side shots in a level circuit are assessed by examining the differences between the adjusted first and second elevations for each objective point in the circuit. The absolute value of these differences must be less than or equal to 0.005 ft. Final elevations for objective points are determined by averaging the valid adjusted first and second elevations. If final elevations indicate that the reference gage is off by |0.015| ft or more, it must be reset.
High performance, high bandgap, lattice-mismatched, GaInP solar cells
Wanlass, Mark W; Carapella, Jeffrey J; Steiner, Myles A
2016-11-01
High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.
High performance, high bandgap, lattice-mismatched, GaInP solar cells
Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.
2014-07-08
High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.
2015-12-14
Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less
Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pei; Zaslavsky, Alexander; Longo, Paolo
2016-01-07
Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less
Singh, Bipin K; Pandey, Praveen C
2016-07-20
Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.
Rangel-Abundis, Alberto
2006-01-01
Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Soren A.; Glynn, Stephen; Kanevce, Ana
World-record power conversion efficiencies for Cu(In,Ga)Se2 (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ~40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in themore » electronic potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ~10 um, which is ~4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.« less
High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W.
1999-03-01
High performance, lattice-mismatched p/n InGaAs/InP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1{percent} between the active InGaAs cell structure and the InP substrate. 1{times}1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6{percent}more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6{times}10{sup {minus}6}&hthinsp;A/cm{sup 2}. Jo values as low as 4.1{times}10{sup {minus}7}&hthinsp;A/cm{sup 2} were also observed with a conventional planar cell geometry. {copyright} {ital 1999 American Institute of Physics.}« less
A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology †
Hancock, Bruce; Nikzad, Shouleh; Bell, L. Douglas; Kroep, Kees; Charbon, Edoardo
2018-01-01
Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology. PMID:29401655
DOE Office of Scientific and Technical Information (OSTI.GOV)
France, R. M.; Geisz, J. F.; Steiner, M. A.
Surface crosshatch roughness typically develops during the growth of lattice-mismatched compositionally graded buffers and can limit misfit dislocation glide. In this study, the crosshatch roughness during growth of a compressive GaInP/GaAs graded buffer is reduced by increasing the phosphine partial pressure throughout the metamorphic growth. Changes in the average misfit dislocation length are qualitatively determined by characterizing the threading defect density and residual strain. The decrease of crosshatch roughness leads to an increase in the average misfit dislocation glide length, indicating that the surface roughness is limiting dislocation glide. Growth rate is also analyzed as a method to reduce surfacemore » crosshatch roughness and increase glide length, but has a more complicated relationship with glide kinetics. Using knowledge gained from these experiments, high quality inverted GaInAs 1 eV solar cells are grown on a GaInP compositionally graded buffer with reduced roughness and threading dislocation density. The open circuit voltage is only 0.38 V lower than the bandgap potential at a short circuit current density of 15 mA/cm{sup 2}, suggesting that there is very little loss due to the lattice mismatch.« less
Electrochemically controlled charging circuit for storage batteries
Onstott, E.I.
1980-06-24
An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.
Polaron effect on the bandgap modulation in monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Xiao, Yao; Li, Zhi-Qing; Wang, Zi-Wu
2017-12-01
We theoretically study the bandgap modulation in monolayer transition metal dichalcogenides (TMDs) originating from the carrier-optical phonon coupling in the Fröhlich polaron model, in which both of the surface optical phonons modes induced by the polar substrate and the intrinsic longitudinal optical phonons modes have been taken into account. We find that the modulated magnitude of the bandgap is in the range of 100-500 meV by altering different polar substrates and tuning the internal distance between TMDs and polar substrate. The large tunability of the bandgap not only provides a possible explanation for the experimental measurements regarding the dielectric environmental sensitivity of the bandgap, but also holds promise for potential applications in optoelectronics and photovoltaics.
Bandgap tuning in highly c-axis oriented Zn1-xMgxO thin films
NASA Astrophysics Data System (ADS)
Kumar, Parmod; Malik, Hitendra K.; Ghosh, Anima; Thangavel, R.; Asokan, K.
2013-06-01
We propose Mg doping in zinc oxide (ZnO) films for realizing wider optical bandgap in highly c-axis oriented Zn1-xMgxO (0 ≤ x ≤ 0.3) thin films. A remarkable enhancement of 25% in the bandgap by 30% Mg doping was achieved. The bandgap was tuned between 3.25 eV (ZnO) and 4.06 eV (Zn0.7Mg0.3O), which was further confirmed by density functional theory based wien2k simulation employing a combined generalized gradient approximation with scissor corrections. The change of stress and crystallite size in these films were found to be the causes for the observed blueshift in the bandgap.
Research on bandgaps in two-dimensional phononic crystal with two resonators.
Gao, Nansha; Wu, Jiu Hui; Yu, Lie
2015-02-01
In this paper, the bandgap properties of a two-dimensional phononic crystal with the two resonators is studied and embedded in a homogenous matrix. The resonators are not connected with the matrix but linked with connectors directly. The dispersion relationship, transmission spectra, and displacement fields of the eigenmodes of this phononic crystal are studied with finite-element method. In contrast to the phononic crystals with one resonators and hollow structure, the proposed structures with two resonators can open bandgaps at lower frequencies. This is a very interesting and useful phenomenon. Results show that, the opening of the bandgaps is because of the local resonance and the scattering interaction between two resonators and matrix. An equivalent spring-pendulum model can be developed in order to evaluate the frequencies of the bandgap edge. The study in this paper is beneficial to the design of opening and tuning bandgaps in phononic crystals and isolators in low-frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantum well multijunction photovoltaic cell
Chaffin, R.J.; Osbourn, G.C.
1983-07-08
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Quantum well multijunction photovoltaic cell
Chaffin, Roger J.; Osbourn, Gordon C.
1987-01-01
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.
Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan
2018-04-19
Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.
Quantum Transport and Non-Hermiticity on Flat-Band Lattices
NASA Astrophysics Data System (ADS)
Park, Hee Chul; Ryu, Jung-Wan; Myoung, Nojoon
2018-04-01
We investigate quantum transport in a flat-band lattice induced in a twisted cross-stitch lattice with Hermitian or non-Hermitian potentials, with a combination of parity and time-reversal symmetry invariant. In the given system, the transmission probability demonstrates a resonant behavior on the real part of the energy bands. Both of the potentials break the parity symmetry, which lifts the degeneracy of the flat and dispersive bands. In addition, non-Hermiticity conserving PT-symmetry induces a transition between the unbroken and broken PT-symmetric phases through exceptional points in momentum space. Characteristics of non-Hermitian and Hermitian bandgaps are distinguishable: The non-Hermitian bandgap is induced by separation toward complex energy, while the Hermitian bandgap is caused by the expelling of available states into real energy. Deviation of the two bandgaps follows as a function of the quartic power of the induced potential. It is notable that non-Hermiticity plays an important role in the mechanism of generating a bandgap distinguishable from a Hermitian bandgap.
Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling
2016-06-28
Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.
Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V
2011-07-01
This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.
Hearing aid malfunction detection system
NASA Technical Reports Server (NTRS)
Kessinger, R. L. (Inventor)
1977-01-01
A malfunction detection system for detecting malfunctions in electrical signal processing circuits is disclosed. Malfunctions of a hearing aid in the form of frequency distortion and/or inadequate amplification by the hearing aid amplifier, as well as weakening of the hearing aid power supply are detectable. A test signal is generated and a timed switching circuit periodically applies the test signal to the input of the hearing aid amplifier in place of the input signal from the microphone. The resulting amplifier output is compared with the input test signal used as a reference signal. The hearing aid battery voltage is also periodically compared to a reference voltage. Deviations from the references beyond preset limits cause a warning system to operate.
Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes
ERIC Educational Resources Information Center
Wagner, Eugene P., II
2016-01-01
A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…
Wide-Bandgap MOSFET Research with Virginia Tech Graduate Students |
Advanced Manufacturing Research | NREL Wide Bandgap MOSFET Research with Virginia Tech Wide -Bandgap MOSFET Research with Virginia Tech Graduate Students Along with graduate student fellows from Virginia Tech, NREL is researching aspects related to the reliability and prognostics of power electronic
Acoustic frequency filter based on anisotropic topological phononic crystals.
Chen, Ze-Guo; Zhao, Jiajun; Mei, Jun; Wu, Ying
2017-11-08
We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.
Photovoltaic measurement of bandgap narrowing in moderately doped silicon
NASA Astrophysics Data System (ADS)
del Alamo, Jesus A.; Swanson, Richard M.; Lietoila, Arto
1983-05-01
Solar cells have been fabricated on n-type and p-type moderately doped Si. The shrinkage of the Si bandgap has been obtained by measuring the internal quantum efficiency in the near infrared spectrum ( hv = 1.00-1.25 eV) around the fundamental absorption edge. The results agree with previous optical measurements of bandgap narrowing in Si. It is postulated that this optically-determined bandgap narrowing is the rigid shrinkage of the forbidden gap due to many-body effects. The "device bandgap narrowing" obtained by measuring the pn product in bipolar devices leads to discrepant values because (i) the density of states in the conduction and valence band is modified due to the potential fluctuations originated in the variations in local impurity density, and (ii) the influence of Fermi-Dirac statistics.
Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Justin; Chen, Changxin; Gong, Ming
Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edgesmore » throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for bandgap engineering of GNRs towards high on/off ratio and high on-state current GNR devices. First, we will develop a novel approach for the fabrication of high density GNR arrays (pitch <50 nm, tunable down to 30nm) with pre-defined edge orientation and smooth edges using a free standing nano-mask derived from diblock copolymer assembly for patterning of graphene sheets. Anisotropic graphene edges will be developed to afford smooth edges along crystallographic lattice directions. Then, we will fabricate GNR devices on flexible substrates and apply uniaxial strain to engineer the bandgap of the GNRs. The bandgap of GNRs could be increased by up to 50% under uniaxial strain according to theoretical calculations and will be investigated through electrical transport measurements. Micro-Raman spectroscopy of single GNRs and parallel arrays will be used to probe and quantify the uniaxial strain. Electrical measurements will be used to probe the on/off ratio of GNR FET devices and confirm the bandgap tuning effects. Finally, we plan to use dense parallel arrays of GNRs to demonstrate strained GNR field effect transistors with high on/off ratios and high on-state current, and compare strained GNR FETs with carbon nanotube and Si based field effect transistor (FET) devices.« less
A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory
NASA Astrophysics Data System (ADS)
Guo, Jiarong
2017-04-01
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).
Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan
2004-03-09
There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.
Conceptual Gaps in Circuits Textbooks: A Comparative Study
ERIC Educational Resources Information Center
Sangam, Deepika; Jesiek, Brent K.
2015-01-01
Many university-level electrical engineering courses continue to use textbooks as curriculum scaffolds, prescribed texts, and/or reference volumes. Textbook reliance is even more pronounced in courses that teach foundational principles of the discipline, such as introductory circuit theory. This paper reports on the conceptual coverage of…
Hybrid ZnO/phthalocyanine photovoltaic device with highly resistive ZnO intermediate layer.
Izaki, Masanobu; Chizaki, Ryo; Saito, Takamasa; Murata, Kazufumi; Sasano, Junji; Shinagawa, Tsutomu
2013-10-09
We report a hybrid photovoltaic device composed of a 3.3 eV bandgap zinc oxide (ZnO) semiconductor and metal-free phthalocyanine layers and the effects of the insertion of the highly resistive ZnO buffer layer on the electrical characteristics of the rectification feature and photovoltaic performance. The hybrid photovoltaic devices have been constructed by electrodeposition of the 300 nm thick ZnO layer in a simple zinc nitrate aqueous solution followed by vacuum evaporation of 50-400 nm thick-phthalocyanine layers. The ZnO layers with the resistivity of 1.8 × 10(3) and 1 × 10(8) Ω cm were prepared by adjusting the cathodic current density and were installed into the hybrid photovoltaic devices as the n-type and buffer layer, respectively. The phthalocyanine layers with the characteristic monoclinic lattice showed a characteristic optical absorption feature regardless of the thickness, but the preferred orientation changed depending on the thickness. The ZnO buffer-free hybrid 50 nm thick phthalocyanine/n-ZnO photovoltaic device showed a rectification feature but possessed a poor photovoltaic performance with a conversion efficiency of 7.5 × 10(-7) %, open circuit voltage of 0.041 V, and short circuit current density of 8.0 × 10(-5) mA cm(-2). The insertion of the ZnO buffer layer between the n-ZnO and phthalocyanine layers induced improvements in both the rectification feature and photovoltaic performance. The excellent rectification feature with a rectification ratio of 3188 and ideally factor of 1.29 was obtained for the hybrid 200 nm thick phthalocyanine/ZnO buffer/n-ZnO photovoltaic device, and the hybrid photovoltaic device possessed an improved photovoltaic performance with the conversion efficiency of 0.0016%, open circuit voltage of 0.31 V, and short circuit current density of 0.015 mA cm(-2).
2016-02-12
The Food and Drug Administration (FDA) is issuing a final order to redesignate membrane lung devices for long-term pulmonary support, a preamendments class III device, as extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure, and to reclassify the device to class II (special controls) in patients with acute respiratory failure or acute cardiopulmonary failure where other available treatment options have failed, and continued clinical deterioration is expected or the risk of death is imminent. A membrane lung device for long-term pulmonary support (>6 hours) refers to the oxygenator in an extracorporeal circuit used during long-term procedures, commonly referred to as extracorporeal membrane oxygenation (ECMO). Because a number of other devices and accessories are used with the oxygenator in the circuit, the title and identification of the regulation are revised to include extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure. Although an individual device or accessory used in an ECMO circuit may already have its own classification regulation when the device or accessory is intended for short-term use (<=6 hours), such device or accessory will be subject to the same regulatory controls applied to the oxygenator (i.e., class II, special controls) when evaluated as part of the ECMO circuit for long-term use (>6 hours). On its own initiative, based on new information, FDA is revising the classification of the membrane lung device for long-term pulmonary support.
Wang, Qi; Zhang, Shaoqing; Xu, Bowei; Ye, Long; Yao, Huifeng; Cui, Yong; Zhang, Hao; Yuan, Wenxia; Hou, Jianhui
2016-10-06
Alkylthio groups have received much attention in the polymer community for their molecular design applications in polymer solar cells. In this work, alkylthio substitution on the conjugated thiophene side chains in benzodithiophene (BDT) and benzodithiophenedione (BDD)-based photovoltaic polymer was used to improve the extinction coefficient. The introduction of alkylthio groups into the polymer increased its extinction coefficient while the HOMO levels, bandgaps, and absorption bands remained the same. Thus, the short circuit current density (J sc ) and the efficiency of the device were much better than those of the control device. Thus, introducing the alkylthio functional group in polymer is an effective method to tune the extinction coefficient of photovoltaic polymer. This provides a new path to improve photovoltaic performance without increasing active layer thickness, which will be very helpful to design advanced photovoltaic materials for high photovoltaic performance. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-driven visible-blind photodetector based on ferroelectric perovskite oxides
NASA Astrophysics Data System (ADS)
Li, Jian-kun; Ge, Chen; Jin, Kui-juan; Du, Jian-yu; Yang, Jing-ting; Lu, Hui-bin; Yang, Guo-zhen
2017-04-01
Ultraviolet photodetectors have attracted considerable interest for a variety of applications in health, industry, and science areas. Self-driven visible-blind photodetectors represent an appealing type of sensor, due to the reduced size and high flexibility. In this work, we employed BaTiO3 (BTO) single crystals with a bandgap of 3.2 eV for the realization of a self-driven ultraviolet detector, by utilizing the ferroelectric properties of BTO. We found that the sign of the photocurrent can be reversed by flipping the ferroelectric polarization, which makes the photodetector suitable for electrical manipulation. The photoelectric performance of this photodetector was systematically investigated in terms of rectification character, stability of short-circuit photocurrent, spectral response, and transient photoelectric response. Particularly, the self-driven photodetectors based on BTO showed an ultrafast response time about 200 ps. It is expected that the present work can provide a route for the design of photodetectors based on ferroelectric oxides.
Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators.
Li, Zhigang; Stan, Liliana; Czaplewski, David A; Yang, Xiaodong; Gao, Jie
2018-03-05
Wavelength-selective metamaterial absorbers in the mid-infrared range are demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical parameters of cross resonators in single-sized unit cells, near-perfect absorption with single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of two, three, or four cross resonators of different sizes in one unit cell enables broadband near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit omnidirectionality and weak dependence on incident polarization. The underlying mechanism of near-perfect absorption with cross resonators is further explained by the optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, thermal analysis is performed to study the heat generation and temperature increase in the cross resonator absorbers, while the energy conversion efficiency is calculated for the thermophotovoltaic system made of the cross resonator thermal emitters and low-bandgap semiconductors.
Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range
Jin, Wei; Cao, Yingchun; Yang, Fan; Ho, Hoi Lut
2015-01-01
Photothermal interferometry is an ultra-sensitive spectroscopic means for trace chemical detection in gas- and liquid-phase materials. Previous photothermal interferometry systems used free-space optics and have limitations in efficiency of light–matter interaction, size and optical alignment, and integration into photonic circuits. Here we exploit photothermal-induced phase change in a gas-filled hollow-core photonic bandgap fibre, and demonstrate an all-fibre acetylene gas sensor with a noise equivalent concentration of 2 p.p.b. (2.3 × 10−9 cm−1 in absorption coefficient) and an unprecedented dynamic range of nearly six orders of magnitude. The realization of photothermal interferometry with low-cost near infrared semiconductor lasers and fibre-based technology allows a class of optical sensors with compact size, ultra sensitivity and selectivity, applicability to harsh environment, and capability for remote and multiplexed multi-point detection and distributed sensing. PMID:25866015
Detecting trap states in planar PbS colloidal quantum dot solar cells
Jin, Zhiwen; Wang, Aiji; Zhou, Qing; Wang, Yinshu; Wang, Jizheng
2016-01-01
The recently developed planar architecture (ITO/ZnO/PbS-TBAI/PbS-EDT/Au) has greatly improved the power conversion efficiency of colloidal quantum dot photovoltaics (QDPVs). However, the performance is still far below the theoretical expectations and trap states in the PbS-TBAI film are believed to be the major origin, characterization and understanding of the traps are highly demanded to develop strategies for continued performance improvement. Here employing impedance spectroscopy we detect trap states in the planar PbS QDPVs. We determined a trap state of about 0.34 eV below the conduction band with a density of around 3.2 × 1016 cm−3 eV−1. Temperature dependent open-circuit voltage analysis, temperature dependent diode property analysis and temperature dependent build-in potential analysis consistently denotes an below-bandgap activation energy of about 1.17–1.20 eV. PMID:27845392
Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells.
Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R; García de Arquer, F Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H
2017-04-12
Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.
Efficient water reduction with gallium phosphide nanowires
Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.
2015-01-01
Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949
NASA Astrophysics Data System (ADS)
Martin-Bragado, I.; Castrillo, P.; Jaraiz, M.; Pinacho, R.; Rubio, J. E.; Barbolla, J.; Moroz, V.
2005-09-01
Atomistic process simulation is expected to play an important role for the development of next generations of integrated circuits. This work describes an approach for modeling electric charge effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model has been applied to the diffusion of electrically active boron and arsenic atoms in silicon. Several key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye length to smooth out the atomistic point-charge distribution, (ii) algorithms to correctly update the charge state in a physically accurate and computationally efficient way, and (iii) an efficient implementation of the drift of charged particles in an electric field. High-concentration effects such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency, accuracy, and relevance of the model are discussed.
III-V quantum light source and cavity-QED on silicon.
Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
Photonic integrated circuits based on sampled-grating distributed-Bragg-reflector lasers
NASA Astrophysics Data System (ADS)
Barton, Jonathon S.; Skogen, Erik J.; Masanovic, Milan L.; Raring, James; Sysak, Matt N.; Johansson, Leif; DenBaars, Steven P.; Coldren, Larry A.
2003-07-01
The Sampled-Grating Distributed-Bragg-Reflector laser(SGDBR) provides wide tunability (>40nm), and high output power (>10mW). Driven by the demand for network reconfigurability and ease of implementation, the SGDBR has moved from the research lab to be commercially viable in the marketplace. The SGDBR is most often implemented using an offset-quantum well epitaxial structure in which the quantum wells are etched off in the passive sections. Alternatively, quantum well intermixing has been used recently to achieve the same goal - resulting in improved optical gain and the potential for multiple bandgaps along the device structure. These epitaxial "platforms" provide the basis for more exotic opto-electronic device functionality exhibiting low chirp for digital applications and enhanced linearity for analog applications. This talk will cover state-of-the-art opto-electronic devices based on the SGDBR platform including: integrated Mach-Zehnder modulators, and integrated electro-absorption modulators.
Giant photovoltaic response in band engineered ferroelectric perovskite.
Pal, Subhajit; Swain, Atal Bihari; Biswas, Pranab Parimal; Murali, D; Pal, Arnab; Nanda, B Ranjit K; Murugavel, Pattukkannu
2018-05-22
Recently the solar energy, an inevitable part of green energy source, has become a mandatory topics in frontier research areas. In this respect, non-centrosymmetric ferroelectric perovskites with open circuit voltage (V OC ) higher than the bandgap, gain tremendous importance as next generation photovoltaic materials. Here a non-toxic co-doped Ba 1-x (Bi 0.5 Li 0.5 ) x TiO 3 ferroelectric system is designed where the dopants influence the band topology in order to enhance the photovoltaic effect. In particular, at the optimal doping concentration (x opt ~ 0.125) the sample reveals a remarkably high photogenerated field E OC = 320 V/cm (V OC = 16 V), highest ever reported in any bulk polycrystalline non-centrosymmetric systems. The band structure, examined through DFT calculations, suggests that the shift current mechanism is key to explain the large enhancement in photovoltaic effect in this family.
Perovskite-perovskite tandem photovoltaics with optimized band gaps
NASA Astrophysics Data System (ADS)
Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.
2016-11-01
We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.
Localized emission from laser-irradiated defects in 2D hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Hou, Songyan; Danang Birowosuto, Muhammad; Umar, Saleem; Ange Anicet, Maurice; Yingjie Tay, Roland; Coquet, Philippe; Tay, Beng Kang; Wang, Hong; Teo, Edwin Hang Tong
2018-01-01
Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for photonics device due to its large bandgap and flexibility in nanophotonic circuits. Here, we report bright and localized luminescent centres can be engineered in hBN monolayers and flakes using laser irradiation. The transition from hBN to cBN emerges in laser irradiated hBN large monolayers while is absent in processed hBN flakes. Remarkably, the colour centres in hBN flakes exhibit room temperature cleaner single photon emissions with g 2(0) ranging from 0.20 to 0.42, a narrower line width of 1.4 nm and higher brightness compared with monolayers. Our results pave the way to engineering deterministic defects in hBN induced by laser pulse and show great prospect for application of defects in hBN used as nano-size light source in photonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo
By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less
Analog integrated circuits design for processing physiological signals.
Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting
2010-01-01
Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.
Electronic skewing circuit monitors exact position of object underwater
NASA Technical Reports Server (NTRS)
Roller, R.; Yaroshuk, N.
1967-01-01
Linear Variable Differential Transformer /LVDT/ electronic skewing circuit guides a long cylindrical capsule underwater into a larger tube so that it does not contact the tube wall. This device detects movement of the capsule from a reference point and provides a continuous signal that is monitored on an oscilloscope.
Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter
NASA Technical Reports Server (NTRS)
Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila
2007-01-01
Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes
Low-power low-voltage superior-order curvature corrected voltage reference
NASA Astrophysics Data System (ADS)
Popa, Cosmin
2010-06-01
A complementary metal oxide semiconductor (CMOS) voltage reference with a logarithmic curvature-correction will be presented. The first-order compensation is realised using an original offset voltage follower (OVF) block as a proportional to absolute temperature (PTAT) voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. The new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier (ADA) block for compensating the logarithmic temperature dependent term from the first-order compensated voltage reference. In order to increase the circuit accuracy, an original temperature-dependent current generator will be designed for computing the exact type of the implemented curvature-correction. The relatively small complexity of the current squarer allows an important increasing of the circuit accuracy that could be achieved by increasing the current generator complexity. As a result of operating most of the MOS transistors in weak inversion, the original proposed voltage reference could be valuable for low-power applications. The circuit is implemented in 0.35 μm CMOS technology and consumes only 60μA for t = 25°C, being supplied at the minimal supply voltage V DD = 1.75V. The temperature coefficient of the reference voltage is 8.7 ppm/°C, while the line sensitivity is 0.75 mV/V for a supply voltage between 1.75 V and 7 V.
A method for determining the conversion efficiency of multiple-cell photovoltaic devices
NASA Astrophysics Data System (ADS)
Glatfelter, Troy; Burdick, Joseph
A method for accurately determining the conversion efficiency of any multiple-cell photovoltaic device under any arbitrary reference spectrum is presented. This method makes it possible to obtain not only the short-circuit current, but also the fill factor, the open-circuit voltage, and hence the conversion efficiency of a multiple-cell device under any reference spectrum. Results are presented which allow a comparison of the I-V parameters of two-terminal, two- and three-cell tandem devices measured under a multiple-source simulator with the same parameters measured under different reference spectra. It is determined that the uncertainty in the conversion efficiency of a multiple-cell photovoltaic device obtained with this method is less than +/-3 percent.
Effect of filling factor on photonic bandgap of chalcogenide photonic crystal
NASA Astrophysics Data System (ADS)
Singh, Rajpal; Suthar, B.; Bhargava, A.
2018-05-01
In the present work, the photonic band structure of 1-D chalcogenide photonic crystal of As2S3/air multilayered structure is calculated using the plane wave expansion method. The study is extended to investigate the effect of filling factor on the photonic bandgap. The increase of bandgap is explained in the study.
NASA Technical Reports Server (NTRS)
Fork, Richard Lynn (Inventor); Jones, Darryl Keith (Inventor); Keys, Andrew Scott (Inventor)
2000-01-01
By applying a photonic signal to a microresonator that includes a photonic bandgap delay apparatus having a photonic band edge transmission resonance at the frequency of the photonic signal, the microresonator imparts a predetermined delay to the photonic signal. The photonic bandgap delay apparatus also preferably has a photonic band edge transmission resonance bandwidth which is at least as wide as the bandwidth of the photonic signal such that a uniform delay is imparted over the entire bandwidth of the photonic signal. The microresonator also includes a microresonator cavity, typically defined by a pair of switchable mirrors, within which the photonic bandgap delay apparatus is disposed. By requiring the photonic signal to oscillate within the microresonator cavity so as to pass through the photonic bandgap delay apparatus several times, the microresonator can controllably impart an adjustable delay to the photonic signal.
Photonic mesophases from cut rod rotators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu; Avendano, Carlos
2016-01-14
The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magneticmore » polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.« less
Observing Ambipolar Behavior and Bandgap Engineering of MoS2 with Transport Measurements
NASA Astrophysics Data System (ADS)
Morris, Rachael; Wilson, Cedric; Hamblin, Glen; Tsuchikawa, Ryuichi; Deshpande, Vikram V.
Molybdenum disulfide is a transition metal semiconductor with a relatively large bandgap about 1.8 eV. In MoS2\\ it is expected that the bandgap is layer dependent and changes with the application of strain. In this talk I will outline our attempt to make simple field effect transistors with thin MoS2 on flexible substrates. Our aim was to see the bandgap of MoS2 directly via transport measurements using electrolytic gating, then apply uniaxial strain to a single layer MoS2 device to see the bandgap change. This was to be one way of confirming theoretical expectations, as well as compare with experimental results already obtained through photoluminescence spectroscopy. Though we did not obtain our target result with this stage of the experiment, future experimental work is planned. I will discuss the experimental method, the challenges of obtaining data and the results we obtained.
NASA Astrophysics Data System (ADS)
Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Nambissan, P. M. G.; Vijayan, C.
2018-01-01
Extension of photoactivity of TiO2 to the visible region is achievable via effective control over the intrinsic defects such as oxygen and Ti vacancies, which has several applications in visible photocatalysis and sensing. We present here the first observation of an apparent bandgap narrowing and bandgap tuning effect due to vacancy cluster transformation in rutile TiO2 structures to 1.84 eV from the bulk bandgap of 3 eV. A gradual transformation of divacancies (V Ti-O) to tri vacancies ({{V}Ti-O-T{{i-}}} ) achieved through a controlled solvothermal scheme appears to result in an apparent narrowing bandgap and tunability, as supported by positron annihilation lifetime and electron paramagnetic resonance spectroscopy measurements. Visible photocatalytic activity of the samples is demonstrated in terms of photodegradation of rhodamine B dye molecules.
Multi-fidelity machine learning models for accurate bandgap predictions of solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
Multi-fidelity machine learning models for accurate bandgap predictions of solids
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
2016-12-28
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
NASA Astrophysics Data System (ADS)
Kemp, Kyle Wayne
With growing global energy demand there will be an increased need for sources of renewable energy such as solar cells. To make these photovoltaic technologies more competitive with conventional energy sources such as coal and natural gas requires further reduction in manufacturing costs that can be realized by solution processing and roll-to-roll printing. Colloidal quantum dots are a bandgap tunable, solution processible, semiconductor material which may offer a path forward to efficient, inexpensive photovoltaics. Despite impressive progress in performance with these materials, there remain limitations in photocarrier collection that must be overcome. This dissertation focuses on the characterization of charge recombination and transport in colloidal quantum dot photovoltaics, and the application of this knowledge to the development of new and better materials. Core-shell, PbS-CdS, quantum dots were investigated in an attempt to achieve better surface passivation and reduce electronic defects which can limit performance. Optimization of this material led to improved open circuit voltage, exceeding 0.6 V for the first time, and record published performance of 6% efficiency. Using temperature-dependent and transient photovoltage measurements we explored the significance of interface recombination on the operation of these devices. Careful engineering of the electrode using atomic layer deposition of ZnO helped lead to better TiO2 substrate materials and allowed us to realize a nearly two-fold reduction in recombination rate and an enhancement upwards of 50 mV in open circuit voltage. Carrier extraction efficiency was studied in these devices using intensity dependent current-voltage data of an operational solar cell. By developing an analytical model to describe recombination loss within the active layer of the device we were able to accurately determine transport lengths ranging up to 90 nm. Transient absorption and photoconductivity techniques were used to study charge dynamics by identifying states in these quantum dot materials which facilitate carrier transport. Thermal activation energies for transport of 60 meV or lower were measured for different PbS quantum dot bandgaps, representing a relatively small barrier for carrier transport. From these measurements a dark, quantum confined energy level was attributed to the electronic bandedge of these materials which serves to govern their optoelectronic behavior.
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1983-01-01
An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.
A Quatro-Based 65-nm Flip-Flop Circuit for Soft-Error Resilience
NASA Astrophysics Data System (ADS)
Li, Y.-Q.; Wang, H.-B.; Liu, R.; Chen, L.; Nofal, I.; Shi, S.-T.; He, A.-L.; Guo, G.; Baeg, S. H.; Wen, S.-J.; Wong, R.; Chen, M.; Wu, Q.
2017-06-01
A flip-flop circuit hardened against soft errors is presented in this paper. This design is an improved version of Quatro for further enhanced soft-error resilience by integrating the guard-gate technique. The proposed design, as well as reference Quatro and regular flip-flops, was implemented and manufactured in a 65-nm CMOS bulk technology. Experimental characterization results of their alpha and heavy ions soft-error rates verified the superior hardening performance of the proposed design over the other two circuits.
Electronic Device of Didactic and Electrometric Interest for the Study of RLC Circuits.
ERIC Educational Resources Information Center
Rodriguez, Angel L. Perez; And Others
1979-01-01
Presents a method of studying RLC circuits with the help of the oscilloscope in the XYZ mode, complemented by an electronic device which generates a marker-trace on the screen and which is used to measure frequencies without the need of a reference point on the screen. (Author/GA)
Bielczyk, Natalia Z.; Buitelaar, Jan K.; Glennon, Jeffrey C.; Tiesinga, Paul H. E.
2015-01-01
Major depressive disorder (MDD) is a serious condition with a lifetime prevalence exceeding 16% worldwide. MDD is a heterogeneous disorder that involves multiple behavioral symptoms on the one hand and multiple neuronal circuits on the other hand. In this review, we integrate the literature on cognitive and physiological biomarkers of MDD with the insights derived from mathematical models of brain networks, especially models that can be used for fMRI datasets. We refer to the recent NIH research domain criteria initiative, in which a concept of “constructs” as functional units of mental disorders is introduced. Constructs are biomarkers present at multiple levels of brain functioning – cognition, genetics, brain anatomy, and neurophysiology. In this review, we propose a new approach which we called circuit to construct mapping (CCM), which aims to characterize causal relations between the underlying network dynamics (as the cause) and the constructs referring to the clinical symptoms of MDD (as the effect). CCM involves extracting diagnostic categories from behavioral data, linking circuits that are causal to these categories with use of clinical neuroimaging data, and modeling the dynamics of the emerging circuits with attractor dynamics in order to provide new, neuroimaging-related biomarkers for MDD. The CCM approach optimizes the clinical diagnosis and patient stratification. It also addresses the recent demand for linking circuits to behavior, and provides a new insight into clinical treatment by investigating the dynamics of neuronal circuits underneath cognitive dimensions of MDD. CCM can serve as a new regime toward personalized medicine, assisting the diagnosis and treatment of MDD. PMID:25767450
Superlattice doped layers for amorphous silicon photovoltaic cells
Arya, Rajeewa R.
1988-01-12
Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.
Fullerene-based low-density superhard materials with tunable bandgaps
NASA Astrophysics Data System (ADS)
Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua
2018-06-01
Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
High-Efficiency Solar Cells Using Photonic-Bandgap Materials
NASA Technical Reports Server (NTRS)
Dowling, Jonathan; Lee, Hwang
2005-01-01
Solar photovoltaic cells would be designed to exploit photonic-bandgap (PBG) materials to enhance their energy-conversion efficiencies, according to a proposal. Whereas the energy-conversion efficiencies of currently available solar cells are typically less than 30 percent, it has been estimated that the energy-conversion efficiencies of the proposed cells could be about 50 percent or possibly even greater. The primary source of inefficiency of a currently available solar cell is the mismatch between the narrow wavelength band associated with the semiconductor energy gap (the bandgap) and the broad wavelength band of solar radiation. This mismatch results in loss of power from both (1) long-wavelength photons, defined here as photons that do not have enough energy to excite electron-hole pairs across the bandgap, and (2) short-wavelength photons, defined here as photons that excite electron- hole pairs with energies much above the bandgap. It follows that a large increase in efficiency could be obtained if a large portion of the incident solar energy could be funneled into a narrow wavelength band corresponding to the bandgap. In the proposed approach, such funneling would be effected by use of PBG materials as intermediaries between the Sun and photovoltaic cells.
New way of polymer design for organic solar cells using the quinoid structure
NASA Astrophysics Data System (ADS)
Berube, Nicolas; Gaudreau, Josiane; Cote, Michel
2013-03-01
Research in organic photovoltaic applications are receiving a great interest as they offer an environmentally clean and low-cost solution to the world's rising energy needs. Controlling the device's active polymer optical bandgap is an important step that affects its absorption of the solar spectrum, and ultimately, its power conversion efficiency. The use of fused heterocycles that favors the polymer's quinoid structure has been a known method to lower the bandgap, for example, with isothianapthene, but there is a lack of quantifiable data on this effect. Density functional theory (DFT) calculations were done on over 60 polymers with bandgaps between 0.5 eV and 4 eV. They clearly show that low bandgaps are observed in copolymers that carefully stands between their quinoid and aromatic structures. Such balance can be obtained by mixing monomer units with quinoid characteristics with aromatic ones. Time-dependant DFT results also links low bandgaps with lower reorganization energy, which means that polymers with this structural form could possess higher charge mobilities. This link between the geometrical structure and the bandgap is compatible with a vast variety of polymers and is more convincing than the commonly used donor-acceptor method of polymer design.
Analysis of the reflective multibandgap solar cell concept
NASA Technical Reports Server (NTRS)
Stern, T. G.
1983-01-01
A new and unique approach to improving photovoltaic conversion efficiency, the reflective multiband gap solar cell concept, was examined. This concept uses back surface reflectors and light trapping with several physically separated cells of different bandgaps to make more effective use of energy from different portions of the solar spectrum. Preliminary tests performed under General Dynamics Independent Research and Development (IRAD) funding have demonstrated the capability for achieving in excess of 20% conversion efficiency with aluminum gallium arsenide and silicon. This study analyzed the ultimate potential for high conversion efficiency with 2, 3, 4, and 5 different bandgap materials, determined the appropriate bandgaps needed to achieve this optimized efficiency, and identified potential problems or constraints. The analysis indicated that an improvement in efficiency of better than 40% could be attained in this multibandgap approach, compared to a single bandgap converter under the same assumptions. Increased absorption loss on the back surface reflector was found to incur a minimal penalty on efficiency for two and three bandgap systems. Current models for bulk absorption losses in 3-5 materials were found to be inadequate for explaining laboratory observed transmission losses. Recommendations included the continued development of high bandgap back surface reflector cells and basic research on semiconductor absorption mechanisms.
Automatic control and detector for three-terminal resistance measurement
Fasching, George E.
1976-10-26
A device is provided for automatic control and detection in a three-terminal resistance measuring instrument. The invention is useful for the rapid measurement of the resistivity of various bulk material with a three-terminal electrode system. The device maintains the current through the sample at a fixed level while measuring the voltage across the sample to detect the sample resistance. The three-electrode system contacts the bulk material and the current through the sample is held constant by means of a control circuit connected to a first of the three electrodes and works in conjunction with a feedback controlled amplifier to null the voltage between the first electrode and a second electrode connected to the controlled amplifier output. An A.C. oscillator provides a source of sinusoidal reference voltage of the frequency at which the measurement is to be executed. Synchronous reference pulses for synchronous detectors in the control circuit and an output detector circuit are provided by a synchronous pulse generator. The output of the controlled amplifier circuit is sampled by an output detector circuit to develop at an output terminal thereof a D.C. voltage which is proportional to the sample resistance R. The sample resistance is that segment of the sample between the area of the first electrode and the third electrode, which is connected to ground potential.
Monitoring Digital Closed-Loop Feedback Systems
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor
2011-01-01
A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal frequency of the TDC s pulse width modulated outputs is approximately 40 kHz. In this system, the technique is implemented by means of a monitoring circuit that includes a 20-MHz sampling circuit and a 24-bit accumulator with a gate time of 10 ms. The monitoring circuit measures the duty cycle of each of the 12 TDCs at a repetition rate of 28 Hz. The accumulator content is reset to all zeroes at the beginning of each measurement period and is then incremented or decremented based of the value of the state of the pulse width modulated signal. Positive or negative values in the accumulator correspond to duty cycles greater or less, respectively, than 50 percent.
Barad, Hannah-Noa; Keller, David A; Rietwyk, Kevin J; Ginsburg, Adam; Tirosh, Shay; Meir, Simcha; Anderson, Assaf Y; Zaban, Arie
2018-06-11
In this work, we describe the formation of a reduced bandgap CeNiO 3 phase, which, to our knowledge, has not been previously reported, and we show how it is utilized as an absorber layer in a photovoltaic cell. The CeNiO 3 phase is prepared by a combinatorial materials science approach, where a library containing a continuous compositional spread of Ce x Ni 1- x O y is formed by pulsed laser deposition (PLD); a method that has not been used in the past to form Ce-Ni-O materials. The library displays a reduced bandgap throughout, calculated to be 1.48-1.77 eV, compared to the starting materials, CeO 2 and NiO, which each have a bandgap of ∼3.3 eV. The materials library is further analyzed by X-ray diffraction to determine a new crystalline phase. By searching and comparing to the Materials Project database, the reduced bandgap CeNiO 3 phase is realized. The CeNiO 3 reduced bandgap phase is implemented as the absorber layer in a solar cell and photovoltages up to 550 mV are achieved. The solar cells are also measured by surface photovoltage spectroscopy, which shows that the source of the photovoltaic activity is the reduced bandgap CeNiO 3 phase, making it a viable material for solar energy.
NASA Astrophysics Data System (ADS)
Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim
2018-01-01
Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.
NASA Astrophysics Data System (ADS)
Lei, Xiang; Yu, Ke
2018-04-01
A purposeful modulation of physical properties of material via change external conditions has long captured people's interest and can provide many opportunities to improve the specific performance of electronic devices. In this work, a comprehensive first-principles survey was performed to elucidate that the bandgap and electronic properties of WSe2sbnd MoS2 heterostructure exhibited unusual response to exterior strain and electric field in comparison with pristine structures. It demonstrates that the WSe2sbnd MoS2 is a typical type-II heterostructure, and thus the electron-hole pairs can be effectively spatially separated. The external effects can trigger the electronic phase transition from semiconducting to metallic state, which originates from the internal electric evolution induced energy-level shift. Interestingly, the applied strain shows no direction-depended character for the modulation of bandgap of WSe2sbnd MoS2 heterostructure, while it exists in the electric field tuning processes and strongly depends on the direction of the electric field. Our findings elucidate the tunable electronic property of bilayer WSe2sbnd MoS2 heterostructure, and would provide a valuable reference to design the electronic nanodevices.
Surface- and interface-engineered heterostructures for solar hydrogen generation
NASA Astrophysics Data System (ADS)
Chen, Xiangyan; Li, Yanrui; Shen, Shaohua
2018-04-01
Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, S. A., E-mail: Soren.Jensen@nrel.gov, E-mail: Darius.Kuciauskas@nrel.gov; Glynn, S.; Kanevce, A.
World-record power conversion efficiencies for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ∼40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in the electronicmore » potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ∼10 μm, which is ∼4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Simon, John; Schulte, Kevin L.
Hydride vapor phase epitaxy (HVPE) has recently reemerged as a low-cost, high-throughput alternative to metalorganic chemical vapor deposition (MOCVD) for the growth of high-efficiency III-V solar cells. Quaternary InGaAsP solar cells in the bandgap range of ~1.7-1.8 eV are promising top-cell candidates for integration in Ill-V/Si tandem cells with projected one-sun efficiencies exceeding 30%. In this work, we report on the development of lattice-matched InGaAsP solar cells grown on GaAs substrates via HVPE at very high growth rates of ~0.7 um/min. We demonstrate prototype 1.7 eV InGaAsP solar cells with an open-circuit voltage of 1.11 V. The short-circuit current ismore » limited by the lack of a window layer in these early stage devices. The photo response of 1.7 InGaAsP solar cell with ~1.1 um thick base layer is found to be nearly insensitive to variation in p-type base doping concentration in the range from Na - 4x1016 to - 1x1017 cm-3, indicating an effective carrier collection length on the order of - 1.1 um or higher in our devices. These initial InGaAsP cell results are encouraging and highlight the viability of HVPE to produce mixed arsenide-phosphide solar cells grown lattice-matched on GaAs.« less
Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah
2017-01-01
This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability. PMID:28084304
Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah
2017-01-13
This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.
NASA Astrophysics Data System (ADS)
da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.
2011-08-01
We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.
NASA Astrophysics Data System (ADS)
Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah
2017-01-01
This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.
Baran, D; Kirchartz, T; Wheeler, S; Dimitrov, S; Abdelsamie, M; Gorman, J; Ashraf, R S; Holliday, S; Wadsworth, A; Gasparini, N; Kaienburg, P; Yan, H; Amassian, A; Brabec, C J; Durrant, J R; McCulloch, I
2016-12-01
Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage ( V oc ) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve V oc up to 1.12 V, which corresponds to a loss of only E g / q - V oc = 0.5 ± 0.01 V between the optical bandgap E g of the polymer and V oc . This high V oc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.
Nano-scale engineering using lead chalcogenide nanocrystals for opto-electronic applications
NASA Astrophysics Data System (ADS)
Xu, Fan
Colloidal quantum dots (QDs) or nanocrystals of inorganic semiconductors exhibit exceptional optoelectronic properties such as tunable band-gap, high absorption cross-section and narrow emission spectra. This thesis discusses the characterizations and physical properties of lead-chalcogenide nanocrystals, their assembly into more complex nanostructures and applications in solar cells and near-infrared light-emitting devices. In the first part of this work, we demonstrate that the band edge emission of PbS quantum dots can be tuned from the visible to the mid-infrared region through size control, while the self-attachment of PbS nanocrystals can lead to the formation of 1-D nanowires, 2-D quantum dot monolayers and 3-D quantum dot solids. In particular, the assembly of closely-packed quantum dot solids has attracted enormous attention. A series of distinctive optoelectronic properties has been observed, such as superb multiple exciton generation efficiencies, efficient hot-electron transfer and cold-exciton recycling. Since the surfactant determines the quantum dot surface passivation and inter dot electronic coupling, we examine the influence of different cross-linking surfactants on the optoelectronic properties of the quantum dot solids. Then, we discuss the ability to tune the quantum dot band-gap combined with the controllable assembly of lead-chalcogenide quantum dots, which opens new possibilities to engineer the properties of quantum dot solids. The PbS and PbSe quantum dot cascade structures and PbS/PbSe quantum dot heterojunctions are assembled using the layer-by-layer deposition method. We show that exciton funnelling and trap state-bound exciton recycling in the quantum dot cascade structure dramatically enhances the quantum dots photoluminescence. Moreover, we show that both type-I and type-II PbS/PbSe quantum dot heterojunctions can be assembled by carefully choosing the quantum dot sizes. In type-I heterojunctions, the excited electron-hole pairs tend to localize in narrower band-gap quantum dots, leading to significant photoluminescence enhancement. In contrast, the staggered energy bands in type-II heterojunctions lead to rapid exciton separation at the junctions that considerably quenches the photoluminescence. As such, this strategy can be fruitfully employed to enhance performances in nanocrystal-based photovoltaic devices. Using this approach, we achieve efficient PbS nanocrystal-based solar cells using an ITO/ TiO2/ PbS QDs/Au architecture, where a porous TiO2 nanowire network is employed as electron transporting layer. Our best heterojunction solar cells exhibit a decent short circuit current of 2.5 mA/cm2, a large open circuit voltage of 0.6 V and a power converting efficiency of 5.4 % under 8.5 mW/cm2 low-light illumination. On the other hand, nanocrystal-based near infrared LED devices are fabricated using a simple ITO-PbS QDs-Al device structure. There, the active quantum dot layer serves as both the electron- and hole-transporting layer. With appropriate surface chemistry treatment on quantum dots, a high-brightness near-infrared LED device is achieved.
de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente
2008-12-16
Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.
Robinson, H.P.
1960-06-01
An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.
Effect of Se concentration on photonic bandgap of 1-D As-S-Se/air multilayers
NASA Astrophysics Data System (ADS)
Singh, Rajpal; Suthar, B.; Bhargava, A.
2018-05-01
The photonic band structure of 1-D chalcogenide photonic crystal consisting of As-S-Se/air multilayered structure is studied. The photonic band structure is calculated using plane wave expansion method. The effect of Se constration on the photonic bandgap is studied. It is found that the photonic bandgap increases with Se-concentration and shows the red shift.
Genetic Algorithm Optimization of Phononic Bandgap Structures
2006-09-01
a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic
Resonance fluorescence spectrum in a two-band photonic bandgap crystal
NASA Astrophysics Data System (ADS)
Lee, Ray-Kuang; Lai, Yinchieh
2003-05-01
Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.
Electro-mechanical Properties of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Yang, Liu; Han, Jie; Liu, J. P.; Saubum Subhash (Technical Monitor)
1998-01-01
We present a simple picture to understand the bandgap variation of carbon nanotubes with small tensile and torsional strains, independent of chirality. Using this picture, we are able to predict a simple dependence of d(Bandoap)$/$d(strain) on the value of $(N_x-N_y)*mod 3$, for semiconducting tubes. We also predict a novel change in sign of d(Bandgap)$/$d(strain) as a function of tensile strain arising from a change in the value of $q$ corresponding to the minimum bandgap. These calculations are complemented by calculations of the change in bandgap using energy minimized structures, and some important differences are discussed. The calculations are based on the $i$ electron approximation.
Characterization of CNRS Fizeau wedge laser tuner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom-fabricated circuit board which contains a high-speed fringe detection and locating circuit. This board includes a dc level-discriminator-type fringe detector, a counter circuit to determine fringe center, a pulsed lasermore » triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data-collection process and interprets the results.« less
Agile high resolution arbitrary waveform generator with jitterless frequency stepping
Reilly, Peter T. A.; Koizumi, Hideya
2010-05-11
Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.
Printed wiring board system programmer's manual
NASA Technical Reports Server (NTRS)
Brinkerhoff, C. D.
1973-01-01
The printed wiring board system provides automated techniques for the design of printed circuit boards and hybrid circuit boards. The system consists of four programs: (1) the preprocessor program combines user supplied data and pre-defined library data to produce the detailed circuit description data; (2) the placement program assigns circuit components to specific areas of the board in a manner that optimizes the total interconnection length of the circuit; (3) the organizer program assigns pin interconnections to specific board levels and determines the optimal order in which the router program should attempt to layout the paths connecting the pins; and (4) the router program determines the wire paths which are to be used to connect each input pin pair on the circuit board. This document is intended to serve as a programmer's reference manual for the printed wiring board system. A detailed description of the internal logic and flow of the printed wiring board programs is included.
Characterization of CNRS Fizeau wedge laser tuner
NASA Technical Reports Server (NTRS)
1984-01-01
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.
NASA Astrophysics Data System (ADS)
Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.
2017-01-01
We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.
Photocurrent modulation under dual excitation in individual GaN nanowires.
Yadav, Shivesh; Deb, Swarup; Gupta, Kantimay Das; Dhar, Subhabrata
2018-06-21
The photo-response properties of vapor-liquid-solid (VLS) grown [101[combining macron]0] oriented individual GaN nanowires of the diameter ranging from 30 to 100 nm are investigated under the joint illumination of above and sub-bandgap lights. When illuminated with above-bandgap light, these wires show persistent photoconductivity (PPC) effects with long build-up and decay times. The study reveals the quenching of photoconductivity (PC) upon illumination with an additional sub-bandgap light. PC recovers when the sub-bandgap illumination is withdrawn. A rate equation model attributing the PPC effect to the entrapment of photo-generated holes in the surface states and the PC quenching effect on the sub-bandgap light driven release of the holes from the trapped states has been proposed. The average height of the capture barrier has been found to be about 400 meV. The study also suggests that the capture barrier has a broad distribution with an upper cut-off energy of ∼2 eV.
First-principles study of bandgap tuning in Ge1-xPbxSe
NASA Astrophysics Data System (ADS)
Lohani, Himanshu
2018-03-01
Narrow bandgap and its tuning are important aspects of materials for their technological applications. In this context group IV-VI semiconductors are one of the interesting candidates. In this paper, we explore the possibility of bandgap tuning in one of the family member of this family GeSe by using isoelectronic Pb doping. Our study is first-principles based electronic structure calculations of Ge1-xPbxSe. This study reveals that the Ge-p and Se-p states are strongly hybridized in GeSe and shows a gap in the DOS at Ef in GeSe. This gap reduces systematically with simultaneous enhancement of the states in the near Ef region as a function of Pb doping. This leads tuning of the indirect bandgap in GeSe via Pb doping. The results of the indirect bandgap decrement are consistent with the experimental findings. We propose a mechanism where the electrostatic effect of dopant Pb cation could be responsible for these changes in the electronic structure of GeSe.
NASA Astrophysics Data System (ADS)
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)
NASA Astrophysics Data System (ADS)
Lin, Tsung-Hsien
2015-10-01
Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.
Eight-Channel Continuous Timer
NASA Technical Reports Server (NTRS)
Cole, Steven
2004-01-01
A custom laboratory electronic timer circuit measures the durations of successive cycles of nominally highly stable input clock signals in as many as eight channels, for the purpose of statistically quantifying the small instabilities of these signals. The measurement data generated by this timer are sent to a personal computer running software that integrates the measurements to form a phase residual for each channel and uses the phase residuals to compute Allan variances for each channel. (The Allan variance is a standard statistical measure of instability of a clock signal.) Like other laboratory clock-cycle-measuring circuits, this timer utilizes an externally generated reference clock signal having a known frequency (100 MHz) much higher than the frequencies of the input clock signals (between 100 and 120 Hz). It counts the number of reference-clock cycles that occur between successive rising edges of each input clock signal of interest, thereby affording a measurement of the input clock-signal period to within the duration (10 ns) of one reference clock cycle. Unlike typical prior laboratory clock-cycle-measuring circuits, this timer does not skip some cycles of the input clock signals. The non-cycle-skipping feature is an important advantage because in applications that involve integration of measurements over long times for characterizing nominally highly stable clock signals, skipping cycles can degrade accuracy. The timer includes a field-programmable gate array that functions as a 20-bit counter running at the reference clock rate of 100 MHz. The timer also includes eight 20-bit latching circuits - one for each channel - at the output terminals of the counter. Each transition of an input signal from low to high causes the corresponding latching circuit to latch the count at that instant. Each such transition also sets a status flip-flop circuit to indicate the presence of the latched count. A microcontroller reads the values of all eight status flipflops and then reads the latched count for each channel for which the flip-flop indicates the presence of a count. Reading the count for each channel automatically causes the flipflop of that channel to be reset. The microcontroller places the counts in time order, identifies the channel number for each count, and transmits these data to the personal computer.
ERIC Educational Resources Information Center
Precker, Jurgen W.
2007-01-01
The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…
Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids.
Brif, Anastasia; Ankonina, Guy; Drathen, Christina; Pokroy, Boaz
2014-01-22
Bandgap engineering of zinc oxide semiconductors can be achieved using a bio-inspired method. During a bioInspired crystallization process, incorporation of amino acids into the crystal structure of ZnO induces lattice strain that leads to linear bandgap shifts. This allows for fine tuning of the bandgap in a bio-inspired route. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How Bilayer Graphene Got a Bandgap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Wang
2009-06-02
Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.
How Bilayer Graphene Got a Bandgap
Feng Wang
2017-12-09
Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.
How Bilayer Graphene Got a Bandgap
Wang, Feng
2018-01-08
Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.
NASA Astrophysics Data System (ADS)
Zhang, C. Y.; Yu, M.
2018-03-01
Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ˜80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young’s moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.
Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
NASA Astrophysics Data System (ADS)
Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin
2017-04-01
An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).
NASA Astrophysics Data System (ADS)
Osakabe, Yuki; Tatsumi, Shota; Kotsubo, Yuichi; Iwanaga, Junpei; Yamasoto, Keita; Munetoh, Shinji; Furukimi, Osamu; Nakashima, Kunihiko
2018-02-01
Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat-electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat-electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8Au x Si46-x clathrate. Single-crystal Ba8Au x Si46-x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.
On the role of micro-inertia in enriched continuum mechanics.
Madeo, Angela; Neff, Patrizio; Aifantis, Elias C; Barbagallo, Gabriele; d'Agostino, Marco Valerio
2017-02-01
In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.
NASA Astrophysics Data System (ADS)
Chatterjee, Rohit
In this research work, we explore fundamental silicon-based active and passive photonic devices that can be integrated together to form functional photonic integrated circuits. The devices which include power splitters, switches and lenses are studied starting from their physics, their design and fabrication techniques and finally from an experimental standpoint. The experimental results reveal high performance devices that are compatible with standard CMOS fabrication processes and can be easily integrated with other devices for near infrared telecom applications. In Chapter 2, a novel method for optical switching using nanomechanical proximity perturbation technique is described and demonstrated. The method which is experimentally demonstrated employs relatively low powers, small chip footprint and is compatible with standard CMOS fabrication processes. Further, in Chapter 3, this method is applied to develop a hitless bypass switch aimed at solving an important issue in current wavelength division multiplexing systems namely hitless switching of reconfigurable optical add drop multiplexers. Experimental results are presented to demonstrate the application of the nanomechanical proximity perturbation technique to practical situations. In Chapter 4, a fundamental photonic component namely the power splitter is described. Power splitters are important components for any photonic integrated circuits because they help split the power from a single light source to multiple devices on the same chip so that different operations can be performed simultaneously. The power splitters demonstrated in this chapter are based on multimode interference principles resulting in highly compact low loss and highly uniform power splitting to split the power of the light from a single channel to two and four channels. These devices can further be scaled to achieve higher order splitting such as 1x16 and 1x32 power splits. Finally in Chapter 5 we overcome challenges in device fabrication and measurement techniques to demonstrate for the first time a "superlens" for the technologically important near infrared wavelength ranges with the opportunity to scale down further to visible wavelengths. The observed resolution is 0.47lambda, clearly smaller than the diffraction limit of 0.61lambda and is supported by detailed theoretical analyses and comprehensive numerical simulations. Importantly, we clearly show for the first time this subdiffraction limit imaging is due to the resonant excitation of surface slab modes, permitting amplification of evanescent waves. The demonstrated "superlens" has the largest figure of merit ever reported till date both theoretically and experimentally. The techniques and devices described in this thesis can be further applied to develop new devices with different functionalities. In Chapter 6 we describe two examples using these ideas. First, we experimentally demonstrate the use of the nanomechanical proximity perturbation technique to develop a phase retarder for on-chip all state polarization control. Next, we use the negative refraction photonic crystals described in Chapter 5 to achieve a special kind of bandgap called the zero-n¯ bandgap having unique properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platzer-Björkman, C.; Frisk, C.; Larsen, J. K.
2015-12-14
Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells typically include a CdS buffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal (“cliff-like”), which enhances interface recombination. In this work, we show how a Zn{sub 1−x}Sn{sub x}O{sub y} (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (V{sub oc}) for CZTS devices. The ZTO is deposited by atomic layer deposition (ALD), with a process previously developed for Cu(In,Ga)Se{sub 2} solar cells. By varying the ALD process temperature, the position of themore » conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 °C is found to give higher V{sub oc} and efficiency as compared with the CdS reference devices. For a ZTO process at 120 °C, where the conduction band alignment is expected to be the same as for CdS, the V{sub oc} and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 °C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the V{sub oc} of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.« less
A fast-locking PLL with all-digital locked-aid circuit
NASA Astrophysics Data System (ADS)
Kao, Shao-Ku; Hsieh, Fu-Jen
2013-02-01
In this article, a fast-locking phase-locked loop (PLL) with an all-digital locked-aid circuit is proposed and analysed. The proposed topology is based on two tuning loops: frequency and phase detections. A frequency detection loop is used to accelerate frequency locking time, and a phase detection loop is used to adjust fine phase errors between the reference and feedback clocks. The proposed PLL circuit is designed based on the 0.35 µm CMOS process with a 3.3 V supply voltage. Experimental results show that the locking time of the proposed PLL achieves a 87.5% reduction from that of a PLL without the locked-aid circuit.
Power converter having improved EMI shielding
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2006-06-13
EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Power converter connection configuration
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2008-11-11
EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Influence of carrier concentration on the performance of CIAS solar cell
NASA Astrophysics Data System (ADS)
Patel, Kinjal; Ray, Jaymin
2018-05-01
Photovoltaic research has moved beyond the use of single crystalline materials such as Group IV elemental Si and Group III-V compounds like GaAs to much more complex compounds of the Group I-III-VI2 with chalcopyrite structure. The ternary ABC2 chalcopyrites (A=Cu; B=In, Ga or Al; C= S, Se or Te) form a large group of semiconducting materials with diverse structural and electrical properties. These materials are attractive for thin film photovoltaic application for a number of reasons. The bandgap of CuInSe2 is relatively low, 1.04 eV, but it can be adjusted to better match the solar spectrum either by substituting part of In by Ga or part of Se by S. Most reported and popular Cu(In,Ga)Se2 (CIGS) is one of its derivative. Efficiency of the CIGS devices with Eg >1.3 eV is reduced by the degradation of the electronic properties of the absorber leading to losses in the fill-factor and the open-circuit voltage. Alternatively, the performance can be improved by the addition of Al to form CuInAlSe2 (CIAS) absorber layers with an increase in the bandgap energy, which matches closely with the solar spectrum. In the present work an effort was made in the direction of improving the conversion efficiency by studying the influence of carrier concentration. SCAPS simulation program is used to simulate the CIAS structure numerically. The obtained results intended the significant variation in the values of conversion efficiency. Variation in the efficiency can be considered because of the relation optical absorption and carrier concentration. Observed highest efficiency is 10 %, which can be further improved by considering actual parameters of the device as well as the operating condition.
Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2013-01-01
Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.
Defect Related Dark Currents in III-V MWIR nBn Detectors
2014-01-01
theory indicates a thermal activation energy of half the bandgap, and a direct proportionality between dark current density and defect density. 2.2...density due to defects maintains a full bandgap thermal activation energy , and is proportional to the square root of the defect density. Although neutral...photodiodes, and cooling is more efficient in reducing nBn’s dark current due to the full bandgap activation energy . Downloaded From: http
Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector
NASA Technical Reports Server (NTRS)
Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Luong, E.; Hong, W.; Mumolo, J.; Bae, Y.; Stillman, G. E.; Jackson, S. L.;
1998-01-01
We demonstrate that SiO(sub 2) cap annealing in the ultra-thin p-type InGaAs/InP quantum wells can be used to produce large blue shifts of the band edge. A substantial bandgap blue shift, as much a 292.5 meV at 900 degrees C have been measured and the value of the bandgap shift can be controlled by the anneal time.
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol
2010-06-08
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Microfabricated bulk wave acoustic bandgap device
Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol
2010-11-23
A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).
Visible light photoreactivity from Carbon nitride bandgap states in Nb and Ti oxides
NASA Astrophysics Data System (ADS)
Lee, Hosik; Ohno, Takahisa; Icnsee Team
2011-03-01
Lamellar niobic and titanic solid acids (HNb3O8 , H2Ti4O9) are photocatalysts which can be used for environmental cleanup application and hydrogen production through water splitting. To increase their efficiency, bandgap adjustment which can induce visible light reactivity in addition to ultraviolet light has been one of hot issue in this kinds of photo-catalytic materials. Nitrogen-doping was one of the direction and its microscopic structures are disputed in this decade. In this work, we calculate the layered niobic and titanic solid acids structure and bandgap. Bandgap reduction by carbon nitride absorption are observed computationally. It is originated from localized nitrogen state which is consistent with previous experiments.
NASA Astrophysics Data System (ADS)
Ba, Nuo; Zhong, Xin; Wang, Lei; Fei, Jin-You; Zhang, Yan; Bao, Qian-Qian; Xiao, Li
2018-03-01
We investigate photonic transport properties of the 1D moving optical lattices filled with vast cold atoms driven into a four-level ladder-type system and obtain dynamically controlled photonic bandgaps and optical nonreciprocity. It is found that the two obvious optical nonreciprocity can be generated at two well-developed photonic bandgaps based on double dark states in the presence of a radio-frequency field. However, when the radio-frequency field is absence, the only one induced photonic bandgaps with distinguishing optical nonreciprocity can be opened up via single dark state. Dynamic control of the induced photonic bandgaps and optical nonreciprocity could be exploited to achieve all-optical diodes and routing for quantum information networks.
Coulomb engineering of the bandgap and excitons in two-dimensional materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, Archana; Chaves, Andrey; Yu, Jaeeun
Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less
Coulomb engineering of the bandgap and excitons in two-dimensional materials
Raja, Archana; Chaves, Andrey; Yu, Jaeeun; ...
2017-05-04
Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less
Coulomb engineering of the bandgap and excitons in two-dimensional materials
Raja, Archana; Chaves, Andrey; Yu, Jaeeun; Arefe, Ghidewon; Hill, Heather M.; Rigosi, Albert F.; Berkelbach, Timothy C.; Nagler, Philipp; Schüller, Christian; Korn, Tobias; Nuckolls, Colin; Hone, James; Brus, Louis E.; Heinz, Tony F.; Reichman, David R.; Chernikov, Alexey
2017-01-01
The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution. PMID:28469178
Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Comfort, Everett; Lee, Ji Ung
2016-06-01
The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana
Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.
Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride
Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong
2017-01-01
Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s. PMID:28367992
Moschou, Despina; Trantidou, Tatiana; Regoutz, Anna; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis
2015-01-01
Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB)-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes. PMID:26213940
Zhang, Shuoting; Liu, Bo; Zheng, Sheng; ...
2018-01-01
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuoting; Liu, Bo; Zheng, Sheng
A transmission line emulator has been developed to flexibly represent interconnected ac lines under normal operating conditions in a voltage source converter (VSC)-based power system emulation platform. As the most serious short-circuit fault condition, the three-phase short-circuit fault emulation is essential for power system studies. Here, this paper proposes a model to realize a three-phase short-circuit fault emulation at different locations along a single transmission line or one of several parallel-connected transmission lines. At the same time, a combination method is proposed to eliminate the undesired transients caused by the current reference step changes while switching between the fault statemore » and the normal state. Experiment results verify the developed transmission line three-phase short-circuit fault emulation capability.« less
The NATO III 5 MHz Distribution System
NASA Technical Reports Server (NTRS)
Vulcan, A.; Bloch, M.
1981-01-01
A high performance 5 MHz distribution system is described which has extremely low phase noise and jitter characteristics and provides multiple buffered outputs. The system is completely redundant with automatic switchover and is self-testing. Since the 5 MHz reference signals distributed by the NATO III distribution system are used for up-conversion and multiplicative functions, a high degree of phase stability and isolation between outputs is necessary. Unique circuit design and packaging concepts insure that the isolation between outputs is sufficient to quarantee a phase perturbation of less than 0.0016 deg when other outputs are open circuited, short circuited or terminated in 50 ohms. Circuit design techniques include high isolation cascode amplifiers. Negative feedback stabilizes system gain and minimizes circuit phase noise contributions. Balanced lines, in lieu of single ended coaxial transmission media, minimize pickup.
NASA Astrophysics Data System (ADS)
He, Yi
2000-10-01
Organic light-emitting devices (OLEDs) made of single-layer and double-layer polymer thin films have been fabricated and studied. The hole transporting (polymer A) and emissive (polymer B) polymers were poly(9,9' -dioctyl fluorene-2,7-diyl)-co-poly(diphenyl-p-tolyl-amine-4,4 '-diyl) and poly(9,9'-dioctyl fluorene-2,7-diyl)-co-poly(benzothiadiazole 2,5-diyl), respectively. The optical bandgaps of polymer A and B were 2.72 and 2.82 eV, respectively. The photoluminescence (PL) peaks for polymer A and B were 502 and 546 nm, respectively. The electroluminescence (EL) peak for polymer B was 547 nm. No EL has been observed from polymer A single layer OLEDs. To obtain the spectral distribution of the emission properties of the light-emitting devices, a new light-output measurement technique was developed. Using this technique, the spectral distribution of the luminance, radiance, photon density emission can be obtained. Moreover, the device external quantum efficiency calculated using this technique is accurate and insensitive to the light emission spectrum shape. Organic light-emitting devices have been fabricated and studied on both glass and flexible plastic substrates. The OLEDs showed a near-linear relationship between the luminance and the applied current density over four orders of magnitude. For the OLEDs fabricated on the glass substrate, luminance ˜9,300 cd/m2, emission efficiency ˜14.5 cd/A, luminescence power efficiency ˜2.26 lm/W, and external quantum efficiency ˜3.85% have been achieved. For the OLEDs fabricated on the flexible plastic substrates, both aluminum and calcium were used as cathode materials. The achieved maximum OLED luminance, emission efficiency, luminescence power efficiency, and external quantum efficiency were ˜13,000 cd/m2, ˜66.1 cd/A, ˜17.2 lm/W, and 16.7%, respectively. To make an active-matrix organic light-emitting display (AM-OLED), a two-TFT pixel electrode circuit was designed and fabricated based on amorphous silicon TFT technology. This circuit was capable of providing continuous pixel excitation and a simple driving scheme. However, it showed an output current variation of ˜40% to 80% due to the drive TFT threshold voltage (V th) shift after long-term operation. To improve the pixel circuit electrical reliability, a four-TFT pixel electrode circuit was proposed and fabricated. This circuit only showed an output current variation <1% for the high currents (>0.5muA) even when a TFT Vth shift as large as 3V was present. This four-TFT pixel electrode circuit was used to fabricate small size active-matrix monochrome organic light-emitting display.
On the role of micro-inertia in enriched continuum mechanics
NASA Astrophysics Data System (ADS)
Madeo, Angela; Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d'Agostino, Marco Valerio
2017-02-01
In this paper, the role of gradient micro-inertia terms η ¯ ∥ ∇ u,t∥2 and free micro-inertia terms η ∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η ¯ ∥ ∇ u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η ∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η ¯ ∥ ∇ u,t∥2, in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η ¯ ∥ ∇ u,t∥2 on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.
On the role of micro-inertia in enriched continuum mechanics
Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d’Agostino, Marco Valerio
2017-01-01
In this paper, the role of gradient micro-inertia terms η¯∥ ∇u,t∥2 and free micro-inertia terms η∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η¯∥ ∇u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η¯∥ ∇u,t∥2, in the sense of Cartan–Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η¯∥ ∇u,t∥2 on more classical enriched models such as the Mindlin–Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin–Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials. PMID:28293136
A new curvature compensation technique for CMOS voltage reference using |VGS| and ΔVBE
NASA Astrophysics Data System (ADS)
Xuemin, Li; Mao, Ye; Gongyuan, Zhao; Yun, Zhang; Yiqiang, Zhao
2016-05-01
A new mixed curvature compensation technique for CMOS voltage reference is presented, which resorts to two sub-references with complementary temperature characteristics. The first sub-reference is the source-gate voltage |VGS|p of a PMOS transistor working in the saturated region. The second sub-reference is the weighted sum of gate-source voltages |VGS|n of NMOS transistors in the subthreshold region and the difference between two base-emitter voltages ΔVBE of bipolar junction transistors (BJTs). The voltage reference implemented utilizing the proposed curvature compensation technique exhibits a low temperature coefficient and occupies a small silicon area. The proposed technique was verified in 0.18 μm standard CMOS process technology. The performance of the circuit has been measured. The measured results show a temperature coefficient as low as 12.7 ppm/°C without trimming, over a temperature range from -40 to 120 °C, and the current consumption is 50 μA at room temperature. The measured power-supply rejection ratio (PSRR) is -31.2 dB @ 100 kHz. The circuit occupies an area of 0.045 mm2. Project supported by the National Natural Science Foundation of China (No. 61376032).
A note on anomalous band-gap variations in semiconductors with temperature
NASA Astrophysics Data System (ADS)
Chakraborty, P. K.; Mondal, B. N.
2018-03-01
An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gang; Kong, Lingping; Gong, Jue
Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, formore » the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH 2) 2PbI 3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gang; Kong, Lingping; Gong, Jue
Bond length and bond angle exhibited by valence electrons is essential to the core of chemistry. Using lead-based organic–inorganic perovskite compounds as an exploratory platform, it is demonstrated that the modulation of valence electrons by compression can lead to discovery of new properties of known compounds. Yet, despite its unprecedented progress, further efficiency boost of lead-based organic–inorganic perovskite solar cells is hampered by their wider bandgap than the optimum value according to the Shockley–Queisser limit. By modulating the valence electron wavefunction with modest hydraulic pressure up to 2.1 GPa, the optimized bandgap for single-junction solar cells in lead-based perovskites, formore » the first time, is achieved by narrowing the bandgap of formamidinium lead triiodide (HC(NH2)2PbI3) from 1.489 to 1.337 eV. Strikingly, such bandgap narrowing is partially retained after the release of pressure to ambient, and the bandgap narrowing is also accompanied with double-prolonged carrier lifetime. With First-principles simulation, this work opens a new dimension in basic chemical understanding of structural photonics and electronics and paves an alternative pathway toward better photovoltaic materials-by-design.« less
NASA Astrophysics Data System (ADS)
Ullrich, B.; Schroeder, R.
2001-08-01
Thin (10 µm) film CdS on Pyrex® formed by spray pyrolysis is excited below the gap at 804 nm with 200 fs laser pulses at room temperature. Excitation intensities up to 250 GW cm-2 evoke green bandgap emission due to two-photon transitions. This two-photon photoluminescence does not show a red emission contribution in contrast to the single-photon excited emission, which is dominated by broad emission in the red spectral range. It is demonstrated that two-photon excitation causes photo-induced bandgap narrowing due to Debye screening. At 250 GW cm-2 bandgap narrowing of 47 meV is observed, which corresponds to an excited electron density of 1.6×1018 cm-3.
Band-gap corrected density functional theory calculations for InAs/GaSb type II superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianwei; Zhang, Yong
2014-12-07
We performed pseudopotential based density functional theory (DFT) calculations for GaSb/InAs type II superlattices (T2SLs), with bandgap errors from the local density approximation mitigated by applying an empirical method to correct the bulk bandgaps. Specifically, this work (1) compared the calculated bandgaps with experimental data and non-self-consistent atomistic methods; (2) calculated the T2SL band structures with varying structural parameters; (3) investigated the interfacial effects associated with the no-common-atom heterostructure; and (4) studied the strain effect due to lattice mismatch between the two components. This work demonstrates the feasibility of applying the DFT method to more exotic heterostructures and defect problemsmore » related to this material system.« less
Machine learning bandgaps of double perovskites
Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.
2016-01-01
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. The developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance. PMID:26783247
Electroabsorption optical modulator
Skogen, Erik J.
2017-11-21
An electroabsorption modulator incorporates waveguiding regions along the length of the modulator that include quantum wells where at least two of the regions have quantum wells with different bandgaps. In one embodiment of the invention, the regions are arranged such that the quantum wells have bandgaps with decreasing bandgap energy along the length of the modulator from the modulator's input to its output. The bandgap energy of the quantum wells may be decreased in discrete steps or continuously. Advantageously, such an arrangement better distributes the optical absorption as well as the carrier density along the length of the modulator. Further advantageously, the modulator may handle increased optical power as compared with prior art modulators of similar dimensions, which allows for improved link gain when the optical modulator is used in an analog optical communication link.
NASA Astrophysics Data System (ADS)
Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.
2008-02-01
Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.
Extreme IR absorption in group IV-SiGeSn core-shell nanowires
NASA Astrophysics Data System (ADS)
Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama
2018-06-01
Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.
Organic Optoelectronic Devices Employing Small Molecules
NASA Astrophysics Data System (ADS)
Fleetham, Tyler Blain
Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt-16. Furthermore, the development of a series of tetradentate Pt complexes yielded highly efficient and stable single doped white devices due to their halogen free tetradentate design. In addition to these benchmark achievements, the systematic molecular modification of both emissive and absorbing materials provides valuable structure-property relationship information that should help guide further developments in the field.
Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes
NASA Technical Reports Server (NTRS)
Zheng, Xinyu; Pain, Bedabrata
2005-01-01
A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would be fabricated separately.
Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.
Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B
2012-07-17
Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.
Flexible low-power RF nanoelectronics in the GHz regime using CVD MoS2
NASA Astrophysics Data System (ADS)
Yogeesh, Maruthi
Two-dimensional (2D) materials have attracted substantial interest for flexible nanoelectronics due to the overall device mechanical flexibility and thickness scalability for high mechanical performance and low operating power. In this work, we demonstrate the first MoS2 RF transistors on flexible substrates based on CVD-grown monolayers, featuring record GHz cutoff frequency (5.6 GHz) and saturation velocity (~1.8×106 cm/s), which is significantly superior to contemporary organic and metal oxide thin-film transistors. Furthermore, multicycle three-point bending results demonstrated the electrical robustness of our flexible MoS2 transistors after 10,000 cycles of mechanical bending. Additionally, basic RF communication circuit blocks such as amplifier, mixer and wireless AM receiver have been demonstrated. These collective results indicate that MoS2 is an ideal advanced semiconducting material for low-power, RF devices for large-area flexible nanoelectronics and smart nanosystems owing to its unique combination of large bandgap, high saturation velocity and high mechanical strength.
NASA Astrophysics Data System (ADS)
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-09-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.
Historical Precision of an Ozone Correction Procedure for AM0 Solar Cell Calibration
NASA Technical Reports Server (NTRS)
Snyder, David B.; Jenkins, Phillip; Scheiman, David
2005-01-01
In an effort to improve the accuracy of the high altitude aircraft method for calibration of high band-gap solar cells, the ozone correction procedure has been revisited. The new procedure adjusts the measured short circuit current, Isc, according to satellite based ozone measurements and a model of the atmospheric ozone profile then extrapolates the measurements to air mass zero, AMO. The purpose of this paper is to assess the precision of the revised procedure by applying it to historical data sets. The average Isc of a silicon cell for a flying season increased 0.5% and the standard deviation improved from 0.5% to 0.3%. The 12 year average Isc of a GaAs cell increased 1% and the standard deviation improved from 0.8% to 0.5%. The slight increase in measured Isc and improvement in standard deviation suggests that the accuracy of the aircraft method may improve from 1% to nearly 0.5%.
NASA Astrophysics Data System (ADS)
Li, Ling; Feng, Liuliu; Yuan, Jun; Peng, Hongjian; Zou, Yingping; Li, Yongfang
2018-03-01
Two medium bandgap polymers (ffQx-TS1, ffQx-TS2) were designed and synthesized to investigate the influence of different alkylthio side chain on the morphology and photovoltaic performance of non-fullerene polymer solar cells (PSCs). Both polymers exhibit similar molecular weights and comparable the highest occupied molecular orbital (HOMO) energy level. However, the polymer with straight alkylthio chain delivers a root-mean-square (RMS) of 0.86 nm, which is slightly lower than that with branched chain (1.40 nm). The lower RMS benefits the ohmic contact between the active lay and interface layer, thus enhanced short circuit current (Jsc) (from 13.54 mA cm-1 to 15.25 mA cm-1) could be obtained. Due to the enhancement of Jsc, better power conversion efficiency (PCE) of 7.69% for ffQx-TS2 could be realized. These results indicated that alkylthio side chain engineering is a promising method to improve photovoltaic performance.
Carbonaceous Dye‐Sensitized Solar Cell Photoelectrodes
Batmunkh, Munkhbayar
2015-01-01
High photovoltaic efficiency is one of the most important keys to the commercialization of dye sensitized solar cells (DSSCs) in the quickly growing renewable electricity generation market. The heart of the DSSC system is a wide bandgap semiconductor based photoelectrode film that helps to adsorb dye molecules and transport the injected electrons away into the electrical circuit. However, charge recombination, poor light harvesting efficiency and slow electron transport of the nanocrystalline oxide photoelectrode film are major issues in the DSSC's performance. Recently, semiconducting composites based on carbonaceous materials (carbon nanoparticles, carbon nanotubes (CNTs), and graphene) have been shown to be promising materials for the photoelectrode of DSSCs due to their fascinating properties and low cost. After a brief introduction to development of nanocrystalline oxide based films, this Review outlines advancements that have been achieved in the application of carbonaceous‐based materials in the photoelectrode of DSSCs and how these advancements have improved performance. In addition, several of the unsolved issues in this research area are discussed and some important future directions are also highlighted. PMID:27980926
Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids
NASA Astrophysics Data System (ADS)
Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F. Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R.; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H.
2017-02-01
Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.
Braly, Ian L; Stoddard, Ryan J; Rajagopal, Adharsh; Jen, Alex K-Y; Hillhouse, Hugh W
2018-06-06
Photovoltaic (PV) device development is much more expensive and time consuming than the development of the absorber layer alone. This perspective focuses on two methods that can be used to rapidly assess and develop PV absorber materials independent of device development. The absorber material properties of quasi-Fermi level splitting and carrier diffusion length under steady effective one-Sun illumination are indicators of a material's ability to achieve high VOC and JSC. These two material properties can be rapidly and simultaneously assessed with steady-state absolute intensity photoluminescence and photoconductivity measurements. As a result, these methods are extremely useful for predicting the quality and stability of PV materials prior to PV device development. Here, we summarize the methods, discuss their strengths and weaknesses, and compare photoluminescence and photoconductivity results with device performance for four hybrid perovskite compositions of various bandgaps (1.35 to 1.82 eV), CISe, CIGSe, and CZTSe.
III–V quantum light source and cavity-QED on Silicon
Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.
2013-01-01
Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621
Broadband Solar Energy Harvesting in Single Nanowire Resonators
NASA Astrophysics Data System (ADS)
Yang, Yiming; Peng, Xingyue; Hyatt, Steven; Yu, Dong
2015-03-01
Sub-wavelength semiconductor nanowires (NWs) can have optical absorption cross sections far beyond their physical sizes at resonance frequencies, offering a powerful method to simultaneously lower the material consumption and enhance photovoltaic performance. The degree of absorption enhancement is expected to substantially increase in materials with high refractive indices, but this has not yet been experimentally demonstrated. Here, we show that the absorption efficiency can be significantly improved in high-index NWs, by a direct observation of 350% external quantum efficiency (EQE) in lead sulfide (PbS) NWs. Broadband absorption enhancement is also realized in tapered NWs, where light of different wavelength is absorbed at segments with different diameters analogous to a tandem solar cell. Our results quantitatively agree with the finite-difference-time-domain (FDTD) simulations. Overall, our single PbS NW Schottky solar cells taking advantage of optical resonance, near bandgap open circuit voltage, and long minority carrier diffusion length exhibit power conversion efficiency comparable to single Si NW coaxial p-n junction cells, while the fabrication complexity is greatly reduced.
Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; Harvey, Steven P.; Ciesielski, Peter N.; Wheeler, Lance M.; Schulz, Philip; Lin, Lih Y.; Beard, Matthew C.; Luther, Joseph M.
2017-01-01
We developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (VOC’s) than thin-film perovskites. CsPbI3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small VOC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions at the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%. PMID:29098184
Chapter 11.2: Inverters, Power Optimizers, and Microinverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Christopher A
Inverters span a wide range of sizes, topologies, and connection voltages: from utility-scale megawatt inverters to string inverters. Switch-mode power conversion relies on high frequency chopping of DC signal to periodically charge and discharge energy storage elements, such as inductors and capacitors. Additional circuit components are required to address practical issues in inverters such as voltage ripple and harmonic distortion. Inverters are beginning to incorporate components with a bandgap above should be 3 eV, such as SiC and GaN. Photovoltaic (PV) modules respond dynamically to changing temperature and irradiation conditions. Thus, maximum DC power extraction requires periodic adjustment of themore » PV voltage and current operating point. An inverter's total efficiency is measured by the product of its conversion efficiency and the maximum-power-point tracking (MPPT) efficiency. This chapter lists the primary functions of inverters that include auxiliary capabilities, such as monitoring of DC and AC performance, and other error reporting.« less
Surface-Wave Pulse Routing around Sharp Right Angles
NASA Astrophysics Data System (ADS)
Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.
2018-04-01
Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.
Ko, Wai Son; Bhattacharya, Indrasen; Tran, Thai-Truong D.; Ng, Kar Wei; Adair Gerke, Stephen; Chang-Hasnain, Connie
2016-01-01
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage. PMID:27659796
Vehicle drive module having improved EMI shielding
Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.
2006-11-28
EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Electronic excitations and chemistry in Nitromethane and HMX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, E J; Manaa, M R; Joannopoulos, J D
2001-06-19
The nature of electronic excitations in crystalline solid nitromethane under conditions of shock loading and static compression are examined. Density functional theory calculations are used to determine the crystal bandgap under hydrostatic stress, uniaxial strain, and shear strain. Bandgap lowering under uniaxial strain due to molecular defects and vacancies is considered. In all cases, the bandgap is not lowered enough to produce a significant population of excited states in the crystal. Preliminary simulations on the formation of detonation product molecules from HMX are discussed.
Sedghi, Aliasghar; Rezaei, Behrooz
2016-11-20
Using the Dirichlet-to-Neumann map method, we have calculated the photonic band structure of two-dimensional metallodielectric photonic crystals having the square and triangular lattices of circular metal rods in a dielectric background. We have selected the transverse electric mode of electromagnetic waves, and the resulting band structures showed the existence of photonic bandgap in these structures. We theoretically study the effect of background dielectric on the photonic bandgap.
Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells
Yang, Zhibin; Rajagopal, Adharsh; Chueh, Chu -Chen; ...
2016-08-22
A low-bandgap (1.33 eV) Sn-based MA 0.5FA 0.5Pb 0.75Sn 0.25I 3 perovskite is developed via combined compositional, process, and interfacial engineering. It can deliver a high power conversion efficiency (PCE) of 14.19%. Lastly, a four-terminal all-perovskite tandem solar cell is demonstrated by combining this low-bandgap cell with a semitransparent MAPbI 3 cell to achieve a high efficiency of 19.08%.
Spectral Mismatch Corrections Video Text Version | Photovoltaic Research |
reference cell with the spectral or spot similar to a test cell will make it easier to account for the goes into the numerator of M. Second, we measure the short circuit current of the test cell under the measure the EQE of the test cell and multiply the AM 1.5G solar spectrum to calculate its short circuit
Double-driven shield capacitive type proximity sensor
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1993-01-01
A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchisio, Mario Andrea, E-mail: marchisio@hit.edu.cn
Published in 2008, Parts & Pools represents one of the first attempts to conceptualize the modular design of bacterial synthetic gene circuits with Standard Biological Parts (DNA segments) and Pools of molecules referred to as common signal carriers (e.g., RNA polymerases and ribosomes). The original framework for modeling bacterial components and designing prokaryotic circuits evolved over the last years and brought, first, to the development of an algorithm for the automatic design of Boolean gene circuits. This is a remarkable achievement since gene digital circuits have a broad range of applications that goes from biosensors for health and environment caremore » to computational devices. More recently, Parts & Pools was enabled to give a proper formal description of eukaryotic biological circuit components. This was possible by employing a rule-based modeling approach, a technique that permits a faithful calculation of all the species and reactions involved in complex systems such as eukaryotic cells and compartments. In this way, Parts & Pools is currently suitable for the visual and modular design of synthetic gene circuits in yeast and mammalian cells too.« less
Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.; Stephenson, William A.
1988-07-01
Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.
FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.
Gu, Ming; Chakrabartty, Shantanu
2013-08-01
This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... `277 patent are invalid under 35 U.S.C. 102(b) as anticipated by certain prior art references, but... under 35 U.S.C. 102(b) as anticipated by certain prior art references; (3) claims 1, 2, 13 and 14 of the '356 patent are not invalid under 35 U.S.C. 102(b) as anticipated by certain prior art references; (4...
Phase inverter provides variable reference push-pull output
NASA Technical Reports Server (NTRS)
1966-01-01
Dual-transistor difference amplifier provides a push-pull output referenced to a dc potential which can be varied without affecting the signal levels. The amplifier is coupled with a feedback circuit which can vary the operating points of the transistors by equal amounts to provide the variable reference potentials.
Some didactical suggestions for a deeper embedding of DC circuits into electromagnetism
NASA Astrophysics Data System (ADS)
Cavinato, M.; Giliberti, M.; Barbieri, S. R.
2017-09-01
Undergraduate students often encounter great difficulties in understanding Ohm’s law and electrical circuits. Considering the widespread students’ beliefs and their common mistakes, as they come out from the literature and our teaching experience, we think that a relevant source of these problems comes from the fact that electrical circuits are generally treated separately from the other topics of electromagnetism, with poor reference to the circulation of the electric field. We present here a way to deal with electrical circuits that could help students to overcome their difficulties. In our approach, the electric field is the protagonist and the mathematical tool the students are asked to use is its circulation. In the light of the circulation of the electric field, the experimental Ohm’s law is revisited, the concept of electromotive force is discussed and some suggestions to eliminate common misconceptions about the role of a battery in a circuit are presented.
Selection of airgap layers for circuit timing optimization
NASA Astrophysics Data System (ADS)
Hyun, Daijoon; Shin, Youngsoo
2017-03-01
Airgap refers to a void formed in place of some inter metal dielectric (IMD). It brings about the reduction in coupling capacitance, which may contribute to improvement in circuit performance. We introduce two problems in this context. First is to choose the layers, where airgap should be applied, in such a way that total negative slack (TNS) is minimized for a given circuit. This has been motivated by the fact that best choice of airgap layers is different for different circuits. An algorithm is proposed to solve the problem, and is assessed against a naive approach in which airgap layers are simply fixed; additional 8% TNS reduction, on average of a few test circuits, is demonstrated. In the second problem, some wires of critical paths that are on non-airgap layers are reassigned to airgap layers such that TNS is further reduced; additional 3 to 14% of TNS reduction is observed.
Analysis and modeling of a family of two-transistor parallel inverters
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1973-01-01
A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.
Next-generation all-silica coatings for UV applications
NASA Astrophysics Data System (ADS)
Melninkaitis, A.; Grinevičiūtė, L.; Abromavičius, G.; Mažulė, L.; Smalakys, L.; Pupka, E.; Š čiuka, M.; Buzelis, R.; Kičas, S.
2017-11-01
Band-gap and refractive index are known as fundamental properties determining intrinsic optical resistance of multilayer dielectric coatings. By considering this fact we propose novel approach to manufacturing of interference thin films, based on artificial nano-structures of modulated porosity embedded in high band-gap matrix. Next generation all-silica mirrors were prepared by GLancing Angle Deposition (GLAD) using electron beam evaporation. High reflectivity (HR) was achieved by tailoring the porosity of highly resistant silica material during the thin film deposition process. Furthermore, the proposed approach was also demonstrated to work well in case of anti-reflection (AR) coatings. Conventional HR HfO2 and SiO2 as well as AR Al2O3 and SiO2 multilayers produced by Ion Beam Sputtering (IBS) were used as reference coatings. Damage performance of experimental coatings was also analyzed. All-silica based GLAD approach resulted in significant improvement of intrinsic laser damage resistance properties if compared to conventional coatings. Besides laser damage testing, other characteristics of experimental coatings are analyzed and discussed - reflectance, surface roughness and optical scattering. We believe that reported concept can be expanded to virtually any design of thin film coatings thus opening a new way of next generation highly resistant thin films well suited for high power and UV laser applications.
NASA Astrophysics Data System (ADS)
Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph
2011-03-01
We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.
InGaAs monolithic interconnected modules (MIM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1997-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs withmore » an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.« less
Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells
NASA Astrophysics Data System (ADS)
Zou, Yunlong
Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2014-02-01
We investigated the electronic properties of silicon nanotubes (SiNTs) under external transverse electric fields and axial magnetic fields using the tight-binding approximation. It was found that, after switching on the electric and magnetic fields, band modifications such as distortion of degeneracy, change in energy dispersion and subband spacing, and bandgap size reduction occur. The bandgap of silicon gear-like nanotubes (Si g-NTs) decreases linearly with increasing electric field strength, but the bandgap for silicon hexagonal nanotubes (Si h-NTs) first increases and then decreases (metallic) or first remains constant and then decreases (semiconducting). Our results show that the bandgap of Si h-NTs is very sensitive to both electric and magnetic fields, unlike Si g-NTs, which are more sensitive to electric than magnetic fields.
Samanta, Atanu; Jain, Manish; Singh, Abhishek K
2015-08-14
The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.
Hybridization bandgap induced by an electrical resonance in piezoelectric metamaterial plates
NASA Astrophysics Data System (ADS)
Kherraz, N.; Haumesser, L.; Levassort, F.; Benard, P.; Morvan, B.
2018-03-01
We demonstrate numerically and experimentally the opening of a locally resonant bandgap in an active phononic crystal (PC) made of a homogeneous piezoelectric plate covered by a 1D periodic array of thin electrodes connected to inductive shunts. The application of periodic electrical boundary conditions (EBCs) enables an at will tailoring of the dispersion properties of the PC plate, thus leading to a control of the dispersion of the propagating guided elastic waves in the plate. Depending on the nature of the EBCs, several bandgaps open up, the most important being a Hybridization Bandgap (HBG) in the subwavelength regime. The PC behaves as a locally resonant metamaterial. The HBG originates from the interaction of propagating elastic waves (Lamb modes) with an electrical resonant mode whose dispersion can be effectively described through an equivalent transmission line model.
Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal.
Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang
2017-08-01
Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.
Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal
NASA Astrophysics Data System (ADS)
Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang
2017-08-01
Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.
Machine learning bandgaps of double perovskites
Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; ...
2016-01-19
The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less
Photonic Bandgap (PBG) Shielding Technology
NASA Technical Reports Server (NTRS)
Bastin, Gary L.
2007-01-01
Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects
The design of high performance, low power triple-track magnetic sensor chip.
Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning
2013-07-09
This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target.
The Design of High Performance, Low Power Triple-Track Magnetic Sensor Chip
Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning
2013-01-01
This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target. PMID:23839231
Buffer Layer Effects on Tandem InGaAs TPV Devices
NASA Technical Reports Server (NTRS)
Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.
2004-01-01
Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of configurations both with and without buffer layers. All structures were characterized by reciprocal space x-ray diffraction to determine epilayer composition and residual strain. Electrical characterization of the devices was performed to examine the effect of the buffer on the device performance. The effect of the buffer structure depends upon where it is positioned. When near the emitter region, a 2.6x increase in dark current was measured, whereas no change in dark current was observed when it was near the base region.
The density matrix method in photonic bandgap and antiferromagnetic materials
NASA Astrophysics Data System (ADS)
Barrie, Scott B.
In this thesis, a theory for dispersive polaritonic bandgap (DPBG) and photonic bandgap (PBG) materials is developed. An ensemble of multi-level nanoparticles, such as non-interacting two-, three- and four-level atoms doped in DPBG and PBG materials is considered. The optical properties of these materials such as spontaneous emission, line broadening, fluorescence and narrowing of the natural linewidth have been studied using the density matrix method. Numerical simulations for these properties have been performed for the DPBG materials SiC and InAs, and for a PBG material with a 20 percent gap-to-midgap ratio. When a three-level nanoparticle is doped into a DPBG material, it is predicted that one or two bound states exist when one or both resonance energies, respectively, lie in the bandgap. It is shown when a resonance energy lies below the bandgap, its spectral density peak weakens and broadens as the resonance energy increases to the lower band edge. For the first time it is predicted that when a nanoparticle's resonance energy lies above the bandgap, its spectral density peak weakens and broadens as the resonance energy increases. A relation is also found between spectral structure and gap-to-midgap ratios. The dressed states of a two-level atom doped into a DPBG material under the influence of an intense monochromatic laser field are examined. The splitting of the dressed state energies is calculated, and it is predicted that the splitting depends on the polariton density of states and the Rabi frequency of laser field. The fluoresence is also examined, and for the first time two distinct control processes are found for the transition from one peak to three peaks. It was previously known that the Rabi frequency controlled the Stark effect, but this thesis predicts that the local of the peak with respect to the optical bandgap can cause a transition from one to three peaks even with a weak Rabi frequency. The transient linewidth narrowing of PBG crystal emission peaks doped with four-level atoms is studied. It is found that linewidth narrowing is only dependent upon time delay when the resonance energy is not near a band edge. This is a new discovery. The density matrix method is employed to find the critical magnetic field at which spin flopping occurs in antiferromagnetic high temperature superconductors. It is found that this magnetic field depends upon the temperature, the anisotropy parameter and the doping concentration. Results are calculated for 1-2-3 HTSCs. Keywords. Quantum Optics, Density Matrix, Photonic Bandgap Materials, Dispersive Polaritonic Bandgap Materials, Antiferromagnets.
Vanadium supersaturated silicon system: a theoretical and experimental approach
NASA Astrophysics Data System (ADS)
Garcia-Hemme, Eric; García, Gregorio; Palacios, Pablo; Montero, Daniel; García-Hernansanz, Rodrigo; Gonzalez-Diaz, Germán; Wahnon, Perla
2017-12-01
The effect of high dose vanadium ion implantation and pulsed laser annealing on the crystal structure and sub-bandgap optical absorption features of V-supersaturated silicon samples has been studied through the combination of experimental and theoretical approaches. Interest in V-supersaturated Si focusses on its potential as a material having a new band within the Si bandgap. Rutherford backscattering spectrometry measurements and formation energies computed through quantum calculations provide evidence that V atoms are mainly located at interstitial positions. The response of sub-bandgap spectral photoconductance is extended far into the infrared region of the spectrum. Theoretical simulations (based on density functional theory and many-body perturbation in GW approximation) bring to light that, in addition to V atoms at interstitial positions, Si defects should also be taken into account in explaining the experimental profile of the spectral photoconductance. The combination of experimental and theoretical methods provides evidence that the improved spectral photoconductance up to 6.2 µm (0.2 eV) is due to new sub-bandgap transitions, for which the new band due to V atoms within the Si bandgap plays an essential role. This enables the use of V-supersaturated silicon in the third generation of photovoltaic devices.
A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups
NASA Astrophysics Data System (ADS)
Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.
2017-01-01
By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.
NASA Astrophysics Data System (ADS)
Lu, Xuefeng; Gao, Xu; Ren, Junqiang; Li, Cuixia; Guo, Xin; Wei, Yupeng; La, Peiqing
2018-06-01
Bandgap tailoring of β-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al-P and As-P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al-P and Al-As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al-P and Al-As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.
Spatial filtering with photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maigyte, Lina; Staliunas, Kestutis; Institució Catalana de Recerca i Estudis Avançats
2015-03-15
Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., inmore » the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.« less
Yan, Yibo; Chen, Jie; Li, Nan; Tian, Jingqi; Li, Kaixin; Jiang, Jizhou; Liu, Jiyang; Tian, Qinghua; Chen, Peng
2018-04-24
Graphene quantum dots (GQDs), which is the latest addition to the nanocarbon material family, promise a wide spectrum of applications. Herein, we demonstrate two different functionalization strategies to systematically tailor the bandgap structures of GQDs whereby making them snugly suitable for particular applications. Furthermore, the functionalized GQDs with a narrow bandgap and intramolecular Z-scheme structure are employed as the efficient photocatalysts for water splitting and carbon dioxide reduction under visible light. The underlying mechanisms of our observations are studied and discussed.
Electronic bandstructure of semiconductor dilute bismide structures
NASA Astrophysics Data System (ADS)
Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.
2017-02-01
In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.
InGaP Heterojunction Barrier Solar Cells
NASA Technical Reports Server (NTRS)
Welser, Roger E. (Inventor)
2014-01-01
A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.
Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Deng, Yuanlong; Yu, Yongqin
2013-07-15
In this paper, an in-line comb filter with flat-top spectral response is proposed and constructed based on a cascaded all-solid photonic bandgap fiber modal interferometer. It consists of two short pieces of all-solid photonic bandgap fiber and two standard single-mode fibers as lead fibers with core-offset splices between them. The theoretical and experimental results demonstrated that by employing a cut and resplice process on the central position of all-solid photonic bandgap fiber, the interference spectra are well tailored and flat-top spectral profiles could be realized by the controllable offset amount of the resplice. The channel position also could be tuned by applying longitudinal torsion with up to 4 nm tuning range. Such a flat-top fiber comb filter is easy-to-fabricate and with a designable passband width and flat-top profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, Atanu; Singh, Abhishek K.; Jain, Manish
2015-08-14
The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p)more » orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.« less
Tuning the hybridization bandgap by meta-molecules with in-unit interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yongqiang; Li, Yunhui, E-mail: liyunhui@tongji.edu.cn; Wu, Qian
2015-09-07
In this paper, we demonstrate that the hybridization bandgap (HBG) can be tuned conveniently by deep subwavelength meta-molecules with in-unit interaction. Spontaneous-emission-cancellation-like (SEC-like) effect is realized in a meta-molecule by introducing the destructive interference of two detuned meta-atoms. The meta-atoms consisting of subwavelength zero-index-metamaterial-based resonators are side-coupled to a microstrip. Compared to conventional HBG configurations, the presence of in-unit interaction between meta-atoms provides more flexibility in tuning the bandgap properties, keeping the device volume almost unchanged. Both numerical simulations and microwave experiments confirm that the width, depth, and spectrum shape of HBG can be tuned by simply introducing SEC-like interactionmore » into the meta-molecule. Due to these features, our design may be promising to be applied in microwave or optics communications systems with strict limitation of device volume and flexible bandgap properties.« less
GePb Alloy Growth Using Layer Inversion Method
NASA Astrophysics Data System (ADS)
Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.
2018-04-01
Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.
Fano resonance in anodic aluminum oxide based photonic crystals.
Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De
2014-01-08
Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.
GePb Alloy Growth Using Layer Inversion Method
NASA Astrophysics Data System (ADS)
Alahmad, Hakimah; Mosleh, Aboozar; Alher, Murtadha; Banihashemian, Seyedeh Fahimeh; Ghetmiri, Seyed Amir; Al-Kabi, Sattar; Du, Wei; Li, Bauhoa; Yu, Shui-Qing; Naseem, Hameed A.
2018-07-01
Germanium-lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.
Brown, Raymond J.
1977-01-01
The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.
Analysis and synthesis of distributed-lumped-active networks by digital computer
NASA Technical Reports Server (NTRS)
1973-01-01
The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Miller, D. Westley; Ngo, Quynh P.
Organometal halide perovskite semiconductors have emerged as promising candidates for optoelectronic applications because of the outstanding charge carrier transport properties, achieved with low-temperature synthesis. In this paper, we present highly sensitive sub-bandgap external quantum efficiency (EQE) measurements of Au/spiro-OMeTAD/CH 3NH 3Pb(I 1–xBr x) 3/TiO 2/FTO/glass photovoltaic devices. The room-temperature spectra show exponential band tails with a sharp onset characterized by low Urbach energies (E u) over the full halide composition space. The Urbach energies are 15–23 meV, lower than those for most semiconductors with similar bandgaps (especially with E g > 1.9 eV). Intentional aging of CH 3NH 3Pb(I 1–xBrmore » x) 3 for up to 2300 h, reveals no change in E u, despite the appearance of the PbI 2 phase due to decomposition, and confirms a high degree of crystal ordering. Moreover, sub-bandgap EQE measurements reveal an extended band of sub-bandgap electronic states that can be fit with one or two point defects for pure CH 3NH 3PbI 3 or mixed CH 3NH 3Pb(I 1–xBr x) 3 compositions, respectively. Finally, the study provides experimental evidence of defect states close to the midgap that could impact photocarrier recombination and energy conversion efficiency in higher bandgap CH 3NH 3Pb(I 1–xBr x) 3 alloys.« less
Sutter-Fella, Carolin M.; Miller, D. Westley; Ngo, Quynh P.; ...
2017-02-15
Organometal halide perovskite semiconductors have emerged as promising candidates for optoelectronic applications because of the outstanding charge carrier transport properties, achieved with low-temperature synthesis. In this paper, we present highly sensitive sub-bandgap external quantum efficiency (EQE) measurements of Au/spiro-OMeTAD/CH 3NH 3Pb(I 1–xBr x) 3/TiO 2/FTO/glass photovoltaic devices. The room-temperature spectra show exponential band tails with a sharp onset characterized by low Urbach energies (E u) over the full halide composition space. The Urbach energies are 15–23 meV, lower than those for most semiconductors with similar bandgaps (especially with E g > 1.9 eV). Intentional aging of CH 3NH 3Pb(I 1–xBrmore » x) 3 for up to 2300 h, reveals no change in E u, despite the appearance of the PbI 2 phase due to decomposition, and confirms a high degree of crystal ordering. Moreover, sub-bandgap EQE measurements reveal an extended band of sub-bandgap electronic states that can be fit with one or two point defects for pure CH 3NH 3PbI 3 or mixed CH 3NH 3Pb(I 1–xBr x) 3 compositions, respectively. Finally, the study provides experimental evidence of defect states close to the midgap that could impact photocarrier recombination and energy conversion efficiency in higher bandgap CH 3NH 3Pb(I 1–xBr x) 3 alloys.« less
NASA Astrophysics Data System (ADS)
Zolnai, Z.; Toporkov, M.; Volk, J.; Demchenko, D. O.; Okur, S.; Szabó, Z.; Özgür, Ü.; Morkoç, H.; Avrutin, V.; Kótai, E.
2015-02-01
The atomic composition with less than 1-2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and heterostructures for UV emitters and intersubband devices.
Active shunt capacitance cancelling oscillator circuit
Wessendorf, Kurt O.
2003-09-23
An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.
Scale Up Considerations for Sediment Microbial Fuel Cells
2013-01-01
density calculations were made once WPs stabilized for each system. Linear sweep voltametry was then used on these systems to generate polarization and...power density curves. The systems were allowed to equilibrate under open circuit conditions (about 12 h) before a potential sweep was performed with a...reference. The potential sweep was set to begin at the anode potential under open circuit conditions (20.4 V vs. Ag/AgCl) and was raised to the
Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors
NASA Astrophysics Data System (ADS)
Steiner, M. A.; Perl, E. E.; Geisz, J. F.; Friedman, D. J.; Jain, N.; Levi, D.; Horner, G.
2017-04-01
We demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important the bandgap be determined from the external quantum efficiency.
Apparent bandgap shift in the internal quantum efficiency for solar cells with back reflectors
Steiner, Myles A.; Perl, E. E.; Geisz, J. F.; ...
2017-04-28
Here, we demonstrate that in solar cells with highly reflective back mirrors, the measured internal quantum efficiency exhibits a shift in bandgap relative to the measured external quantum efficiency. The shift arises from the fact that the measured reflectance at the front surface includes a superposition of waves reflecting from the front and back surfaces. We quantify the magnitude of the apparent shift and discuss the errors that can result in determination of quantities such as the photocurrent. Because of this apparent shift, it is important that the bandgap be determined from the external quantum efficiency.
NASA Astrophysics Data System (ADS)
Lee, Hosik; Ohno, Takahisa
2013-03-01
For better efficiency as photocatalysts, N-doping for visible light reactivity has been intensively studied in Lamellar niobic and titanic solid acids (HNb3O8, H2Ti4O9), and its microscopic structures have been debated in this decade. We calculate the layered solid acids' structures and bandgaps. Bandgap reduction by carbon nitride adsorption in interlayer space is observed computationally. It originates from localized nitrogen states which form delocalized top-valence states by hybridizing with the host oxygen states and can contribute to photo-current.
Characteristics of a liquid-crystal-filled composite lattice terahertz bandgap fiber
NASA Astrophysics Data System (ADS)
Bai, Jinjun; Ge, Meilan; Wang, Shasha; Yang, Yanan; Li, Yong; Chang, Shengjiang
2018-07-01
A new type of terahertz fiber is presented based on composite lattice photonic crystal bandgap. The cladding is filled selectively with the nematic liquid crystal 5CB which is sensitive to the electric field. The terahertz wave can be modulated by using the electric field to control the orientation of liquid crystal molecules. The plane wave expansion method and the finite element method are employed to theoretically analyze bandgap characteristics, polarization characteristics, energy fraction and material absorption loss. The results show that this fiber structure can be used as tunable terahertz polarization controller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana
Band-edge effects - including grading, electrostatic fluctuations, bandgap fluctuations, and band tails - affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In, Ga)Se2 devices, recent increases in diffusion length imply changes to the optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties, is examined.
Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization
NASA Astrophysics Data System (ADS)
Dan, Nguyen Trung; Bechstedt, F.
1996-02-01
We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.