Sample records for bandgap voltage reference

  1. A 2.87 ppm/°C 65 nm CMOS bandgap reference with nonlinearity compensation

    NASA Astrophysics Data System (ADS)

    Xingyuan, Tong; Zhangming, Zhu; Yintang, Yang

    2011-09-01

    Based on the review and analysis of two recently reported low temperature coefficient (TC) bandgap voltage references (BGRs), a new temperature compensation technique is presented. With the double-end piecewise nonlinearity correction method, the logarithm cancellation technique and the mixed-mode output topology, a BGR with high-temperature stability is realised based on 65 nm CMOS low-leakage process. The post-simulation results using Spectre show that this BGR produces an output voltage of about 953 mV with 2.5 V supply voltage, and the output voltage varies by only 0.16 mV from -40°C to 125°C. This low TC BGR has been used in a 65 nm CMOS touch screen controller, and the measurement shows that the output voltage of this BGR is about 949 mV varying by 0.44 mV from -40°C to 125°C. The TC of this BGR is about 2.87 ppm/°C, meeting the requirement of high-precision SoC application.

  2. An 1.4 ppm/°C bandgap voltage reference with automatic curvature-compensation technique

    NASA Astrophysics Data System (ADS)

    Zhou, Zekun; Yu, Hongming; Shi, Yue; Zhang, Bo

    2017-12-01

    A high-precision Bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. Firstly, an exponential curvature compensation method is adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Experiment results of the BGR proposed in this paper, which is implemented in 0.35-μm BCD process, illustrate that the TC of 1.4ppm/°C is realized under the power supply voltage of 3.6V and the power supply rejection of the proposed circuit is -67dB.

  3. Proton Tolerance of SiGe Precision Voltage References for Extreme Temperature Range Electronics

    NASA Astrophysics Data System (ADS)

    Najafizadeh, Laleh; Bellini, Marco; Prakash, A. P. Gnana; Espinel, Gustavo A.; Cressler, John D.; Marshall, Paul W.; Marshall, Cheryl J.

    2006-12-01

    A comprehensive investigation of the effects of proton irradiation on the performance of SiGe BiCMOS precision voltage references intended for extreme environment operational conditions is presented. The voltage reference circuits were designed in two distinct SiGe BiCMOS technology platforms (first generation (50 GHz) and third generation (200 GHz)) in order to investigate the effect of technology scaling. The circuits were irradiated at both room temperature and at 77 K. Measurement results from the experiments indicate that the proton-induced changes in the SiGe bandgap references are minor, even down to cryogenic temperatures, clearly good news for the potential application of SiGe mixed-signal circuits in emerging extreme environments

  4. Investigation of the open-circuit voltage in wide-bandgap InGaP-host InP quantum dot intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi

    2018-04-01

    To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.

  5. Precision Voltage Referencing Techniques in MOS Technology.

    NASA Astrophysics Data System (ADS)

    Song, Bang-Sup

    With the increasing complexity of functions on a single MOS chip, precision analog cicuits implemented in the same technology are in great demand so as to be integrated together with digital circuits. The future development of MOS data acquisition systems will require precision on-chip MOS voltage references. This dissertation will probe two most promising configurations of on-chip voltage references both in NMOS and CMOS technologies. In NMOS, an ion-implantation effect on the temperature behavior of MOS devices is investigated to identify the fundamental limiting factors of a threshold voltage difference as an NMOS voltage source. For this kind of voltage reference, the temperature stability on the order of 20ppm/(DEGREES)C is achievable with a shallow single-threshold implant and a low-current, high-body bias operation. In CMOS, a monolithic prototype bandgap reference is designed, fabricated and tested which embodies a curvature compensation and exhibits a minimized sensitivity to the process parameter variation. Experimental results imply that an average temperature stability on the order of 10ppm/(DEGREES)C with a production spread of less than 10ppm/(DEGREES)C feasible over the commercial temperature range.

  6. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    DOE PAGES

    Perl, Emmett E.; Simon, John; Geisz, John F.; ...

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000more » W/m 2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.« less

  7. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    PubMed Central

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  8. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  9. A Fresh Look at the Semiconductor Bandgap Using Constant Current Data

    ERIC Educational Resources Information Center

    Ocaya, R. O.; Luhanga, P. V. C.

    2011-01-01

    It is shown that the well-known linear variation of p-n diode terminal voltage with temperature at different fixed forward currents allows easy and accurate determination of the semiconductor ideality factor and bandgap from only two data points. This is possible if the temperature difference required to maintain the same diode voltage drop can be…

  10. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    NASA Astrophysics Data System (ADS)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  11. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  12. Frequency dispersion of capacitance-voltage characteristics in wide bandgap semiconductor-electrolyte junctions

    NASA Astrophysics Data System (ADS)

    Frolov, D. S.; Zubkov, V. I.

    2016-12-01

    The frequency dispersion of capacitance-voltage characteristics and derived charge carrier concentration with application to the junction between an electrolyte and wide band-gap semiconductors are investigated. To expand the measurement frequency range, the precision LCR-meter Agilent E4980A was connected to the electrochemical cell ECVPro Nanometrics via a specially designed switch unit. The influence of series resistance and degree of dopant ionization on the frequency dispersion of CV-measured characteristics are discussed. It was shown that in wide band-gap semiconductors one can get both total and ionized dopant concentration, depending on the test frequency choice for capacitance measurements.

  13. Open-Circuit Voltage Deficit, Radiative Sub-Bandgap States, and Prospects in Quantum Dot Solar Cells

    PubMed Central

    Chuang, Chia-Hao Marcus; Maurano, Andrea; Brandt, Riley E.; Hwang, Gyu Weon; Jean, Joel; Buonassisi, Tonio; Bulović, Vladimir; Bawendi, Moungi G.

    2016-01-01

    Quantum dot photovoltaics (QDPV) offer the potential for low-cost solar cells. To develop strategies for continued improvement in QDPVs, a better understanding of the factors that limit their performance is essential. Here, we study carrier recombination processes that limit the power conversion efficiency of PbS QDPVs. We demonstrate the presence of radiative sub-bandgap states and sub-bandgap state filling in operating devices by using photoluminescence (PL) and electroluminescence (EL) spectroscopy. These sub-bandgap states are most likely the origin of the high open-circuit-voltage (VOC) deficit and relatively limited carrier collection that have thus far been observed in QDPVs. Combining these results with our perspectives on recent progress in QDPV, we conclude that eliminating sub-bandgap states in PbS QD films has the potential to show a greater gain than may be attainable by optimization of interfaces between QDs and other materials. We suggest possible future directions that could guide the design of high-performance QDPVs. PMID:25927871

  14. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells

    DOE PAGES

    Yu, Yue; Wang, Changlei; Grice, Corey R.; ...

    2017-04-26

    Here, we show that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of mixed-cation lead mixed-halide perovskite thin films while avoiding excess lead iodide formation. As a result, the average grain size of the wide-bandgap mixed-cation lead perovskite thin films increases from 66 ± 24 to 1036 ± 111 nm, and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. Consequently, the average open-circuit voltage of wide-bandgap perovskite solar cells increases by 80 (70) mV, and the average power conversion efficiency (PCE) increasesmore » from 13.44 ± 0.48 (11.75 ± 0.34) to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap perovskite solar cell, with a bandgap of 1.75 eV, achieves a stabilized PCE of 17.18%.« less

  15. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So, Franky

    2014-05-08

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2’-ethylhexyloxy)-1, phenylenevinylene]more » (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH-PPV devices is due to Auger-assisted energy up-conversion process. Specifically, we propose that the up-conversion process is due to charge accumulation at the polymer/NPs interface. This model requires that holes should be the dominant carriers in the polymer and the polymer/ZnO NCs heterojunction should be a type II alignment. In order to determine the mechanism of the up-conversion process, we will characterize devices fabricated using polymers with different carrier transporting properties to determine whether hole accumulation at the polymer/nanocrystals is required. Likewise, we will also use NPs with different electronic structures to fabricate devices to determine how electron accumulation affects the up-conversion process. Finally, we will measure quantitatively the interface charge accumulation by electroabsorption and correlate the results with the up-conversion photoluminescence efficiency measurements under an applied electric field.« less

  16. Wide Bandgap Extrinsic Photoconductive Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the widemore » bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.« less

  17. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE PAGES

    Zhao, Dewei; Yu, Yue; Wang, Changlei; ...

    2017-03-01

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  18. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dewei; Yu, Yue; Wang, Changlei

    Tandem solar cells using only metal-halide perovskite sub-cells are an attractive choice for next-generation solar cells. However, the progress in developing efficient all-perovskite tandem solar cells has been hindered by the lack of high-performance low-bandgap perovskite solar cells. Here in this paper, we report efficient mixed tin-lead iodide low-bandgap (~1.25 eV) perovskite solar cells with open-circuit voltages up to 0.85 V and over 70% external quantum efficiencies in the infrared wavelength range of 700-900 nm, delivering a short-circuit current density of over 29 mA cm -2 and demonstrating suitability for bottom-cell applications in all-perovskite tandem solar cells. Our low-bandgap perovskitemore » solar cells achieve a maximum power conversion efficiency of 17.6% and a certified efficiency of 17.01% with a negligible current-voltage hysteresis. Finally, when mechanically stacked with a ~1.58 eV bandgap perovskite top cell, our best all-perovskite 4-terminal tandem solar cell shows a steady-state efficiency of 21.0%.« less

  19. Comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE PAGES

    Mansfield, Lorelle M.; Garris, Rebekah L.; Counts, Kahl D.; ...

    2016-11-03

    Cu(In, Ga)Se2 (CIGS)-based solar cells from six fabricators were characterized and compared. The devices had differing substrates, absorber deposition processes, buffer materials, and contact materials. The effective bandgaps of devices varied from 1.05 to 1.22 eV, with the lowest optical bandgaps occurring in those with metal-precursor absorber processes. Devices with Zn(O, S) or thin CdS buffers had quantum efficiencies above 90% down to 400 nm. Most voltages were 250-300 mV below the Shockley-Queisser limit for their bandgap. Electroluminescence intensity tracked well with the respective voltage deficits. Fill factor (FF) was as high as 95% of the maximum for each device'smore » respective current and voltage, with higher FF corresponding to lower diode quality factors (~1.3). An in-depth analysis of FF losses determined that diode quality reflected in the quality factor, voltage-dependent photocurrent, and, to a lesser extent, the parasitic resistances are the limiting factors. As a result, different absorber processes and device structures led to a range of electrical and physical characteristics, yet this investigation showed that multiple fabrication pathways could lead to high-quality and high-efficiency solar cells.« less

  20. Comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, Lorelle M.; Garris, Rebekah L.; Counts, Kahl D.

    Cu(In, Ga)Se2 (CIGS)-based solar cells from six fabricators were characterized and compared. The devices had differing substrates, absorber deposition processes, buffer materials, and contact materials. The effective bandgaps of devices varied from 1.05 to 1.22 eV, with the lowest optical bandgaps occurring in those with metal-precursor absorber processes. Devices with Zn(O, S) or thin CdS buffers had quantum efficiencies above 90% down to 400 nm. Most voltages were 250-300 mV below the Shockley-Queisser limit for their bandgap. Electroluminescence intensity tracked well with the respective voltage deficits. Fill factor (FF) was as high as 95% of the maximum for each device'smore » respective current and voltage, with higher FF corresponding to lower diode quality factors (~1.3). An in-depth analysis of FF losses determined that diode quality reflected in the quality factor, voltage-dependent photocurrent, and, to a lesser extent, the parasitic resistances are the limiting factors. As a result, different absorber processes and device structures led to a range of electrical and physical characteristics, yet this investigation showed that multiple fabrication pathways could lead to high-quality and high-efficiency solar cells.« less

  1. Wide Bandgap Extrinsic Photoconductive Switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, James S.

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductivemore » switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.« less

  2. Polymer solar cells with enhanced open-circuit voltage and efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  3. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  4. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  5. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  6. Four-terminal circuit element with photonic core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less

  7. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites

    DOE PAGES

    Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.; ...

    2017-06-21

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less

  8. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.

    PubMed

    Stoddard, Ryan J; Eickemeyer, Felix T; Katahara, John K; Hillhouse, Hugh W

    2017-07-20

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83 Cs 0.17 Pb(I 0.66 Br 0.34 ) 3 , resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.

  9. HIGH-k GATE DIELECTRIC: AMORPHOUS Ta/La2O3 FILMS GROWN ON Si AT LOW PRESSURE

    NASA Astrophysics Data System (ADS)

    Bahari, Ali; Khorshidi, Zahra

    2014-09-01

    In the present study, Ta/La2O3 films (La2O3 doped with Ta2O5) as a gate dielectric were prepared using a sol-gel method at low pressure. Ta/La2O3 film has some hopeful properties as a gate dielectric of logic device. The structure and morphology of Ta/La2O3 films were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrical properties of films were performed using capacitance-voltage (C-V) and current density-voltage (J-V) measurements. The optical bandgap of samples was studied by UV-visible optical absorbance measurement. The optical bandgap, Eopt, is determined from the absorbance spectra. The obtained results show that Ta/La2O3 film as a good gate dielectric has amorphous structure, good thermal stability, high dielectric constant (≈ 25), low leakage current and wide bandgap (≈ 4.7 eV).

  10. Competitive behavior of photons contributing to junction voltage jump in narrow band-gap semiconductor multi-quantum-well laser diodes at lasing threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Liefeng, E-mail: fengliefeng@tju.edu.cn, E-mail: lihongru@nankai.edu.cn; Yang, Xiufang; Wang, Cunda

    2015-04-15

    The junction behavior of different narrow band-gap multi-quantum-well (MQW) laser diodes (LDs) confirmed that the jump in the junction voltage in the threshold region is a general characteristic of narrow band-gap LDs. The relative change in the 1310 nm LD is the most obvious. To analyze this sudden voltage change, the threshold region is divided into three stages by I{sub th}{sup l} and I{sub th}{sup u}, as shown in Fig. 2; I{sub th}{sup l} is the conventional threshold, and as long as the current is higher than this threshold, lasing exists and the IdV/dI-I plot drops suddenly; I{sub th}{sup u}more » is the steady lasing point, at which the separation of the quasi-Fermi levels of electron and holes across the active region (V{sub j}) is suddenly pinned. Based on the evolutionary model of dissipative structure theory, the rate equations of the photons in a single-mode LD were deduced in detail at I{sub th}{sup l} and I{sub th}{sup u}. The results proved that the observed behavior of stimulated emission suddenly substituting for spontaneous emission, in a manner similar to biological evolution, must lead to a sudden increase in the injection carriers in the threshold region, which then causes the sudden increase in the junction voltage in this region.« less

  11. Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications.

    PubMed

    Matsuo, Hiroki; Noguchi, Yuji; Miyayama, Masaru

    2017-08-08

    Photoferroelectrics offer unique opportunities to explore light energy conversion based on their polarization-driven carrier separation and above-bandgap voltages. The problem associated with the wide bandgap of ferroelectric oxides, i.e., the vanishingly small photoresponse under visible light, has been overcome partly by bandgap tuning, but the narrowing of the bandgap is, in principle, accompanied by a substantial loss of ferroelectric polarization. In this article, we report an approach, 'gap-state' engineering, to produce photoferroelectrics, in which defect states within the bandgap act as a scaffold for photogeneration. Our first-principles calculations and single-domain thin-film experiments of BiFeO 3 demonstrate that gap states half-filled with electrons can enhance not only photocurrents but also photovoltages over a broad photon-energy range that is different from intermediate bands in present semiconductor-based solar cells. Our approach opens a promising route to the material design of visible-light-active ferroelectrics without sacrificing spontaneous polarization.Overcoming the optical transparency of wide bandgap of ferroelectric oxides by narrowing its bandgap tends to result in a loss of polarization. By utilizing defect states within the bandgap, Matsuo et al. report visible-light-active ferroelectrics without sacrificing polarization.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Dipankar, E-mail: dip2602@gmail.com; Porwal, S.; Sharma, T. K., E-mail: tarun@rrcat.gov.in

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pumpmore » beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.« less

  13. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers.

    PubMed

    Jana, Dipankar; Porwal, S; Sharma, T K; Kumar, Shailendra; Oak, S M

    2014-04-01

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoddard, Ryan J.; Eickemeyer, Felix T.; Katahara, John K.

    High-bandgap mixed-halide hybrid perovskites have higher open-circuit voltage deficits and lower carrier diffusion lengths than their lower-bandgap counterparts. We have developed a ligand-assisted crystallization (LAC) technique that introduces additives in situ during the solvent wash and developed a new method to dynamically measure the absolute intensity steady-state photoluminescence and the mean carrier diffusion length simultaneously. The measurements reveal four distinct regimes of material changes and show that photoluminescence brightening often coincides with losses in carrier transport, such as in degradation or phase segregation. Further, the measurements enabled optimization of LAC on the 1.75 eV bandgap FA 0.83Cs 0.17Pb(I 0.66Br 0.34)more » 3, resulting in an enhancement of the photoluminescence quantum yield (PLQY) of over an order of magnitude, an increase of 80 meV in the quasi-Fermi level splitting (to 1.29 eV), an increase in diffusion length by a factor of 3.5 (to over 1 μm), and enhanced open-circuit voltage and short-circuit current from photovoltaics fabricated from the LAC-treated films.« less

  15. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  16. Band-gap tunable dielectric elastomer filter for low frequency noise

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun

    2016-05-01

    In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.

  17. The importance of surface recombination and energy-bandgap narrowing in p-n-junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.

    1979-01-01

    Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.

  18. Nanometer-scale surface potential and resistance mapping of wide-bandgap Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Jiang, C.-S.; Contreras, M. A.; Mansfield, L. M.; Moutinho, H. R.; Egaas, B.; Ramanathan, K.; Al-Jassim, M. M.

    2015-01-01

    We report microscopic characterization studies of wide-bandgap Cu(In,Ga)Se2 photovoltaic thin films using the nano-electrical probes of scanning Kelvin probe force microscopy and scanning spreading resistance microscopy. With increasing bandgap, the potential imaging shows significant increases in both the large potential features due to extended defects or defect aggregations and the potential fluctuation due to unresolvable point defects with single or a few charges. The resistance imaging shows increases in both overall resistance and resistance nonuniformity due to defects in the subsurface region. These defects are expected to affect open-circuit voltage after the surfaces are turned to junction upon device completion.

  19. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  20. Fano resonance in anodic aluminum oxide based photonic crystals.

    PubMed

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  1. Tunneling calculations for GaAs-Al(x)Ga(1-x) as graded band-gap sawtooth superlattices. Thesis

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Meijer, Paul H. E.

    1991-01-01

    Quantum mechanical tunneling calculations for sawtooth (linearly graded band-gap) and step-barrier AlGaAs superlattices were performed by means of a transfer matrix method, within the effective mass approximation. The transmission coefficient and tunneling current versus applied voltage were computed for several representative structures. Particular consideration was given to effective mass variations. The tunneling properties of step and sawtooth superlattices show some qualitative similarities. Both structures exhibit resonant tunneling, however, because they deform differently under applied fields, the J-V curves differ.

  2. Single-graded CIGS with narrow bandgap for tandem solar cells.

    PubMed

    Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N

    2018-01-01

    Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.

  3. Single-graded CIGS with narrow bandgap for tandem solar cells

    PubMed Central

    Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066

  4. Heat-Electric Power Conversion Without Temperature Difference Using Only n-Type Ba8Au x Si46-x Clathrate with Au Compositional Gradient

    NASA Astrophysics Data System (ADS)

    Osakabe, Yuki; Tatsumi, Shota; Kotsubo, Yuichi; Iwanaga, Junpei; Yamasoto, Keita; Munetoh, Shinji; Furukimi, Osamu; Nakashima, Kunihiko

    2018-02-01

    Thermoelectric power generation is typically based on the Seebeck effect under a temperature gradient. However, the heat flux generated by the temperature difference results in low conversion efficiency. Recently, we developed a heat-electric power conversion mechanism using a material consisting of a wide-bandgap n-type semiconductor, a narrow-bandgap intrinsic semiconductor, and a wide-bandgap p-type semiconductor. In this paper, we propose a heat-electric power conversion mechanism in the absence of a temperature difference using only n-type Ba8Au x Si46-x clathrate. Single-crystal Ba8Au x Si46-x clathrate with a Au compositional gradient was synthesized by Czochralski method. Based on the results of wavelength-dispersive x-ray spectroscopy and Seebeck coefficient measurements, the presence of a Au compositional gradient in the sample was confirmed. It also observed that the electrical properties changed gradually from wide-bandgap n-type to narrow-bandgap n-type. When the sample was heated in the absence of a temperature difference, the voltage generated was approximately 0.28 mV at 500°C. These results suggest that only an n-type semiconductor with a controlled bandgap can generate electric power in the absence of a temperature difference.

  5. Recent Advances in Wide-Bandgap Photovoltaic Polymers.

    PubMed

    Cai, Yunhao; Huo, Lijun; Sun, Yanming

    2017-06-01

    The past decade has witnessed significant advances in the field of organic solar cells (OSCs). Ongoing improvements in the power conversion efficiency of OSCs have been achieved, which were mainly attributed to the design and synthesis of novel conjugated polymers with different architectures and functional moieties. Among various conjugated polymers, the development of wide-bandgap (WBG) polymers has received less attention than that of low-bandgap and medium-bandgap polymers. Here, we briefly summarize recent advances in WBG polymers and their applications in organic photovoltaic (PV) devices, such as tandem, ternary, and non-fullerene solar cells. Addtionally, we also dissuss the application of high open-circuit voltage tandem solar cells in PV-driven electrochemical water dissociation. We mainly focus on the molecular design strategies, the structure-property correlations, and the photovoltaic performance of these WBG polymers. Finally, we extract empirical regularities and provide invigorating perspectives on the future development of WBG photovoltaic materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  7. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications

    PubMed Central

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-01-01

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al2O3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and VB. PMID:28218234

  8. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications.

    PubMed

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-02-20

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al 2 O 3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and V B .

  9. Low-voltage tunable color in full visible region using ferroelectric liquid-crystal-doped cholesteric liquid-crystal smart materials

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Lin, Jyun-Wei; Lee, Chia-Rong

    2018-02-01

    Electrical tuning of photonic bandgap (PBG) of cholesteric liquid crystal (CLC) without deformation within the entire visible region at low voltages is not easy to achieve. This study demonstrates low-voltage-tunable PBG in full visible region with less deformation of the PBG based on smart materials of ferroelectric liquid crystal doped CLC (FLC-CLC) integrating with electrothermal film heaters. Experimental results show that the reflective color of the FLC-CLC can be low-voltage-tuned through entire visible region. The induced temperature change is induced by electrically heating the electrothermal film heaters at low voltages at near the smectic-CLC transition temperature. Coaxial electrospinning can be used to develop smart fibrous devices with FLC/CLC-core and polymer-shell which color is tunable in full visible region at low voltages.

  10. Contact and Bandgap Engineering in Two Dimensional Crystal

    NASA Astrophysics Data System (ADS)

    Chu, Tao

    At the heart of semiconductor research, bandgap is one of the key parameters for materials and determine their applications in modern technologies. For traditional bulk semiconductors, the bandgap is determined by the chemical composition and specific arrangement of the crystal lattices, and usually invariant during the device operation. Nevertheless, it is highly desirable for many optoelectronic and electronic applications to have materials with continuously tunable bandgap available. In the past decade, 2D layered materials including graphene and transition metal dichalcogenides (TMDs) have sparked interest in the scientific community, owing to their unique material properties and tremendous potential in various applications. Among many newly discovered properties that are non-existent in bulk materials, the strong in-plane bonding and weak van der Waals inter-planar interaction in these 2D layered structures leads to a widely tunable bandgap by electric field. This provides an extra knob to engineer the fundamental material properties and open a new design space for novel device operation. This thesis focuses on this field controlled dynamic bandgap and can be divided into three parts: (1) bilayer graphene is the first known 2D crystal with a bandgap can be continuously tuned by electric field. However, the electrical transport bandgaps is much smaller than both theoretical predictions and extracted bandgaps from optical measurements. In the first part of the thesis, the limiting factors of preventing achieving a large transport bandgap in bilayer graphene are investigated and different strategies to achieve a large transport bandgap are discussed, including the vertically scaling of gate oxide and patterning channel into ribbon structure. With a record large transport bandgap of ~200meV, a dual-gated semiconducting bilayer graphene P/N junction with extremely scaled gap of 20nm in-between is fabricated. A tunable local maxima feature, associated with 1D vHs DOS at the band edge of bilayer graphene, was experimentally observed in transport for the first time. (2) The bandgap of bilayer MoS2 is also predicted to be continuously tuned to zero by applying a perpendicular electric field. Here, the first experimental realization of tuning the bandgap of bilayer MoS2 by a vertical electric field is presented. An analytical approach utilizing the threshold voltages from ambipolar characteristics is employed to quantitatively extract bandgaps, which is further benchmarked by temperature dependent bandgap measurements and photoluminescence measurements. (3) Few layer graphene is employed as an example to demonstrate a novel self-aligned edge contacting scheme for layered material systems.

  11. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  12. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-09-19

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. In addition, the design of graded tunnel junction structures could lead to low tunneling resistance below 10 –3 Ω cm 2 and lowmore » voltage consumption below 1 V (at 1 kA/cm 2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.« less

  13. Drying temperature effects on electrical and optical properties of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) thin film

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Affendi, I. H. H.; Shafura, A. K.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Temperature effects on electrical and optical properties of a representative semiconducting polymer, poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), has recently attracted much attention. The MEH-PPV thin films were deposited at different drying temperature (anneal temperature) using spin-coating technique. The spin coating technique was used to produce uniform film onto large area. The MEH-PPV was dissolved in toluene solution to exhibits different optical and electrical properties. The absorption coefficient and bandgap was measured using UV-Visible-NIR (UV-VIS-NIR). The bandgap of MEH-PPV was effect by the thickness of thin films. For electrical properties, two-point probe was used to characterize the current-voltage measurement. The current-voltage measurement shows that the MEH-PPV thin films become more conductive at high temperature. This study will provide better performance and suitable for optoelectronic device especially OLEDs applications.

  14. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide

    DOE PAGES

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...

    2016-09-13

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI 3) and methylammonium lead iodide (MAPbI 3). The best-performing cell fabricated using a (FASnI 3) 0.6(MAPbI 3) 0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm 2, and a fill factormore » of 70.6(70.0)% when measured under forward (reverse) voltage scan. In conclusion, the average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.« less

  15. Drying temperature effects on electrical and optical properties of poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, N. E. A., E-mail: najwaezira@yahoo.com; Affendi, I. H. H., E-mail: irmahidayanti.halim@gmail.com; Shafura, A. K., E-mail: shafura@ymail.com

    Temperature effects on electrical and optical properties of a representative semiconducting polymer, poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), has recently attracted much attention. The MEH-PPV thin films were deposited at different drying temperature (anneal temperature) using spin-coating technique. The spin coating technique was used to produce uniform film onto large area. The MEH-PPV was dissolved in toluene solution to exhibits different optical and electrical properties. The absorption coefficient and bandgap was measured using UV-Visible-NIR (UV-VIS-NIR). The bandgap of MEH-PPV was effect by the thickness of thin films. For electrical properties, two-point probe was used to characterize the current-voltage measurement. The current-voltage measurement showsmore » that the MEH-PPV thin films become more conductive at high temperature. This study will provide better performance and suitable for optoelectronic device especially OLEDs applications.« less

  16. Magneto-ballistic transport in GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuationsmore » and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.« less

  17. Observation of low voltage driven green emission from erbium doped Ga{sub 2}O{sub 3} light-emitting devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhengwei; Wang, Xu; Zhang, Fabi

    Erbium doped Ga{sub 2}O{sub 3} thin films were deposited on Si substrate by pulsed laser deposition method. Bright green emission (∼548 nm) can be observed by naked eye from Ga{sub 2}O{sub 3}:Er/Si light-emitting devices (LEDs). The driven voltage of this LEDs is 6.2 V which is lower than that of ZnO:Er/Si or GaN:Er/Si devices. Since the wide bandgap of Ga{sub 2}O{sub 3} contain more defect-related level which will enhance the effects of recombination between electrons in the defect-related level and the holes in the valence band, resulting in the improvement of the energy transfer to Er ions. We believe that this workmore » paves the way for the development of Si-based green LEDs by using wide bandgap Ga{sub 2}O{sub 3} as the host materials for Er{sup 3+} ions.« less

  18. Wide-bandgap epitaxial heterojunction windows for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland; Sekula-Moise, Patricia A.; Vernon, Stanley M.

    1990-01-01

    It is shown that the efficiency of a solar cell can be improved if minority carriers are confined by use of a wide-bandgap heterojunction window. For silicon (lattice constant a = 5.43 A), nearly lattice-matched wide-bandgap materials are ZnS (a = 5.41 A) and GaP (a = 5.45 A). Isotype n-n heterojuntions of both ZnS/Si and GaP/Si were grown on silicon n-p homojunction solar cells. Successful deposition processes used were metalorganic chemical vapor deposition (MO-CVD) for GaP and ZnS, and vacuum evaporation of ZnS. Planar (100) and (111) and texture-etched - (111)-faceted - surfaces were used. A decrease in minority-carrier surface recombination compared to a bare surface was seen from increased short-wavelength spectral response, increased open-circuit voltage, and reduced dark saturation current, with no degradation of the minority carrier diffusion length.

  19. Plasma-Enhanced Pulsed Laser Deposition of Wide Bandgap Nitrides for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Triplett, G. E., Jr.; Durbin, S. M.

    2004-01-01

    The need for a reliable, inexpensive technology for small-scale space power applications where photovoltaic or chemical battery approaches are not feasible has prompted renewed interest in radioisotope-based energy conversion devices. Although a number of devices have been developed using a variety of semiconductors, the single most limiting factor remains the overall lifetime of the radioisotope battery. Recent advances in growth techniques for ultra-wide bandgap III-nitride semiconductors provide the means to explore a new group of materials with the promise of significant radiation resistance. Additional benefits resulting from the use of ultra-wide bandgap materials include a reduction in leakage current and higher operating voltage without a loss of energy transfer efficiency. This paper describes the development of a novel plasma-enhanced pulsed laser deposition system for the growth of cubic boron nitride semiconducting thin films, which will be used to construct pn junction devices for alphavoltaic applications.

  20. Singlet fission/silicon solar cell exceeding 100% EQE (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pazos, Luis M.; Lee, Jumin; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H.; Ehrler, Bruno

    2016-09-01

    Current matching limits the commercialization of tandem solar cells due to their instability over spectral changes, leading to the need of using solar concentrators and trackers to keep the spectrum stable. We demonstrate that voltage-matched systems show far higher performance over spectral changes; caused by clouds, dust and other variations in atmospheric conditions. Singlet fission is a process in organic semiconductors which has shown very efficient, 200%, down-conversion yield and the generated excitations are long-lived, ideal for solar cells. As a result, the number of publications has grown exponentially in the past 5 years. Yet, so far no one has achieved to combine singlet fission with most low bandgap semiconductors, including crystalline silicon, the dominating solar cell material with a 90% share of the PV Market. Here we show that singlet fission can facilitate the fabrication of voltage-matched systems, opening a simple design route for the effective implementation of down-conversion in commercially available photovoltaic technologies, with no modification of the electronic circuitry of such. The implemention of singlet fission is achieved simply by decoupling the fabrication of the individual subcells. For this demonstration we used an ITO/PEDOT/P3HT/Pentacene/C60/Ag wide-bandgap subcell, and a commercial silicon solar cell as the low-bandgap component. We show that the combination of the two leads to the first tandem silicon solar cell which exceeds 100% external quantum efficiency.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braly, Ian L.; Hillhouse, Hugh W.

    The development of stable high-bandgap hybrid perovskites (HPs) with high optoelectronic quality may enable tandem solar cells with power conversion efficiencies approaching 30%. The halide composition of HPs has been observed to effect bandgap, carrier lifetime, and material stability. Here we report optoelectronic quality and stability under illumination of thousands of compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide (CH3NH3PbI2Br). Hyperspectral maps of steady-state absolute intensity photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS) at each point after synthesis. The QFLS upon first illumination increases with bandgap and reaches a maximum of 1.27 eV undermore » 1 sun illumination intensity for a bandgap of 1.75 eV. However, the optoelectronic quality (χ), defined as the ratio of the QFLS to the maximum theoretical QFLS for bandgap, decreases with bandgap from around 88% for 1.60 eV bandgap down to 82% for 1.84 eV bandgap. Further, we show that a reversible light induced defect forms that reduces the optoelectronic quality, particularly for high-bandgap materials. Composition analysis shows that the halide to lead ratio, (I + Br)/Pb, decreases from 3 for the pure iodide to 2.5 for the diiodomonobromide, suggesting a role of halide vacancies or halide substitution defects in the light-induced instability for this synthesis route. Even with the light-induced defect, a stable QFLS of about 1.17 eV is possible. Comparing our QFLS to Voc values from HP devices reported in the literature indicates that higher open circuit voltages are possible but may require optimization of band alignment. Further, the spectral shape of the PL emission is found to be more commensurate with Franz–Keldysh broadening from local electric fields or from a screened Thomas–Fermi density of states (as opposed to a joint density of states due to Urbach disorder).« less

  2. Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 $${}^{\\circ}$$ C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Emmett E.; Simon, John; Geisz, John F.

    2016-09-01

    In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased,more » we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.« less

  3. Analog parameters of solid source Zn diffusion In X Ga1-X As nTFETs down to 10 K

    NASA Astrophysics Data System (ADS)

    Bordallo, C.; Martino, J. A.; Agopian, P. G. D.; Alian, A.; Mols, Y.; Rooyackers, R.; Vandooren, A.; Verhulst, A. S.; Smets, Q.; Simoen, E.; Claeys, C.; Collaert, N.

    2016-12-01

    The analog parameters of In0.53Ga0.47As and In0.7Ga0.3As nTFETs with solid state Zn diffused source are investigated from room temperature down to 10 K. The In0.7Ga0.3As devices are shown to yield a higher on-state current than the In0.53Ga0.47As counterparts, and, consequently, a higher transconductance due to the lower bandgap. At the same time, the In0.7Ga0.3As devices present higher output conductance values. The balance between these two factors results in a higher intrinsic voltage gain (A V) for In0.7Ga0.3As nTFETs at low gate bias and similar A V for both devices at high gate voltage. The transconductance is reduced at low temperature due to the increase of the bandgap, while the output conductance is decreased (improved) upon cooling, which is related to the reduction of the drain dependence of the BTBT generation rate. The temperature influence is more pronounced in the output conductance than in the transconductance, resulting in an increase of the intrinsic voltage gain at low temperatures for both devices and bias.

  4. Quantum-engineered interband cascade photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razeghi, Manijeh; Tournié, Eric; Brown, Gail J.

    2013-12-18

    Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collectedmore » with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less

  5. Vertical III-nitride thin-film power diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  6. Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin

    2017-02-01

    Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.

  7. High voltage photovoltaic power converter

    DOEpatents

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  8. Experimental investigation of the excess charge and time constant of minority carriers in the thin diffused layer of 0.1 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.

    1976-01-01

    An experimental method is presented that can be used to interpret the relative roles of bandgap narrowing and recombination processes in the diffused layer. This method involves measuring the device time constant by open-circuit voltage decay and the base region diffusion length by X-ray excitation. A unique illuminated diode method is used to obtain the diode saturation current. These data are interpreted using a simple model to determine individually the minority carrier lifetime and the excess charge. These parameters are then used to infer the relative importance of bandgap narrowing and recombination processes in the diffused layer.

  9. Wide and ultra-wide bandgap oxides: where paradigm-shift photovoltaics meets transparent power electronics

    NASA Astrophysics Data System (ADS)

    Pérez-Tomás, Amador; Chikoidze, Ekaterine; Jennings, Michael R.; Russell, Stephen A. O.; Teherani, Ferechteh H.; Bove, Philippe; Sandana, Eric V.; Rogers, David J.

    2018-03-01

    Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- Ga2O3, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things.

  10. Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI 3 to MAPbI 2 Br Using Composition Spread Libraries

    DOE PAGES

    Braly, Ian L.; Hillhouse, Hugh W.

    2015-12-22

    The development of stable high-bandgap hybrid perovskites (HPs) with high optoelectronic quality may enable tandem solar cells with power conversion efficiencies approaching 30%. The halide composition of HPs has been observed to effect bandgap, carrier lifetime, and material stability. Here we report optoelectronic quality and stability under illumination of thousands of compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide (CH3NH3PbI2Br). Hyperspectral maps of steady-state absolute intensity photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS) at each point after synthesis. The QFLS upon first illumination increases with bandgap and reaches a maximum of 1.27 eV undermore » 1 sun illumination intensity for a bandgap of 1.75 eV. However, the optoelectronic quality (χ), defined as the ratio of the QFLS to the maximum theoretical QFLS for bandgap, decreases with bandgap from around 88% for 1.60 eV bandgap down to 82% for 1.84 eV bandgap. Further, we show that a reversible light induced defect forms that reduces the optoelectronic quality, particularly for high-bandgap materials. Composition analysis shows that the halide to lead ratio, (I + Br)/Pb, decreases from 3 for the pure iodide to 2.5 for the diiodomonobromide, suggesting a role of halide vacancies or halide substitution defects in the light-induced instability for this synthesis route. Even with the light-induced defect, a stable QFLS of about 1.17 eV is possible. Comparing our QFLS to Voc values from HP devices reported in the literature indicates that higher open circuit voltages are possible but may require optimization of band alignment. Further, the spectral shape of the PL emission is found to be more commensurate with Franz–Keldysh broadening from local electric fields or from a screened Thomas–Fermi density of states (as opposed to a joint density of states due to Urbach disorder).« less

  11. Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.

    2018-06-01

    We have investigated the effect of blending electron deficient heterocycle Benzothiadiazole (BT) on the photo-physical properties of conjugated polymer Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). Quantum yield (QY) value has been found to increase from 37% for pure MEH-PPV to 45% for an optimum MEH-PPV:BT blend ratio of 1:3. This can be attributed to the efficient energy transfer from the wide bandgap BT (host) to the small bandgap MEH-PPV (guest). The FTIR spectrum of MEH-PPV:BT blended thin film indicates suppression of aromatic C-H out-of-plane and in-plane bending, suggesting planarization of the conjugated polymer chains and, hence, leading to increase in the conjugation length. The increase in conjugation length is also evident from the red-shifted PL spectra of MEH-PPV:BT blended films. Single layer MEH-PPV:BT device shows lower turn-on voltage than single layer MEH-PPV alone device. Further, the effect of electrical conductivity of PEDOT:PSS on the current-voltage characteristics is investigated in the PLED devices with MEH-PPV:BT blend as the active layer. PEDOT:PSS with higher conductivity as HIL reduces the turn on voltage from 4.5 V to 3.9 V and enhances the current density and optical output in the device.

  12. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS2.

    PubMed

    Cunningham, Paul D; Hanbicki, Aubrey T; McCreary, Kathleen M; Jonker, Berend T

    2017-12-26

    Strong Coulomb attraction in monolayer transition metal dichalcogenides gives rise to tightly bound excitons and many-body interactions that dominate their optoelectronic properties. However, this Coulomb interaction can be screened through control of the surrounding dielectric environment as well as through applied voltage, which provides a potential means of tuning the bandgap, exciton binding energy, and emission wavelength. Here, we directly show that the bandgap and exciton binding energy can be optically tuned by means of the intensity of the incident light. Using transient absorption spectroscopy, we identify a sub-picosecond decay component in the excited-state dynamics of WS 2 that emerges for incident photon energies above the A-exciton resonance, which originates from a nonequilibrium population of charge carriers that form excitons as they cool. The generation of this charge-carrier population exhibits two distinct energy thresholds. The higher threshold is coincident with the onset of continuum states and therefore provides a direct optical means of determining both the bandgap and exciton binding energy. Using this technique, we observe a reduction in the exciton binding energy from 310 ± 30 to 220 ± 20 meV as the excitation density is increased from 3 × 10 11 to 1.2 × 10 12 photons/cm 2 . This reduction is due to dynamic dipolar screening of Coulomb interactions by excitons, which is the underlying physical process that initiates bandgap renormalization and leads to the insulator-metal transition in monolayer transition metal dichalcogenides.

  13. Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs

    NASA Astrophysics Data System (ADS)

    Li, Fengming; Zhang, Chuanzeng; Liu, Chunchuan

    2017-04-01

    A novel strategy is proposed to actively tune the vibration and wave propagation properties in elastic beams. By periodically placing the piezoelectric actuator/sensor pairs along the beam axis, an active periodic beam structure which exhibits special vibration and wave propagation properties such as the frequency pass-bands and stop-bands (or band-gaps) is developed. Hamilton's principle is applied to establish the equations of motion of the sub-beam elements i.e. the unit-cells, bonded by the piezoelectric patches. A negative proportional feedback control strategy is employed to design the controllers which can provide a positive active stiffness to the beam for a positive feedback control gain, which can increase the stability of the structural system. By means of the added positive active stiffness, the periodicity or the band-gap property of the beam with periodically placed piezoelectric patches can be actively tuned. From the investigation, it is shown that better band-gap characteristics can be achieved by using the negative proportional feedback control. The band-gaps can be obviously broadened by properly increasing the control gain, and they can also be greatly enlarged by appropriately designing the structural sizes of the controllers. The control voltages applied on the piezoelectric actuators are in reasonable and controllable ranges, especially, they are very low in the band-gaps. Thus, the vibration and wave propagation behaviors of the elastic beam can be actively controlled by the periodically placed piezoelectric patches.

  14. Minimized open-circuit voltage reduction in GaAs/InGaAs quantum well solar cells with bandgap-engineered graded quantum well depths

    NASA Astrophysics Data System (ADS)

    Li, Xiaohan; Dasika, Vaishno D.; Li, Ping-Chun; Ji, Li; Bank, Seth R.; Yu, Edward T.

    2014-09-01

    The use of InGaAs quantum wells with composition graded across the intrinsic region to increase open-circuit voltage in p-i-n GaAs/InGaAs quantum well solar cells is demonstrated and analyzed. By engineering the band-edge energy profile to reduce photo-generated carrier concentration in the quantum wells at high forward bias, simultaneous increases in both open-circuit voltage and short-circuit current density are achieved, compared to those for a structure with the same average In concentration, but constant rather than graded quantum well composition across the intrinsic region. This approach is combined with light trapping to further increase short-circuit current density.

  15. Valley Phase and Voltage Control of Coherent Manipulation in Si Quantum Dots.

    PubMed

    Zimmerman, Neil M; Huang, Peihao; Culcer, Dimitrie

    2017-07-12

    With any roughness at the interface of an indirect-bandgap semiconducting dot, the phase of the valley-orbit coupling can take on a random value. This random value, in double quantum dots, causes a large change in the exchange splitting. We demonstrate a simple analytical method to calculate the phase, and thus the exchange splitting and singlet-triplet qubit frequency, for an arbitrary interface. We then show that, with lateral control of the position of a quantum dot using a gate voltage, the valley-orbit phase can be controlled over a wide range, so that variations in the exchange splitting can be controlled for individual devices. Finally, we suggest experiments to measure the valley phase and the concomitant gate voltage control.

  16. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu

    A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or a photon-assisted tunneling mechanism (Franz-Keldysh). A Gaussian distribution of bandgaps (local E{sub g} fluctuation) is found to be inconsistent with the data. The sub-bandgap absorption of the CZTSSe absorber is found to be larger than that for CIGSSe for materials that yield roughly equivalent photovoltaic devices (8% efficient). Further, it is shown that fitting only portions of the PL spectrum (e.g., low energy for energy broadening parameter and high energy for quasi-Fermi level splitting) may lead to significant errors for materials with substantial sub-bandgap absorption and emission.« less

  17. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  18. Studies of silicon p-n junction solar cells

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  19. Structure and Optical Bandgap Relationship of π-Conjugated Systems

    PubMed Central

    Botelho, André Leitão; Shin, Yongwoo; Liu, Jiakai; Lin, Xi

    2014-01-01

    In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH) Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any -conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination , a mean error of −0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics. PMID:24497944

  20. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.

    PubMed

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-11-20

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  1. Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells

    DOE PAGES

    Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...

    2015-11-03

    The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less

  2. (Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration

    DOE PAGES

    Perl, Emmett E.; Simon, John; Friedman, Daniel J.; ...

    2018-01-12

    We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less

  3. Methodology for Wide Band-Gap Device Dynamic Characterization

    DOE PAGES

    Zhang, Zheyu; Guo, Ben; Wang, Fei Fred; ...

    2017-01-19

    Here, the double pulse test (DPT) is a widely accepted method to evaluate the dynamic behavior of power devices. Considering the high switching-speed capability of wide band-gap devices, the test results are very sensitive to the alignment of voltage and current (V-I) measurements. Also, because of the shoot-through current induced by Cdv/dt (i.e., cross-talk), the switching losses of the nonoperating switch device in a phase-leg must be considered in addition to the operating device. This paper summarizes the key issues of the DPT, including components and layout design, measurement considerations, grounding effects, and data processing. Additionally, a practical method ismore » proposed for phase-leg switching loss evaluation by calculating the difference between the input energy supplied by a dc capacitor and the output energy stored in a load inductor. Based on a phase-leg power module built with 1200-V/50-A SiC MOSFETs, the test results show that this method can accurately evaluate the switching loss of both the upper and lower switches by detecting only one switching current and voltage, and it is immune to V-I timing misalignment errors.« less

  4. (Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Emmett E.; Simon, John; Friedman, Daniel J.

    We demonstrate dual-junction (Al)GaInP/GaAs solar cells designed for operation at 400 degrees C and 1000x concentration. For the top junction, we compare (Al)GaInP solar cells with room-temperature bandgaps ranging from 1.9 to 2.0 eV. At 400 degrees C, we find that ~1.9 eV GaInP solar cells have a higher open-circuit voltage and a lower sheet resistance than higher bandgap (Al)GaInP solar cells, giving them a clear advantage in a tandem configuration. Dual-junction GaInP/GaAs solar cells are fabricated, and we show temperature-dependent external quantum efficiency, illuminated current-voltage, and concentrator measurements from 25 degrees C to 400 degrees C. We measure amore » power conversion efficiency of 16.4% +/- 1% at 400 degrees C and 345 suns for the best dual-junction cell, and discuss multiple pathways to improve the performance further. After undergoing a 200 h soak at 400 degrees C, the dual-junction device shows a relative loss in efficiency of only ~1%.« less

  5. Reduced graphene Oxide/ZnO nanostructures based rectifier diode

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Sameeksha; Kumar, Ravi; Sharma, Monika; Kuanr, Bijoy K.

    2017-05-01

    We report on the fabrication and characterization of graphene oxide and reduced graphene oxide/ZnO nanostructures on ITO-coated glass substrates for the rectification properties of a heterojunction device. The composites of GO/ZnO and rGO/ZnO were synthesized by the modified Hummers method followed by annealing process in N2 and H2 ambient atmosphere at various temperatures. The structural and compositional analysis of the composite material have been investigated using X-ray diffraction spectroscopy and Raman spectroscopy. The optical properties of the composite films were studied by UV-visible spectroscopy and the band-gap was obtained by Tauc's plot. The band-gap reduces to 2.4 eV for the composite film as compared to ZnO film 3.26 eV. The I-V characteristics of ZnO thin films and rGO/ZnO films were done for different light conditions viz dark, ambient light and UV-illumination. It has been observed that the threshold voltage decreases when the sample was placed in UV-illumination. A direct variation in photo-response is revealed with the bias voltage as well as UV illumination. The fabricated device could be used as an Ultraviolet Photo-detector.

  6. Development of a 2.0 eV AlGaInP Solar Cell Grown by OMVPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Emmett E.; Simon, John; Geisz, John F.

    2015-06-14

    AlGaInP solar cells with a bandgap (Eg) of ~2.0 eV are developed for use in next-generation multijunction photovoltaic devices. This material system is of great interest for both space and concentrator photovoltaics due to its high bandgap, which enables the development of high-efficiency five-junction and six-junction devices and is also useful for solar cells operated at elevated temperatures. In this work, we explore the conditions for the Organometallic Vapor Phase Epitaxy (OMVPE) growth of AlGaInP and study their effects on cell performance. A ~2.0 eV AlGaInP solar cell is demonstrated with an open circuit voltage (VOC) of 1.59V, a bandgap-voltagemore » offset (WOC) of 420mV, a fill factor (FF) of 88.0%, and an efficiency of 14.8%. These AlGaInP cells have attained a similar FF, WOC and internal quantum efficiency (IQE) to the best upright GaInP cells grown in our lab to date.« less

  7. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    PubMed Central

    2016-01-01

    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006

  8. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, Ranjan; Ericson, Milton Nance; Frank, Steven Shane

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz tomore » 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.« less

  9. Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-space machine in an overmodulation region

    DOEpatents

    Perisic, Milun; Kinoshita, Michael H; Ranson, Ray M; Gallegos-Lopez, Gabriel

    2014-06-03

    Methods, system and apparatus are provided for controlling third harmonic voltages when operating a multi-phase machine in an overmodulation region. The multi-phase machine can be, for example, a five-phase machine in a vector controlled motor drive system that includes a five-phase PWM controlled inverter module that drives the five-phase machine. Techniques for overmodulating a reference voltage vector are provided. For example, when the reference voltage vector is determined to be within the overmodulation region, an angle of the reference voltage vector can be modified to generate a reference voltage overmodulation control angle, and a magnitude of the reference voltage vector can be modified, based on the reference voltage overmodulation control angle, to generate a modified magnitude of the reference voltage vector. By modifying the reference voltage vector, voltage command signals that control a five-phase inverter module can be optimized to increase output voltages generated by the five-phase inverter module.

  10. Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.

    1980-01-01

    The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

  11. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  12. A new approach to high-efficiency multi-band-gap solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnham, K.W.J.; Duggan, G.

    1990-04-01

    The advantages of using multi-quantum-well or superlattice systems as the absorbers in concentrator solar cells are discussed. By adjusting the quantum-well width, an effective band-gap variation that covers the high-efficiency region of the solar spectrum can be obtained. Higher efficiencies should result from the ability to optimize separately current and voltage generating factors. Suitable structures to ensure good carrier separation and collection and to obtain higher open-circuit voltages are presented using the (AlGa)As/GaAs/(InGa)As system. Efficiencies above existing single-band-gap limits should be achievable, with upper limits in excess of 40%.

  13. 100-period InGaAsP/InGaP superlattice solar cell with sub-bandgap quantum efficiency approaching 80%

    DOE PAGES

    Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.; ...

    2017-08-25

    Here, InGaAsP/InGaP quantum well (QW) structures are promising materials for next generation photovoltaic devices because of their tunable bandgap (1.50-1.80 eV) and being aluminum-free. However, the strain-balance limitations have previously limited light absorption in the QW region and constrained the external quantum efficiency (EQE) values beyond the In 0.49Ga 0.51P band-edge to less than 25%. In this work, we show that implementing a hundred period lattice matched InGaAsP/InGaP superlattice solar cell with more than 65% absorbing InGaAsP well resulted in more than 2x improvement in EQE values than previously reported strain balanced approaches. In addition, processing the devices with amore » rear optical reflector resulted in strong Fabry-Perot resonance oscillations and the EQE values were highly improved in the vicinity of these peaks, resulting in a short circuit current improvement of 10% relative to devices with a rear optical filter. These enhancements have resulted in an InGaAsP/InGaP superlattice solar cell with improved peak sub-bandgap EQE values exceeding 75% at 700 nm, an improvement in the short circuit current of 26% relative to standard InGaP devices, and an enhanced bandgap-voltage offset (W oc) of 0.4 V.« less

  14. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  15. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  16. Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer.

    PubMed

    Wang, Dong Hwan; Kyaw, Aung Ko Ko; Park, Jong Hyeok

    2015-01-01

    We demonstrate that reproducible results can be obtained from tandem solar cells based on the wide-bandgap poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and the diketopyrrolopyrrole (DPP)-based narrow bandgap polymer (DT-PDPP2T-TT) with a decyltetradecyl (DT) and an electron-rich 2,5-di-2-thienylthieno[3,2-b]thiophene (2T-TT) group fabricated using an optimized interlayer (ZnO NPs/ph-n-PEDOT:PSS) [NPs: nanoparticles; ph-n: pH-neutral PEDOT: poly(3,4-ethylenedioxythiophene); PSS: polystyrene sulfonate]. The tandem cells are fabricated by applying a simple process without thermal annealing. The ZnO NP interlayer operates well when the ZnO NPs are dispersed in 2-methoxyethanol, as no precipitation and chemical reactions occur. In addition to the ZnO NP film, we used neutral PEDOT:PSS as a second interlayer which is not affect to the sequential deposited bulk heterojunction (BHJ) active layer of acidification. The power conversion efficiency (PCE) of a tandem device reaches 7.4 % (open-circuit voltage VOC =1.53 V, short-circuit current density JSC =7.3 mA cm(-2) , and fill factor FF=67 %). Furthermore, FF is increased to up to 71 % when another promising large bandgap (bandgap ∼1.94 eV) polymer (PBnDT-FTAZ) is used. The surface of each layer with nanoscale morphology (BHJ1/ZnO NPs film/ph-n-PEDOT:PSS/BHJ2) was examined by means of AFM analysis during sequential processing. The combination of these factors, efficient DPP-based narrow bandgap material and optimized interlayer, leads to the high FF (average approaches 70 %) and reproducibly operating tandem BHJ solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Integrated Circuit for a Biomedical Capacitive Pressure Transducer

    NASA Astrophysics Data System (ADS)

    Smith, Michael John Sebastian

    Medical research has an urgent need for a small, accurate, stable, low-power, biocompatible and inexpensive pressure sensor with a zero to full-scale range of 0-300 mmHg. An integrated circuit (IC) for use with a capacitive pressure transducer was designed, built and tested. The random pressure measurement error due to resolution and non-linearity is (+OR-)0.4 mmHg (at mid-range with a full -scale of 300 mmHg). The long-term systematic error due to falling battery voltage is (+OR-)0.6 mmHg. These figures were calculated from measurements of temperature, supply dependence and non-linearity on completed integrated circuits. The sensor IC allows measurement of temperature to (+OR-)0.1(DEGREES)C to allow for temperature compensation of the transducer. Novel micropower circuit design of the system components enabled these levels of accuracy to be reached. Capacitance is measured by a new ratiometric scheme employing an on -chip reference capacitor. This method greatly reduces the effects of voltage supply, temperature and manufacturing variations on the sensor circuit performance. The limits on performance of the bandgap reference circuit fabricated with a standard bipolar process using ion-implanted resistors were determined. Measurements confirm the limits of temperature stability as approximately (+OR-)300 ppm/(DEGREES)C. An exact analytical expression for the period of the Schmitt trigger oscillator, accounting for non-constant capacitor charging current, was formulated. Experiments to test agreement with theory showed that prediction of the oscillator period was very accurate. The interaction of fundamental and practical limits on the scaling of the transducer size was investigated including a correction to previous theoretical analysis of jitter in an RC oscillator. An areal reduction of 4 times should be achievable.

  18. Mixed-Halide Perovskites with Stabilized Bandgaps.

    PubMed

    Xiao, Zhengguo; Zhao, Lianfeng; Tran, Nhu L; Lin, Yunhui Lisa; Silver, Scott H; Kerner, Ross A; Yao, Nan; Kahn, Antoine; Scholes, Gregory D; Rand, Barry P

    2017-11-08

    One merit of organic-inorganic hybrid perovskites is their tunable bandgap by adjusting the halide stoichiometry, an aspect critical to their application in tandem solar cells, wavelength-tunable light emitting diodes (LEDs), and lasers. However, the phase separation of mixed-halide perovskites caused by light or applied bias results in undesirable recombination at iodide-rich domains, meaning open-circuit voltage (V OC ) pinning in solar cells and infrared emission in LEDs. Here, we report an approach to suppress halide redistribution by self-assembled long-chain organic ammonium capping layers at nanometer-sized grain surfaces. Using the stable mixed-halide perovskite films, we are able to fabricate efficient and wavelength-tunable perovskite LEDs from infrared to green with high external quantum efficiencies of up to 5%, as well as linearly tuned V OC from 1.05 to 1.45 V in solar cells.

  19. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    PubMed

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.

    A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less

  1. Ultrafast Reverse Recovery Time Measurement for Wide-Bandgap Diodes

    DOE PAGES

    Mauch, Daniel L.; Zutavern, Fred J.; Delhotal, Jarod J.; ...

    2017-03-01

    A system is presented that is capable of measuring sub-nanosecond reverse recovery times of diodes in wide-bandgap materials over a wide range of forward biases (0 – 1 A) and reverse voltages (0 – 10 kV). The system utilizes the step recovery technique and comprises a cable pulser based on a silicon (Si) Photoconductive Semiconductor Switch (PCSS) triggered with an Ultra Short Pulse Laser (USPL), a pulse charging circuit, a diode biasing circuit, and resistive and capacitive voltage monitors. The PCSS based cable pulser transmits a 130 ps rise time pulse down a transmission line to a capacitively coupled diode,more » which acts as the terminating element of the transmission line. The temporal nature of the pulse reflected by the diode provides the reverse recovery characteristics of the diode, measured with a high bandwidth capacitive probe integrated into the cable pulser. Furthermore, this system was used to measure the reverse recovery times (including the creation and charging of the depletion region) for two Avogy gallium nitride (GaN) diodes; the initial reverse recovery time was found to be 4 ns and varied minimally over reverse biases of 50 – 100 V and forward current of 1 – 100 mA.« less

  2. A magnetic phase-transition graphene transistor with tunable spin polarization

    NASA Astrophysics Data System (ADS)

    Vancsó, Péter; Hagymási, Imre; Tapasztó, Levente

    2017-06-01

    Graphene nanoribbons (GNRs) have been proposed as potential building blocks for field effect transistor (FET) devices due to their quantum confinement bandgap. Here, we propose a novel GNR device concept, enabling the control of both charge and spin signals, integrated within the simplest three-terminal device configuration. In a conventional FET device, a gate electrode is employed to tune the Fermi level of the system in and out of a static bandgap. By contrast, in the switching mechanism proposed here, the applied gate voltage can dynamically open and close an interaction gap, with only a minor shift of the Fermi level. Furthermore, the strong interplay of the band structure and edge spin configuration in zigzag ribbons enables such transistors to carry spin polarized current without employing an external magnetic field or ferromagnetic contacts. Using an experimentally validated theoretical model, we show that such transistors can switch at low voltages and high speed, and the spin polarization of the current can be tuned from 0% to 50% by using the same back gate electrode. Furthermore, such devices are expected to be robust against edge irregularities and can operate at room temperature. Controlling both charge and spin signal within the simplest FET device configuration could open up new routes in data processing with graphene based devices.

  3. Low voltage operation of GaN vertical nanowire MOSFET

    NASA Astrophysics Data System (ADS)

    Son, Dong-Hyeok; Jo, Young-Woo; Seo, Jae Hwa; Won, Chul-Ho; Im, Ki-Sik; Lee, Yong Soo; Jang, Hwan Soo; Kim, Dae-Hyun; Kang, In Man; Lee, Jung-Hee

    2018-07-01

    GaN gate-all-around (GAA) vertical nanowire MOSFET (VNWMOSFET) with channel length of 300 nm and diameter of 120 nm, the narrowest GaN-based vertical nanowire transistor ever achieved from the top-down approach, was fabricated by utilizing anisotropic side-wall wet etching in TMAH solution and photoresist etch-back process. The VNWMOSFET exhibited output characteristics with very low saturation drain voltage of less than 0.5 V, which is hardly observed from the wide bandgap-based devices. Simulation results indicated that the narrow diameter of the VNWMOSFET with relatively short channel length is responsible for the low voltage operation. The VNWMOSFET also demonstrated normally-off mode with threshold voltage (VTH) of 0.7 V, extremely low leakage current of ∼10-14 A, low drain-induced barrier lowering (DIBL) of 125 mV/V, and subthreshold swing (SS) of 66-122 mV/decade. The GaN GAA VNWMOSFET with narrow channel diameter investigated in this work would be promising for new low voltage logic application. He has been a Professor with the School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, Korea, since 1993

  4. Dendron engineering in self-host blue iridium dendrimers towards low-voltage-driving and power-efficient nondoped electrophosphorescent devices.

    PubMed

    Wang, Yang; Wang, Shumeng; Ding, Junqiao; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2016-12-20

    Dendron engineering in self-host blue Ir dendrimers is reported to develop power-efficient nondoped electrophosphorescent devices for the first time, which can be operated at low voltage close to the theoretical limit (E g /e: corresponding to the optical bandgap divided by the electron charge). With increasing dendron's HOMO energy levels from B-POCz to B-CzCz and B-CzTA, effective hole injection is favored to promote exciton formation, resulting in a significant reduction of driving voltage and improvement of power efficiency. Consequently, the nondoped device of B-CzTA achieves extremely low driving voltages of 2.7/3.4/4.4 V and record high power efficiencies of 30.3/24.4/16.3 lm W -1 at 1, 100 and 1000 cd m -2 , respectively. We believe that this work will pave the way to the design of novel power-efficient self-host blue phosphorescent dendrimers used for energy-saving displays and solid-state lightings.

  5. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells.

    PubMed

    Lin, Yuze; Chen, Bo; Zhao, Fuwen; Zheng, Xiaopeng; Deng, Yehao; Shao, Yuchuan; Fang, Yanjun; Bai, Yang; Wang, Chunru; Huang, Jinsong

    2017-07-01

    Efficient wide-bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky-Queisser limit, but they suffer from a larger open circuit voltage (V OC ) deficit than narrower bandgap ones. Here, it is shown that one major limitation of V OC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene-C60 bisadduct (ICBA) with higher-lying lowest-unoccupied-molecular-orbital is needed for WBG perovskite solar cells, while its energy-disorder needs to be minimized before a larger V OC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA-tran3 from the as-synthesized ICBA-mixture. WBG perovskite solar cells with ICBA-tran3 show enhanced V OC by 60 mV, reduced V OC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Probing dynamic behavior of electric fields and band diagrams in complex semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Turkulets, Yury; Shalish, Ilan

    2018-01-01

    Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.

  7. Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A1 -D-A2 Low-Bandgap Conjugated Polymers.

    PubMed

    Chochos, Christos L; Drakopoulou, Sofia; Katsouras, Athanasios; Squeo, Benedetta M; Sprau, Christian; Colsmann, Alexander; Gregoriou, Vasilis G; Cando, Alex-Palma; Allard, Sybille; Scherf, Ullrich; Gasparini, Nicola; Kazerouni, Negar; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-04-01

    Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A 1 -D-A 2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A 1 -D-A 2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm -2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters.

    PubMed

    Zhao, Chao; Ebaid, Mohamed; Zhang, Huafan; Priante, Davide; Janjua, Bilal; Zhang, Daliang; Wei, Nini; Alhamoud, Abdullah A; Shakfa, Mohammad Khaled; Ng, Tien Khee; Ooi, Boon S

    2018-06-13

    p-Type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity, while Mott-Schottky experiments measured a hole concentration of 1.3 × 1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and an optimized p-type AlGaN contact layer for UV-transparency. The ∼335 nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate the electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.

  9. Electronically active defects in the Cu2ZnSn(Se,S)4 alloys as revealed by transient photocapacitance spectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, D. Westley; Warren, Charles W.; Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.; Cohen, J. David

    2012-10-01

    Transient photocapacitance (TPC) spectra were obtained on a series of Cu2ZnSn(Se,S)4 absorber devices with varying Se:S ratios, providing bandgaps (Eg) between 1 eV and 1.5 eV. Efficiencies varied between 8.3% and 9.3% for devices with Eg ≤ 1.2 eV and were near 6.5% for devices with Eg ≥ 1.4 eV. The TPC spectra revealed a band-tail region with Urbach energies at or below 18 meV for the first group, but in the 25-30 meV range for the higher band-gap samples. A deeper defect band centered near 0.8 eV was also observed in most samples. We identified a correlation between the Urbach energies and the voltage deficit in these devices.

  10. High frequency modulation circuits based on photoconductive wide bandgap switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Kuo-Hsing; Meyer, Kristin De; Department of Electrical Engineering, KU Leuven, Leuven

    Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined withmore » a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.« less

  12. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    PubMed

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  13. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells

    PubMed Central

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043

  14. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    DOEpatents

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  15. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.

    PubMed

    Bhattacharyya, Mayukh; Gruenwald, Waldemar; Jansen, Dirk; Reindl, Leonhard; Aghassi-Hagmann, Jasmin

    2018-05-07

    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.

  16. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    PubMed Central

    Gruenwald, Waldemar; Jansen, Dirk; Aghassi-Hagmann, Jasmin

    2018-01-01

    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches. PMID:29735939

  17. Studies of silicon pn junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  18. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  19. Catalysts for Lightweight Solar Fuels Generation

    DTIC Science & Technology

    2017-03-10

    single bandgap solar cells to OER catalysts could lead to very high solar -to-fuel efficiencies. Figure 3 illustrates a PV -EC utilizing a PV , an...3- or 4 -single junction c-Si solar cells connected in series. Considering a PV -EC device based on commercially available single junction-Si solar ...30.8%) with open circuit voltage and short circuit current density ; total plot area is scaled to incident solar power (100 mW cm–2). The PV -EC

  20. High voltage photoconductive switch package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, George J.

    2016-11-22

    A photoconductive switch having a wide bandgap material substrate between opposing electrodes, and a doped dielectric filler that is in contact with both the electrodes and the substrate at the triple point. The dielectric filler material is doped with a conductive material to make it partially or completely conducting, to minimize the field enhancement near the triple point both when the substrate is not conducting in the "off" state and when the substrate is rendered conducting by radiation in the "on" state.

  1. Bandgap opening in hydrogenated germanene

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Zhang, L.; Kabanov, N. S.; Rudenko, A. N.; Arjmand, T.; Rahimpour Soleimani, H.; Klavsyuk, A. L.; Zandvliet, H. J. W.

    2018-04-01

    We have studied the hydrogenation of germanene synthesized on Ge2Pt crystals using scanning tunneling microscopy and spectroscopy. The germanene honeycomb lattice is buckled and consists of two hexagonal sub-lattices that are slightly displaced with respect to each other. The hydrogen atoms adsorb exclusively on the Ge atoms of the upward buckled hexagonal sub-lattice. At a hydrogen exposure of about 100 L, the (1 × 1) buckled honeycomb structure of germanene converts to a (2 × 2) structure. Scanning tunneling spectra recorded on this (2 × 2) structure reveal the opening of a bandgap of about 0.2 eV. A fully (half) hydrogenated germanene surface is obtained after an exposure of about 9000 L hydrogen. The hydrogenated germanene, also referred to as germanane, has a sizeable bandgap of about 0.5 eV and is slightly n-type.

  2. Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania

    NASA Astrophysics Data System (ADS)

    Li, Jingfeng; Lazzari, Rémi; Chenot, Stéphane; Jupille, Jacques

    2018-01-01

    The spectroscopic fingerprints of the point defects of titanium dioxide remain highly controversial. Seemingly indisputable experiments lead to conflicting conclusions in which oxygen vacancies and titanium interstitials are alternately referred to as the primary origin of the Ti 3 d band-gap states. We report on experiments performed by electron energy loss spectroscopy whose key is the direct annealing of only the very surface of rutile TiO2(110 ) crystals and the simultaneous measurement of its temperature via the Bose-Einstein loss/gain ratio. By surface preparations involving reactions with oxygen and water vapor, in particular, under electron irradiation, vacancy- and interstitial-related band-gap states are singled out. Off-specular measurements reveal that both types of defects contribute to a unique charge distribution that peaks in subsurface layers with a common dispersive behavior.

  3. Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration

    DOE PAGES

    Mohammad, N.; Schulz, M.; Wang, P.; ...

    2016-09-16

    In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5μm. Electrical measurements under directmore » sunlight demonstrated an increase of ~25% in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. As a result, this system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.« less

  4. Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammad, N.; Schulz, M.; Wang, P.

    In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5μm. Electrical measurements under directmore » sunlight demonstrated an increase of ~25% in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. As a result, this system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.« less

  5. Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS2.

    PubMed

    Wang, Rui; Wang, Tianjiao; Hong, Tu; Xu, Ya-Qiong

    2018-08-24

    We report a facile method to produce ultrathin molybdenum disulfide (MoS 2 ) hybrids with polarized near-infrared (NIR) photoresponses, in which horizontally-aligned single-walled carbon nanotubes (SWNTs) are integrated with single- and few-layer MoS 2 through a two-step chemical vapor deposition process. The photocurrent generation mechanisms in SWNT-MoS 2 hybrids are systematically investigated through wavelength- and polarization-dependent scanning photocurrent measurements. When the incident photon energy is above the direct bandgap of MoS 2 , isotropic photocurrent signals are observed, which can be primarily attributed to the direct bandgap transition in MoS 2 . In contrast, if the incident photon energy in the NIR region is below the direct bandgap of MoS 2 , the maximum photocurrent response occurs when the incident light is polarized in the direction along the SWNTs, indicating that photocurrent signals mainly result from the anisotropic absorption of SWNTs. More importantly, these two-dimensional (2D) hybrid structures inherit the electrical transport properties from MoS 2 , displaying n-type characteristics at a zero gate voltage. These fundamental studies provide a new way to produce ultrathin MoS 2 hybrids with inherited electrical properties and polarized NIR photoresponses, opening doors for engineering various 2D hybrid materials for future broadband optoelectronic applications.

  6. A new CMOS SiGeC avalanche photo-diode pixel for IR sensing

    NASA Astrophysics Data System (ADS)

    Augusto, Carlos; Forester, Lynn; Diniz, Pedro C.

    2009-05-01

    Near-infra-red sensing with silicon is limited by the bandgap of silicon, corresponding to a maximum wavelength of absorption of 1.1 μm. A new type of CMOS sensor is presented, which uses a SiGeC epitaxial film in conjunction with novel device architecture to extend absorption into the infra-red. The SiGeC film composition and thickness determine the spectrum of absorption; in particular for SiGeC superlattices, the layer ordering to create pseudo direct bandgaps is the critical parameter. In this new device architecture, the p-type SiGeC film is grown on an active region surrounded by STI, linked to the S/D region of an adjacent NMOS, under the STI by a floating N-Well. On a n-type active, a P-I-N device is formed, and on a p-type active, a P-I-P device is formed, each sensing different regions of the spectrum. The SiGeC films can be biased for avalanche operation, as the required vertical electric field is confined to the region near the heterojunction interface, thereby not affecting the gate oxide of the adjacent NMOS. With suitable heterojunction and doping profiles, the avalanche region can also be bandgap engineered, allowing for avalanche breakdown voltages that are compatible with CMOS devices.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.

    Here, InGaAsP/InGaP quantum well (QW) structures are promising materials for next generation photovoltaic devices because of their tunable bandgap (1.50-1.80 eV) and being aluminum-free. However, the strain-balance limitations have previously limited light absorption in the QW region and constrained the external quantum efficiency (EQE) values beyond the In 0.49Ga 0.51P band-edge to less than 25%. In this work, we show that implementing a hundred period lattice matched InGaAsP/InGaP superlattice solar cell with more than 65% absorbing InGaAsP well resulted in more than 2x improvement in EQE values than previously reported strain balanced approaches. In addition, processing the devices with amore » rear optical reflector resulted in strong Fabry-Perot resonance oscillations and the EQE values were highly improved in the vicinity of these peaks, resulting in a short circuit current improvement of 10% relative to devices with a rear optical filter. These enhancements have resulted in an InGaAsP/InGaP superlattice solar cell with improved peak sub-bandgap EQE values exceeding 75% at 700 nm, an improvement in the short circuit current of 26% relative to standard InGaP devices, and an enhanced bandgap-voltage offset (W oc) of 0.4 V.« less

  8. Transparent conducting oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  9. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  10. Off-set stabilizer for comparator output

    DOEpatents

    Lunsford, James S.

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  11. Reference voltage calculation method based on zero-sequence component optimisation for a regional compensation DVR

    NASA Astrophysics Data System (ADS)

    Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang

    2018-04-01

    This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.

  12. Laser-controlled optical transconductance varistor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang T.; Stuart, Brent C.

    2017-07-11

    An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.

  13. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  14. Synthesis and Photovoltaic Properties of a Copolymer based on thieno [2, 3-f] benzofuran and thienopyrroledione

    NASA Astrophysics Data System (ADS)

    Gao, Yueyue; Yang, Yulin; Zhang, Yong

    2017-12-01

    A novel donor-acceptor type conjugated polymer PTBFTPD based on two-dimensional (2D) conjugated alkylthienyl substituted thieno[2,3-f]benzofuran (TBF) and thienopyrroledione (TPD) unit, was synthesized and applied as donor material for bulk heterojunction solar cells. The novol polymer possesses a narrow bandgap of 1.83 eV, a deep HOMO energy level (-5.64 eV) and a closer π-π stacking. After conventional devices were fabricated using PTBFTPD as donor blending with PC70BM as acceptor, a power conversion efficiency (PCE) of 4.33% with a high open circuit voltage (Voc) of 1.09 V was obtained. The result indicates the promising potential of thieno [2, 3-f] benzofuran unit for high efficient polymer solar cells with a high voltage.

  15. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  16. Comparative study of mobility extraction methods in p-type polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Liu, Yuan; Liu, Yu-Rong; En, Yun-Fei; Li, Bin

    2017-07-01

    Channel mobility in the p-type polycrystalline silicon thin film transistors (poly-Si TFTs) is extracted using Hoffman method, linear region transconductance method and multi-frequency C-V method. Due to the non-negligible errors when neglecting the dependence of gate-source voltage on the effective mobility, the extracted mobility results are overestimated using linear region transconductance method and Hoffman method, especially in the lower gate-source voltage region. By considering of the distribution of localized states in the band-gap, the frequency independent capacitance due to localized charges in the sub-gap states and due to channel free electron charges in the conduction band were extracted using multi-frequency C-V method. Therefore, channel mobility was extracted accurately based on the charge transport theory. In addition, the effect of electrical field dependent mobility degradation was also considered in the higher gate-source voltage region. In the end, the extracted mobility results in the poly-Si TFTs using these three methods are compared and analyzed.

  17. Chapter 11.2: Inverters, Power Optimizers, and Microinverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Christopher A

    Inverters span a wide range of sizes, topologies, and connection voltages: from utility-scale megawatt inverters to string inverters. Switch-mode power conversion relies on high frequency chopping of DC signal to periodically charge and discharge energy storage elements, such as inductors and capacitors. Additional circuit components are required to address practical issues in inverters such as voltage ripple and harmonic distortion. Inverters are beginning to incorporate components with a bandgap above should be 3 eV, such as SiC and GaN. Photovoltaic (PV) modules respond dynamically to changing temperature and irradiation conditions. Thus, maximum DC power extraction requires periodic adjustment of themore » PV voltage and current operating point. An inverter's total efficiency is measured by the product of its conversion efficiency and the maximum-power-point tracking (MPPT) efficiency. This chapter lists the primary functions of inverters that include auxiliary capabilities, such as monitoring of DC and AC performance, and other error reporting.« less

  18. First-principles simulations of Graphene/Transition-metal-Dichalcogenides/Graphene Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiangguo; Wang, Yun-Peng; Zhang, X.-G.; Cheng, Hai-Ping

    A prototype field-effect transistor (FET) with fascinating properties can be made by assembling graphene and two-dimensional insulating crystals into three-dimensional stacks with atomic layer precision. Transition metal dichalcogenides (TMDCs) such as WS2, MoS2 are good candidates for the atomically thin barrier between two layers of graphene in the vertical FET due to their sizable bandgaps. We investigate the electronic properties of the Graphene/TMDCs/Graphene sandwich structure using first-principles method. We find that the effective tunnel barrier height of the TMDC layers in contact with the graphene electrodes has a layer dependence and can be modulated by a gate voltage. Consequently a very high ON/OFF ratio can be achieved with appropriate number of TMDC layers and a suitable range of the gate voltage. The spin-orbit coupling in TMDC layers is also layer dependent but unaffected by the gate voltage. These properties can be important in future nanoelectronic device designs. DOE/BES-DE-FG02-02ER45995; NERSC.

  19. System and method for charging electrochemical cells in series

    DOEpatents

    DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.

    1980-01-01

    A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.

  20. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient

    NASA Astrophysics Data System (ADS)

    Hande, Vinayak; Shojaei Baghini, Maryam

    2015-08-01

    A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2

  1. Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    NASA Astrophysics Data System (ADS)

    Yao, Tong

    In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition.

  2. Solid state safety jumper cables

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  3. Solid state safety jumper cables

    DOEpatents

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  4. High-Frequency Switching Transients and Power Loss Estimation in Electric Drive Systems that Utilize Wide-Bandgap Semiconductors

    NASA Astrophysics Data System (ADS)

    Fulani, Olatunji T.

    Development of electric drive systems for transportation and industrial applications is rapidly seeing the use of wide-bandgap (WBG) based power semiconductor devices. These devices, such as SiC MOSFETs, enable high switching frequencies and are becoming the preferred choice in inverters because of their lower switching losses and higher allowable operating temperatures. Due to the much shorter turn-on and turn-off times and correspondingly larger output voltage edge rates, traditional models and methods previously used to estimate inverter and motor power losses, based upon a triangular power loss waveform, are no longer justifiable from a physical perspective. In this thesis, more appropriate models and a power loss calculation approach are described with the goal of more accurately estimating the power losses in WBG-based electric drive systems. Sine-triangle modulation with third harmonic injection is used to control the switching of the inverter. The motor and inverter models are implemented using Simulink and computer studies are shown illustrating the application of the new approach.

  5. Design and modeling of an SJ infrared solar cell approaching upper limit of theoretical efficiency

    NASA Astrophysics Data System (ADS)

    Sahoo, G. S.; Mishra, G. P.

    2018-01-01

    Recent trends of photovoltaics account for the conversion efficiency limit making them more cost effective. To achieve this we have to leave the golden era of silicon cell and make a path towards III-V compound semiconductor groups to take advantages like bandgap engineering by alloying these compounds. In this work we have used a low bandgap GaSb material and designed a single junction (SJ) cell with a conversion efficiency of 32.98%. SILVACO ATLAS TCAD simulator has been used to simulate the proposed model using both Ray Tracing and Transfer Matrix Method (under 1 sun and 1000 sun of AM1.5G spectrum). A detailed analyses of photogeneration rate, spectral response, potential developed, external quantum efficiency (EQE), internal quantum efficiency (IQE), short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF) and conversion efficiency (η) are discussed. The obtained results are compared with previously reported SJ solar cell reports.

  6. p- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, Fabian, E-mail: fabian.langer@physik.uni-wuerzburg.de; Perl, Svenja; Kamp, Martin

    2015-02-09

    In this work, we report a p- to n-type conductivity transition of GaInNAs (1.0 eV bandgap) layers in p-i-n dilute nitride solar cells continuously controlled by the V/III ratio during growth. Near the transition region, we were able to produce GaInNAs layers with very low effective electrically active doping concentrations resulting in wide depleted areas. We obtained internal quantum efficiencies (IQEs) up to 85% at 0.2 eV above the bandgap. However, the high IQE comes along with an increased dark current density resulting in a decreased open circuit voltage of about 0.2 V. This indicates the formation of non-radiant defect centers related tomore » the p-type to n-type transition. Rapid-thermal annealing of the solar cells on the one hand helps to anneal some of these defects but on the other hand increases the effective doping concentrations.« less

  7. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer.

    PubMed

    Cnops, Kjell; Rand, Barry P; Cheyns, David; Verreet, Bregt; Empl, Max A; Heremans, Paul

    2014-03-07

    In order to increase the power conversion efficiency of organic solar cells, their absorption spectrum should be broadened while maintaining efficient exciton harvesting. This requires the use of multiple complementary absorbers, usually incorporated in tandem cells or in cascaded exciton-dissociating heterojunctions. Here we present a simple three-layer architecture comprising two non-fullerene acceptors and a donor, in which an energy-relay cascade enables an efficient two-step exciton dissociation process. Excitons generated in the remote wide-bandgap acceptor are transferred by long-range Förster energy transfer to the smaller-bandgap acceptor, and subsequently dissociate at the donor interface. The photocurrent originates from all three complementary absorbing materials, resulting in a quantum efficiency above 75% between 400 and 720 nm. With an open-circuit voltage close to 1 V, this leads to a remarkable power conversion efficiency of 8.4%. These results confirm that multilayer cascade structures are a promising alternative to conventional donor-fullerene organic solar cells.

  8. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures

    DOE PAGES

    Young, James L.; Steiner, Myles A.; Döscher, Henning; ...

    2017-03-13

    Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less

  9. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal.

    PubMed

    Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei

    2016-10-31

    We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.

  10. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, James L.; Steiner, Myles A.; Döscher, Henning

    Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less

  11. Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Ashley R.; Young, Matthew R.; Nozik, Arthur J.

    2015-08-06

    We explored the uptake of metal chloride salts with +1 to +3 metals of Na+, K+, Zn2+, Cd2+, Sn2+, Cu2+, and In3+ by PbSe QD solar cells. We also compared CdCl2 to Cd acetate and Cd nitrate treatments. PbSe QD solar cells fabricated with a CdCl2 treatment are stable for more than 270 days stored in air. We studied how temperature and immersion times affect optoelectronic properties and photovoltaic cell performance. Uptake of Cd2+ and Zn2+ increase open circuit voltage, whereas In3+ and K+ increase the photocurrent without influencing the spectral response or first exciton peak position. Using the mostmore » beneficial treatments we varied the bandgap of PbSe QD solar cells from 0.78 to 1.3 eV and find the improved VOC is more prevalent for lower bandgap QD solar cells.« less

  12. GaAs nanopillar-array solar cells employing in situ surface passivation

    PubMed Central

    Mariani, Giacomo; Scofield, Adam C.; Hung, Chung-Hong; Huffaker, Diana L.

    2013-01-01

    Arrays of III–V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p–n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm−2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode. PMID:23422665

  13. Inverted Three-Junction Tandem Thermophotovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    2012-01-01

    An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.

  14. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63.

    PubMed

    Lan, Liuyuan; Chen, Zhiming; Hu, Qin; Ying, Lei; Zhu, Rui; Liu, Feng; Russell, Thomas P; Huang, Fei; Cao, Yong

    2016-09-01

    A novel donor-acceptor type conjugated polymer based on a building block of 4,8-di(thien-2-yl) - 6-octyl-2-octyl-5 H- pyrrolo[3,4- f ]benzotriazole-5,7(6 H )-dione (TZBI) as the acceptor unit and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo-[1,2- b :4,5- b' ]dithiophene as the donor unit, named as PTZBIBDT, is developed and used as an electron-donating material in bulk-heterojunction polymer solar cells. The resulting copolymer exhibits a wide bandgap of 1.81 eV along with relatively deep highest occupied molecular orbital energy level of -5.34 eV. Based on the optimized processing conditions, including thermal annealing, and the use of a water/alcohol cathode interlayer, the single-junction polymer solar cell based on PTZBIBDT:PC 71 BM ([6,6]-phenyl-C 71 -butyric acid methyl ester) blend film affords a power conversion efficiency of 8.63% with an open-circuit voltage of 0.87 V, a short circuit current of 13.50 mA cm -2 , and a fill factor of 73.95%, which is among the highest values reported for wide-bandgap polymers-based single-junction organic solar cells. The morphology studies on the PTZBIBDT:PC 71 BM blend film indicate that a fibrillar network can be formed and the extent of phase separation can be mani-pulated by thermal annealing. These results indicate that the TZBI unit is a very promising building block for the synthesis of wide-bandgap polymers for high-performance single-junction and tandem (or multijunction) organic solar cells.

  15. Al0 0.3Ga 0.7N PN diode with breakdown voltage >1600 V

    DOE PAGES

    Allerman, A. A.; Armstrong, A. M.; Fischer, A. J.; ...

    2016-07-21

    Demonstration of Al0 0.3Ga 0.7N PN diodes grown with breakdown voltages in excess of 1600 V is reported. The total epilayer thickness is 9.1 μm and was grown by metal-organic vapour-phase epitaxy on 1.3-mm-thick sapphire in order to achieve crack-free structures. A junction termination edge structure was employed to control the lateral electric fields. A current density of 3.5 kA/cm 2 was achieved under DC forward bias and a reverse leakage current <3 nA was measured for voltages <1200 V. The differential on-resistance of 16 mΩ cm 2 is limited by the lateral conductivity of the n-type contact layer requiredmore » by the front-surface contact geometry of the device. An effective critical electric field of 5.9 MV/cm was determined from the epilayer properties and the reverse current–voltage characteristics. To our knowledge, this is the first aluminium gallium nitride (AlGaN)-based PN diode exhibiting a breakdown voltage in excess of 1 kV. Finally, we note that a Baliga figure of merit (V br 2/R spec,on) of 150 MW/cm 2 found is the highest reported for an AlGaN PN diode and illustrates the potential of larger-bandgap AlGaN alloys for high-voltage devices.« less

  16. Adjustable electronic load-alarm relay

    DOEpatents

    Mason, Charles H.; Sitton, Roy S.

    1976-01-01

    This invention is an improved electronic alarm relay for monitoring the current drawn by an AC motor or other electrical load. The circuit is designed to measure the load with high accuracy and to have excellent alarm repeatability. Chattering and arcing of the relay contacts are minimal. The operator can adjust the set point easily and can re-set both the high and the low alarm points by means of one simple adjustment. The relay includes means for generating a signal voltage proportional to the motor current. In a preferred form of the invention a first operational amplifier is provided to generate a first constant reference voltage which is higher than a preselected value of the signal voltage. A second operational amplifier is provided to generate a second constant reference voltage which is lower than the aforementioned preselected value of the signal voltage. A circuit comprising a first resistor serially connected to a second resistor is connected across the outputs of the first and second amplifiers, and the junction of the two resistors is connected to the inverting terminal of the second amplifier. Means are provided to compare the aforementioned signal voltage with both the first and second reference voltages and to actuate an alarm if the signal voltage is higher than the first reference voltage or lower than the second reference voltage.

  17. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E.

    2010-01-01

    A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.

  18. Molecular Electronic Coupling Controls Charge Recombination Kinetics in Organic Solar Cells of Low Bandgap Diketopyrrolopyrrole, Carbazole, and Thiophene Polymers

    PubMed Central

    2013-01-01

    Low-bandgap diketopyrrolopyrrole- and carbazole-based polymer bulk-heterojunction solar cells exhibit much faster charge carrier recombination kinetics than that encountered for less-recombining poly(3-hexylthiophene). Solar cells comprising these polymers exhibit energy losses caused by carrier recombination of approximately 100 mV, expressed as reduction in open-circuit voltage, and consequently photovoltaic conversion efficiency lowers in more than 20%. The analysis presented here unravels the origin of that energy loss by connecting the limiting mechanism governing recombination dynamics to the electronic coupling occurring at the donor polymer and acceptor fullerene interfaces. Previous approaches correlate carrier transport properties and recombination kinetics by means of Langevin-like mechanisms. However, neither carrier mobility nor polymer ionization energy helps understanding the variation of the recombination coefficient among the studied polymers. In the framework of the charge transfer Marcus theory, it is proposed that recombination time scale is linked with charge transfer molecular mechanisms at the polymer/fullerene interfaces. As expected for efficient organic solar cells, small electronic coupling existing between donor polymers and acceptor fullerene (Vif < 1 meV) and large reorganization energy (λ ≈ 0.7 eV) are encountered. Differences in the electronic coupling among polymer/fullerene blends suffice to explain the slowest recombination exhibited by poly(3-hexylthiophene)-based solar cells. Our approach reveals how to directly connect photovoltaic parameters as open-circuit voltage to molecular properties of blended materials. PMID:23662167

  19. Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites.

    PubMed

    Kim, Junghwan; Saidaminov, Makhsud I; Tan, Hairen; Zhao, Yicheng; Kim, Younghoon; Choi, Jongmin; Jo, Jea Woong; Fan, James; Quintero-Bermudez, Rafael; Yang, Zhenyu; Quan, Li Na; Wei, Mingyang; Voznyy, Oleksandr; Sargent, Edward H

    2018-03-01

    Wide-bandgap (WBG) formamidinium-cesium (FA-Cs) lead iodide-bromide mixed perovskites are promising materials for front cells well-matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open-circuit voltage (V oc ) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA-Cs WBG perovskite with the aid of a formamide cosolvent, light-induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (E g ≈ 1.75 eV) exhibit a high V oc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm 2 solar cells, the highest among the reported efficiencies for large-area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long-term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Short-Wave Infrared HgCdTe Electron Avalanche Photodiodes for Gated Viewing

    NASA Astrophysics Data System (ADS)

    Sieck, A.; Benecke, M.; Eich, D.; Oelmaier, R.; Wendler, J.; Figgemeier, H.

    2018-06-01

    Short-wave infrared (SWIR) HgCdTe electron avalanche photodiodes (eAPDs) with different doping profiles have been characterized for use in SWIR gated viewing systems. Gated viewing offers enhanced image contrast in scenes with clutter from the foreground or background. HgCdTe-based eAPDs show exponential gain-voltage characteristics and low excess noise and are, therefore, well suited for active imaging applications. The gain achievable at a fixed reverse voltage varies with the bandgap of the Hg1-xCdxTe detector material. We analyze current-voltage and gain-voltage plots measured on SWIR Hg1-xCdxTe eAPDs with x = 0.45, corresponding to a cutoff wavelength of 2.55 μm at 150 K. The cutoff has been chosen as a trade-off between achievable APD gain and operating temperature for SWIR gated-viewing systems with target distances of about 1000 m. Focal plane arrays with a readout-integrated circuit featuring a fast internal clock have been built and their performance with respect to gated viewing applications has been evaluated on a laboratory demonstrator for short distances. Future plans for a field demonstrator for distances up to 1000 m are described briefly at the end.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, Kenneth L.; Sturcken, Noah Andrew

    Power controller includes an output terminal having an output voltage, at least one clock generator to generate a plurality of clock signals and a plurality of hardware phases. Each hardware phase is coupled to the at least one clock generator and the output terminal and includes a comparator. Each hardware phase is configured to receive a corresponding one of the plurality of clock signals and a reference voltage, combine the corresponding clock signal and the reference voltage to produce a reference input, generate a feedback voltage based on the output voltage, compare the reference input and the feedback voltage usingmore » the comparator and provide a comparator output to the output terminal, whereby the comparator output determines a duty cycle of the power controller. An integrated circuit including the power controller is also provided.« less

  2. Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe2 Light-Emitting van der Waals Heterostructure.

    PubMed

    Binder, Johannes; Withers, Freddie; Molas, Maciej R; Faugeras, Clement; Nogajewski, Karol; Watanabe, Kenji; Taniguchi, Takashi; Kozikov, Aleksey; Geim, Andre K; Novoselov, Kostya S; Potemski, Marek

    2017-03-08

    We report on experimental investigations of an electrically driven WSe 2 based light-emitting van der Waals heterostructure. We observe a threshold voltage for electroluminescence significantly lower than the corresponding single particle band gap of monolayer WSe 2 . This observation can be interpreted by considering the Coulomb interaction and a tunneling process involving excitons, well beyond the picture of independent charge carriers. An applied magnetic field reveals pronounced magneto-oscillations in the electroluminescence of the free exciton emission intensity with a 1/B periodicity. This effect is ascribed to a modulation of the tunneling probability resulting from the Landau quantization in the graphene electrodes. A sharp feature in the differential conductance indicates that the Fermi level is pinned and allows for an estimation of the acceptor binding energy.

  3. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Singisetti, Uttam

    2017-09-01

    The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.

  4. Low-power low-voltage superior-order curvature corrected voltage reference

    NASA Astrophysics Data System (ADS)

    Popa, Cosmin

    2010-06-01

    A complementary metal oxide semiconductor (CMOS) voltage reference with a logarithmic curvature-correction will be presented. The first-order compensation is realised using an original offset voltage follower (OVF) block as a proportional to absolute temperature (PTAT) voltage generator, with the advantages of reducing the silicon area and of increasing accuracy by replacing matched resistors with matched transistors. The new logarithmic curvature-correction technique will be implemented using an asymmetric differential amplifier (ADA) block for compensating the logarithmic temperature dependent term from the first-order compensated voltage reference. In order to increase the circuit accuracy, an original temperature-dependent current generator will be designed for computing the exact type of the implemented curvature-correction. The relatively small complexity of the current squarer allows an important increasing of the circuit accuracy that could be achieved by increasing the current generator complexity. As a result of operating most of the MOS transistors in weak inversion, the original proposed voltage reference could be valuable for low-power applications. The circuit is implemented in 0.35 μm CMOS technology and consumes only 60μA for t = 25°C, being supplied at the minimal supply voltage V DD = 1.75V. The temperature coefficient of the reference voltage is 8.7 ppm/°C, while the line sensitivity is 0.75 mV/V for a supply voltage between 1.75 V and 7 V.

  5. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  6. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  7. ALDO: A radiation-tolerant, low-noise, adjustable low drop-out linear regulator in 0.35 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-07-01

    In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.

  8. Comparative High Voltage Impulse Measurement

    PubMed Central

    FitzPatrick, Gerald J.; Kelley, Edward F.

    1996-01-01

    A facility has been developed for the determination of the ratio of pulse high voltage dividers over the range from 10 kV to 300 kV using comparative techniques with Kerr electro-optic voltage measurement systems and reference resistive voltage dividers. Pulse voltage ratios of test dividers can be determined with relative expanded uncertainties of 0.4 % (coverage factor k = 2 and thus a two standard deviation estimate) or less using the complementary resistive divider/Kerr cell reference systems. This paper describes the facility and specialized procedures used at NIST for the determination of test voltage divider ratios through comparative techniques. The error sources and special considerations in the construction and use of reference voltage dividers to minimize errors are discussed, and estimates of the measurement uncertainties are presented. PMID:27805083

  9. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    NASA Astrophysics Data System (ADS)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  10. Effects of trap-assisted tunneling on gate-induced drain leakage in silicon-germanium channel p-type FET for scaled supply voltages

    NASA Astrophysics Data System (ADS)

    Tiwari, Vishal A.; Divakaruni, Rama; Hook, Terence B.; Nair, Deleep R.

    2016-04-01

    Silicon-germanium is considered as an alternative channel material to silicon p-type FET (pFET) for the development of energy efficient high performance transistors for 28 nm and beyond in a high-k metal gate technology because of its lower threshold voltage and higher mobility. However, gate-induced drain leakage (GIDL) is a concern for high threshold voltage device design because of tunneling at reduced bandgap. In this work, the trap-assisted tunneling and band-to-band tunneling (BTBT) effects on GIDL is analyzed and modeled for SiGe pFETs. Experimental results and Monte Carlo simulation results reveal that the pre-halo germanium pre-amorphization implant used to contain the short channel effects contribute to GIDL at the drain sidewall in addition to GIDL due to BTBT in SiGe devices. The results are validated by comparing the experimental observations with the numerical simulation and a set of calibrated models are used to describe the GIDL mechanisms for various drain and gate bias.

  11. A new curvature compensation technique for CMOS voltage reference using |VGS| and ΔVBE

    NASA Astrophysics Data System (ADS)

    Xuemin, Li; Mao, Ye; Gongyuan, Zhao; Yun, Zhang; Yiqiang, Zhao

    2016-05-01

    A new mixed curvature compensation technique for CMOS voltage reference is presented, which resorts to two sub-references with complementary temperature characteristics. The first sub-reference is the source-gate voltage |VGS|p of a PMOS transistor working in the saturated region. The second sub-reference is the weighted sum of gate-source voltages |VGS|n of NMOS transistors in the subthreshold region and the difference between two base-emitter voltages ΔVBE of bipolar junction transistors (BJTs). The voltage reference implemented utilizing the proposed curvature compensation technique exhibits a low temperature coefficient and occupies a small silicon area. The proposed technique was verified in 0.18 μm standard CMOS process technology. The performance of the circuit has been measured. The measured results show a temperature coefficient as low as 12.7 ppm/°C without trimming, over a temperature range from -40 to 120 °C, and the current consumption is 50 μA at room temperature. The measured power-supply rejection ratio (PSRR) is -31.2 dB @ 100 kHz. The circuit occupies an area of 0.045 mm2. Project supported by the National Natural Science Foundation of China (No. 61376032).

  12. Highly Efficient Ternary-Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance.

    PubMed

    Xu, Xiaopeng; Bi, Zhaozhao; Ma, Wei; Wang, Zishuai; Choy, Wallace C H; Wu, Wenlin; Zhang, Guangjun; Li, Ying; Peng, Qiang

    2017-12-01

    In this work, highly efficient ternary-blend organic solar cells (TB-OSCs) are reported based on a low-bandgap copolymer of PTB7-Th, a medium-bandgap copolymer of PBDB-T, and a wide-bandgap small molecule of SFBRCN. The ternary-blend layer exhibits a good complementary absorption in the range of 300-800 nm, in which PTB7-Th and PBDB-T have excellent miscibility with each other and a desirable phase separation with SFBRCN. In such devices, there exist multiple energy transfer pathways from PBDB-T to PTB7-Th, and from SFBRCN to the above two polymer donors. The hole-back transfer from PTB7-Th to PBDB-T and multiple electron transfers between the acceptor and the donor materials are also observed for elevating the whole device performance. After systematically optimizing the weight ratio of PBDB-T:PTB7-Th:SFBRCN, a champion power conversion efficiency (PCE) of 12.27% is finally achieved with an open-circuit voltage (V oc ) of 0.93 V, a short-circuit current density (J sc ) of 17.86 mA cm -2 , and a fill factor of 73.9%, which is the highest value for the ternary OSCs reported so far. Importantly, the TB-OSCs exhibit a broad composition tolerance with a high PCE over 10% throughout the whole blend ratios. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An AlN/Al 0.85Ga 0.15N high electron mobility transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    2016-07-22

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al 0.85Ga 0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high I on/I off current ratio greater than 10 7 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. In conclusion,more » the room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.« less

  14. An AlN/Al{sub 0.85}Ga{sub 0.15}N high electron mobility transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    2016-07-18

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al{sub 0.85}Ga{sub 0.15}N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high I{sub on}/I{sub off} current ratio greater than 10{sup 7} and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. The room temperature voltage-dependent 3-terminalmore » off-state drain current was adequately modeled with Frenkel-Poole emission.« less

  15. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap

    NASA Astrophysics Data System (ADS)

    Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid

    2018-03-01

    We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.

  16. Carrier-injection studies in GaN-based light-emitting-diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh Chuong; Vaufrey, David; Leroux, Mathieu

    2015-09-01

    Although p-type GaN has been achieved by Mg doping, the low hole-mobility still remains a difficulty for GaN-based light-emitting diodes (LEDs). Due to the lack of field-dependent-velocity model for holes, in GaN-based LED simulations, the hole mobility is usually supposed to remain constant. However, as the p-GaN-layer conductivity is lower than the n-GaN-layer conductivity, a strong electric-field exists in the p-side of an LED when the applied voltage exceeds the LED's built-in voltage. Under the influence of this field, the mobilities of electrons and holes are expected to decrease. Based on a field-dependent-velocity model that is usually used for narrow-bandgap materials, an LED structure is modelled with three arbitrarily chosen hole saturation-velocities. The results show that a hole saturation-velocity lower than 4x106 cm/s can negatively affect the LED's behaviors.

  17. Tunneling calculations for GaAs-Al(x)Ga(1-x)As graded band-gap sawtooth superlattices

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine; Meijer, Paul H. E.

    1990-01-01

    The transmission resonance spectra and tunneling current-voltage characteristics for direct conduction band electrons in sawtooth GaAs-Al(x)Ga(1-x)As superlattices are computed. Only direct-gap interfaces are considered. It is found that sawtooth superlattices exhibit resonant tunneling similar to that in step superlattices, manifested by correlation of peaks and regions of negative differential resistance in the current-voltage curves with transmission resonances. The Stark shift of the resonances of step-barrier superlattices is a linear function of the field, whereas in sawtooth superlattices under strong fields the shift is not a simple function of the field. This follows from the different ways in which the two structures deform under uniform electric fields: the sawtooth deforms into a staircase, at which field strength all barriers to tunneling are eradicated. The step-barrier superlattice always presents some barrier to tunneling, no matter how high the electric field strength.

  18. Back bias induced dynamic and steep subthreshold swing in junctionless transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parihar, Mukta Singh; Kranti, Abhinav, E-mail: akranti@iiti.ac.in

    In this work, we analyze back bias induced steep and dynamic subthreshold swing in junctionless double gate transistors operated in the asymmetric mode. This impact ionization induced dynamic subthreshold swing is explained in terms of the ratio between minimum hole concentration and peak electron concentration, and the dynamic change in the location of the conduction channel with applied front gate voltage. The reason for the occurrence of impact ionization at sub-bandgap drain voltages in silicon junctionless transistors is also accounted for. The optimum junctionless transistor operating at a back gate bias of −0.9 V, achieves over 5 orders of change inmore » drain current at a gate overdrive of 200 mV and drain bias of 1 V. These results for junctionless transistors are significantly better than those exhibited by silicon tunnel field effect transistors operating at the same drain bias.« less

  19. Novel circuit design for high-impedance and non-local electrical measurements of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio

    2018-02-01

    Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.

  20. Computer analysis of the negative differential resistance switching phenomenon of double-injection devices

    NASA Technical Reports Server (NTRS)

    Shieh, Tsay-Jiu

    1989-01-01

    By directly solving the semiconductor differential equations for the double-injection (DI) devices involving two interacting deep levels, the authors studied the negative differential resistance switching characteristic and its relationship with the device dimension, doping level, and dependence on the deep impurity profile. Computer simulation showed that although one can increase the threshold voltage by increasing the device length, the excessive holding voltage that would follow would put this device in a very limited application such as pulse power source. The excessive leakage current in the low conductance state also jeopardizes the attempt to use the device for any practical purpose. Unless there are new materials and deep impurities found that have a great differential hole and electron capture cross sections and a reasonable energy bandgap for low intrinsic carrier concentration, no big improvement in the fate of DI devices is expected in the near future.

  1. Caking and characterizing graphene oxide thin films via electrodeposition technique for possible application in photoelectrochemical spliting of water

    NASA Astrophysics Data System (ADS)

    Singh, Nirupama; Kumar, Pushpendra; Upadhyay, Sumant; Choudhary, Surbhi; Satsangi, Vibha R.; Dass, Sahab; Shrivastav, Rohit

    2013-06-01

    In the present study Readymade Graphene oxide (GO) has been coated using electrochemical deposition technique [1] on to the conducting glass (ITO) substrate. Raman spectra generated D and G Peaks obtained at 1346 and 1575 cm-1 confirmed the presence of GO [2]. The UV-Visible absorption measurements provided absorption peak at 262 nm and the Tauc plots yielded band-gap energy of sample around 3.9 eV. The PEC measurements involved determination of current-voltage (I-V) characteristics, both under darkness as well as under illumination. The photocurrent of 1.21 mA/cm-2 at 0.5 V applied voltage (vs. saturated calomel electrode), was recorded under the illumination of 150 Wcm-2 (Xenon arc lamp; Oriel, USA). The photocurrent values were utilized further to calculate applied bias photon-to-current efficiency (% ABPE), which was estimated to 0.98 % at 0.5 V bias.

  2. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-08-01

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  3. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  4. All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes

    PubMed Central

    Al-Dirini, Feras; Hossain, Faruque M.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2014-01-01

    Graphene normally behaves as a semimetal because it lacks a bandgap, but when it is patterned into nanoribbons a bandgap can be introduced. By varying the width of these nanoribbons this band gap can be tuned from semiconducting to metallic. This property allows metallic and semiconducting regions within a single Graphene monolayer, which can be used in realising two-dimensional (2D) planar Metal-Insulator-Semiconductor field effect devices. Based on this concept, we present a new class of nano-scale planar devices named Graphene Self-Switching MISFEDs (Metal-Insulator-Semiconductor Field-Effect Diodes), in which Graphene is used as the metal and the semiconductor concurrently. The presented devices exhibit excellent current-voltage characteristics while occupying an ultra-small area with sub-10 nm dimensions and an ultimate thinness of a single atom. Quantum mechanical simulation results, based on the Extended Huckel method and Nonequilibrium Green's Function Formalism, show that a Graphene Self-Switching MISFED with a channel as short as 5 nm can achieve forward-to-reverse current rectification ratios exceeding 5000. PMID:24496307

  5. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  6. Electrically Tunable Optical Delay Lines

    DTIC Science & Technology

    2003-04-01

    layers [24]. References [1] Bendickson, J. M., J. P. Dowling, and M. Scalora , “Analytic expressions for the electromagnetic mode density in...finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996). [2] Scalora , M., R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J

  7. Differential comparator cirucit

    DOEpatents

    Hickling, Ronald M.

    1996-01-01

    A differential comparator circuit for an Analog-to-Digital Converter (ADC) or other application includes a plurality of differential comparators and a plurality of offset voltage generators. Each comparator includes first and second differentially connected transistor pairs having equal and opposite voltage offsets. First and second offset control transistors are connected in series with the transistor pairs respectively. The offset voltage generators generate offset voltages corresponding to reference voltages which are compared with a differential input voltage by the comparators. Each offset voltage is applied to the offset control transistors of at least one comparator to set the overall voltage offset of the comparator to a value corresponding to the respective reference voltage. The number of offset voltage generators required in an ADC application can be reduced by a factor of approximately two by applying the offset voltage from each offset voltage generator to two comparators with opposite logical sense such that positive and negative offset voltages are produced by each offset voltage generator.

  8. The simulation on diode-clamped five-level converters common-mode voltage suppression with zero-vector PWM strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggao; Gao, Yanli; Long, Lizhong

    2012-04-01

    More and more researchers have great concern on the issue of Common-mode voltage (CMV) in high voltage large power converter. A novel common-mode voltage suppression scheme based on zero-vector PWM strategy (ZVPWM) is present in this paper. Taking a diode-clamped five-level converter as example, the principle of zero vector PWM common-mode voltage (ZCMVPWM) suppression method is studied in detail. ZCMVPWM suppression strategy is including four important parts, which are locating the sector of reference voltage vector, locating the small triangular sub-sector of reference voltage vector, reference vector synthesis, and calculating the operating time of vector. The principles of four important pars are illustrated in detail and the corresponding MATLAB models are established. System simulation and experimental results are provided. It gives some consultation value for the development and research of multi-level converters.

  9. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.

    PubMed

    Grinberg, Ilya; West, D Vincent; Torres, Maria; Gou, Gaoyang; Stein, David M; Wu, Liyan; Chen, Guannan; Gallo, Eric M; Akbashev, Andrew R; Davies, Peter K; Spanier, Jonathan E; Rappe, Andrew M

    2013-11-28

    Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p-n junction solar cell. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol-gel thin-film deposition and sputtering. Recent work has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric-electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10(-4) to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7-4 electronvolts) of ferroelectric oxides, which allow the use of only 8-20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 - x[BaNi1/2Nb1/2O3 - δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1-3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and other applications.

  10. Sub-bandgap response of graphene/SiC Schottky emitter bipolar phototransistor examined by scanning photocurrent microscopy

    NASA Astrophysics Data System (ADS)

    Barker, Bobby G., Jr.; Chava, Venkata Surya N.; Daniels, Kevin M.; Chandrashekhar, M. V. S.; Greytak, Andrew B.

    2018-01-01

    Graphene layers grown epitaxially on SiC substrates are attractive for a variety of sensing and optoelectronic applications because the graphene acts as a transparent, conductive, and chemically responsive layer that is mated to a wide-bandgap semiconductor with large breakdown voltage. Recent advances in control of epitaxial growth and doping of SiC epilayers have increased the range of electronic device architectures that are accessible with this system. In particular, a recently-introduced Schottky-emitter bipolar phototransistor (SEPT) based on an epitaxial graphene (EG) emitter grown on a p-SiC base epilayer has been found to exhibit a maximum common emitter current gain of 113 and a UV responsivity of 7.1 A W-1. The behavior of this device, formed on an n +-SiC substrate that serves as the collector, was attributed to a very large minority carrier injection efficiency at the EG/p-SiC Schottky contact. This large minority carrier injection efficiency is in turn related to the large built-in potential found at a EG/p-SiC Schottky junction. The high performance of this device makes it critically important to analyze the sub bandgap visible response of the device, which provides information on impurity states and polytype inclusions in the crystal. Here, we employ scanning photocurrent microscopy (SPCM) with sub-bandgap light as well as a variety of other techniques to clearly demonstrate a localized response based on the graphene transparent electrode and an approximately 1000-fold difference in responsivity between 365 nm and 444 nm excitation. A stacking fault propagating from the substrate/epilayer interface, assigned as a single layer of the 8H-SiC polytype within the 4H-SiC matrix, is found to locally increase the photocurrent substantially. The discovery of this polytype heterojunction opens the potential for further development of heteropolytype devices based on the SEPT architecture.

  11. Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks

    NASA Astrophysics Data System (ADS)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-02-01

    We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.

  12. Superstructures and multijunction cells for high efficiency energy conversion

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1985-01-01

    Potential applications of superlattices to photovoltaic structures are discussed. A single-bandgap, multijunction cell with selective electrodes for lateral transport of collected carriers is proposed. The concept is based on similar doping superlattice (NIPI) structures. Computer simulations show that by reducing bulk recombination losses, the spectral response of such cells is enhanced, particularly for poor quality materials with short diffusion lengths. Dark current contributions of additional junctions result in a trade-off between short-circuit current and open-circuit voltage as the number of layers is increased. One or two extra junctions appear to be optimal.

  13. Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond

    DOE PAGES

    Tan, Liang Z.; Zheng, Fan; Young, Steve M.; ...

    2016-08-26

    Here, the bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p–n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorlymore » understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.« less

  14. Impact of Plasma Electron Flux on Plasma Damage‐Free Sputtering of Ultrathin Tin‐Doped Indium Oxide Contact Layer on p‐GaN for InGaN/GaN Light‐Emitting Diodes

    PubMed Central

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu‐Jung; Oh, Seung Kyu; You, Shin‐Jae; Ryou, Jae‐Hyun

    2017-01-01

    Abstract The origin of plasma‐induced damage on a p‐type wide‐bandgap layer during the sputtering of tin‐doped indium oxide (ITO) contact layers by using radiofrequency‐superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light‐emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p‐GaN surface can reduce plasma‐induced damage to the p‐GaN. Furthermore, electron‐beam irradiation on p‐GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma‐induced damage to the p‐GaN. The plasma electrons can increase the effective barrier height at the ITO/deep‐level defect (DLD) band of p‐GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage‐free sputtered‐ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e‐beam‐evaporated ITO TCE. PMID:29619312

  15. Impact of Plasma Electron Flux on Plasma Damage-Free Sputtering of Ultrathin Tin-Doped Indium Oxide Contact Layer on p-GaN for InGaN/GaN Light-Emitting Diodes.

    PubMed

    Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop

    2018-02-01

    The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.

  16. High-temperature, gas-filled ceramic rectifiers, thyratrons, and voltage-reference tubes

    NASA Technical Reports Server (NTRS)

    Baum, E. A.

    1969-01-01

    Thyratron, capable of being operated as a rectifier and a voltage-reference tube, was constructed and tested for 1000 hours at temperatures to 800 degrees C. With current levels at 15 amps and peak voltages of 2000 volts and frequencies at 6000 cps, tube efficiency was greater than 97 percent.

  17. A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory

    NASA Astrophysics Data System (ADS)

    Guo, Jiarong

    2017-04-01

    A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).

  18. Reduced interface recombination in Cu{sub 2}ZnSnS{sub 4} solar cells with atomic layer deposition Zn{sub 1−x}Sn{sub x}O{sub y} buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platzer-Björkman, C.; Frisk, C.; Larsen, J. K.

    2015-12-14

    Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells typically include a CdS buffer layer in between the CZTS and ZnO front contact. For sulfide CZTS, with a bandgap around 1.5 eV, the band alignment between CZTS and CdS is not ideal (“cliff-like”), which enhances interface recombination. In this work, we show how a Zn{sub 1−x}Sn{sub x}O{sub y} (ZTO) buffer layer can replace CdS, resulting in improved open circuit voltages (V{sub oc}) for CZTS devices. The ZTO is deposited by atomic layer deposition (ALD), with a process previously developed for Cu(In,Ga)Se{sub 2} solar cells. By varying the ALD process temperature, the position of themore » conduction band minimum of the ZTO is varied in relation to that of CZTS. A ZTO process at 95 °C is found to give higher V{sub oc} and efficiency as compared with the CdS reference devices. For a ZTO process at 120 °C, where the conduction band alignment is expected to be the same as for CdS, the V{sub oc} and efficiency is similar to the CdS reference. Further increase in conduction band minimum by lowering the deposition temperature to 80 °C shows blocking of forward current and reduced fill factor, consistent with barrier formation at the junction. Temperature-dependent current voltage analysis gives an activation energy for recombination of 1.36 eV for the best ZTO device compared with 0.98 eV for CdS. We argue that the V{sub oc} of the best ZTO devices is limited by bulk recombination, in agreement with a room temperature photoluminescence peak at around 1.3 eV for both devices, while the CdS device is limited by interface recombination.« less

  19. Single-contact tunneling thermometry

    DOEpatents

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  20. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    DOE PAGES

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  1. Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method.

    PubMed

    Pathak, Trilok K; Rajput, Jeevitesh K; Kumar, Vinod; Purohit, L P; Swart, H C; Kroon, R E

    2017-02-01

    Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300-800nm and the optical bandgap was calculated using Tauc's plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Analysis of the attainable efficiency of a direct-bandgap betavoltaic element

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.; Evstigneev, M.

    2015-11-01

    Conversion of energy of beta-particles into electric energy in a p-n junction based on direct-bandgap semiconductors, such as GaAs, is analyzed considering realistic semiconductor system parameters. An expression for the collection coefficient, Q, of the electron-hole pairs generated by beta-electrons is derived taking into account the existence of the dead layer. We show that the collection coefficient of beta-electrons emitted by a 3H-source to a GaAs p-n junction is close to 1 in a broad range of electron lifetimes in the junction, ranging from 10-9to 10-7 s. For the combination 147Pm/GaAs, Q is relatively large (≥slant 0.4) only for quite long lifetimes (about 10-7 s) and large thicknesses (about 100 μm) of GaAs p-n junctions. For realistic lifetimes of minority carriers and their diffusion coefficients, the open-circuit voltage realized due to the irradiation of a GaAs p-n junction by beta-particles is obtained. The attainable beta-conversion efficiency η in the case of a 3H/GaAs combination is found to exceed that of the 147Pm/GaAs combination.

  3. Probing the density of trap states in the middle of the bandgap using ambipolar organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Häusermann, Roger; Chauvin, Sophie; Facchetti, Antonio; Chen, Zhihua; Takeya, Jun; Batlogg, Bertram

    2018-04-01

    The number of trap states in the band gap of organic semiconductors directly influences the charge transport as well as the threshold and turn-on voltage. Direct charge transport measurements have been used until now to probe the trap states rather close to the transport level, whereas their number in the middle of the band gap has been elusive. In this study, we use PDIF-CN2, a well known n-type semiconductor, together with vanadium pentoxide electrodes to build ambipolar field-effect transistors. Employing three different methods, we study the density of trap states in the band gap of the semiconductor. These methods give consistent results, and no pool of defect states was found. Additionally, we show first evidence that the number of trap states close to the transport level is correlated with the number of traps in the middle of the band-gap, meaning that a high number of trap states close to the transport level also implies a high number of trap states in the middle of the band gap. This points to a common origin of the trap states over a wide energy range.

  4. Potential Fluctuations and Localization Effects in CZTS Single Crystals, as Revealed by Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bleuse, Joël; Ducroquet, Frédérique; Mariette, Henri

    2018-03-01

    Reports on Cu_2 ZnSn(S_x Se_{1-x} )_4 (CZTSSe) solar cell devices all show an open-circuit voltage lower than expected, especially when compared to CuIn_x Ga_{1-x} (S,Se)_2 devices, which reduces their power efficiency and delays their development. A high concentration of intrinsic defects in CZTSSe, and their stabilization through neutral complex formation, which induces some local fluctuations, are at the origin of local energy shifts in the conduction and valence band edges. The implied band tail in Cu_2 ZnSnS_4 is studied in this work by combining three types of optical spectroscopy data: emission spectra compared to photoluminescence excitation spectroscopy, emission spectra as a function of excitation power, and time-resolved photoluminescence spectra. All these data converge to show that both the bandgap and the band tail of localized states just below are dependent on the degree of order/disorder in the Cu/Zn cation sublattice of the quaternary structure: in the more ordered structures, the bandgap increases by about 50 meV, and the energy range of the band tail is decreased from about 110 to 70 meV.

  5. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  6. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE PAGES

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...

    2016-08-01

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  7. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation ofmore » such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  8. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    NASA Astrophysics Data System (ADS)

    Baran, Derya; Ashraf, Raja Shahid; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Röhr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain

    2017-03-01

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 +/- 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 +/- 0.4% efficiency and a high open-circuit voltage of 1.03 +/- 0.01 V.

  9. Measurement of carrier transport and recombination parameter in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  10. Voc Degradation in TF-VLS Grown InP Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the wholemore » sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.« less

  11. Franz-Keldysh effect in GeSn pin photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehme, M., E-mail: oehme@iht.uni-stuttgart.de; Kostecki, K.; Schmid, M.

    2014-04-21

    The optical properties and the Franz-Keldysh effect at the direct band gap of GeSn alloys with Sn concentrations up to 4.2% at room temperature were investigated. The GeSn material was embedded in the intrinsic region of a Ge heterojunction photodetector on Si substrates. The layer structure was grown by means of ultra-low temperature molecular beam epitaxy. The absorption coefficient as function of photon energy and the direct bandgap energies were determined. In all investigated samples, the Franz-Keldysh effect can be observed. A maximum absorption ratio of 1.5 was determined for 2% Sn for a voltage swing of 3 V.

  12. Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Haag, Emily

    2013-01-01

    A simplified model of solar power in the Venus environment is developed, in which the solar intensity, solar spectrum, and temperature as a function of altitude is applied to a model of photovoltaic performance, incorporating the temperature and intensity dependence of the open-circuit voltage and the temperature dependence of the bandgap and spectral response of the cell. We use this model to estimate the performance of solar cells for both the surface of Venus and for atmospheric probes at altitudes from the surface up to 60 km. The model shows that photovoltaic cells will produce power even at the surface of Venus.

  13. An ultra-stable voltage source for precision Penning-trap experiments

    NASA Astrophysics Data System (ADS)

    Böhm, Ch.; Sturm, S.; Rischka, A.; Dörr, A.; Eliseev, S.; Goncharov, M.; Höcker, M.; Ketter, J.; Köhler, F.; Marschall, D.; Martin, J.; Obieglo, D.; Repp, J.; Roux, C.; Schüssler, R. X.; Steigleder, M.; Streubel, S.; Wagner, Th.; Westermann, J.; Wieder, V.; Zirpel, R.; Melcher, J.; Blaum, K.

    2016-08-01

    An ultra-stable and low-noise 25-channel voltage source providing 0 to -100 V has been developed. It will supply stable bias potentials for Penning-trap electrodes used in high-precision experiments. The voltage source generates all its supply voltages via a specially designed transformer. Each channel can be operated either in a precision mode or can be dynamically ramped. A reference module provides reference voltages for all the channels, each of which includes a low-noise amplifier to gain a factor of 10 in the output stage. A relative voltage stability of δV / V ≈ 2 ×10-8 has been demonstrated at -89 V within about 10 min.

  14. The role of solitons on the tunneling magnetoresistance through a double-stranded DNA molecule

    NASA Astrophysics Data System (ADS)

    Ashhadi, M.

    2018-07-01

    We have studied the role of solitons on the spin-dependent transport properties of through a double-stranded DNA (dsDNA) molecule attached to two the semi-infinite ferromagnetic (FM) electrodes. The work is based on a tight-binding Hamiltonian model within the framework of a generalized Green's function technique and relies on the Landauer-Bütikker formalism as the basis for studying the current-voltage characteristic of this system. The conductance properties of the spin system are studied for a ladder model for poly (dG)-poly (dC) DNA molecule. Our calculations indicate that the presence of a homogeneous distribution of the solitons along the molecular, as a sublattice of the correlated solitons, gives rise to significant enhancement in the density of states within the bandgap and large enhancement in conductance and the current-voltage characteristic. It is also shown that tunnel magnetoresistance (TMR) decreases in compared with TMR obtained in the absence of solitons.

  15. Hole trap formation in polymer light-emitting diodes under current stress

    NASA Astrophysics Data System (ADS)

    Niu, Quan; Rohloff, Roland; Wetzelaer, Gert-Jan A. H.; Blom, Paul W. M.; Crǎciun, N. Irina

    2018-06-01

    Polymer light-emitting diodes (PLEDs) are attractive for use in large-area displays and lighting panels, but their limited stability under current stress impedes commercialization. In spite of large efforts over the last two decades a fundamental understanding of the degradation mechanisms has not been accomplished. Here we demonstrate that the voltage drift of a PLED driven at constant current is caused by the formation of hole traps, which leads to additional non-radiative recombination between free electrons and trapped holes. The observed trap formation rate is consistent with exciton-free hole interactions as the main mechanism behind PLED degradation, enabling us to unify the degradation behaviour of various poly(p-phenylene) derivatives. The knowledge that hole trap formation is the cause of PLED degradation means that we can suppress the negative effect of hole traps on voltage and efficiency by blending the light-emitting polymer with a large-bandgap semiconductor. Owing to trap-dilution these blended PLEDs show unprecedented stability.

  16. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey; Remo, Timothy; Reese, Samantha

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG powermore » modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.« less

  17. Tunable reflectance of an inverse opal-chiral nematic liquid crystal multilayer device by electric- or thermal-control.

    PubMed

    Zhang, Yuxian; Zhao, Weidong; Wen, Jiahui; Li, Jinming; Yang, Zhou; Wang, Dong; Cao, Hui; Quan, Maohua

    2017-05-21

    A new type of electric- or thermal-responsive multilayer device composed of SiO 2 bilayer inverse opal (IOP) and chiral nematic liquid crystals (N*LCs) was developed. Bilayer IOP was fabricated by layer-by-layer assembly of polystyrene (PS) spheres with two different sizes and showed a reflectance in an extended range of the near-infrared region. Furthermore, the electrically or thermally tunable reflectance of the bilayer-IOP-N*LC device was investigated. The device exhibited the photonic bandgap (PBG) of the N*LC-IOP composite structure with the application of an electric field (voltage-on), while it presented the reflectance of N*LCs without an electric field (voltage-off) and the electrically-responsive behaviour could be reversibly switched. Besides, the device exhibited a gradient redshift of reflectance as temperature increased below the clearing point (T C ) while it showed the PBG of the N*LC-IOP composite structure when the temperature was above T C .

  18. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells

    PubMed Central

    Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; Harvey, Steven P.; Ciesielski, Peter N.; Wheeler, Lance M.; Schulz, Philip; Lin, Lih Y.; Beard, Matthew C.; Luther, Joseph M.

    2017-01-01

    We developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (VOC’s) than thin-film perovskites. CsPbI3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small VOC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions at the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%. PMID:29098184

  19. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    PubMed

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    PubMed

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  1. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.

  2. A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell

    NASA Technical Reports Server (NTRS)

    Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.

    1989-01-01

    Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.

  3. Synthesis of Large-Size 1T' ReS2x Se2(1-x) Alloy Monolayer with Tunable Bandgap and Carrier Type.

    PubMed

    Cui, Fangfang; Feng, Qingliang; Hong, Jinhua; Wang, Renyan; Bai, Yu; Li, Xiaobo; Liu, Dongyan; Zhou, Yu; Liang, Xing; He, Xuexia; Zhang, Zhongyue; Liu, Shengzhong; Lei, Zhibin; Liu, Zonghuai; Zhai, Tianyou; Xu, Hua

    2017-12-01

    Chemical vapor deposition growth of 1T' ReS 2 x Se 2(1- x ) alloy monolayers is reported for the first time. The composition and the corresponding bandgap of the alloy can be continuously tuned from ReSe 2 (1.32 eV) to ReS 2 (1.62 eV) by precisely controlling the growth conditions. Atomic-resolution scanning transmission electron microscopy reveals an interesting local atomic distribution in ReS 2 x Se 2(1- x ) alloy, where S and Se atoms are selectively occupied at different X sites in each Re-X 6 octahedral unit cell with perfect matching between their atomic radius and space size of each X site. This structure is much attractive as it can induce the generation of highly desired localized electronic states in the 2D surface. The carrier type, threshold voltage, and carrier mobility of the alloy-based field effect transistors can be systematically modulated by tuning the alloy composition. Especially, for the first time the fully tunable conductivity of ReS 2 x Se 2(1- x ) alloys from n-type to bipolar and p-type is realized. Owing to the 1T' structure of ReS 2 x Se 2(1- x ) alloys, they exhibit strong anisotropic optical, electrical, and photoelectric properties. The controllable growth of monolayer ReS 2 x Se 2(1- x ) alloy with tunable bandgaps and electrical properties as well as superior anisotropic feature provides the feasibility for designing multifunctional 2D optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the limited thermal cycling did not influence its characteristics and had no impact on its packaging as no structural or physical damage was observed.

  5. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    NASA Astrophysics Data System (ADS)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  7. Sequential power-up circuit

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable.

  8. Beneficial Effect of Post-Deposition Treatment in High-Efficiency Cu(In,Ga)Se2 Solar Cells through Reduced Potential Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Soren A.; Glynn, Stephen; Kanevce, Ana

    World-record power conversion efficiencies for Cu(In,Ga)Se2 (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ~40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in themore » electronic potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ~10 um, which is ~4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  10. Characterization of the GaN-MgO Transistor Interface: More Power and Efficiency

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Kumah, Divine; Walker, Fred

    2012-02-01

    In this age of high-energy consumption, the development of more efficient and more reliable devices is indispensable. Gallium nitride (GaN)-based devices are an option in achieving this goal. GaN's wide bandgap of 3.4 eV allows the device to handle large amount of current before leakage makes its energy consumption inefficient. The characteristics of GaN, in conjunction with those of Magnesium oxide (MgO), would allow for improvement of different electronic applications such as mobile phone communication technology. In this work, the fabrication of the GaN/MgO device was done by Molecular Beam Epitaxy. This device was grown under a variety of parameters where the growth temperature, growth chamber pressure, and the rate of material deposition were changed. To determine the optimal growth parameters, current-voltage and capacitance-voltage measurements were conducted on to evaluate the effects of these growth conditions. Atomic Force Microscopy was also used in characterizing the crystallinity and morphology of the samples. A conclusion of the research is that by improving the roughness of the substrate, the breakdown voltage of the MgO layer and the overall performance of the device can be improve, yielding a device with very low energy loss in the current transmission process.

  11. Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    NASA Astrophysics Data System (ADS)

    Jian, Guangzhong; He, Qiming; Mu, Wenxiang; Fu, Bo; Dong, Hang; Qin, Yuan; Zhang, Ying; Xue, Huiwen; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tao, Xutang; Liu, Ming

    2018-01-01

    β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current-voltage and capacitance-voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A.cm-2.K-2, which is close to the theoretical value of 41.11 A.cm-2.K-2. The differences between the barrier heights determined using the capacitance-voltage and current-voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  12. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOEpatents

    Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babadi, A. S., E-mail: aein.shiri-babadi@eit.lth.se; Lind, E.; Wernersson, L. E.

    A qualitative analysis on capacitance-voltage and conductance data for high-κ/InAs capacitors is presented. Our measured data were evaluated with a full equivalent circuit model, including both majority and minority carriers, as well as interface and border traps, formulated for narrow band gap metal-oxide-semiconductor capacitors. By careful determination of interface trap densities, distribution of border traps across the oxide thickness, and taking into account the bulk semiconductor response, it is shown that the trap response has a strong effect on the measured capacitances. Due to the narrow bandgap of InAs, there can be a large surface concentration of electrons and holesmore » even in depletion, so a full charge treatment is necessary.« less

  14. Voltage-matched, monolithic, multi-band-gap devices

    DOEpatents

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  15. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  16. Conductance of carbon based macro-molecular structures

    NASA Astrophysics Data System (ADS)

    Stafström, S.; Hansson, A.; Paulsson, M.

    2000-11-01

    Electron transport through metallic nanotubes and stacks of wide bandgap polyaromatic hydrocarbons (PAH) are studied theoretically using the Landauer formalism. These two systems constitute examples of different types of carbon based nanostructured materials of potential use in molecular electronics. The studies are carried out for structures with finite length that bridge two contact pads. In the case of perfect metallic nanotubes, the current is observed to increase stepwise with the applied voltage and the resistance is independent on the length of the tube. In the PAH stacks, the off resonance tunneling conductance decreases exponentially with the number of molecules in the stack and shows a near linear increase with the number of carbon atoms in each molecule.

  17. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.

    PubMed

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-04

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green's function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  18. Wide-Bandgap Semiconductor Devices for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Sugimoto, M.; Ueda, H.; Uesugi, T.; Kachi, T.

    2007-06-01

    In this paper, we discuss requirements of power devices for automotive applications, especially hybrid vehicles and the development of GaN power devices at Toyota. We fabricated AlGaN/GaN HEMTs and measured their characteristics. The maximum breakdown voltage was over 600V. The drain current with a gate width of 31mm was over 8A. A thermograph image of the HEMT under high current operation shows the AlGaN/GaN HEMT operated at more than 300°C. And we confirmed the operation of a vertical GaN device. All the results of the GaN HEMTs are really promising to realize high performance and small size inverters for future automobiles.

  19. Demonstration of a Nano-Enabled Space Power System

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses.

  20. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOEpatents

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  1. A study of junction effect transistors and their roles in carbon nanotube field emission cathodes in compact pulsed power applications

    NASA Astrophysics Data System (ADS)

    Shui, Qiong

    This thesis is focusing on a study of junction effect transistors (JFETs) in compact pulsed power applications. Pulsed power usually requires switches with high hold-off voltage, high current, low forward voltage drop, and fast switching speed. 4H-SiC, with a bandgap of 3.26 eV (The bandgap of Si is 1.12eV) and other physical and electrical superior properties, has gained much attention in high power, high temperature and high frequency applications. One topic of this thesis is to evaluate if 4H-SiC JFETs have a potential to replace gas phase switches to make pulsed power system compact and portable. Some other pulsed power applications require cathodes of providing stable, uniform, high electron-beam current. So the other topic of this research is to evaluate if Si JFET-controlled carbon nanotube field emitter cold cathode will provide the necessary e-beam source. In the topic of "4H-SiC JFETs", it focuses on the design and simulation of a novel 4H-SiC normally-off VJFET with high breakdown voltage using the 2-D simulator ATLAS. To ensure realistic simulations, we utilized reasonable physical models and the established parameters as the input into these models. The influence of key design parameters were investigated which would extend pulsed power limitations. After optimizing the key design parameters, with a 50-mum drift region, the predicted breakdown voltage for the VJFET is above 8kV at a leakage current of 1x10-5A/cm2 . The specific on-state resistance is 35 mO·cm 2 at VGS = 2.7 V, and the switching speed is several ns. The simulation results suggest that the 4H-SiC VJFET is a potential candidate for improving switching performance in repetitive pulsed power applications. To evaluate the 4H-SiC VJFETs in pulsed power circuits, we extracted some circuit model parameters from the simulated I-V curves. Those parameters are necessary for circuit simulation program such as SPICE. This method could be used as a test bench without fabricating the devices to minimize the unnecessary cost. As an extended research of 4H-SiC devices, Metal-Insulator-SiC (MIS) structures were utilized to evaluate the high dielectric constant materials---TiO 2 and Al2O3, as possible gate dielectrics for SiC devices. TiO2 and Al2O3 were chosen because of their high dielectric constants and bandgap energies as well as the acceptance of Ti and Al in most modern CMOS fabrication facilities. MIS devices were fabricated and both their I-V and C-V characteristics were measured and discussed. Our research showed that Al2O3 deposited by e-beam evaporation could be considered as a promising material among the gate insulators for high power SiC devices. In the topic of "Si JFET-controlled carbon nanotube field emitter cathode arrays", stability, controllability and lifetime are the main issues waiting to be addressed before field emitters find their wide applications. The ideas of connecting Si or metal field emitters with external MOSFETs or built-in active devices were attempted by other researchers, and those devices showed effectiveness in controlling and stabilizing the emission current. We presented the design, simulation, and the fabrication of Si JFETs monolithically integrated with CNTs field emitters. The Si JFET was designed to control and improve the emission of carbon nanotube field emitter arrays. Its electrical characteristics were simulated by the device simulator ATLAS. The fabrication process was developed to be compatible with the last step of growing multiwalled carbon nanotubes at 700°C. Carbon nanotubes field emitters were grown by PECVD (Plasma Enhanced Chemical Vapor Deposition). Preliminary field emission tests were conducted with 50 x 50 emitter arrays, with a resultant emission current of 3 muA (˜40 mA/cm2) at an extraction gate voltage of 50 V and an anode voltage of 300 V. Experimental data shows the linear relationship between ln(I/V2) and l/V consistent with Fowler-Nordheim electron tunneling. Some challenging issues were also discussed.

  2. Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter

    NASA Astrophysics Data System (ADS)

    Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun

    2018-03-01

    The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.

  3. Digital automatic gain amplifier

    NASA Technical Reports Server (NTRS)

    Holley, L. D.; Ward, J. O. (Inventor)

    1978-01-01

    A circuit is described for adjusting the amplitude of a reference signal to a predetermined level so as to permit subsequent data signals to be interpreted correctly. The circuit includes an operational amplifier having a feedback circuit connected between an output terminal and an input terminal; a bank of relays operably connected to a plurality of resistors; and a comparator comparing an output voltage of the amplifier with a reference voltage and generating a compared signal responsive thereto. Means is provided for selectively energizing the relays according to the compared signal from the comparator until the output signal from the amplifier equals to the reference signal. A second comparator is provided for comparing the output of the amplifier with a second voltage source so as to illuminate a lamp when the output signal from the amplifier exceeds the second voltage.

  4. Sequential power-up circuit

    DOEpatents

    Kronberg, J.W.

    1992-06-02

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable. 2 figs.

  5. System and methods for reducing harmonic distortion in electrical converters

    DOEpatents

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2013-12-03

    Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy converison module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage and the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface to the output interface with a duty cycle influenced by the dute cycle control value.

  6. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  7. InGaAs concentrator cells for laser power converters and tandem cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, S.; Vernon, S.; Gagnon, E.

    1993-01-01

    In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.

  8. Dense Ge nanocrystals embedded in TiO2 with exponentially increased photoconduction by field effect.

    PubMed

    Lepadatu, A-M; Slav, A; Palade, C; Dascalescu, I; Enculescu, M; Iftimie, S; Lazanu, S; Teodorescu, V S; Ciurea, M L; Stoica, T

    2018-03-20

    Si and Ge nanocrystals in oxides are of a large interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in nanocrystals. In this work, dense Ge nanocrystals suitable for enhanced photoconduction were fabricated from 60% Ge in TiO 2 amorphous layers by low temperature rapid thermal annealing at 550 °C. An exponential increase of the photocurrent with the applied voltage was observed in coplanar structure of Ge nanocrystals composite films deposited on oxidized Si wafers. The behaviour was explained by field effect control of the Fermi level at the Ge nanocrystals-TiO 2 layer/substrate interfaces. The blue-shift of the absorption gap from bulk Ge value to 1.14 eV was evidenced in both photocurrent spectra and optical reflection-transmission experiments, in good agreement with quantum confinement induced bandgap broadening in Ge nanocrystal with sizes of about 5 nm as found from HRTEM and XRD investigations. A nonmonotonic spectral dependence of the refractive index is associated to the Ge nanocrystals formation. The nanocrystal morphology is also in good agreement with the Coulomb gap hopping mechanism of T -1/2 -type explaining the temperature dependence of the dark conduction.

  9. Performance evaluation of electro-optic effect based graphene transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Abdul Jalil, Mansoor Bin; Yu, Bin; Liang, Gengchiau

    2012-09-01

    Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and ION/IOFF ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.

  10. Performance evaluation of electro-optic effect based graphene transistors.

    PubMed

    Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Yu, Bin; Liang, Gengchiau

    2012-10-21

    Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and I(ON)/I(OFF) ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.

  11. Nanoscale Interfaces in Colloidal Quantum Dot Solar Cells: Physical Insights and Materials Engineering Strategies

    NASA Astrophysics Data System (ADS)

    Kemp, Kyle Wayne

    With growing global energy demand there will be an increased need for sources of renewable energy such as solar cells. To make these photovoltaic technologies more competitive with conventional energy sources such as coal and natural gas requires further reduction in manufacturing costs that can be realized by solution processing and roll-to-roll printing. Colloidal quantum dots are a bandgap tunable, solution processible, semiconductor material which may offer a path forward to efficient, inexpensive photovoltaics. Despite impressive progress in performance with these materials, there remain limitations in photocarrier collection that must be overcome. This dissertation focuses on the characterization of charge recombination and transport in colloidal quantum dot photovoltaics, and the application of this knowledge to the development of new and better materials. Core-shell, PbS-CdS, quantum dots were investigated in an attempt to achieve better surface passivation and reduce electronic defects which can limit performance. Optimization of this material led to improved open circuit voltage, exceeding 0.6 V for the first time, and record published performance of 6% efficiency. Using temperature-dependent and transient photovoltage measurements we explored the significance of interface recombination on the operation of these devices. Careful engineering of the electrode using atomic layer deposition of ZnO helped lead to better TiO2 substrate materials and allowed us to realize a nearly two-fold reduction in recombination rate and an enhancement upwards of 50 mV in open circuit voltage. Carrier extraction efficiency was studied in these devices using intensity dependent current-voltage data of an operational solar cell. By developing an analytical model to describe recombination loss within the active layer of the device we were able to accurately determine transport lengths ranging up to 90 nm. Transient absorption and photoconductivity techniques were used to study charge dynamics by identifying states in these quantum dot materials which facilitate carrier transport. Thermal activation energies for transport of 60 meV or lower were measured for different PbS quantum dot bandgaps, representing a relatively small barrier for carrier transport. From these measurements a dark, quantum confined energy level was attributed to the electronic bandedge of these materials which serves to govern their optoelectronic behavior.

  12. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  13. Analysis of High Switching Frequency Quasi-Z-Source Photovoltaic Inverter Using Wide Bandgap Devices

    NASA Astrophysics Data System (ADS)

    Kayiranga, Thierry

    Power inverters continue to play a key role in todays electrical system more than ever. Power inverters employ power semiconductors to converter direct current (DC) into alternating current (AC). The performance of the semiconductors is based on speed and efficiency. Until recently, Silicon (Si) semiconductors had been established as mature. However, the continuous optimization and improvements in the production process of Si to meet today technology requirements have pushed Si materials to their theoretical limits. In an effort to find a suitable replacement, wide bandgap devices mainly Gallium Nitride (GaN) and Silicon Carbide (SiC), have proved to be excellent candidates offering high operation temperature, high blocking voltage and high switching frequency; of which the latter makes GaN a better candidate in high switching low voltage in Distributed Generations (DG). The single stage Quasi-Z-Source Inverter (qZSI) is also able to draw continuous and constant current from the source making ideal for PV applications in addition to allowing shoot-through states. The qZSI find best applications in medium level ranges where multiples qZS inverters can be cascaded (qZS-CMI) by combining the benefit of the qZSI, boost capabilities and continuous and constant input current, and those of the CMI, low output harmonic content and independent MPPT. When used with GaN devices operating at very high frequency, the qZS network impedance can be significantly reduced. However, the impedance network becomes asymmetric. The asymmetric impedance network (AIN-qZSI) has several advantages such as increased power density, increases system lifetime, small size volume and size making it more attractive for module integrated converter (MIC) concepts. However, there are technical challenges. With asymmetric component, resonance is introduced in the system leading to more losses and audible noise. With small inductances, new operation states become available further increasing the system complexity. This report investigates the AIN-qZSI and present solutions to aforementioned issues.

  14. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  15. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors.

    PubMed

    Gao, Yi; Lei, Shuijin; Kang, Tingting; Fei, Linfeng; Mak, Chee-Leung; Yuan, Jian; Zhang, Mingguang; Li, Shaojuan; Bao, Qiaoliang; Zeng, Zhongming; Wang, Zhao; Gu, Haoshuang; Zhang, Kai

    2018-06-15

    Metal-phosphorus-trichalcogenides (MPTs), represented by NiPS 3 , FePS 3 , etc, are newly developed 2D wide-bandgap semiconductors and have been proposed as excellent candidates for ultraviolet (UV) optoelectronics. In spite of having superior advantages for solar-blind UV photodetectors, including those free of surface trap states, being highly compatible with versatile integrations as well as having an appropriate band gap, to date relevant study is rare. In this work, the photoresponse characteristic of UV detectors based on few-layer FePS 3 has been comprehensively investigated. The responsivity of the photodetector, which is observed to be determined by bias gate voltage, may achieve as high as 171.6 mAW -1 under the illumination of 254 nm weak light, which is comparable to most commercial UV detectors. Notably, both negative and positive photoconductivities exist in the FePS 3 photodetectors and can be controllably switched with bias voltage. The eminent and novel photoresponse property paves the way for the further development and practical use of 2D MPTs in high-performance UV photodetections.

  16. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2014-10-01

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (Vth). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  17. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices

    PubMed Central

    Hoang, Anh Minh; Dehzangi, Arash; Adhikary, Sourav; Razeghi, Manijeh

    2016-01-01

    We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. PMID:27051979

  18. Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.

    Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less

  19. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Lei, Shuijin; Kang, Tingting; Fei, Linfeng; Mak, Chee-Leung; Yuan, Jian; Zhang, Mingguang; Li, Shaojuan; Bao, Qiaoliang; Zeng, Zhongming; Wang, Zhao; Gu, Haoshuang; Zhang, Kai

    2018-06-01

    Metal-phosphorus-trichalcogenides (MPTs), represented by NiPS3, FePS3, etc, are newly developed 2D wide-bandgap semiconductors and have been proposed as excellent candidates for ultraviolet (UV) optoelectronics. In spite of having superior advantages for solar-blind UV photodetectors, including those free of surface trap states, being highly compatible with versatile integrations as well as having an appropriate band gap, to date relevant study is rare. In this work, the photoresponse characteristic of UV detectors based on few-layer FePS3 has been comprehensively investigated. The responsivity of the photodetector, which is observed to be determined by bias gate voltage, may achieve as high as 171.6 mAW‑1 under the illumination of 254 nm weak light, which is comparable to most commercial UV detectors. Notably, both negative and positive photoconductivities exist in the FePS3 photodetectors and can be controllably switched with bias voltage. The eminent and novel photoresponse property paves the way for the further development and practical use of 2D MPTs in high-performance UV photodetections.

  20. Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications

    NASA Astrophysics Data System (ADS)

    Mansouri, S.; Coskun, B.; El Mir, L.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed; Yakuphanoglu, F.

    2018-04-01

    Graphene is a sheet-structured material that lacks a forbidden band, being a good candidate for use in radiofrequency applications. We have elaborated graphene-oxide-doped poly(3-hexylthiophene) nanocomposite to increase the interlayer distance and thereby open a large bandgap for use in the field of logic circuits. Graphene oxide/poly(3-hexylthiophene) (GO/P3HT) nanocomposite thin-film transistors (TFTs) were fabricated on silicon oxide substrate by spin coating method. The current-voltage ( I- V) characteristics of TFTs with various P3HT compositions were studied in the dark and under light illumination. The photocurrent, charge carrier mobility, subthreshold voltage, density of interface states, density of occupied states, and I ON/ I OFF ratio of the devices strongly depended on the P3HT weight ratio in the composite. The effects of white-light illumination on the electrical parameters of the transistors were investigated. The results indicated that GO/P3HT nanocomposite thin-film transistors have high potential for use in radiofrequency applications, and their feasibility for use in digital applications has been demonstrated.

  1. Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells

    DOE PAGES

    Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.; ...

    2017-10-27

    Here, we developed lead halide perovskite quantum dot (QD) films with tuned surface chemistry based on A-site cation halide salt (AX) treatments. QD perovskites offer colloidal synthesis and processing using industrially friendly solvents, which decouples grain growth from film deposition, and at present produce larger open-circuit voltages (V OC's) than thin-film perovskites. CsPbI 3 QDs, with a tunable bandgap between 1.75 and 2.13 eV, are an ideal top cell candidate for all-perovskite multijunction solar cells because of their demonstrated small V OC deficit. We show that charge carrier mobility within perovskite QD films is dictated by the chemical conditions atmore » the QD-QD junctions. The AX treatments provide a method for tuning the coupling between perovskite QDs, which is exploited for improved charge transport for fabricating high-quality QD films and devices. The AX treatments presented here double the film mobility, enabling increased photocurrent, and lead to a record certified QD solar cell efficiency of 13.43%.« less

  2. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei

    2018-04-01

    InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.

  3. Tight binding simulation study on zigzag single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena; Gupta, Vishu

    2018-01-01

    Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.

  4. High-voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Krämer, J.; König, K.; Geppert, Ch; Imgram, P.; Maaß, B.; Meisner, J.; Otten, E. W.; Passon, S.; Ratajczyk, T.; Ullmann, J.; Nörtershäuser, W.

    2018-04-01

    We present the results of high-voltage collinear laser spectroscopy measurements on the 5 ppm relative uncertainty level using a pump and probe scheme at the 4s ^2S1/2 → 4p ^2P3/2 transition of {\\hspace{0pt}}40Ca+ involving the 3d ^2D5/2 metastable state. With two-stage laser interaction and a reference measurement we can eliminate systematic effects such as differences in the contact potentials due to different electrode materials and thermoelectric voltages, and the unknown starting potential of the ions in the ion source. Voltage measurements were performed between  -5 kV and  -19 kV and parallel measurements with stable high-voltage dividers calibrated to 5 ppm relative uncertainty were used as a reference. Our measurements are compatible with the uncertainty limits of the high-voltage dividers and demonstrate an unprecedented (factor of 20) increase in the precision of direct laser-based high-voltage measurements.

  5. Linking results of key and supplementary comparisons of AC/DC voltage transfer references

    NASA Astrophysics Data System (ADS)

    Velychko, Oleh

    2018-04-01

    A regional key comparison (KC) COOMET.EM-K6.a and a supplementary comparison (SC) COOMET.EM-S1 of AC/DC voltage transfer references were conducted between participating laboratories from the Eurasian region. Measurements were made over the period 2004-2014. The results showed good agreement between all but one of the participating laboratories. The proposed procedure of linking results of key and SCs of regional metrology organization of AC/DC voltage transfer references is presented. Linking results is realized for COOMET.EM-K6.a and CCEM-K6.a KCs, and for COOMET.EM-K6.a KC and COOMET.EM-S1 SC.

  6. Closed-loop analysis and control of a non-inverting buck-boost converter

    NASA Astrophysics Data System (ADS)

    Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong

    2010-11-01

    In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.

  7. Real time radiation dosimeters based on vertically aligned multiwall carbon nanotubes and graphene.

    PubMed

    Funaro, Maria; Sarno, Maria; Ciambelli, Paolo; Altavilla, Claudia; Proto, Antonio

    2013-02-22

    Measurements of the absorbed dose and quality assurance programs play an important role in radiotherapy. Ionization chambers (CIs) are considered the most important dosimeters for their high accuracy, practicality and reliability, allowing absolute dose measurements. However, they have a relative large physical size, which limits their spatial resolution, and require a high bias voltage to achieve an acceptable collection of charges, excluding their use for in vivo dosimetry. In this paper, we propose new real time radiation detectors with electrodes based on graphene or vertically aligned multiwall carbon nanotubes (MWCNTs). We have investigated their charge collection efficiency and compared their performance with electrodes made of a conventional material. Moreover, in order to highlight the effect of nanocarbons, reference radiation detectors were also tested. The proposed dosimeters display an excellent linear response to dose and collect more charge than reference ones at a standard bias voltage, permitting the construction of miniaturized CIs. Moreover, an MWCNT based CI gives the best charge collection efficiency and it enables working also to lower bias voltages and zero volts, allowing in vivo applications. Graphene based CIs show better performance with respect to reference dosimeters at a standard bias voltage. However, at decreasing bias voltage the charge collection efficiency becomes worse if compared to a reference detector, likely due to graphene's semiconducting behavior.

  8. Carrier-frequency synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2003-05-13

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  10. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  11. RF lockout circuit for electronic locking system

    NASA Astrophysics Data System (ADS)

    Becker, Earl M., Jr.; Miller, Allen

    1991-02-01

    An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.

  12. SHORT COMMUNICATION: Transportable Zener-diode Voltage Standard

    NASA Astrophysics Data System (ADS)

    Karpov, O. V.; Shulga, V. M.; Shakirzyanova, F. R.; Sarandi, A. E.

    1994-01-01

    Five transportable Zener-diode dc voltage standards have been developed, fabricated and investigated at the NPO VNIIFTRI. The standards were designed to transfer the unit of electromotive force (emf) from Josephson reference standards to measuring instruments. Following the results of these investigations, standard N 02 has been used for intercomparison of the Russian Josephson reference standards.

  13. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, Richard A.

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  14. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  15. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber.

    PubMed

    Cheng, Tonglei; Liao, Meisong; Gao, Weiqing; Duan, Zhongchao; Suzuki, Takenobu; Ohishi, Yasutake

    2012-12-17

    A new way to suppress stimulated Brillouin scattering by using an all-solid chalcogenide-tellurite photonic bandgap fiber is presented in the paper. The compositions of the chalcogenide and the tellurite glass are As(2)Se(3) and TeO(2)-ZnO-Li(2)O-Bi(2)O(3). The light and the acoustic wave are confined in the fiber by photonic bandgap and acoustic bandgap mechanism, respectively. When the pump wavelength is within the photonic bandgap and the acoustic wave generated by the pump light is outside the acoustic bandgap, the interaction between the optical and the acoustic modes is very weak, thus stimulated Brillouin scattering is suppressed in the photonic bandgap fiber.

  16. Combinatorial Platform for Discovery of Nanocrystal-Ink Based Earth Abundant Element PV with Efficiency Greater than 20%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillhouse, Hugh W.

    (1) We successfully developed an ultrasonic spray coating system that can be used to deposit thin chalcogenide films with composition gradients. 4 publications under the contract have been published with the instrument. The instrument was used to reveal the effects of intrinsic composition and examine the effects of 25 different dopant elements. Surprisingly, doping with most elements had little to no effect on the quasi-Fermi level splitting of bare films. Ge and Li were explored in depth, and our best devices utilize lithium doping. (2) We developed a new model of absorption coefficients, that when combined with absolute intensity photoluminescence,more » yield the steady-state quasi-Fermi level splitting and a way to quantify the sub-bandgap absorption. This has resulted in 2 publications on the method, with another in preparation. This is a significant development that should impact other PV technologies. (3) We found that lithium doping has several beneficial effects on CZTSSe. It improves the open-circuit voltage, short circuit current, fill factor, and shunt resistance. By using scanning Kelvin probe microscopy (SKPM) and conductive AFM (along with device measurements, DLPC, and XPS), we discovered that lithium acts to increase the p-type doping in both the grain and grain boundaries (GBs). The effect is stronger in the GBs and changes the direction of the electric field at the GB. In lithium doped devices, an electric field repels minority carrier electrons away from the GB. This resulted in a publication and the fabrication of 11.8% efficient devices from a DMSO-thiourea molecular ink. The mechanism of action is most likely due to the formation of LiCu, which inhibits the formation of the donor defect ZnCu. This reduces compensation and increases the net p-type doping. (4) By alloying with germanium, we have fabricated CZTGSSe devices with the best open-circuit voltage (relative the maximum theoretical open-circuit voltage for the bandgap) for any kesterite solar cell. The Voc/Voc,max is 63%, compared to 58% for the record efficiency cell from hydrazine. The origin of the increased voltage efficiency appears to be related to the conduction band off-set and the suppression of a deep defect (~0.8 eV), most likely due to CuSn, but SnZn or SnCu are also possible. All milestones and go/no-go metrics were met with exception of the device efficiency milestone (15% then 20%). However, under the contract, hydrazine-free CZTSSe device efficiencies increased from 7.2% at the start of the contract to 11.8% upon completion.« less

  17. Determination of appropriate DC voltage for switched mode power supply (SMPS) loads

    NASA Astrophysics Data System (ADS)

    Setiawan, Eko Adhi; Setiawan, Aiman; Purnomo, Andri; Djamal, Muchlishah Hadi

    2017-03-01

    Nowadays, most of modern and efficient household electronic devices operated based on Switched Mode Power Supply (SMPS) technology which convert AC voltage from the grid to DC voltage. Based on theory and experiment, SMPS loads could be supplied by DC voltage. However, the DC voltage rating to energize electronic home appliances is not standardized yet. This paper proposed certain method to determine appropriate DC voltage, and investigated comparison of SMPS power consumption which is supplied from AC and DC voltage. To determine the appropriate DC voltage, lux value of several lamps which have same specification energized by using AC voltage and the results is using as reference. Then, the lamps were supplied by various DC voltage to obtain the trends of the lux value to the applied DC voltage. After that, by using the trends and the reference lux value, the appropriate DC voltage can be determined. Furthermore, the power consumption on home appliances such as mobile phone, laptop and personal computer by using AC voltage and the appropriate DC voltage were conducted. The results show that the total power consumption of AC system is higher than DC system. The total power (apparent power) consumed by the lamp, mobile phone and personal computer which operated in 220 VAC were 6.93 VA, 34.31 VA and 105.85 VA respectively. On the other hand, under 277 VDC the load consumption were 5.83 W, 19.11 W and 74.46 W respectively.

  18. Method for the growth of large low-defect single crystals

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor); Trunek, Andrew J. (Inventor); Spry, David J. (Inventor)

    2008-01-01

    A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.

  19. High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering

    PubMed Central

    Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn

    2017-01-01

    We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on–off current ratio of 105, subthreshold swing of 0.8 V/decade, and mobility of 5 cm2/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 105 at a gate bias of −5 V under 290 nm illumination. PMID:28772487

  20. High Responsivity MgZnO Ultraviolet Thin-Film Phototransistor Developed Using Radio Frequency Sputtering.

    PubMed

    Li, Jyun-Yi; Chang, Sheng-Po; Hsu, Ming-Hung; Chang, Shoou-Jinn

    2017-02-04

    We investigated the electrical and optoelectronic properties of a magnesium zinc oxide thin-film phototransistor. We fabricate an ultraviolet phototransistor by using a wide-bandgap MgZnO thin film as the active layer material of the thin film transistor (TFT). The fabricated device demonstrated a threshold voltage of 3.1 V, on-off current ratio of 10⁵, subthreshold swing of 0.8 V/decade, and mobility of 5 cm²/V·s in a dark environment. As a UV photodetector, the responsivity of the device was 3.12 A/W, and the rejection ratio was 6.55 × 10⁵ at a gate bias of -5 V under 290 nm illumination.

  1. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  2. Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se{sub 2} solar cells through reduced potential fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, S. A., E-mail: Soren.Jensen@nrel.gov, E-mail: Darius.Kuciauskas@nrel.gov; Glynn, S.; Kanevce, A.

    World-record power conversion efficiencies for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been achieved via a post-deposition treatment with alkaline metals, which increases the open-circuit voltage and fill factor. We explore the role of the potassium fluoride (KF) post-deposition treatment in CIGS by employing energy- and time-resolved photoluminescence spectroscopy and electrical characterization combined with numerical modeling. The bulk carrier lifetime is found to increase with post-deposition treatment from 255 ns to 388 ns, which is the longest charge carrier lifetime reported for CIGS, and within ∼40% of the radiative limit. We find evidence that the post-deposition treatment causes a decrease in the electronicmore » potential fluctuations. These potential fluctuations have previously been shown to reduce the open-circuit voltage and the device efficiency in CIGS. Additionally, numerical simulations based on the measured carrier lifetimes and mobilities show a diffusion length of ∼10 μm, which is ∼4 times larger than the film thickness. Thus, carrier collection in the bulk is not a limiting factor for device efficiency. By considering differences in doping, bandgap, and potential fluctuations, we present a possible explanation for the voltage difference between KF-treated and untreated samples.« less

  3. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages.

    PubMed

    Baran, D; Kirchartz, T; Wheeler, S; Dimitrov, S; Abdelsamie, M; Gorman, J; Ashraf, R S; Holliday, S; Wadsworth, A; Gasparini, N; Kaienburg, P; Yan, H; Amassian, A; Brabec, C J; Durrant, J R; McCulloch, I

    2016-12-01

    Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage ( V oc ) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve V oc up to 1.12 V, which corresponds to a loss of only E g / q - V oc = 0.5 ± 0.01 V between the optical bandgap E g of the polymer and V oc . This high V oc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.

  4. Properties and Applications of Varistor-Transistor Hybrid Devices

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, William A.; Sutanto, Ivan; Scantlin, Amanda A.; Lin, Sidney

    2014-05-01

    The nonlinear current-voltage characteristics of a varistor device are modified with the help of external agents, resulting in tuned varistor-transistor hybrid devices with multiple applications. The substrate used to produce these hybrid devices belongs to the modified iron titanate family with chemical formula 0.55FeTiO3·0.45Fe2O3 (IHC45), which is a prominent member of the ilmenite-hematite solid-solution series. It is a wide-bandgap magnetic oxide semiconductor. Electrical resistivity and Seebeck coefficient measurements from room temperature to about 700°C confirm that it retains its p-type nature for the entire temperature range. The direct-current (DC) and alternating-current (AC) properties of these hybrid devices are discussed and their applications identified. It is shown here that such varistor embedded ceramic transistors with many interesting properties and applications can be mass produced using incredibly simple structures. The tuned varistors by themselves can be used for current amplification and band-pass filters. The transistors on the other hand could be used to produce sensors, voltage-controlled current sources, current-controlled voltage sources, signal amplifiers, and low-band-pass filters. We believe that these devices could be suitable for a number of applications in consumer and defense electronics, high-temperature and space electronics, bioelectronics, and possibly also for electronics specific to handheld devices.

  5. Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized

    NASA Technical Reports Server (NTRS)

    Schwerman, Paul (Inventor)

    2017-01-01

    A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.

  6. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  7. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  8. Merging mechanical and electromechanical bandgaps in locally resonant metamaterials and metastructures

    NASA Astrophysics Data System (ADS)

    Sugino, C.; Ruzzene, M.; Erturk, A.

    2018-07-01

    Locally resonant metamaterials are characterized by bandgaps at wavelengths much larger than the lattice size. Such locally resonant bandgaps can be formed using mechanical or electromechanical resonators. However, the nature of bandgap formation in mechanical and electromechanical (particularly piezoelectric) metamaterials is fundamentally different since the former is associated with a dynamic modal mass, while the latter is due to a dynamic modal stiffness. Next-generation metamaterials and resulting metastructures (i.e. finite configurations with specified boundary conditions) hosting mechanical resonators as well as piezoelectric interfaces connected to resonating circuits can enable the formation of two bandgaps, right above and below the design frequency of the mechanical and electrical resonators, respectively, yielding a wider bandgap and enhanced design flexibility as compared to using a purely mechanical, or a purely electromechanical configuration. In this work, we establish a fully coupled framework for hybrid mechanical-electromechanical metamaterials and finite metastructures. Combined bandgap size is approximated in closed form as a function of the added mass ratio of the resonators and the system-level electromechanical coupling for the infinite resonators approximation. Case studies are presented for a hybrid metamaterial cantilever under bending vibration to understand the interaction of these two locally resonant metamaterial domains in bandgap formation. Specifically, it is shown that the mechanical and electromechanical bandgaps do not fully merge for a finite number of resonators in an undamped setting. However, the presence of even light damping in the resonators suppresses the intermediate resonances emerging within the combined bandgap, enabling seamless merging of the two bandgaps in real-world structures that have damping. The overall concept of combining mechanical and electromechanical bandgaps in the same single metastructure can be leveraged in more complex topologies of piezoelectric metamaterial-based solids and structures.

  9. Bloch-like waves in random-walk potentials based on supersymmetry

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo

    2015-09-01

    Bloch's theorem was a major milestone that established the principle of bandgaps in crystals. Although it was once believed that bandgaps could form only under conditions of periodicity and long-range correlations for Bloch's theorem, this restriction was disproven by the discoveries of amorphous media and quasicrystals. While network and liquid models have been suggested for the interpretation of Bloch-like waves in disordered media, these approaches based on searching for random networks with bandgaps have failed in the deterministic creation of bandgaps. Here we reveal a deterministic pathway to bandgaps in random-walk potentials by applying the notion of supersymmetry to the wave equation. Inspired by isospectrality, we follow a methodology in contrast to previous methods: we transform order into disorder while preserving bandgaps. Our approach enables the formation of bandgaps in extremely disordered potentials analogous to Brownian motion, and also allows the tuning of correlations while maintaining identical bandgaps, thereby creating a family of potentials with `Bloch-like eigenstates'.

  10. Carrier phase synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-02-01

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  11. Three-Level 48-Pulse STATCOM with Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Srinivas, Kadagala Venkata

    2016-03-01

    In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.

  12. Photo-assisted Kelvin probe force microscopy investigation of three dimensional GaN structures with various crystal facets, doping types, and wavelengths of illumination

    NASA Astrophysics Data System (ADS)

    Ali Deeb, Manal; Ledig, Johannes; Wei, Jiandong; Wang, Xue; Wehmann, Hergo-Heinrich; Waag, Andreas

    2017-08-01

    Three dimensional GaN structures with different crystal facets and doping types have been investigated employing the surface photo-voltage (SPV) method to monitor illumination-induced surface charge behavior using Kelvin probe force microscopy. Various photon energies near and below the GaN bandgap were used to modify the generation of electron-hole pairs and their motion under the influence of the electric field near the GaN surface. Fast and slow processes for Ga-polar c-planes on both Si-doped n-type as well as Mg-doped p-type GaN truncated pyramid micro-structures were found and their origin is discussed. The immediate positive (for n-type) and negative (for p-type) SPV response dominates at band-to-band and near-bandgap excitation, while only the slow process is present at sub-bandgap excitation. The SPV behavior for the semi-polar facets of the p-type GaN truncated pyramids has a similar characteristic to that on its c-plane, which indicates that it has a comparable band bending and no strong influence of the polarity-induced charges is detectable. The SPV behavior of the non-polar m-facets of the Si-doped n-type part of a transferred GaN column is similar to that of a clean c-plane GaN surface during illumination. However, the SPV is smaller in magnitude, which is attributed to intrinsic surface states of m-plane surfaces and their influence on the band bending. The SPV behavior of the non-polar m-facet of the slightly Mg-doped part of this GaN column is found to behave differently. Compared to c- and r-facets of p-type surfaces of GaN-light-emitting diode micro-structures, the m-plane is more chemically stable.

  13. Simple programmable voltage reference for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.; Chye, En Un

    2018-05-01

    The paper presents a circuit design of a low-noise voltage reference based on an electric double-layer capacitor, a microcontroller and a general purpose DAC. A large capacitance value (1F and more) makes it possible to create low-pass filter with a large time constant, effectively reducing low-frequency noise beyond its bandwidth. Choosing the optimum value of the resistor in the RC filter, one can achieve the best ratio between the transient time, the deviation of the output voltage from the set point and the minimum noise cut-off frequency. As experiments have shown, the spectral density of the voltage at a frequency of 1 kHz does not exceed 1.2 nV/√Hz the maximum deviation of the output voltage from the predetermined does not exceed 1.4 % and depends on the holding time of the previous value. Subsequently, this error is reduced to a constant value and can be compensated.

  14. Pathway to 50% efficient inverted metamorphic concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Geisz, John F.; Steiner, Myles A.; Jain, Nikhil; Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Perl, Emmett E.; Horowitz, Kelsey A. W.; Friedman, Daniel J.

    2017-09-01

    Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAs to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.

  15. Pathway to 50% Efficient Inverted Metamorphic Concentrator Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, John F; Steiner, Myles A; Jain, Nikhil

    Series-connected five (5J) and six junction (6J) concentrator solar cell strategies have the realistic potential to exceed 50% efficiency to enable low-cost CPV systems. We propose three strategies for developing a practical 6J device. We have overcome many of the challenges required to build such concentrator solar cell devices: We have developed 2.1 eV AlGaInP, 1.7 eV AlGaAs, and 1.7 eV GaInAsP junctions with external radiative efficiency greater than 0.1%. We have developed a transparent tunnel junction that absorbs minimal light intended for the second junction yet resists degradation under thermal load. We have developed metamorphic grades from the GaAsmore » to the InP lattice constant that are transparent to sub-GaAs bandgap light. We have grown and compared low bandgap junctions (0.7eV - 1.2 eV) using metamorphic GaInAs, metamorphic GaInAsP, and GaInAsP lattice-matched to InP. And finally, we have demonstrated excellent performance in a high voltage, low current 4 junction inverted metamorphic device using 2.1, 1.7, 1.4, and 1.1 eV junctions with over 8.7 mA/cm2 one-sun current density that operates up to 1000 suns without tunnel junction failure.« less

  16. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  17. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-01

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the charge transport in black phosphorus at room temperature; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs). The effect opens up opportunities for future development of electro-mechanical transducers based on black phosphorus, and we demonstrate strain gauges constructed from black phosphorus thin crystals.

  18. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.

    PubMed

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-11

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.

  19. Wide-temperature integrated operational amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)

    2009-01-01

    The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.

  20. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  1. Investigation of angular dependence on photonic bandgap for 1-D photonic crystal

    NASA Astrophysics Data System (ADS)

    Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.

    2018-05-01

    In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.

  2. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

    PubMed

    Tsang, Sai-Wing; Chen, Song; So, Franky

    2013-05-07

    Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V.; Recine, G.

    2014-03-31

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for openingmore » and modulating a bandgap in graphene as high as several hundred meV.« less

  4. Battery Cell By-Pass Circuit

    NASA Technical Reports Server (NTRS)

    Mumaw, Susan J. (Inventor); Evers, Jeffrey (Inventor); Craig, Calvin L., Jr. (Inventor); Walker, Stuart D. (Inventor)

    2001-01-01

    The invention is a circuit and method of limiting the charging current voltage from a power supply net work applied to an individual cell of a plurality of cells making up a battery being charged in series. It is particularly designed for use with batteries that can be damaged by overcharging, such as Lithium-ion type batteries. In detail. the method includes the following steps: 1) sensing the actual voltage level of the individual cell; 2) comparing the actual voltage level of the individual cell with a reference value and providing an error signal representative thereof; and 3) by-passing the charging current around individual cell necessary to keep the individual cell voltage level generally equal a specific voltage level while continuing to charge the remaining cells. Preferably this is accomplished by by-passing the charging current around the individual cell if said actual voltage level is above the specific voltage level and allowing the charging current to the individual cell if the actual voltage level is equal or less than the specific voltage level. In the step of bypassing the charging current, the by-passed current is transferred at a proper voltage level to the power supply. The by-pass circuit a voltage comparison circuit is used to compare the actual voltage level of the individual cell with a reference value and to provide an error signal representative thereof. A third circuit, designed to be responsive to the error signal, is provided for maintaining the individual cell voltage level generally equal to the specific voltage level. Circuitry is provided in the third circuit for bypassing charging current around the individual cell if the actual voltage level is above the specific voltage level and transfers the excess charging current to the power supply net work. The circuitry also allows charging of the individual cell if the actual voltage level is equal or less than the specific voltage level.

  5. GaAs quantum dots in a GaP nanowire photodetector

    NASA Astrophysics Data System (ADS)

    Kuyanov, P.; McNamee, S. A.; LaPierre, R. R.

    2018-03-01

    We report the structural, optical and electrical properties of GaAs quantum dots (QDs) embedded along GaP nanowires. The GaP nanowires contained p-i-n junctions with 15 consecutively grown GaAs QDs within the intrinsic region. The nanowires were grown by molecular beam epitaxy using the self-assisted vapor-liquid-solid process. The crystal structure of the NWs alternated between twinned ZB and WZ as the composition along the NW alternated between the GaP barriers and the GaAs QDs, respectively, leading to a polytypic structure with a periodic modulation of the NW sidewall facets. Photodetector devices containing QDs showed absorption beyond the bandgap of GaP in comparison to nanowires without QDs. Voltage-dependent measurements suggested a field emission process of carriers from the QDs.

  6. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance canmore » be explained using the deep trap model.« less

  7. 2D/0D graphene hybrids for visible-blind flexible UV photodetectors.

    PubMed

    Tetsuka, Hiroyuki

    2017-07-17

    Nitrogen-functionalized graphene quantum dots (NGQDs) are attractive building blocks for optoelectronic devices because of their exceptional tunable optical absorption and fluorescence properties. Here, we developed a high-performance flexible NGQD/graphene field-effect transistor (NGQD@GFET) hybrid ultraviolet (UV) photodetector, using dimethylamine-functionalized GQDs (NMe 2 -GQDs) with a large bandgap of ca. 3.3 eV. The NMe 2 -GQD@GFET photodetector exhibits high photoresponsivity and detectivity of ca. 1.5 × 10 4  A W -1 and ca. 5.5 × 10 11 Jones, respectively, in the deep-UV region as short as 255 nm without application of a backgate voltage. The feasibility of these flexible UV photodetectors for practical application in flame alarms is also demonstrated.

  8. Holmium hafnate: An emerging electronic device material

    NASA Astrophysics Data System (ADS)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  9. Analysis of future generation solar cells and materials

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Zhu, Lin; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Tampo, Hitoshi; Shibata, Hajime; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    The efficiency potentials of future generation solar cells such as wide bandgap chalcopyrite, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe), multi quantum well (MQW) and quantum dot (QD) solar cells are discussed on the basis of external radiative efficiency (ERE), open-circuit voltage loss, fill factor loss, and nonradiative recombination losses. CZTS and CZTSSe solar cells have efficiency potentials of more than 20% owing to the improvement in ERE from about 0.001 to 1%. MQW and QD cells have efficiency potentials of 24.8%, and 25.8% owing to the improvement in ERE from around 0.01 to 0.1%, and 1%, respectively. In this paper, the effects of nonradiative recombination on the properties of future generation solar cells are discussed.

  10. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukrittanon, Supanee; Liu, Ren; Pan, Janet L.

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in themore » GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.« less

  11. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    PubMed

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  12. Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping

    NASA Astrophysics Data System (ADS)

    Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.

    2017-08-01

    The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.

  13. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    NASA Astrophysics Data System (ADS)

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; Pan, Janet L.; Jungjohann, K. L.; Tu, Charles W.; Dayeh, Shadi A.

    2016-08-01

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  14. Hot LO-phonon limited electron transport in ZnO/MgZnO channels

    NASA Astrophysics Data System (ADS)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.

    2018-05-01

    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  15. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    DOE PAGES

    Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.; ...

    2016-08-07

    Here, we report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We also show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface andmore » in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. Finally, we present performance benefits of dilute nitride microwire solar cells and show that it can be achieved by further tuning of the epitaxial quality of the underlying materials.« less

  16. On electrode pinning and charge blocking layers in organic solar cells

    NASA Astrophysics Data System (ADS)

    Magen, Osnat; Tessler, Nir

    2017-05-01

    We use device modelling for studying the losses introduced by metallic electrodes in organic solar cells' device structure. We first discuss the inclusion of pinning at the integer charge transfer state in device models, with and without using the image charge potential. In the presence of disorder, the space charge introduced due to the image potential enhances the pinning by more than 0.2 eV. The explicit introduction of the image potential creates band-gap narrowing at the contact, thus affecting both dark leakage current and photo conversion efficiency. We find that there are two regimes in which the contacts may limit the performance. For low (moderate) barriers, the contacts introduce minority carrier recombination at the contacts that adds to the bulk recombination channels. Only for high barriers, the contacts directly limit the open circuit voltage and impose a value that is equal to the contact's energy difference. Examining the device structures with blocking layers, we find that these are mainly useful for the low to moderate contacts' barriers and that for the high barrier case, the enhancement of open circuit voltage may be accompanied by the introduction of serial resistance or S shape.

  17. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Kuiri, Manabendra; Chakraborty, Biswanath; Paul, Arup; Das, Subhadip; Sood, A. K.; Das, Anindya

    2016-02-01

    MoTe2 with a narrow band-gap of ˜1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (<1 mA W-1). In this work, we show that a few layer MoTe2-graphene vertical heterostructures have a much larger photo responsivity of ˜20 mA W-1. The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be ˜(0.5-1) × 105. The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating.

  18. Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2014-12-01

    In this paper we propose various types of two-dimensional (2D) square zigzag lattice structures, and we study their bandgaps and directional propagation of elastic waves. The band structures and the transmission spectra of the systems are calculated by using the finite element method. The effects of the geometry parameters of the 2D-zigzag lattices on the bandgaps are investigated and discussed. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. Multiple wide complete bandgaps are found in a wide porosity range owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the systems. The deformed displacement fields of the transient response of finite structures subjected to time-harmonic loads are presented to show the directional wave propagation. The research in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.

  19. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yan, Shi-Li; Xie, Zhi-Jian; Chen, Jian-Hao; Taniguchi, Takashi; Watanabe, Kenji

    2017-03-01

    The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10V/nm to 0.83V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronics, thermoelectric power generation and thermal imaging.

  20. Method and Apparatus for In-Situ Health Monitoring of Solar Cells in Space

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2012-01-01

    Some embodiments of the present invention describe an apparatus that includes an oscillator, a ramp generator, and an inverter. The apparatus includes an oscillator, an inverter, and a ramp generator. The oscillator is configured to generate a waveform comprising a low time and a high time. The inverter is configured to receive the waveform generated by the oscillator, and invert the waveform. The ramp generator configured to increase a gate control voltage of a transistor connected to a solar cell, and rapidly decrease the gate control voltage of the transistor. During the low time of the waveform, a measurement of a current and a voltage of the solar cell is performed as the current and voltage of the solar cell are transmitted through a first channel and to a second channel. During the high time of the waveform, a measurement of a current of a shorted cell and a voltage reference is performed as the current of the shorted cell and the voltage reference are transmitted through the first channel and the second channel.

  1. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  2. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W

    2014-05-27

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  3. Quantum spin Hall effect and topological phase transition in InN x Bi y Sb1-x-y /InSb quantum wells

    NASA Astrophysics Data System (ADS)

    Song, Zhigang; Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua; Zhang, Yan Yang; Shen Li, Shu

    2017-07-01

    Quantum spin Hall (QSH) effect, a fundamentally new quantum state of matter and topological phase transitions are characteristics of a kind of electronic material, popularly referred to as topological insulators (TIs). TIs are similar to ordinary insulator in terms of their bulk bandgap, but have gapless conducting edge-states that are topologically protected. These edge-states are facilitated by the time-reversal symmetry and they are robust against nonmagnetic impurity scattering. Recently, the quest for new materials exhibiting non-trivial topological state of matter has been of great research interest, as TIs find applications in new electronics and spintronics and quantum-computing devices. Here, we propose and demonstrate as a proof-of-concept that QSH effect and topological phase transitions can be realized in {{InN}}x{{Bi}}y{{Sb}}1-x-y/InSb semiconductor quantum wells (QWs). The simultaneous incorporation of nitrogen and bismuth in InSb is instrumental in lowering the bandgap, while inducing opposite kinds of strain to attain a near-lattice-matching conducive for lattice growth. Phase diagram for bandgap shows that as we increase the QW thickness, at a critical thickness, the electronic bandstructure switches from a normal to an inverted type. We confirm that such transition are topological phase transitions between a traditional insulator and a TI exhibiting QSH effect—by demonstrating the topologically protected edge-states using the bandstructure, edge-localized distribution of the wavefunctions and edge-state spin-momentum locking phenomenon, presence of non-zero conductance in spite of the Fermi energy lying in the bandgap window, crossover points of Landau levels in the zero-mode indicating topological band inversion in the absence of any magnetic field and presence of large Rashba spin-splitting, which is essential for spin-manipulation in TIs.

  4. Protected, back-illuminated silicon photocathodes or photoanodes for water splitting tandem stacks (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vesborg, Peter C.; Bae, Dowon; Seger, Brian J.; Chorkendorff, Ib; Hansen, Ole; Pedersen, Thomas; Mei, Bastian; Frydendal, Rasmus

    2016-10-01

    Silicon is a promising contender in the race for low-bandgap absorbers for use in a solar driven monolithic water splitting cell (PEC). However, given its role as the low-bandgap material the silicon must sit behind the corresponding high-bandgap material and as such, it will be exposed to (red) light from the dry back-side - not from the wet front side, where the electrochemistry takes place.[1,2] Depending on the configuration of the selective contacts (junctions) this may lead to compromises between high absorption and low recombination.[2,3] We discuss the tradeoffs and compare modeling results to measurements. Regardless of configuration, the wet surface of the silicon is prone to passivation or corrosion and must therefore be carefully protected in service in order to remain active. We demonstrate the use of TiO2 as an effective protection layer for both photoanodes and photocathodes in acid electrolyte [4] and NiCoOx for photoanodes in alkaline electrolyte. [3] References: [1]: B. Seger et alia, Energ. Environ. Sci., 7 (8), 2397-2413 (2014), DOI:10.1039/c4ee01335b [2]: D. Bae et alia, Energ. Environ. Sci., 8 (2), 650-660 (2015), DOI: 10.1039/c4ee03723e [3]: D. Bae et alia, submitted, (2016) [4]: B. Mei et alia, J. Phys. Chem. C., 119 (27), 15019-15027 (2015), DOI: 10.1021/acs.jpcc.5b04407

  5. A new mathematical model and control of a three-phase AC-DC voltage source converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasko, V.; Kaura, V.

    1997-01-01

    A new mathematical model of the power circuit of a three-phase voltage source converter (VSC) was developed in the stationary and synchronous reference frames. The mathematical model was then used to analyze and synthesize the voltage and current control loops for the VSC. Analytical expressions were derived for calculating the gains and time constants of the current and voltage regulators. The mathematical model was used to control a 140-kW regenerative VSC. The synchronous reference frame model was used to define feedforward signals in the current regulators to eliminate the cross coupling between the d and q phases. It allowed themore » reduction of the current control loop to first-order plants and improved their tracking capability. The bandwidths of the current and voltage-control loops were found to be approximately 20 and 60 times (respectively) smaller than the sampling frequency. All control algorithms were implemented in a digital-signal processor. All results of the analysis were experimentally verified.« less

  6. Ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires probed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Lu, Junpeng; Yang, Zongyin; Teng, Jinghua; Ke, Lin; Zhang, Xinhai; Tong, Limin; Sow, Chorng Haur

    2016-06-01

    Superiorly high photoconductivity is desirable in optoelectronic materials and devices for information transmission and processing. Achieving high photoconductivity via bandgap engineering in a bandgap-graded semiconductor nanowire has been proposed as a potential strategy. In this work, we report the ultrahigh photoconductivity of bandgap-graded CdSxSe1-x nanowires and its detailed analysis by means of ultrafast optical-pump terahertz-probe (OPTP) spectroscopy. The recombination rates and carrier mobility are quantitatively obtained via investigation of the transient carrier dynamics in the nanowires. By analysis of the terahertz (THz) spectra, we obtain an insight into the bandgap gradient and band alignment to carrier transport along the nanowires. The demonstration of the ultrahigh photoconductivity makes bandgap-graded CdSxSe1-x nanowires a promising candidate as building blocks for nanoscale electronic and photonic devices.

  7. Transparent contacts for stacked compound photovoltaic cells

    DOEpatents

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  8. Efficient CsF interlayer for high and low bandgap polymer solar cell

    NASA Astrophysics Data System (ADS)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  9. A comparative density functional study on electrical properties of layered penta-graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhi Gen, E-mail: yuzg@ihpc.a-star.edu.sg; Zhang, Yong-Wei, E-mail: zhangyw@ihpc.a-star.edu.sg

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN andmore » ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.« less

  10. Method of fabricating bifacial tandem solar cells

    DOEpatents

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  11. Bifacial tandem solar cells

    DOEpatents

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  12. Bandgap tuning and enhancement of seebeck coefficient in one dimensional GeSe

    NASA Astrophysics Data System (ADS)

    Kagdada, Hardik L.; Dabhi, Shweta D.; Jha, Prafulla K.

    2018-04-01

    The first principles based density functional theory is used for tuning the electronic bandgap and thermoelectric properties of bulk, two dimensional (2D) and one dimensional (1D) GeSe. There is an increase in the bandgap going from bulk to 1D with indirect to direct bandgap transition. There is a dramatic change in Seebeck coefficient (S) for GeSe going from bulk to 1D at 300 K. The electrical conductivity and electronic thermal conductivity are lower for 1D GeSe compared to the bulk GeSe due to larger bandgap in the case of 1D GeSe.

  13. Theoretical research on bandgap of H-saturated Ga1-xAlxN nanowires

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Wang, Honggang; Wang, Meishan

    2017-01-01

    Based on first-principles plane-wave ultra-soft pseudopotential method, bandgaps of Ga1-xAlxN nanowires with different diameters and different Al constituents are calculated. After the optimization of the model, the bandgaps are achieved. According to the results, the bandgap of Ga1-xAlxN decreases with increasing diameter and finally, closed to that of the bulk. In addition, with increasing Al constituent, the bandgaps of Ga1-xAlxN nanowires increase. However, the amount of the increase is lower than that of the bulk Ga1-xAlxN with the increase of Al constituent.

  14. Ultrawide bandgap pentamode metamaterials with an asymmetric double-cone outside profile

    NASA Astrophysics Data System (ADS)

    Chu, Yangyang; Li, Yucheng; Cai, Chengxin; Liu, Guangshuan; Wang, Zhaohong; Xu, Zhuo

    2018-03-01

    The band-gap characteristic is an important feature of acoustic metamaterials, which has important theoretical and practical significance in acoustic devices. Pentamode metamaterials (PMs) with phonon band-gap characteristics based on an asymmetric double-cone outside profile are presented and studied in this paper. The phonon band structures of these PMs are calculated by using the finite element method. In addition to the single-mode band-gaps, the complete 3D band-gaps are also obtained by changing the outside profile of the double-cone. Moreover, by adjusting the outside profile and the diameter of the double-cone to reduce the symmetry of the structure, the complete 3D band-gap can be widened. Further parametric analysis is presented to investigate the effect of geometrical parameters on the phonon band-gap property, the numerical simulations show that the maximum relative bandwidth is expanded by 15.14 times through reducing the symmetry of the structure. This study provides a possible way for PMs to control elastic wave propagation in the field of depressing vibration and noise, acoustic filtering and acoustic cloaking.

  15. Bandgaps and directional properties of two-dimensional square beam-like zigzag lattices

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng

    2014-12-01

    In this paper we propose four kinds of two-dimensional square beam-like zigzag lattice structures and study their bandgaps and directional propagation of elastic waves. The band structures are calculated by using the finite element method. Both the in-plane and out-of-plane waves are investigated simultaneously via the three-dimensional Euler beam elements. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. The effects of the geometry parameters of the xy- and z-zigzag lattices on the bandgaps are investigated and discussed. Multiple complete bandgaps are found owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the periodic systems. The deformed displacement fields of the harmonic responses of a finite lattice structure subjected to harmonic loads at different positions are illustrated to show the directional wave propagation. An extension of the proposed concept to the hexagonal lattices is also presented. The research work in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.

  16. Bandgap Inhomogeneity of a PbSe Quantum Dot Ensemble from Two-Dimensional Spectroscopy and Comparison to Size Inhomogeneity from Electron Microscopy

    DOE PAGES

    Park, Samuel D.; Baranov, Dmitry; Ryu, Jisu; ...

    2017-01-03

    Femtosecond two-dimensional Fourier transform spectroscopy is used to determine the static bandgap inhomogeneity of a colloidal quantum dot ensemble. The excited states of quantum dots absorb light, so their absorptive two-dimensional (2D) spectra will typically have positive and negative peaks. We show that the absorption bandgap inhomogeneity is robustly determined by the slope of the nodal line separating positive and negative peaks in the 2D spectrum around the bandgap transition; this nodal line slope is independent of excited state parameters not known from the absorption and emission spectra. The absorption bandgap inhomogeneity is compared to a size and shape distributionmore » determined by electron microscopy. The electron microscopy images are analyzed using new 2D histograms that correlate major and minor image projections to reveal elongated nanocrystals, a conclusion supported by grazing incidence small-angle X-ray scattering and high-resolution transmission electron microscopy. Lastly, the absorption bandgap inhomogeneity quantitatively agrees with the bandgap variations calculated from the size and shape distribution, placing upper bounds on any surface contributions.« less

  17. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    PubMed

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  18. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    PubMed Central

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  19. Review of betavoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Olsen, Larry C.

    1993-05-01

    Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.

  20. Review of betavoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1993-01-01

    Betavoltaic energy conversion refers to the generation of power by coupling a beta source to a semiconductor junction device. The theory of betavoltaic energy conversion and some past studies of the subject are briefly reviewed. Calculations of limiting efficiencies for semiconductor cells versus bandgap are presented along with specific studies for Pm-147 and Ni-63 fueled devices. The approach used for fabricating Pm-147 fueled batteries by the author in the early 1970's is reviewed. Finally, the potential performance of advanced betavoltaic power sources is considered.

  1. Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications.

    PubMed

    Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo; Kamiya, Toshio; Padture, Nitin P

    2018-02-16

    The bandgap is the most important physical property that determines the potential of semiconductors for photovoltaic (PV) applications. This Minireview discusses the parameters affecting the bandgap of perovskite semiconductors that are being widely studied for PV applications, and the recent progress in the optimization of the bandgaps of these materials. Perspectives are also provided for guiding future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bandgap profiling in CIGS solar cells via valence electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Deitz, Julia I.; Karki, Shankar; Marsillac, Sylvain X.; Grassman, Tyler J.; McComb, David W.

    2018-03-01

    A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous for relatively narrow bandgap materials and/or STEM systems with modest resolution capabilities (i.e., >100 meV), compromises absolute accuracy to provide a straightforward route for the correlation of local electronic structure trends with nanoscale chemical and physical structure/microstructure within semiconductor materials and devices.

  3. Use of chemical-mechanical polishing for fabricating photonic bandgap structures

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Hetherington, Dale L.; Smith, Bradley K.

    1999-01-01

    A method is disclosed for fabricating a two- or three-dimensional photonic bandgap structure (also termed a photonic crystal, photonic lattice, or photonic dielectric structure). The method uses microelectronic integrated circuit (IC) processes to fabricate the photonic bandgap structure directly upon a silicon substrate. One or more layers of arrayed elements used to form the structure are deposited and patterned, with chemical-mechanical polishing being used to planarize each layer for uniformity and a precise vertical tolerancing of the layer. The use of chemical-mechanical planarization allows the photonic bandgap structure to be formed over a large area with a layer uniformity of about two-percent. Air-gap photonic bandgap structures can also be formed by removing a spacer material separating the arrayed elements by selective etching. The method is useful for fabricating photonic bandgap structures including Fabry-Perot resonators and optical filters for use at wavelengths in the range of about 0.2-20 .mu.m.

  4. State reference design and saturated control of doubly-fed induction generators under voltage dips

    NASA Astrophysics Data System (ADS)

    Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad

    2017-04-01

    In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.

  5. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

  6. Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers

    NASA Astrophysics Data System (ADS)

    Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.

    Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.

  7. Quantitative analysis of trap states through the behavior of the sulfur ions in MoS2 FETs following high vacuum annealing

    NASA Astrophysics Data System (ADS)

    Bae, Hagyoul; Jun, Sungwoo; Kim, Choong-Ki; Ju, Byeong-Kwon; Choi, Yang-Kyu

    2018-03-01

    Few-layer molybdenum disulfide (MoS2) has attracted a great deal of attention as a semiconductor material for electronic and optoelectronic devices. However, the presence of localized states inside the bandgap is a critical issue that must be addressed to improve the applicability of MoS2 technology. In this work, we investigated the density of states (DOS: g(E)) inside the bandgap of MoS2 FET by using a current-voltage (I-V) analysis technique with the aid of high vacuum annealing (HVA). The g(E) can be obtained by combining the trap density and surface potential (ψ S) extracted from a consistent subthreshold current (I D-sub). The electrical performance of MoS2 FETs is strongly dependent on the inherent defects, which are closely related to the g(E) in the MoS2 active layer. By applying the proposed technique to the MoS2 FETs, we were able to successfully characterize the g(E) after stabilization of the traps by the HVA, which reduces the hysteresis distorting the intrinsic g(E). Also, the change of sulfur ions in MoS2 film before and after the HVA treatment is investigated directly by Auger electron spectroscopy analysis. The proposed technique provides a new methodology for active channel engineering of 2D channel based FETs such as MoS2, MoTe2, WSe2, and WS2.

  8. Higher Molecular Weight Leads to Improved Photoresponsivity Charge Transport and Interfacial Ordering in a Narrow Bandgap Semiconducting Polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Tong; S Cho; J Rogers

    2011-12-31

    Increasing the molecular weight of the low-bandgap semiconducting copolymer, poly[(4,4-didoecyldithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl], Si-PDTBT, from 9 kDa to 38 kDa improves both photoresponsivity and charge transport properties dramatically. The photocurrent measured under steady state conditions is 20 times larger in the higher molecular weight polymer (HM{sub n} Si-PDTBT). Different decays of polarization memory in transient photoinduced spectroscopy measurements are consistent with more mobile photoexcitations in HM{sub n} Si-PDTBT relative to the lower molecular weight counterpart (LM{sub n} Si-PDTBT). Analysis of the current-voltage characteristics of field effect transistors reveals an increase in the mobility by a factor of 700 for HM{sub n} Si-PDTBT. Nearmore » edge X-ray absorption fine structure (NEXAFS) spectroscopy and grazing incidence small angle X-ray scattering (GISAXS) measurements demonstrate that LM{sub n} Si-PDTBT forms a disordered morphology throughout the depth of the film, whereas HM{sub n} Si-PDTBT exhibits pronounced {pi}-{pi} stacking in an edge-on configuration near the substrate interface. Increased interchain overlap between polymers in the edge-on configuration in HM{sub n} Si-PDTBT results in the higher carrier mobility. The improved optical response, transport mobility, and interfacial ordering highlight the subtle role that the degree of polymerization plays on the optoelectronic properties of conjugated polymer based organic semiconductors.« less

  9. Study of electronic characteristics of heterojunction with intrinsic thin-layer devices and defect density profile of nanocrystalline silicon germanium devices

    NASA Astrophysics Data System (ADS)

    Mulder, Watson

    Heterojunction with Intrinsic Thin-layer (HIT) solar cells are an important photovoltaic technology, recently reaching record power conversion efficiencies. HIT cells hold advantages over the conventional crystalline Si solar cells, such as their fabrication at lower temperatures and their shorter fabrication time. It is important to understand the electronic characteristics and transport properties of HIT cells to continue to improve their efficiencies. The fundamental measurements of a HIT solar cell with an innovative n+/p/p+ structure are presented. We also report on a series of these HIT cells fabricated on wafers with different doping concentrations, observing the relationship between doping concentration and characteristics such as open-circuit voltage and diffusion length. Nanocrystalline Silicon-Germanium (nc-SiGe) is a useful material for photovoltaic devices and photodetectors. The material features good absorption extending to the infrared region even in thin layers. Its bandgap can be adjusted between that of Si (˜1.1 eV) and Ge (˜0.7 eV) by varying the alloy composition ratio during deposition. However, there has been very little previous work to measure and understand the defect density spectrum of nc-SiGe. Defects are responsible for controlling the recombination and thus the performance of solar cell devices. Capacitance-Frequency measurements at various temperatures are used in order to estimate the trap density profile within the bandgap of nc-SiGe.

  10. Fine-Tuning the Energy Levels of a Nonfullerene Small-Molecule Acceptor to Achieve a High Short-Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells.

    PubMed

    Kan, Bin; Zhang, Jiangbin; Liu, Feng; Wan, Xiangjian; Li, Chenxi; Ke, Xin; Wang, Yunchuang; Feng, Huanran; Zhang, Yamin; Long, Guankui; Friend, Richard H; Bakulin, Artem A; Chen, Yongsheng

    2018-01-01

    Organic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward near-IR region, down to ≈860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the V oc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (≈400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T:NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device.

    PubMed

    Groenendijk, Dirk J; Buscema, Michele; Steele, Gary A; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2014-10-08

    Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.

  12. Hybrid density functional study of bandgaps for 27 new proposed half-Heusler semiconductors

    NASA Astrophysics Data System (ADS)

    Shi, Fangyi; Si, M. S.; Xie, Jiafeng; Mi, Kui; Xiao, Chuntao; Luo, Qiangjun

    2017-12-01

    Recently, 27 new half-Heusler compounds XYZ (X = Co, Rh, Fe, Ru, Ni; Y = Sc, Ti, V; Z = P, As, Sb, Si, Ge, Sn, Al, Ga, In) with 18 valence electrons are proposed and their bandgaps span a wide range of 0.10-1.39 eV, which have a great potential of applications in varied areas. Note that the bandgaps are predicted on the gradient-corrected Perdew-Burke-Ernzerhof functional, which underestimates the magnitude of bandgap. To obtain the accurate bandgaps, we recalculate them based on the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. Our results show that the nonlocal correction from the HSE06 functional mainly acts on the two lowest conduction bands. The variation in energy separation between these two bands dominates the relative increment of bandgap. More importantly, the band ordering is distinguished in the presence of HSE06 functional, where the dz2 orbital exhibits. When the lattice constant varies, such a band ordering can be inverted, similar to the case of topological insulators. In addition, we find an abnormal behavior of the bandgap related to the Pauling electronegativity difference between the X- and Z-sites, which arises from the delocalization of charge on the Y-site. We expect that our work can provide guidance to the study of bandgap based on the hybrid density functional theory in the half-Heusler semiconductors.

  13. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    PubMed

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOEpatents

    Wood, Charles B.

    1992-01-01

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  15. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOEpatents

    Wood, C.B.

    1992-12-15

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

  16. Tunable bandgaps in a deployable metamaterial

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. Amin

    2018-03-01

    In this manuscript, we envision deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict profound changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase significantly. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, significant increase in bandwidth of the odd-numbered bandgaps occurs even at small fold angles- the bandwidth for the first and third bandgaps effectively double in size (increase by 100%) at Ψ = 20 deg relative to those at Ψ = 0. This has important ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is an important parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have important ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide important clues about the mechanical parameters of the structure.

  17. Tunable bandgaps in a deployable metamaterial

    NASA Astrophysics Data System (ADS)

    Nanda, Aditya; Karami, M. A.

    2018-06-01

    In this manuscript, we investigate deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict notable changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, non-trivial increases in bandwidth of the odd-numbered bandgaps occurs even at small fold angles-the bandwidth for the first and third bandgaps effectively double in size (increase by 100 %) at Ψ = 20 deg relative to those at Ψ = 0. This could have ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is a pertinent parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can have ramifications for the design of foldable structures. As an alternative to impedance-based structural health monitoring, these insights can aid in health monitoring of deployable structures by tracking the bandwidth of bandgaps which can provide clues about the mechanical parameters of the structure.

  18. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  19. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    DOEpatents

    Wanlass, Mark W; Carapella, Jeffrey J; Steiner, Myles A

    2016-11-01

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  20. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    DOEpatents

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  1. Ternary bulk heterojunction for wide spectral range organic photodetectors

    NASA Astrophysics Data System (ADS)

    Shin, Hojung; Kim, Jaehoon; Lee, Changhee

    2017-08-01

    Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.

  2. Fabrication of PbS quantum dots and their applications in solar cells based on ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-05-01

    An efficient, inexpensive and large area scalable approach based on sol-gel technique is presented to fabricate quantum dots (QDs) of PbS. Size of the QDs is tuned by the varying the bath concentrations in the range of 50-200 mM. Transmission electron microscopy (TEM) studies confirm the growth of spherically shaped ˜5.6 nm QDs at 50 mM bath concentration. The optical bandgap of the QDs is found to be ˜0.9 eV and corresponds to the size obtained from TEM studies. ZnO/PbS solar cells are fabricated by sensitizing the ZnO nanorods with PbS QDs. The fabricated solar cells demonstrate the highest open circuit voltage ˜200 mV and short circuit current density ˜0.81 µA/cm2.

  3. Insertion of NiO electron blocking layer in fabrication of GaN-organic heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Junmei; Guo, Wei; Jiang, Jie'an; Gao, Pingqi; Bo, Baoxue; Ye, Jichun

    2018-03-01

    We report the fabrication of a NiO thin film on top of an n-type GaN epitaxial layer. The electron-blocking capability of NiO in a hybrid organic/inorganic heterostructure consisting of n-GaN/NiO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is discussed. Surface morphology, crystallography orientation, bandgap, and fermi level information of NiO films were investigated in detail. A rectifying property consistent with the proposed band diagram was observed in the current-voltage measurement. Theoretical analysis also demonstrated the effective electron blocking due to band alignment and a more balanced carrier distribution inside the GaN region with NiO inserted into the n-GaN/PEDOT:PSS heterostructure. This work provides a promising approach to the fabrication of high-efficiency hybrid optoelectronic devices.

  4. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less

  5. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  6. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    PubMed

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  7. Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)

    2015-01-01

    A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.

  8. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  9. Metal detector system

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1970-01-01

    Signal voltage resulting from the disturbance of an electromagnetic field within the volume of a sensitive area is compared with a reference ac voltage for polarity information, which identifies the material. System output amplitude and polarity indicate approximate size and type of metal, respectively.

  10. Power conversion apparatus and method

    DOEpatents

    Su, Gui-Jia [Knoxville, TN

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  11. Polaron effect on the bandgap modulation in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Li, Zhi-Qing; Wang, Zi-Wu

    2017-12-01

    We theoretically study the bandgap modulation in monolayer transition metal dichalcogenides (TMDs) originating from the carrier-optical phonon coupling in the Fröhlich polaron model, in which both of the surface optical phonons modes induced by the polar substrate and the intrinsic longitudinal optical phonons modes have been taken into account. We find that the modulated magnitude of the bandgap is in the range of 100-500 meV by altering different polar substrates and tuning the internal distance between TMDs and polar substrate. The large tunability of the bandgap not only provides a possible explanation for the experimental measurements regarding the dielectric environmental sensitivity of the bandgap, but also holds promise for potential applications in optoelectronics and photovoltaics.

  12. Bandgap tuning in highly c-axis oriented Zn1-xMgxO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Parmod; Malik, Hitendra K.; Ghosh, Anima; Thangavel, R.; Asokan, K.

    2013-06-01

    We propose Mg doping in zinc oxide (ZnO) films for realizing wider optical bandgap in highly c-axis oriented Zn1-xMgxO (0 ≤ x ≤ 0.3) thin films. A remarkable enhancement of 25% in the bandgap by 30% Mg doping was achieved. The bandgap was tuned between 3.25 eV (ZnO) and 4.06 eV (Zn0.7Mg0.3O), which was further confirmed by density functional theory based wien2k simulation employing a combined generalized gradient approximation with scissor corrections. The change of stress and crystallite size in these films were found to be the causes for the observed blueshift in the bandgap.

  13. Research on bandgaps in two-dimensional phononic crystal with two resonators.

    PubMed

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie

    2015-02-01

    In this paper, the bandgap properties of a two-dimensional phononic crystal with the two resonators is studied and embedded in a homogenous matrix. The resonators are not connected with the matrix but linked with connectors directly. The dispersion relationship, transmission spectra, and displacement fields of the eigenmodes of this phononic crystal are studied with finite-element method. In contrast to the phononic crystals with one resonators and hollow structure, the proposed structures with two resonators can open bandgaps at lower frequencies. This is a very interesting and useful phenomenon. Results show that, the opening of the bandgaps is because of the local resonance and the scattering interaction between two resonators and matrix. An equivalent spring-pendulum model can be developed in order to evaluate the frequencies of the bandgap edge. The study in this paper is beneficial to the design of opening and tuning bandgaps in phononic crystals and isolators in low-frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  15. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  16. The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.

    PubMed

    Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan

    2018-04-19

    Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

  17. Quantum Transport and Non-Hermiticity on Flat-Band Lattices

    NASA Astrophysics Data System (ADS)

    Park, Hee Chul; Ryu, Jung-Wan; Myoung, Nojoon

    2018-04-01

    We investigate quantum transport in a flat-band lattice induced in a twisted cross-stitch lattice with Hermitian or non-Hermitian potentials, with a combination of parity and time-reversal symmetry invariant. In the given system, the transmission probability demonstrates a resonant behavior on the real part of the energy bands. Both of the potentials break the parity symmetry, which lifts the degeneracy of the flat and dispersive bands. In addition, non-Hermiticity conserving PT-symmetry induces a transition between the unbroken and broken PT-symmetric phases through exceptional points in momentum space. Characteristics of non-Hermitian and Hermitian bandgaps are distinguishable: The non-Hermitian bandgap is induced by separation toward complex energy, while the Hermitian bandgap is caused by the expelling of available states into real energy. Deviation of the two bandgaps follows as a function of the quartic power of the induced potential. It is notable that non-Hermiticity plays an important role in the mechanism of generating a bandgap distinguishable from a Hermitian bandgap.

  18. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.

    PubMed

    Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling

    2016-06-28

    Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.

  19. Comparison of the Josephson Voltage Standards of the DMDM and the BIPM (part of the ongoing BIPM key comparison BIPM.EM-K10.b)

    NASA Astrophysics Data System (ADS)

    Solve, S.; Chayramy, R.; Stock, M.; Pantelic-Babic, J.; Sofranac, Z.; Cincar Vujovic, T.

    2016-01-01

    A comparison of the Josephson array voltage standards of the Bureau International des Poids et Mesures (BIPM) and the Directorate of Measures and Precious Metals (DMDM), Belgrade, Serbia, was carried out in June 2015 at the level of 10 V. For this exercise, options A and B of the BIPM.EM-K10.b comparison protocol were applied. Option B required the BIPM to provide a reference voltage for measurement by the DMDM using its Josephson standard with its own measuring device. Option A required the DMDM to provide a reference voltage with its Josephson voltage standard for measurement by the BIPM using an analogue nanovoltmeter and associated measurement loop. Since no sufficiently stable voltage could be achieved in this configuration, a digital detector was used. In all cases the BIPM array was kept floating from ground. The final results were in good agreement within the combined relative standard uncertainty of 1.5 parts in 1010 for the nominal voltage of 10 V. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi

    2016-05-01

    Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

  1. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh

    2017-12-01

    Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.

  2. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjeev K.; Singh, Satendra Pal; Kim, Deuk Young

    2018-02-01

    The heterojunction diode of yttrium-doped ZnO (YZO) thin films was fabricated on p-Si(100) substrates by sol-gel method. The post-annealing process was performed at 600 °C in vacuum for a short time (3 min) to prevent inter-diffusion of Zn, Y, and Si atoms. X-ray diffraction (XRD) pattern of as-grown and annealed (600 °C in vacuum) films showed the preferred orientation along the c-axis (002) regardless of dopant concentrations. The uniform surface microstructure and the absence of other metal/oxide peaks in XRD pattern confirmed the excellence of films. The increasing bandgap and carrier concentration of YZO thin films were interpreted by the BM shift, that is, the Fermi level moves towards the conduction band edge. The current-voltage characteristics of the heterojunction diode, In/n-ZnO/p-Si/Al, showed a rectification behavior. The turn-on voltage and ideality factor of n-ZnO/p-Si and n-YZO/p-Si were observed to be 3.47 V, 2.61 V, and 1.97, 1.89, respectively. Y-dopant in ZnO thin films provided more donor electrons caused the shifting of Fermi-energy level towards the conduction band and strengthen the interest for heterojunction diodes.

  3. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  4. Wide-Bandgap MOSFET Research with Virginia Tech Graduate Students |

    Science.gov Websites

    Advanced Manufacturing Research | NREL Wide Bandgap MOSFET Research with Virginia Tech Wide -Bandgap MOSFET Research with Virginia Tech Graduate Students Along with graduate student fellows from Virginia Tech, NREL is researching aspects related to the reliability and prognostics of power electronic

  5. Acoustic frequency filter based on anisotropic topological phononic crystals.

    PubMed

    Chen, Ze-Guo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-11-08

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  6. Photovoltaic measurement of bandgap narrowing in moderately doped silicon

    NASA Astrophysics Data System (ADS)

    del Alamo, Jesus A.; Swanson, Richard M.; Lietoila, Arto

    1983-05-01

    Solar cells have been fabricated on n-type and p-type moderately doped Si. The shrinkage of the Si bandgap has been obtained by measuring the internal quantum efficiency in the near infrared spectrum ( hv = 1.00-1.25 eV) around the fundamental absorption edge. The results agree with previous optical measurements of bandgap narrowing in Si. It is postulated that this optically-determined bandgap narrowing is the rigid shrinkage of the forbidden gap due to many-body effects. The "device bandgap narrowing" obtained by measuring the pn product in bipolar devices leads to discrepant values because (i) the density of states in the conduction and valence band is modified due to the potential fluctuations originated in the variations in local impurity density, and (ii) the influence of Fermi-Dirac statistics.

  7. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Justin; Chen, Changxin; Gong, Ming

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edgesmore » throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for bandgap engineering of GNRs towards high on/off ratio and high on-state current GNR devices. First, we will develop a novel approach for the fabrication of high density GNR arrays (pitch <50 nm, tunable down to 30nm) with pre-defined edge orientation and smooth edges using a free standing nano-mask derived from diblock copolymer assembly for patterning of graphene sheets. Anisotropic graphene edges will be developed to afford smooth edges along crystallographic lattice directions. Then, we will fabricate GNR devices on flexible substrates and apply uniaxial strain to engineer the bandgap of the GNRs. The bandgap of GNRs could be increased by up to 50% under uniaxial strain according to theoretical calculations and will be investigated through electrical transport measurements. Micro-Raman spectroscopy of single GNRs and parallel arrays will be used to probe and quantify the uniaxial strain. Electrical measurements will be used to probe the on/off ratio of GNR FET devices and confirm the bandgap tuning effects. Finally, we plan to use dense parallel arrays of GNRs to demonstrate strained GNR field effect transistors with high on/off ratios and high on-state current, and compare strained GNR FETs with carbon nanotube and Si based field effect transistor (FET) devices.« less

  8. An improved AVC strategy applied in distributed wind power system

    NASA Astrophysics Data System (ADS)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  9. 46 CFR 111.12-7 - Voltage regulation and parallel operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-7 Voltage regulation and... reference; see 46 CFR 110.10-1); (b) For DC systems: section 4-8-3/3.13.3(c) of the ABS Steel Vessel Rules...

  10. Electrochemically controlled charging circuit for storage batteries

    DOEpatents

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  11. Performance of the Micropower Voltage Reference ADR3430 Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Electronic systems designed for use in space exploration systems are expected to be exposed to harsh temperatures. For example, operation at cryogenic temperatures is anticipated in space missions such as polar craters of the moon (-223 C), James Webb Space Telescope (-236 C), Mars (-140 C), Europa (-223 C), Titan (-178 C), and other deep space probes away from the sun. Similarly, rovers and landers on the lunar surface, and deep space probes intended for the exploration of Venus are expected to encounter high temperature extremes. Electronics capable of operation under extreme temperatures would not only meet the requirements of future spacebased systems, but would also contribute to enhancing efficiency and improving reliability of these systems through the elimination of the thermal control elements that present electronics need for proper operation under the harsh environment of space. In this work, the performance of a micropower, high accuracy voltage reference was evaluated over a wide temperature range. The Analog Devices ADR3430 chip uses a patented voltage reference architecture to achieve high accuracy, low temperature coefficient, and low noise in a CMOS process [1]. The device combines two voltages of opposite temperature coefficients to create an output voltage that is almost independent of ambient temperature. It is rated for the industrial temperature range of -40 C to +125 C, and is ideal for use in low power precision data acquisition systems and in battery-powered devices. Table 1 shows some of the manufacturer s device specifications.

  12. Comparison of the Josephson Voltage Standards of the NIMT and the BIPM (part of the ongoing BIPM key comparison BIPM.EM-K10.b)

    NASA Astrophysics Data System (ADS)

    Solve, S.; Chayramy, R.; Stock, M.; Pimsut, S.; Rujirat, N.

    2016-01-01

    A comparison of the Josephson array voltage standards of the Bureau International des Poids et Mesures (BIPM) and the National Institute of Metrology - (Thailand), NIMT, was carried out in November 2015 at the level of 10 V. For this exercise, options A and B of the BIPM.EM-K10.b comparison protocol were applied. Option B required the BIPM to provide a reference voltage for measurement by the NIMT using its Josephson standard with its own measuring device. Option A required the NIMT to provide a reference voltage with its Josephson voltage standard for measurement by the BIPM using an analogue nanovoltmeter and associated measurement loop. In all cases the BIPM array was kept floating from ground. The final results were in good agreement within the combined relative standard uncertainty of 2.6 parts in 1010 for the nominal voltage of 10 V. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.

    PubMed

    Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J

    2017-09-01

    Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto-electronic (infrared detectors, lasers, and optical communications) technologies. Low bandgaps and larger fluences employed in TPV cells result in very high current densities which make it difficult to collect the current effectively. Techniques for laser and mechanical scribing, integral interconnection, and multi-junction tandem structures which have been fairly well developed for thin-film PV solar cells could be further refined for enhancing the voltages from TPV modules. Thin-film TPV cells may be deposited on metals or back-surface reflectors. Spectral control elements such as indium-tin oxide or tin oxide may be deposited directly on the TPV convertor. It would be possible to reduce the cost of TPV technologies based on single-crystal materials being developed at present to the range of US 2-5 per watt so as to be competitive in small to medium size commercial applications. However, a further cost reduction to the range of US ¢ 35- 1 per watt to reach the more competitive large-scale residential, consumer, and hybrid-electric car markets would be possible only with the polycrystalline-thin film TPV cells.

  15. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less

  16. Hearing aid malfunction detection system

    NASA Technical Reports Server (NTRS)

    Kessinger, R. L. (Inventor)

    1977-01-01

    A malfunction detection system for detecting malfunctions in electrical signal processing circuits is disclosed. Malfunctions of a hearing aid in the form of frequency distortion and/or inadequate amplification by the hearing aid amplifier, as well as weakening of the hearing aid power supply are detectable. A test signal is generated and a timed switching circuit periodically applies the test signal to the input of the hearing aid amplifier in place of the input signal from the microphone. The resulting amplifier output is compared with the input test signal used as a reference signal. The hearing aid battery voltage is also periodically compared to a reference voltage. Deviations from the references beyond preset limits cause a warning system to operate.

  17. Fiber optic inclination detector system having a weighted sphere with reference points

    DOEpatents

    Cwalinski, Jeffrey P.

    1995-01-01

    A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.

  18. KEY COMPARISON Bilateral comparison of 1.018 V and 10 V standards between the NSAI-NML (Ireland) and the BIPM, March to April 2010 (part of the ongoing BIPM key comparison BIPM.EM-K11.a and b)

    NASA Astrophysics Data System (ADS)

    Power, O.; Solve, S.; Chayramy, R.; Stock, M.

    2010-01-01

    As a part of the ongoing BIPM key comparisons BIPM.EM-K11.a and b, a comparison of the 1.018 V and 10 V voltage reference standards of the BIPM and of the National Standards Authority of Ireland-National Metrology Laboratory (NSAI-NML), Dublin, Ireland, was carried out from March to April 2010. Two BIPM Zener diode-based travelling standards were transported by freight to NSAI-NML. At NSAI-NML, the reference standard for DC voltage is maintained at the 10 V level by means of a group of characterized Zener diode-based electronic voltage standards. The output EMF of each travelling standard, at the 10 V output terminals, was measured by direct comparison with the group standard. Measurements of the output EMF of the travelling standards at the 1.018 V output terminals were made using a potentiometer, standardized against the local 10 V reference standard. At the BIPM, the travelling standards were calibrated at both voltages before and after the measurements at NSAI-NML, using the BIPM Josephson Voltage Standard. Results of all measurements were corrected for the dependence of the output voltages on internal temperature and ambient pressure. The comparison results show that the voltage standards maintained by NSAI-NML and the BIPM were equivalent, within their stated expanded uncertainties, on the mean date of the comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  19. Conservation voltage regulation (CVR) applied to energy savings by voltage-adjusting equipment through AMI

    NASA Astrophysics Data System (ADS)

    Lan, B.-R.; Chang, C.-A.; Huang, P.-Y.; Kuo, C.-H.; Ye, Z.-J.; Shen, B.-C.; Chen, B.-K.

    2017-11-01

    Conservation voltage reduction (CVR) includes peak demand reduction, energy conservation, carbon emission reduction, and electricity bill reduction. This paper analyzes the energy-reduction of Siwei Feeders with applying CVR, which are situated in Penghu region and equipped with smart meters. Furthermore, the applicable voltage reduction range for the feeders will be explored. This study will also investigate how the CVR effect and energy conservation are improved with the voltage control devices integrated. The results of this study can serve as a reference for the Taiwan Power Company to promote and implement voltage reduction and energy conservation techniques. This study is expected to enhance the energy-reduction performance of the Penghu Low Carbon Island Project.

  20. Design of an Auto-zeroed, Differential, Organic Thin-film Field-effect Transistor Amplifier for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Binkley, David M.; Verma, Nikhil; Crawford, Robert L.; Brandon, Erik; Jackson, Thomas N.

    2004-01-01

    Organic strain gauge and other sensors require high-gain, precision dc amplification to process their low-level output signals. Ideally, amplifiers would be fabricated using organic thin-film field-effect transistors (OTFT's) adjacent to the sensors. However, OTFT amplifiers exhibit low gain and high input-referred dc offsets that must be effectively managed. This paper presents a four-stage, cascaded differential OTFT amplifier utilizing switched capacitor auto-zeroing. Each stage provides a nominal voltage gain of four through a differential pair driving low-impedance active loads, which provide common-mode output voltage control. p-type pentacence OTFT's are used for the amplifier devices and auto-zero switches. Simulations indicate the amplifier provides a nominal voltage gain of 280 V/V and effectively amplifies a 1-mV dc signal in the presence of 500-mV amplifier input-referred dc offset voltages. Future work could include the addition of digital gain calibration and offset correction of residual offsets associated with charge injection imbalance in the differential circuits.

  1. Single phase inverter for a three phase power generation and distribution system

    NASA Technical Reports Server (NTRS)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  2. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI.

    PubMed

    Chowdhury, Muhammad E H; Mullinger, Karen J; Glover, Paul; Bowtell, Richard

    2014-01-01

    Large artefacts compromise EEG data quality during simultaneous fMRI. These artefact voltages pose heavy demands on the bandwidth and dynamic range of EEG amplifiers and mean that even small fractional variations in the artefact voltages give rise to significant residual artefacts after average artefact subtraction. Any intrinsic reduction in the magnitude of the artefacts would be highly advantageous, allowing data with a higher bandwidth to be acquired without amplifier saturation, as well as reducing the residual artefacts that can easily swamp signals from brain activity measured using current methods. Since these problems currently limit the utility of simultaneous EEG-fMRI, new approaches for reducing the magnitude and variability of the artefacts are required. One such approach is the use of an EEG cap that incorporates electrodes embedded in a reference layer that has similar conductivity to tissue and is electrically isolated from the scalp. With this arrangement, the artefact voltages produced on the reference layer leads by time-varying field gradients, cardiac pulsation and subject movement are similar to those induced in the scalp leads, but neuronal signals are not detected in the reference layer. Taking the difference of the voltages in the reference and scalp channels will therefore reduce the artefacts, without affecting sensitivity to neuronal signals. Here, we test this approach by using a simple experimental realisation of the reference layer to investigate the artefacts induced on the leads attached to the reference layer and scalp and to evaluate the degree of artefact attenuation that can be achieved via reference layer artefact subtraction (RLAS). Through a series of experiments on phantoms and human subjects, we show that RLAS significantly reduces the gradient (GA), pulse (PA) and motion (MA) artefacts, while allowing accurate recording of neuronal signals. The results indicate that RLAS generally outperforms AAS when motion is present in the removal of the GA and PA, while the combination of AAS and RLAS always produces higher artefact attenuation than AAS. Additionally, we demonstrate that RLAS greatly attenuates the unpredictable and highly variable MAs that are very hard to remove using post-processing methods. © 2013. Published by Elsevier Inc. All rights reserved.

  3. Modification of the fault logic circuit of a high-energy linear accelerator to accommodate selectively coded, large-field wedges.

    PubMed

    Miller, R W; van de Geijn, J

    1987-01-01

    A modification to the fault logic circuit that controls the collimator (COLL) fault is described. This modification permits the use of large-field wedges by adding an additional input into the reference voltage that determines the fault condition. The resistor controlling the amount of additional voltage is carried on board each wedge, within the wedge plug. This allows each wedge to determine its own, individual field size limit. Additionally, if no coding resistor is provided, the factory-supplied reference voltage is used, which sets the maximum allowable field size to 15 cm. This permits the use of factory-supplied wedges in conjunction with selected, large-field wedges, allowing proper sensing of the field size maximum in all conditions.

  4. Low speed phaselock speed control system. [for brushless dc motor

    NASA Technical Reports Server (NTRS)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  5. ZERO SUPPRESSION FOR RECORDERS

    DOEpatents

    Fort, W.G.S.

    1958-12-30

    A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.

  6. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  7. TH-CD-207B-07: Noise Modeling of Single Photon Avalanche Diode (SPAD) for Photon Counting CT Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Z; Zheng, X; Deen, J

    Purpose: Silicon photomultiplier (SiPM) has recently emerged as a promising photodetector for biomedical imaging applications. Due to its high multiplication gain (comparable to PMT), fast timing, low cost and compactness, it is considered a good candidate for photon counting CT. Dark noise is a limiting factor which impacts both energy resolution and detection dynamic range. Our goal is to develop a comprehensive model for noise sources for SiPM sensors. Methods: The physical parameters used in this work were based upon a test SPAD fabricated in 130nm CMOS process. The SPAD uses an n+/p-well junction, which is isolated from the p-substratemore » by a deep n-well junction. Inter-avalanche time measurement was used to record the time interval between two adjacent avalanche pulses. After collecting 1×106 counts, the histogram was obtained and multiple exponential fitting process was used to extract the lifetime associated with the traps within the bandgap. Results: At room temperature, the breakdown voltage of the SPAD is ∼11.4V and shows a temperature coefficient of 7.7mV/°C. The dark noise of SPAD increases with both the excess biasing voltage and temperature. The primary dark counts from the model were validated against the measurement results. A maximum relative error of 8.7% is observed at 20 °C with an excess voltage of 0.5V. The probabilities of after-pulsing are found to be dependent of both temperature and excess voltage. With 0.5V excess voltage, the after-pulsing probability is 63.5% at - 30 °C and drops to ∼6.6% at 40 °C. Conclusion: A comprehensive noise model for SPAD sensor was proposed. The model takes into account of static, dynamic and statistical behavior of SPADs. We believe that this is the first SPAD circuit simulation model that includes the band-to-band tunneling dark noise contribution and temporal dependence of the after-pulsing probability.« less

  8. Visible light surface emitting semiconductor laser

    DOEpatents

    Olbright, Gregory R.; Jewell, Jack L.

    1993-01-01

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  9. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  10. Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Terabe, Kazuya; Yang, Rui; Aono, Masakazu

    2016-11-01

    Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology. Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential. For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. In situ tuning of magnetic properties is promising for low-power-consumption spintronics. Synaptic plasticity in the human brain is achieved in neuromorphic devices.

  11. Detecting trap states in planar PbS colloidal quantum dot solar cells

    PubMed Central

    Jin, Zhiwen; Wang, Aiji; Zhou, Qing; Wang, Yinshu; Wang, Jizheng

    2016-01-01

    The recently developed planar architecture (ITO/ZnO/PbS-TBAI/PbS-EDT/Au) has greatly improved the power conversion efficiency of colloidal quantum dot photovoltaics (QDPVs). However, the performance is still far below the theoretical expectations and trap states in the PbS-TBAI film are believed to be the major origin, characterization and understanding of the traps are highly demanded to develop strategies for continued performance improvement. Here employing impedance spectroscopy we detect trap states in the planar PbS QDPVs. We determined a trap state of about 0.34 eV below the conduction band with a density of around 3.2 × 1016 cm−3 eV−1. Temperature dependent open-circuit voltage analysis, temperature dependent diode property analysis and temperature dependent build-in potential analysis consistently denotes an below-bandgap activation energy of about 1.17–1.20 eV. PMID:27845392

  12. Silicon Carbide Sensors and Electronics for Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2007-01-01

    Silicon carbide (SiC) semiconductor has been studied for electronic and sensing applications in extreme environment (high temperature, extreme vibration, harsh chemical media, and high radiation) that is beyond the capability of conventional semiconductors such as silicon. This is due to its near inert chemistry, superior thermomechanical and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  13. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    NASA Astrophysics Data System (ADS)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  14. Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ta; Chen, Chun-Wei; Yang, Tzu-Hsuan; Nys, Inge; Li, Cheng-Chang; Lin, Tsung-Hsien; Neyts, Kristiaan; Beeckman, Jeroen

    2018-01-01

    Selection of the bandedge lasing mode of a photonic crystal laser has been realized in a fluorescent dye doped chiral nematic liquid crystal by exerting electrical control over the mode competition. The bandedge lasing can be reversibly switched from the short-wavelength edge mode to the long-wavelength edge mode by applying a voltage of only 20 V, without tuning the bandgap. The underlying mechanism is the field-induced change in the order parameter of the fluorescent dye in the liquid crystal. The orientation of the transition dipole moment determines the polarization state of the dye emission, thereby promoting lasing in the bandedge mode that favors the emission polarization. Moreover, the dynamic mode-selection capability is retained upon polymer-stabilizing the chiral nematic liquid crystal laser. In the polymer-stabilized system, greatly improved stability and lasing performance are observed.

  15. Electrically switchable organo–inorganic hybrid for a white-light laser source

    PubMed Central

    Huang, Jui-Chieh; Hsiao, Yu-Cheng; Lin, Yu-Ting; Lee, Chia-Rong; Lee, Wei

    2016-01-01

    We demonstrate a spectrally discrete white-light laser device based on a photonic bandgap hybrid, which is composed of a soft photonic crystal; i.e., a layer of dye-doped cholesteric liquid crystal (CLC), sandwiched between two imperfect but identical, inorganic multilayer photonic crystals. With a sole optical pump, a mono-, bi-, or tri-chromatic laser can be obtained and, through the soft photonic crystal regulated by an applied voltage, the hybrid possesses electrical tunability in laser wavelength. The three emitted spectral peaks originate from two bandedges of the CLC reflection band as well as one of the photonic defect modes in dual-mode lasing. Thanks to the optically bistable nature of CLC, such a white-light laser device can operate in quite an energy-saving fashion. This technique has potential to fulfill the present mainstream in the coherent white-light source. PMID:27324219

  16. Giant photovoltaic response in band engineered ferroelectric perovskite.

    PubMed

    Pal, Subhajit; Swain, Atal Bihari; Biswas, Pranab Parimal; Murali, D; Pal, Arnab; Nanda, B Ranjit K; Murugavel, Pattukkannu

    2018-05-22

    Recently the solar energy, an inevitable part of green energy source, has become a mandatory topics in frontier research areas. In this respect, non-centrosymmetric ferroelectric perovskites with open circuit voltage (V OC ) higher than the bandgap, gain tremendous importance as next generation photovoltaic materials. Here a non-toxic co-doped Ba 1-x (Bi 0.5 Li 0.5 ) x TiO 3 ferroelectric system is designed where the dopants influence the band topology in order to enhance the photovoltaic effect. In particular, at the optimal doping concentration (x opt  ~ 0.125) the sample reveals a remarkably high photogenerated field E OC  = 320 V/cm (V OC  = 16 V), highest ever reported in any bulk polycrystalline non-centrosymmetric systems. The band structure, examined through DFT calculations, suggests that the shift current mechanism is key to explain the large enhancement in photovoltaic effect in this family.

  17. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  18. Memory Device and Nanofabrication Techniques Using Electrically Configurable Materials

    NASA Astrophysics Data System (ADS)

    Ascenso Simões, Bruno

    Development of novel nanofabrication techniques and single-walled carbon nanotubes field configurable transistor (SWCNT-FCT) memory devices using electrically configurable materials is presented. A novel lithographic technique, electric lithography (EL), that uses electric field for pattern generation has been demonstrated. It can be used for patterning of biomolecules on a polymer surface and patterning of resist as well. Using electrical resist composed of a polymer having Boc protected amine group and iodonium salt, Boc group on the surface of polymer was modified to free amine by applying an electric field. On the modified surface of the polymer, Streptavidin pattern was fabricated with a sub-micron scale. Also patterning of polymer resin composed of epoxy monomers and diaryl iodonium salt by EL has been demonstrated. Reaction mechanism for electric resist configuration is believed to be induced by an acid generation via electrochemical reduction in the resist. We show a novel field configurable transistor (FCT) based on single-walled carbon nanotube network field-effect transistors in which poly (ethylene glycol) crosslinked by electron-beam is incorporated into the gate. The device conductance can be configured to arbitrary states reversibly and repeatedly by applying external gate voltages. Raman spectroscopy revealed that evolution of the ratio of D- to G-band intensity in the SWCNTs of the FCT progressively increases as the device is configured to lower conductance states. Electron transport studies at low temperatures showed a strong temperature dependence of the resistance. Band gap widening of CNTs up to ˜ 4 eV has been observed by examining the differential conductance-gate voltage-bias voltage relationship. The switching mechanism of the FCT is attributed a structural transformation of CNTs via reversible hydrogenation and dehydrogenations induced by gate voltages, which tunes the CNT bandgap continuously and reversibly to non-volatile analog values. The CNT transistors with field tunable band gaps would facilitate field programmable circuits based on the self-organized CNTs, and might also lead to novel analog memory, neuromorphic, and photonic devices.

  19. Effect of filling factor on photonic bandgap of chalcogenide photonic crystal

    NASA Astrophysics Data System (ADS)

    Singh, Rajpal; Suthar, B.; Bhargava, A.

    2018-05-01

    In the present work, the photonic band structure of 1-D chalcogenide photonic crystal of As2S3/air multilayered structure is calculated using the plane wave expansion method. The study is extended to investigate the effect of filling factor on the photonic bandgap. The increase of bandgap is explained in the study.

  20. A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.

  1. Performance Evaluation of UPQC under Nonlinear Unbalanced Load Conditions Using Synchronous Reference Frame Based Control

    NASA Astrophysics Data System (ADS)

    Kota, Venkata Reddy; Vinnakoti, Sudheer

    2017-12-01

    Today, maintaining Power Quality (PQ) is very important in the growing competent world. With new equipments and devices, new challenges are also being put before power system operators. Unified Power Quality Conditioner (UPQC) is proposed to mitigate many power quality problems and to improve the performance of the power system. In this paper, an UPQC with Fuzzy Logic controller for capacitor voltage balancing is proposed in Synchronous Reference Frame (SRF) based control with Modified Phased Locked Loop (MPLL). The proposed controller with SRF-MPLL based control is tested under non-linear and unbalanced load conditions. The system is developed in Matlab/Simulink and its performance is analyzed under various conditions like non-linear, unbalanced load and polluted supply voltage including voltage sag/swells. Active and reactive power flow in the system, power factor and %THD of voltages and currents before and after compensation are also analyzed in this work. Results prove the applicability of the proposed scheme for power quality improvement. It is observed that the fuzzy controller gives better performance than PI controller with faster capacitor voltage balancing and also improves the dynamic performance of the system.

  2. High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks.

    PubMed

    Lee, Ji Hyung; Park, Chang Geun; Kim, Aesun; Kim, Hyung Jong; Kim, Youngseo; Park, Sungnam; Cho, Min Ju; Choi, Dong Hoon

    2018-06-06

    We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm 2 , demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.

  3. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    PubMed

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  4. In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics.

    PubMed

    Shin, Jae Cheol; Kim, Kyou Hyun; Yu, Ki Jun; Hu, Hefei; Yin, Leijun; Ning, Cun-Zheng; Rogers, John A; Zuo, Jian-Min; Li, Xiuling

    2011-11-09

    We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (∼30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (∼4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ∼ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics.

  5. Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire.

    PubMed

    Fang, Hehai; Hu, Weida; Wang, Peng; Guo, Nan; Luo, Wenjin; Zheng, Dingshan; Gong, Fan; Luo, Man; Tian, Hongzheng; Zhang, Xutao; Luo, Chen; Wu, Xing; Chen, Pingping; Liao, Lei; Pan, Anlian; Chen, Xiaoshuang; Lu, Wei

    2016-10-12

    One-dimensional InAs nanowires (NWs) have been widely researched in recent years. Features of high mobility and narrow bandgap reveal its great potential of optoelectronic applications. However, most reported work about InAs NW-based photodetectors is limited to the visible waveband. Although some work shows certain response for near-infrared light, the problems of large dark current and small light on/off ratio are unsolved, thus significantly restricting the detectivity. Here in this work, a novel "visible light-assisted dark-current suppressing method" is proposed for the first time to reduce the dark current and enhance the infrared photodetection of single InAs NW photodetectors. This method effectively increases the barrier height of the metal-semiconductor contact, thus significantly making the device a metal-semiconductor-metal (MSM) photodiode. These MSM photodiodes demonstrate broadband detection from less than 1 μm to more than 3 μm and a fast response of tens of microseconds. A high detectivity of ∼10 12 Jones has been achieved for the wavelength of 2000 nm at a low bias voltage of 0.1 V with corresponding responsivity of as much as 40 A/W. Even for the incident wavelength of 3113 nm, a detectivity of ∼10 10 Jones and a responsivity of 0.6 A/W have been obtained. Our work has achieved an extended detection waveband for single InAs NW photodetector from visible and near-infrared to mid-infrared. The excellent performance for infrared detection demonstrated the great potential of narrow bandgap NWs for future infrared optoelectronic applications.

  6. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  7. New International Reference Standards of Voltage and Resistance.

    ERIC Educational Resources Information Center

    Sirvastava, V. P.

    1991-01-01

    The introduction of the quantum standards of resistance and voltage, based on the Quantum Hall Effect (QHE) and the Josephson Effect, can be used to establish highly reproducible and uniform representations of the ohm and volt worldwide. Discussed are the QHE and the Josephson Effect. (KR)

  8. Microresonator and associated method for producing and controlling photonic signals with a photonic bandgap delay apparatus

    NASA Technical Reports Server (NTRS)

    Fork, Richard Lynn (Inventor); Jones, Darryl Keith (Inventor); Keys, Andrew Scott (Inventor)

    2000-01-01

    By applying a photonic signal to a microresonator that includes a photonic bandgap delay apparatus having a photonic band edge transmission resonance at the frequency of the photonic signal, the microresonator imparts a predetermined delay to the photonic signal. The photonic bandgap delay apparatus also preferably has a photonic band edge transmission resonance bandwidth which is at least as wide as the bandwidth of the photonic signal such that a uniform delay is imparted over the entire bandwidth of the photonic signal. The microresonator also includes a microresonator cavity, typically defined by a pair of switchable mirrors, within which the photonic bandgap delay apparatus is disposed. By requiring the photonic signal to oscillate within the microresonator cavity so as to pass through the photonic bandgap delay apparatus several times, the microresonator can controllably impart an adjustable delay to the photonic signal.

  9. Photonic mesophases from cut rod rotators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu; Avendano, Carlos

    2016-01-14

    The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magneticmore » polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.« less

  10. Observing Ambipolar Behavior and Bandgap Engineering of MoS2 with Transport Measurements

    NASA Astrophysics Data System (ADS)

    Morris, Rachael; Wilson, Cedric; Hamblin, Glen; Tsuchikawa, Ryuichi; Deshpande, Vikram V.

    Molybdenum disulfide is a transition metal semiconductor with a relatively large bandgap about 1.8 eV. In MoS2\\ it is expected that the bandgap is layer dependent and changes with the application of strain. In this talk I will outline our attempt to make simple field effect transistors with thin MoS2 on flexible substrates. Our aim was to see the bandgap of MoS2 directly via transport measurements using electrolytic gating, then apply uniaxial strain to a single layer MoS2 device to see the bandgap change. This was to be one way of confirming theoretical expectations, as well as compare with experimental results already obtained through photoluminescence spectroscopy. Though we did not obtain our target result with this stage of the experiment, future experimental work is planned. I will discuss the experimental method, the challenges of obtaining data and the results we obtained.

  11. Large bandgap narrowing in rutile TiO2 aimed towards visible light applications and its correlation with vacancy-type defects history and transformation

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Nambissan, P. M. G.; Vijayan, C.

    2018-01-01

    Extension of photoactivity of TiO2 to the visible region is achievable via effective control over the intrinsic defects such as oxygen and Ti vacancies, which has several applications in visible photocatalysis and sensing. We present here the first observation of an apparent bandgap narrowing and bandgap tuning effect due to vacancy cluster transformation in rutile TiO2 structures to 1.84 eV from the bulk bandgap of 3 eV. A gradual transformation of divacancies (V Ti-O) to tri vacancies ({{V}Ti-O-T{{i-}}} ) achieved through a controlled solvothermal scheme appears to result in an apparent narrowing bandgap and tunability, as supported by positron annihilation lifetime and electron paramagnetic resonance spectroscopy measurements. Visible photocatalytic activity of the samples is demonstrated in terms of photodegradation of rhodamine B dye molecules.

  12. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less

  13. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    DOE PAGES

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    2016-12-28

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less

  14. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  15. Fullerene-based low-density superhard materials with tunable bandgaps

    NASA Astrophysics Data System (ADS)

    Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

    2018-06-01

    Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

  16. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  17. High-Efficiency Solar Cells Using Photonic-Bandgap Materials

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan; Lee, Hwang

    2005-01-01

    Solar photovoltaic cells would be designed to exploit photonic-bandgap (PBG) materials to enhance their energy-conversion efficiencies, according to a proposal. Whereas the energy-conversion efficiencies of currently available solar cells are typically less than 30 percent, it has been estimated that the energy-conversion efficiencies of the proposed cells could be about 50 percent or possibly even greater. The primary source of inefficiency of a currently available solar cell is the mismatch between the narrow wavelength band associated with the semiconductor energy gap (the bandgap) and the broad wavelength band of solar radiation. This mismatch results in loss of power from both (1) long-wavelength photons, defined here as photons that do not have enough energy to excite electron-hole pairs across the bandgap, and (2) short-wavelength photons, defined here as photons that excite electron- hole pairs with energies much above the bandgap. It follows that a large increase in efficiency could be obtained if a large portion of the incident solar energy could be funneled into a narrow wavelength band corresponding to the bandgap. In the proposed approach, such funneling would be effected by use of PBG materials as intermediaries between the Sun and photovoltaic cells.

  18. New way of polymer design for organic solar cells using the quinoid structure

    NASA Astrophysics Data System (ADS)

    Berube, Nicolas; Gaudreau, Josiane; Cote, Michel

    2013-03-01

    Research in organic photovoltaic applications are receiving a great interest as they offer an environmentally clean and low-cost solution to the world's rising energy needs. Controlling the device's active polymer optical bandgap is an important step that affects its absorption of the solar spectrum, and ultimately, its power conversion efficiency. The use of fused heterocycles that favors the polymer's quinoid structure has been a known method to lower the bandgap, for example, with isothianapthene, but there is a lack of quantifiable data on this effect. Density functional theory (DFT) calculations were done on over 60 polymers with bandgaps between 0.5 eV and 4 eV. They clearly show that low bandgaps are observed in copolymers that carefully stands between their quinoid and aromatic structures. Such balance can be obtained by mixing monomer units with quinoid characteristics with aromatic ones. Time-dependant DFT results also links low bandgaps with lower reorganization energy, which means that polymers with this structural form could possess higher charge mobilities. This link between the geometrical structure and the bandgap is compatible with a vast variety of polymers and is more convincing than the commonly used donor-acceptor method of polymer design.

  19. Analysis of the reflective multibandgap solar cell concept

    NASA Technical Reports Server (NTRS)

    Stern, T. G.

    1983-01-01

    A new and unique approach to improving photovoltaic conversion efficiency, the reflective multiband gap solar cell concept, was examined. This concept uses back surface reflectors and light trapping with several physically separated cells of different bandgaps to make more effective use of energy from different portions of the solar spectrum. Preliminary tests performed under General Dynamics Independent Research and Development (IRAD) funding have demonstrated the capability for achieving in excess of 20% conversion efficiency with aluminum gallium arsenide and silicon. This study analyzed the ultimate potential for high conversion efficiency with 2, 3, 4, and 5 different bandgap materials, determined the appropriate bandgaps needed to achieve this optimized efficiency, and identified potential problems or constraints. The analysis indicated that an improvement in efficiency of better than 40% could be attained in this multibandgap approach, compared to a single bandgap converter under the same assumptions. Increased absorption loss on the back surface reflector was found to incur a minimal penalty on efficiency for two and three bandgap systems. Current models for bulk absorption losses in 3-5 materials were found to be inadequate for explaining laboratory observed transmission losses. Recommendations included the continued development of high bandgap back surface reflector cells and basic research on semiconductor absorption mechanisms.

  20. How Transparent Oxides Gain Some Color: Discovery of a CeNiO3 Reduced Bandgap Phase As an Absorber for Photovoltaics.

    PubMed

    Barad, Hannah-Noa; Keller, David A; Rietwyk, Kevin J; Ginsburg, Adam; Tirosh, Shay; Meir, Simcha; Anderson, Assaf Y; Zaban, Arie

    2018-06-11

    In this work, we describe the formation of a reduced bandgap CeNiO 3 phase, which, to our knowledge, has not been previously reported, and we show how it is utilized as an absorber layer in a photovoltaic cell. The CeNiO 3 phase is prepared by a combinatorial materials science approach, where a library containing a continuous compositional spread of Ce x Ni 1- x O y is formed by pulsed laser deposition (PLD); a method that has not been used in the past to form Ce-Ni-O materials. The library displays a reduced bandgap throughout, calculated to be 1.48-1.77 eV, compared to the starting materials, CeO 2 and NiO, which each have a bandgap of ∼3.3 eV. The materials library is further analyzed by X-ray diffraction to determine a new crystalline phase. By searching and comparing to the Materials Project database, the reduced bandgap CeNiO 3 phase is realized. The CeNiO 3 reduced bandgap phase is implemented as the absorber layer in a solar cell and photovoltages up to 550 mV are achieved. The solar cells are also measured by surface photovoltage spectroscopy, which shows that the source of the photovoltaic activity is the reduced bandgap CeNiO 3 phase, making it a viable material for solar energy.

  1. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  2. High-Bandgap Silicon Nanocrystal Solar Cells: Device Fabrication, Characterization, and Modeling

    NASA Astrophysics Data System (ADS)

    Löper, Philipp; Canino, Mariaconcetta; Schnabel, Manuel; Summonte, Caterina; Janz, Stefan; Zacharias, Margit

    Silicon nanocrystals (Si NCs) embedded in Si-based dielectrics provide a Si-based high-bandgap material (1.7 eV) and enable the construction of crystalline Si tandem solar cells. This chapter focusses on Si NC embedded in silicon carbide, because silicon carbide offers electrical conduction through the matrix material. The material development is reviewed, and optical modeling is introduced as a powerful method to monitor the four material components, amorphous and crystalline silicon as well as amorphous and crystalline silicon carbide. In the second part of this chapter, recent device developments for the photovoltaic characterization of Si NCs are examined. The controlled growth of Si NCs involves high-temperature annealing which deteriorates the properties of any previously established selective contacts. A membrane-based device is presented to overcome these limitations. In this approach, the formation of both selective contacts is carried out after high-temperature annealing and is therefore not affected by the latter. We examine p-i-n solar cells with an intrinsic region made of Si NCs embedded in silicon carbide. Device failure due to damaged insulation layers is analyzed by light beam-induced current measurements. An optical model of the device is presented for improving the cell current. A characterization scheme for Si NC p-i-n solar cells is presented which aims at determining the fundamental transport and recombination properties, i.e., the effective mobility lifetime product, of the nanocrystal layer at device level. For this means, an illumination-dependent analysis of Si NC p-i-n solar cells is carried out within the framework of the constant field approximation. The analysis builds on an optical device model, which is used to assess the photogenerated current in each of the device layers. Illumination-dependent current-voltage curves are modelled with a voltage-dependent current collection function with only two free parameters, and excellent agreement is found between theory and experiment. An effective mobility lifetime product of 10-10 cm2/V is derived and confirmed independently from an alternative method. The procedure discussed in this chapter is proposed as a characterization scheme for further material development, providing an optimization parameter (the effective mobility lifetime product) relevant for the photovoltaic performance of Si NC films.

  3. Molecular beam epitaxy growth and characterization of two-six materials for visible semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Zeng, Linfei

    This thesis proposes the molecular beam epitaxy (MBE) growth and characterization of a new Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se based semiconductor materials system on InP substrates for visible light emitting diodes (LED) and lasers. The growth conditions for lattice-matched Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se layers with the desired bandgap have been established and optimized. A chemical etching technique to measure the defect density of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se materials has been established. The accuracy of this method for revealing stacking faults and dislocations was verified by plan-view TEM. Using the techniques such as III-V buffer layer, Zn-irradiation, low-temperature growth, ZnCdSe interfacial layer and growth interruption to improve the quality of the interface of III-V and II-VI, the material quality of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se has been improved dramatically. Defect density has been reduced from 10sp{10}\\ cmsp{-2} to {˜}5×10sp4\\ cmsp{-2}. The properties of this material system such as the quality and strain state in the epilayer, the dependence of bandgap on temperature, and the band offset have been studied by using double crystal x-ray diffraction, photoluminescence and capacitance voltage measurements. The ZnCdSe/ZnCdMgSe based quantum well (QW) structures have been grown and studied. Optically pumped lasing with emission range from red to blue has been obtained from ZnCdSe/ZnCdMgSe based separate-confinement single QW laser structures. The results demonstrate the potential for these materials as integrated full color display devices. Preliminary studies of the degradation behavior of ZnCdSe/ZnCdMgSe QW were performed. No dark line defects (DLDs) were observed during the degradation. A very strong room temperature differential negative resistance behavior was observed from Al/Znsb{0.61}Cdsb{0.39}Se/nsp+-InP devices, which is useful in millimeter-wave applications. We also found that these devices can be set to either in highly conductive or nonconductive state within a given probing voltage region, which can be used as nonvolatile memories.

  4. First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe2sbnd MoS2 heterostructure

    NASA Astrophysics Data System (ADS)

    Lei, Xiang; Yu, Ke

    2018-04-01

    A purposeful modulation of physical properties of material via change external conditions has long captured people's interest and can provide many opportunities to improve the specific performance of electronic devices. In this work, a comprehensive first-principles survey was performed to elucidate that the bandgap and electronic properties of WSe2sbnd MoS2 heterostructure exhibited unusual response to exterior strain and electric field in comparison with pristine structures. It demonstrates that the WSe2sbnd MoS2 is a typical type-II heterostructure, and thus the electron-hole pairs can be effectively spatially separated. The external effects can trigger the electronic phase transition from semiconducting to metallic state, which originates from the internal electric evolution induced energy-level shift. Interestingly, the applied strain shows no direction-depended character for the modulation of bandgap of WSe2sbnd MoS2 heterostructure, while it exists in the electric field tuning processes and strongly depends on the direction of the electric field. Our findings elucidate the tunable electronic property of bilayer WSe2sbnd MoS2 heterostructure, and would provide a valuable reference to design the electronic nanodevices.

  5. Surface- and interface-engineered heterostructures for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  6. Three-dimensional structural damage localization system and method using layered two-dimensional array of capacitance sensors

    NASA Technical Reports Server (NTRS)

    Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)

    2010-01-01

    A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.

  7. Charge control microcomputer device for vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-08-26

    A charge control microcomputer device is described for a vehicle, comprising: an AC generator driven by an engine for generating an output current, the generator having armature coils and a field coil; a battery charged by a rectified output of the generator and generating a terminal voltage; a voltage regulator for controlling a current flowing in the field coil, to control an output voltage of the generator to a predetermined value; an engine controlling microcomputer for receiving engine parameter data from the engine, to control the operation of the engine; a charge control microcomputer for processing input data including datamore » on at least one engine parameter output from the engine controlling microcomputer, and charge system data including at least one of battery terminal voltage data, generator voltage data and generator output current data, to provide a reference voltage for the voltage regulator.« less

  8. Effect of Se concentration on photonic bandgap of 1-D As-S-Se/air multilayers

    NASA Astrophysics Data System (ADS)

    Singh, Rajpal; Suthar, B.; Bhargava, A.

    2018-05-01

    The photonic band structure of 1-D chalcogenide photonic crystal consisting of As-S-Se/air multilayered structure is studied. The photonic band structure is calculated using plane wave expansion method. The effect of Se constration on the photonic bandgap is studied. It is found that the photonic bandgap increases with Se-concentration and shows the red shift.

  9. Genetic Algorithm Optimization of Phononic Bandgap Structures

    DTIC Science & Technology

    2006-09-01

    a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic

  10. Optimization of the front contact to minimize short-circuit current losses in CdTe thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Kephart, Jason Michael

    With a growing population and rising standard of living, the world is in need of clean sources of energy at low cost in order to meet both economic and environmental needs. Solar energy is an abundant resource which is fundamentally adequate to meet all human energy needs. Photovoltaics are an attractive way to safely convert this energy to electricity with little to no noise, moving parts, water, or arable land. Currently, thin-film photovoltaic modules based on cadmium telluride are a low-cost solution with multiple GW/year commercial production, but have lower conversion efficiency than the dominant technology, crystalline silicon. Increasing the conversion efficiency of these panels through optimization of the electronic and optical structure of the cell can further lower the cost of these modules. The front contact of the CdTe thin-film solar cell is critical to device efficiency for three important reasons: it must transmit light to the CdTe absorber to be collected, it must form a reasonably passive interface and serve as a growth template for the CdTe, and it must allow electrons to be extracted from the CdTe. The current standard window layer material, cadmium sulfide, has a low bandgap of 2.4 eV which can block over 20% of available light from being converted to mobile charge carriers. Reducing the thickness of this layer or replacing it with a higher-bandgap material can provide a commensurate increase in device efficiency. When the CdS window is made thinner, a degradation in electronic quality of the device is observed with a reduction in open-circuit voltage and fill factor. One commonly used method to enable a thinner optimum CdS thickness is a high-resistance transparent (HRT) layer between the transparent conducting oxide electrode and window layer. The function of this layer has not been fully explained in the literature, and existing hypotheses center on the existence of pinholes in the window layer which are not consistent with observed results. In this work numerous HRT layers were examined beginning with an empirical optimization to create a SnO2-based HRT which allows significantly reduced CdS thickness while maintaining diode quality. The role of this layer was explored through measurement of band alignment parameters via photoemission. These results suggest a negative correlation of work function to device open-circuit voltage, which implies that non-ideal band alignment at the front interface of CdTe is in large part responsible for the loss of electronic quality. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. A sputter-deposited (Mg,Zn)O layer was tested which allows for complete elimination of the CdS window layer with an increase in open-circuit voltage and near complete transmission of all above-bandgap light. An additional window layer material---sputtered, oxygenated CdS---was explored for its transparency. This material was found only to produce high efficiency devices with an effective buffer layer such as the optimized SnO2-base HRT. The dependence of chemical, optical, electrical, and device properties on oxygen content was explored, and the stability of these devices was determined to depend largely on the minimization of copper in the device. Both sputter-deposited alloy window layers appeared to have tunable electron affinity which was critical to optimizing band alignment and therefore device efficiency. Several scenarios explored through 1-dimensional modeling in the SCAPS program corroborate this theory. Both window layers allowed an AM1.5G efficiency increase from a baseline of approximately 13% to 16%.

  11. Comparative study of reference currents and DC bus voltage control for Three-Phase Four-Wire Four-Leg SAPF to compensate harmonics and reactive power with 3D SVM.

    PubMed

    Chebabhi, A; Fellah, M K; Kessal, A; Benkhoris, M F

    2015-07-01

    In this paper the performances of three reference currents and DC bus voltage control techniques for Three-Phase Four-Wire Four-Leg SAPF are compared for balanced and unbalanced load conditions. The main goals are to minimize the harmonics, reduce the magnitude of neutral current, eliminate the zero-sequence current components caused by single-phase nonlinear loads and compensate the reactive power, and on the other hand improve performances such as robustness, stabilization, trajectory pursuit, and reduce time response. The three techniques are analyzed mathematically and simulation results are compared. The techniques considered for comparative study are the PI Control, Sliding Mode Control and the Backstepping Control. Synchronous reference frame theory (SRF) in the dqo-axes is used to generate the reference currents, of the inverter. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Resonance fluorescence spectrum in a two-band photonic bandgap crystal

    NASA Astrophysics Data System (ADS)

    Lee, Ray-Kuang; Lai, Yinchieh

    2003-05-01

    Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.

  13. Electro-mechanical Properties of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Yang, Liu; Han, Jie; Liu, J. P.; Saubum Subhash (Technical Monitor)

    1998-01-01

    We present a simple picture to understand the bandgap variation of carbon nanotubes with small tensile and torsional strains, independent of chirality. Using this picture, we are able to predict a simple dependence of d(Bandoap)$/$d(strain) on the value of $(N_x-N_y)*mod 3$, for semiconducting tubes. We also predict a novel change in sign of d(Bandgap)$/$d(strain) as a function of tensile strain arising from a change in the value of $q$ corresponding to the minimum bandgap. These calculations are complemented by calculations of the change in bandgap using energy minimized structures, and some important differences are discussed. The calculations are based on the $i$ electron approximation.

  14. Copper wire theft and high voltage electrical burns

    PubMed Central

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  15. Copper wire theft and high voltage electrical burns.

    PubMed

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  16. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  17. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  18. Frequency to Voltage Converter Analog Front-End Prototype

    NASA Technical Reports Server (NTRS)

    Mata, Carlos; Raines, Matthew

    2012-01-01

    The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.

  19. Proofs for the Wave Theory of Plants

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    1997-03-01

    Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.

  20. Voltage droop Coordinating Control applied in UPFC and STATCOM system

    NASA Astrophysics Data System (ADS)

    Junhui, Huang; Zhuyi, Peng; Chengjie, Ni; Yiqing, Xu; Jiliang, Xue

    2018-04-01

    When UPFC, unified power flow controller is applied with other FACTS into power grid, it is possible that the voltage controlled vibrates constantly to response to a sudden reactive power turbulent in grid if the parameters of these FACTS are not coordinating reasonably. Moreover, the reactive power generated by these equipment will intertwine unexpectedly. The article proposes a method named voltage-reactive power droop control to allow the reference voltage fluctuating around the rating voltage so that the vibration is reduced and the power distribution is improved. Finally, the article cite a electric-magnetic simulation by EMTDC models of east-China power grid to prove it effective when applied to improve the response characteristics to sudden turbulence in power grid.

  1. Photocurrent modulation under dual excitation in individual GaN nanowires.

    PubMed

    Yadav, Shivesh; Deb, Swarup; Gupta, Kantimay Das; Dhar, Subhabrata

    2018-06-21

    The photo-response properties of vapor-liquid-solid (VLS) grown [101[combining macron]0] oriented individual GaN nanowires of the diameter ranging from 30 to 100 nm are investigated under the joint illumination of above and sub-bandgap lights. When illuminated with above-bandgap light, these wires show persistent photoconductivity (PPC) effects with long build-up and decay times. The study reveals the quenching of photoconductivity (PC) upon illumination with an additional sub-bandgap light. PC recovers when the sub-bandgap illumination is withdrawn. A rate equation model attributing the PPC effect to the entrapment of photo-generated holes in the surface states and the PC quenching effect on the sub-bandgap light driven release of the holes from the trapped states has been proposed. The average height of the capture barrier has been found to be about 400 meV. The study also suggests that the capture barrier has a broad distribution with an upper cut-off energy of ∼2 eV.

  2. First-principles study of bandgap tuning in Ge1-xPbxSe

    NASA Astrophysics Data System (ADS)

    Lohani, Himanshu

    2018-03-01

    Narrow bandgap and its tuning are important aspects of materials for their technological applications. In this context group IV-VI semiconductors are one of the interesting candidates. In this paper, we explore the possibility of bandgap tuning in one of the family member of this family GeSe by using isoelectronic Pb doping. Our study is first-principles based electronic structure calculations of Ge1-xPbxSe. This study reveals that the Ge-p and Se-p states are strongly hybridized in GeSe and shows a gap in the DOS at Ef in GeSe. This gap reduces systematically with simultaneous enhancement of the states in the near Ef region as a function of Pb doping. This leads tuning of the indirect bandgap in GeSe via Pb doping. The results of the indirect bandgap decrement are consistent with the experimental findings. We propose a mechanism where the electrostatic effect of dopant Pb cation could be responsible for these changes in the electronic structure of GeSe.

  3. Theoretical evaluation of maximum electric field approximation of direct band-to-band tunneling Kane model for low bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong

    2016-06-01

    The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.

  4. Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hsien

    2015-10-01

    Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.

  5. An non-uniformity voltage model for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  6. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  7. Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids.

    PubMed

    Brif, Anastasia; Ankonina, Guy; Drathen, Christina; Pokroy, Boaz

    2014-01-22

    Bandgap engineering of zinc oxide semiconductors can be achieved using a bio-inspired method. During a bioInspired crystallization process, incorporation of amino acids into the crystal structure of ZnO induces lattice strain that leads to linear bandgap shifts. This allows for fine tuning of the bandgap in a bio-inspired route. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. How Bilayer Graphene Got a Bandgap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Wang

    2009-06-02

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  9. How Bilayer Graphene Got a Bandgap

    ScienceCinema

    Feng Wang

    2017-12-09

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  10. How Bilayer Graphene Got a Bandgap

    ScienceCinema

    Wang, Feng

    2018-01-08

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  11. Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties

    NASA Astrophysics Data System (ADS)

    Zhang, C. Y.; Yu, M.

    2018-03-01

    Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ˜80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young’s moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.

  12. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin

    2017-04-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).

  13. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  14. On the role of micro-inertia in enriched continuum mechanics.

    PubMed

    Madeo, Angela; Neff, Patrizio; Aifantis, Elias C; Barbagallo, Gabriele; d'Agostino, Marco Valerio

    2017-02-01

    In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

  15. Relativistic space-charge-limited current for massive Dirac fermions

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Zubair, M.; Ang, L. K.

    2017-04-01

    A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.

  16. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    PubMed Central

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854

  17. Power quality improvement by unified power quality conditioner based on CSC topology using synchronous reference frame theory.

    PubMed

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  18. Growth and Characterization of Wide Bandgap Semiconductor Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ghose, Susmita

    Wide bandgap semiconductors are receiving extensive attention due to their exceptional physical and chemical properties making them useful for high efficiency and high power electronic devices. Comparing other conventional wide bandgap materials, monoclinic beta-Ga2O3 also represents an outstanding semiconductor oxide for next generation of UV optoelectronics and high temperature sensors due to its wide band gap ( 4.9eV). This new semiconductor material has higher breakdown voltage (8MV/cm) and n-type conductivity which make it more suitable for potential application as high power electronics. The properties and potential applications of these wide bandgap materials have not yet fully explored. In this study, the growth and characterization of single crystal beta-Ga2O3 thin films grown on c-plane sapphire (Al2O3) substrate using two different techniques; molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) techniques has been investigated. The influence of the growth parameters of MBE and PLD on crystalline quality and surface has been explored. Two methods have been used to grow Ga2O3 using MBE; one method is to use elemental Ga and the second is the use of a polycrystalline Ga2O3 compound source with and without an oxygen source. Using the elemental Ga source, growth rate of beta-Ga2O3 thin films was limited due to the formation and desorption of Ga2O molecules. In order to mitigate this problem, a compound Ga2O3 source has been introduced and used for the growth of crystalline beta-Ga2O 3 thin films without the need for additional oxygen since this source produces Ga-O molecules and additional oxygen. Two different alloys (InGa) 2O3 and (AlGa)2O3 has been grown on c-plane sapphire substrate by pulsed laser deposition technique to tune the bandgap of the oxide thin films from 3.5-8.6 eV suitable for applications such as wavelength-tunable optical devices, solid-state lighting and high electron mobility transistors (HEMTs). The crystallinity, chemical bonding, surface morphology and optical properties have been systematically evaluated by a number of in-situ and ex-situ techniques. The crystalline Ga2O 3 films showed pure phase of (2¯01) plane orientation and in-plane XRD phi-scan exhibited the six-fold rotational symmetry for beta-Ga 2O3 when grown on sapphire substrate. The alloys exhibit different phases has been stabilized depending on the compositions. Finally, a metal-semiconductor-metal (MSM) structure deep-ultraviolet (DUV) photodetector has been fabricated on beta-Ga2O3 film grown with an optimized growth condition has been demonstrated. This photodetector exhibited high resistance as well as small dark current with expected photoresponse for 254 nm UV light irradiation suggesting beta-Ga2O3 thin films as a potential candidate for deep-UV photodetectors. While the grown Ga2O3 shows high resistivity, the electrical properties of (In0.6Ga0.4)2O3 and (In 0.8Ga0.2)2O3 alloys show low resistivity with a high carrier concentration and increasing mobility with In content.

  19. A new venous infusion pathway monitoring system.

    PubMed

    Maki, Hiromichi; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Ninomiya, Ishio; Sata, Koji; Hamada, Shingo; Caldwell, W Morton

    2007-01-01

    A new infusion catheter pathway monitoring system employing linear integrated circuits and a low-power 8-bit single chip microcomputer has been developed for hospital and home use. The sensor consists of coaxial three-layer conductive tapes wrapped around the polyvinyl chloride infusion tube. The inner tape is the main electrode, which records an AC (alternating current) voltage induced on the patient's body by electrostatic coupling from the normal 100 volt, 60 Hz AC power line wiring field in the patient's room. The outside tape layer is a reference electrode to monitor the AC voltage around the main electrode. The center tape layer is connected to system ground and functions as a shield. The microcomputer calculates the ratio of the induced AC voltages recorded by the main and reference electrodes and if the ratio indicates a detached infusion, alerts the nursing station, via the nurse call system or low transmitting power mobile phone.

  20. Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels

    PubMed Central

    Perry, Matthew D.; Wong, Sophia; Ng, Chai Ann

    2013-01-01

    Kv11.1 channels are critical for the maintenance of a normal heart rhythm. The flow of potassium ions through these channels is controlled by two voltage-regulated gates, termed “activation” and “inactivation,” located at opposite ends of the pore. Crucially in Kv11.1 channels, inactivation gating occurs much more rapidly, and over a distinct range of voltages, compared with activation gating. Although it is clear that the fourth transmembrane segments (S4), within each subunit of the tetrameric channel, are important for controlling the opening and closing of the activation gate, their role during inactivation gating is much less clear. Here, we use rate equilibrium free energy relationship (REFER) analysis to probe the contribution of the S4 “voltage-sensor” helix during inactivation of Kv11.1 channels. Contrary to the important role that charged residues play during activation gating, it is the hydrophobic residues (Leu529, Leu530, Leu532, and Val535) that are the key molecular determinants of inactivation gating. Within the context of an interconnected multi-domain model of Kv11.1 inactivation gating, our REFER analysis indicates that the S4 helix and the S4–S5 linker undergo a conformational rearrangement shortly after that of the S5 helix and S5P linker, but before the S6 helix. Combining REFER analysis with double mutant cycle analysis, we provide evidence for a hydrophobic interaction between residues on the S4 and S5 helices. Based on a Kv11.1 channel homology model, we propose that this hydrophobic interaction forms the basis of an intersubunit coupling between the voltage sensor and pore domain that is an important mediator of inactivation gating. PMID:23980196

  1. Defect Related Dark Currents in III-V MWIR nBn Detectors

    DTIC Science & Technology

    2014-01-01

    theory indicates a thermal activation energy of half the bandgap, and a direct proportionality between dark current density and defect density. 2.2...density due to defects maintains a full bandgap thermal activation energy , and is proportional to the square root of the defect density. Although neutral...photodiodes, and cooling is more efficient in reducing nBn’s dark current due to the full bandgap activation energy . Downloaded From: http

  2. Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector

    NASA Technical Reports Server (NTRS)

    Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Luong, E.; Hong, W.; Mumolo, J.; Bae, Y.; Stillman, G. E.; Jackson, S. L.; hide

    1998-01-01

    We demonstrate that SiO(sub 2) cap annealing in the ultra-thin p-type InGaAs/InP quantum wells can be used to produce large blue shifts of the band edge. A substantial bandgap blue shift, as much a 292.5 meV at 900 degrees C have been measured and the value of the bandgap shift can be controlled by the anneal time.

  3. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  4. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  5. Visible light photoreactivity from Carbon nitride bandgap states in Nb and Ti oxides

    NASA Astrophysics Data System (ADS)

    Lee, Hosik; Ohno, Takahisa; Icnsee Team

    2011-03-01

    Lamellar niobic and titanic solid acids (HNb3O8 , H2Ti4O9) are photocatalysts which can be used for environmental cleanup application and hydrogen production through water splitting. To increase their efficiency, bandgap adjustment which can induce visible light reactivity in addition to ultraviolet light has been one of hot issue in this kinds of photo-catalytic materials. Nitrogen-doping was one of the direction and its microscopic structures are disputed in this decade. In this work, we calculate the layered niobic and titanic solid acids structure and bandgap. Bandgap reduction by carbon nitride absorption are observed computationally. It is originated from localized nitrogen state which is consistent with previous experiments.

  6. Tunable photonic band gaps and optical nonreciprocity by an RF-driving ladder-type system in moving optical lattice

    NASA Astrophysics Data System (ADS)

    Ba, Nuo; Zhong, Xin; Wang, Lei; Fei, Jin-You; Zhang, Yan; Bao, Qian-Qian; Xiao, Li

    2018-03-01

    We investigate photonic transport properties of the 1D moving optical lattices filled with vast cold atoms driven into a four-level ladder-type system and obtain dynamically controlled photonic bandgaps and optical nonreciprocity. It is found that the two obvious optical nonreciprocity can be generated at two well-developed photonic bandgaps based on double dark states in the presence of a radio-frequency field. However, when the radio-frequency field is absence, the only one induced photonic bandgaps with distinguishing optical nonreciprocity can be opened up via single dark state. Dynamic control of the induced photonic bandgaps and optical nonreciprocity could be exploited to achieve all-optical diodes and routing for quantum information networks.

  7. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun

    Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less

  8. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    DOE PAGES

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun; ...

    2017-05-04

    Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as anmore » initial step towards the creation of diverse lateral junctions with nanoscale resolution.« less

  9. Coulomb engineering of the bandgap and excitons in two-dimensional materials

    PubMed Central

    Raja, Archana; Chaves, Andrey; Yu, Jaeeun; Arefe, Ghidewon; Hill, Heather M.; Rigosi, Albert F.; Berkelbach, Timothy C.; Nagler, Philipp; Schüller, Christian; Korn, Tobias; Nuckolls, Colin; Hone, James; Brus, Louis E.; Heinz, Tony F.; Reichman, David R.; Chernikov, Alexey

    2017-01-01

    The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution. PMID:28469178

  10. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Comfort, Everett; Lee, Ji Ung

    2016-06-01

    The bandgap of a semiconductor is one of its most important electronic properties. It is often considered to be a fixed property of the semiconductor. As the dimensions of semiconductors reduce, however, many-body effects become dominant. Here, we show that doping and dielectric, two critical features of semiconductor device manufacturing, can dramatically shrink (renormalize) the bandgap. We demonstrate this in quasi-one-dimensional semiconducting carbon nanotubes. Specifically, we use a four-gated device, configured as a p-n diode, to investigate the fundamental electronic structure of individual, partially supported nanotubes of varying diameter. The four-gated construction allows us to combine both electrical and optical spectroscopic techniques to measure the bandgap over a wide doping range.

  11. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  12. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

    PubMed Central

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-01-01

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s. PMID:28367992

  13. Low Voltage Alarm Apprenticeship. Related Training Modules. 29.1-29.5 Drawing.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of five learning modules on drawing is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…

  14. Low Voltage Alarm Apprenticeship. Related Training Modules. 28.1-28.12 Human Relations.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 12 learning modules on human relations is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…

  15. Low Voltage Alarm Apprenticeship. Related Training Modules. 6.1-6.6 Safety.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of six learning modules on safety is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…

  16. Low Voltage Alarm Apprenticeship. Related Training Modules. 27.1-27.4 Computer Usage.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of four learning modules on computer usage is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide…

  17. Low Voltage Alarm Apprenticeship. Related Training Modules. 0.1 History of Alarms.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of one learning module on the history of alarms is one of eight such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study…

  18. Low Voltage Alarm Apprenticeship. Related Training Modules. 7.1-26.10 Alarm Basics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 70 learning modules on alarm basics is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check…

  19. Low Voltage Alarm Apprenticeship. Related Training Modules. 2.1-5.3 Electricity/Electronics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 29 learning modules on electricity/electronics is 1 of 8 such packets developed for apprenticeship training for low voltage alarm. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide…

  20. GaN Based Electronics And Their Applications

    NASA Astrophysics Data System (ADS)

    Ren, Fan

    2002-03-01

    The Group III-nitrides were initially researched for their promise to fill the void for a blue solid state light emitter. Electronic devices from III-nitrides have been a more recent phenomenon. The thermal conductivity of GaN is three times that of GaAs. For high power or high temperature applications, good thermal conductivity is imperative for heat removal or sustained operation at elevated temperatures. The development of III-N and other wide bandgap technologies for high temperature applications will likely take place at the expense of competing technologies, such as silicon-on-insulator (SOI), at moderate temperatures. At higher temperatures (>300°C), novel devices and components will become possible. The automotive industry will likely be one of the largest markets for such high temperature electronics. One of the most noteworthy advantages for III-N materials over other wide bandgap semiconductors is the availability of AlGaN/GaN and InGaN/GaN heterostructures. A 2-dimensional electron gas (2DEG) has been shown to exist at the AlGaN/GaN interface, and heterostructure field effect transistors (HFETs) from these materials can exhibit 2DEG mobilities approaching 2000 cm2 / V?s at 300K. Power handling capabilities of 12 W/mm appear feasible, and extraordinary large signal performance has already been demonstrated, with a current state-of-the-art of >10W/mm at X-band. In this talk, high speed and high temperature AlGaN/GaN HEMTs as well as MOSHEMTs, high breakdown voltage GaN (>6KV) and AlGaN (9.7 KV) Schottky diodes, and their applications will be presented.

Top