Science.gov

Sample records for bandpass butterworth filter

  1. Design and responses of Butterworth and critically damped digital filters.

    PubMed

    Robertson, D Gordon E; Dowling, James J

    2003-12-01

    For many years the Butterworth lowpass filter has been used to smooth many kinds of biomechanical data, despite the fact that it is underdamped and therefore overshoots and/or undershoots data during rapid transitions. A comparison of the conventional Butterworth filter with a critically damped filter shows that the critically damped filter not only removes the undershooting and overshooting, but has a superior rise time during rapid transitions. While analog filters always create phase distortion, both the critically damped and Butterworth filters can be modified to become zero-lag filters when the data are processed in both the forward and reverse directions. In such cases little improvement is realized by applying multiple passes. The Butterworth filter has superior 'roll-off' (attenuation of noise above the cutoff frequency) than the critically damped filter, but by increasing the number of passes of the critically damped filter the same 'roll-off' can be achieved. In summary, the critically damped filter was shown to have superior performance in the time domain than the Butterworth filter, but for data that need to be double differentiated (e.g. displacement data) the Butterworth filter may still be the better choice.

  2. Acoustic bandpass filters employing shaped resonators

    NASA Astrophysics Data System (ADS)

    Červenka, M.; Bednařík, M.

    2016-11-01

    This work deals with acoustic bandpass filters realized by shaped waveguide-elements inserted between two parts of an acoustic transmission line with generally different characteristic impedance. It is shown that the formation of a wide passband is connected with the eigenfrequency spectrum of the filter element which acts as an acoustic resonator and that the required filter shape substantially depends on whether the filter characteristic impedance is higher or lower than the characteristic impedance of the waveguide. It is further shown that this class of filters can be realized even without the need of different characteristic impedance. A heuristic technique is proposed to design filter shapes with required transmission properties; it is employed for optimization of low-frequency bandpass filters as well as for design of bandpass filters with wide passband surrounded by wide stopbands as it is typical for phononic crystals, however, in this case the arrangement is much simpler as it consists of only one simple-shaped homogeneous element.

  3. Tunable bandpass filter with variable selectivity

    NASA Technical Reports Server (NTRS)

    Kerwin, W. J.; Shaffer, C. V.

    1969-01-01

    Basic active RC networks constructed from stages that realize second-order transfer functions using two integrators offer excellent stability. Modifications of the basic network produce a highly stable bandpass filter having separate controls that independently adjust center frequency, Q, and center frequency gain.

  4. Divergence-tolerant resonant bandpass filters.

    PubMed

    Ko, Yeong Hwan; Niraula, Manoj; Magnusson, Robert

    2016-07-15

    Bandpass filters based on subwavelength dielectric gratings are grounded in physical principles that are totally distinct from their thin-film counterparts. Ease in fabrication, design scalability, material sparsity, and on-chip integration compatibility makes them a promising alternative especially for long-wavelength applications. Here we demonstrate the interesting attribute of resonant bandpass filters of high angular stability for fully conical light incidence. Fashioning an experimental bandpass filter with a subwavelength silicon grating on a quartz substrate, we show that fully conical incidence provides an angular full width at half-maximum linewidth of ∼9.5° compared to a linewidth of ∼0.1° for classical incidence. Slow angular variation of the central wavelength with full conical incidence arises via a corresponding slow angular variation of the resonant second diffraction orders driving the pertinent leaky modes. Moreover, full conical incidence maintains a profile with a single passband as opposed to the formation of two passbands characteristic of resonant subwavelength gratings under classical incidence. Our experimental results demonstrate excellent stability in angle, spectral profile, linewidth, and efficiency. PMID:27420521

  5. The design of digital filters for biomedical signal processing. Part 3: The design of Butterworth and Chebychev filters.

    PubMed

    Challis, R E; Kitney, R I

    1983-04-01

    The first two papers in this series reviewed the basic concepts which apply to digital filter theory and presented design techniques based on the z plane pole-zero plot. In this paper these methods are used to develop digital versions of Butterworth and Chebychev filters. The basic theory of both filter types is reviewed and the bilinear transformation is used to derive the z-transforms of the filters from their s-plane continuous time descriptions. Recurrence relationships which may be used to implement filters of various orders are developed. The impulse and frequency responses of the elements are illustrated and examples are given of their application to ECG data.

  6. Narrow bandpass cryogenic filter for microwave measurements

    NASA Astrophysics Data System (ADS)

    Ivanov, B. I.; Klimenko, D. N.; Sultanov, A. N.; Il'ichev, E.; Meyer, H.-G.

    2013-05-01

    An ultra-wide stopband hairpin bandpass filter with integrated nonuniform transmission lines was designed and fabricated for highly sensitive measurements at cryogenic temperatures down to millikelvin and a frequency range of 10 Hz-10 GHz. The scattering matrices of the filter were characterized at T = 4.2 K. The filter provides a stopband from 10 Hz to 2.2 GHz and from 2.3 GHz to 10 GHz with more than 50 dB and 40 dB of amplitude suppression, respectively. The center frequency of the passband is f0 = 2.25 GHz with a bandwidth Δf = 80 MHz. The maximum insertion loss in the passband is 4 dB. The filter has a 50 Ω input and output impedance, SubMiniature version A connector termination, and significantly reduced form factor. The wide stopband frequency range and narrow passband in conjunction with small dimensions make the filter suitable to use it as a part of a high sensitive readout for superconducting quantum circuits, such as superconducting quantum bits and cryogenic parametric amplifiers.

  7. Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization.

    PubMed

    Matrecano, Marcella; Memmolo, Pasquale; Miccio, Lisa; Persano, Anna; Quaranta, Fabio; Siciliano, Pietro; Ferraro, Pietro

    2015-04-10

    Digital holographic microscopy is an important interferometric tool in optical metrology allowing the investigation of engineered surfaces with microscale lateral resolution and nanoscale axial precision. In particular, microelectromechanical systems (MEMS) surface analysis, conducted by holographic characterization, requires high accuracy for functional testing. The main issues related to MEMS inspection are the superficial roughness and the complex geometry resulting from the several fabrication steps. Here, an automatic procedure, particularly suited in the case of high-roughness surfaces, is presented to selectively filter the spectrum, providing very low-noise reconstructed images. The numerical procedure is based on Butterworth filtering, and the obtained results demonstrate a significant increase in the images' quality and in the accuracy of the measurements, making our technique highly applicable for quantitative phase imaging in MEMS analysis. Furthermore, our method is fully tunable to the spectrum under investigation and automatic. This makes it highly suitable for real-time applications. Several experimental tests show the suitability of the proposed approach. PMID:25967334

  8. Cryogenic spectral performance of bandpass filters for the NIRCam instrument

    NASA Astrophysics Data System (ADS)

    Mao, Yalan; Harrison, David; Richardson, Todd; Schulz, Bailey; Taylor, Dale; Huff, Lynn W.; Horner, Scott; Kelly, Douglas; Rieke, Marcia J.

    2009-08-01

    The Bandpass Filters in the NIRCam instrument are required to have high throughput in bandpass spectral region and excellent out-of-band blocking over the entire region of detector spectral response. The high throughput is needed for the instrument to have high sensitivity for detecting distant galaxies, and the out-of-band blocking is needed for accurate calibration on James Webb Space Telescope. The operating temperature of the instrument is at cryogenic temperature from 32 Kelvin to 39.5 Kelvin. We have performed spectral measurement of NIRCam bandpass filters at cryogenic temperature after three cryo-to-ambient cycles. We will report the experiment and results in this paper. This work was performed and funded by NASA Goddard Space Flight Center under Prime Contract NAS5-02105.

  9. A compact triple-band bandpass filter based on metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-juan; Jiang, Bo; Li, Bao-yi; Wang, Dong-hong

    2016-07-01

    This paper presents a compact triple-band bandpass filter based on metamaterials. The miniaturization is realized by the principle of phase compensation of metamaterial. Compared with the conventional half-wavelength filter, the metamaterial filter has a small size of 10 mm×10 mm. The triple-band bandpass filter performance has been validated by the electromagnetic simulation software of high frequency structure simulator (HFSS). The results illustrate that the filter is designed with center frequencies of 2.4 GHz, 5.1 GHz and 8.8 GHz, bandwidths of about 7.9% (2.31—2.50 GHz), 7.8% (5.0—5.4 GHz) and 7.4% (8.50—9.15 GHz), respectively, and it shows good band pass characteristics.

  10. Thermoluminescence dosimeters with narrow bandpass filters

    DOEpatents

    Walker, Scottie W.

    2004-07-20

    A dosimetry method exposes more than one thermoluminescence crystals to radiation without using conventional filters, and reads the energy stored in the crystals by converting the energy to light in a conventional manner, and then filters each crystal output in a different portion of the spectrum generated by the crystals.

  11. Spectral performance of WFIRST/AFTA bandpass filter prototypes

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Huang, Winson; Miller, Kevin H.; Seide, Laurie; Content, David; Kruk, Jeffrey

    2015-09-01

    The current baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel instrument for both imaging and spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a grism assembly that will consist of a three-element assembly to disperse the central wavelength undeviated for galaxy redshift surveys. All elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper will present and discuss spectral performance (including spectral transmission and surface-figure wavefront errors ) for a subset of the bandpass filter complement that include filters such as Z087, W149, and Grism. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput (> 95 %), out of band rejection (< 10-4), spatial uniformity (< 1% transmission level) and the cut-on and cut-off slopes (≍ 3% for the filters and 0.3% for the grism coatings).

  12. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  13. Compact micromachined infrared bandpass filters for planetary spectroscopy.

    PubMed

    Merrell, Willie C; Aslam, Shahid; Brown, Ari D; Chervenak, James A; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward J

    2012-05-20

    The future needs of space-based, observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high-radiation and low-temperature environments. Here, we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 µm and report good agreement between the modeled and measured response. We present a technique of using standard micromachining processes for semiconductor fabrication to make compact, free-standing, resonant, metal mesh filter arrays with silicon support frames. The process can be customized to include multiple detector array architectures, and the silicon frame provides lightweight mechanical support with low form factor.

  14. Quantum theory of a bandpass Purcell filter for qubit readout

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Martinis, John M.; Korotkov, Alexander N.

    2015-07-01

    The measurement fidelity of superconducting transmon and Xmon qubits is partially limited by the qubit energy relaxation through the resonator into the transmission line, which is also known as the Purcell effect. One way to suppress this energy relaxation is to employ a filter which impedes microwave propagation at the qubit frequency. We present semiclassical and quantum analyses for the bandpass Purcell filter realized by E. Jeffrey et al. [Phys. Rev. Lett. 112, 190504 (2014), 10.1103/PhysRevLett.112.190504]. For typical experimental parameters, the bandpass filter suppresses the qubit relaxation rate by up to two orders of magnitude while maintaining the same measurement rate. We also show that in the presence of a microwave drive the qubit relaxation rate further decreases with increasing drive strength.

  15. Switched Band-Pass Filters for Adaptive Transceivers

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2007-01-01

    Switched band-pass filters are key components of proposed adaptive, software- defined radio transceivers that would be parts of envisioned digital-data-communication networks that would enable real-time acquisition and monitoring of data from geographically distributed sensors. Examples of sensors to be connected to such networks include security cameras, radio-frequency identification units, and geolocation units based on the Global Positioning System. Through suitable software configuration and without changing hardware, these transceivers could be made to operate according to any of a number of complex wireless-communication standards that could be characterized by diverse modulation schemes, bandwidths, and data-handling protocols. The adaptive transceivers would include field-programmable gate arrays (FPGAs) and digital signal-processing hardware. In the receiving path of a transceiver, the incoming signal would be amplified by a low-noise amplifier (LNA). The output spectrum of the LNA would be processed by a band-pass filter operating in the frequency range between 900 MHz and 2.4 GHz. Then a down-converter would translate the signal to a lower frequency range to facilitate analog-to-digital conversion, which would be followed by baseband processing by one or more FPGAs. In the transmitting path, a digital stream would first be converted to an analog signal, which would then be up-converted to a selected frequency band before being applied to a transmitting power amplifier. The aforementioned band-pass filter in the receiving path would be a combination of resonant inductor-and-capacitor filters and switched band-pass filters. The overall combination would implement a switch function designed mathematically to exhibit desired frequency responses and to switch the signal in each frequency band to an analog-to-digital converter appropriate for that band to produce a digital intermediate-frequency signal for digital signal processing.

  16. Rational engineering of nanoporous anodic alumina optical bandpass filters

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  17. Rational engineering of nanoporous anodic alumina optical bandpass filters.

    PubMed

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  18. Novel spatially distributed porous Si optical bandpass filters

    NASA Astrophysics Data System (ADS)

    Tokranova, N.; Levitsky, I.; Gracias, A.; Xu, B.; Castracane, J.

    2006-02-01

    To assist the growth of the telecommunication sector, new types of optical components such as those based on optical interference filter technology are critical. Existing technologies based on thin-film processing for production of optical communications filters have rapidly advanced. Although the Fabry-Perot bandpass filters made by deposition of alternate layers with high- and low- refractive index have a broad rejection band and a narrow passband, this technique does not allow for the control of filter parameters such as specification and adjustment of the transmitted wavelength at any place across the surface of the filter. The new approach discussed in the paper is directed toward the anodization of silicon to fabricate not only multilayer optical filters with a uniform passband across the field of view but also specially designed passbands at any single point in the field of view of the optical system. In particular, the realization and characterization of spatially distributed filters made of porous silicon are presented. These filters are able to select various passbands in the visible and IR regions. The filters were fabricated on p + and p - type doped substrates. By varying the electrode configuration on the backside of wafer and the applied potential during electrochemical etching, the desired spatially distributed filter can be formed. The impact of wafer resistivity on filter parameters is discussed.

  19. Dual-band bandpass filter using composite metamaterial resonator

    NASA Astrophysics Data System (ADS)

    Jin, Yu-Ting; Si, Li-Ming; Zhang, Qing-Le; Wu, Yu-Ming; Lv, Xin

    2016-03-01

    A dual-band bandpass filter at X-band is proposed using composite metamaterial resonator consisting of an outer square closed-ring resonator (SCRR) and two inner electric inductance-capacitance (ELC) resonators. Numerical simulation and microwave measurement reveal that the filter exhibits two passbands centered at 8.76 GHz and 11.04 GHz, with 3 dB bandwidths of 130 MHz and 290 MHz, respectively. The complex dispersion relation of the filter is further derived based on the effective medium theory, where two balanced composite right-/left-handed bands are found, i.e. lines exhibiting two left-handed and two right-handed bands alternating. The proposed filter may find useful in dual-band or multi-band wireless communication systems.

  20. 3D Display Using Conjugated Multiband Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  1. Air gap resonant tunneling bandpass filter and polarizer.

    PubMed

    Melnyk, A; Bitarafan, M H; Allen, T W; DeCorby, R G

    2016-04-15

    We describe a bandpass filter based on resonant tunneling through an air layer in the frustrated total internal reflection regime, and show that the concept of induced transmission can be applied to the design of thin film matching stacks. Experimental results are reported for Si/SiO2-based devices exhibiting a polarization-dependent passband, with bandwidth on the order of 10 nm in the 1550 nm wavelength range, peak transmittance on the order of 80%, and optical density greater than 5 over most of the near infrared region. PMID:27082360

  2. Rational engineering of nanoporous anodic alumina optical bandpass filters

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  3. Frequency Selective Surface Bandpass Filters Applied To Thermophotovoltaic Generators

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, Mark D.; Horne, W. Paul; Sundaram, Vasan S.

    2004-11-01

    EDTEK, Inc. is developing three TPV applications, a portable diesel fueled generator for military and remote users, a hybrid solar-gas fueled power system intended for light industry and commercial 24-hour use, and a radioisotope fueled generator for deep-space spacecraft. The application of FSS bandpass filters for spectral control in these three different TPV applications has been analyzed. It has been determined that the design of the filter cannot be evaluated solely on the parameters of the filter itself. The interactions between the filter and the emitter and the TPV cells must be taken into account. In addition to the technical analysis of the converter, the overall system losses must be included in the analysis and the design requirements such as fuel efficiency, weight, generator size, cost and other factors must be included in the analysis. The analysis shows that the FSS filters are useful for producing the three systems with good efficiencies; however, different designs are required for the filters for each application.

  4. Bandpass filter arrays patterned by photolithography for multispectral remote sensing

    NASA Astrophysics Data System (ADS)

    Bauer, T.; Thome, Heidi; Eisenhammer, Thomas

    2014-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels from visible (VIS), near infrared (NIR) up to the short wave infrared (SWIR) spectral region. Thin-film optical filters are applied to select these channels. Filter wheels and arrays of discrete stripe filters are standard configurations. To achieve compact and light weight camera designs multi-channel filter plates or assemblies can be mounted close to the electronic detectors. Optics Balzers has implemented a micro-structuring process based on a sequence of multiple coatings and photolithography on the same substrate. High-performance band pass filters are applied by plasma assisted evaporation (plasma IAD) with advance plasma source (APS) technology and optical broad-band monitoring (BBM). This technology has already proven for various multi spectral imager (MSI) configurations on fused silica, sapphire and other substrates for remote sensing application. The optical filter design and performance is limited by the maximum coating thickness micro-structurable by photolithographic lift-off processes and by thermal and radiation load on the photoresist mask during the process Recent progress in image resolution and sensor selectivity requires improvements of optical filter performance. Blocking in the UV and NIR and in between the spectral cannels, in-band transmission and filter edge steepness are subject of current development. Technological limits of the IAD coating accuracy can be overcome by more precise coating technologies like plasma assisted reactive magnetron sputtering (PARMS) and combination with optical broadband monitoring (BBM). We present an overview about concepts and technologies for band-pass filter arrays for multi-spectral imaging at Optics Balzers. Recent performance improvements of filter arrays made by micro-structuring will be presented.

  5. Optically tunable acoustic wave band-pass filter

    SciTech Connect

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-15

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  6. Optically tunable acoustic wave band-pass filter

    NASA Astrophysics Data System (ADS)

    Swinteck, N.; Lucas, P.; Deymier, P. A.

    2014-12-01

    The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.

  7. 1 THz Micromachined Waveguide Band-Pass Filter

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Jiang; Zhang, Yong; Zheng, Zhongwan; Liu, Yupeng; Xu, Ruimin; Xue, Quan

    2016-05-01

    This paper presents a waveguide band-pass filter operating at the 0.75 ˜ 1.1 THz frequency band. The metal conductivity, the surface impedance, and the skin depth are investigated in the terahertz (THz) frequency band for more accurate designs, especially at the 1 THz and higher frequencies. Because the influence of the fabrication tolerance on the component performance cannot be negligible while the frequency increases, it is a necessary to adopt the simple structure with less resonant cavities for obtaining the given performance. Therefore, the filter in this paper is designed based on the TE301/TE102 dual-mode rectangular waveguide resonant cavities, which has fewer cavities and better rejection of the stop-band. The proposed filter is fabricated using the deep reactive ion etching (DRIE) micromachining technique. Measured results are in good agreement with simulations, which verifies the accuracy of the analysis above, and the design process is valuable to realize high-performance passive components while the frequency is up to 1 THz or higher frequencies.

  8. Dynamic, infrared bandpass filters prepared from polymer-stabilized cholesteric liquid crystals.

    PubMed

    Worth, Bradley; Lee, Kyung Min; Tondiglia, Vincent P; Myers, Joshua; Mou, Shin; White, Timothy J

    2016-09-01

    We report on the formulation and electrical control of the position and bandwidth of reflective bandpass filters prepared from cholesteric liquid crystal (CLC) in the infrared (3-5 μm). These filters are prepared from alignment cells employing infrared transparent electrodes and substrates. The optical nature of the electrodes is shown to strongly influence the resulting transmission of the bandpass filters outside of the spectral reflection. PMID:27607292

  9. A Novel Broadband Band-pass Filter Based on Spoof Surface Plasmon Polaritons

    PubMed Central

    Zhao, Lei; Zhang, Xin; Wang, Jun; Yu, Wenhua; Li, Jiandong; Su, Hai; Shen, Xiaopeng

    2016-01-01

    In this paper, we present a novel broadband bandpass filter based on spoof surface plasmon polaritons (SSPPs) in the microwave frequency band. The proposed bandpass filter includes three parts: (1) coplanar waveguide (CPW); (2) matching transition; and (3) coupled structure that is an asymmetric coupled filter constructed by five grooved strips. The proposed bandpass filter realizes excellent low loss performance from 7 to 10 GHz, in which its insertion loss is around 1.5 dB in the same frequency band. Meanwhile, this filter has a good band stop characteristic from 3 to 7 GHz. A simple but accurate transmission line model was proposed to evaluate the proposed broadband SSPPs filter. The measured data, simulated results and the results obtained from the transmission line model have shown a very good agreement. The proposed planar broadband filter plays an important role for filtering surface plasmon polaritons (SPPs) waves in plasmonic circuits and systems. PMID:27796313

  10. Narrow-bandpass filters with broad rejection band for single-mode waveguides.

    PubMed

    Bittebierre, J; Lazaridνs, B

    2001-01-01

    Fabry-Perot bandpass filters made of mirrors with both high- and low-Dn (refractive-index modulation) have simultaneously a broad rejection band and a narrow passband. The higher Dn's are obtained with multilayer mirrors and the lower with Bragg gratings (BG's). Implementation of a sampling calculation technique based on the characteristic matrix formalism used for interference coatings allows for simulation of hybrid filters constructed from multilayer mirrors and BG's. The possible defects of hybrid filters are extensively analyzed. Bandpass filters made purely of both high- and low-Dn BG's are also simulated. All these filters are useful for wavelength division multiplexing applications.

  11. 1D linear-phase band-pass multiplierless FIR Hilbert transformers and filters

    NASA Astrophysics Data System (ADS)

    Pavlović, Vlastimir D.; Dončov, Nebojša S.; Ćirić, Dejan G.

    2016-06-01

    An original analytical method, based on modified Christoffel-Darboux formula, is used in the paper in order to synthesise a linear-phase band-pass finite impulse response (FIR) filter function that can have an effect of Hilbert transformer. New structure of the band-pass FIR filter in recursive realisation, together with the corresponding difference equation, is presented providing the efficient filter solution without multipliers. Several examples of filter types for different parity of two real free integer parameters, including a particular solution of Hilbert transformer, are considered in terms of required number of adders and values of cut-off frequencies of the pass and stop bands. A comparison of the proposed band-pass filter characteristics with those of a classical filter solution is provided in the paper.

  12. Derivation of the center-wavelength shift of narrow-bandpass filters under temperature change.

    PubMed

    Kim, Sung-Hwa; Hwangbo, Chang Kwon

    2004-11-15

    We derive a simple equation to predict the center-wavelength shift of a Fabry-Perot type narrow-bandpass filter by using the conventional characteristic matrix method and the elastic strain model as the temperature varies. We determine the thermal expansion coefficient of substrate from the zero-shift condition of the center wavelength of the filter. The calculated shifts are in a good agreement with the experimental ones, in which the narrow-bandpass filters are prepared by plasma ion-assisted deposition on four substrates with different thermal expansion coefficients.

  13. Miniaturized sharp band-pass filter based on complementary electric-LC resonator

    NASA Astrophysics Data System (ADS)

    Torabi, Yalda; Dadashzadeh, Golamreza; Oraizi, Homayoon

    2016-04-01

    In this paper, a novel application of complementary electric-LC (CELC) resonator as a basic element to synthesize miniaturized sharp band-pass filters is introduced. The proposed metamaterial band-pass filter is a three-stage CELC-based device, where two shunt short-circuited stubs are employed in the input and output stages and a series gap is etched in the middle stage. By these means, a high-selectivity prototype band-pass filter with 2 % fractional bandwidth in S band is designed and fabricated. The out-of-band attenuation is better than 40 dB, and the upper and lower transition bands are also quite sharp due to the presence of two transmission zeros (nearly 60 and 30 dB fall in 0.2 GHz at lower and upper edges, respectively). Moreover, the filter is substantially miniaturized with a size of effective region of 1.3 cm × 1 cm at 2.9 GHz, which is quite smaller relative to conventional designs with the same performance. The fabrication and measurement of the proposed filter configuration attest to its expected desirable features. Therefore, the application of CELC resonator is proposed for super-compact sharp band-pass filters.

  14. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  15. Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.

  16. Multi-mode multi-band bandpass filter using hexagonal patch resonator

    NASA Astrophysics Data System (ADS)

    Xiao, Jian-Kang; Li, Yong; Zu, Xiao-Peng; Zhao, Wei

    2015-02-01

    Resonant performances of the hexagonal resonators are analysed, and new tri-mode tri-band bandpass filter which operates at 2.5/2.8, 5.2/5.5 and 7.9/8.5 GHz with insertion loss of no more than 1.3 dB is presented by using a single fractal hexagonal resonator. It shows with fractal-shaped defection in hexagonal patch, filter performance is greatly improved and dual and tri-band bandpass filters can be implemented. The tri-band designs are demonstrated by experiment. The new hexagonal filter has outstanding advantages of multiple-band operation, miniature size, simple and compact structure without resonator coupling gaps. All these features are quite useful for applications in RF circuits.

  17. A novel band-pass filter based on a periodically drilled SIW structure

    NASA Astrophysics Data System (ADS)

    Coves, A.; Torregrosa-Penalva, G.; San-Blas, A. A.; Sánchez-Soriano, M. A.; Martellosio, A.; Bronchalo, E.; Bozzi, M.

    2016-04-01

    The design and fabrication of a band-pass step impedance filter based on high and low dielectric constant sections has been realized on substrate integrated waveguide (SIW) technology. The overall process includes the design of the ideal band-pass prototype filter, where the implementation of the impedance inverters has been carried out by means of waveguide sections of lower permittivity. This can be practically achieved by implementing arrays of air holes along the waveguide. Several SIW structures with and without arrays of air holes have been simulated and fabricated in order to experimentally evaluate their relative permittivity. Additionally, the equivalent filter in SIW technology has been designed and optimized. Finally, a prototype of the designed filter has been fabricated and measured, showing a good agreement between measurements and simulations, which demonstrates the validity of the proposed design approach.

  18. Design and implementation of waveguide bandpass filter using complementary metaresonator

    NASA Astrophysics Data System (ADS)

    Haq, Tanveer ul; Khan, M. F.; Siddiqui, O. F.

    2016-01-01

    During past few years, designing of complementary metamaterials-based microwave devices have extensively increased. In this paper, passband filter for rectangular waveguide is designed using complementary symmetric split-ring resonator (CSSRR). By varying different geometrical parameters of CSSRR, the passband frequency and bandwidth can be varied. Effect of design parameter on quality factor of filter is also calculated. By appropriate choice of CSSRR geometrical parameters, a filter is proposed which gives passband of 2 GHz. The results are calculated numerically using HFSS 14.0.

  19. Composite thin-foil bandpass filter for EUV astronomy Titanium-antimony-titanium

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Martin, C.; Kimble, R.; Bowyer, S.; Steele, G.

    1983-01-01

    Thin metallic foils of antimony and titanium have been investigated in an attempt to develop an EUV filter with a bandpass from 350 to 550 A. A composite filter has been developed composed of antimony sandwiched between two titanium foils. The transmissions of sample composite foils and of pure titanium foils from 130 to 1216 A are presented. The absorption coefficients of anatimony and titanium and the effect of titanium oxide on the transmission are derived. The composite filter has been found to be quite stable and mechanically rugged. Among other uses, the filter shows substantial promise for EUV astronomy.

  20. Microstrip Hairpin Bandpass Filter Using Modified Minkowski Fractal-Shape for Suppression of Second Harmonic

    NASA Astrophysics Data System (ADS)

    Lalbakhsh, Ali; Lotfi Neyestanak, Abbas Ali; Naser-Moghaddasi, Mohammad

    In this paper, a novel microstrip hairpin-line bandpass filter which employs a modified Minkowski fractal shape is proposed. Although conventional hairpin-line filters are popular for RF front ends, they suffer from undesired spurious responses located at the second harmonic, which causes asymmetry in the upper skirt band. By proper design, the second harmonic of fractal filters can be significantly suppressed through the use of fractal shape. To validate this novel geometry, the proposed filters are fabricated and measured. Simulated results are in good agreement with measured results.

  1. Ultra-narrow bandpass filters for infrared applications with improved angle of incidence performance

    NASA Astrophysics Data System (ADS)

    Rahmlow, Thomas D.; Fredell, Markus; Chanda, Sheetal; Johnson, Robert

    2016-05-01

    Narrow band-pass optical interference filters are used for a variety of applications to improve signal quality in laser based systems. Applications include LIDAR, sensor processing and free space communications. A narrow band width optical filter allows for passage of the laser signal while rejecting ambient light. The more narrow the bandwidth, the better the signal to noise. However, the bandwidth of a design for a particular application is typically limited by a number of factors including spectral shift over the operational angles of incidence, thermal shift over the range of operating temperature and, in the case of laser communication, rejection of adjacent laser channels. The trade-off of these parameters can significantly impact system design and performance. This paper presents design and material approaches to maximize the performance of narrow bandpass filters in the infrared.

  2. Quantum analysis of a bandpass Purcell filter for accurate qubit readout

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Martinis, John M.; Korotkov, Alexander N.

    2015-03-01

    In a circuit QED setup the readout fidelity of a superconducting qubit is partially limited by the qubit relaxation through the resonator into a transmission line, which is also known as the Purcell effect. One way to suppress this effect is to employ a filter, which impedes microwave propagation at the qubit frequency. We present a quantum analysis for the bandpass Purcell filter that was recently realized by E. Jeffrey et al. [1]. Using experimental parameters, we show that the bandpass filter suppresses the qubit relaxation rate by two orders of magnitude while keeping the measurement rate the same. We also show that in the presence of a microwave drive the qubit relaxation rate further decreases with increasing drive strength.

  3. Radiation Hard Bandpass Filters for Mid- to Far-IR Planetary Instruments

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenack, James A.; Huang, Wei-Chung; Merrell, Willie C.; Quijada, Manuel; Steptoe-Jackson, Rosalind; Wollack, Edward J.

    2012-01-01

    We present a novel method to fabricate compact metal mesh bandpass filters for use in mid- to far-infrared planetary instruments operating in the 20-600 micron wavelength spectral regime. Our target applications include thermal mapping instruments on ESA's JUICE as well as on a de-scoped JEO. These filters are novel because they are compact, customizable, free-standing copper mesh resonant bandpass filters with micromachined silicon support frames. The filters are well suited for thermal mapping mission to the outer planets and their moons because the filter material is radiation hard. Furthermore, the silicon support frame allows for effective hybridization with sensors made on silicon substrates. Using a Fourier Transform Spectrometer, we have demonstrated high transmittance within the passband as well as good out-of-band rejection [1]. In addition, we have developed a unique method of filter stacking in order to increase the bandwidth and sharpen the roll-off of the filters. This method allows one to reliably control the spacing between filters to within 2 microns. Furthermore, our method allows for reliable control over the relative position and orienta-tion between the shared faces of the filters.

  4. Tunable band-pass plasmonic waveguide filters with nanodisk resonators.

    PubMed

    Lu, Hua; Liu, Xueming; Mao, Dong; Wang, Leiran; Gong, Yongkang

    2010-08-16

    A novel and simple plasmonic filter based on metal-insulator-metal plasmonic waveguides with a nanodisk resonator is proposed and investigated numerically. By the resonant theory of disk-shaped nanocavity, we find that the resonance wavelengths can be easily manipulated by adjusting the radius and refractive index of the nanocavity, which is in good agreement with the results obtained by finite-difference time-domain (FDTD) simulations. In addition, the bandwidths of resonance spectra are tunable by changing the coupling distance between the nanocavity and waveguides. This result achieved by FDTD simulations can be accurately analyzed by temporal coupled mode theory. Our filters have important potential applications in high-density plasmonic integration circuits.

  5. Multispectral imaging with optical bandpass filters: tilt angle and position estimation

    NASA Astrophysics Data System (ADS)

    Brauers, Johannes; Aach, Til

    2009-01-01

    Optical bandpass filters play a decisive role in multispectral imaging. Various multispectral cameras use this type of color filter for the sequential acquisition of different spectral bands. Practically unavoidable, small tilt angles of the filters with respect to the optical axis influence the imaging process: First, by tilting the filter, the center wavelength of the filter is shifted, causing color variations. Second, due to refractions of the filter, the image is distorted geometrically depending on the tilt angle. Third, reflections between sensor and filter glass may cause ghosting, i.e., a weak and shifted copy of the image, which also depends on the filter angle. A method to measure the filter position parameters from multispectral color components is thus highly desirable. We propose a method to determine the angle and position of an optical filter brought into the optical path in, e.g., filter-wheel multispectral cameras, with respect to the camera coordinate system. We determine the position and angle of the filter by presenting a calibration chart to the camera, which is always partly reflected by the highly reflective optical bandpass filter. The extrinsic parameters of the original and mirrored chart can then be estimated. We derive the angle and position of the filter from the coordinates of the charts. We compare the results of the angle measurements to a ground truth obtained from the settings of a high-precision rotation table and thus validate our measurement method. Furthermore, we simulate the refraction effect of the optical filter and show that the results match quite well with the reality, thus also confirming our method.

  6. Nonlinear performance characterization in an eight-pole quasi-elliptic bandpass filter

    NASA Astrophysics Data System (ADS)

    Mateu, J.; Collado, C.; Menéndez, O.; O'Callaghan, J. M.

    2004-05-01

    In this work we predict the nonlinear behaviour of an eight-pole quasi-elliptic bandpass high temperature superconducting (HTS) filter with an equivalent circuit extracted from intermodulation measurements performed at the centre of the filter passband. We present measurements that show that the equivalent circuit is able to predict the intermodulation products produced by the filter when driven by two in-band or out-of-band sinusoidal signals. Numerical techniques based on harmonic balance are used to extract the elements of the equivalent circuit and to simulate its nonlinear performance.

  7. A band-pass plasmonic filter with dual-square ring resonator

    NASA Astrophysics Data System (ADS)

    Duan, Gaoyan; Lang, Peilin; Wang, Lulu; Yu, Li; Xiao, Jinghua

    2014-09-01

    In this paper, we show the simulation of a plasmonic band-pass filter which consists of two surface plasmon polaritons (SPPs) waveguides and a resonator in metal-insulator-metal (MIM) structure. The resonator is formed by two square rings and a patch between them. The patch is a tiny rectangle cavity in order to transfer the SPPs from one ring to the other. The finite element method (FEM) method is employed in simulation. The results show that the dual-ring resonator performs better than a single ring does. The 3 dB bandwidth near the peak wavelength λ = 1054 nm is merely 31.7 nm. The resonant wavelength can be shifted by changing the side length of the square ring. This narrow band-pass filter is easy to fabricate and has potential applications in future integrated optical circuits.

  8. Design and manufacture of a bandpass filter with high transmittance and steep edge on both sides

    NASA Astrophysics Data System (ADS)

    Wang, Ruisheng; Lü, Shaobo; Yin, Xiaojun; Zhao, Shuaifeng; Sun, Yan

    2016-01-01

    By using Nb2O5 and SiO2 as the coating material, a 152 layers (12 cavities) bandpass film stack with steep edge on both sides was designed. Multiple thickness control methods, including direct optical monitoring control and time control were used in coating strategy. To confirm the feasibility of this coating strategy, a process simulation was performed using Simulator software, and the simulation result indicated that relative thickness errors for all layers were less than ±0.1%. A bandpass filter with this film stack on one side was manufactured by using a plasma assisted reactive magnetic sputtering coating machine. The measuring result shows that the peak transmittance of the filter (without AR on backside) is up to 95.4%, and the steepness of both blocking slope are less than λ/100.

  9. Project Report: Reducing Color Rivalry in Imagery for Conjugated Multiple Bandpass Filter Based Stereo Endoscopy

    NASA Technical Reports Server (NTRS)

    Ream, Allen

    2011-01-01

    A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.

  10. Liquid crystal dual-mode band-pass filter with improved performance

    NASA Astrophysics Data System (ADS)

    Torrecilla, J.; Marcos, C.; Urruchi, V.; Sánchez-Pena, J. M.; Chojnowska, O.

    2015-06-01

    Over the last twenty years, there has been a growing interest in the design of tunable devices at microwave frequencies by us- ing liquid crystals technology. In particular, the use of liquid crystals with high dielectric anisotropy allows manufacturing voltage-controlled devices to operate in a wide frequency range. In this work the frequency response of a liquid crystal band-pass filter with dual-mode microstrip structure has been studied in depth by using a simulation software tool. A reshap- ing of a conventional dual-mode square patch resonator bandpass filter with a square notch, studied in the literature, has been proposed with the goal of improving the filter performance. The main features achieved are a significant increase in the return loss of the filter and a narrowing of a 3-dB bandwidth. Specifically, a reduction in the filter bandwidth from 800 MHz to 600 MHz, which leads to a return loss increase from 6 dB to 12.5 dB, has been achieved. The filter centre frequency can be tuned from 4.54 GHz to 5.19 GHz.

  11. A narrow band-pass filter type Wilkinson power divider for I-Q demodulator in microwave interferometer system

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Ikezoe, R.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Ma, Z.; Sakagami, I.; Mase, A.

    2015-11-01

    I-Q (In-phase Quadrature) demodulator is one of key components in microwave interferometer system application. Normally, I-Q demodulator consists of amplifiers, mixers, 90 degree phase shifter, power divider and band-pass filters, and it is widely used in various microwave communication systems and measurement systems. In this paper, power divider and band-pass filters are newly designed as one single passive component, therefore, I-Q demodulator topology becomes simplified. The novel narrow band-pass filter type Wilkinson power divider not only provides extremely miniaturized circuit size, but also maintains the band-pass filter performance and power division function as well. One experimental circuit shows good agreement with the theoretical simulation.

  12. Note: An ultranarrow bandpass filter system for single-photon experiments in quantum optics

    NASA Astrophysics Data System (ADS)

    Höckel, David; Martin, Eugen; Benson, Oliver

    2010-02-01

    We describe a combined ultranarrow bandpass filtering setup for single-photon experiments in quantum optics. The filter is particularly suitable for single-photon electromagnetically induced transparency (EIT) experiments, but can also be used in several similar applications. A multipass planar Fabry-Pérot etalon together with polarization filters and spatial filtering allows 114 dB pump beam suppression, while the signal beam is attenuated by just 4 dB, although both wavelengths are only separated by 0.025 nm (9.2 GHz). The multipass etalon alone accounts for 46 dB suppression while it has a peak transmission of 65%. We demonstrate EIT experiments in Cs vapor at room temperature with probe power in the femtowatt regime using this filter.

  13. System design for a million channel digital spectrum analyzer /MCSA/. [of bandpass filtering in SETI receivers

    NASA Technical Reports Server (NTRS)

    Peterson, A.; Narasimha, M.; Narayan, S.

    1980-01-01

    The system design of a wideband (8 MHz) million-channel digital spectrum analyzer for use with a SETI receiver is presented. The analyzer makes use of a digital bandpass filter bank for transforming the wideband input signal into a specified number (120) of uniform narrowband output channels by the use of a Fourier transform digital processor combined with a prototype digital weighting network (finite impulse response filter). The output is then processed separately by 120 microprocessor-based discrete Fourier transform computers, each producing 8190 output channels of approximately 8 Hz bandwidth by the use of an 8190-point prime factor algorithm.

  14. An algorithm used for quality criterion automatic measurement of band-pass filters and its device implementation

    NASA Astrophysics Data System (ADS)

    Liu, Qianshun; Liu, Yan; Yu, Feihong

    2013-08-01

    As a kind of film device, band-pass filter is widely used in pattern recognition, infrared detection, optical fiber communication, etc. In this paper, an algorithm for automatic measurement of band-pass filter quality criterion is proposed based on the proven theory calculation of derivate spectral transmittance of filter formula. Firstly, wavelet transform to reduce spectrum data noises is used. Secondly, combining with the Gaussian curve fitting and least squares method, the algorithm fits spectrum curve and searches the peak. Finally, some parameters for judging band-pass filter quality are figure out. Based on the algorithm, a pipeline for band-pass filters automatic measurement system has been designed that can scan the filter array automatically and display spectral transmittance of each filter. At the same time, the system compares the measuring result with the user defined standards to determine if the filter is qualified or not. The qualified product will be market with green color, and the unqualified product will be marked with red color. With the experiments verification, the automatic measurement system basically realized comprehensive, accurate and rapid measurement of band-pass filter quality and achieved the expected results.

  15. Miniaturized Dual-Band Bandpass Filter Using Embedded Dual-Mode Resonator with Controllable Bandwidths

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanming; Xu, Jin; Kang, Wei; Hu, Zhenxin; Wu, Wen

    2016-09-01

    In this paper, a miniaturized dual-band bandpass filter (DB-BPF) using embedded dual-mode resonator (DMR) with controllable bandwidths is proposed. Two passbands are generated by two sets of resonators operating at two different frequencies. One set of resonators is utilized not only as the resonant elements that yield the lower passband, but also as the feeding structures with source-load coupling to excite the other to produce the upper passband. Sufficient degrees of freedom are achieved to control the center frequencies and bandwidths of two passbands. Moreover, multiple transmission zeros (TZs) are created to improve the passband selectivity of the filter. The design of the filter has been demonstrated by the measurement. The filter features not only miniaturized circuit sizes, low insertion loss, independently controllable central frequencies, but also controllable bandwidths and TZs.

  16. Bandpass filters based on phase-shifted photonic crystal waveguide gratings.

    PubMed

    Chen, Chao; Li, Xuechun; Li, Hanhui; Xu, Kun; Wu, Jian; Lin, Jintong

    2007-09-01

    In this paper, a bandpass transmission filter realized in phase-shifted waveguide gratings based on photonic crystals (PCs) is proposed. Phase-shift regions each composed of one period of photonic crystal (PC) waveguide are incorporated into PC waveguide gratings. The magnitudes of the phase-shifts are modified by involving small changes in the size of the border rods in the phase-shift regions. Using standard coupled-mode theory and finite-difference time-domain (FDTD) method, we show that by properly choosing the magnitudes of phase-shifts and the lengths of waveguide gratings, a flat-top and sharp roll-off response with a narrow bandwidth is theoretically and numerically achieved by the designed filter. A further analysis shows that the center frequency of the transmission band can be changed by altering the magnitude of the phase-shift and the response performance exhibits relaxed sensitivity to the phase-shift variation. As a specific application, we theoretically demonstrate a third-order Chebyshev bandpass filter based on compound phase-shifted PC waveguide gratings. The filter performance is suitable for dense wavelength-division-multiplexed (DWDM) optical communication systems with a channel spacing of 100-GHz.

  17. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    NASA Technical Reports Server (NTRS)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  18. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    PubMed

    Mezaal, Yaqeen S; Eyyuboglu, Halil T

    2016-01-01

    A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered. PMID:27054755

  19. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot

    PubMed Central

    Mezaal, Yaqeen S.; Eyyuboglu, Halil T.

    2016-01-01

    A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered. PMID:27054755

  20. Investigation of New Microstrip Bandpass Filter Based on Patch Resonator with Geometrical Fractal Slot.

    PubMed

    Mezaal, Yaqeen S; Eyyuboglu, Halil T

    2016-01-01

    A compact dual-mode microstrip bandpass filter using geometrical slot is presented in this paper. The adopted geometrical slot is based on first iteration of Cantor square fractal curve. This filter has the benefits of possessing narrower and sharper frequency responses as compared to microstrip filters that use single mode resonators and traditional dual-mode square patch resonators. The filter has been modeled and demonstrated by Microwave Office EM simulator designed at a resonant frequency of 2 GHz using a substrate of εr = 10.8 and thickness of h = 1.27 mm. The output simulated results of the proposed filter exhibit 22 dB return loss, 0.1678 dB insertion loss and 12 MHz bandwidth in the passband region. In addition to the narrow band gained, miniaturization properties as well as weakened spurious frequency responses and blocked second harmonic frequency in out of band regions have been acquired. Filter parameters including insertion loss, return loss, bandwidth, coupling coefficient and external quality factor have been compared with different values of perturbation dimension (d). Also, a full comparative study of this filter as compared with traditional square patch filter has been considered.

  1. Polarization insensitive wide-angle triple-band metamaterial bandpass filter

    NASA Astrophysics Data System (ADS)

    Fu, Wenyue; Han, Yuchen; Li, Jiandong; Wang, Haoshen; Li, Haipeng; Han, Kui; Shen, Xiaopeng; Cui, Tiejun

    2016-07-01

    In this letter, we report the design, fabrication and measurement of a polarization insensitive wide-angle triple-band metamaterial bandpass filter (BPF) in the microwave frequency. The proposed BPF consists of two identical metal resonant units which have three concentric square slots separated by a dielectric layer. Experimental results show that the BPF has three distinctive transmission bands centered at frequencies 6.22 GHz, 9.46 GHz and 12.14 GHz with transmission rates of  ‑0.40 dB, ‑0.71 dB and  ‑1.40 dB, respectively, agreeing well with simulation results. By introducing the substrate integrated waveguide, the filter is valid to a wide range of incident angles for both transverse electric and transverse magnetic polarizations. The triple-band metamaterial BPF can be used as multiband filters and radomes owing to its multiband transmissions, polarizations insensitive and wide-angle responses.

  2. Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering.

    PubMed

    Goldstein, J L

    1990-11-01

    Evidence has accumulated from experimental intracochlear studies that nonlinear mechanical response of the basilar membrane is responsible for cochlear frequency tuning and is the major source of extracochlear nonlinear phenomena in cochlear sound analysis. Known basilar-membrane data provide a basis for synthesizing and quantifying conceptions of cochlear signal processing derived earlier from extracochlear studies that indicated the existence of rapid waveform compression and dual signal processing. The multiple-bandpass-nonlinearity (MBNL) model represents and generalizes available measurements of basilar-membrane mechanical responses in terms of a rapid nonlinear mixing at each place of an insensitive, linearlike lowpass filter with a sensitive, compressive bandpass filter. The dual filters are associated with the tails and tips of cochlear frequency tuning curves. Simulations of published nonlinear mechanical responses of the basilar membrane and predicted correlations with auditory-nerve responses are systematically explored. Correlations between model and biophysical data suggest that the model represents a nonlinear mixing by outer hair cells of hydromechanical and electromechanical signals, and thus provides a quantitative tool for biophysical study of cochlear mechanisms. PMID:2292508

  3. Design of cross-coupled planar microstrip band-pass filters using a novel adjustment method

    NASA Astrophysics Data System (ADS)

    Alkafaji, Muhammed S. S.

    2015-02-01

    In this paper the design of a cross-coupled planar microwave band-pass filter using open-loop square microstrip resonators, with two symmetrically placed attenuation poles, is presented. The design starts from the following specifications: central frequency 3GHz, 150MHz bandwidth, 1dB ripple in the pass-band corresponding to return loss of 6.8dB.The adjustment method using additional ports placed on each resonator of the filter is used, allowing the interconnection of the filter structure with external lumped elements. Connecting a reactive element (capacitor) from such an additional port to ground allows a fine tuning of the resonator. Connecting a reactive element between two such additional ports allows a fine change in the coupling coefficient between these resonators. After adding four extra ports and connecting the external elements (capacitors), it is possible to use fast circuit simulation software to optimize the filter's response. Then all these capacitors have to be gradually eliminated, by compensating their effects through fine changes back in the layouts. If some specific issues are properly handled, this procedure improves considerably the quality of the final design of the filter. After a thorough optimization of the layout, the filter was fabricated and measured. The results of measurements are in good agreement with the specifications of the filter, showing this way the efficiency of the applied optimization method.

  4. Design and Specification of Optical Bandpass Filters for Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Tsevetanov, Zlatan; Woodruff, Bob; Mooney, Thomas A.

    1998-01-01

    Advanced optical bandpass filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) have been developed on a filter-by-filter basis through detailed studies which take into account the instrument's science goals, available optical filter fabrication technology, and developments in ACS's charge-coupled-device (CCD) detector technology. These filters include a subset of filters for the Sloan Digital Sky Survey (SDSS) which are optimized for astronomical photometry using today's charge-coupled-devices (CCD's). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements for these filters include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, a high degree of parfocality, and immunity to environmental degradation. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The highly successful paradigm in which final specifications for flight filters were derived through interaction amongst the ACS Science Team, the instrument designer, the lead optical engineer, and the filter designer and vendor is described. Examples of iterative design trade studies carried out in the context of science needs and budgetary and schedule constraints are presented. An overview of the final design specifications for the ACS bandpass and ramp filters is also presented.

  5. Continued Development of an Ultra-Narrow Bandpass Filter for Solar Research

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1993-01-01

    The objective of work under this task was to develop ultranarrow optical bandpass filters and related technology necessary for construction of a compact solar telescope capable of operating unattended in space. The scientific problems to which such a telescope could be applied include solar seismology, solar activity monitoring, solar irradiance variations, solar magnetic field evolution, and the location of targets for narrow-field specialized telescopes. We have demonstrated a Y-cut lithium-niobate Fabry-Perot etalon. This filter will be used on the Flare Genesis Experiment. We also obtained solar images with a Z-cut etalon. The technical report on etalon filters is attached to this final report. We believe that work under this grant will lead to the commercial availability of a universal optical filter with approximately 0.1 A bandwidth. Progress was made toward making a suitable 1-2 A tunable blocker filter, but it now appears that the best approach is to make a double-cavity etalon that will not require such a narrow blocker. Broader band blockers are commercially available.

  6. Wide Bandpass and Narrow Bandstop Microstrip Filters Based on Hilbert Fractal Geometry: Design and Simulation Results

    PubMed Central

    Mezaal, Yaqeen S.; Eyyuboglu, Halil T.; Ali, Jawad K.

    2014-01-01

    This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, −28 dB return loss and −0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, −0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems. PMID:25536436

  7. Wide Bandpass and Narrow Bandstop Microstrip Filters based on Hilbert fractal geometry: design and simulation results.

    PubMed

    Mezaal, Yaqeen S; Eyyuboglu, Halil T; Ali, Jawad K

    2014-01-01

    This paper presents new Wide Bandpass Filter (WBPF) and Narrow Bandstop Filter (NBSF) incorporating two microstrip resonators, each resonator is based on 2nd iteration of Hilbert fractal geometry. The type of filter as pass or reject band has been adjusted by coupling gap parameter (d) between Hilbert resonators using a substrate with a dielectric constant of 10.8 and a thickness of 1.27 mm. Numerical simulation results as well as a parametric study of d parameter on filter type and frequency responses are presented and studied. WBPF has designed at resonant frequencies of 2 and 2.2 GHz with a bandwidth of 0.52 GHz, -28 dB return loss and -0.125 dB insertion loss while NBSF has designed for electrical specifications of 2.37 GHz center frequency, 20 MHz rejection bandwidth, -0.1873 dB return loss and 13.746 dB insertion loss. The proposed technique offers a new alternative to construct low-cost high-performance filter devices, suitable for a wide range of wireless communication systems. PMID:25536436

  8. Bandpass filters based on planar metal-dielectric structures in the E-plane of a rectangular waveguide (Review)

    NASA Astrophysics Data System (ADS)

    Gololobov, V. P.; Omelianenko, M. Iu.

    1987-01-01

    The paper surveys the literature and some original results on the development of low-insertion-loss E-plane filters for microwave integrated circuits. Emphasis is placed on the design and fabrication of inductive-strip bandpass filters in rectangular and partially filled waveguides. The possibility of improving the performance of these filters in the multilayer planar realization is demonstrated theoretically. Experimental results agree satisfactorily with calculations.

  9. Symmetrical band-pass loudspeaker systems

    NASA Astrophysics Data System (ADS)

    Matusiak, Grzegorz Piotr

    2001-12-01

    Loudspeaker systems are analyzed in a doctoral dissertation. The dissertation concerns loudspeaker systems, which are known as subwoofers or band-pass loudspeaker systems. Their advantages include: high- quality sound reproduction in the low-frequency range, small dimensions, small nonlinear distortions and the fact that they can be placed anywhere in a room or car. Band-pass loudspeaker systems are used widely in the so- called Home Theatre as well as to provide sound in cinema, theatre, concert, discotheque, opera, operetta, philharmonic and amphitheater halls, at open-air concerts, and so on. Various designs are mass-produced by a large number of manufacturers. The study covers an analysis of band-pass loudspeaker systems to which the frequency transformation, i.e. the reactance transformation, has been applied. Since this is a symmetrical transformation, amplitude frequency responses of the studied band-pass systems are also symmetrical (logarithmic scale of a frequency). As a result, the high-pass loudspeaker system design method, known as the Thiele-Small, Benson analysis, can be employed. The investigations include the formulation of band-pass system equations (fourth, sixth and eighth-order polynomials) and the subsequent derivation of relations for the calculation of system parameters. The obtained results enable the calculation of optimum designs for prescribed alignments, e.g. (Chebyshev) equal-ripple, (Butterworth) maximally flat, or quasi-maximally flat (QB). The analysis covers fourth, sixth and eighth-order symmetrical systems. Eighth-order systems have been divided into three kinds according to three ways of physical realization. The doctoral dissertation includes band-pass loudspeaker systems, which can be designed with active or passive filters or without the filter. Designed systems consist of a loudspeaker whose front of a diaphragm is loaded with a Helmholtz resonator, i.e. an enclosure with a vent, which radiates sound outwards. The back is

  10. Enhanced optical characteristics of terahertz bandpass filters based on plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yadollahzadeh, Sajjad; Baghban, Hamed

    2016-04-01

    Plasmonic nanostructures enable considerable control and manipulation of light at the subwavelength scale and are promising for demonstration of optical metamaterials with enhanced spectral response. In this paper, we introduce a generation of terahertz bandpass filters that exploit the characteristics of subwavelength plasmonic nanoparticles. The design procedure is discussed based on a well-known complementary split ring resonator with a resonant feature at the THz region (˜1.5 THz), and it has been shown that device design based on plasmonic nanoparticles can conquer the poor off-resonance selectivity limit of common THz filters and exhibit higher transmission response, faster roll-off, and almost ripple-free operation. A much larger coupling capacitance for nanoparticles in the touching condition can modify the resonance wavelength, and localized hot spots enhance the device sensitivity for special applications. The effect of plasmonic nanoparticle size on the filtering characteristics is also discussed. A simple fabrication procedure based on discontinuous islandized surface morphology of thin metallic films on a dielectric has been proposed for demonstration of the THz filters introduced here.

  11. The Ring of Fire - an internal illimination system for detector sensitivity and filter bandpass characterization

    SciTech Connect

    Scarpine, Victor E.; Kent, Stephen M.; Deustua, Susana E.; Sholl, Michael J.; Mufson, Stuart L.; Ott, Melanie N.; Wiesner, Matthew P.; Baptitst, Brian J.; /Indiana U.

    2010-07-01

    We describe a prototype of an illumination system, the Ring of Fire (ROF), which is used as part of an internal calibration system for large focal plane detector arrays in TMA (Three Mirror Anastigmat) telescope designs. Such designs have been proposed for the SNAP (SuperNova Acceleration Probe) version of a Joint Dark Energy Mission (JDEM). The ROF system illuminates the focal plane with a light beam the closely matches that of the telescope and is used for creating high spatial frequency flat fields and monitoring filter bandpasses for experiments that demand a highly accurate characterization of the detectors. We present measurements of a mockup of this prototype ROF design including studies in variations in illumination across a large focal plane.

  12. Learning Multiple Band-Pass Filters for Sleep Stage Estimation: Towards Care Support for Aged Persons

    NASA Astrophysics Data System (ADS)

    Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo

    This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.

  13. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity.

    PubMed

    Jiang, Fan; Yu, Yuan; Tang, Haitao; Xu, Lu; Zhang, Xinliang

    2016-08-01

    we propose and demonstrate a bandpass microwave photonic filter (MPF) with ultrahigh stopband attenuation and skirt selectivity based on a simple signal cancellation technique. By injecting two phase modulated signals located on opposite sides of two resonant gain peaks of a Fabry-Pérot semiconductor optical amplifier (FP-SOA), two microwave frequency responses can be generated by the two input signals, respectively. The two frequency responses will add together within the passband but cancel each other out within the stopband, thus generating a MPF with simultaneous ultrahigh stopband attenuation and skirt selectivity. In the experiment the obtained MPF exhibits single passband in the range from 0 to 18 GHz and is tunable from 4 to 16 GHz by adjusting the laser wavelengths. During the tuning process the maximum stopband attenuation is 76.3 dB and the minimum 30-dB to 3-dB bandwidth shape factor is 3.5. PMID:27505828

  14. Elastic metamaterial-based impedance-varying phononic bandgap structures for bandpass filters

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Jin; Lee, Joo Kyung; Kim, Yoon Young

    2015-09-01

    In this study, we propose a novel impedance-variation scheme in a half-quarter-wave stack (HQWS) structure to achieve desired bandpass filtering performances such as quasi-flat tops, steep bandedges and wide surrounding bandgaps. Specifically, only the characteristic impedances of constituent half-wave layers are varied without altering the phase shift of π at the center frequency of the target passband that is the Fabry-Perot resonance frequency of the unperturbed original HQWS structure. Because the simultaneous control of characteristic impedance and phase shift in each of the constituent half-wave layers is not achievable only by layer-sizing, the varied layers must be realized by metamaterials. So, specially-configured aluminum-based metamaterials having a double-slit void inhomogeneity are engineered and the actual wave transmission performance of the metamaterial-realized HQWS structure is examined numerically and experimentally.

  15. Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban

    2003-01-01

    The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.

  16. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application. PMID:27475583

  17. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  18. Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Zan; Huang, Beiju; Zhang, Zanyun; Cheng, Chuantong; Chen, Hongda

    2013-12-01

    A bandpass microwave photonic filter based on an integrated optical signal processor is proposed and demonstrated by numerical simulation. The optical signal processor consisting of double-bus-coupled and series-cascaded silicon microrings (MRs) is used to produce two bandpass responses to process optical carrier signal and sideband signal separately. Because of the tunability of MRs, variable -3 dB bandwidth and tunable operating frequency are achieved. The -3 dB bandwidth and operating frequency can be tuned from 1.5 to 12 GHz and from 15 to 34 GHz, respectively. The loss impact, tuning method, and fabrication error tolerance are also discussed.

  19. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  20. Improved color coordinates of green monochromatic pc-LED capped with a band-pass filter.

    PubMed

    Oh, Ji Hye; Yang, Su Ji; Sung, Yeon-Goog; Do, Young Rag

    2013-02-25

    This study introduces a "greener" green monochromatic phosphor-converted light-emitting diode (pc-LED) using a band-pass filter (BPF) combined with a long-pass dichroic filter (LPDF) and a short-pass dichroic filter (SPDF) to improve the color quality of our previously developed LPDF-capped green pc-LED. This can also address the drawbacks of III-V semiconductor-type green LEDs, which show a low luminous efficacy and a poor current dependence of the efficacy and color coordinates compared to blue semiconductor-type LEDs. The optical properties of green monochromatic pc-LEDs using a BPF are compared with those of LPDF-capped green pc-LEDs, which have a broad band spectrum, and III-V semiconductor-type green LEDs by changing the transmittance wavelength range of the BPF and the peak wavelength of the green phosphors. BPF-capped green monochromatic pc-LEDs provide a high luminous efficacy (134 lm/W at 60 mA), and "greener" 1931 Commission Internationale d'Eclairage (CIE; CIEx, CIEy) color coordinates (0.24, 0.66) owing to the narrowed emission spectrum. We also propose a two-dimensional (2D) polystyrene (PS) microbead (2-μm diameter) monolayer as a scattering layer to overcome the poor angular dependence of the color coordinates of the transmitted light through a nano-multilayered dichroic filter such as an LPDF or BPF. The 2D PS scattering layer improves the angular dependence of the green color emitted from a BPF-capped green pc-LED with only 3% loss of luminous efficacy.

  1. A K-band Frequency Agile Microstrip Bandpass Filter using a Thin Film HTS/Ferroelectric/dielectric Multilayer Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.

    1998-01-01

    We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.

  2. A Novel K-Band Tunable Microstrip Bandpass Filter Using a Thin Film HTS/Ferroelectric/ Dielectric Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; VanKeuls, F.; Miranda, F. A.

    1998-01-01

    We report on YBCO/strontium titanate (STO) thin film K-band tunable bandpass filters on lanthanum aluminate substrates. The 2 pole filters were designed for a center frequency of 19 GHz and 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO (epsilon-rSTO). Center frequency shifts greater than 2 GHz were obtained at a 400V bipolar dc bias at temperatures below 77K, with minimum degradation in the insertion loss of the filters.

  3. Morphogen-defined patterning of Escherichia coli enabled by an externally tunable band-pass filter

    PubMed Central

    Sohka, Takayuki; Heins, Richard A; Ostermeier, Marc

    2009-01-01

    Background Gradients of morphogens pattern cell fate – a phenomenon that is especially important during development. A simple model system for studying how morphogens pattern cell behavior would overcome difficulties inherent in the study of natural morphogens in vivo. A synthetic biology approach to building such a system is attractive. Results Using an externally-tunable band-pass filter paradigm, we engineered Escherichia coli cells to function as a model system for the study of how multiple morphogens can pattern cell behavior. We demonstrate how our system exhibits behavior such as morphogen crosstalk and how the cells' growth and fluorescence can be patterned in a number of complex patterns. We extend our cell patterning from 2D cultures on the surface of plates to 3D cultures in soft agarose medium. Conclusion Our system offers a convenient, well-defined model system for fundamental studies on how multiple morphogen gradients can affect cell fate and lead to pattern formation. Our design principles could be applied to eukaryotic cells to develop other models systems for studying development or for enabling the patterning of cells for applications such as tissue engineering and biomaterials. PMID:19586541

  4. HTS dual-band bandpass filters using stub-loaded hair-pin resonators for mobile communication systems

    NASA Astrophysics Data System (ADS)

    Sekiya, N.; Sugiyama, S.

    2014-09-01

    A HTS dual-band bandpass filter is developed to obtain sharp-cut off characteristics for mobile communication systems. The filter is composed of five stub-loaded hair-pin resonators with H-shaped waveguides between them. The main advantage of the proposed filter is to allow independent control of the center frequency of the first and second bands. The bandwidths can be flexibly adjusted using the H-shaped waveguide. An electromagnetic simulator was used to design and analyze the filter, which have a 3.5-GHz center frequency and a 70-MHz (2%) bandwidth for the first band and a 5.0-GHz center frequency and a 100-MHz (2%) bandwidth for the second band. The filter was fabricated using YBa2Cu3Oy thin film on an Al2O3 substrate. Ground plane was fabricated using Au thin film. The measured frequency responses of the filter tally well with the simulated ones.

  5. Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters

    NASA Technical Reports Server (NTRS)

    Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.

    1993-01-01

    A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.

  6. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    NASA Astrophysics Data System (ADS)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  7. Ultra-narrow angle-tunable Fabry-Perot bandpass interference filter for use as tuning element in infrared lasers

    NASA Astrophysics Data System (ADS)

    Kischkat, Jan; Peters, Sven; Semtsiv, Mykhaylo P.; Wegner, Tristan; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Masselink, W. Ted

    2014-11-01

    We have developed a bandpass infrared interference filter with sufficiently narrow bandwidth to be potentially suitable for tuning a self-stabilizing external-cavity quantum-cascade laser (ECQCL) in single-mode operation and describe the process parameters for fabrication of such filters with central wavelengths in the 3-12 μm range. The filter has a passband width of 6 nm or 0.14% with peak transmission of 55% and a central wavelength of approximately 4.0 μm. It can be tuned through over 4% by tilting with respect to the incident beam and offers orders of magnitude larger angular dispersion than diffraction gratings. We compare filters with single-cavity and coupled-cavity Fabry-Perot designs.

  8. A bandpass filter for the enhancement of an X-ray reconstruction of the tissue in the spinal canal

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Glenn, W. V.; Kwoh, Y. S.; Truong, T. K.

    1980-01-01

    In this communication, a new bandpass reconstruction filter is developed to partially remove the low spatial frequencies of the bone and the soft tissue in an X-ray reconstruction of a lumbar spine. This partial removal of the low frequencies suppresses the bony vertebral body and the soft tissue components within the projections of actual clinical data. It also has the effect of enhancing the sharp edges of the fatty tissue surrounding the spinal cord region. The intent of this effort is to directly visualize the spinal cord without the need for water-soluble contrast (e.g., metrizamide) to be installed through lumbar punctures.

  9. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source.

    PubMed

    Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P

    2014-06-01

    A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.

  10. Design and realisation of star-geometry dual-mode bandpass filter.

    PubMed

    Shen, S; Ramer, R; Banciu, M; Mansour, R

    2005-11-28

    A design of a planar dual-mode filter is proposed and developed for satellite and wireless communication systems. The novelty of the proposed structure consists of replacing simple diagonal design with a starlike one. This offers the ability of controlling the central frequency and the bandwidth. The filter was implemented on Rogers substrate with 10.8 dielectric constant. The proposed filter structure is 37% smaller in size in comparison with traditional dual mode filters.

  11. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters

    PubMed Central

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-01-01

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies. PMID:26552584

  12. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.

    PubMed

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-11-10

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.

  13. Tailoring the time delay of optical pulse/sequence employing cascaded SOA and band-pass filter

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Mao, Yaya; Shang, Chao; Gao, Kaiqiang; Li, Qiang

    2016-06-01

    A tunable time delay for a 100-ps pulse is achieved via a SOA cascaded band-pass filter, which can be tailored by tuning the filter or changing the SOA injection current. For a single pulse, when the pulse propagates through the cascaded system, a delay of 99.6 ps and an advance of 42.6 ps can be achieved by altering the SOA injection current at two different wavelengths located in the red band and blue band of the filter, respectively. The corresponding tunable delay range is 165 ps, and the maximum delay-bandwidth product (DBP) is 1.65. For an optical sequence, to our knowledge, it is the first time that the time delay is tailored over 145.6 ps corresponding to a DBP of 1.46 by tuning the wavelength from 1556.075 to 1556.955 nm, and 45.2 ps (95.6 ps) advance (delay) by tuning the injection current from 100 to 500 mA at 1556.155 nm (1556.955 nm). The dependence of the time delay on the injection current and filtering configuration has been discussed based on plenty of experiments data. Based on SOA's fast switching, this device can be used for signal synchronization and bit-by-bit signal processing in a communication system.

  14. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  15. Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures

    NASA Astrophysics Data System (ADS)

    Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.

    2015-05-01

    Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.

  16. Systematical analysis for the mixed couplings of two adjacent modified split ring resonators and the application to compact microstrip bandpass filters

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Wen, Guangjun; Li, Jian

    2014-10-01

    In this paper we synthesize a new kind of modified split ring resonator (SRR) and characterize its mixed couplings between two adjacent such SRRs with all the possible arrangements on one side of a conventional dielectric substrate. Based on the analysis of the mixed couplings, the compact microstrip bandpass filters composed of the proposed modified SRRs are systematically analyzed. We found that two designs out of all the cases have quite well bandpass filter characteristics, e.g., low insert loss within the wide passband, sharp reductions and transmission zeros out of the passband, and harmonic suppression characteristics for a wide frequency range. Both experimental demonstrations and numerical simulations are performed to verify the designed filters and the results agree well with each other. Such kind of filter design can be flexibly integrated in the miniaturized radio frequency/microwave circuits.

  17. Active tuning of a microstrip hairpin-line microwave bandpass filter on a polycrystalline yttrium iron garnet substrate using small magnetic fields

    NASA Astrophysics Data System (ADS)

    Gillette, S. M.; Geiler, A. L.; Chen, Z.; Chen, Y.; Arruda, T.; Xie, C.; Wang, L.; Zhu, X.; Liu, M.; Mukerjee, S.; Vittoria, C.; Harris, V. G.

    2011-04-01

    Active magnetic tuning of a microstrip hairpin-line coupled resonator bandpass filter fabricated on a polycrystalline yttrium iron garnet substrate has been demonstrated. The filter exhibits a five-pole Chebyshev response with passband center frequency tunability from 8.3 to 9 GHz under low applied H fields of 50-200 Oe. The instantaneous bandwidth was measured to be approximately 1 GHz. During tuning, passband center frequency insertion loss varies between 1 and 1.4 dB. Good agreement between simulated and measured device performance was demonstrated. Advantages of the proposed filter design include planar geometry, compact size, low insertion loss, and low field tunability. The proposed design approach lends itself to the implementation of a wide range of filter responses, including low pass, high pass, bandpass, and band stop, as well as passband characteristics, including center frequency, fractional bandwidth, passband ripple, out-of-band rejection, etc.

  18. "The Design of a Compact, Wide Spurious-Suppression Bandwidth Bandpass Filter Using Stepped Impedance Resonators"

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop; Wollack, Edward J.; Doiron, Terence; Papapolymerou, John; Laskar, Joy

    2005-01-01

    We propose an analytical design for a microstrip broadband spurious-suppression filter. The proposed design uses every section of the transmission lines as both a coupling and a spurious suppression element, which creates a very compact, planar filter. While a traditional filter length is greater than the multiple of the quarter wavelength at the center passband frequency (lambda(sub g)/4), the proposed filter length is less than (order n(Ssup th) + l)center dot lambda(sub g)/8. The filter s spurious response and physical dimension are controlled by the step impedance ratio (R) between two transmission line sections as a lambda(sub g)/4 resonator. The experimental result shows that, with R of 0.2, the out-of-band attenuation is greater than 40 dB; and the first spurious mode is shifted to more than 5 times the fundamental frequency. Moreover, it is the most compact planar filter design to date. The results also indicate a low in-band insertion loss.

  19. A Dual-Mode Bandpass Filter with Multiple Controllable Transmission-Zeros Using T-Shaped Stub-Loaded Resonators

    PubMed Central

    Yao, Zh.; Wang, C.; Kim, N. Y.

    2014-01-01

    A dual-mode broadband bandpass filter (BPF) with multiple controllable transmission-zeros using T-shaped stub-loaded resonators (TSSLRs) is presented. Due to the symmetrical plane, the odd-even-mode theory can be adopted to characterize the BPF. The proposed filter consists of a dual-mode TSSLR and two modified feed-lines, which introduce two capacitive and inductive source-load (S-L) couplings. Five controllable transmission zeros (TZs) can be achieved for the high selectivity and the wide stopband because of the tunable amount of coupling capacitance and inductance. The center frequency of the proposed BPF is 5.8 GHz, with a 3 dB fraction bandwidth of 8.9%. The measured insertion and return losses are 1.75 and 28.18 dB, respectively. A compact size and second harmonic frequency suppression can be obtained by the proposed BPF with S-L couplings. PMID:24688406

  20. Design of high-order HTS dual-band bandpass filters with receiver subsystem for future mobile communication systems

    NASA Astrophysics Data System (ADS)

    Sekiya, N.

    2016-08-01

    We have developed two high-order high-temperature superconducting (HTS) dual-band bandpass filters (BPFs) with a receiver subsystem for future mobile communication systems. They feature stub-loaded hair-pin resonators with two types of microstrip lines between them. One has a six-pole design, and the other has an eight-pole design. Both were designed to operate at 2.15 GHz with a 43-MHz (2%) bandwidth for the lower passband and at 3.50 GHz with a 70-MHz (2%) bandwidth for the upper one. They were fabricated using YBa2Cu3Oy thin film on a CeO2-bufferd r-Al2O3 substrate. The measured results for both filters agree well with the simulated ones. The HTS dual-band BPF receiver subsystem uses a pulse tube cryocooler and a wideband low noise amplifier (LNA). We measured the frequency response of the six-pole dual-band BPF with and without a wideband LNA with a gain of 10 dB. The measured return losses were close.

  1. Dual-band bandpass terahertz wave filter based on microstrip resonant structure

    NASA Astrophysics Data System (ADS)

    Liu, Yu-hang; Li, Jiu-sheng

    2012-03-01

    The terahertz (THz) band, which refers to the spectral region between 0.1 and 10THz, covers the fingerprints of many chemical and biological materials. Within the past few years, there are increasing demands for experiments in terahertz frequencies, in different areas such as biotechnology, nanotechnology, space science, security, chemical and biological sensing, terahertz wave communications, and medical diagnostics. For potential applications, the functional devices, such as beam polarizers, switchs and filters, are crucial components for a terahertz system. Terahertz wave filter based on two kinds of microstrip resonant structures, has been characterized by terahertz time-domain spectroscopy in the region from 0.1 to 3THz. The experimental results for the frequency dependence of the transmittance of the terahertz wave filter show that the terahertz wave transmittance peak is of 79.5% at 0.5THz and 82.5% at 0.81THz.

  2. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    SciTech Connect

    Yan, Hai Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  3. Systematic studies of the effect of a bandpass filter on a Josephson-junction noise thermometer

    SciTech Connect

    Soulen, R.J. Jr. ); Fogle, W.E.; Colwell, J.H. )

    1991-03-01

    This paper present the results of an extensive study of the effect of a filter upon the performance of a resistive SQUID noise thermometer used to define an absolute temperature scale below 1 K. Agreement between the model for this effect and the experimental results indicated that the temperature scale defined by the noise thermometer is accurate to 0.1%.

  4. Effects of bandpass noise and telephonic filtering on the perception of consonants

    NASA Astrophysics Data System (ADS)

    Purnell, Thomas; Kopplin, Laura

    2002-05-01

    Consonant identification studies report varying results of the usefulness of information above 4 kHz. A recent study found listeners misidentifying female-produced consonants characterized by a center of gravity above 3.5 kHz [P. G. Stelmachowicz et al., J. Acoust. Soc. Am. 110, 2183-2190 (2000)], suggesting that the perception of alveolar stops and fricatives as spoken by females are misperceived in common environments which filter out high-frequency spectral information. In the current study, consonant identification of female tokens consisting of consonants varying by place or manner ([ptk], [fTsStS], [ttSsSnlr]) was tested in a forced choice experiment. Tokens were low-pass filtered at 3.5 kHz simulating telephonic filtering. Additionally, the locus of spectral information below 4 kHz was assessed by comparing responses to tokens masked by nonmodulating noise, where the signal-to-noise ratio was at least 10 dB SPL. Noise masking occurred between 0 and 0.4, 0.4 and 2, and 2 and 3.5 kHz. Confusion matrices indicated that the perception of unmasked speech is not hindered by low-pass filtering at 3.5 kHz, while perception of masked tokens was worse with masking between 2 and 3.5 kHz.

  5. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    PubMed

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  6. Performance of two-pole bandpass filters photodefined on double-sided Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Toncich, S. S.; Bhasin, K. B.

    1993-01-01

    The performance of 7.3-GHz two-pole bandpass filters (5% bandwidth) fabricated on double-sided Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O thin films deposited on LaAlO3 is discussed. At 77 K, the Tl-Ba-Ca-Cu-O and Y-Ba-Cu-O superconducting filters exhibited minimum passband insertion losses of 0.3 and 1.2 dB, respectively. An insertion loss of 3.4 dB was measured for an all-gold filter at 77 K.

  7. Silicon photodiodes with integrated thin-film filters for selective bandpasses in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Canfield, L. R.; Vest, Robert E.; Woods, Thomas N.; Korde, Raj S.

    1994-09-01

    Silicon photodiodes which operate satisfactorily in the extreme ultraviolet (EUV) have been commercially available for the past few years. These photodiodes also inherently respond to radiation extending from the x-ray region to the near infrared, a property which is undesirable in many EUV applications. The addition of a thin film of a suitable filtering material to the surface of such a photodiode can accomplish the restriction of the sensitivity of the silicon to a much narrower band, or bands, in the EUV. This results in a rugged, yet sensitive photometer for applications in which dominant out-of-band radiation is present. Applications include plasma diagnostics, solar physics, x-ray lithography, x-ray microscopy, and materials science. Previous attempts to produce such devices have resulted in degraded shunt resistance with a corresponding increase in background noise. Prototype detectors have now been fabricated using directly deposited films of aluminum, aluminum/carbon, aluminum/carbon/scandium, silver, tin, and titanium, without degradation of the noise characteristics of the uncoated photodiodes. Measured and theoretical sensitivity data are presented, as well as a discussion of relatively simple methods to reduce the x-ray response of such filtered detectors.

  8. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    SciTech Connect

    Ziock, Klaus-Peter; Alameda, J.B.; Brejnholt, N.F.; Decker, T.A.; Descalle, M.A.; Fernandez-Perea, M.; Hill, R.M.; Kisner, R.A.; Melin, A.M.; Patton, B.W.; Ruz, J.; Soufli, R.; Pivovaroff, M.J.

    2014-01-01

    Abstract. We report on the use of grazing incidence gamma-ray mirrors to serve as a narrow band-pass filter for advanced non-destructive analysis (NDA) of spent nuclear fuel. The purpose of the mirrors is to limit the radiation reaching a HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. This overcomes the normal rate issues when performing gamma-ray NDA measurements. In a proof-of-concept experiment, a set of simple flat gamma-ray mirrors were used to directly observe the atomic florescence lines from U and Pu from spent fuel pins with the detector located in a shirt-sleeve environment. The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, successfully deflected the lines of interest while the intense primary radiation beam from the fuel was blocked by a lead beam stop. The gamma-ray multilayer coatings that make the mirrors work at the gamma-ray energies used here (~ 100 keV) have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic and shielding configuration.

  9. Robust detection of heart beats in multimodal records using slope- and peak-sensitive band-pass filters.

    PubMed

    Pangerc, Urška; Jager, Franc

    2015-08-01

    In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).

  10. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  11. A Triple-band Bandpass Filter using Tri-section Step-impedance and Capacitively Loaded Step-impedance Resonators for GSM, WiMAX, and WLAN systems

    NASA Astrophysics Data System (ADS)

    Chomtong, P.; Akkaraekthalin, P.

    2014-05-01

    This paper presents a triple-band bandpass filter for applications of GSM, WiMAX, and WLAN systems. The proposed filter comprises of the tri-section step-impedance and capacitively loaded step-impedance resonators, which are combined using the cross coupling technique. Additionally, tapered lines are used to connect at both ports of the filter in order to enhance matching for the tri-band resonant frequencies. The filter can operate at the resonant frequencies of 1.8 GHz, 3.7 GHz, and 5.5 GHz. At resonant frequencies, the measured values of S11 are -17.2 dB, -33.6 dB, and -17.9 dB, while the measured values of S21 are -2.23 dB, -2.98 dB, and -3.31 dB, respectively. Moreover, the presented filter has compact size compared with the conventional open-loop cross coupling triple band bandpass filters

  12. Biomedical bandpass filter for fluorescence microscopy imaging based on TiO2/SiO2 and TiO2/MgF2 dielectric multilayers

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Fomchenkov, S. A.; Ullah, A.; Verma, P.; Khonina, S. N.

    2016-08-01

    We report a design for creating a multilayer dielectric optical filters based on TiO2 and SiO2/MgF2 alternating layers. We have selected Titanium dioxide (TiO2) for high refractive index (2.5), Silicon dioxide (SiO2) and Magnesium fluoride (MgF2) as a low refractive index layer (1.45 & 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging.

  13. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    PubMed

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions. PMID:15929296

  14. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source

    NASA Astrophysics Data System (ADS)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-01

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  15. Ultra-Compact Broadband High-Spurious Suppression Bandpass Filter Using Double Split-end Stepped Impedance Resonators

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop; Wollack, Ed; Papapolymerou, John; Laskar, Joy

    2005-01-01

    We propose an ultra compact single-layer spurious suppression band pass filter design which has the following benefit: 1) Effective coupling area can be increased with no fabrication limitation and no effect on the spurious response; 2) Two fundamental poles are introduced to suppress spurs; 3) Filter can be designed with up to 30% bandwidth; 4) The Filter length is reduced by at least 100% when compared to the conventional filter; 5) Spurious modes are suppressed up to at the seven times the fundamental frequency; and 6) It uses only one layer of metallization which minimize the fabrication cost.

  16. Effect of Selectively Etched Ferroelectric Thin-Film Layer on the Performance of a Tunable Bandpass Filter

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; Vignesparamoorthy, Sivaruban; Mueller, Carl; VanKeuls, Fred; Warner, Joseph; Miranda, Felix A.

    2001-01-01

    The main purpose of this work is to study the effect of a selectively etched ferroelectric thin film layer on the performance of an electrically tunable filter. An X-band tunable filter was designed, fabricated and tested on a selectively etched Barium Strontium Titanate (BSTO) ferroelectric thin film layer. Tunable filters with varying lengths of BSTO thin-film in the input and output coupling gaps were modeled, as well as experimentally tested. Experimental results showed that filters with coupling gaps partially filled with BSTO maintained frequency tunability and improved the insertion loss by approx. 2dB. To the best of our knowledge, these results represent the first experimental demonstration of the advantages of selective etching in the performance of thin film ferroelectric-based tunable microwave components.

  17. A new facility for manufacturing and testing very large narrow bandpass filters and other high performance optical coatings

    NASA Astrophysics Data System (ADS)

    Mooney, Thomas; Pawlewicz, Walter; Merrill, Michael; Leclerc, David; Hurd, Kerry

    2014-07-01

    Optical coatings are key elements of any optical system. They can reduce surface reflection loss, isolate spectral bands, re-direct the light path and split light beams by wavelength. For decades, astronomers have made use of these special characteristics embodied in Anti-Reflection (AR) coatings, Band Pass (BP) filters, mirrors and Dichroic Beamsplitters (DBS). In the last several years, a need has arisen for much larger high performance filters and coatings. This is being driven by the ever increasing size of new and planned telescopes with their correspondingly larger focal planes. Typical Broadband filters require modest wavelength uniformity and can be produced in legacy (existing) coating chambers, even in fairly large formats. However, some new instruments require narrow BP (NBP) filters of 60 cm or greater diameter in order to perform efficiently. Some planned systems will even require filters in the 75 cm diameter range. The implications for coating such large, very expensive optics are that the equipment must not only accommodate a large optic, but the process must achieve excellent uniformity over broad areas. It must also exhibit excellent performance, reproducibility and reliability in depositions consisting of well over one hundred layers and many hours duration. And finally, the spectral performance must be verifiable, not through an indirect method, but directly of the science optic itself. To address these challenges, Materion designed, built, tested and put into production a purposebuilt laboratory. This paper will describe in detail the elements of the lab creation and initial achievements.

  18. Compact Ultra Wide Band Microstrip Bandpass Filter Based on Multiple-Mode Resonator and Modified Complementary Split Ring Resonator

    PubMed Central

    Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366

  19. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  20. Flat-top bandpass microwave photonic filter with tunable bandwidth and center frequency based on a Fabry-Pérot semiconductor optical amplifier.

    PubMed

    Jiang, Fan; Yu, Yuan; Cao, Tong; Tang, Haitao; Dong, Jianji; Zhang, Xinliang

    2016-07-15

    We propose a flat-top bandpass microwave photonic filter (MPF) with flexible tunability of the bandwidth and center frequency based on optical nonlinearities in a Fabry-Pérot semiconductor optical amplifier (FP-SOA). Phase-inverted modulation induced by cross-gain modulation (XGM) and optical spectral broadening induced by self-phase modulation (SPM) are exploited to achieve flat-top and bandwidth tuning, respectively. Wideband and continuous tuning of the center frequency is achieved by altering the bias current of the FP-SOA. Experimental results demonstrate a flat-top single-passband MPF with its center frequency tunable from 6.0 to 18.3 GHz by adjusting the bias current from 54.05 to 107.85 mA. The 3-dB bandwidth of the passband when centered at 10.0 GHz is shown to be variable from 680 to 1.43 GHz, by increasing the injected optical power from -1 to +5  dBm. During the bandwidth tuning, the amplitude ripple within the passband is maintained at less than ±0.5  dB. Excellent main to secondary sidelobe ratio exceeding 45 dB is achieved when the MPF is centered at 18.3 GHz.

  1. Flat-top bandpass microwave photonic filter with tunable bandwidth and center frequency based on a Fabry-Pérot semiconductor optical amplifier.

    PubMed

    Jiang, Fan; Yu, Yuan; Cao, Tong; Tang, Haitao; Dong, Jianji; Zhang, Xinliang

    2016-07-15

    We propose a flat-top bandpass microwave photonic filter (MPF) with flexible tunability of the bandwidth and center frequency based on optical nonlinearities in a Fabry-Pérot semiconductor optical amplifier (FP-SOA). Phase-inverted modulation induced by cross-gain modulation (XGM) and optical spectral broadening induced by self-phase modulation (SPM) are exploited to achieve flat-top and bandwidth tuning, respectively. Wideband and continuous tuning of the center frequency is achieved by altering the bias current of the FP-SOA. Experimental results demonstrate a flat-top single-passband MPF with its center frequency tunable from 6.0 to 18.3 GHz by adjusting the bias current from 54.05 to 107.85 mA. The 3-dB bandwidth of the passband when centered at 10.0 GHz is shown to be variable from 680 to 1.43 GHz, by increasing the injected optical power from -1 to +5  dBm. During the bandwidth tuning, the amplitude ripple within the passband is maintained at less than ±0.5  dB. Excellent main to secondary sidelobe ratio exceeding 45 dB is achieved when the MPF is centered at 18.3 GHz. PMID:27420520

  2. Effect of RF Filtering on the Performance of Uncoded PCM/PM Telemetry Channels

    NASA Technical Reports Server (NTRS)

    Koerner, M. A.

    1984-01-01

    A method for calculating the increase in received telemetry signal power required to compensate for the use of a radio frequency interference (RFI) filter in front of the DSN receiving system low-noise amplifier is described. The telemetry system for which the degradation is calculated is an uncoded PCM/PM system in which the NRZ data directly modulates the carrier at a modulation level which leaves a discrete carrier. A phase-locked loop in the RF receiver tracks the discrete carrier and coherently demodulates the PCM data. The RFI filter may be a series of Butterworth, Tchebychev, or Bessel low-pass, high-pass, band-pass, or band-reject filters, each with arbitrary bandwidth, number of poles, and, for band-pass or band-reject filters, resonant frequency. The only restriction is that the RFI filter must have only simple poles. Numerical results are presented for the RFI filters the DSN plans to place in front of the S-band FET, S-band maser, and X-band maser low noise amplifiers. The main conclusion is that the filters will produce negligible degradation at data rates below 4 Mbps.

  3. Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: Experimental results

    NASA Astrophysics Data System (ADS)

    Vazquez-Zuniga, Luis Alonso; Jeong, Yoonchan

    2013-10-01

    We present rigorous experimental studies on the spectral and temporal behaviors of an erbium-doped frequency-shifted-feedback fiber laser (FSFL), with respect to various parameters of the laser cavity, including the direction of the frequency-shift mechanism, the quantity of frequency-shift, and the output coupling ratio (OCR) of the cavity. We show that if the filter bandwidth is much broader than the laser linewidth, the laser spectrum tends to split and form a secondary spectral band (SSB) on the shorter or longer wavelength side of the primary spectrum, depending on whether the direction of the frequency-shift mechanism is upward or downward, respectively. We found that the SSB forms a parasitic pulse with much lower peak power traveling on the leading or trailing edge of the primary pulse, which leads to a significant asymmetry in the whole pulse formation in the time domain.

  4. Filter Design and Performance Evaluation for Fingerprint Image Segmentation.

    PubMed

    Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten

    2016-01-01

    Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: 'true' foreground can be labeled as background and features like minutiae can be lost, or conversely 'true' background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available.

  5. Filter Design and Performance Evaluation for Fingerprint Image Segmentation.

    PubMed

    Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten

    2016-01-01

    Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: 'true' foreground can be labeled as background and features like minutiae can be lost, or conversely 'true' background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150

  6. Filter Design and Performance Evaluation for Fingerprint Image Segmentation

    PubMed Central

    Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten

    2016-01-01

    Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150

  7. Design and experimental characterization of a bandpass sampling receiver

    NASA Astrophysics Data System (ADS)

    Singh, Avantika; Kumar, Devika S.; Venkateswaran, Gomathy; Manjukrishna, S.; Singh, Amrendra Kumar; Kurup, Dhanesh G.

    2016-03-01

    In this paper, we present a robust and efficient approach for deigning reconfigurable Radio receivers based on Bandpass sampling. The direct sampled RF frontend is followed by signal processing blocks implemented on an FPGA and consists of a PLL based on second order Costas technique and a Kaiser windowing based lowpass filtering. The proposed method can be used for implementing a cost effective multi-channel receiver for data, audio, video etc. over various channels.

  8. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  9. Band-pass processing in a GPCR signaling pathway selects for NFAT transcription factor activation.

    PubMed

    Sumit, M; Neubig, R R; Takayama, S; Linderman, J J

    2015-11-01

    Many biological processes are rhythmic and proper timing is increasingly appreciated as being critical for development and maintenance of physiological functions. To understand how temporal modulation of an input signal influences downstream responses, we employ microfluidic pulsatile stimulation of a G-protein coupled receptor, the muscarinic M3 receptor, in single cells with simultaneous real-time imaging of both intracellular calcium and NFAT nuclear localization. Interestingly, we find that reduced stimulation with pulses of ligand can give more efficient transcription factor activation, if stimuli are timed appropriately. Our experiments and computational analyses show that M3 receptor-induced calcium oscillations form a low pass filter while calcium-induced NFAT translocation forms a high pass filter. The combination acts as a band-pass filter optimized for intermediate frequencies of stimulation. We demonstrate that receptor desensitization and NFAT translocation rates determine critical features of the band-pass filter and that the band-pass may be shifted for different receptors or NFAT dynamics. As an example, we show that the two NFAT isoforms (NFAT4 and NFAT1) have shifted band-pass windows for the same receptor. While we focus specifically on the M3 muscarinic receptor and NFAT translocation, band-pass processing is expected to be a general theme that applies to multiple signaling pathways.

  10. Band-pass processing in a GPCR signaling pathway selects for NFAT transcription factor activation†

    PubMed Central

    Sumit, M.; Neubig, R. R.; Takayama, S.; Linderman, J. J.

    2015-01-01

    Many biological processes are rhythmic and proper timing is increasingly appreciated as being critical for development and maintenance of physiological functions. To understand how temporal modulation of an input signal influences downstream responses, we employ microfluidic pulsatile stimulation of a G-Protein coupled receptor, the muscarinic M3 receptor, in single cells with simultaneous real-time imaging of both intracellular calcium and NFAT nuclear localization. Interestingly, we find that reduced stimulation with pulses of ligand can give more efficient transcription factor activation, if stimuli are timed appropriately. Our experiments and computational analyses show that M3 receptor-induced calcium oscillations form a low pass filter while calcium-induced NFAT translocation forms a high pass filter. The combination acts as a band-pass filter optimized for intermediate frequencies of stimulation. We demonstrate that receptor desensitization and NFAT translocation rates determine critical features of the band-pass filter and that the band-pass may be shifted for different receptors or NFAT dynamics. As an example, we show that the two NFAT isoforms (NFAT4 and NFAT1) have shifted band-pass windows for the same receptor. While we focus specifically on the M3 muscarinic receptor and NFAT translocation, band-pass processing is expected to be a general theme that applies to multiple signaling pathways. PMID:26374065

  11. On sampling band-pass signals

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Shahshahani, M.

    1989-01-01

    Four techniques for uniform sampling of band-bass signals are examined. The in-phase and quadrature components of the band-pass signal are computed in terms of the samples of the original band-pass signal. The relative implementation merits of these techniques are discussed with reference to the Deep Space Network (DSN).

  12. Health assessment for Butterworth Landfill, Kent County, Michigan, Region 5. CERCLIS No. MID062222997. Preliminary report

    SciTech Connect

    Not Available

    1989-03-10

    The Butterworth Landfill is currently listed on the National Priorities List. The Butterworth Landfill was owned and operated by the City of Grand Rapids until ordered closed by the State of Michigan in 1973 for improper operations. Prior to closure, the landfill accepted industrial waste, including plating wastes, cyanide, organic solvents, inert materials and medical wastes. On-site soil samples indicate that phthalate esters, polychlorinated biphenyls (PCBs), and the polycyclic aromatic hydrocarbons (PAHs) are the organic contaminants of concern. Included in these three chemical groups are the following specific compounds and maximum concentrations in parts per billion (ppb): bis(2-ethylhexyl)phthalate, 66,000; butylbenzylphthalate, 29,000; Araclor 1254 (PCB), 730,000; Araclor 1260 (PCB), 800,000; pyrene, 7,500; chrysene, 3,600; benzo(a)anthracene, 2,900; anthracene, 2,000; and phenanthrene, 7,100. Results showed maximum concentrations in ppb of the following metals in on-site soils: chromium, 43,000,000; cadmium, 280; and lead, 67,500. The site is of potential public health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time. Human exposure to organic and inorganic chemicals may occur via direct contact, ingestion, or inhalation.

  13. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  14. DFB fiber laser hydrophone with band-pass response.

    PubMed

    Zhang, Faxiang; Zhang, Wentao; Li, Fang; Liu, Yuliang

    2011-11-15

    A distributed-feedback fiber laser hydrophone with band-pass response is presented. The design of the hydrophone aims to equalize static pressure and eliminate signal aliasing of high-frequency acoustic components. Theoretical analysis is presented based on electro-acoustic theory. The experimental results agree well with the theory. The measured underwater responses show that the hydrophone has a pressure sensitivity of -170 dB re:pm/μPa over a bandwidth between 100 Hz and 500 Hz. A sensitivity reduction exceeding -35 dB is observed at 2500 Hz. The tested static pressure sensitivity of the hydrophone is -226 dB. The proposed fiber laser hydrophone of this kind is expected to have important application in deep water fiber-optic sonar systems with anti-aliasing, and the understanding gained through this work can be extended to a guide of hydrophone design for required filtering bandwidth.

  15. Optical signal impairment study of cascaded optical filters in 40 Gbps DQPSK and 100 Gbps PM-DQPSK systems

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyong; Horche, Paloma R.; Minguez, Alfredo M.

    2013-09-01

    Optical filters are crucial elements in optical communications. The influence of cascaded filters in the optical signal will affect the communications quality seriously. In this paper we will study and simulate the optical signal impairment caused by different kinds of filters which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (FP). Optical signal impairment is analyzed from an Eye Opening Penalty (EOP) and optical spectrum point of view. The simulation results show that when the center frequency of all filters aligns with the laser's frequency, the Butterworth has the smallest influence to the signal while the F-P has the biggest. With a -1dB EOP, the amount of cascaded Butterworth optical filters with a bandwidth of 50 GHz is 18 in 40 Gbps NRZ-DQPSK systems and 12 in 100 Gbps PMNRZ- DQPSK systems. The value is reduced to 9 and 6 respectively for Febry-Perot optical filters. In the situation of frequency misalignment, the impairment caused by filters is more serious. Our research shows that with a frequency deviation of 5 GHz, only 12 and 9 Butterworth optical filters can be cascaded in 40 Gbps NRZ-DQPSK and 100 Gbps PM-NRZ-DQPSK systems respectively. We also study the signal impairment caused by different orders of the Butterworth filter model. Our study shows that although the higher-order has a smaller clipping effect in the transmission spectrum, it will introduce a more serious phase ripple which seriously affects the signal. Simulation result shows that the 2nd order Butterworth filter has the best performance.

  16. Tunable Filter Made From Three Coupled WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey

    2006-01-01

    A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering

  17. Sensitivity of bandpass filters using recirculating delay-line structures

    NASA Astrophysics Data System (ADS)

    Heyde, Eric C.

    1996-12-01

    Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.

  18. Frequency-agile bandpass filter for direct detection lidar receivers.

    PubMed

    Gittins, C M; Lawrence, W G; Marinelli, W J

    1998-12-20

    We discuss the development of a frequency-agile receiver for CO(2) laser-based differential absorption lidar (DIAL) systems. The receiver is based on the insertion of a low-order tunable etalon into the detector field of view. The incorporation of the etalon into the receiver reduces system noise by decreasing the instantaneous spectral bandwidth of the IR detector to a narrow wavelength range centered on the transmitted CO(2) laser line, thereby improving the overall D* of the detection system. A consideration of overall lidar system performance results in a projected factor of a 2-7 reduction in detector system noise, depending on the characteristics of the environment being probed. These improvements can play a key role in extending the ability of DIAL systems to monitor chemical releases from long standoff distances.

  19. FORTRAN IV Digital Filter Design Programs. Digital Systems Education Project.

    ERIC Educational Resources Information Center

    Reuss, E.; And Others

    The goals of the Digital Systems Education Project (DISE) include the development and distribution of educational/instructional materials in the digital systems area. Toward that end, this document contains three reports: (1) A FORTRAN IV Design Program for Low-Pass Butterworth and Chebychev Digital Filters; (2) A FORTRAN IV Design Program for…

  20. Subjective Well-Being In Later Life: 20 years after the Butterworths monograph series on individual and population aging.

    PubMed

    Stones, Michael; Kozma, Albert; McNeil, Kevin; Worobetz, Sarah

    2011-09-01

    This article discusses developments in theory and research on happiness two decades after publication of Psychological Well-Being in Later Life (Butterworths, 1991) by Albert Kozma, Michael Stones, and Kevin McNeil. Major empirical advances include new knowledge about contributions to happiness resulting from genetically related effects and personality. Personality traits have stronger relationships with happiness than was apparent 20 years ago and contribute to covariance between happiness and some of its predictors. Evolving emphases in research include the ways in which genetically related effects influence how people shape, and react to, their environment.

  1. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    SciTech Connect

    Thiede, Christian Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.

  2. Research on spectroscopic imaging. Volume 1: Technical discussion. [birefringent filters

    NASA Technical Reports Server (NTRS)

    Title, A.; Rosenberg, W.

    1979-01-01

    The principals of operation and the capabilities of birefringent filters systems are examined. Topics covered include: Lyot, Solc, and partial polarizer filters; transmission profile management; tuning birefringent filters; field of view; bandpass control; engineering considerations; and recommendations. Improvements for field of view effects, and the development of birefringent filters for spaceflight are discussed in appendices.

  3. Reconfigurable microwave photonic filter based on polarization modulation

    NASA Astrophysics Data System (ADS)

    Xu, Enming; Pan, Shilong; Li, Peili

    2016-03-01

    A reconfigurable microwave photonic filter based on a polarization modulator (PolM) is proposed and experimentally demonstrated. The PolM together with a polarization controller (PC) and a polarization beam splitter (PBS) implements two complementary intensity modulations in two separated branches. Then, optical components are inserted in the two branches to realize a bandpass filter and an allpass filter, respectively. When the two branches are combined by a second PBS, a filter with a frequency response that equals the subtraction of the frequency responses of the allpass filter and bandpass filter is achieved. By adjusting the PCs placed before the second PBS, a notch filter with a tunable notch depth or a bandpass filter can be achieved.

  4. Reliability of Three-Dimensional Linear Kinematics and Kinetics of Swimming Derived from Digitized Video at 25 and 50 Hz with 10 and 5 Frame Extensions to the 4th Order Butterworth Smoothing Window

    PubMed Central

    Sanders, Ross H.; Gonjo, Tomohiro; McCabe, Carla B.

    2015-01-01

    The purpose of this study was to explore the reliability of estimating three-dimensional (3D) linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4th order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p < 0.01) and better for backstroke than front crawl (p < 0.01). However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01). Key points An inverse dynamics based on 3D position data digitized from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding force production in swimming additional to those of other approaches. The ability to link the force profiles to swimming actions and technique is

  5. Reliability of Three-Dimensional Linear Kinematics and Kinetics of Swimming Derived from Digitized Video at 25 and 50 Hz with 10 and 5 Frame Extensions to the 4(th) Order Butterworth Smoothing Window.

    PubMed

    Sanders, Ross H; Gonjo, Tomohiro; McCabe, Carla B

    2015-06-01

    The purpose of this study was to explore the reliability of estimating three-dimensional (3D) linear kinematics and kinetics of a swimmer derived from digitized video and to assess the effect of framing rate and smoothing window size. A stroke cycle of two high-level front crawl swimmers and one high level backstroke swimmer was recorded by four underwater and two above water video cameras. One of the front crawl swimmers was recorded and digitized at 50 Hz with a window for smoothing by 4(th) order Butterworth digital filter extending 10 frames beyond the start and finish of the stroke cycle, while the other front crawl and backstroke swimmer were recorded and digitized at 25 Hz with the window extending five frames beyond the start and finish of the stroke cycle. Each camera view of the stroke cycle was digitized five times yielding five independent 3D data sets from which whole body centre of mass (CM) component velocities and accelerations were derived together with wrist and ankle linear velocities. Coefficients of reliability ranging from r = 0.942 to r = 0.999 indicated that both methods are sufficiently reliable to identify real differences in net force production during the pulls of the right and left hands. Reliability of digitizing was better for front crawl when digitizing at 50Hz with 10 frames extension than at 25 Hz with 5 frames extension (p < 0.01) and better for backstroke than front crawl (p < 0.01). However, despite the extension and reflection of data, errors were larger in the first 15% of the stroke cycle than the period between 15 and 85% of the stroke cycle for CM velocity and acceleration and for foot speed (p < 0.01). Key pointsAn inverse dynamics based on 3D position data digitized from multiple camera views above and below the water surface is sufficiently reliable to yield insights regarding force production in swimming additional to those of other approaches.The ability to link the force profiles to swimming actions and technique is

  6. Equivalent statistical bandwidths of conventional low-pass filters

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.; Peterson, S. J.

    1979-01-01

    Values of the equivalent statistical bandwidths of Butterworth up to ten poles and Chebyshev up to eight poles low-pass filters for six different passband ripple levels have been computed and tabulated along with the corresponding noise bandwidths. The results obtained can be used for estimating the mean-square error resulting from power spectrum measurements employed in the sensitivity analysis of microwave radiometer systems.

  7. Active imaging system with Faraday filter

    DOEpatents

    Snyder, J.J.

    1993-04-13

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  8. Active imaging system with Faraday filter

    DOEpatents

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  9. High-Q bandpass resonators utilizing bandstop resonator pairs

    NASA Technical Reports Server (NTRS)

    Okean, H. C. (Inventor)

    1973-01-01

    A high-Q bandpass resonators utilizing composite bandstop resonator pairs is reported. The bandstop resonator pairs are formed of composite series or parallel connected realizable transmission line elements. The elements are exclusively either quarter-wavelength lines or half-wavelength lines.

  10. Bandpass channels, zero-crossings, and early visual information processing.

    PubMed

    Marr, D; Ullman, S; Poggio, T

    1979-06-01

    Under appropriate conditions zero-crossings of a bandpass signal are very rich in information. The authors examine here the relevance of this result to the early stages of visual information processing, where zero-crossings in the output of independent spatial-frequency-tuned channels may contain sufficient information for much of the subsequent processing.

  11. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    PubMed

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  12. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  13. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  14. Design of nonradiative dielectric waveguide filters

    NASA Astrophysics Data System (ADS)

    Yoneyama, T.; Kuroki, F.; Nishida, S.

    1984-12-01

    An efficient design technique of nonradiative dielectric waveguide filters for use at millimeter wavelengths is developed. Filter structures considered here are a gap-coupled type and an alternating-width type. According to present theory, 3-pole, 0.1-dB Chebyshev ripple bandpass filters with a 2-percent bandwidth at a center frequency of 49.5 GHz were designed and fabricated with Teflon dielectric. Calculated and measured filter responses agree quite well, and excess insertion losses are found to be as small as 0.3 dB for both types of the fabricated filter circuits.

  15. Image quality, space-qualified UV interference filters

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.

    1992-01-01

    The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.

  16. Terahertz wave filter based on photonic crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yu-hang; Li, Jiu-sheng

    2011-11-01

    In the past decade, spectroscopy and imaging in the terahertz region (0.1-10 THz) of the electromagnetic spectrum has been applied in both basic research and potential industrial applications, such as medical diagnosis, security screening, radio astronomy, atmospheric studies, short-range indoor communication, chemical, biological sensing, medical and biological imaging, and detection of explosives. In this paper, we design a narrow bandpass terahertz wave filter using three kinds of two-dimensional photonic crystals. By using finite-difference time-domain (FDTD) method, we examined the transmittance spectra for the proposed terahertz wave filter. The simulated results show that the proposed filter exhibit excellent transmission performance such as high transmission at the central frequency, adjustable bandpass, and good rejection of the sideband frequencies.

  17. Terahertz wave filter based on photonic crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yu-hang; Li, Jiu-sheng

    2012-03-01

    In the past decade, spectroscopy and imaging in the terahertz region (0.1-10 THz) of the electromagnetic spectrum has been applied in both basic research and potential industrial applications, such as medical diagnosis, security screening, radio astronomy, atmospheric studies, short-range indoor communication, chemical, biological sensing, medical and biological imaging, and detection of explosives. In this paper, we design a narrow bandpass terahertz wave filter using three kinds of two-dimensional photonic crystals. By using finite-difference time-domain (FDTD) method, we examined the transmittance spectra for the proposed terahertz wave filter. The simulated results show that the proposed filter exhibit excellent transmission performance such as high transmission at the central frequency, adjustable bandpass, and good rejection of the sideband frequencies.

  18. Detecting and Characterizing Exoplanets with the WFIRST Coronagraph: Colors of Planets in Standard and Designer Bandpasses-SETI

    NASA Astrophysics Data System (ADS)

    Turnbull, Margaret

    The WFIRST mission is now envisioned to include a coronagraph for the purpose of direct detection of nearby exoplanets, including planets known to exist via radial velocity detection and new discoveries. Assuming that starlight rejection sufficient for planet detection (~1e-9) can be achieved, what can be learned about these planets given a realistic spectral resolution and signal-to-noise ratio? We propose to investigate the potential for WFIRST to efficiently discriminate planets from background sources, and to characterize planets in terms of important diagnostic atmospheric features, using broad- and intermediate band color data. We will map out this capability as a function of signal-to-noise ratio, bandpass location, and bandpass width. Our investigation will place emphasis on gas giants, ice giants, and mini-Neptunes (compatible with current AFTA-C baseline performance specifications), as well as a variety of super-Earths (an AFTA-C "stretch" goal). We will explore a variety of compositions, cloud types, phase angles, and (in the case of super-Earths with semi-transparent atmospheres) surface types. Noiseless spectra generated for these model planets will be passed through (a) standard bandpasses for comparison to prior work and (b) filter transmission curves corresponding to bandpasses of 5-20% over the full range of WFIRST's expected bandpass (400 - 1,000 nm). From this, filter combinations will be used to generate planet colors and find filter sets that most efficiently discriminate between planets and background sources, and between planets of different type. We will then repeat this exercise for S/N levels of 1-1,000 in order to (1) explore the true efficacy of broadband measurements in exoplanet studies, and (2) provide an estimate of total required integration time for a compelling WFIRST exoplanet program. To accomplish this, we will use model spectra for mini-Neptunes, and ice and gas giants of varying composition (Hu et al. 2013), and observed

  19. Spectral analysis and filtering techniques in digital spatial data processing

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author

  20. Synthesis of Band Filters and Equalizers Using Microwav FIR Techniques

    SciTech Connect

    Deibele, C.; /Fermilab

    2000-01-01

    It is desired to design a passive bandpass filter with both a linear phase and flat magnitude response within the band and also has steep skirts. Using the properties of both coupled lines and elementary FIR (Finite Impulse Response) signal processing techniques can produce a filter of adequate phase response and magnitude control. The design procedure will first be described and then a sample filter will then be synthesized and results shown.

  1. Optimum design and performance of Costas receivers containing soft bandpass limiters

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1977-01-01

    This paper investigates several key questions concerning the mechanization and design of a Costas receiver for reconstruction of a carrier from a suppressed carrier signal. For baseband NRZ encoded data symbols and a soft bandpass limiter preceding the loop, several design issues which are considered herein and which affect acquisition and tracking performance are: (1) The choice of an IF bandwidth. (2) The optimum choice of the Costas arm filter bandwidths as well as the spectral roll-off characteristics. (3) The optimum choice of loop bandwidth to data rate ratio for a given signal-to-noise ratio. (4) The signal suppression factor and the combined limiter-squaring loss. (5) The variations in loop bandwidth and damping with signal level. (6) The choice of the limiter transfer characteristic. (7) Performance degradation due to the presence of a limiter. Various new results in system design are presented and typical numerical results are given and graphically demonstrated in SNR regions of practical interest. The theory is applicable to the design of carrier reconstruction loops required in the implementation of spread spectrum communication receivers.

  2. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  3. On the calculation of squaring loss in Costas loops with arbitrary arm filters

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1978-01-01

    Specific numerical results for the squaring loss in Costas loop tracking are discussed for cases when the input data were biphase-L, and the Costas loop arm filters were of the n-pole Butterworth type. It is pointed out that a simple scientific calculator may be used for the computations, provided the transfer function of the arm filter has simple poles. The technique can also be used to compute the squaring loss in other modulation forms, such as unbalanced quadriphase-shift-keying (QPSK).

  4. Note: Modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonator with precise two-port Y-parameter characterizations

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Hong, Yan; Goh, Wang Ling; Mu, Xiaojing

    2016-10-01

    Dual-mode Lamb-wave resonator has become a powerful component for clock reference and sensing applications, enabling efficient compensations of temperature effects, concurrent measurements of multiple environmental parameters, etc. An equivalent circuit model for the dual-mode Lamb-wave resonator is indispensable as it provides a means as well as being an effective tool for evaluating device characteristics and to aid the designing of circuitry for the resonators. This could be the first time ever that an efficient equivalent-circuit model, i.e., modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonators is reported. Evaluated by experiments, this model attains noteworthy agreements on both the magnitudes and phases of Y11 and Y21 of the measurement results. Compared to literature, the proposed model is capable of modeling the dual resonances efficiently. Moreover, this work also proves more accurate when viewing the Y-parameters across a wide frequency range. The gained features of this model are most beneficial for the analysis of the dual-mode Lamb-wave resonator and also for the designing of circuits.

  5. Bandpass-resampling effects for the retrieval of surface emissivity.

    PubMed

    Richter, Rudolf; Coll, Cesar

    2002-06-20

    The retrieval of surface emissivity in the 8-14-microm region from remotely sensed thermal imagery requires channel-averaged values of atmospheric transmittance, path radiance, and downwelling sky flux. Band-pass resampling introduces inherent retrieval errors that depend on atmospheric conditions, spectral region, bandwidth, flight altitude, and surface temperature. This simulation study is performed for clear sky conditions and moderate atmospheric water vapor contents. It shows that relative emissivity retrieval errors can reach as much as 3% for broadband sensors (1-2-microm bandwidth) and 0.8% for narrowband instruments (0.15 microm), even for constant surface emissivity. For spectrally varying surface emissivities the relative retrieval error increases for the broadband instrument by approximately 2% in channels with strong emissivity changes of 0.05-0.1. The corresponding retrieval errors for narrowband sensors increase by approximately 3-4%. The channels in the atmospheric window regions with lower transmittance, i.e., 8-8.5 and 12.5-14 microm, are most sensitive to retrieval errors.

  6. Flexible RF filter using a nonuniform SCISSOR.

    PubMed

    Zhuang, Leimeng

    2016-03-15

    This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40  dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated. PMID:26977648

  7. Development and applications of an interactive digital filter design program.

    PubMed

    Woo, H W; Kim, Y M; Tompkins, W J

    1985-10-01

    We have implemented an interactive digital filter design program in the HP 1000 computer at the Department of Electrical Engineering of the University of Washington. This program allows users to design different types of filters interactively with both amplitude and phase responses displayed on graphic devices. The performance of each designed filter can be evaluated conveniently before the best one is chosen and implemented for any particular application. This program can design recursive filters, e.g. Butterworth, Chebyshev and elliptic, or nonrecursive filters with one out of six different windows, i.e. rectangular, triangular, Hann, Hamming, Blackman and Kaiser. The main outputs from this program are coefficients of a transfer function of an analog filter, a digital filter, or both. Therefore, the design of both analog and digital filters is facilitated by using this program. The program is very simple to use and does not require background in analog or digital filter principles in order to run it. The program is written in standard FORTRAN and is about 30 kbytes in size excluding the graphics display routines. Since it uses standard FORTRAN, it can be easily transported to minicomputer and microcomputer systems that have a FORTRAN compiler and minimal graphics capabilities. This program is available for distribution to interested institutions and laboratories.

  8. Adaptive Mallow's optimization for weighted median filters

    NASA Astrophysics Data System (ADS)

    Rachuri, Raghu; Rao, Sathyanarayana S.

    2002-05-01

    This work extends the idea of spectral optimization for the design of Weighted Median filters and employ adaptive filtering that updates the coefficients of the FIR filter from which the weights of the median filters are derived. Mallows' theory of non-linear smoothers [1] has proven to be of great theoretical significance providing simple design guidelines for non-linear smoothers. It allows us to find a set of positive weights for a WM filter whose sample selection probabilities (SSP's) are as close as possible to a SSP set predetermined by Mallow's. Sample selection probabilities have been used as a basis for designing stack smoothers as they give a measure of the filter's detail preserving ability and give non-negative filter weights. We will extend this idea to design weighted median filters admitting negative weights. The new method first finds the linear FIR filter coefficients adaptively, which are then used to determine the weights of the median filter. WM filters can be designed to have band-pass, high-pass as well as low-pass frequency characteristics. Unlike the linear filters, however, the weighted median filters are robust in the presence of impulsive noise, as shown by the simulation results.

  9. Auditory stream segregation using bandpass noises: evidence from event-related potentials.

    PubMed

    Nie, Yingjiu; Zhang, Yang; Nelson, Peggy B

    2014-01-01

    The current study measured neural responses to investigate auditory stream segregation of noise stimuli with or without clear spectral contrast. Sequences of alternating A and B noise bursts were presented to elicit stream segregation in normal-hearing listeners. The successive B bursts in each sequence maintained an equal amount of temporal separation with manipulations introduced on the last stimulus. The last B burst was either delayed for 50% of the sequences or not delayed for the other 50%. The A bursts were jittered in between every two adjacent B bursts. To study the effects of spectral separation on streaming, the A and B bursts were further manipulated by using either bandpass-filtered noises widely spaced in center frequency or broadband noises. Event-related potentials (ERPs) to the last B bursts were analyzed to compare the neural responses to the delay vs. no-delay trials in both passive and attentive listening conditions. In the passive listening condition, a trend for a possible late mismatch negativity (MMN) or late discriminative negativity (LDN) response was observed only when the A and B bursts were spectrally separate, suggesting that spectral separation in the A and B burst sequences could be conducive to stream segregation at the pre-attentive level. In the attentive condition, a P300 response was consistently elicited regardless of whether there was spectral separation between the A and B bursts, indicating the facilitative role of voluntary attention in stream segregation. The results suggest that reliable ERP measures can be used as indirect indicators for auditory stream segregation in conditions of weak spectral contrast. These findings have important implications for cochlear implant (CI) studies-as spectral information available through a CI device or simulation is substantially degraded, it may require more attention to achieve stream segregation. PMID:25309306

  10. Filter Circuit Design by Parallel Genetic Programming

    NASA Astrophysics Data System (ADS)

    Yano, Yuichi; Kato, Toshiji; Inoue, Kaoru; Miki, Mitsunori

    Genetic Programming (GP) is an extension of Genetic Algorithm(GA) to handle more structural problems. In this paper, an approach to filter circuit design by GP is proposed. By designing a gene which includes not only the parameters of consisting elements, but also the structural information of the circuit, it becomes possible to apply the proposed approach to various types of filter circuits. GP depends much on trial and error due to its probabilitic nature. To decrease this uncertainty and ensure the progress of the evolution, Parallel GP with multiple populations with the island model is also proposed. An MPI-based cluster system is used for realization of this parallel computing where each island correspondsd to each node. A lowpass and an asymmetric bandpass filters are designed. One hundred times of trials for multiple populations with and without migrations are tested in the design of lowpass filter to confirm the validity of the proposed method. In the asymmetric bandpass filter design, the results are compared with those of the circuit designed by hand to confirm the effectiveness of the proposed method. The proposed approach is applicable to various types of filter circuits. It can contribute to an automated design procedure, where it would require a expirenced designer if done by hand. It is also possible to obtain a new circuit design which would not be possible if done by hand.

  11. A novel filter bank for biotelemetry.

    PubMed

    Karagözoglu, B

    2001-03-01

    In a multichannel biotelemetry system, signals taken from a patient are distributed along the available frequency range (bandwidth) of the system through frequency-division-multiplexing, and combined into a single composite signal. Biological signals that are limited to low frequencies (below 10 Hz) modulate the frequencies of respective sub-carriers. Other biological signals are carried in amplitude-modulated forms. It is recognized that recovering original signals from a composite signal at the receiver side is a technical challenge when a telemetry system with narrow bandwidth capacity is used, since such a system leaves little frequency spacing between information channels. A filter bank is therefore utilized for recovering biological signals that are transmitted. The filter bank contains filter units comprising switched-capacitor filter integrated circuits. The filters have two distinct and opposing outputs (band-stop (notch) and band-pass). Since most biological signals are at low frequencies, and modulated signals occupy a narrow band around the carrier, notch filters can be used to efficiently stop signals in the narrow frequency range. Once the interim channels are removed, other channels become well separated from each other, and band-pass filters can select them. In the proposed system, efficient filtering of closely packed channels is achieved, with low interference, from neighboring channels. The filter bank is applied to a system that carries four biological signals and a battery status indicator signal. Experimental results reinforce theoretical predictions that the filter bank successfully de-multiplexes closely packed information channels with low crosstalk between them. It is concluded that the proposed filter bank allows utilization of cost-effective multichannel biotelemetry systems that are designed around commercial audio devices, and that it can be readily adapted to a broad range of physiological recording requirements. PMID:11458572

  12. Applications of the magneto-optical filter to stellar pulsation measurements

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven

    1986-01-01

    A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.

  13. Applications of the magneto-optical filter to stellar pulsation measurements

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.

    1984-01-01

    A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.

  14. Suspended substrate stripline filters for ESM applications

    NASA Astrophysics Data System (ADS)

    Dean, J. E.

    1985-07-01

    Multi-octave contiguous channel multiplexers are a key component in EW systems, since they provide the front-end signal sorting. The paper describes advances in the development of broadband, low-loss, selective, lowpass, highpass and bandpass filters and contiguous channel multiplexers from 500 MHz to 26.5 GHz, in the form of suspended substrate stripline (SSS) realizations, in particular to increased bandwidth/channel and increased band-edge selectivity. The paper also discusses a novel range of low-loss, selective, broadband filters, recently designed using lumped-element technology to provide a high performance over 20 MHz to 1.5 GHz.

  15. Acousto-optic tunable filter imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Reyes, George; Rider, David; Cheng, Li-Jen

    1991-01-01

    A remote sensing multispectral imaging instrument is being developed that uses a high resolution, fast programmable acoustooptic tunable filter (AOTF) as the spectral bandpass filter. A compact and fully computer controllable AOTF-based imaging spectrometer that operates in the visible wavelength range (0.5-0.8 microns) has been built and tested with success. A second imaging spectrometer operating in the near-infrared wavelength range (1.2-2.4 microns) is also under experimental investigation. The design criteria meeting various system issues, such as imaging quality, spectral response, and field of view (FOV), are discussed. An experiment using this AOTF imaging spectrometer breadboard is described.

  16. Effects of asymmetric passband filtering on the phase of the Costas loop's reconstructed carrier

    NASA Technical Reports Server (NTRS)

    Woo, K. T.

    1979-01-01

    The reconstructed carrier of a telemetry return signal is used in deriving the Doppler and range information in the radiometric systems. When suppressed carrier BPSK signalling with Costas loop demodulation is used, there are concerns on the amount of shift in the reconstructed carrier phase, when the received signal suffers asymmetric bandpass filtering through the various stages of the receiver. It is concluded that the phase shifts due to asymmetric bandpass filtering on the Costas loop's reconstructed carrier can be slightly worse than those suffered by the residual carrier loop's reconstructed carrier. However, they are well within the error budgets of the radiometric system.

  17. Liquid crystals Lyot filter for solar coronagraphy

    NASA Astrophysics Data System (ADS)

    Fineschi, S.; Capobianco, G.; Massone, G.; Baur, T.; Bemporad, A.; Abbo, L.; Zangrilli, L.; Dadeppo, V.

    2011-10-01

    The "Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire", ASPIICS, is a solar coronagraph to be flown on the PROBA 3 Technology mission of the European Space Agency. ASPIICS heralds the next generation of coronagraphs for solar research, exploiting formation flying to gain access to the inner corona under eclipse-like conditions in space. The science goal is high spatial resolution imaging and two-dimensional spectrophotometry of the Fe XIV, 530.3 nm, emission line. This work describes a liquid crystal Lyot tunable-filter and polarimeter (LCTP) that can implement this goal. The LCTP is a bandpass filter with a full width at half maximum of 0.15 nm at a wavelength of 530.3 nm. The center wavelength of the bandpass is tunable in 0.01 nm steps from 528.64 nm to 533.38 nm. It is a four stage Lyot filter with all four stages wide-fielded. The free spectral range between neighboring transmission bands of the filter is 2.7 nm. The wavelength tuning is non-mechanical using nematic liquid crystal variable retarders (LCVR's). A separate LCVR of the Senarmont design, in tandem with the filter, is used for the polarimetric measurements. A prototype of the LCTP has been built and its measured performances are presented here.

  18. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T.-C.; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators.

  19. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations.

    PubMed

    Wang, Yong; Goh, Wang Ling; Chai, Kevin T-C; Mu, Xiaojing; Hong, Yan; Kropelnicki, Piotr; Je, Minkyu

    2016-04-01

    The parasitic effects from electromechanical resonance, coupling, and substrate losses were collected to derive a new two-port equivalent-circuit model for Lamb wave resonators, especially for those fabricated on silicon technology. The proposed model is a hybrid π-type Butterworth-Van Dyke (PiBVD) model that accounts for the above mentioned parasitic effects which are commonly observed in Lamb-wave resonators. It is a combination of interdigital capacitor of both plate capacitance and fringe capacitance, interdigital resistance, Ohmic losses in substrate, and the acoustic motional behavior of typical Modified Butterworth-Van Dyke (MBVD) model. In the case studies presented in this paper using two-port Y-parameters, the PiBVD model fitted significantly better than the typical MBVD model, strengthening the capability on characterizing both magnitude and phase of either Y11 or Y21. The accurate modelling on two-port Y-parameters makes the PiBVD model beneficial in the characterization of Lamb-wave resonators, providing accurate simulation to Lamb-wave resonators and oscillators. PMID:27131699

  20. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  1. Bandpass Sampling--An Opportunity to Stress the Importance of In-Depth Understanding

    ERIC Educational Resources Information Center

    Stern, Harold P. E.

    2010-01-01

    Many bandpass signals can be sampled at rates lower than the Nyquist rate, allowing significant practical advantages. Illustrating this phenomenon after discussing (and proving) Shannon's sampling theorem provides a valuable opportunity for an instructor to reinforce the principle that innovation is possible when students strive to have a complete…

  2. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  3. Low-power Gm-C filter employing current-reuse differential difference amplifiers

    DOE PAGES

    Mincey, John S.; Briseno-Vidrios, Carlos; Silva-Martinez, Jose; Rodenbeck, Christopher T.

    2016-08-10

    This study deals with the design of low-power, high performance, continuous-time filters. The proposed OTA architecture employs current-reuse differential difference amplifiers in order to produce more power efficient Gm-C filter solutions. To demonstrate this, a 6th order low-pass Butterworth filter was designed in 0.18 m CMOS achieving a 65-MHz -3-dB frequency, an in-band input-referred third-order intercept point of 12.0 dBm, and an input referred noise density of 40 nV/Hz1=2, while only consuming 8.07 mW from a 1.8 V supply and occupying a total chip area of 0.21 mm2 with a power consumption of only 1.19 mW per pole.

  4. Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter

    2016-01-01

    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.

  5. Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara Depression area, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zahra, Hesham Shaker; Oweis, Hesham T.

    2016-06-01

    In this work, a reconnaissance study is presented to delineate the subsurface tectonics and lithological inferences of the eastern area of Qattara Depression using the Bouguer gravity and aeromagnetic data. To achieve this goal, several transformation techniques and filtering processes are accomplished on these maps. At first, the total intensity aeromagnetic map is processed through the application of reduction to the magnetic north pole technique. The fast Fourier transform is carried out on the gravity and RTP magnetic data for establishing and defining the residual (shallow) sources. The frequency high-pass filtering is used to enhance the anomaly wavelengths associated with the shallow sources. The used processing techniques are the polynomial surface fitting enhancement, Laplacian, Strike Filtering, Enhancement Utilization, Suppression Utilization, Butterworth Filtering Utilization, Butterworth high-pass filter, Euler's deconvolution and forward modeling. The equivalent depths of the isolated short wavelength anomalies are 0.759 and 0.340 km below the flight surface, and the depths of the intermediate wavelength anomalies are 1.28 and 2.00 km for the gravity and magnetic data, respectively. Finally, the quantitative interpretations of the Bouguer gravity and RTP magnetic maps of the study area, reflect the occurrence of the various types of structures and their components. The main tectonic deformations of the study area have NNW-SSE, NNE-SSW, NE-SW, NW-SE and E-W trends.

  6. EUV band pass filters for the ROSAT Wide Field Camera

    NASA Astrophysics Data System (ADS)

    Kent, B. J.; Reading, D. H.; Swinyard, B. M.; Spurrett, P. H.; Graper, E. B.

    1990-11-01

    Large-area thin-film bandpass filters have been constructed to provide four wavelength bands for the Wide Field Camera telescope on the Rosat satellite. The filters consist of a polycarbonate substrate coated with one of carbon, beryllium, or aluminum; additionally, a tin/aluminum filter is also available. These provide wavelength bands of mean wavelength 100, 140, 180, and 600 angstroms, respectively. This paper describes manufacture, and qualification details in the context of filters launched at ambient pressure, with a very stringent requirement for opacity, at around 1800 A, of better than 10 exp-8 of the filter area. Measures taken to protect filters against erosion by low earth orbit atomic oxygen are also briefly presented. Calibration procedures and results are discussed together with comparison of measured transmission profiles with those derived from published absorption coefficients over the range 40 to 2000 A.

  7. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into a hybrid circuit and characterized at liquid nitrogen temperatures. This superconducting/seismology circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  8. Integrated circuit narrowband dielectric filters for D-band

    NASA Astrophysics Data System (ADS)

    Morgan, G. B.; Singh, D.

    1987-06-01

    Dielectrics offer the highest Q-factor for integrated circuit resonators. In the D-band, low-order modes, with higher Q than the fundamental, are worthwhile, despite mode competition and slightly increased area. A 2-pole bandpass filter with a bandwidth of about 1.5 percent at 127 GHz is described. Insertion loss and return loss data are presented. Mode resonances and circuit substrates are also discussed.

  9. A miniature filter on a suspended substrate with a two-sided pattern of strip conductors

    NASA Astrophysics Data System (ADS)

    Belyaev, B. A.; Voloshin, A. S.; Bulavchuk, A. S.; Galeev, R. G.

    2016-06-01

    A miniature bandpass filter of new design with original stripline resonators on suspended substrate has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and mush smaller size in comparison to analogs. It is shown that a broad stopband extending above three-fold central bandpass frequency is determined by weak coupling of resonators at resonances of the second and third modes. A prototype sixth-order filter with a central frequency of 1 GHz, manufactured on a ceramic substrate with dielectric permittivity ɛ = 80, has contour dimensions of 36.6 × 4.8 × 0.5 mm3. Parametric synthesis of the filter, based on electrodynamic 3D model simulations, showed quite good agreement with the results of measurements.

  10. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

    NASA Astrophysics Data System (ADS)

    Horie, Yu; Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2016-05-01

    We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-P\\'erot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250 nm around {\\lambda} = 1550 nm ({\\Delta}{\\lambda}/{\\lambda} = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.

  11. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures.

    PubMed

    Horie, Yu; Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2016-05-30

    We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Pérot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling. PMID:27410093

  12. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  13. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  14. Photonic aided bandpass sampling in coherent phase modulated radio-over-fiber links

    NASA Astrophysics Data System (ADS)

    Cao, Minghua; Li, Jianqiang; Dai, Jian; Dai, Yitang; Yin, Feifei; Zhou, Yue; Xu, Kun

    2016-06-01

    We have experimentally presented a digital coherent receiver employing photonic aided bandpass sampling technology for phase-modulated radio-over-fiber (RoF) links. An optical intensity modulator (IM) is utilized as the bandpass sampler which performs encoded on-off keyed pulse sequence on the optical local oscillator. Quaternary Phase Shift Keying (QPSK) modulated data signal with 20 MHz bandwidth at 5.2 GHz, 10.2 GHz and 15.2 GHz RF carrier frequency is experimentally demonstrated to be successfully detected by using balanced photodiodes (BPDs) with only 800 MHz analog bandwidth. It demonstrates that the required analog bandwidth of BPDs and ADCs can be dramatically reduced in a direct sampled coherent RoF communications system.

  15. Computer-aided design of millimeter-wave E-plane filters

    NASA Astrophysics Data System (ADS)

    Shih, Y.-C.; Itoh, T.; Bui, L. Q.

    1983-02-01

    A computer-aided design (CAD) algorithm has been developed for a class of E-plane bandpass filters. The analysis portion of the algorithm is based on the residue-calculus technique and a generalized scattering parameter method. It is mathematically exact and numerically very efficient. Filters designed with this method have been fabricated and tested in Ka-band. Good agreement with design has been obtained.

  16. Digital linearization of multi-carrier RF link with photonic bandpass sampling.

    PubMed

    Dai, Yitang; Liang, Xiaodong; Yin, Feifei; Zhou, Yue; Zhang, Junyi; Yu, Lan; Li, Jianqiang; Xu, Kun

    2015-09-01

    Due to the capacity in simultaneously down-converting and receiving ultra-wideband, multi-carrier radio frequency (RF) or microwave signals, the photonic bandpass sampling has found more and more applications in multi-carrier communication, frequency-agile coherent radar, compressive sensing, etc. The nonlinear transfer during the electronics-to-optics conversion results in distortions, which are bandpass sampled and frequency-folded within the first Nyquist zone, together with the target signals. Because of the multi-octave-span operation, all nonlinearities must be considered besides the usually-concerned third-order inter-modulation distortion (IMD3). We show theoretically that a photonic bandpass sampling link is equivalent to a baseband digital nonlinear link, and then propose a corresponding linearization scheme for the output signal. Such digital linearization is capable of suppressing all types of distortions. Both numerical and experimental examples are demonstrated, where all of the 3rd-order nonlinearities, including the internal and external IMD3, the cross modulation, and 3rd-order harmonics, are well eliminated.

  17. Water Filters

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aquaspace H2OME Guardian Water Filter, available through Western Water International, Inc., reduces lead in water supplies. The filter is mounted on the faucet and the filter cartridge is placed in the "dead space" between sink and wall. This filter is one of several new filtration devices using the Aquaspace compound filter media, which combines company developed and NASA technology. Aquaspace filters are used in industrial, commercial, residential, and recreational environments as well as by developing nations where water is highly contaminated.

  18. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  19. Multispectral Filter Arrays: Recent Advances and Practical Implementation

    PubMed Central

    Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre

    2014-01-01

    Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904

  20. FILTER TREATMENT

    DOEpatents

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  1. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  2. Design and Fabrication of Edge Filter Using Absorbed ZnS Single Layer Prepared by Flash Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Habubi, Nadir F.; Mishjil, Khudheir A.; Rashid, Hayfa G.; Mansour, H. L.

    Long-wave pass edge filter of high transmittance and wide bandpass have been designed and fabricated using on a single weakly absorbed ZnS thin film material of thickness of about 300 nm which was prepared by using the flash evaporation technique. The design was based on characteristic matrix theory, taking into account the effect of dispersion phenomena for all spectral wavelength.

  3. Novel Utilization of Terminators in the Design of Biologically Adjustable Synthetic Filters.

    PubMed

    Lin, Mei-Ting; Wang, Chun-Ying; Xie, Hui-Juan; Cheung, Chantal Hoi Yin; Hsieh, Chiao-Hui; Juan, Hsueh-Fen; Chen, Bor-Sen; Lin, Che

    2016-05-20

    Terminators, which signal the end of transcription processes, are typically placed behind the last coding sequence of an operon to prevent interference between transcript units in most biologically synthetic systems. Here, we seek to extend the usability of terminators in genetic system design by using terminators as regulatory genetic parts. Terminators with different impacts on their upstream and downstream genes are characterized in detail via dynamic modeling to predict the behavior of the overall genetic system. Some nonlinear effects of terminators observed in our terminator measurements potentially facilitate regulation of gene expression. Through dynamic modeling in silico, we find that such genetic systems may behave like genetic filters. In agreement with the simulations, we successfully implement genetic high-pass and bandpass filters in vivo, demonstrating the potential of using terminators as regulatory parts. The genetic bandpass filter in this work is implemented through the interdependence between genetic parts, in which the termination efficiency of a terminator varies with the strength of the upstream promoter. This design strategy for a bandpass filter requires fewer base pairs than the conventional strategy of concatenating high-pass and low-pass filters. Our results show that this novel utilization of terminators as regulatory parts may provide a new perspective for efficient design of genetic circuits. We believe that further exploration of the complicated dynamics of terminators is important in the development of synthetic biology. PMID:26912179

  4. Quantitative Determination of Bandpasses for Producing Vegetation Indices from Recombined NEON Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2015-12-01

    Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. However, as each spectral return from these systems is a vector with several hundred elements, they can be very difficult to process and analyze, and problemeatic to compare within, across, and between datasets over time and space. Vegetation indices (e.g. NDVI, ARVI, EVI, et al) attempt to combine spectral features in to single-value scores. When derived from calibrated and atmospherically compensated reflectance data, these indices can be quantitatively compared. Historically, these indices have been calculated from multispectral sensor data. These sensors have a handful (4 to 16 or so) of bandbasses ranging from 20 nm to 200 nm FWHM covering specific spectral regions for a variety of reasons, including both intended applications and system limitations. Hyperspectral sensors, however, cover the spectrum with many, many narrow (5 to 10 nm) bandpasses. This allows for analyses using the full, detailed spectral curve, or combination of the bands in to regions by averaging or in to composites using transforms or other techniques. This raises the question of exactly which bands should be used and combined in what manner for ideally deriving well-known vegetation indices typically made from multispectral data. In this study we use derivatives and other curve and signal analysis techniques to analyze vegetation reflectance spectra to quantitatively define optimal bandpasses for several vegetation indices and combine the 5 nm hypserspectral bandpasses of the NEON Imaging Spectrometer to synthesize them.

  5. Tunable narrow-bandpass filter based on an asymmetric photonic bandgap structure with a dual-mode liquid crystal.

    PubMed

    Wang, Hsiao-Tsung; Timofeev, Ivan V; Chang, Kai; Zyryanov, Victor Ya; Lee, Wei

    2014-06-16

    A one-dimensional asymmetric photonic crystal with dual-frequency liquid crystal as a central defect layer was demonstrated. Such asymmetric structure was characterized by the dramatic increase in intensity of the electric field of light localized at the overlapped photonic bandgap edges, thereby enhancing the observed transmittance of the spectral windows originating from the defect layer. The defect layer was made of a dual-mode liquid crystal that exhibited not only electrical tunability and switchability but also optical bistability. Consequently, tunable and bistable defect modes can be realized in the photonic structure. This asymmetric photonic crystal structure is promising and should be further explored for photonic device applications.

  6. Tunable narrow-bandpass filter based on an asymmetric photonic bandgap structure with a dual-mode liquid crystal.

    PubMed

    Wang, Hsiao-Tsung; Timofeev, Ivan V; Chang, Kai; Zyryanov, Victor Ya; Lee, Wei

    2014-06-16

    A one-dimensional asymmetric photonic crystal with dual-frequency liquid crystal as a central defect layer was demonstrated. Such asymmetric structure was characterized by the dramatic increase in intensity of the electric field of light localized at the overlapped photonic bandgap edges, thereby enhancing the observed transmittance of the spectral windows originating from the defect layer. The defect layer was made of a dual-mode liquid crystal that exhibited not only electrical tunability and switchability but also optical bistability. Consequently, tunable and bistable defect modes can be realized in the photonic structure. This asymmetric photonic crystal structure is promising and should be further explored for photonic device applications. PMID:24977602

  7. Development of a Korotkov sound processor for automatic identification of auscultatory events. I - Specification of preprocessing bandpass filters

    NASA Technical Reports Server (NTRS)

    Golden, D. P., Jr.; Wolthuis, R. A.; Hoffler, G. W.; Gowen, R. J.

    1974-01-01

    Frequency bands that best discriminate the Korotkov sounds at systole and at diastole from the sounds immediately preceding these events are defined. Korotkov sound data were recorded from five normotensive subjects during orthostatic stress (lower body negative pressure) and bicycle ergometry. A spectral analysis of the seven Korotkov sounds centered about the systolic and diastolic auscultatory events revealed that a maximum increase in amplitude at the systolic transition occurred in the 18-26-Hz band, while a maximum decrease in amplitude at the diastolic transition occurred in the 40-60-Hz band. These findings were remarkably consistent across subjects and test conditions. These passbands are included in the design specifications for an automatic blood pressure measuring system used in conjuction with medical experiments during NASA's Skylab program.

  8. Multispectral filter wheel cameras: modeling aberrations for filters in front of lens

    NASA Astrophysics Data System (ADS)

    Klein, Julie; Aach, Til

    2012-01-01

    Aberrations occur in multispectral cameras featuring filter wheels because of color filters with different optical properties being present in the ray path. In order to ensure an exact compensation of these aberrations, a mathematical model of the distortions has to be developed and its parameters have to be calculated using the measured data. Such a model already exists for optical filters placed between the sensor and the lens, but not for bandpass filters placed in front of the lens. For this configuration, the rays are first distorted by the filters and then by the lens. In this paper, we derive a model for aberrations caused by filters placed in front of the lens in multispectral cameras. We compare this model with distortions obtained with simulations as well as with distortions measured during real multispectral acquisitions. In both cases, the difference between modeled and measured aberrations remains low, which corroborates the physical model. Multispectral acquisitions with filters placed between the sensor and the lens or in front of the lens are compared: the latter exhibit smaller distortions and the aberrations in both images can be compensated using the same algorithm.

  9. Design of doubly focusing, tunable (5 to 30 keV), wide-bandpass optics made from layered synthetic microstructures

    SciTech Connect

    Bilderback, D.H.; Lairson, B.M.; Barbee, T.W. Jr.; Ice, G.E.; Sparks, C.J. Jr.

    1982-01-01

    Layered Synthetic Microstructures (LSMs) show great promise as focusing, high-throughput, hard x-ray monochromators. Experimental reflectivity vs. energy curves have been obtained on carbon-tungsten and carbon-molybdenum LSMs of up to 260 layers in thickness. Reflectivities for three flat LSMs with different bandpasses were 70% with ..delta..E/E = 5.4%, 66% with ..delta..E/E = 1.4%, and 19% with ..delta..E/E = 0.6%. A new generation of variable bandwidth optics using two successive LSMs is proposed. The first element will be an LSM deposited on a substrate that can be water cooled as it intercepts direct radiation from a storage ring. It can be bent for vertical focusing. The bandpass can be adjusted by choosing interchangeable first elements from an assortment of LSM's with different bandpasses (for example, ..delta..E/E = 0.005, 0.01, 0.02, 0.05, 0.1). The second LSM will consist of a multilayered structure with a 10% bandpass built onto a flexible substrate that can be bent for sagittal focusing. The result will be double focusing optics with an adjustable energy bandpass that are tunable from 5 to 30 keV.

  10. Acousto-optic tunable filter as a notch filter

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2016-05-01

    An acousto-optic tunable filter (AOTF) is an all solid-state robust device with no-moving parts that has been used in the development of hyperspectral imagers from the ultraviolet to the longwave infrared. Such a device is developed by bonding a piezoelectric transducer on a specially cut prism in a birefringent crystal. When broadband white light is incident on the prism input facet, two orthogonally polarized diffracted beams at a wavelength with a narrowband bandpass are transmitted. The transmitted wavelength can be tuned by varying the applied radio frequency (RF). This is what is done in a hyperspectral imager. An AOTF can also be used with multiple RFs applied at the same time to diffract a number of different wavelengths. This mode can be exploited to design a tunable optical notch filter where multiple RFs are applied simultaneously such that all wavelength in a specific range can transmit except for a specific wavelength which is notched. We designed an optical system using a TeO2 AOTF with telecentric confocal optics operating in the shortwave infrared (SWIR) with a 16-channel RF driver where both the amplitude and frequency can be controlled independently for each channel. We will discuss the optical system, its characterization and present results obtained.

  11. Filtering apparatus

    DOEpatents

    Haldipur, G.B.; Dilmore, W.J.

    1992-09-01

    A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.

  12. Filtering apparatus

    DOEpatents

    Haldipur, Gaurang B.; Dilmore, William J.

    1992-01-01

    A vertical vessel having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of filter units. Each filter unit includes a filter clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with filter tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their filter units extending vertically and the filter tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the filter tubes and the particulate is absorbed in the pores of the filter tubes. Pulses to clean the filter tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas.

  13. The J-PAS filter system

    NASA Astrophysics Data System (ADS)

    Marin-Franch, Antonio; Taylor, Keith; Cenarro, Javier; Cristobal-Hornillos, David; Moles, Mariano

    2015-08-01

    J-PAS (Javalambre-PAU Astrophysical Survey) is a Spanish-Brazilian collaboration to conduct a narrow-band photometric survey of 8500 square degrees of northern sky using an innovative filter system of 59 filters, 56 relatively narrow-band (FWHM=14.5 nm) filters continuously populating the spectrum between 350 to 1000nm in 10nm steps, plus 3 broad-band filters. This filter system will be able to produce photometric redshifts with a precision of 0.003(1 + z) for Luminous Red Galaxies, allowing J-PAS to measure the radial scale of the Baryonic Acoustic Oscillations. The J-PAS survey will be carried out using JPCam, a 14-CCD mosaic camera using the new e2v 9k-by-9k, 10μm pixel, CCDs mounted on the JST/T250, a dedicated 2.55m wide-field telescope at the Observatorio Astrofísico de Javalambre (OAJ) near Teruel, Spain. The filters will operate in a fast (f/3.6) converging beam. The requirements for average transmissions greater than 85% in the passband, <10-5 blocking from 250 to 1050nm, steep bandpass edges and high image quality impose significant challenges for the production of the J-PAS filters that have demanded the development of new design solutions. This talk presents the J-PAS filter system and describes the most challenging requirements and adopted design strategies. Measurements and tests of the first manufactured filters are also presented.

  14. Effects of Low-pass Filtering on Acoustic Analysis of Voice

    PubMed Central

    MacCallum, Julia K.; Olszewski, Aleksandra E.; Zhang, Yu; Jiang, Jack J.

    2010-01-01

    Objective/Hypothesis Low-pass filtering is often applied to eliminate effects of environmental noise when preparing voice recordings for acoustic analysis. This study tested the effects of low-pass filter cutoff frequency on the results of acoustic voice analysis, with a particular interest in the effects of low cutoff frequencies on nonlinear dynamic parameters. Study Design A crossover randomized controlled trial was performed using voice recordings of sustained vowel phonation obtained from the Disordered Voice Database. Methods A second-order Butterworth filter was applied to the voices at cutoff frequencies ranging from 5000 to 40Hz. Percent jitter, percent shimmer, fundamental frequency (F0), signal-to-noise ratio (SNR), D2, and K2 were calculated for each signal. Results Traditional acoustic parameters were validly measured at cutoff frequencies as low as 300Hz. SNR and percent shimmer were improved by cutoff frequencies of 300Hz or higher; F0 and percent jitter were unaffected by filtering at these frequencies. D2 and K2 were measured stably for signals filtered at cutoff frequencies as low as 100Hz. Conclusion To ensure accuracy in acoustic voice analysis, setting the cutoff frequency of a low-pass filter at least one octave above the fundamental frequency (minimum of 300Hz) is recommended. Nonlinear dynamic measures of correlation dimension (D2) and second-order entropy (K2) proved more robust and maintained accuracy at lower frequencies. PMID:20346621

  15. Fast scanning synchronous luminescence spectrometer based on acousto-optic tunable filters

    SciTech Connect

    Hueber, D.M.; Stevenson, C.L.; Vo-Dinh, T.

    1995-11-01

    A new luminescence spectrometer based on quartz-collinear acousto-optic tunable filters (AOTFs) and capable of synchronous scanning is described. An acousto-optic tunable filter is an electronically tunable optical bandpass filter. Unlike a tunable grating monochromator, an AOTF has no moving mechanical parts, and an AOTF can be tuned to any wavelength within its operating range in microseconds. These characteristics, combined with the small size of these devices, make AOTFs an important new alternative to conventional monochromators, especially for portable instrumentation. The relevant performance of the AOTFs (efficiency, bandwidth, rejection, etc.) is compared with that of typical small-grating monochromator. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  16. A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nag, Abhishek; Chen, Frank; Mittleman, Daniel M.

    2010-09-01

    Using parallel-plate waveguides (PPWGs) that mimic artificial dielectrics, we demonstrate a universal filter that provides low-pass, high-pass, band-pass, and band-stop (or notch) filtering functionalities in the terahertz (THz) frequency regime. The device essentially consists of two PPWGs in a complementary geometry. The filtering functionality is achieved by positioning an appropriate amplitude mask in the path of the spatially chirped THz beam between the two waveguides. By varying the position of the mask, we experimentally and theoretically demonstrate continuous tunability of the respective 3 dB cutoff frequencies within the frequency range from about 0.3 to 0.7 THz.

  17. SEMICONDUCTOR INTEGRATED CIRCUITS: A low power Gm-C filter with on-chip automatic tuning for a WLAN transceiver

    NASA Astrophysics Data System (ADS)

    Silin, Liu; Heping, Ma; Yin, Shi

    2010-06-01

    A sixth-order Butterworth Gm-C low-pass filter (LPF) with a continuous tuning architecture has been implemented for a wireless LAN (WLAN) transceiver in 0.35 μm CMOS technology. An interior node scaling technique has been applied directly to the LPF to improve the dynamic range and the structure of the LPF has been optimized to reduce both the die size and the current consumption. Measurement results show that the filter has 77.5 dB dynamic range, 16.3 ns group delay variation, better than 3% cutoff frequency accuracy, and 0 dBm passband IIP3. The whole LPF with the tuning circuit dissipates only 1.42 mA (5 MHz cutoff frequency) or 2.81 mA (10 MHz cutoff frequency) from 2.85 V supply voltage, and only occupies 0.175 mm2 die size.

  18. New class of filter functions generated most directly by Christoffel-Darboux formula for Gegenbauer orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Ilić, Aleksandar D.; Pavlović, Vlastimir D.

    2011-01-01

    A new original formulation of all pole low-pass filter functions is proposed in this article. The starting point in solving the approximation problem is a direct application of the Christoffel-Darboux formula for the set of orthogonal polynomials, including Gegenbauer orthogonal polynomials in the finite interval [-1, +1] with the application of a weighting function with a single free parameter. A general solution for the filter functions is obtained in a compact explicit form, which is shown to enable generation of the Gegenbauer filter functions in a simple way by choosing the value of the free parameter. Moreover, the proposed solution with the same criterion of approximation could be used to generate Legendre and Chebyshev filter functions of the first and second kind as well. The examples of proposed filter functions of even (10th) and odd (11th) order are illustrated. The approximation is shown to yield a good compromise solution with respect to the filter frequency characteristics (magnitude as well as phase characteristics). The influence of tolerance of the filter critical component (inductor) on the proposed magnitude and group delay characteristics of a resistively terminated LC lossless ladder filter is analysed as well. The proposed filter functions are superior in terms of the excellent magnitude characteristic, which approximates an ideal filter almost perfectly over the entire pass-band range and exhibits the summed sensitivity function better than that of a Butterworth filter. In the article, we present the filter function solution that exhibits optimum amplitude as well as optimum group delay characteristics that are of crucial importance for implementation of digital processing as well as RF analogue parts of communication networks. Derivation of the other band range filter functions, which could be realised either by continuous or digital filters, is also generally possible with the procedure proposed in this article.

  19. A New Robust Bandpass Sampling Scheme for Multiple RF Signals in SDR System

    NASA Astrophysics Data System (ADS)

    Chi, Chen; Zhang, Yu; Yang, Zhixing

    Software defined radio (SDR) technology has been widely applied for its powerful universality and flexibility in the past decade. To address the issue of bandpass sampling of multiband signals, a novel and efficient method of finding the minimum valid sampling frequency is proposed. Since there are frequency deviations due to the channel effect and hardware instability in actual systems, we also consider the guard-bands between downconverted signal spectra in determining the minimum sampling frequency. In addition, the case that the spectra within the sampled bandwidth are located in inverse placement can be avoided by our proposed method, which will reduce the complexity of the succeeding digital signal process significantly. Simulation results illustrate that the proper minimum sampling frequency can be determined rapidly and accurately.

  20. Demonstration and experimental evaluation of a bi-directional 10-GHz microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Zaldívar-Huerta, I. E.; Correa-Mena, A. G.; Hernández-Nava, P.; García-Juárez, A.; Rodríguez-Asomoza, J.; Lee, Min Won

    2016-09-01

    A bi-directional 10-GHz microwave photonic filter is proposed and experimentally evaluated. Its frequency response consists of a series of microwave band-pass windows obtained by the interaction of externally modulated multimode laser diodes emitting around of 1550 nm associated to the chromatic dispersion parameter of an optical fiber, as well as the length of the optical link. Microwave band-pass windows exhibit on average a-3 dB bandwidth of 378 MHz. This electro-optical system shows an efficient configuration and good performance. Potentially, filtered microwave signals can be used as electrical carriers in optical communication systems to transmit and distribute services such as video, voice and data.

  1. Feature Identification and Filtering for Engine Misfire Detection (EMD) Using Zirconia Oxygen Sensor

    NASA Astrophysics Data System (ADS)

    Pauzi, Muhammad Zaim Mohamed; Abu Bakar, Elmi; Fauzi Ismail, Mohd

    2016-02-01

    Vehicles as transportation are popular and mainly use among peoples around the world for various kind of purpose either personal or not. Over hundreds of year internal combustion engines widely used because of high efficiency and low maintenance compare to new technology which are using cells of battery. Nevertheless, emission cause of incomplete combustion such engine misfire normally occurs as well. For instances, some mechanical, sensors or actuators failure and environmental condition contribute to the engine misfire. The importance of engine misfire detection (EMD) is to ensure engine emissions not harmful to the environments and avoid damage of catalytic converter. By using low cost narrowband oxygen sensor to acquire air to fuel ratio (AFR) signal behavior under misfire condition and analyst by digital signal processing method using Discrete Fourier Transform (DFT) algorithm for Digital Butterworth Filter designation is discussed in this paper.

  2. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography.

    PubMed

    Comani, S; Mantini, D; Alleva, G; Di Luzio, S; Romani, G L

    2005-12-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz. PMID:16306648

  3. Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides.

    PubMed

    Shen, Guansheng; Tian, Huiping; Ji, Yuefeng

    2013-02-20

    We design two microwave photonic filters (notch filter and bandpass filter) based on silicon on insulator (SOI) photonic crystal waveguides for a 60 GHz single-sideband signal radio-over-fiber (ROF) system. By perturbing the radii of the first two rows of holes adjacent to the photonic crystal waveguide, we obtained a broad negligible dispersion bandwidth and a corresponding constant low group velocity. With the slow light effect, the delay line of filters can be significantly reduced while providing the same delay time as fiber based delay lines. The simulation results show that the delay-line length of the notch filter is only about 25.9 μm, and it has a free spectral range of 130 GHz, a baseband width (BW) of 4.12 GHz, and a notch depth of 22 dB. The length of the bandpass filter is 62.4 μm, with a 19.6 dB extinction ratio and a 4.02 GHz BW, and the signal-to-noise ratio requirement of received data can be reduced by 9 dB for the 10(-7) bit-error ratio. Demonstrated microwave photonic crystal filters could be used in a future high-frequency millimeter ROF system. PMID:23434992

  4. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography

    NASA Astrophysics Data System (ADS)

    Comani, S.; Mantini, D.; Alleva, G.; Di Luzio, S.; Romani, G. L.

    2005-12-01

    The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally filter magnetocardiographic recordings. At present, no systematic evaluation of filters' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type filters with zero-phase and stable impulse response; the most commonly used band-pass filters were implemented combining high-pass and low-pass filters. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same filter setting might be applied to both conditions. Band-pass filters (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz.

  5. The effects of sinusoidal interference on the second-order carrier tracking loop preceded by a bandpass limiter in the Block 4 receiver

    NASA Technical Reports Server (NTRS)

    Ruggier, C. J.

    1989-01-01

    Drop-lock relationships for the second-order phase-locked loop are derived when the carrier and a sinusoidal signal lie within the predetection filter bandwidth of the Block 4 receiver. Limiter suppression factors are calculated when a bandpass hard limiter is used to maintain constant total power at the loop. The parameters of interest are the interference-to-signal power ratio (ISR), the input signal-to-noise power ratio (NSR), and the interference signal frequency offset from carrier delta f. Limiter suppression caused by the combined effects of the noise and the interference signal accounts for the variability in the drop-lock threshold for given values of the input SNR and ISR parameters. Going beyond earlier published work that focused on the limiter's effect on the drop-lock threshold; an account is made for the limiter action in the interference mode and an overall imporvement is provided in the prediction accuracy of the drop-lock model.

  6. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Robinson, S.

    2014-10-01

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits.

  7. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    SciTech Connect

    Robinson, S.

    2014-10-15

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits.

  8. Selecting the optimal anti-aliasing filter for multichannel biosignal acquisition intended for inter-signal phase shift analysis.

    PubMed

    Keresnyei, Róbert; Megyeri, Péter; Zidarics, Zoltán; Hejjel, László

    2015-01-01

    The availability of microcomputer-based portable devices facilitates the high-volume multichannel biosignal acquisition and the analysis of their instantaneous oscillations and inter-signal temporal correlations. These new, non-invasively obtained parameters can have considerable prognostic or diagnostic roles. The present study investigates the inherent signal delay of the obligatory anti-aliasing filters. One cycle of each of the 8 electrocardiogram (ECG) and 4 photoplethysmogram signals from healthy volunteers or artificially synthesised series were passed through 100-80-60-40-20 Hz 2-4-6-8th order Bessel and Butterworth filters digitally synthesized by bilinear transformation, that resulted in a negligible error in signal delay compared to the mathematical model of the impulse- and step responses of the filters. The investigated filters have as diverse a signal delay as 2-46 ms depending on the filter parameters and the signal slew rate, which is difficult to predict in biological systems and thus difficult to compensate for. Its magnitude can be comparable to the examined phase shifts, deteriorating the accuracy of the measurement. As a conclusion, identical or very similar anti-aliasing filters with lower orders and higher corner frequencies, oversampling, and digital low pass filtering are recommended for biosignal acquisition intended for inter-signal phase shift analysis. PMID:25514627

  9. Apodized SCISSORs for filtering and switching.

    PubMed

    Cho, Sang-Yeon; Soref, Richard

    2008-11-10

    This paper presents 1550-nm simulation results on the waveguided silicon-on-insulator four-port optical filtering and switching devices known as "SCISSOR" (an in-line array of microring resonators wherein each ring is coupled to two bus waveguides). We optimized the array number, the ring-bus coupling and the inter-ring spacing in order to obtain "rectangular" filter-passband shapes that have not heretofore been reported in the resonant-optics literature. We were able to engineer a box-like bandpass whose wavelength width could be anywhere from 5 to 50 % of the free spectral range (FSR). We then performed ring-bus apodization of the array that increased side-lobe suppression on the main filter band and widened the band. By reducing the FSR to 2.51 nm with increased ring diameter, we also showed that complete, high-extinction 2 x 2 optical switching is attained when the effective index of each ring in the group is changed by 2 x 10(-3), giving 1.02-nm shift of the 0.77-nm passband. Tunable filtering, sensing, reconfigurable add/drop and wavelength-division demultiplexing is offered in addition to switching.

  10. National Seismic Stations transducers and filters

    SciTech Connect

    Rodgers, P.W.; Hummell, M.

    1981-01-13

    The National Seismic Stations (NSS) instruments are being developed for seismic monitoring of regional and teleseismic events. They consist of two 3-component, broadband, borehole seismometers: the KS-36000 and the S-700, which is the backup for the KS-36000. Output is divided into frequency bands to reduce data loss due to saturation. Complete block diagrams of the KS-36000 and S-700 NSS seismometers and filters are presented. Both open-loop and closed-loop steady-state amplitude and phase curves are given. Without band-pass filters (but with shaping filters) the KS-36000 has a flat (i.e., between the -3dB points) velocity sensitivity from 0.03 to 23 Hz. With its shaping filters, the S-700 is flat from 0.2 to 40 Hz. The structure of the three band-pass filters (LP, MP, and SP) is superimposed on these velocity sensitivities. Passbands of the resulting overall velocity sensitivity for the KS-36000 are as follows: LP band = 0.01-0.05 Hz, MP band = 0.02-1.3 Hz, and SP band = 1-10 Hz. Step-function responses and phase and group delays are given for each of the bands. The MP-band step response is oscillatory due to its sharp, high-frequency cutoff, but an MP-band filter with a less abrupt cutoff eliminates the oscillation. To generate typical NSS output seismograms, velocity inputs from four representative seismic events were used: an underground nuclear test (..delta.. approx. = 3.6/sup 0/), a regional earthquake (..delta.. approx. = 20/sup 0/), a local earthquake (..delta.. approx. = 1.5/sup 0/), and a teleseismic earthquake (..delta.. approx. = 123/sup 0/). The velocity inputs for these events were obtained from the LLNL digital seismic network (DSS) around the Nevada Test Site (NTS). The seismograms resulting from each of the bands were satisfactory, although the low-frequency corner of the MP band should be increased in frequency to 0.08 Hz.

  11. Filter apparatus

    DOEpatents

    Kuban, D.P.; Singletary, B.H.; Evans, J.H.

    A plurality of holding tubes are respectively mounted in apertures in a partition plate fixed in a housing receiving gas contaminated with particulate material. A filter cartridge is removably held in each holding tube, and the cartridges and holding tubes are arranged so that gas passes through apertures therein and across the the partition plate while particulate material is collected in the cartridges. Replacement filter cartridges are respectively held in holding canisters mounted on a support plate which can be secured to the aforesaid housing, and screws mounted on said canisters are arranged to push replacement cartridges into the cartridge holding tubes and thereby eject used cartridges therefrom.

  12. Water Filters

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Seeking to find a more effective method of filtering potable water that was highly contaminated, Mike Pedersen, founder of Western Water International, learned that NASA had conducted extensive research in methods of purifying water on board manned spacecraft. The key is Aquaspace Compound, a proprietary WWI formula that scientifically blends various types of glandular activated charcoal with other active and inert ingredients. Aquaspace systems remove some substances; chlorine, by atomic adsorption, other types of organic chemicals by mechanical filtration and still others by catalytic reaction. Aquaspace filters are finding wide acceptance in industrial, commercial, residential and recreational applications in the U.S. and abroad.

  13. Optimization of the filter parameters in (99m)Tc myocardial perfusion SPECT studies: the formulation of flowchart.

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Yamada, Tomoki; Kamida, Hiroki; Kunishita, Kohei; Hayashi, Yuuki; Nakajima, Tadashi; Kinuya, Seigo

    2016-06-01

    Myocardial perfusion single photon emission computed tomography (SPECT) is typically subject to a variation in image quality due to the use of different acquisition protocols, image reconstruction parameters and image display settings by each institution. One of the principal image reconstruction parameters is the Butterworth filter cut-off frequency, a parameter strongly affecting the quality of myocardial images. The objective of this study was to formulate a flowchart for the determination of the optimal parameters of the Butterworth filter for filtered back projection (FBP), ordered subset expectation maximization (OSEM) and collimator-detector response compensation OSEM (CDR-OSEM) methods using the evaluation system of the myocardial image based on technical grounds phantom. SPECT studies were acquired for seven simulated defects where the average counts of the normal myocardial components of 45° left anterior oblique projections were approximately 10-120 counts/pixel. These SPECT images were then reconstructed by FBP, OSEM and CDR-OSEM methods. Visual and quantitative assessment of short axis images were performed for the defect and normal parts. Finally, we formulated a flowchart indicating the optimal image processing procedure for SPECT images. Correlation between normal myocardial counts and the optimal cut-off frequency could be represented as a regression expression, which had high or medium coefficient of determination. We formulated the flowchart in order to optimize the image reconstruction parameters based on a comprehensive assessment, which enabled us to perform objectively processing. Furthermore, the usefulness of image reconstruction using the flowchart was demonstrated by a clinical case.

  14. Experiences with thin film filter development for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vedder, P. W.; Siegmund, O. H. W.

    1993-01-01

    The design, development, and optimization of the thin film filters used on the Extreme Ultraviolet Explorer (EUVE) Satellite to define the EUV wavelength bandpasses of the individual instruments was a complicated task. The bandpasses had to be optimized for the astrophysical goals of the EUVE mission and constrained by the strong geocoronal EUV background emission. Materials with optical constants that met these requirements had to be found and tested. In many cases these materials were not compatible or were not strong enough to survive the intense vibrations of a rocket launch. Other effects, such as photoelectron 'halo' produced in the filters, were not discovered until flight qualification. The final set of flight filters included: lexan/boron, aluminum/carbon, titanium/antimony/aluminum, and tin/silicon monoxide. This paper discusses the lessons learned in the development of these filters, including the optimization process, material interactions and problems, calibration techniques, vibration susceptibility, thermal tests, and photoelectron emission. We feel the experiences gained over the last 10 years creating the filter sets for EUVE will be invaluable for future missions that use thin film filters.

  15. Design of multichannel filter banks for subband coding of audio signals using multirate signal processing techniques

    NASA Astrophysics Data System (ADS)

    Goel, Aditya

    2007-09-01

    This paper presents a design technique for multi channel filter banks for subband coding of audio signal. In sub-band coding, the speech is first split into frequency bands using a bank of bandpass filters. The individual band pass signals are then decimated by a factor 'N' and encoded for transmission. A filter bank is a collection of bandpass filters, all processing the same input signal. The important parameters in sub-band coders are the number of frequency bands and the frequency range of the system, and the sub-band coding technique. The total number of filters required are 2N. The sub-band signals can be reconstructed perfectly with linear-phase FIR filters. The filter bank is designed so as to overcome the effect of non-ideal transition-band and stop-bands filtering. With real-world filters, the non-zero signal energy in the transition and stop bands is reflected back into the pass-band during the interpolation process at the receiver causing aliasing. This aliasing is canceled in the filter bank during reconstruction of the signal. This paper deals with the designing of 8 band filter banks and coding the subband signals at various bit rates using DPCM technique. In this we used a sampling rate of 44.1Khz. The first two bands are coded at 8 bits/sample, next three bands are coded at 4bits/sample and last 3 bands are coded at 2 bits/sample. Lower frequency spectrum is encoded at higher bit rate, as more energy is concentrated in the lower range. Simulated results using MATLAB Software shows that a compression ratio of 3.76:1 is achieved with perceptual quality. Beyond this we find that the signal quality degraded to reasonable extent, which is not recommended. There has to be a tradeoff between the compression ratio and Quality of transmitted signal.

  16. An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation

    NASA Astrophysics Data System (ADS)

    Jihai, Duan; Chuang, Lan; Weilin, Xu; Baolin, Wei

    2015-05-01

    A fifth order operational transconductance amplifier-C (OTA-C) Butterworth type low-pass filter with highly linear range and less passband attenuation is presented for wearable bio-telemetry monitoring applications in a UWB wireless body area network. The source degeneration structure applied in typical small transconductance circuit is improved to provide a highly linear range for the OTA-C filter. Moreover, to reduce the passband attenuation of the filter, a cascode structure is employed as the output stage of the OTA. The OTA-based circuit is operated in weak inversion due to strict power limitation in the biomedical chip. The filter is fabricated in a SMIC 0.18-μm CMOS process. The measured results for the filter have shown a passband gain of -6.2 dB, while the -3-dB frequency is around 276 Hz. For the 0.8 VPP sinusoidal input at 100 Hz, a total harmonic distortion (THD) of -56.8 dB is obtained. An electrocardiogram signal with noise interference is fed into this chip to validate the function of the designed filter. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  17. Notch filter

    NASA Technical Reports Server (NTRS)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  18. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  19. Design of Bessel low-pass filter using DGS for RF/microwave applications

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Verma, A. K.

    2016-09-01

    A synthesis method to design a defected ground structures (DGS)-based Bessel low-pass filter (LPF) using a triangular and an open-square (OS)-type DGS is reported. For the five-pole Bessel LPF at fc = 2.5 GHz, we get 10.6 dB/GHz selectivity using the triangular DGS; while the OS-type DGS provides 39 dB/GHz selectivity. For these two filters, the 10 dB impedance matching BW is 76% and 84%, respectively. It is a much wider BW that is obtained for a lumped element Bessel LPF. The maximum group delay (GD) variation within the pass band is 25pS and 28pS, respectively. The 20 dB rejection BW can be increased from 5.8 GHz to 18.8 GHz with increase in the order of filter from 5 to 11. We have also presented the design of a compact five-pole DGS-based elliptic filter with selectivity 38.2 dB/GHz and 17.8 dB return loss. Results on the DGS-based elliptic filter, Butterworth and Chebyshev filters are also presented. The experimental results are compared against the recently reported LPFs. Our reported filters perform better with respect to selectivity and group delay variation. The flatter GD and high selectivity, along with a wide 10 dB impedance matching BW, make the DGS Bessel filter a candidate for high-speed data communication, front end of a wideband communication system and efficiency improvement of a power amplifier.

  20. The effects of bandpass limiters on n-phase tracking systems

    NASA Technical Reports Server (NTRS)

    Butman, S. A.; Lesh, J. R.

    1977-01-01

    The combination of a bandpass limiter and an n-th power tracking loop is considered. Performance of the combination does not depend on the form of the nonlinear function used to create the n-th harmonic signal as long as some energy in that zone is produced. The order in which the limiter and n-th power nonlinearity occur is unimportant so that the results apply equally well to the n-phase Costas type of implementations of the n-th power loops. Closed form expressions for the signal suppression factors are obtained. Coherent and noncoherent SNR's out of the n-th power-limiter combination can be expressed in terms of two of these suppression factors. The loop SNR of an n-th power-limited phase locked loop is estimated by simply calculating the suppression factors for n-th and 2n-th power loops. Finally, n-th power phase locked loops without limiters are compared with similar loops with limiters; the limiter can actually enhance output SNR at moderate to large input SNR.

  1. The effects of bandpass limiters on n-phase tracking systems

    NASA Technical Reports Server (NTRS)

    Butman, S. A.; Lesh, J. R.

    1977-01-01

    The combination of a bandpass limiter and an n(th) power tracking loop is considered. It is shown that the performance of the combination does not depend on the form of the nonlinear function used to create the n(th) harmonic signal so long as some energy in that zone is produced. Furthermore, the order in which the limiter and n(th) power nonlinearity occur is unimportant so that the results apply equally well to the n-phase Costas type of implementation of the n(th) power loops. Closed form expressions for the signal suppression factors are obtained and it is shown that the coherent and noncoherent SNR's out of the n(th) power-limiter combination can be expressed in terms of two of these suppression factors. This later point enables one to estimate the loop SNR of an n(th) power-limiter phase locked loop by simply calculating the suppression factors for n(th) and 2n(th) power loops. Finally, n(th) power phase locked loops without limiters are compared with similar loops with limiters where it is shown that the presence of the limiter can actually enhance the output SNR at moderate to large values of input SNR.

  2. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    SciTech Connect

    De Diego, J. A.; De Leo, M. A.; Cepa, J.; Bongiovanni, A.; Verdugo, T.; Sánchez-Portal, M.

    2013-10-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. We compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.

  3. A center frequency adjustable narrow band filter for the detection of weak single frequency signal.

    PubMed

    Xin, Yunhong; Xiang, ZhenMing; Dong, LeMing; Zhu, Bing; Cao, Hui; Fang, Yu

    2014-04-01

    We describe and implement a center frequency adjustable narrow band filter based on the crystal filter for the detection of weak single frequency signal. It is formed by a multiplier, a direct digital frequency synthesizer, a multi-stage crystal bandpass filter, and a micro control unit which is used to set the center frequency of the filter. A theoretical study is proposed and experimentally validated. The test results show that the 3 db and 20 db bandwidths are 0.84 Hz and 2.73 Hz, respectively, and the filter system can effectively detect the signal with amplitude below 1 μV and a frequency which ranges from 10 Hz to the frequency that is mainly limited by the components applied.

  4. The relationship between narrow and wide bandwidth filter settings during an EMG scanning procedure.

    PubMed

    Cram, J R; Garber, A

    1986-06-01

    This study examined the correlation between EMG values measured with wide (25-1000 Hz) and narrow (100-200 Hz) band-width filters. An EMG diagnostic scan was conducted on 32 chronic pain patients admitted to an inpatient treatment unit. EMG readings were taken from a total of 44 sites (11 sites X 2 sides X 2 postures). Each EMG measure was passed in parallel through a narrow and wide band-pass filter and the stable readings were recorded. Correlated t tests and Pearson correlations were used to compare the data from the narrow and wide filter settings. The measures from the wide filter were significantly higher than the measures from the narrow filter. In addition, 61% of the correlations were greater than .90. The majority of the correlations below the median (.93) occurred in the neck region and the abdomen. The implications of the findings are discussed.

  5. Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters

    NASA Astrophysics Data System (ADS)

    Inoue, Takuya; De Zoysa, Menaka; Asano, Takashi; Noda, Susumu

    2014-01-01

    We experimentally demonstrate filter-free nondispersive infrared (NDIR) sensing of organic solvents using single-peak narrow-bandwidth mid-infrared thermal emitters. Our emitters are based on multiple quantum wells (MQWs) and two-dimensional (2D) photonic crystal (PC) slabs, and show a single thermal emission peak with a quality factor of over 100 at the fingerprint wavelength (around 9 µm) of the target organic solvents. Using these narrow-bandwidth thermal emitters and commercial pyroelectric sensors without any optical bandpass filters, we successfully distinguish and determine the concentration of the target solvents among other solvents.

  6. Multi-GHz bandpass, high-repetition rate single channel mobile diagnostic system for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Miner, Lynn M.; Voss, Donald E.

    1993-01-01

    Characterizing radiated ultra-wideband (UWB) signals poses challenges due to requirements for (1) multi-GHz bandpass recording of the signal's leading edge; (2) GHz-bandpass recording of long record lengths (10s-100s of ns); and (3) determining shot-to-shot reproducibility at rep-rates exceeding 10 kHz. The System Verification Apparatus (SVA) is a novel diagnostic system which can measure 60-ps rise-time signals on a single-shot basis, while monitoring pulse-to-pulse variation. The fully-integrated SVA includes a broadband sensor, signal and trigger conditioning electronics, multiple parallel digitizers with deep local storge, and automated software for acquiring, archiving, and analyzing waveform data with rapid (secs-minute) turnaround time. The instruments are housed in a portable 100-dB shielded aluminum enclosure. The SVA utilizes a 6-GHz bandpass free-field D-dot sensor to measure the incident electric field. Three separate digitizers together meet the requirements of high bandwidth, long record length, and high repetition rate. A 6-GHz bandpass scan converter digitizer captures the leading edge (few ns) of the radiated signal. 1-GHz and 600 MHz bandwidth solid-state digitizers supporting long record lengths (greater than 2 micrometers) record the balance of the signal, which typically contains negligible content above 1 GHz. These solid-state digitizers can store greater than 900 waveforms locally at rep-rates exceeding 65 Hz and 100 kHz, respectively. Data management and instrument control use an 80486-based PC, operating in a user-friendly Windows environment. All waveform and system configuration data are automatically stored in a built-in database. A fiber-optic link, up to 2 km long, provides electromagnetic isolation of the computer.

  7. Plasmonic filters.

    SciTech Connect

    Passmore, Brandon Scott; Shaner, Eric Arthur; Barrick, Todd A.

    2009-09-01

    Metal films perforated with subwavelength hole arrays have been show to demonstrate an effect known as Extraordinary Transmission (EOT). In EOT devices, optical transmission passbands arise that can have up to 90% transmission and a bandwidth that is only a few percent of the designed center wavelength. By placing a tunable dielectric in proximity to the EOT mesh, one can tune the center frequency of the passband. We have demonstrated over 1 micron of passive tuning in structures designed for an 11 micron center wavelength. If a suitable midwave (3-5 micron) tunable dielectric (perhaps BaTiO{sub 3}) were integrated with an EOT mesh designed for midwave operation, it is possible that a fast, voltage tunable, low temperature filter solution could be demonstrated with a several hundred nanometer passband. Such an element could, for example, replace certain components in a filter wheel solution.

  8. Water Filter

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  9. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    NASA Astrophysics Data System (ADS)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  10. Eyeglass Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Biomedical Optical Company of America's suntiger lenses eliminate more than 99% of harmful light wavelengths. NASA derived lenses make scenes more vivid in color and also increase the wearer's visual acuity. Distant objects, even on hazy days, appear crisp and clear; mountains seem closer, glare is greatly reduced, clouds stand out. Daytime use protects the retina from bleaching in bright light, thus improving night vision. Filtering helps prevent a variety of eye disorders, in particular cataracts and age related macular degeneration.

  11. Self-emission glucose monitoring system with single chip guided-mode resonance filters

    NASA Astrophysics Data System (ADS)

    Yeh, Yen-Chun; Yang, Sheng; Schmidt, Dominik

    2016-03-01

    In this study, we designed and simulated an array of bandpass filters as a spectral separator for mid-infrared self-emission noninvasive glucose monitoring, using the human body as the background radiation emitter. The filters were based on the guided-mode resonance (GMR) effect. The human body is a good black body radiator that provides a stable temperature and continuous radiation energy in the mid-infrared range. We can thus use self-emission from the human body to measure certain fingerprint peaks of glucose spectrum between 8 μm to 10 μm, which allows estimation of glucose concentration. The GMR filter set includes at least four filters on one chip fabricated at the same time. By using fixed thicknesses and the same thin-film material for all the filters on the chip, a structure period adjustment alone can theoretically achieve multiple bandpass filters between the glucose fingerprint ranges - and achieve these coplanar filters on a single chip. By using all CMOS-compatible materials, COMSOL simulations show that a series of peaks with transmittances up to 70% and bandwidths of around 200nm can be achieved. This filter set can be fabricated with just a few thin layers that can simplify the typical thin-film deposition process. The proposed GMR filter array can then be combined with a thermometer array to achieve the non-invasive glucose monitoring. We compare the results obtained with the first version of the fabricated filter set with the measurements of Fourier transform infrared (FT-IR) spectroscopy.

  12. A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data

    USGS Publications Warehouse

    Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.

    2005-01-01

    A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  13. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  14. Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications.

    PubMed

    Dingel, B B; Izutsu, M

    1998-07-15

    We propose using a novel multifunction optical filter with a Michelson-Gires-Tournois interferometer (MGTI) for future smart wavelength-division-multiplexed network system applications. The MGTI filter is a typical Michelson interferometer in which one of its reflecting mirrors is replaced with a Gires-Tournois resonator. One unique feature of this device is that it can function as a channel-passing (CP), a channel-dropping (CD), or a wide-bandpass (BP) filter, depending on the interferometer arm-length difference. Other interesting features are that (1) the linewidths of both the CP and the CD filter are twice as narrow as that of a typical Fabry-Perot filter with similar parameters, (2) theoretical visibility is always unity regardless of the mirror reflectance value, and (3) the BP filter has an excellent boxlike response function. Numerical results showing these characteristics are presented. PMID:18087440

  15. All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.

    PubMed

    Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther

    2016-09-01

    We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion. PMID:27607638

  16. Oscillations and Filtering Networks Support Flexible Routing of Information

    PubMed Central

    Akam, Thomas; Kullmann, Dimitri M.

    2010-01-01

    Summary The mammalian brain exhibits profuse interregional connectivity. How information flow is rapidly and flexibly switched among connected areas remains poorly understood. Task-dependent changes in the power and interregion coherence of network oscillations suggest that such oscillations play a role in signal routing. We show that switching one of several convergent pathways from an asynchronous to an oscillatory state allows accurate selective transmission of population-coded information, which can be extracted even when other convergent pathways fire asynchronously at comparable rates. We further show that the band-pass filtering required to perform this information extraction can be implemented in a simple spiking network model with a single feed-forward interneuron layer. This constitutes a mechanism for flexible signal routing in neural circuits, which exploits sparsely synchronized network oscillations and temporal filtering by feed-forward inhibition. Video Abstract PMID:20670837

  17. Acousto-optic tunable filter multispectral imaging system

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  18. Ceramic filters

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1995-12-31

    Filters were formed from ceramic fibers, organic fibers, and a ceramic bond phase using a papermaking technique. The distribution of particulate ceramic bond phase was determined using a model silicon carbide system. As the ceramic fiber increased in length and diameter the distance between particles decreased. The calculated number of particles per area showed good agreement with the observed value. After firing, the papers were characterized using a biaxial load test. The strength of papers was proportional to the amount of bond phase included in the paper. All samples exhibited strain-tolerant behavior.

  19. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  20. Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairments.

    PubMed

    Goswami, Usha; Cumming, Ruth; Chait, Maria; Huss, Martina; Mead, Natasha; Wilson, Angela M; Barnes, Lisa; Fosker, Tim

    2016-01-01

    Here we use two filtered speech tasks to investigate children's processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 - 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed. PMID:27303348

  1. Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairments

    PubMed Central

    Goswami, Usha; Cumming, Ruth; Chait, Maria; Huss, Martina; Mead, Natasha; Wilson, Angela M.; Barnes, Lisa; Fosker, Tim

    2016-01-01

    Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed. PMID:27303348

  2. Rocket noise filtering system using digital filters

    NASA Technical Reports Server (NTRS)

    Mauritzen, David

    1990-01-01

    A set of digital filters is designed to filter rocket noise to various bandwidths. The filters are designed to have constant group delay and are implemented in software on a general purpose computer. The Parks-McClellan algorithm is used. Preliminary tests are performed to verify the design and implementation. An analog filter which was previously employed is also simulated.

  3. Effects of Filtering on Experimental Blast Overpressure Measurements.

    PubMed

    Alphonse, Vanessa D; Kemper, Andrew R; Duma, Stefan M

    2015-01-01

    When access to live-fire test facilities is limited, experimental studies of blast-related injuries necessitate the use of a shock tube or Advanced Blast Simulator (ABS) to mimic free-field blast overpressure. However, modeling blast overpressure in a laboratory setting potentially introduces experimental artifacts in measured responses. Due to the high sampling rates required to capture a blast overpressure event, proximity to alternating current (AC-powered electronics) and poorly strain-relieved or unshielded wires can result in artifacts in the recorded overpressure trace. Data in this study were collected for tests conducted on an empty ABS (“Empty Tube”) using high frequency pressure sensors specifically designed for blast loading rates (n=5). Additionally, intraocular overpressure data (“IOP”) were collected for porcine eyes potted inside synthetic orbits located inside the ABS using an unshielded miniature pressure sensor (n=3). All tests were conducted at a 30 psi static overpressure level. A 4th order phaseless low pass Butterworth software filter was applied to the data. Various cutoff frequencies were examined to determine if the raw shock wave parameters values could be preserved while eliminating noise and artifacts. A Fast Fourier Transform (FFT) was applied to each test to examine the frequency spectra of the raw and filtered signals. Shock wave parameters (time of arrival, peak overpressure, positive duration, and positive impulse) were quantified using a custom MATLAB® script. Lower cutoff frequencies attenuated the raw signal, effectively decreasing the peak overpressure and increasing the positive duration. Rise time was not preserved the filtered data. A CFC 6000 filter preserved the remaining shock wave parameters within ±2.5% of the average raw values for the Empty Tube test data. A CFC 7000 filter removed experimental high-frequency artifacts and preserved the remaining shock wave parameters within ±2.5% of the average raw values for

  4. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  5. JPL activities on development of acousto-optic tunable filter imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    Recent activities of JPL in the development of a new type of imaging spectrometers for earth observation and planetary exploration are reported. This instrument uses the acousto-optic tunable filter (AOTF) as high resolution and fast programmable bandpass filter. AOTF operates in the principle of acousto-optic interaction in an anisotropic medium. This filter can be tuned in sequential, random, and multiwavelength access modes, providing observational flexibility. The diffraction process in the filter generates two diffracted monochromatic beams with polarization orthogonal to each other, creating a unique capability to measure both polarimetric and spectral properties of the incoming light simultaneously with a single instrument. The device gives wide wavelength operations with reasonably large throughput. In addition, it is in a compact solid-state structure without moving parts, providing system reliability. These attractive features give promising opportunities to develop a new generation of airborne/spaceborne and ground, real-time, imaging spectrometer systems for remote sensing applications.

  6. Monolithically Integrated Reconfigurable Filters for Microwave Photonic Links

    NASA Astrophysics Data System (ADS)

    Norberg, Erik J.

    For the purposes of commercial communication and military electronic warfare and radar alike, there is an increasing interest in RF systems that can handle very wide instantaneous bandwidths at high center frequencies. Optical signal processing has the capability to reduce latency, improve size, weight and power (SwAP) performance, and overcome the inherent bandwidth limitations of electronic counterparts. By rapidly pre-filtering wide bandwidth microwave signals in the optical domain, the analog-to-digital conversion (ADC) and subsequent digital signal processing (DSP) can be significantly relieved. Compared to channelizing and add/drop filters for wavelength division multiplexing (WDM) applications, the microwave filter application is much more challenging as it requires a more versatile filter, ideally with tunability in both frequency and bandwidth. In this work such a filter was developed using integrated photonics. By integrating the filter on a single InP chip, the stability required for coherent filtering is met, while the active integration platform offers a flexible filter design and higher tolerance in the coupler and fabrication specifications. Using an entirely deep etched fabrication with a single blanket regrowth, a simple fabrication with high yield is achieved. The reconfigurable filter is designed as an array of uncoupled filter stages with each filter stage reconfigurable as a filter pole or zero with arbitrary magnitude and phase. This gives rise to a flexible ffilter synthesis, much like an optical version of DSP filters. Flat-topped bandpass filters are demonstrated with frequency tunability over 30 GHz, bandwidth adjustable between 1.9 and 5.4 GHz, and stopband rejection >32 dB. In order to meet the stringent spurious-free dynamic range (SFDR) requirements of the microwave application, a novel epitaxial layer integration platform is developed. Optimized for high optical saturation power and low propagation loss, it produces semiconductor

  7. Microstrip resonators and filters using high-T sub c superconducting thin films on LaAlO sub 3

    SciTech Connect

    Takemoto, J.I.; Jackson, C.M.; Hu, R.; Burch, J.F.; Daly, K.P.; Simon, R.W. )

    1991-03-01

    This paper reports on very low microwave losses in YBa {sub 2}Cu{sub 3}O{sub 7} linear resonators, ring resonators, and bandpass filters. We deposited the 1-2-3 on LaAlO{sub 3} substrates, patterned microwave circuits, and overcoated with a passivating LaAlO{sub 3} layer. HTS linear microstrip resonators demonstrated Q's greater than 1200 at 10 GHz, corresponding to surface resistances less than 300 {mu}{omega}. Identical silver resonators showed Q's of 60 and surface resistance of 15 m{omega}. The high frequency transition temperature for these HTS films was greater than 83 K. The authors measured Q's of 240 in ring resonators at 15 GHz. Finally, the authors designed, fabricated, and tested a 2-pole, Chebyshev narrow-bandwidth bandpass filter. The HTS filter was designed to be a 1 percent bandwidth with 0.1 dB ripple. Insertion loss was 2 dB at 4 K, rising to 3 dB at 77 K. The authors observed temperature dependence in the filter center frequency, which we attribute to kinetic inductance effects. The authors' HTS filters outperform similar cryogenic silver filters, indicating that practical levels of HTS performance have been achieved.

  8. Method for improving line flux and redshift measurements with narrowband filters

    NASA Astrophysics Data System (ADS)

    Zabl, J.; Freudling, W.; Møller, P.; Milvang-Jensen, B.; Nilsson, K. K.; Fynbo, J. P. U.; Le Fèvre, O.; Tasca, L. A. M.

    2016-05-01

    Context. High redshift star-forming galaxies are discovered routinely because of a flux excess in narrowband filters caused by an emission line. In most cases, the width of such filters is broader than typical line widths, and the throughput of the filters varies substantially within the bandpass. This leads to substantial uncertainties in redshifts and fluxes that are derived from the observations with one specific narrowband filter. Aims: The uncertainty in measured line parameters can be sharply reduced by using repeated observations of the same target field with filters that have overlapping passbands but differ slightly in central wavelength or wavelength dependence of the effective filter curve. Such data are routinely collected with some large field imaging cameras that use multiple detectors and a separate filter for each of the detectors. An example is the European Southern Observatory's VISTA InfraRed CAMera (VIRCAM). Methods: We developed a method of determining more accurate redshift and line flux estimates from the ratio of apparent fluxes measured from observations in different narrowband filters and several matching broadband filters. A parameterized model of the line and continuum flux is used to predict the flux ratios as a function of redshift based on the known filter curves. These model predictions are then used to determine the most likely redshift and line flux. Results: We tested the obtainable quality of parameter estimation for the example of Hα in the VIRCAM NB118 filters both on simulated and actual observations where the latter were based on the UltraVISTA DR2 data set. We combined the narrowband data with deep broadband data in Y, J, and H. We find that with this method, the errors in the measured lines fluxes can be reduced up to almost an order of magnitude. Conclusions: We conclude that existing narrowband data can be used to derive accurate line fluxes if the observations include images taken with sufficiently different filter

  9. Ultra-wideband ladder filter using SH(0) plate wave in thin LiNbO(3) plate and its application to tunable filter.

    PubMed

    Kadota, Michio; Tanaka, Shuji

    2015-05-01

    A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space. PMID:25965686

  10. The use of linear programming techniques to design optimal digital filters for pulse shaping and channel equalization

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Burlage, D. W.

    1972-01-01

    A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.

  11. Miniaturized dielectric waveguide filters

    NASA Astrophysics Data System (ADS)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  12. Revised Filter Profiles and Zero Points for Broadband Photometry

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; von Braun, Kaspar

    2015-02-01

    Estimating accurate bolometric fluxes for stars requires reliable photometry to absolutely flux calibrate the spectra. This is a significant problem for studies of very bright stars, which are generally saturated in modern photometric surveys. Instead we must rely on photometry with less precise calibration. We utilize precisely flux-calibrated spectra to derive improved filter bandpasses and zero points for the most common sources of photometry for bright stars. In total, we test 39 different filters in the General Catalog of Photometric Data as well as those from Tycho-2 and Hipparcos. We show that utilizing inaccurate filter profiles from the literature can create significant color terms resulting in fluxes that deviate by gsim10% from actual values. To remedy this we employ an empirical approach; we iteratively adjust the literature filter profile and zero point, convolve it with catalog spectra, and compare to the corresponding flux from the photometry. We adopt the passband values that produce the best agreement between photometry and spectroscopy and are independent of stellar color. We find that while most zero points change by < 5%, a few systems change by 10-15%. Our final profiles and zero points are similar to recent estimates from the literature. Based on determinations of systematic errors in our selected spectroscopic libraries, we estimate that most of our improved zero points are accurate to 0.5-1%.

  13. State-selective detection of velocity-filtered ND{sub 3} molecules

    SciTech Connect

    Bertsche, Benjamin; Osterwalder, Andreas

    2010-09-15

    Translationally cold and slow ND{sub 3} is prepared by filtering the slow molecules from a thermal gas-phase sample using a curved electrostatic hexapole guide. This filter, like the curved quadrupole guide introduced by Rangwala et al. [Phys. Rev. A 67, 043406 (2003)] selects molecules by their forward velocity and effective electric dipole moment. Here we describe two main modifications with respect to previous work: (1) A segmented hexapole guide is used that produces a harmonic potential for the linearly Stark-shifted levels of ND{sub 3}. A curved guide is combined with a straight hexapole guide, and independent high-voltage supplies are employed to allow for bandpass velocity filtering. (2) State-selective laser ionization is used to obtain time- and state-selective detection of the guided molecules. This enables the experimental determination of the rotational state population of the guided molecules.

  14. Use of acousto-optic tunable filter in fluorescence imaging endoscopy

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice; Aprahamian, Marc

    2003-10-01

    A prototype instrument for fluorescence-based medical diagnostics in vivo is described. The system consists of a rigid endoscope comprising a UV laser-source for fluorescence excitation and a white light source for direct imaging. An acousto-optic tuneable filter (AOTF) is employed as a full-field tuneable bandpass filter. This allows fast continuous or random-access tuning with high filtering efficiency. A study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on a rat model. In particular, the aim was to detect autofluorescence of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response.

  15. Fabry-Perot based metal-dielectric multilayered filters and metamaterials.

    PubMed

    Jen, Yi-Jun; Lee, Cheng-Chung; Lu, Kun-Han; Jheng, Ci-Yao; Chen, Yu-Jen

    2015-12-28

    The traditional three-layered metal-dielectric-metal Fabry-Perot filter is developed as a new metal-dielectric multilayered band-pass filter. Our design method allows metal and dielectric films to be alternatively arranged to achieve a narrow and high transmission peak and the peak height remains unchanged for any number of metal films arranged in the multilayer. Furthermore, the equivalent refractive index of a subwavelength metal-dielectric multilayer could be negative real at the passband of the filter and such metamaterial exhibits stronger figure of merit than a previous result. By choosing a material with high refractive index as the dielectric film, such metamaterial exhibits a pass band that depends weakly on the angle of incidence.

  16. Triple-band high-temperature superconducting microstrip filter based on multimode split ring resonator

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Wen; Wang, Yan; Fan, Yi-Chao; Guan, Xue-Hui; He, Yusheng

    2013-09-01

    A compact triple-band high-temperature superconducting (HTS) YBa2Cu3Oy microstrip bandpass filter using multimode split ring resonator (SRR) is presented in this letter. Also, its properties and equivalent circuit models are investigated by even- and odd-mode analysis. Moreover, design method of the proposed triple-band HTS filter for the applications of global positioning system at 1.57 GHz, worldwide interoperability for microwave access at 3.5 GHz, and wireless local area networks at 5.8 GHz is discussed. The centre frequencies and the bandwidths of the three passbands can be allocated properly choosing the dimension parameters of the multimode SRR. In addition, four transmission zeros are produced to improve the selectivity of this filter.

  17. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  18. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  19. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  20. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  1. On easily tunable wide-bandpass X-ray monochromators based on refraction in arrays of prisms.

    PubMed

    Jark, Werner

    2012-07-01

    Refractive lenses focus X-rays chromatically owing to a significant variation of the refractive index of the lens material with photon energy. Then, in combination with an exit slit in the focal plane, such lenses can be used as monochromators. The spectral resolution obtainable with refractive lenses based on prism arrays was recently systematically investigated experimentally. This contribution will show that a wide-bandpass performance can be predicted with a rather simple analytical approach. Based on the good agreement with the experimental data, one can then more rapidly and systematically optimize the lens structure for a given application. This contribution will then discuss more flexible solutions for the monochromator operation. It will be shown that a new monochromator scheme could easily provide tuning in a fixed-exit slit.

  2. On easily tunable wide-bandpass X-ray monochromators based on refraction in arrays of prisms.

    PubMed

    Jark, Werner

    2012-07-01

    Refractive lenses focus X-rays chromatically owing to a significant variation of the refractive index of the lens material with photon energy. Then, in combination with an exit slit in the focal plane, such lenses can be used as monochromators. The spectral resolution obtainable with refractive lenses based on prism arrays was recently systematically investigated experimentally. This contribution will show that a wide-bandpass performance can be predicted with a rather simple analytical approach. Based on the good agreement with the experimental data, one can then more rapidly and systematically optimize the lens structure for a given application. This contribution will then discuss more flexible solutions for the monochromator operation. It will be shown that a new monochromator scheme could easily provide tuning in a fixed-exit slit. PMID:22713879

  3. ARRANGEMENT FOR REPLACING FILTERS

    DOEpatents

    Blomgren, R.A.; Bohlin, N.J.C.

    1957-08-27

    An improved filtered air exhaust system which may be continually operated during the replacement of the filters without the escape of unfiltered air is described. This is accomplished by hermetically sealing the box like filter containers in a rectangular tunnel with neoprene covered sponge rubber sealing rings coated with a silicone impregnated pneumatic grease. The tunnel through which the filters are pushed is normal to the exhaust air duct. A number of unused filters are in line behind the filters in use, and are moved by a hydraulic ram so that a fresh filter is positioned in the air duct. The used filter is pushed into a waiting receptacle and is suitably disposed. This device permits a rapid and safe replacement of a radiation contaminated filter without interruption to the normal flow of exhaust air.

  4. Method of securing filter elements

    DOEpatents

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.

  5. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  6. Narrow band pass filter using birefringence film and quarter-wave film

    NASA Astrophysics Data System (ADS)

    Lee, Dong-kun; Song, Jang-Kun

    2016-03-01

    While a pixel in a color image has three colorimetric information of RGB, that in a spectral image contains full spectral information, several tens times more information compared to the color image. Hence, the spectral image is widely applicable in biology, material science, and environmental science. Although several methods for spectral image acquisition have been suggested to date, those methods are expensive, bulky, or slow in actual device. In this work, we designed a novel type of tunable narrow band-pass filter using rotatable polarizer, quarter-wave plate, and birefringence films. Different from the conventional Lyot-Ohman type filter, we do not use a liquid crystal layer. The selection of wavelength is made by rotating the polarizer in our filter set, and adopted a piezoelectric rotational actuator for that. We simulated to find the optimal conditions of the filter set, and finally, fabricated a filter module. The minimum band width was 5 nm, which is suitable for usual spectral imaging and can be reduced further if necessary, and the wavelength of light passing through the filter set was continuously selectable. After setting the filter in a microscope, we obtained a spectral image set for a bio sample that contained full spectrum information in each pixel. Using image processing, we could demonstrate to read out the spectral information for any selected position.

  7. An adaptive filter bank for motor imagery based Brain Computer Interface.

    PubMed

    Thomas, Kavitha P; Guan, Cuntai; Tong, Lau Chiew; Prasad, Vinod A

    2008-01-01

    Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system. PMID:19162856

  8. Filter type gas sampler with filter consolidation

    DOEpatents

    Miley, Harry S.; Thompson, Robert C.; Hubbard, Charles W.; Perkins, Richard W.

    1997-01-01

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, whereafter the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant.

  9. Filter type gas sampler with filter consolidation

    DOEpatents

    Miley, H.S.; Thompson, R.C.; Hubbard, C.W.; Perkins, R.W.

    1997-03-25

    Disclosed is an apparatus for automatically consolidating a filter or, more specifically, an apparatus for drawing a volume of gas through a plurality of sections of a filter, where after the sections are subsequently combined for the purpose of simultaneously interrogating the sections to detect the presence of a contaminant. 5 figs.

  10. HEPA Filter Vulnerability Assessment

    SciTech Connect

    GUSTAVSON, R.D.

    2000-05-11

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection.

  11. Cordierite silicon nitride filters

    SciTech Connect

    Sawyer, J.; Buchan, B. ); Duiven, R.; Berger, M. ); Cleveland, J.; Ferri, J. )

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  12. Line emission tomography for CDX-U using filtered diodes

    SciTech Connect

    Stutman, D.; Menard, J.; Hwang, Y.S.; Choe, W.; Ono, M.; Finkenthal, M.; Soukhanovskii, V.; May, M.J.; Regan, S.P.; Moos, H.W.

    1997-01-01

    Electron density and temperature in the CDX-U low aspect ratio tokamak are too low to allow observation of fast magnetohydrodynamic activity using soft x-ray continuum emission. However, spectroscopic measurements show that extreme ultraviolet (XUV) line emission of intrinsic impurities is bright enough to observe such activity. In addition, a fast monitoring system for local temperature changes in the plasma core is required for planned auxiliary heating experiments. We present a spectrally resolved tomographic system for fast imaging of OVI 2s{endash}np, 2p{endash}nd (n{ge}3), CV 1s{sup 2}{endash}1s2p and CVI 1s{endash}2p XUV transitions. Using this emission, we can study both core and edge MHD activity, while the CVI to CV intensity ratio can indicate local changes in electron temperature. To achieve maximal throughput together with the needed spectral resolution, we use arrays of surface barrier diodes filtered with bandpass elemental filters. Using M edge filters (Zr, Pd, and Ag), we achieve both good discrimination between the above charge states and large transmission at the wavelengths of interest. Preliminary results obtained from CDX-U are presented. {copyright} {ital 1997 American Institute of Physics.}

  13. Chua's circuit and its characterization as a filter

    NASA Astrophysics Data System (ADS)

    Campos-Cantón, I.; Segura-Cisneros, O. A.; Balderas-Navarro, R. E.; Campos-Cantón, E.

    2014-11-01

    This article deals with Chua's circuit characterization from the point of view of a filter based on the concept of piecewise linear functions. Furthermore, experiments are developed for teaching electronic systems that can be used for novel filtering concepts. The frequency range in which they are tested is from 20 Hz to 20 kHz, due to the audio spectrum comprised in this frequency range. The node associated with the capacitor and Chua's diode is used as input, and the node for another capacitor and the coil is used as output, thereby establishing one input-output relationship for each system case given by the piecewise linear functions. The experimental result shows that Chua's circuit behaves as a bandpass filter-amplifier, with a maximum frequency around 3 kHz and bandwidth between 1.5 kHz and 5.5 kHz. The results presented in this paper can motivate engineering students to pursue applications of novel electrical circuits based on topics that are of potential interest in their future research studies.

  14. Combined tunable filters based swept laser source for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Minghui; Ding, Zhihua; Wang, Cheng; Huang, Yimei; Chen, Rong; Song, Chengli

    2013-03-01

    We demonstrate a novel ultra-broad tunable bandwidth and narrow instantaneous line-width swept laser source using combined tunable filters working at 1290 nm center wavelength for application in optical coherence tomography. The combined filters consist of a fiber Fabry-Perot tunable filter (FFP-TF) and a polygon mirror with scanning grating based filter. The FFP-TF has the narrow free spectral range (FSR) but ultra-high spectral resolution (narrow instantaneous bandwidth) driven at high frequency far from resonant frequency. The polygon filter in the Littrow configuration is composed of fiber collimator, polygon mirror driven by function generator, and diffractive grating with low groove. Polygon filter coarsely tunes with wide turning range and then FFP-TF finely tunes with narrow band-pass filtering. In contrast to traditional method using single tunable filter, the trade-off between bandwidth and instantaneous line-width is alleviated. The combined filters can realize ultra wide scan range and fairly narrow instantaneous bandwidth simultaneously. Two semiconductor optical amplifiers (SOA) in the parallel manner are used as the gain medium. The wide bandwidth could be obtained by these parallel SOAs to be suitable for sufficient wide range of the polygon filter's FSR because each SOA generates its own spectrum independently. The proposed swept laser source provides an edge-to-edge scanning range of 180 nm covering 1220 to 1400 nm with instantaneous line-width of about 0.03 nm at sweeping rate of 23.3 kHz. The swept laser source with combined filters offers broadband tunable range with narrow instantaneous line-width, which especially benefits for high resolution and deep imaging depth optical frequency domain imaging.

  15. HEPA filter monitoring program

    NASA Astrophysics Data System (ADS)

    Kirchner, K. N.; Johnson, C. M.; Aiken, W. F.; Lucerna, J. J.; Barnett, R. L.; Jensen, R. T.

    1986-07-01

    The testing and replacement of HEPA filters, widely used in the nuclear industry to purify process air, are costly and labor-intensive. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow determination of overall filter performance but preclude detection of incipient filter failure such as small holes in the filters. Using current technology, a continual in-situ monitoring system was designed which provides three major improvements over current methods of filter testing and replacement. The improvements include: cost savings by reducing the number of intact filters which are currently being replaced unnecessarily; more accurate and quantitative measurement of filter performance; and reduced personnel exposure to a radioactive environment by automatically performing most testing operations.

  16. Bag filters for TPP

    SciTech Connect

    L.V. Chekalov; Yu.I. Gromov; V.V. Chekalov

    2007-05-15

    Cleaning of TPP flue gases with bag filters capable of pulsed regeneration is examined. A new filtering element with a three-dimensional filtering material formed from a needle-broached cloth in which the filtration area, as compared with a conventional smooth bag, is increased by more than two times, is proposed. The design of a new FRMI type of modular filter is also proposed. A standard series of FRMI filters with a filtration area ranging from 800 to 16,000 m{sup 2} is designed for an output more than 1 million m{sub 3}/h of with respect to cleaned gas. The new bag filter permits dry collection of sulfur oxides from waste gases at TPP operating on high-sulfur coals. The design of the filter makes it possible to replace filter elements without taking the entire unit out of service.

  17. Novel Backup Filter Device for Candle Filters

    SciTech Connect

    Bishop, B.; Goldsmith, R.; Dunham, G.; Henderson, A.

    2002-09-18

    The currently preferred means of particulate removal from process or combustion gas generated by advanced coal-based power production processes is filtration with candle filters. However, candle filters have not shown the requisite reliability to be commercially viable for hot gas clean up for either integrated gasifier combined cycle (IGCC) or pressurized fluid bed combustion (PFBC) processes. Even a single candle failure can lead to unacceptable ash breakthrough, which can result in (a) damage to highly sensitive and expensive downstream equipment, (b) unacceptably low system on-stream factor, and (c) unplanned outages. The U.S. Department of Energy (DOE) has recognized the need to have fail-safe devices installed within or downstream from candle filters. In addition to CeraMem, DOE has contracted with Siemens-Westinghouse, the Energy & Environmental Research Center (EERC) at the University of North Dakota, and the Southern Research Institute (SRI) to develop novel fail-safe devices. Siemens-Westinghouse is evaluating honeycomb-based filter devices on the clean-side of the candle filter that can operate up to 870 C. The EERC is developing a highly porous ceramic disk with a sticky yet temperature-stable coating that will trap dust in the event of filter failure. SRI is developing the Full-Flow Mechanical Safeguard Device that provides a positive seal for the candle filter. Operation of the SRI device is triggered by the higher-than-normal gas flow from a broken candle. The CeraMem approach is similar to that of Siemens-Westinghouse and involves the development of honeycomb-based filters that operate on the clean-side of a candle filter. The overall objective of this project is to fabricate and test silicon carbide-based honeycomb failsafe filters for protection of downstream equipment in advanced coal conversion processes. The fail-safe filter, installed directly downstream of a candle filter, should have the capability for stopping essentially all particulate

  18. Hybrid recursive active filters for duplexing in RF transmitter front-ends

    NASA Astrophysics Data System (ADS)

    Gottardo, Giuseppe; Donati, Giovanni; Musolff, Christian; Fischer, Georg; Felgentreff, Tilman

    2016-08-01

    Duplex filters in modern base transceiver stations shape the channel in order to perform common frequency division duplex operations. Usually, they are designed as cavity filters, which are expensive and have large dimensions. Thanks to the emerging digital technology and fast digital converters, it is possible to transfer the efforts of designing analog duplex filters into digital numeric algorithms applied to feedback structures, operating on power. This solution provides the shaping of the signal spectrum directly at the output of the radio frequency (RF) power amplifiers (PAs) relaxing the transmitter design especially in the duplexer and in the antenna sections. The design of a digital baseband feedback applied to the analog power RF amplifiers (hybrid filter) is presented and verified by measurements. A model to describe the hybrid system is investigated, and the relation between phase and resonance peaks of the resulting periodic band-pass transfer function is described. The stability condition of the system is analyzed using Nyquist criterion. A solution involving a number of digital feedback and forward branches is investigated defining the parameters of the recursive structure. This solution allows the closed loop system to show a periodic band pass with up to 500 kHz bandwidth at the output of the RF amplifier. The band-pass magnitude reaches up to 17 dB selectivity. The rejection of the PA noise in the out-of-band frequencies is verified by measurements. The filter is tested with a modulated LTE (Long Term Evolution) signal showing an ACPR (Adjacent Channel Power Ratio) enhancement of 10 dB of the transmitted signal.

  19. MST Filterability Tests

    SciTech Connect

    Poirier, M. R.; Burket, P. R.; Duignan, M. R.

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  20. Survey of digital filtering

    NASA Technical Reports Server (NTRS)

    Nagle, H. T., Jr.

    1972-01-01

    A three part survey is made of the state-of-the-art in digital filtering. Part one presents background material including sampled data transformations and the discrete Fourier transform. Part two, digital filter theory, gives an in-depth coverage of filter categories, transfer function synthesis, quantization and other nonlinear errors, filter structures and computer aided design. Part three presents hardware mechanization techniques. Implementations by general purpose, mini-, and special-purpose computers are presented.

  1. Filter service system

    DOEpatents

    Sellers, Cheryl L.; Nordyke, Daniel S.; Crandell, Richard A.; Tomlins, Gregory; Fei, Dong; Panov, Alexander; Lane, William H.; Habeger, Craig F.

    2008-12-09

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  2. Practical Active Capacitor Filter

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2005-01-01

    A method and apparatus is described that filters an electrical signal. The filtering uses a capacitor multiplier circuit where the capacitor multiplier circuit uses at least one amplifier circuit and at least one capacitor. A filtered electrical signal results from a direct connection from an output of the at least one amplifier circuit.

  3. HEPA filter encapsulation

    DOEpatents

    Gates-Anderson, Dianne D.; Kidd, Scott D.; Bowers, John S.; Attebery, Ronald W.

    2003-01-01

    A low viscosity resin is delivered into a spent HEPA filter or other waste. The resin is introduced into the filter or other waste using a vacuum to assist in the mass transfer of the resin through the filter media or other waste.

  4. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  5. Regenerative particulate filter development

    NASA Technical Reports Server (NTRS)

    Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.

    1972-01-01

    Development, design, and fabrication of a prototype filter regeneration unit for regenerating clean fluid particle filter elements by using a backflush/jet impingement technique are reported. Development tests were also conducted on a vortex particle separator designed for use in zero gravity environment. A maintainable filter was designed, fabricated and tested that allows filter element replacement without any leakage or spillage of system fluid. Also described are spacecraft fluid system design and filter maintenance techniques with respect to inflight maintenance for the space shuttle and space station.

  6. Optical filtering properties of subwavelength Tai-chi-shaped metal hole arrays

    NASA Astrophysics Data System (ADS)

    Wang, Xinlin; Liu, Hui; Luo, Hu; Zhu, Weihua; Chen, Zhiyong; Liu, Jun; Guo, Wei

    2015-04-01

    Finite-difference time-domain (FDTD) method is employed to study the optical properties of a novel kind of periodic subwavelength hole arrays composed of Tai-chi-shaped holes in silver film, and the optical transmission properties of femtosecond optical pulse excitation is numerically calculated. We find that this Tai-chi-shaped device has better optical band-pass filtering properties, such as narrower pass band and higher transmissivity in visible wavelengths range, than other devices under consideration. Based on the generation of surface plasmons resonance mode in the dielectric-metal interface, the center wavelength of transmission can be tuned by changing the array periodicities. We observe that the tune ability mainly depends on the space period along the direction parallel to that of the incident pulse polarization. It is also found that both the strength and the wavelength of the transmission peaks of rectangularly distributed metal hole arrays are determined by the polarization of incident light. Additionally, we demonstrate the typical band-pass filtering properties of this Tai-Chi-shaped holes structure. The full-width at half-maximum (FWHM) of the narrow pass band is about 20 nm in visible wavelengths range.

  7. Multi-filter transport of intensity equation solver with equalized noise sensitivity.

    PubMed

    Martinez-Carranza, J; Falaggis, K; Kozacki, T

    2015-09-01

    Phase retrieval based on the Transport of Intensity Equation (TIE) has shown to be a powerful tool to obtain the phase of complex fields. Recently, it has been proven that the performance of TIE techniques can be improved when using unequally spaced measurement planes. In this paper, an algorithm is presented that recovers accurately the phase of a complex objects from a set of intensity measurements obtained at unequal plane separations. This technique employs multiple band-pass filters in the frequency domain of the axial derivative and uses these specific frequency bands for the calculation of the final phase. This provides highest accuracy for TIE based phase recovery giving minimal phase error for a given set of measurement planes. Moreover, because each of these band-pass filters has a distinct sensitivity to noise, a new plane selection strategy is derived that equalizes the error contribution of all frequency bands. It is shown that this new separation strategy allows controlling the final error of the retrieved phase without using a priori information of the object. This is an advantage compared to previous optimum phase retrieval techniques. In order to show the stability and robustness of this new technique, we present the numerical simulations.

  8. Precise adaptive photonic rf filters realized with adaptive Bragg gratings

    NASA Astrophysics Data System (ADS)

    Wickham, Michael G.; Upton, Eric L.

    2000-09-01

    The demand for higher data capacity and reduced levels of interference in the communications arena are driving dtat links toward high carrier frequencies and wider modulation bandwidths. Circuitry for performing intermediate frequency processing over these more demanding ranges is needed to provide complex signal processing. We have demonstrated photonics technologies utilizing Bragg Grating Signal Processing (BGSP), which can be used to perform a variety of RF filter functions. The desirable benefits of multiple-tap adaptive finite impulse response (FIR) filters, infinite impulse response (IIR) filters, and equalizers are well known; however, they are usually the province of digital signal processing and demand preprocessor sample rates that require high system power consumption. BGSPs provide these functions with discrete optical taps and digital controls while only requiring bandwidths easily provided by conventional RF circuitry. This is because the actual signal processing of the large information bandwidths is performed in the optical regime, while control functions are performed at RF frequencies compatible with integrated circuit technologies. To realize the performance benefits of photonic processing, the Bragg grating reflectors must be stabilized against environmental without unduly taxing the RF control circuitry. We have implemented a orthogonally coded tap modulation technique which stabilizes the transfer function of the signal processor and enables significant adaptive IF signal processing to be obtained with very low size, weight, and power. Our demonstration of a photonic proof-of-concept architecture is a reconfigurable, multiple-tap FIR filter that is dynamically controlled to implement low-pass, high-pass, band-pass, band-stop, and tunable filters operating over bandwidths of 3 Ghz.

  9. Plasma Treatment to Remove Carbon from Indium UV Filters

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  10. Ceramic fiber filter technology

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  11. Vibration control of a flexible beam driven by a ball-screw stage with adaptive notch filters and a line enhancer

    NASA Astrophysics Data System (ADS)

    Wu, Shang-Teh; Lian, Sing-Han; Chen, Sheng-Han

    2015-07-01

    For a low-stiffness beam driven by a ball-screw stage, the lateral vibrations cannot be adequately controlled by a collocated compensator based on rotary-encoder feedback alone. Acceleration signals at the tip of the flexible beam are measured for active vibration control in addition to the collocated compensator. A second-order bandpass filter (a line enhancer) and two notch filters are included in the acceleration-feedback loop to raise modal dampings for the first and the second flexible modes without exciting higher-frequency resonances. A novel adaptation algorithm is devised to tune the center frequencies of the notch filters in real time. It consists of a second-order low-pass filter, a second-order bandpass filter and a phase detector. Improvement of the control system is elaborated progressively with the root-locus and bode-plot analyses, along with a physical interpretation. Extensive testings are conducted on an experimental device to verify the effectiveness of the control method.

  12. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography.

    PubMed

    Taylor, Shelley L; Mason, Suzannah K G; Glinton, Sophie L; Cobbold, Mark; Dehghani, Hamid

    2015-09-01

    Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy. PMID:26325264

  13. Ageing effects in cryogenically cooled InSb infrared filtered detectors

    NASA Astrophysics Data System (ADS)

    Theocharous, E.; Fox, N. P.

    2005-02-01

    The spectral responsivity of two commercially available InSb detectors with low-pass cold filters attached on their cold shields for optimum operation in the 1.6-2.6 µm wavelength range was observed to drift slowly with time. The origin of these drifts was investigated. The drifts were shown to arise due to a thin film of water-ice deposition on the cold low-pass filters mounted on the cold shields of the two detectors. The presence of the ice film (which is itself a dielectric film) modifies the transmission characteristics of the filter, thus giving rise to the observed drifts. The drifts were completely eliminated by evacuating the detector dewars while baking them at 50 °C for 72 h. This work confirms that infrared detectors employing cold multi-layer dielectric filters should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to space instruments which use cryogenically cooled infrared filter radiometers for earth observation. The deposition of a thin film of ice on the cold band-pass filters can account for the oscillatory drifts observed in the response of some of the channels of the ATSR-2, and Landsat-3 and Landsat-5 space missions.

  14. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie L.; Cobbold, Mark; Dehghani, Hamid

    2015-09-01

    Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.

  15. Optical Filters to Exclude Non-Doppler-Shifted Light in Fast Velocimetry

    SciTech Connect

    Goosman, D; Avara, G; Wade, J; Rivera, A

    2002-08-22

    We frequently measure velocity-time histories of dynamic experiments. In some, the Doppler-shifted light is often weak compared to non-shifted light reflected from stationary surfaces and imperfections in components. With our Fabry-Perot (FP) based systems which handle multiple frequencies, data is lost where the fringes coincide; if we had used an intensity-measuring VISAR system, it would probably fail. We designed a facility for doing experiments under such conditions by selectively eliminating most of the non-shifted light. Our first filter excluded non-shifted light by a factor of 300 when manually tuned, and by 150 when run in an auto-tuning mode. It used a single 50 mm diameter FP as the filter with a spacing of 1.65 mm and reflectivities of 77%, and filters five channels prior to use in one of our 5-beam velocimeters. One use of the filter system was to embed optical fibers in long sections of explosives to make continuous detonation velocity-time histories. We have carried out many such tests with this filter, and two without. A special single-beam filter was constructed with a 40% efficiency for shifted light that rejected non-shifted light by 4 million times, with a bandpass of a few GHz.

  16. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  17. Determination of 90Sr in contaminated environmental samples by tuneable bandpass dynamic reaction cell ICP-MS.

    PubMed

    Taylor, V F; Evans, R D; Cornett, R J

    2007-01-01

    A rapid method for the extraction and determination of 90Sr in natural water, plant and sediment samples was developed using extraction chromatography and dynamic reaction cell ICP-MS, with O2 as a reaction gas. While isobaric interference from the stable isotope 90Zr was efficiently removed by this method, interferences produced from in-cell reactions with Fe+ and Ni+ required suppression by tuneable bandpass, and in sediments, additional chromatographic separation. Method detection limits were 0.1 pg g-1 (0.5 Bq g-1), 0.04 pg g-1(0.2 Bq g-1), and 3 pg L-1 (5 Bq L-1) for sediments, plant and water samples, respectively, and 90Sr concentrations determined by ICP-MS were in good agreement with activities determined by Cerenkov counting and with certified reference values. While mass spectrometric determination does not rival detection limits achievable by radiometric counting, radiometric determination of 90Sr, a pure beta-emitter, is hindered by long analysis times (several weeks); the comparatively fast analysis achieved via ICP-MS enables same-day preparation and analysis of samples, making this an important technique for the environmental monitoring of areas contaminated by radioactivity. PMID:17111103

  18. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering.

    PubMed

    Suzuki, Takakazu; Isa, Fumihiro; Fujii, Leo; Hirosawa, Kenichi; Nakagawa, Keiichi; Goda, Keisuke; Sakuma, Ichiro; Kannari, Fumihiko

    2015-11-16

    We propose and experimentally demonstrate a new method called SF-STAMP for sequentially timed all-optical mapping photography (STAMP) that utilizes spectral filtering. SF-STAMP is composed of a diffractive optical element (DOE), a band-pass filter, and two Fourier transform lenses. Using a linearly frequency-chirped pulse and converting the wavelength to the time axis, we realize single-shot ultrafast burst imaging. As an experimental demonstration of SF-STAMP, we monitor the dynamics of a laser ablation using a linearly frequency-chirped broadband pulse (>100 nm) that is temporally stretched up to ~40 ps. This imaging method is expected to be effective for investigating ultrafast dynamics in a diverse range of fields, such as photochemistry, plasma physics, and fluidics. PMID:26698529

  19. Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides

    NASA Astrophysics Data System (ADS)

    Yang, Bao Jia; Zhou, Yong Jin

    2016-05-01

    We have numerically investigated the transmission properties of spoof surface plasmon polaritons on the ultrathin corrugated metal-insulator-metal (MIM) waveguides with different grooves. A band-pass plasmonic filter with T-shaped grooves and a compact 4-way wavelength division demultiplexing (WDM) incorporating the filter have been proposed. The whole 4-way WDM is more compact by the use of corrugated MIM waveguides with meander grooves. The near electric field distributions show that electromagnetic waves at different frequencies are guided and propagate along different branches with good isolation between branches. The experimental and numerical results have shown good agreements and validated the functions of the 4-way wavelength splitter. We also numerically investigate the 4-way WDM at terahertz frequencies by scaling down the whole structure. It is believed that the spoof plasmonic devices can find more applications in the plasmonic integration platform, such as optical communications, signal processing and spectral engineering.

  20. Optical Metrology for the Filter Set for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Boucarut, Rene A.; Content, David A.; Keski-Kuha, Ritva A.; Krebs, Carolyn A.; Miner, Linda A.; Norton, Todd A.; Mehalick, Kimberly; Petrone, Peter; Bush, Frank D.; Puc, Bernard; Standley, Clive; Tsvetanov, Zlatan; Kral, Catherine

    1998-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) will employ a wide variety of spectral filtration components including narrow band, medium band, wide band, and far ultraviolet (FUV) long pass filters, spatially- variable filters (ramp filters), VIS/IR polarizers, NUV polarizers, FUV prisms, and a grism. These components are spread across ACS's Wide Field, High Resolution, and Solar Blind channels which provide diffraction-limited imaging of astronomical targets using aberration-correcting optics which remove most aberrations from HST's Optical Telescope Assembly (OTA). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements which these filters must meet include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, and a high degree of parfocality. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The development of optical metrology stations used to demonstrate that each ACS filter will meet its design specifications is discussed. Of particular note are specially-designed spectral transmissometers and interferometers.

  1. Simulation of mid-infrared clutter rejection. 1: One-dimensional LMS spatial filter and adaptive threshold algorithms.

    PubMed

    Longmire, M S; Milton, A F; Takken, E H

    1982-11-01

    Several 1-D signal processing techniques have been evaluated by simulation with a digital computer using high-spatial-resolution (0.15 mrad) noise data gathered from back-lit clouds and uniform sky with a scanning data collection system operating in the 4.0-4.8-microm spectral band. Two ordinary bandpass filters and a least-mean-square (LMS) spatial filter were evaluated in combination with a fixed or adaptive threshold algorithm. The combination of a 1-D LMS filter and a 1-D adaptive threshold sensor was shown to reject extreme cloud clutter effectively and to provide nearly equal signal detection in a clear and cluttered sky, at least in systems whose NEI (noise equivalent irradiance) exceeds 1.5 x 10(-13) W/cm(2) and whose spatial resolution is better than 0.15 x 0.36 mrad. A summary gives highlights of the work, key numerical results, and conclusions.

  2. Generic Kalman Filter Software

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  3. Contactor/filter improvements

    DOEpatents

    Stelman, D.

    1988-06-30

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream is described. The filter includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. A cover screen isolates the filter element from contact with the moving granular bed. In one embodiment, the granular material is comprised of porous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses. 6 figs.

  4. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  5. Switchable and Tunable Ferroelectric Bulk Acoustic Wave Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Saddik, George Nabih

    piezoelectric material is sandwiched between two metal electrodes and an air interface at the electrodes. The second approach is the solidly mounted resonator (SMR) where the piezoelectric material is deposited between two metal electrodes and an air interface at the top electrode and an acoustical Bragg reflector or acoustic mirror interface at the bottom electrode. The SMR approach was chosen because of its mechanical and high power durability and best choice for integration with monolithic devices. Modeling of bulk acoustic wave resonances using the Mason model and the Butterworth-Van Dyke model will be discussed. A process has been developed to fabricate BST and STO voltage activated bulk acoustic wave resonators and filters. A C-band voltage activated bulk acoustic wave filter will be demonstrated with insertion loss of -4.26 dB and return loss of -13.5 dB.

  6. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  7. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  8. Practical alarm filtering

    SciTech Connect

    Bray, M.; Corsberg, D. )

    1994-02-01

    An expert system-based alarm filtering method is described which prioritizes and reduces the number of alarms facing an operator. This patented alarm filtering methodology was originally developed and implemented in a pressurized water reactor, and subsequently in a chemical processing facility. Both applications were in LISP and both were successful. In the chemical processing facility, for instance, alarm filtering reduced the quantity of alarm messages by 90%. 6 figs.

  9. Nanofiber Filters Eliminate Contaminants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  10. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  11. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  12. Filter construction and design.

    PubMed

    Jornitz, Maik W

    2006-01-01

    Sterilizing and pre-filters are manufactured in different formats and designs. The criteria for the specific designs are set by the application and the specifications of the filter user. The optimal filter unit or even system requires evaluation, such as flow rate, throughput, unspecific adsorption, steam sterilizability and chemical compatibility. These parameters are commonly tested within a qualification phase, which ensures that an optimal filter design and combination finds its use. If such design investigations are neglected it could be costly in the process scale. PMID:16570863

  13. Filter holder and gasket assembly for candle or tube filters

    DOEpatents

    Lippert, T.E.; Alvin, M.A.; Bruck, G.J.; Smeltzer, E.E.

    1999-03-02

    A filter holder and gasket assembly are disclosed for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut. 9 figs.

  14. Filter holder and gasket assembly for candle or tube filters

    DOEpatents

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  15. Filtering reprecipitated slurry

    SciTech Connect

    Morrissey, M.F.

    1992-01-01

    As part of the Late Washing Demonstration at Savannah River Technology Center, Interim Waste Technology has filtered reprecipitated and non reprecipitated slurry with the Experimental Laboratory Filter (ELF) at TNX. Reprecipitated slurry generates higher permeate fluxes than non reprecipitated slurry. Washing reprecipitated slurry may require a defoamer because reprecipitation encourages foaming.

  16. Filtering reprecipitated slurry

    SciTech Connect

    Morrissey, M.F.

    1992-12-31

    As part of the Late Washing Demonstration at Savannah River Technology Center, Interim Waste Technology has filtered reprecipitated and non reprecipitated slurry with the Experimental Laboratory Filter (ELF) at TNX. Reprecipitated slurry generates higher permeate fluxes than non reprecipitated slurry. Washing reprecipitated slurry may require a defoamer because reprecipitation encourages foaming.

  17. Active rejector filter

    SciTech Connect

    Kuchinskii, A.G.; Pirogov, S.G.; Savchenko, V.M.; Yakushev, A.K.

    1985-01-01

    This paper describes an active rejector filter for suppressing noise signals in the frequency range 50-100 Hz and for extracting a vlf information signal. The filter has the following characteristics: a high input impedance, a resonant frequency of 75 Hz, a Q of 1.25, and an attenuation factor of 53 dB at resonant frequency.

  18. Weighted guided image filtering.

    PubMed

    Li, Zhengguo; Zheng, Jinghong; Zhu, Zijian; Yao, Wei; Wu, Shiqian

    2015-01-01

    It is known that local filtering-based edge preserving smoothing techniques suffer from halo artifacts. In this paper, a weighted guided image filter (WGIF) is introduced by incorporating an edge-aware weighting into an existing guided image filter (GIF) to address the problem. The WGIF inherits advantages of both global and local smoothing filters in the sense that: 1) the complexity of the WGIF is O(N) for an image with N pixels, which is same as the GIF and 2) the WGIF can avoid halo artifacts like the existing global smoothing filters. The WGIF is applied for single image detail enhancement, single image haze removal, and fusion of differently exposed images. Experimental results show that the resultant algorithms produce images with better visual quality and at the same time halo artifacts can be reduced/avoided from appearing in the final images with negligible increment on running times. PMID:25415986

  19. Sintered composite filter

    DOEpatents

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  20. Sub-micron filter

    DOEpatents

    Tepper, Frederick; Kaledin, Leonid

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  1. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  2. Solc filter engineering

    NASA Technical Reports Server (NTRS)

    Rosenberg, W. J.; Title, A. M.

    1982-01-01

    A Solc (1965) filter configuration is presented which is both tunable and spectrally variable, since it possesses an adjustable bandwidth, and which although less efficient than a Lyot filter is attractive because of its spectral versatility. The lossless design, using only an entrance and exit polarizer, improves throughput generally and especially in the IR, where polarizers are less convenient than dichroic sheet polarizers. Attention is given to the transmission profiles of Solc filters with different numbers of elements and split elements, as well as their mechanical design features.

  3. Multilevel filtering elliptic preconditioners

    NASA Technical Reports Server (NTRS)

    Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles

    1989-01-01

    A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.

  4. HEPA filter jointer

    SciTech Connect

    Hill, D.; Martinez, H.E.

    1998-02-01

    A HEPA filter jointer system was created to remove nitrate contaminated wood from the wooden frames of HEPA filters that are stored at the Rocky Flats Plant. A commercial jointer was chosen to remove the nitrated wood. The chips from the wood removal process are in the right form for caustic washing. The jointer was automated for safety and ease of operation. The HEPA filters are prepared for jointing by countersinking the nails with a modified air hammer. The equipment, computer program, and tests are described in this report.

  5. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  6. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  7. A NUMERICAL METHOD FOR THE VISUALIZATION OF THE Fe XIV EMISSION IN THE SOLAR CORONA USING BROADBAND FILTERS

    SciTech Connect

    Martisek, K.; Druckmuellerova, H.

    2011-12-01

    The goal of this article is to demonstrate how the emission from the Fe XIV 530.3 nm coronal emission line, also known as the green line, can be extracted from images taken during total solar eclipses with commercially available color cameras. This concept is technically feasible because Fe XIV is the brightest optical emission line in the inner corona, and because the sensors of these cameras are retrofitted with a standard Bayer mask, namely, a square grid of spectrally broad (about 100 nm) green, blue, and red filters in the ratio of 2:1:1. The technique presented here, and developed for this purpose, yields qualitatively accurate Fe XIV images, as tested by comparing with Fe XIV eclipse images taken with a 0.15 nm narrow-bandpass filter. While this approach cannot replace narrow-bandpass Fe XIV images for quantitative studies of the corona, it provides a simple and affordable tool for studying the morphology of coronal structures emitting preferentially at the peak ionization temperature of Fe XIV, namely, 1.8 Multiplication-Sign 10{sup 6} K.

  8. Active-R filter

    DOEpatents

    Soderstrand, Michael A.

    1976-01-01

    An operational amplifier-type active filter in which the only capacitor in the circuit is the compensating capacitance of the operational amplifiers, the various feedback and coupling elements being essentially solely resistive.

  9. Parallel Subconvolution Filtering Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    These architectures are based on methods of vector processing and the discrete-Fourier-transform/inverse-discrete- Fourier-transform (DFT-IDFT) overlap-and-save method, combined with time-block separation of digital filters into frequency-domain subfilters implemented by use of sub-convolutions. The parallel-processing method implemented in these architectures enables the use of relatively small DFT-IDFT pairs, while filter tap lengths are theoretically unlimited. The size of a DFT-IDFT pair is determined by the desired reduction in processing rate, rather than on the order of the filter that one seeks to implement. The emphasis in this report is on those aspects of the underlying theory and design rules that promote computational efficiency, parallel processing at reduced data rates, and simplification of the designs of very-large-scale integrated (VLSI) circuits needed to implement high-order filters and correlators.

  10. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  11. Improved optical filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1978-01-01

    Filter includes partial polarizer between birefrigent elements. Plastic film on partial polarizer compensates for any polarization rotation by partial polarizer. Two quarter-wave plates change incident, linearly polarized light into elliptically polarized light.

  12. Anti-Glare Filters

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Glare from CRT screens has been blamed for blurred vision, eyestrain, headaches, etc. Optical Coating Laboratory, Inc. (OCLI) manufactures a coating to reduce glare which was used to coat the windows on the Gemini and Apollo spacecraft. In addition, OCLI offers anti-glare filters (Glare Guard) utilizing the same thin film coating technology. The coating minimizes brightness, provides enhanced contrast and improves readability. The filters are OCLI's first consumer product.

  13. Spatial filter issues

    SciTech Connect

    Murray, J.E.; Estabrook, K.G.; Milam, D.; Sell, W.D.; Van Wonterghem, R.M.; Feil, M.D.; Rubenchick, A.M.

    1996-12-09

    Experiments and calculations indicate that the threshold pressure in spatial filters for distortion of a transmitted pulse scales approximately as I{sup O.2} and (F{number_sign}){sup 2} over the intensity range from 10{sup 14} to 2xlO{sup 15} W/CM{sup 2} . We also demonstrated an interferometric diagnostic that will be used to measure the scaling relationships governing pinhole closure in spatial filters.

  14. Holographic interference filters

    NASA Astrophysics Data System (ADS)

    Diehl, Damon W.

    Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.

  15. REDUCTION OF ECHO DECORRELATION VIA COMPLEX PRINCIPAL COMPONENT FILTERING

    PubMed Central

    Mauldin, F. William; Viola, Francesco; Walker, William F.

    2009-01-01

    Ultrasound motion estimation is a fundamental component of clinical and research techniques that include color flow Doppler, spectral Doppler, radiation force imaging and ultrasound-based elasticity estimation. In each of these applications, motion estimates are corrupted by signal decorrelation that originates from nonuniform target motion across the acoustic beam. In this article, complex principal component filtering (PCF) is demonstrated as a filtering technique for dramatically reducing echo decorrelation in blood flow estimation and radiation force imaging. We present simulation results from a wide range of imaging conditions that illustrate a dramatic improvement over simple bandpass filtering in terms of overall echo decorrelation (≤99.9% reduction), root mean square error (≤97.3% reduction) and the standard deviation of displacement estimates (≤97.4% reduction). A radiation force imaging technique, termed sonorheometry, was applied to fresh whole blood during coagulation, and complex PCF operated on the returning echoes. Sonorheometry was specifically chosen as an example radiation force imaging technique in which echo decorrelation corrupts motion estimation. At 2 min after initiation of blood coagulation, the average echo correlation for sonorheometry improved from 0.996 to 0.9999, which corresponded to a 41.0% reduction in motion estimation variance as predicted by the Cramer-Rao lower bound under reasonable imaging conditions. We also applied complex PCF to improve blood velocity estimates from the left carotid artery of a healthy 23-year-old male. At the location of peak blood velocity, complex PCF improved the correlation of consecutive echo signals from an average correlation of 0.94 to 0.998. The improved echo correlation for both sonorheometry and blood flow estimation yielded motion estimates that exhibited more consistent responses with less noise. Complex PCF reduces speckle decorrelation and improves the performance of ultrasonic motion

  16. Contactor/filter improvements

    DOEpatents

    Stelman, David

    1989-01-01

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. The housing further includes a gas inlet means, a gas outlet means, and means for moving a body of granular material through the zone. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. Disposed on the upstream face of the filter element is a cover screen which isolates the filter element from contact with the moving granular bed and collects a portion of the particulates so as to form a dust cake having openings small enough to exclude the granular material, yet large enough to receive the dust particles. In one embodiment, the granular material is comprised of prous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses.

  17. NICMOS Filter Wheel Test

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2009-07-01

    This is an engineering test {described in SMOV4 Activity Description NICMOS-04} to verify the aliveness, functionality, operability, and electro-mechanical calibration of the NICMOS filter wheel motors and assembly after NCS restart in SMOV4. This test has been designed to obviate concerns over possible deformation or breakage of the fitter wheel "soda-straw" shafts due to excess rotational drag torque and/or bending moments which may be imparted due to changes in the dewar metrology from warm-up/cool-down. This test should be executed after the NCS {and filter wheel housing} has reached and approximately equilibrated to its nominal operating temperature.Addition of visits G0 - G9 {9/9/09}: Ten visits copied from proposal 11868 {visits 20, 30, ..., 90, A0, B0}. Each visit moves two filter positions, takes lamp ON/OFF exposures and then moves back to the blank position. Visits G0, G1 and G2 will leave the filter wheels disabled. The remaining visits will leave the filter wheels enabled. There are sufficient in between times to allow for data download and analysis. In the case of problem is encountered, the filter wheels will be disabled through a real time command. The in between times are all set to 22-50 hours. It is preferable to have as short as possible in between time.

  18. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  19. Enhancement of seminal stains using background correction algorithm with colour filters.

    PubMed

    Lee, Wee Chuen; Khoo, Bee Ee; Abdullah, Ahmad Fahmi Lim

    2016-06-01

    Evidence in crime scenes available in the form of biological stains which cannot be visualized during naked eye examination can be detected by imaging their fluorescence using a combination of excitation lights and suitable filters. These combinations selectively allow the passage of fluorescence light emitted from the targeted stains. However, interference from the fluorescence generated by many of the surface materials bearing the stains often renders it difficult to visualize the stains during forensic photography. This report describes the use of background correction algorithm (BCA) to enhance the visibility of seminal stain, a biological evidence that fluoresces. While earlier reports described the use of narrow band-pass filters for other fluorescing evidences, here, we utilize BCA to enhance images captured using commonly available colour filters, yellow, orange and red. Mean-based contrast adjustment was incorporated into BCA to adjust the background brightness for achieving similarity of images' background appearance, a crucial step for ensuring success while implementing BCA. Experiment results demonstrated the effectiveness of our proposed colour filters' approach using the improved BCA in enhancing the visibility of seminal stains in varying dilutions on selected surfaces.

  20. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system.

  1. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    PubMed

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system. PMID:21193194

  2. Non-causal spike filtering improves decoding of movement intention for intracortical BCIs

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2014-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically-recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. Conclusions Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs. PMID:25128256

  3. Electronically tunable voltage-mode universal filter with single-input five-output using simple OTAs

    NASA Astrophysics Data System (ADS)

    Kumngern, Montree; Suwanjan, Peerawut; Dejhan, Kobchai

    2013-08-01

    This article presents a new electronically tunable voltage-mode universal biquadratic filter with single-input five-output using simple operational transconductance amplifiers (OTAs) and grounded capacitors. The proposed configuration provides low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at a high-impedance input terminal that enables easy cascading in voltage-mode. The natural frequency and the quality factor can be set orthogonally by adjusting the circuit components. The natural frequency can also be controlled electronically by adjusting the bias currents of the OTAs. For realising all the five standard filtering functions, no critical-matching conditions are imposed and all the incremental parameter sensitivities are low. Experimental and simulation results that confirm the theoretical predictions are given.

  4. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction.

    PubMed

    Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard

    2014-01-01

    Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements.

  5. Fabrication and characterization of high order filter based on resonance in hybrid multi-knots microfiber structure

    NASA Astrophysics Data System (ADS)

    Nodehi, S.; Mohammed, W. S.; Ahmad, H.; Harun, S. W.

    2016-04-01

    This work proposes a novel design of a hybrid microfiber resonator which can be used as a band-pass and band-stop filter in various applications such as fiber lasers. The structure comprises of two microfiber knot resonators with different sizes which are surrounded by a semi-loop structure with one input and two output ports. Utilization of the Vernier effect in the proposed structure showed an enhancement of the free spectral range (FSR). The finesse has increased by a factor of three compared to a single knot providing a sharper roll-off. The filter bandwidth is adjustable as a result of the manipulation of the coupling length and rings' radii. The performance of the device is explained theoretically using transfer matrix analysis.

  6. Edge-Aware BMA Filters.

    PubMed

    Guang Deng

    2016-01-01

    There has been continuous research in edge-aware filters which have found many applications in computer vision and image processing. In this paper, we propose a principled-approach for the development of edge-aware filters. The proposed approach is based on two well-established principles: 1) optimal parameter estimation and 2) Bayesian model averaging (BMA). Using this approach, we formulate the problem of filtering a pixel in a local pixel patch as an optimal estimation problem. Since a pixel belongs to multiple local patches, there are multiple estimates of the same pixel. We combine these estimates into a final estimate using BMA. We demonstrate the versatility of this approach by developing a family of BMA filters based on different settings of cost functions and log-likelihood and log-prior functions. We also present a new interpretation of the guided filter and develop a BMA guided filter which includes the guided filter as a special case. We show that BMA filters can produce similar smoothing results as those of the state-of-the-art edge-aware filters. Two BMA filters are computationally as efficient as the guided filter which is one of the fastest edge-aware filters. We also demonstrate that the BMA guided filter is better than the guided filter in preserving sharp edges. A new feature of the BMA guided filter is that the filtered image is similar to that produced by a clustering process.

  7. Remotely serviced filter and housing

    DOEpatents

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  8. Anti-clogging filter system

    DOEpatents

    Brown, Erik P.

    2015-05-19

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.

  9. An IIR median hybrid filter

    NASA Technical Reports Server (NTRS)

    Bauer, Peter H.; Sartori, Michael A.; Bryden, Timothy M.

    1992-01-01

    A new class of nonlinear filters, the so-called class of multidirectional infinite impulse response median hybrid filters, is presented and analyzed. The input signal is processed twice using a linear shift-invariant infinite impulse response filtering module: once with normal causality and a second time with inverted causality. The final output of the MIMH filter is the median of the two-directional outputs and the original input signal. Thus, the MIMH filter is a concatenation of linear filtering and nonlinear filtering (a median filtering module). Because of this unique scheme, the MIMH filter possesses many desirable properties which are both proven and analyzed (including impulse removal, step preservation, and noise suppression). A comparison to other existing median type filters is also provided.

  10. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  11. Filter component assessment

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Diaz, E.S.; Smeltzer, E.W.

    1995-11-01

    The objectives of this program are to provide a more ruggedized filter system that utilizes porous ceramic filters which have improved resistance to damage resulting from crack propagation, thermal fatigue and/or thermal excursions during plant or process transient conditions, and/or mechanical ash bridging events within the candle filter array. As part of the current Phase 1, Task 1, effort of this program, Westinghouse is evaluating the filtration characteristics, mechanical integrity, and corrosion resistance of the following advanced or second generation candle filters for use in advanced coal-fired process applications: 3M CVI-SiC composite--chemical vapor infiltration of silicon carbide into an aluminosilicate Nextel{trademark} 312 fiber preform; DuPont PRD-66--filament wound candle filter structure containing corundum, cordierite, cristobalite, and mullite; DuPont SiC-SiC--chemical infiltration of silicon carbide into a silicon carbide Nicalon{trademark} fiber mat or felt preform; and IF and P Fibrosic{trademark}--vacuum infiltrated oxide-based chopped fibrous matrix. Results to date are presented.

  12. Filter cake characterization studies

    SciTech Connect

    Newby, R.A.; Smeltzer, E.E.; Alvin, M.A.; Lippert, T.E.

    1995-11-01

    The Westinghouse Electric Corporation, Science & Technology Center is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to provide gas turbine protection. The ILEC system is a ceramic barrier hot gas filter (HGF) that removes particulate while simultaneously contributing to the control of sulfur, alkali, and potentially other contaminants in high-temperature, high-pressure fuel gases, or combustion gases. The gas-phase contaminant removal is performed by sorbent particles injected into the HGF. The overall objective of this program is to demonstrate, at a bench scale, the technical feasibility of the ILEC concept for multi-contaminant control, and to provide test data applicable to the design of subsequent field tests. The program has conducted ceramic barrier filter testing under simulated PFBC conditions to resolve issues relating to filter cake permeability, pulse cleaning, and filter cake additive performance. ILEC testing has also been performed to assess the potential for in-filter sulfur and alkali removal.

  13. Disinfecting Filters For Recirculated Air

    NASA Technical Reports Server (NTRS)

    Pilichi, Carmine A.

    1992-01-01

    Simple treatment disinfects air filters by killing bacteria, algae, fungi, mycobacteria, viruses, spores, and any other micro-organisms filters might harbor. Concept applied to reusable stainless-steel wire mesh filters and disposable air filters. Treatment used on filters in air-circulation systems in spacecraft, airplanes, other vehicles, and buildings to help prevent spread of colds, sore throats, and more-serious illnesses.

  14. DOE HEPA filter test program

    SciTech Connect

    1998-05-01

    This standard establishes essential elements of a Department of Energy (DOE) program for testing HEPA filters to be installed in DOE nuclear facilities or used in DOE-contracted activities. A key element is the testing of HEPA filters for performance at a DOE Filter Test Facility (FTF) prior to installation. Other key elements are (1) providing for a DOE HEPA filter procurement program, and (2) verifying that HEPA filters to be installed in nuclear facilities appear on a Qualified Products List (QPL).

  15. Filters for Submillimeter Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1986-01-01

    New manufacturing process produces filters strong, yet have small, precise dimensions and smooth surface finish essential for dichroic filtering at submillimeter wavelengths. Many filters, each one essentially wafer containing fine metal grid made at same time. Stacked square wires plated, fused, and etched to form arrays of holes. Grid of nickel and tin held in brass ring. Wall thickness, thickness of filter (hole depth) and lateral hole dimensions all depend upon operating frequency and filter characteristics.

  16. Cryo-Transmittance and -Reflectance of Filters and Beamsplitters for the SIRTF Infrared Array Camera

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth P.; Quijada, Manuel A.a

    2000-01-01

    The Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC) uses two dichroic beamsplitters, four bandpass filters, and four detector arrays to acquire images in four channels at wavelengths between 3 and 10 micron. Accurate knowledge of the pass bands is necessary because, in order to meet the science objectives, IRAC is required to do 2% relative photometry in each band relative to the other bands. We report the in-band and out-of-band polarized transmittance and reflectance of these optical elements measured near the instrument operating temperature of 1.4 K. Details of the experimental apparatus, which include a continuous flow liquid helium optical cryostat and a Fourier transform infrared (FTIR) spectrometer are discussed.

  17. Stack filter classifiers

    SciTech Connect

    Porter, Reid B; Hush, Don

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  18. Fourier-based segmentation of microcalcifications in mammograms

    NASA Astrophysics Data System (ADS)

    López-Meléndez, Elizabeth; Lara-Rodríguez, Luis David; Urcid, Gonzalo

    2015-09-01

    This paper presents a Fourier transform approach to detect microcalcifications in digital mammograms. The basic idea consists in the design of parametric Butterworth bandpass filters in the Fourier domain used to extract sharpened border like structures that correspond to detected mammography microcalcifications. Image thresholding of the filtered image is accomplished, first by homogenizing the background (fibroglandular tissue) with a median filter, after which a gamma correction is applied to change the global contrast. Second, by postprocessing the resulting image using histogram based local and global statistics we obtain a properly binarized image that emphasizes the desired objects (microcalcifications) and segmentation is completed using a sequence of morphological binary operations. Several illustrative examples taken from a clinical database are included to demonstrate the capability of the proposed approach in comparison with other edge detection techniques such as the difference of Gaussians (DoG) and the Laplacian of a Gaussian (LoG).

  19. Electronically tuned optical filters

    NASA Technical Reports Server (NTRS)

    Castellano, J. A.; Pasierb, E. F.; Oh, C. S.; Mccaffrey, M. T.

    1972-01-01

    A detailed account is given of efforts to develop a three layer, polychromic filter that can be tuned electronically. The operation of the filter is based on the cooperative alignment of pleochroic dye molecules by nematic liquid crystals activated by electric fields. This orientation produces changes in the optical density of the material and thus changes in the color of light transmitted through the medium. In addition, attempts to improve materials and devices which employ field induced changes of a cholesteric to a nematic liquid crystal are presented.

  20. Design of Microwave Front-End Narrowband Filter and Limiter Components

    NASA Astrophysics Data System (ADS)

    Cross, Lee W.

    This dissertation proposes three novel bandpass filter structures to protect systems exposed to damaging levels of electromagnetic (EM) radiation from intentional and unintentional high-power microwave (HPM) sources. This is of interest because many commercial microwave communications and sensor systems are unprotected from high power levels. Novel technologies to harden front-end components must maintain existing system performance and cost. The proposed concepts all use low-cost printed circuit board (PCB) fabrication to create compact solutions that support high integration. The first proposed filter achieves size reduction of 46% using a technology that is suitable for low-loss, narrowband filters that can handle high power levels. This is accomplished by reducing a substrate-integrated waveguide (SIW) loaded evanescent-mode bandpass filter to a half-mode SIW (HMSIW) structure. Demonstrated third-order SIW and HMSIW filters have 1.7 GHz center frequency and 0.2 GHz bandwidth. Simulation and measurements of the filters utilizing combline resonators prove the underlying principles. The second proposed device combines a traditional microstrip bent hairpin filter with encapsulated gas plasma elements to create a filter-limiter: a novel narrowband filter with integral HPM limiter behavior. An equivalent circuit model is presented for the ac coupled plasma-shell components used in this dissertation, and parameter values were extracted from measured results and EM simulation. The theory of operation of the proposed filter-limiter was experimentally validated and key predictions were demonstrated including two modes of operation in the on state: a constant output power mode and constant attenuation mode at high power. A third-order filter-limiter with center frequency of 870 MHz was demonstrated. It operates passively from incident microwave energy, and can be primed with an external voltage source to reduce both limiter turn-on threshold power and output power

  1. Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    PubMed Central

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963

  2. Digital hum filtering

    USGS Publications Warehouse

    Knapp, R.W.; Anderson, N.L.

    1994-01-01

    Data may be overprinted by a steady-state cyclical noise (hum). Steady-state indicates that the noise is invariant with time; its attributes, frequency, amplitude, and phase, do not change with time. Hum recorded on seismic data usually is powerline noise and associated higher harmonics; leakage from full-waveform rectified cathodic protection devices that contain the odd higher harmonics of powerline frequencies; or vibrational noise from mechanical devices. The fundamental frequency of powerline hum may be removed during data acquisition with the use of notch filters. Unfortunately, notch filters do not discriminate signal and noise, attenuating both. They also distort adjacent frequencies by phase shifting. Finally, they attenuate only the fundamental mode of the powerline noise; higher harmonics and frequencies other than that of powerlines are not removed. Digital notch filters, applied during processing, have many of the same problems as analog filters applied in the field. The method described here removes hum of a particular frequency. Hum attributes are measured by discrete Fourier analysis, and the hum is canceled from the data by subtraction. Errors are slight and the result of the presence of (random) noise in the window or asynchrony of the hum and data sampling. Error is minimized by increasing window size or by resampling to a finer interval. Errors affect the degree of hum attenuation, not the signal. The residual is steady-state hum of the same frequency. ?? 1994.

  3. Filter Component Assessment

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Diaz, E.S.; Smeltzer, E.E.

    1996-12-31

    Advanced particulate filtration systems are currently being developed at Westinghouse for use in both coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems. To date, Westinghouse has demonstrated 5855 hours of successful operation of first generation monolithic filter elements in PFBC applications when ash bridging or process thermal transient excursions are avoided. Alternate advanced monolithic and second generation fiber reinforced, filament wound and vacuum infiltrated filters are also being developed which are considered to have enhanced high temperature creep resistance, improved fracture toughness, or enhanced thermal shock characteristics, respectively. Mechanical and component fabrication improvements, as well as degradation mechanisms for each filter element have been identified by Westinghouse during exposure to simulated PFBC operating conditions and alkali-containing steam/air environments. Additional effort is currently being focused on determining the stability of the advanced monolithic high temperature creep resistant clay bonded silicon carbide (SiC) materials, alumina/mullite, and chemically vapor infiltrated (CVI) SiC materials during operation in the Westinghouse Advanced Particulate Filtration (W-APF) system at Foster Wheeler`s pressurized circulating fluidized-bed combustion (PCFBC) test facility in Karhula, Finland. Select advanced filter materials are being defined for additional long-term exposure in integrated gasification combined cycle (IGCC) gas streams. The results of these efforts are summarized in this paper. 6 refs., 7 figs., 11 tabs.

  4. Ceramic HEPA Filter Program

    SciTech Connect

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  5. Foam For Filtering

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Like nature's honeycomb, foam is a structure of many-sided cells, apparently solid but actually only three percent material and 97 percent air. Foam is made by a heat-producing chemical reaction which expands a plastic material in a manner somewhat akin to the heat-induced rising of a loaf of bread. The resulting structure of interconnected cells is flexible yet strong and extremely versatile in applicati6n. Foam can, for example, be a sound absorber in one form, while in another it allows sound to pass through it. It can be a very soft powder puff material and at the same time a highly abrasive scrubber. A sampling of foam uses includes stereo speaker grilles, applying postage meter ink, filtering lawnmower carburetor air; deadening noise in trucks and tractors, applying cosmetics, releasing fabric softener and antistatic agents in home clothes dryers, painting, filtering factory heating and ventilating systems, shining shoes, polishing cars, sponge-mopping floors, acting as pre-operative surgical scrubbers-the list is virtually limitless. The process by which foam is made produces "windows," thin plastic membranes connecting the cell walls. Windowed foam is used in many applications but for certain others-filtering, for example-it is desirable to have a completely open network. Scott Paper Company's Foam Division, Chester, Pennsylvania, improved a patented method of "removing the windows," to create an open structure that affords special utility in filtering applications. NASA technology contributed to Scott's improvement.

  6. Ozone decomposing filter

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.

    1999-01-01

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  7. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M.; Tressler, R.E.

    1992-12-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter {times} 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  8. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M. . Science and Technology Center); Tressler, R.E. )

    1992-01-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter [times] 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  9. Rotating drum filter

    DOEpatents

    Anson, Donald

    1990-01-01

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  10. Domain wall filters

    SciTech Connect

    Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-03-15

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  11. Ozone decomposing filter

    SciTech Connect

    Simandl, R.F.; Brown, J.D.; Whinnery, L.L. Jr.

    1999-11-02

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  12. Filter assembly for metallic and intermetallic tube filters

    DOEpatents

    Alvin, Mary Anne; Lippert, Thomas E.; Bruck, Gerald J.; Smeltzer, Eugene E.

    2001-01-01

    A filter assembly (60) for holding a filter element (28) within a hot gas cleanup system pressure vessel is provided, containing: a filter housing (62), said filter housing having a certain axial length and having a peripheral sidewall, said sidewall defining an interior chamber (66); a one piece, all metal, fail-safe/regenerator device (68) within the interior chamber (66) of the filter housing (62) and/or extending beyond the axial length of the filter housing, said device containing an outward extending radial flange (71) within the filter housing for seating an essential seal (70), the device also having heat transfer media (72) disposed inside and screens (80) for particulate removal; one compliant gasket (70) positioned next to and above the outward extending radial flange of the fail-safe/regenerator device; and a porous metallic corrosion resistant superalloy type filter element body welded at the bottom of the metal fail-safe/regenerator device.

  13. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  14. Optically bistable interference filter

    NASA Astrophysics Data System (ADS)

    Feng, Weiting

    1990-07-01

    In general the temperature dependence of refractive index of coating materials is usually small. The most notable exception being the lead telluride. Thinfilm filters made of PbTe possess anomalously high nortlinearily in refractive index. We have investigated the phenomenon theoretically and experimexitally. 2 . BISTABLE CHARACTERISTICS OF INTERFERENCE FILTERS It can be proved that the transmittance and reflectance of a twin-cavity NLIF which consists of two F-B filters coupled by a single low-index are given by 2 a(1r1 )(1-r0) T --i. -. (1) -d (1r01) (1r12) (1-i-Fsin 4)(1+sin p) where a r01 F . Te phase change of the cavity 0 IS 2r0dnAI0D (2) 2k5dT 1k where the absorbtance A 00 the initial detunning of fresonance and the first term on the right side of the equation(1)-(2) the output characteristics of the NLIF can be calculated. 3 . EXPERIMENTAL CASE The interference filters suggested to be used in my research will be made by vacuum deposition with a thermal source. The filters will be made according to the prescripti The dominant mechanism responsible for d(nhl) must be the change in the refractive index. A low limit on the OB switch-on time is found to be O. 35us and switch-off time is 5. 5us. 4. REFERENCES 1. W. T. Feng " Temperature effects on properties of zinc selenide and lead telluride" to be published in Infrared Physics. 2. H. S. Carslaw Conduction

  15. Generalized Selection Weighted Vector Filters

    NASA Astrophysics Data System (ADS)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2004-12-01

    This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03) in Grado, Italy.

  16. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  17. Quantitative fluorescence detection of phenylalanine in blood spots on filter paper

    NASA Astrophysics Data System (ADS)

    Li, Yuezhi; Liu, Fengjun; Wang, Xuemin; Xu, Gang

    2007-11-01

    Phenylketonuria is a genetic disease, which causes the metabolization disorder of phenylalanine, this disorder would damage the neural system of infants as a result of the accumulation of phenylalanine in blood. Therefore, it is of great importance to diagnose and treat phenylketonuria as early as possible for newborns. The aim of this paper is to develop a fluorescence detection system to measure blood phenylalanine concentration of new-born infants. In this design, a high luminance ultraviolet LED is used for excitation source, and a kind of bifurcated optical fiber assembly is applied for conduction of light. The excitation source is filtered and coupled into quartz fibers of the bifurcated fiber assembly for conduction of light to excite the fluorescence of phenylalanine in blood sample. The collected fluorescence is transmitted along the glass fibers of the assemblies and coupled to a photomultiplier tube. The fluorescence is filtered with 470~500 nm band-pass filter to subdue scattered excitation light and to limit the spectral width of the detected fluorescence. By the comparison with a standard instrument, the new system with low power consumption, low cost and small size is also proven sensitive and accurate, which meets the demand of clinical phenylketonuria screening.

  18. Parameter optimization for a high-order band-pass continuous-time sigma-delta modulator MEMS gyroscope using a genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Chang, Honglong; Yuan, Weizheng; Wilcock, Reuben; Kraft, Michael

    2012-10-01

    This paper describes a novel multiobjective parameter optimization method based on a genetic algorithm (GA) for the design of a sixth-order continuous-time, force feedback band-pass sigma-delta modulator (BP-ΣΔM) interface for the sense mode of a MEMS gyroscope. The design procedure starts by deriving a parameterized Simulink model of the BP-ΣΔM gyroscope interface. The system parameters are then optimized by the GA. Consequently, the optimized design is tested for robustness by a Monte Carlo analysis to find a solution that is both optimal and robust. System level simulations result in a signal-to-noise ratio (SNR) larger than 90 dB in a bandwidth of 64 Hz with a 200° s-1 angular rate input signal; the noise floor is about -100 dBV Hz-1/2. The simulations are compared to measured data from a hardware implementation. For zero input rotation with the gyroscope operating at atmospheric pressure, the spectrum of the output bitstream shows an obvious band-pass noise shaping and a deep notch at the gyroscope resonant frequency. The noise floor of measured power spectral density (PSD) of the output bitstream agrees well with simulation of the optimized system level model. The bias stability, rate sensitivity and nonlinearity of the gyroscope controlled by an optimized BP-ΣΔM closed-loop interface are 34.15° h-1, 22.3 mV °-1 s-1, 98 ppm, respectively. This compares to a simple open-loop interface for which the corresponding values are 89° h-1, 14.3 mV °-1 s-1, 7600 ppm, and a nonoptimized BP-ΣΔM closed-loop interface with corresponding values of 60° h-1, 17 mV °-1 s-1, 200 ppm.

  19. The Magnetic Centrifugal Mass Filter

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-08-04

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages. __________________________________________________

  20. Drilling fluid filter

    DOEpatents

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  1. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  2. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  3. Assessment of ceramic membrane filters

    SciTech Connect

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H.

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  4. High frequency integrated MOS filters

    NASA Technical Reports Server (NTRS)

    Peterson, C.

    1990-01-01

    Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous-time filters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters.

  5. Drive Diagnostic Filter Wheel Control

    SciTech Connect

    Uhlich, D.

    2007-07-17

    DrD Filter Wheel Control is National Instrument's Labview software that drives a Drive Diagnostic filter wheel. The software can drive the filter wheel between each end limit, detect the positive and negative limit and each home position and post the stepper motot values to an Excel spreadsheet. The software can also be used to cycle the assembly between the end limits.

  6. Fixed memory least squares filtering

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.

    1975-01-01

    Buxbaum has reported on three algorithms for computing least squares estimates that are based on fixed amounts of data. In this correspondence, the filter is arranged as a point-deleting Kalman filter concatenated with the standard point-inclusion Kalman filter. The resulting algorithm is couched in a square root framework for greater numerical stability, and special attention is given to computer implementation.

  7. Quick-change filter cartridge

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Ortiz, Carlos A.

    1995-01-01

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  8. Regenerable particulate filter

    DOEpatents

    Stuecker, John N.; Cesarano, III, Joseph; Miller, James E.

    2009-05-05

    A method of making a three-dimensional lattice structure, such as a filter used to remove particulates from a gas stream, where the physical lattice structure is designed utilizing software simulation from pre-defined mass transfer and flow characteristics and the designed lattice structure is fabricated using a free-form fabrication manufacturing technique, where the periodic lattice structure is comprised of individual geometric elements.

  9. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  10. Optical filtering of aeromagnetic maps.

    PubMed

    Arsenault, H H; Séguin, M K; Brousseau, N

    1974-05-01

    An optical processor has been used to filter aeromagnetic contour maps in order to obtain information on underground magnetic ore deposits. This was accomplished by directional filtering of the spatial Fourier transform of the contour map. The directional filtering yields maps of gradients having given directions. A digital analysis was also performed on the data so that the feasibility of the optical technique could be evaluated. The results obtained so far suggest that a systematic filtering of aeromagnetic maps can be carried out at low cost and that the filtered maps can yield useful information to the interpreter.

  11. Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

    PubMed Central

    Kriegel, Ilka

    2015-01-01

    Summary Tunable light filters are critical components for many optical applications in which light in-coupling, out-coupling or rejection is crucial, such as lasing, sensing, photovoltaics and information and communication technology. For this purpose, Bragg mirrors (band-pass filters with high reflectivity) represent good candidates. However, their optical characteristics are determined during the fabrication stage. Heavily doped semiconductor nanocrystals (NCs), on the other hand, deliver a high degree of optical tunability through the active modulation of their carrier density, ultimately influencing their plasmonic absorption properties. Here, we propose the design of an actively tunable light filter composed of a Bragg mirror and a layer of plasmonic semiconductor NCs. We demonstrate that the filtering properties of the coupled device can be tuned to cover a wide range of frequencies from the visible to the near infrared (vis–NIR) spectral region when employing varying carrier densities. As the tunable component, we implemented a dispersion of copper selenide (Cu2−xSe) NCs and a film of indium tin oxide (ITO) NCs, which are known to show optical tunablility with chemical or electrochemical treatments. We utilized the Mie theory to describe the carrier-dependent plasmonic properties of the Cu2−x Se NC dispersion and the effective medium theory to describe the optical characteristics of the ITO film. The transmission properties of the Bragg mirror have been modelled with the transfer matrix method. We foresee ease of experimental realization of the coupled device, where filtering modulation is achieved upon chemical and electrochemical post-fabrication treatment of the heavily doped semiconductor NC component, eventually resulting in tunable transmission properties of the coupled device. PMID:25671163

  12. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  13. Kaon Filtering For CLAS Data

    SciTech Connect

    McNabb, J.

    2001-01-30

    The analysis of data from CLAS is a multi-step process. After the detectors for a given running period have been calibrated, the data is processed in the so called pass-1 cooking. During the pass-1 cooking each event is reconstructed by the program a1c which finds particle tracks and computes momenta from the raw data. The results are then passed on to several data monitoring and filtering utilities. In CLAS software, a filter is a parameterless function which returns an integer indicating whether an event should be kept by that filter or not. There is a main filter program called g1-filter which controls several specific filters and outputs several files, one for each filter. These files may then be analyzed separately, allowing individuals interested in one reaction channel to work from smaller files than using the whole data set would require. There are several constraints on what the filter functions should do. Obviously, the filtered files should be as small as possible, however the filter should also not reject any events that might be used in the later analysis for which the filter was intended.

  14. Advanced hot gas filter development

    SciTech Connect

    McMahon, T.J.

    1998-12-31

    Advanced coal-based power generation systems require hot gas cleanup under high-temperature, high-pressure process conditions in order to realize high efficiency and superior environmental performance. A key component of Integrated Gasification Combined Cycle and Pressurized Fluidized Bed Combustion systems is the hot gas filtration system, which removes particulate matter from the gas stream before it enters the gas turbine. The US DOE is currently sponsoring a program to develop and test hot gas filtration systems, demonstrating their reliability and commercial readiness. Reliability of individual filter elements is a major factor in determining the overall system reliability, and testing has shown that conventional ceramic filter elements are subject to brittle failure and thermal stress damage. In order to increase filter element reliability, a program was initiated to develop ceramic and metal filter elements resistant to brittle failure and thermal stress damage. Filter elements have been developed using advanced materials including continuous fiber ceramic composites, other novel ceramics, and corrosion resistant metals. The general approach taken under this program has been to first develop porous filter media from advanced materials that meet permeability and strength requirements, followed by fabrication of porous media into full scale filter elements. Filter elements and filter media were subjected to laboratory scale corrosion and filtration testing. Filter elements successfully passing laboratory testing have been tested under pilot scale conditions. This paper will summarize the development and testing of these advanced hot gas filters.

  15. In-service filter testing

    SciTech Connect

    Terada, K.; Woodard, R.W.; Jensen, R.T.

    1985-04-29

    This report contains the observations, test results, and conclusions of three separate in-service tests beginning in November 1979 and concluding in September 1983. The in-service tests described in this report produced encouraging results on filters constructed with fiberglass medium containing 5% Nomex and separators of aluminum foil coated with a thin film of vinyl-epoxy polymer. Filters containing medium with Kevlar fiber additives demonstrated they merited further evaluation. Other types of filters tested include separatorless filters (Flanders SuperFlow) and one filter with fiberglass separators. Asbestos-containing filters were used for comparison until their supply was exhausted. All filters tested were judged to have performed satisfactorily under the test conditions.

  16. ATLID receiving spatial and spectral filtering units: design and associated performances

    NASA Astrophysics Data System (ADS)

    Vaché, Maxime; de Saint Seine, Diego; Leblay, Pierrick; Hélière, Arnaud; Pereira Do Carmo, João.; Berlioz, Philippe; Archer, Julien

    2015-09-01

    ATLID (ATmospheric LIDar) is one of the four key instruments of EarthCARE (Earth Clouds, Aerosols and Radiations Explorer) satellite. It is a program of and funded by the European Space Agency and under prime contractorship of Airbus Defence and Space. ATLID is dedicated to the understanding of aerosols and clouds contribution to earth climate. It is an atmospheric LIDAR that measures the emitted 354.8nm ultraviolet laser which is backscattered by the atmosphere. The molecules and the particles have different optical signatures and can consequently be distinguished thanks to polarization analyses and spectral filtering of the backscattered signal. The following optical units of ATLID receiver chain directly contribute to this function : after ATLID afocal telescope, the CAS-OA, the Optical Assembly of the Co Alignment Sensor, samples and images the beam on the CAS sensor in order to optimize the alignment of transmitting and receiving telescopes. The beam goes through the BF sub-assemblies, the Blocking Filter which has two filtering functions: (1) spatial with the ERO-BF, which is a Kepler afocal spatial filtering module that defines the instrument field of view and blocks the background and straylight out of the useful field of view; (2) spectral with the ERO-EFO, the Entrance Filtering Optic, which is mainly composed of a very narrow bandpass filter with a high rejection factor. This filter rejects the background from the useful signal and contributes to increase the signal-to-noise ratio. The EFO also allows an on-ground adjustment of the orientation of the linear polarization of the input beam. After filtering and polarization adjustment, the beam is injected in several optical fibers and transported to the instrument detectors. This last transport function is done by the FCA, the Fiber Coupler Assembly. This paper presents the flight models of the previously described units, details the opto-mechanical design, and reviews the main achieved performances with a

  17. Wiener filter for filtered back projection in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Wang, Xinying; Mainprize, James G.; Wu, Gang; Yaffe, Martin J.

    2012-03-01

    Conventional filtered back projection (FBP) reconstruction for digital breast tomosynthesis (DBT) can suffer from a low signal to noise ratio. Because of the strong amplification by the reconstruction filters (ramp, apodization and slice thickness), noise at high spatial frequencies can be greatly increased. Image enhancement by Wiener filtering is investigated as a possible method to improve image quality. A neighborhood wavelet coefficient window technique is used to estimate the noise content of projection images and a Wiener filter is applied to the projection images. The neighborhood wavelet coefficient window is a non-linear technique, which may cause the Wiener filters estimated before and after the application of the reconstruction filters to be different. Image quality of a FBP reconstruction with and without Wiener filtering is investigated using a Fourier-based observer detectability metric ( d' ) for evaluation. Simulations of tomosynthesis are performed in both homogeneous and anatomic textured backgrounds containing lowcontrast masses or small microcalcifications. Initial results suggest that improvements in detectability can be achieved when the Wiener filter is applied, especially when the Wiener filter is estimated for the reconstruction filtered projections.

  18. Estimation of Q factors from reflection seismic data for a band-limited and stabilized inverse Q filter driven by an average-Q model

    NASA Astrophysics Data System (ADS)

    Chen, Zengbao; Chen, Xiaohong; Wang, Yanghua; Li, Jingye

    2014-02-01

    Reliable Q estimation is desirable for model-based inverse Q filtering to improve seismic resolution. On the one hand, conventional methods estimate Q from the amplitude spectra or frequency variations of individual wavelets at different depth (or time) levels, which is vulnerable to the effects of spectral interference and ambient noise. On the other hand, most inverse Q filtering algorithms are sensitive to noise, in order not to boost them, sometimes at the expense of degrading compensation effect. In this paper, the average-Q values are obtained from reflection seismic data based on the Gabor transform spectrum of a seismic trace. We transform the 2-D time-variant frequency spectrum into the 1-D spectrum, and then estimate the average-Q values based on the amplitude attenuation and compensation functions, respectively. Driven by the estimated average-Q model, we also develop a modified inverse Q filtering algorithm by incorporating a time-variant bandpass filter (TVBF), whose high cut off frequency follows a hyperbola along the traveltime from a specified time. Finally, we test this modified inverse Q filtering algorithm on synthetic data and perform the Q estimation procedure on a real reflection seismic data, followed by applying the modified inverse Q filtering algorithm. The synthetic data test and the real data example demonstrate that the algorithm driven by average-Q model may enhance the seismic resolution, without degrading the signal-to-noise ratio.

  19. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  20. Detection of large scale geomagnetic pulsations by MAGDAS-egypt stations during the solar minimum of the solar cycle 24

    NASA Astrophysics Data System (ADS)

    Fathy, Ibrahim

    2016-07-01

    This paper presents a statistical study of different types of large-scale geomagnetic pulsation (Pc3, Pc4, Pc5 and Pi2) detected simultaneously by two MAGDAS stations located at Fayum (Geo. Coordinates 29.18 N and 30.50 E) and Aswan (Geo. Coordinates 23.59 N and 32.51 E) in Egypt. The second order butter-worth band-pass filter has been used to filter and analyze the horizontal H-component of the geomagnetic field in one-second data. The data was collected during the solar minimum of the current solar cycle 24. We list the most energetic pulsations detected by the two stations instantaneously, in addition; the average amplitude of the pulsation signals was calculated.

  1. Ultrahigh supermode noise suppressing ratio of a semiconductor optical amplifier filtered harmonically mode-locked Erbium-doped fiber laser.

    PubMed

    Lin, Gong-Ru; Wu, Ming-Chung; Chang, Yung-Cheng; Pan, Ci-Ling

    2005-09-01

    The supermode noise suppressing ratio (SMSR) and the phase noise of a harmonically mode-locked Erbium-doped fiber laser (HML-EDFL) with an intra-cavity semiconductor optical amplifier (SOA) and an optical band-pass filter (OBPF) are improved and compared with a state-of-the-art Fabry-Perot laser diode (FPLD) injection-mode-locked EDFL. By driving the intra-cavity SOA based high-pass filter at unitary gain condition, the SMSR of the HML-EDFL is enhanced to 82 dB at the cost of degrading phase noise, increasing jitter, and broadened pulse width. The adding of OBPF further improves the SMSR, pulse width, phase noise, and jitter of the SOA-filtered HML-EDFL to 90 dB, 42 ps, -112 dBc/Hz, and 0.7 ps, respectively. The ultrahigh SMSR of the SOA-filtered HML-EDFL can compete with that of the FPLD injection-mode-locked EDFL without sacrificing its pulse width and jitter performances. PMID:19498744

  2. Low-noise and high-gain Brillouin optical amplifier for narrowband active optical filtering based on a pump-to-signal optoelectronic tracking.

    PubMed

    Souidi, Yahia; Taleb, Fethallah; Zheng, Junbo; Lee, Min Won; Du Burck, Frédéric; Roncin, Vincent

    2016-01-10

    We implement and characterize an optical narrowband amplifier based on stimulated Brillouin scattering with pump-to-signal relative frequency fluctuations overcome thanks to an active pump tracking. We achieve a precise characterization of this amplifier in terms of gain and noise degradation (noise figure). The performances of this stable selective amplification are compared to those of a conventional erbium-doped fiber amplifier in order to highlight the interest of the Brillouin amplification solution for active narrow optical filtering with a bandpass of 10 MHz. Thanks to the simple optoelectronic pump-to-signal tracking, the Brillouin active filter appears as a stable and reliable solution for narrowband optical processing in the coherent optical communication context and optical sensor applications. PMID:26835759

  3. Multilevel ensemble Kalman filtering

    DOE PAGES

    Hoel, Hakon; Law, Kody J. H.; Tempone, Raul

    2016-06-14

    This study embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. Finally, the resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  4. Robust Kriged Kalman Filtering

    SciTech Connect

    Baingana, Brian; Dall'Anese, Emiliano; Mateos, Gonzalo; Giannakis, Georgios B.

    2015-11-11

    Although the kriged Kalman filter (KKF) has well-documented merits for prediction of spatial-temporal processes, its performance degrades in the presence of outliers due to anomalous events, or measurement equipment failures. This paper proposes a robust KKF model that explicitly accounts for presence of measurement outliers. Exploiting outlier sparsity, a novel l1-regularized estimator that jointly predicts the spatial-temporal process at unmonitored locations, while identifying measurement outliers is put forth. Numerical tests are conducted on a synthetic Internet protocol (IP) network, and real transformer load data. Test results corroborate the effectiveness of the novel estimator in joint spatial prediction and outlier identification.

  5. Charcoal filter testing

    SciTech Connect

    Lyons, J.

    1997-08-01

    In this very brief, informal presentation, a representative of the US Nuclear Regulatory Commission outlines some problems with charcoal filter testing procedures and actions being taken to correct the problems. Two primary concerns are addressed: (1) the process to find the test method is confusing, and (2) the requirements of the reference test procedures result in condensation on the charcoal and causes the test to fail. To address these problems, emergency technical specifications were processed for three nuclear plants. A generic or an administrative letter is proposed as a more permanent solution. 1 fig.

  6. Advances in Collaborative Filtering

    NASA Astrophysics Data System (ADS)

    Koren, Yehuda; Bell, Robert

    The collaborative filtering (CF) approach to recommenders has recently enjoyed much interest and progress. The fact that it played a central role within the recently completed Netflix competition has contributed to its popularity. This chapter surveys the recent progress in the field. Matrix factorization techniques, which became a first choice for implementing CF, are described together with recent innovations. We also describe several extensions that bring competitive accuracy into neighborhood methods, which used to dominate the field. The chapter demonstrates how to utilize temporal models and implicit feedback to extend models accuracy. In passing, we include detailed descriptions of some the central methods developed for tackling the challenge of the Netflix Prize competition.

  7. The effect of filter cakes on filter medium resistance

    SciTech Connect

    Chase, G.G.; Arconti, J.; Kanel, J.

    1994-10-01

    The high resistance of a filter medium to fluid flow is a universal problem affecting many industries. The small thickness of the filter media makes local pressure and porosity measurements impractical. Analysis of the continuum equations and boundary conditions provide a basis for defining a relative medium resistance. Experiments are conducted on three particulate materials and on three different high flow rate filter media. The results show that the increase in medium resistance varies up to about four times the resistance of a clean filter medium with no cake present. The results also show that in most cases the relative resistance is dependent upon cake height.

  8. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  9. Anisotropic Total Variation Filtering

    SciTech Connect

    Grasmair, Markus; Lenzen, Frank

    2010-12-15

    Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.

  10. Robust fault detection filter design

    NASA Astrophysics Data System (ADS)

    Douglas, Randal Kirk

    The detection filter is a specially tuned linear observer that forms the residual generation part of an analytical redundancy system designed for model-based fault detection and identification. The detection filter has an invariant state subspace structure that produces a residual with known and fixed directional characteristics in response to a known design fault direction. In addition to a parameterization of the detection filter gain, three methods are given for improving performance in the presence of system disturbances, sensor noise, model mismatch and sensitivity to small parameter variations. First, it is shown that by solving a modified algebraic Riccati equation, a stabilizing detection filter gain is found that bounds the H-infinity norm of the transfer matrix from system disturbances and sensor noise to the detection filter residual. Second, a specially chosen expanded-order detection filter is formed with fault detection properties identical to a set of independent reduced-order filters that have no structural constraints. This result is important to the practitioner because the difficult problem of finding a detection filter insensitive to disturbances and sensor noise is converted to the easier problem of finding a set of uncoupled noise insensitive filters. Furthermore, the statistical properties of the reduced-order filter residuals are easier to find than the statistical properties of the structurally constrained detection filter residual. Third, an interpretation of the detection filter as a special case of the dual of the restricted decoupling problem leads to a new detection filter eigenstructure assignment algorithm. The new algorithm places detection filter left eigenvectors, which annihilate the detection spaces, rather than right eigenvectors, which span the detection spaces. This allows for a more flexible observer based fault detection system structure that could not be formulated as a detection filter. Furthermore, the link to the dual

  11. Spatial filters for high average power lasers

    DOEpatents

    Erlandson, Alvin C

    2012-11-27

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second slit filter positioned between the second pair of cylindrical lenses.

  12. Coated x-ray filters

    DOEpatents

    Steinmeyer, P.A.

    1992-11-24

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.

  13. Coated x-ray filters

    DOEpatents

    Steinmeyer, Peter A.

    1992-11-24

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers.

  14. In Situ Cleanable HEPA Filter

    SciTech Connect

    Phillips, T.D.

    1999-11-18

    This paper describes a welded steel HEPA filter which uses liquid spray cleaning and vacuum drying. Development of the filter was initiated in order to eliminate personnel exposure, disposal cost, and short lifetime associated with systems commonly employed throughout the Department of Energy complex. In addition the design promises to resolve the issues of fire, elevated temperatures, wetting, filter strength, air leaks and aging documented in the May, 1999 DNFSB-TECH-23 report.

  15. Note: Cryogenic coaxial microwave filters

    SciTech Connect

    Tancredi, G.; Meeson, P. J.; Schmidlin, S.

    2014-02-15

    The careful filtering of microwave electromagnetic radiation is critical for controlling the electromagnetic environment for experiments in solid-state quantum information processing and quantum metrology at millikelvin temperatures. We describe the design and fabrication of a coaxial filter assembly and demonstrate that its performance is in excellent agreement with theoretical modelling. We further perform an indicative test of the operation of the filters by making current-voltage measurements of small, underdamped Josephson junctions at 15 mK.

  16. Multi-filter spectrophotometry simulations

    NASA Technical Reports Server (NTRS)

    Callaghan, Kim A. S.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    To complement both the multi-filter observations of quasar environments described in these proceedings, as well as the proposed UBC 2.7 m Liquid Mirror Telescope (LMT) redshift survey, we have initiated a program of simulated multi-filter spectrophotometry. The goal of this work, still very much in progress, is a better quantitative assessment of the multiband technique as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.

  17. Revisit of the Ramp Filter

    PubMed Central

    Zeng, Gengsheng L.

    2014-01-01

    An important part of the filtered backprojection (FBP) algorithm is the ramp filter. This paper derives the discrete version of the ramp filter in the Fourier domain and studies the windowing effects. When a window function is used to control the noise, the image amplitude will be affected and reduced. A simple remedy is proposed to improve the image accuracy when a window function must be used. PMID:25729091

  18. Wide-angle reflection-mode spatial filtering and splitting with photonic crystal gratings and single-layer rod gratings.

    PubMed

    Serebryannikov, Andriy E; Lalanne, Philippe; Petrov, Alexander Yu; Ozbay, Ekmel

    2014-11-01

    New diffractive optical elements offering a frequency tolerant, very efficient, high-pass and bandpass spatial filtering over a broad range of incidence angles are demonstrated by numerical simulations. The device operates in reflection mode owing to the (nearly) perfect blazing. It relies on two-dimensional square-lattice photonic crystals composed of dielectric rods with simple corrugations at the interface. Similar performance can be obtained with gratings composed of a single rod layer placed in the near field of a metal mirror, indicating a route to geometries that can be easily fabricated with modern nanotechnologies. Also equal splitting between zero and first negative orders can be obtained for incidence-angle variations that are wider than 60°. PMID:25361312

  19. Filters and supports in orthoalgebras

    NASA Astrophysics Data System (ADS)

    Foulis, D. J.; Greechie, R. J.; Rüttimann, G. T.

    1992-05-01

    An orthoalgebra, which is a natural generalization of an orthomodular lattice or poset, may be viewed as a “logic” or “proposition system” and, under a welldefined set of circumstances, its elements may be classified according to the Aristotelian modalities: necessary, impossible, possible, and contingent. The necessary propositions band together to form a local filter, that is, a set that intersects every Boolean subalgebra in a filter. In this paper, we give a coherent account of the basic theory of Orthoalgebras, define and study filters, local filters, and associated structures, and prove a version of the compactness theorem in classical algebraic logic.

  20. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  1. Fabric filter system study

    NASA Astrophysics Data System (ADS)

    Chambers, R. L.; Plunk, O. C.; Kunka, S. L.

    1984-08-01

    Results of the fourth year of operation of a fabric filter installed on a coal-fired boiler are reported. Project work during the fourth year concentrated on fabric studies. The 10-oz/sq yd fabrics of the 150 1/2 warp, 150 2/2T fill construction demonstrated superior performance over the most common 14-oz/sq yd constructions, regardless of coating. It was determined that improving cleaning by increasing shaking amplitude is more detrimental to baglife than increasing shaker frequency. Maintenance and operation observations continued, and the resolution of these types of problems became more efficient because of increased experience of maintenance personnel with baghouse-related problems.

  2. YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.

    1996-01-01

    Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.

  3. iPTF14yb: The First GRB Discovered Outside the Gamma-Ray Bandpass and the Rate of Orphan Afterglows

    NASA Astrophysics Data System (ADS)

    Cenko, Stephen

    2015-04-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, the first unambiguous detection of an afterglow-like transient identified outside the γ-ray bandpass. Subsequent to our discovery announcement, the ``parent'' γ-ray burst GRB 140226A was identified by the InterPlanetary Network of high-energy detectors. We demonstrate an association between iPTF14yb and GRB 140226A based both on probabilistic arguments and by comparing iPTF14yb with the known population of long GRB afterglows and host galaxies. We furthermore estimate the rate of iPTF14yb-like transients based on iPTF observations, and demonstrate it is consistent with the rate of on-axis long GRBs. Finally, we briefly discuss the implications of the non-detection to date of bona fide ``orphan'' afterglows (i.e., those lacking entirely in high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  4. Signal processing for high granularity calorimeter: amplification, filtering, memorization and digitalization

    NASA Astrophysics Data System (ADS)

    Royer, L.; Manen, S.; Gay, P.

    2010-12-01

    A very-front-end electronics dedicated to high granularity calorimeters has been designed and its performance measured. This electronics performs the amplification of the charge delivered by the detector thanks to a low-noise Charge Sensitive Amplifier. The dynamic range is improved using a bandpass filter based on a Gated Integrator. Studying its weighting function, we show that this filter is more efficient than standard CRRC shaper, thanks to the integration time which can be expand near the bunch interval time, whereas the peaking time of the CRRC shaper is limited to pile-up consideration. Moreover, the Gated Integrator performs intrinsically the analog memorization of the signal before its delayed digital conversion. The analog-to-digital conversion is performed through a 12-bit cyclic ADC specifically developed for this application. The very-front-end channel has been fabricated using a 0.35 μm CMOS technology. Measurements show a global non-linearity better than 0.1%. The Equivalent Noise Charge at the input of the channel is evaluated to 1.8 fC, compare to the maximum input charge of 10 pC. The power consumption of the complete channel is limited to 6.5 mW.

  5. Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Long; Wang, Guang-Ming; Li, Hai-Peng; Zhang, Kun; Cai, Tong

    2016-10-01

    We propose an anisotropic planar transmitting metasurface, which has the ability to manipulate orthogonally-polarized electromagnetic waves in the reflection and refraction modes respectively. The metasurface is composed of four layered rectangular patches spaced by three layered dielectric isolators each with a thickness of 0.15λ 0 at 15 GHz. By tailoring the sizes of the patches, the metasurface functions as a band-stop filter for the y-polarzied wave and a band-pass filter for the x-polarized wave operating from 14 GHz to 16 GHz. Moreover the phases of the transmitting x-polarized wave can be modulated at about 15 GHz, which contributes to beam steering according to the general refraction law. Experimental results are in good accordance with the simulated ones, in which the reflection efficiency is almost 100% while the transmission efficiency of the x-polarized wave reaches 80% at 15 GHz. Besides, the transmitted x-polarized wave is effectively manipulated from 14 GHz to 16 GHz. Project supported by the National Natural Science Foundation of China (Grant No. 61372034).

  6. Reprint of “Non-causal spike filtering improves decoding of movement intention for intracortical BCIs”☆

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2015-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain–computer interfaces (BCIs). Intracortically recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. PMID:25681017

  7. Drifts exhibited by cryogenically cooled InSb infrared filtered detectors and their importance to the ATSR-2 and Landsat-5 Earth observation missions.

    PubMed

    Theocharous, Evangelos

    2005-07-10

    The spectral responsivity of commercially available InSb detectors with low-pass cold filters attached to their cold shields for optimum operation in the 1.6-2.6 microm wavelength range is observed to drift slowly with time. These drifts are shown to arise because of a thin film of water-ice deposited on the cold low-pass filters mounted on the cold shields of the detectors. The temporal characteristics of these drifts are shown to strongly depend on wavelength. A model is proposed for the behavior of the water present in the Dewar vacuum, which can explain and predict the temporal characteristics of the observed drifts for all wavelengths. These observations are particularly relevant to space instruments that use cryogenically cooled IR filter radiometers for Earth observation. The temporal profile of drifts observed in missions such as Landsat-5 is identical to that observed in cryogenically cooled filtered InSb detectors during laboratory measurements. This study confirms that the deposition of a thin film of a material such as ice on the cold bandpass filters and windows is therefore the most likely source of the oscillatory drifts observed in the response of some of the channels of the ATSR-2, Landsat-4, and Landsat-5 Earth observation missions.

  8. Quasi-periodic spatiotemporal filtering.

    PubMed

    Burghouts, Gertjan J; Geusebroek, Jan-Mark

    2006-06-01

    This paper presents the online estimation of temporal frequency to simultaneously detect and identify the quasiperiodic motion of an object. We introduce color to increase discriminative power of a reoccurring object and to provide robustness to appearance changes due to illumination changes. Spatial contextual information is incorporated by considering the object motion at different scales. We combined spatiospectral Gaussian filters and a temporal reparameterized Gabor filter to construct the online temporal frequency filter. We demonstrate the online filter to respond faster and decay faster than offline Gabor filters. Further, we show the online filter to be more selective to the tuned frequency than Gabor filters. We contribute to temporal frequency analysis in that we both identify ("what") and detect ("when") the frequency. In color video, we demonstrate the filter to detect and identify the periodicity of natural motion. The velocity of moving gratings is determined in a real world example. We consider periodic and quasiperiodic motion of both stationary and nonstationary objects. PMID:16764282

  9. Filter desulfation system and method

    DOEpatents

    Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.

    2010-08-10

    A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.

  10. The double well mass filter

    SciTech Connect

    Gueroult, Renaud; Rax, Jean -Marcel; Fisch, Nathaniel J.

    2014-02-03

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. Lastly, the radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  11. Filter for cleaning hot gases

    SciTech Connect

    Gresch, H.; Holter, H.; Hubner, K.; Igelbuscher, H.; Weber, E.

    1981-10-20

    In an apparatus for cleaning hot gases a filter housing has an inlet for unfiltered gas and an outlet for filtered gas. A plurality of filtered inserts are placed within the housing in a manner capable of filtering undesirable components from the gas feed stream. Each filter insert is made of a fibrous filter material. Silicic-acid glass fibers have a silicic acid content of at least 90%. Coated upon the fibers and absorbed into their pores is a metal oxide of aluminum, titanium, zirconium, cromium, nickle or cobalt. A honeycombed cage filled with high temperature resistant perlite is located within the housing between the gas inlet and the fiber inserts. The cage has an inlet and outlet external to the housing for replacing the perlite. A combustion chamber mounted in the housing has a discharge nozzle located so that the nozzle is directed at the filter inserts. Combusting materials in the chamber causes an explosive backflow of gases through the filter inserts.

  12. Digital filter synthesis computer program

    NASA Technical Reports Server (NTRS)

    Moyer, R. A.; Munoz, R. M.

    1968-01-01

    Digital filter synthesis computer program expresses any continuous function of a complex variable in approximate form as a computational algorithm or difference equation. Once the difference equation has been developed, digital filtering can be performed by the program on any input data list.

  13. BMP FILTERS: UPFLOW VS. DOWNFLOW

    EPA Science Inventory

    Filtration methods have been found to be effective in reducing pollutant levels in stormwater. The main drawback of these methods is that the filters get clogged frequently and require periodical maintenance. In stormwater treatment, because of the cost of pumping, the filters ar...

  14. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  15. Effect of postreconstruction filter strength on microcalcification detection at different imaging doses in digital breast tomosynthesis: human and model observer studies

    NASA Astrophysics Data System (ADS)

    Das, Mini; Connolly, Caitlin; Glick, Stephen J.; Gifford, Howard C.

    2012-03-01

    Improved visibility of microcalcifications (MCs) and masses in tomographic breast imaging is a major concern in the medical imaging community, with intense research activity considering both hardware and processing approaches to the problem. Much of the research involves digital breast tomosynthesis (DBT). In this paper, we present results of human-observer studies that investigated the effects of postreconstruction filter strength on MC detection in DBT images generated at various dose levels. The use of human observers poses severe limitations on objective-assessment studies involving multiple parameters and this paper also discusses our continued development of a visual-search mathematical model observer as a substitute for humans. In this work, DBT images were created using a rigorous computer simulation applied to realistic breast phantoms. Acquisitions with 0.7, 1.0 and 1.5 mGy doses were modeled and the Feldkamp FBP algorithm was used for reconstructions. A set of 3D Butterworth filters with cutoffs representing moderate (0.2 cycles/pixel, with pixel size = 100 microns) to no (0.5 cycles/pixel) postfiltering were tested. LROC studies were conducted with four observers. As expected, MC detectability fell off with reduced dose. At the same time, the best MC detection for a given dose was obtained with unfiltered images, suggesting that the increased noise levels associated with lower dose cannot be overcome with postfiltering. The model observer showed promising results in terms of agreement with the human observers. The causes for some points of disagreement merit examination.

  16. Vectorization of linear discrete filtering algorithms

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1977-01-01

    Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.

  17. Recycling used automotive oil filters

    NASA Astrophysics Data System (ADS)

    Peaslee, Kent D.

    1994-02-01

    Over 400 million used automotive oil filters are discarded in the United States each year, most of which are disposed of in landfills wasting valuable resources and risking contamination of ground- and surface-water supplies. This article summarizes U.S. bureau of Mines research evaluating scrap prepared from used automotive oil filters. Experimental results show that crushed and drained oil filters have a bulk density that is higher than many typical scrap grades, a chemical analysis low in residual elements (except tin due to use of tin plate in filters), and an overall yield, oil-filter scrap to cast steel, of 76% to 85%, depending on the method used to prepare the scrap.

  18. ITP Filter Particulate Decontamination Measurement

    SciTech Connect

    Dworjanyn, L.O.

    1993-05-21

    A new test method was developed which showed the installed In- Tank Precipitation Filter Unit {number_sign}3 provided at least 40, 000 x decontamination of the precipitated potassium tetraphenylborate (KTPB) during the cold chemical runs.This filter is expected to meet the needed 40,000 x hot cesium decontamination requirements, assuming that the cesium precipitate, CsTPB, behaves the same as KTPB. The new method permits cold chemicals field testing of installed filters to quantify particulate decontamination and verify filter integrity before going hot. The method involves a 1000 x concentration of fine particulate KTPB in the filtrate to allow direct analysis by counting for naturally radioactive isotope K-40 using the underground SRTC gamma spectroscopy facility. The particulate concentration was accomplished by ultra filtration at Rhone-Poulenc, NJ, using a small cross-flow bench facility, followed by collection of all suspended solids on a small filter disc for K analysis.

  19. Sintered composite medium and filter

    DOEpatents

    Bergman, Werner

    1987-01-01

    A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  20. Optical Filters to Exclude Non-Doppler-Shifted Light in Fast Velocimetry

    SciTech Connect

    Goosman, D; Avara, G; Wade, J; Rivera, A

    2002-06-19

    arrangement allowing the same system to use one filter FPI for 10 optical fibers can be made. An astrophysical test suggested by J. Osher of LLNL on the origin of stellar redshifts was carried out with another version of this filter. The light was reflected four times from the same FPI to provide a efficiency of about 40% for the desired light and a rejection of the non-shifted light by a factor measured at more than 4 million to one, with a rejection bandpass of a few GHz.

  1. Flexible metamaterial narrow-band-pass filter based on magnetic resonance coupling between ultra-thin bilayer frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Bai, Zhengyuan; Zhang, Qing; Ju, Yongfeng; Tao, Guiju; Jiang, Xiongwei; Kang, Ning; Liu, Chengpu; Zhang, Long

    2016-02-01

    A novel flexible metamaterial narrow-band-pass filter is designed and proved to be reliable by both numerical simulations and experimental measurements. The unit cell of the designed structure consists of circle ring resonators on top of a thin dielectric layer backed by a metallic mesh. The investigations on the distribution of the surface current and magnetic field as well as the analysis of the equivalent circuit model reveal that the magnetic resonance response between layers induced by the reverse surface current contributes to the high quality factor band-pass property. Importantly, it is a flexible design with a tunable resonance frequency by just changing the radius of the circle rings and can also be easily extended to have the multi-band-pass property. Moreover, this simplified structure with low duty cycle and ultra-thin thickness is also a symmetric design which is insensitive to the polarization and incident angles. Therefore, such a metamaterial narrow-band-pass filter is of great importance in the practical applications such as filtering and radar stealth, and especially for the conformal structure applications in the infrared and optical window area.

  2. Exploring the Role of Mechanotransduction Activation and Adaptation Kinetics in Hair Cell Filtering Using a Hodgkin-Huxley Approach

    NASA Astrophysics Data System (ADS)

    Wells, Gregg B.; Ricci, Anthony J.

    2011-11-01

    In the auditory system, mechanotransduction occurs in the hair cell sensory hair bundle and is the first major step in the translation of mechanical energy into electrical. Tonotopic variations in the activation kinetics of this process are posited to provide a low pass filter to the input. An adaptation process, also associated with mechanotransduction, is postulated to provide a high pass filter to the input in a tonotopic manner. Together a bandpass filter is created at the hair cell input. Corresponding mechanical components to both activation and adaptation are also suggested to be involved in generating cochlear amplification. A paradox to this story is that hair cells where the mechanotransduction properties are most robust possess an intrinsic electrical resonance mechanism proposed to account for all required tuning and amplification. A simple Hodgkin-Huxley type model is presented to attempt to determine the role of the activation and adaptation kinetics in further tuning hair cells that exhibit electrical resonance. Results further support that steady state mechanotransduction properties are critical for setting the resting potential of the hair cell while the kinetics of activation and adaptation are important for sharpening tuning around the characteristic frequency of the hair cell.

  3. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    NASA Astrophysics Data System (ADS)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  4. Performance of ceramic membrane filters

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.; Geyer, H.K.; Shelleman, D.L.; Tressler, R.E.

    1996-08-01

    CeraMem Corp.`s ceramic-membrane coated, dead-end ceramic filters offer a promising alternative to ceramic candle filters providing long-term operational and reliability issues are resolved: regenerability of filter passages by back pulse cleaning, tolerance to alkali-containing combustion gas and thermal/chemical aging. ANL is responsible for analytical modeling of filtration and pulse cleaning operations, flow-through testing, and prediction of filter response to thermal cycling under realistic service conditions. A test apparatus was built to expose ceramic filter specimens to chemical environments simulating operation of pressurized fluidized bed and integrated gasification combined cycle plants. Four long-duration tests have been conducted in which 100-cpsi channel filters were exposed to ash collected downstream of the cyclone separator at the PFBC plant at Tidd. Results are discussed. Focus has now shifted to exposing the advanced candle filter specimens to reducing gas environments containing NaCl, H{sub 2}S, H{sub 2}O, and gasification ash.

  5. Nanophotonic filters for digital imaging

    NASA Astrophysics Data System (ADS)

    Walls, Kirsty

    There has been an increasing demand for low cost, portable CMOS image sensors because of increased integration, and new applications in the automotive, mobile communication and medical industries, amongst others. Colour reproduction remains imperfect in conventional digital image sensors, due to the limitations of the dye-based filters. Further improvement is required if the full potential of digital imaging is to be realised. In alternative systems, where accurate colour reproduction is a priority, existing equipment is too bulky for anything but specialist use. In this work both these issues are addressed by exploiting nanophotonic techniques to create enhanced trichromatic filters, and multispectral filters, all of which can be fabricated on-chip, i.e. integrated into a conventional digital image sensor, to create compact, low cost, mass produceable imaging systems with accurate colour reproduction. The trichromatic filters are based on plasmonic structures. They exploit the excitation of surface plasmon resonances in arrays of subwavelength holes in metal films to filter light. The currently-known analytical expressions are inadequate for optimising all relevant parameters of a plasmonic structure. In order to obtain arbitrary filter characteristics, an automated design procedure was developed that integrated a genetic algorithm and 3D finite-difference time-domain tool. The optimisation procedure's efficacy is demonstrated by designing a set of plasmonic filters that replicate the CIE (1931) colour matching functions, which themselves mimic the human eye's daytime colour response.

  6. Properties of ceramic candle filters

    SciTech Connect

    Pontius, D.H.

    1995-06-01

    The mechanical integrity of ceramic filter elements is a key issue for hot gas cleanup systems. To meet the demands of the advanced power systems, the filter components must sustain the thermal stresses of normal operations (pulse cleaning), of start-up and shut-down conditions, and of unanticipated process upsets such as excessive ash accumulation without catastrophic failure. They must also survive the various mechanical loads associated with handling and assembly, normal operation, and process upsets. For near-term filter systems, these elements must survive at operating temperatures of 1650{degrees}F for three years.

  7. Advanced simulation of digital filters

    NASA Astrophysics Data System (ADS)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  8. Attitude Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.

  9. Spatial filtering through elementary examples

    NASA Astrophysics Data System (ADS)

    Gluskin, Emanuel

    2004-05-01

    The spatial filtering features of resistive grids have become important in microelectronics in the last two decades, in particular because of the current interest in the design of 'vision chips.' However, these features of the grids are unexpected for many who received a basic physics or electrical engineering education. The author's opinion is that the concept of spatial filtering is important in itself, and should be introduced and separately considered at an early educational stage. We thus discuss some simple examples, of both continuous and discrete systems in which spatial filtering may be observed, using only basic physics concepts.

  10. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  11. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    PubMed

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  12. Digital filtering: background and tutorial for psychophysiologists.

    PubMed

    Cook, E W; Miller, G A

    1992-05-01

    Digital filtering offers more to psychophysiologists than is commonly appreciated. An introduction is offered here to foster the explicit design and use of digital filters. Because of considerable confusion in the literature about terminology important to both analog and digital filtering, basic concepts are reviewed and clarified. Because some time series concepts are fundamental to digital filtering, these are also presented. Examples of filters commonly used in psychophysiology are given, and procedures are presented for the design and use of one type of digital filter. Properties of some types of digital filters are described, and the relative advantages of simple analog and digital filters are discussed.

  13. Biometric verification with correlation filters.

    PubMed

    Vijaya Kumar, B V K; Savvides, Marios; Xie, Chunyan; Venkataramani, Krithika; Thornton, Jason; Mahalanobis, Abhijit

    2004-01-10

    Using biometrics for subject verification can significantly improve security over that of approaches based on passwords and personal identification numbers, both of which people tend to lose or forget. In biometric verification the system tries to match an input biometric (such as a fingerprint, face image, or iris image) to a stored biometric template. Thus correlation filter techniques are attractive candidates for the matching precision needed in biometric verification. In particular, advanced correlation filters, such as synthetic discriminant function filters, can offer very good matching performance in the presence of variability in these biometric images (e.g., facial expressions, illumination changes, etc.). We investigate the performance of advanced correlation filters for face, fingerprint, and iris biometric verification. PMID:14735958

  14. Westinghouse advanced particle filter system

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

    1995-11-01

    Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

  15. Aquatic Plants Aid Sewage Filter

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  16. Identification of earthquakes that generate tsunamis in Java and Nusa Tenggara using rupture duration analysis

    NASA Astrophysics Data System (ADS)

    Pribadi, S.; Puspito, N. T.; Yudistira, T.; Afnimar, Ibrahim, G.; Laksono, B. I.; Adnan, Z.

    2014-09-01

    Java and Nusa Tenggara are the tectonically active of Sunda arc. This study discuss the rupture duration as a manifestation of the power of earthquake-generated tsunami. We use the teleseismic (30° - 90°) body waves with high-frequency energy Seismometer is from IRIS network as amount 206 broadband units. We applied the Butterworth high bandpass (1 - 2 Hz) filtered. The arrival and travel times started from wave phase of P - PP which based on Jeffrey Bullens table with TauP program. The results are that the June 2, 1994 Banyuwangi and the July 17, 2006 Pangandaran earthquakes identified as tsunami earthquakes with long rupture duration (To > 100 second), medium magnitude (7.6 < Mw < 7.9) and located near the trench. The others are 4 tsunamigenic earthquakes and 3 inland earthquakes with short rupture duration start from To > 50 second which depend on its magnitude. Those events are located far from the trench.

  17. Identification of earthquakes that generate tsunamis in Java and Nusa Tenggara using rupture duration analysis

    SciTech Connect

    Pribadi, S.; Puspito, N. T.; Yudistira, T.; Afnimar,; Ibrahim, G.; Laksono, B. I.; Adnan, Z.

    2014-09-25

    Java and Nusa Tenggara are the tectonically active of Sunda arc. This study discuss the rupture duration as a manifestation of the power of earthquake-generated tsunami. We use the teleseismic (30° - 90°) body waves with high-frequency energy Seismometer is from IRIS network as amount 206 broadband units. We applied the Butterworth high bandpass (1 - 2 Hz) filtered. The arrival and travel times started from wave phase of P - PP which based on Jeffrey Bullens table with TauP program. The results are that the June 2, 1994 Banyuwangi and the July 17, 2006 Pangandaran earthquakes identified as tsunami earthquakes with long rupture duration (To > 100 second), medium magnitude (7.6 < Mw < 7.9) and located near the trench. The others are 4 tsunamigenic earthquakes and 3 inland earthquakes with short rupture duration start from To > 50 second which depend on its magnitude. Those events are located far from the trench.

  18. Ground roll attenuation using SVD and time-frequency-wavenumber filters

    NASA Astrophysics Data System (ADS)

    Hariri Naghadeh, Diako; Morley, Christopher Keith

    2016-10-01

    Ground roll (GR) is a coherent noise phenomenon with high-amplitude and low-frequency patterns that conceal reflections. To create a correct velocity model, especially from medium to great depth, attenuation of the GR is unavoidable. To carry out attenuation and preserve a virgin data set, out of noise-cone singular value decomposition (SVD) and time-frequency-wavenumber (TFK) filters are used. Here four steps are introduced: (1) SVD, (2) FK filtering, (3) the Gabor transform (GT) and (4) a time-variant band-pass filter. SVD decomposes data into singular vectors and gives us the ability to have sub-images that relate to different singular values. The data set is reconstructed using first singular-vectors that relate to first singular-values, and include more signal and less noise. To preserve the reflection signal, the GR event is flattened using a forward normal move out correction (NMO) followed by the application of SVD to preserve 50% of the introduced events (to remove a part of the GR) and then finally reverse NMO is conducted. Although the FK filter is able to remove all of the GR energy based on the low velocity, the choice of low-dip for filtering causes high-amplitude smearing and distorts waveforms. Consequently, FK is applied to remove events with dips of more than 40 ≤ft(≤ft.{}\\text{ms}\\right/{}\\text{trace}\\right) . The results of SVD plus high-dip FK have some issues that are created by merging high-amplitude and low-frequency events at the apex of the noise cone with reflections. Since at shallow depth and near offsets primary reflections have a higher frequency than the GR, the GT was used to deduce the dominant frequency of the GR for different times. Based on the estimated noise frequency, a cone area was chosen to filter the remaining noise and detect reflection events. These procedures were applied on real shot gathers to show the results of GR attenuation.

  19. Multilayer waveguide-grating filters.

    PubMed

    Wang, S S; Magnusson, R

    1995-05-10

    The properties of guided-mode resonance reflection filters constructed with multiple thin-film layers are addressed. Greatly improved filter characteristics are shown to follow by the incorporation of multiple homogeneous layers with the spatially modulated layer. Calculated results for single-layer, double-layer, and triple-layer filter structures are presented. Whereas good filter characteristics are obtainable with single layers that are half-resonance-wavelength thick, there remains a residual reflection in the sidebands unless the cover and the substrate permittivities are equal. With double-layer and triple-layer designs, extensive wavelength ranges with low sideband-reflectance values are shown to be possible without requiring equal cover and substrate permittivities. The antireflection properties of the layer stack can be understood if the modulated layer is modeled as a homogeneous layer characterized by its average relative permittivity. However, as the grating-modulation index increases, this approximation deteriorates. In particular it is found that, for a given high modulation index, the double-layer antireflection thin-film approximation fails, whereas for the same modulation in a triple-layer system it holds firmly. Multilayer designs can thus have significantly large filter passbands, as they may contain heavily modulated resonant gratings without corruption of the ideal filter characteristics.

  20. Characterization and analysis of timing jitter in normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering.

    PubMed

    Shin, Junho; Jung, Kwangyun; Song, Youjian; Kim, Jungwon

    2015-08-24

    We characterize and analyze the timing jitter of normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering. The timing jitter of Er-fiber lasers with 9-nm bandpass filters operating at + 0.0084 ps(2) is measured to be 3.46 fs (rms) when integrated from 10 kHz to 10 MHz offset frequency, which is similar to the jitter level of typical stretched-pulse or soliton Er-fiber lasers. The numerical simulation based on split-step Fourier transform method shows that the measured high-frequency jitter is quantum noise-limited performance. We also develop an analytical model for filtered normal-dispersion fiber lasers by modifying the well-established noise model of stretched-pulse fiber lasers. The analytical modeling reveals that the jitter performance is improved mostly by reducing the chirp parameter by intra-cavity filtering. Both numerical simulation and analytical model fit fairly well with the measured timing jitter result.

  1. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction.

    PubMed

    Pimenta, S; Cardoso, S; Miranda, A; De Beule, P; Castanheira, E M S; Minas, G

    2015-08-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman's rank correlation test (Spearman's correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769

  2. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction

    PubMed Central

    Pimenta, S.; Cardoso, S.; Miranda, A.; De Beule, P.; Castanheira, E.M.S.; Minas, G.

    2015-01-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman’s rank correlation test (Spearman’s correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769

  3. Sub-wavelength efficient polarization filter (SWEP filter)

    DOEpatents

    Simpson, Marcus L.; Simpson, John T.

    2003-12-09

    A polarization sensitive filter includes a first sub-wavelength resonant grating structure (SWS) for receiving incident light, and a second SWS. The SWS are disposed relative to one another such that incident light which is transmitted by the first SWS passes through the second SWS. The filter has a polarization sensitive resonance, the polarization sensitive resonance substantially reflecting a first polarization component of incident light while substantially transmitting a second polarization component of the incident light, the polarization components being orthogonal to one another. A method for forming polarization filters includes the steps of forming first and second SWS, the first and second SWS disposed relative to one another such that a portion of incident light applied to the first SWS passes through the second SWS. A method for separating polarizations of light, includes the steps of providing a filter formed from a first and second SWS, shining incident light having orthogonal polarization components on the first SWS, and substantially reflecting one of the orthogonal polarization components while substantially transmitting the other orthogonal polarization component. A high Q narrowband filter includes a first and second SWS, the first and second SWS are spaced apart a distance being at least one half an optical wavelength.

  4. Io's Sodium Cloud (Clear Filter)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Io and its surrounding sky is shown in false color. It was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft, using a clear filter whose wavelength range was approximately 400 to 1100 nanometers. This picture differs in two main ways from the green-yellow filter image of the same scene which was released yesterday.

    First, the sky around Io is brighter, partly because the wider wavelength range of the clear filter lets in more scattered light from Io's illuminated crescent and from Prometheus' sunlit plume. Nonetheless, the overall sky brightness in this frame is comparable to that seen through the green-yellow filter, indicating that even here much of the diffuse sky emission is coming from the wavelength range of the green-yellow filter (i.e., from Io's Sodium Cloud).

    The second major difference is that a quite large roundish spot has appeared in Io's southern hemisphere. This spot -- which has been colored red -- corresponds to thermal emission from the volcano Pele. The green-yellow filter image bears a much smaller trace of this emission because the clear filter is far more sensitive to those relatively long wavelengths where thermal emission is strongest.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  5. Pixelated filters for spatial imaging

    NASA Astrophysics Data System (ADS)

    Mathieu, Karine; Lequime, Michel; Lumeau, Julien; Abel-Tiberini, Laetitia; Savin De Larclause, Isabelle; Berthon, Jacques

    2015-10-01

    Small satellites are often used by spatial agencies to meet scientific spatial mission requirements. Their payloads are composed of various instruments collecting an increasing amount of data, as well as respecting the growing constraints relative to volume and mass; So small-sized integrated camera have taken a favored place among these instruments. To ensure scene specific color information sensing, pixelated filters seem to be more attractive than filter wheels. The work presented here, in collaboration with Institut Fresnel, deals with the manufacturing of this kind of component, based on thin film technologies and photolithography processes. CCD detectors with a pixel pitch about 30 μm were considered. In the configuration where the matrix filters are positioned the closest to the detector, the matrix filters are composed of 2x2 macro pixels (e.g. 4 filters). These 4 filters have a bandwidth about 40 nm and are respectively centered at 550, 700, 770 and 840 nm with a specific rejection rate defined on the visible spectral range [500 - 900 nm]. After an intense design step, 4 thin-film structures have been elaborated with a maximum thickness of 5 μm. A run of tests has allowed us to choose the optimal micro-structuration parameters. The 100x100 matrix filters prototypes have been successfully manufactured with lift-off and ion assisted deposition processes. High spatial and spectral characterization, with a dedicated metrology bench, showed that initial specifications and simulations were globally met. These excellent performances knock down the technological barriers for high-end integrated specific multi spectral imaging.

  6. 21 CFR 211.72 - Filters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Filters. 211.72 Section 211.72 Food and Drugs FOOD... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Equipment § 211.72 Filters. Filters for liquid... shall not release fibers into such products. Fiber-releasing filters may be used when it is not...

  7. Quick-Change Optical-Filter Holder

    NASA Technical Reports Server (NTRS)

    Leone, Peter

    1988-01-01

    Dark slide and interlock protect against ambient light. Quick-change filter holder contains interlocking mechanism preventing simultaneous removal of both dark slide and filter drawer. Designed for use with Band pass optical filters in 10 channels leading to photomultiplier tubes in water-vapor lidar/ozone instrument, mechanism can be modified to operate in other optical systems requiring optical change in filters.

  8. Water washable stainless steel HEPA filter

    DOEpatents

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  9. Filtering theory applied to orbit determination

    NASA Technical Reports Server (NTRS)

    Torroglosa, V.

    1973-01-01

    Modifications to the extended Kalman filter and the Jazwinski filter are made and compared with the classical extended Kalman filter in applications to orbit determination using real data. The results show that with the kind of data available today, the application of filtering theories in this field presents many problems.

  10. Multiresolution Bilateral Filtering for Image Denoising

    PubMed Central

    Zhang, Ming; Gunturk, Bahadir K.

    2008-01-01

    The bilateral filter is a nonlinear filter that does spatial averaging without smoothing edges; it has shown to be an effective image denoising technique. An important issue with the application of the bilateral filter is the selection of the filter parameters, which affect the results significantly. There are two main contributions of this paper. The first contribution is an empirical study of the optimal bilateral filter parameter selection in image denoising applications. The second contribution is an extension of the bilateral filter: multiresolution bilateral filter, where bilateral filtering is applied to the approximation (low-frequency) subbands of a signal decomposed using a wavelet filter bank. The multiresolution bilateral filter is combined with wavelet thresholding to form a new image denoising framework, which turns out to be very effective in eliminating noise in real noisy images. Experimental results with both simulated and real data are provided. PMID:19004705

  11. Spatial filters for high power lasers

    DOEpatents

    Erlandson, Alvin Charles; Bayramian, Andrew James

    2014-12-02

    A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first longitudinal slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second longitudinal slit filter positioned between the second pair of cylindrical lenses.

  12. The use of filter media to determine filter cleanliness

    NASA Astrophysics Data System (ADS)

    Van Staden, S. J.; Haarhoff, J.

    It is general believed that a sand filter starts its life with new, perfectly clean media, which becomes gradually clogged with each filtration cycle, eventually getting to a point where either head loss or filtrate quality starts to deteriorate. At this point the backwash cycle is initiated and, through the combined action of air and water, returns the media to its original perfectly clean state. Reality, however, dictates otherwise. Many treatment plants visited a decade or more after commissioning are found to have unacceptably dirty filter sand and backwash systems incapable of returning the filter media to a desired state of cleanliness. In some cases, these problems are common ones encountered in filtration plants but many reasons for media deterioration remain elusive, falling outside of these common problems. The South African conditions of highly eutrophic surface waters at high temperatures, however, exacerbate the problems with dirty filter media. Such conditions often lead to the formation of biofilm in the filter media, which is shown to inhibit the effective backwashing of sand and carbon filters. A systematic investigation into filter media cleanliness was therefore started in 2002, ending in 2005, at the University of Johannesburg (the then Rand Afrikaans University). This involved media from eight South African Water Treatment Plants, varying between sand and sand-anthracite combinations and raw water types from eutrophic through turbid to low-turbidity waters. Five states of cleanliness and four fractions of specific deposit were identified relating to in situ washing, column washing, cylinder inversion and acid-immersion techniques. These were measured and the results compared to acceptable limits for specific deposit, as determined in previous studies, though expressed in kg/m 3. These values were used to determine the state of the filters. In order to gain greater insight into the composition of the specific deposits stripped from the media, a

  13. Modal Filters for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander; MacDonald, Daniel R.; Soibel, Alexander

    2009-01-01

    Modal filters in the approximately equal to 10-micrometer spectral range have been implemented as planar dielectric waveguides in infrared interferometric applications such as searching for Earth-like planets. When looking for a small, dim object ("Earth") in close proximity to a large, bright object ("Sun"), the interferometric technique uses beams from two telescopes combined with a 180 phase shift in order to cancel the light from a brighter object. The interferometer baseline can be adjusted so that, at the same time, the light from the dimmer object arrives at the combiner in phase. This light can be detected and its infrared (IR) optical spectra can be studied. The cancellation of light from the "Sun" to approximately equal to 10(exp 6) is required; this is not possible without special devices-modal filters- that equalize the wavefronts arriving from the two telescopes. Currently, modal filters in the approximately equal to 10-micrometer spectral range are implemented as single- mode fibers. Using semiconductor technology, single-mode waveguides for use as modal filters were fabricated. Two designs were implemented: one using an InGaAs waveguide layer matched to an InP substrate, and one using InAlAs matched to an InP substrate. Photon Design software was used to design the waveguides, with the main feature all designs being single-mode operation in the 10.5- to 17-micrometer spectral range. Preliminary results show that the filter's rejection ratio is 26 dB.

  14. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  15. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  16. Spam Filtering without Text Analysis

    NASA Astrophysics Data System (ADS)

    Belabbes, Sihem; Richard, Gilles

    Our paper introduces a new way to filter spam using as background the Kolmogorov complexity theory and as learning component a Support Vector Machine. Our idea is to skip the classical text analysis in use with standard filtering techniques, and to focus on the measure of the informative content of a message to classify it as spam or legitimate. Exploiting the fact that we can estimate a message information content through compression techniques, we represent an e-mail as a multi-dimensional real vector and we train a Support Vector Machine to get a classifier achieving accuracy rates in the range of 90%-97%, bringing our combined technique at the top of the current spam filtering technologies.

  17. Gradient Domain Guided Image Filtering.

    PubMed

    Kou, Fei; Chen, Weihai; Wen, Changyun; Li, Zhengguo

    2015-11-01

    Guided image filter (GIF) is a well-known local filter for its edge-preserving property and low computational complexity. Unfortunately, the GIF may suffer from halo artifacts, because the local linear model used in the GIF cannot represent the image well near some edges. In this paper, a gradient domain GIF is proposed by incorporating an explicit first-order edge-aware constraint. The edge-aware constraint makes edges be preserved better. To illustrate the efficiency of the proposed filter, the proposed gradient domain GIF is applied for single-image detail enhancement, tone mapping of high dynamic range images and image saliency detection. Both theoretical analysis and experimental results prove that the proposed gradient domain GIF can produce better resultant images, especially near the edges, where halos appear in the original GIF. PMID:26285153

  18. Design of wind shear filters

    NASA Technical Reports Server (NTRS)

    Joerck, H.

    1984-01-01

    A number of aircraft accidents are caused by the effects of wind shear. In connection with efforts to eliminate or reduce hazards leading to such accidents, the possibility was considered to improve aircraft control systems. However, the effective implementation of the considered approaches will only be possible if suitable filters can be designed for a separation of gusts, which involve higher frequencies from low-frequency wind shear components. Filters of appropriate design should be suited for an employment in connection with all flight conditions. Feasible approaches for obtaining such filters are discussed. A survey is provided regarding the order of magnitude of the improvements which can be achieved, taking into account the performance characteristics of the A300 controller.

  19. Anaerobic filter for biogas production

    NASA Astrophysics Data System (ADS)

    Chavadej, S.

    1980-01-01

    A laboratory study evaluated the performance of an anaerobic filter in producing biogas from pig waste with 30,000 mg/l of COD. The filter packing was bamboo rings of 1 and 1/2 in. diameter, 1 in. long; the bamboo-bed filter operated satisfactorily in a wide COD loading range of 3.74-15.65 kg/cu m/d which corresponds to the hydraulic retention of 8.47 to 1.68 days. At the optimum loading of 7.299 kg COD/cu m/d, the largest gas rate of 0.212 cu m/kg of COD was produced. The required volume of the digester for 1.2 cu m/d of gas production would be only 1.5 cu m; in practical applications, consideration should be given to the gas collecting system and clogging problems.

  20. Radiant zone heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.