NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator
NASA Astrophysics Data System (ADS)
Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood
2018-04-01
An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.
NASA Astrophysics Data System (ADS)
Chang, Chun-Chieh; Huang, Li; Nogan, John; Chen, Hou-Tong
2018-05-01
We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importance for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chun-Chieh; Huang, Li; Nogan, John
We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less
Chang, Chun-Chieh; Huang, Li; Nogan, John; ...
2018-02-01
We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2018-05-01
The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.
Cascaded chirped narrow bandpass filter with flat-top based on two-dimensional photonic crystals.
Zhuang, Yuyang; Chen, Heming; Ji, Ke
2017-05-10
We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.
Near millimeter wave bandpass filters
NASA Technical Reports Server (NTRS)
Timusk, T.; Richards, P. L.
1981-01-01
The properties of bandpass filters for broadband photometry are reported in the 3-12/cm frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.
Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin
2016-07-01
A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.
Microwave Bandpass Filter Based on Mie-Resonance Extraordinary Transmission
Pan, Xiaolong; Wang, Haiyan; Zhang, Dezhao; Xun, Shuang; Ouyang, Mengzhu; Fan, Wentao; Guo, Yunsheng; Wu, Ye; Huang, Shanguo; Bi, Ke; Lei, Ming
2016-01-01
Microwave bandpass filter structure has been designed and fabricated by filling the periodically metallic apertures with dielectric particles. The microwave cannot transmit through the metallic subwavelength apertures. By filling the metallic apertures with dielectric particles, a transmission passband with insertion loss 2 dB appears at the frequency of 10–12 GHz. Both simulated and experimental results show that the passband is induced by the Mie resonance of the dielectric particles. In addition, the passband frequency can be tuned by the size and the permittivity of the dielectric particles. This approach is suitable to fabricate the microwave bandpass filters. PMID:27992440
Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy
NASA Technical Reports Server (NTRS)
Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward
2011-01-01
The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.
A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression
Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando
2013-01-01
The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient. PMID:28788412
Wideband bandpass filters employing broadside-coupled microstrip lines for MIC and MMIC applications
NASA Technical Reports Server (NTRS)
Tran, M.; Nguyen, C.
1994-01-01
Wideband bandpass filters employing half-wavelength broadside-coupled microstrip lines suitable for microwave and mm-wave integrated monolithic integrated circuits (MIC and MMIC) are presented. Several filters have been developed at X-band (8 to 12 GHz) with 1 dB insertion loss. Fair agreement between the measured and calculated results has been observed. The analysis of the broadside-coupled microstrip lines used in the filters, based on the quasi-static spectral domain technique, is also described.
Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Seide, Laurie; Pasquale, Bert A.; McMann, Joseph C.; Hagopian, John G.; Dominguez, Margaret Z.; Gong, Quian; Marx, Catherine T.
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory.
NASA Astrophysics Data System (ADS)
Alam, Jubaer; Faruque, Mohammad Rashed Iqbal; Tariqul Islam, Mohammad
2018-07-01
Nested circular shaped Labyrinth double split open loop resonators (OLRs) are introduced in this article to design a triple bandpass filter for 3.01 GHz, 7.39 GHz and 12.88 GHz applications. A Rogers RT-5880 is used as a substrate to design the proposed passband filter which has a succinct structure where the attainment of the resonator is explored both integrally and experimentally. The same structure is designed on both sides of the substrate and an analysis is made on the current distribution. Based on the proposed resonator, a bandpass filter is designed and fabricated to justify the perception focusing on 3.01 GHz, 7.39 GHz and 12.88 GHz. It has also been observed by the Nicolson–Ross–Weir approach at the filtering frequencies. The effective electromagnetic parameters retrieved from the simulation of the S-parameters imply that the OLR metamaterial filter shows negative refraction bands. Having an auspicious design and double negative characteristics, this structure is suitable for triple passband filters, particularly for S, C and X-band applications.
Real-time alkali monitoring system
Goff, David R.; Romanosky, Robert R.; Hensel, Peter
1990-01-01
A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium emission line, may be detected in the presence of interfering background radiation. A combustion flame is fed by a diverted portion of a process stream and the common end of a bifurcated or quadfurcated fiber optic light guide is adapted to collect light from the flame. The light is guided through the branches of the fiber optic cable to bandpass filters, one of which is adapted to each of the branches of the fiber optic light guide. The bandpass filters are centered at wavelengths corresponding to the emission lines to be detected and two separate filters are required for each species being detected. The first filter has a bandwidth of about 3 nms and the second filter has a bandwidth of about 10 nms. Light detectors are located to view the light passing through the bandpass filters and amplifiers are connected to receive signals from the light detectors. The amplifier corresponding to the bandpass filter having the narrower bandwidth is preset to scale the signal by a factor equal to the ratio of the wide and narrow bandwidths of the bandpass filters. This scaling produces a scaled signal from which the difference between the scaled signal on the other signal can be calculated to produce a signal having an amplitude directly proportional to the concentration of the species of interest and independent of background radiation.
NASA Technical Reports Server (NTRS)
Ream, Allen
2011-01-01
A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
Wu, Sheng; Deev, Andrei; Palm, Steve L.; Tang, Yongchun; Goddard, William A.
2010-11-30
A frequency modulated spectroscopy system, including a photo-detector, a band-pass filter to filter the output of the photo-detector, and a rectifier to demodulate. The band-pass filter has a relatively high Q factor. With the high Q factor band-pass filter and rectifier, a reference sinusoid is not required for demodulation, resulting in phase-insensitive spectroscopy. Other embodiments are described and claimed.
Jeong, Mi-Yun; Mang, Jin Yeob
2018-03-10
Spatially continuous tunable optical notch and band-pass filter systems that cover the visible (VIS) and near-infrared (NIR) spectral ranges from ∼460 nm to ∼1,000 nm are realized by combining left- and right-handed circular cholesteric liquid crystal (CLC) wedge cells with continuous pitch gradient. The notch filter system is polarization independent in all of the spectral ranges. The band-pass filter system, when the left- and right-handed CLCs are arranged in a row, is polarization independent, while when they are arranged at right angles, they are polarization dependent; furthermore, the full-width at half-maximum of the band-pass filter can be changed reversibly from the original bandwidth of 36 nm to 16 nm. Depending on the CLC materials, this strategy could be applied to the UV, VIS, and IR spectral ranges. Due to the high performance in the broad spectral range, cost-effective facile fabrication process, simple mechanical control, and small size, it is expected that our optical tunable filter strategies could become one of the key parts of laser-based Raman spectroscopy, fluorescence, life science devices, optical communication systems, astronomical telescopes, and so forth.
Investigation of Dual-Mode Microstrip Bandpass Filter Based on SIR Technique
Mezaal, Yaqeen S.; Ali, Jawad K.
2016-01-01
In this paper, a new bandpass filter design has been presented using simple topology of stepped impedance square loop resonator. The proposed bandpass filter has been simulated and fabricated using a substrate with an insulation constant of 10.8, thickness of 1.27mm and loss tangent of 0.0023 at center frequency of 5.8 GHz. The simulation results have been evaluated using Sonnet simulator that is extensively adopted in microwave analysis and implementation. The output frequency results demonstrated that the proposed filter has high-quality frequency responses in addition to isolated second harmonic frequency. Besides, this filter has very small surface area and perceptible narrow band response features that represent the conditions of recent wireless communication systems. Various filter specifications have been compared with different magnitudes of perturbation element dimension. Furthermore, phase scattering response and current intensity distribution of the proposed filter have been discussed. The simulated and experimental results are well-matched. Lastly, the features of the proposed filter have been compared with other designed microstrip filters in the literature. PMID:27798675
Multiplexed fiber optic temperature-sensing system
NASA Astrophysics Data System (ADS)
Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Miller, Mark S.; Claus, Richard O.
1993-03-01
A multiplexed temperature sensing system is constructed by cascading three temperature sensors along one multimode fiber such that each individual sensor responds to its local temperature disturbance. The sensing element of each sensor is a dielectric edge filter with a specific cutoff wavelength. White light serves as the light source. The performance of this sensor is based on the temperature dependence of the reflection or transmission spectrum of each filter. The reflected or transmitted light from the filter is then sent to two dielectric bandpass filters, which are selected for each particular edge filter and referred to as the sensing and reference filters, respectively. A photometer is placed behind each bandpass filter. The ratio of the sensing filter power to the reference filter power is a function of temperature. Since the cutoff wavelengths of these edge filters (sensors) along the fiber are well separated, the multiplexed signals are divided by different pairs of bandpass filters. In the corresponding experiments, three edge filters were cascaded and 100/104 micrometers graded index fibers were used. A resolution of each temperature sensor was determined to be +/- 0.2 degree(s)C over the temperature range of 30 degree(s)C to 100 degree(s)C.
All-fiber bandpass filter based on asymmetrical modes exciting and coupling
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min
2013-01-01
A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.
NASA Astrophysics Data System (ADS)
Kim, K.-h.; Oh, T.-s.; Park, K.-r.; Lee, J. H.; Ghim, Y.-c.
2017-11-01
One factor determining the reliability of measurements of electron temperature using a Thomson scattering (TS) system is transmittance of the optical bandpass filters in polychromators. We investigate the system performance as a function of electron temperature to determine reliable range of measurements for a given set of the optical bandpass filters. We show that such a reliability, i.e., both bias and random errors, can be obtained by building a forward model of the KSTAR TS system to generate synthetic TS data with the prescribed electron temperature and density profiles. The prescribed profiles are compared with the estimated ones to quantify both bias and random errors.
Spectral and Wavefront Error Performance of WFIRST/AFTA Prototype Filters
NASA Technical Reports Server (NTRS)
Quijada, Manuel; Seide, Laurie; Marx, Cathy; Pasquale, Bert; McMann, Joseph; Hagopian, John; Dominguez, Margaret; Gong, Qian; Morey, Peter
2016-01-01
The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRSTAFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflectedtransmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the de-field channel in the WFIRSTAFTA observatory.
2010-03-01
3-21 3.22. Measured transmission of the Semrock FF01-1060/13-25 NIR bandpass filter at normal incidence. . . . . . . . . . . . . . . . 3-22...3.23. Measured transmission of the Semrock NIR01-1570/3-25 NIR bandpass filter at normal incidence. . . . . . . . . . . . . . . . 3-23 3.24. Measured...shows the configuration without additional filtering while the blue adds the Semrock bandpass filter. . . . 3-30 3.34. (Left) Spectral transmittance
Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha
2007-08-20
We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.
A Microwave Tunable Bandpass Filter for Liquid Crystal Applications
NASA Astrophysics Data System (ADS)
Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan
2017-07-01
In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.
NASA Astrophysics Data System (ADS)
Theerawisitpong, Somboon; Suzuki, Toshitatsu; Morita, Noboru; Utsumi, Yozo
The design of microstrip bandpass filters using stepped-impedance resonators (SIRs) is examined. The passband center frequency for the WCDMA-FDD (uplink band) Japanese cellular system is 1950MHz with a 60-MHz bandwidth. The SIR physical characteristic can be designed using a SIR characteristic chart based on second harmonic suppression. In our filter design, passband design charts were obtained through the design procedure. Tchebycheff and maximally flat bandpass filters of any bandwidth and any number of steps can be designed using these passband design charts. In addition, sharp skirt characteristics in the passband can be realized by having two transmission zeros at both adjacent frequency bands by using open-ended quarter-wavelength stubs at input and output ports. A new even-mode harmonics suppression technique is proposed to enable a wide rejection band having a high suppression level. The unloaded quality factor of the resonator used in the proposed filters is greater than 240.
Design of tunable thermo-optic C-band filter based on coated silicon slab
NASA Astrophysics Data System (ADS)
Pinhas, Hadar; Malka, Dror; Danan, Yossef; Sinvani, Moshe; Zalevsky, Zeev
2018-03-01
Optical filters are required to have narrow band-pass filtering in the spectral C-band for applications such as signal tracking, sub-band filtering or noise suppression. These requirements lead to a variety of filters such as Mach-Zehnder interferometer inter-leaver in silica, which offer thermo-optic effect for optical switching, however, without proper thermal and optical efficiency. In this paper we propose tunable thermo-optic filtering device based on coated silicon slab resonator with increased Q-factor for the C-band optical switching. The device can be designed either for long range wavelength tuning of for short range with increased wavelength resolution. Theoretical examination of the thermal parameters affecting the filtering process is shown together with experimental results. Proper channel isolation with an extinction ratio of 20dBs is achieved with spectral bandpass width of 0.07nm.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc
2010-02-01
This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.
Band-pass filters based on photonic crystal
NASA Astrophysics Data System (ADS)
Khodenkov, S. A.; Yushkov, I. A.
2017-11-01
Multilayer photonic crystal structures with bleaching layers are being investigated. In order to calculate the characteristics of ultra-wideband filters on their basis, T-lines lossless model was used. Amplitude-frequency characteristics for the synthesized filters of 5th, 11th and 17th orders are given. It is proved that by a significant increase in filter N order, the difference between the connection coefficients of central resonators’ layers’ becomes negligible. This makes it possible to develop 27-order filter, in which almost half of the layers are realized by periodic interchange of only two identical high-contrast materials. The investigated band-pass filters, including the ones on a glass substrate, have high frequency-selective properties at a relative bandwidth of 80%.
Air gap resonant tunneling bandpass filter and polarizer.
Melnyk, A; Bitarafan, M H; Allen, T W; DeCorby, R G
2016-04-15
We describe a bandpass filter based on resonant tunneling through an air layer in the frustrated total internal reflection regime, and show that the concept of induced transmission can be applied to the design of thin film matching stacks. Experimental results are reported for Si/SiO2-based devices exhibiting a polarization-dependent passband, with bandwidth on the order of 10 nm in the 1550 nm wavelength range, peak transmittance on the order of 80%, and optical density greater than 5 over most of the near infrared region.
Applications of the magneto-optical filter to stellar pulsation measurements
NASA Technical Reports Server (NTRS)
Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.
1984-01-01
A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.
Applications of the magneto-optical filter to stellar pulsation measurements
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven
1986-01-01
A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.
A Computer Model of a Phase Lock Loop
NASA Technical Reports Server (NTRS)
Shelton, Ralph Paul
1973-01-01
A computer model is reported of a PLL (phase-lock loop), preceded by a bandpass filter, which is valid when the bandwidth of the bandpass filter is of the same order of magnitude as the natural frequency of the PLL. New results for the PLL natural frequency equal to the bandpass filter bandwidth are presented for a second order PLL operating with carrier plus noise as the input. However, it is shown that extensions to higher order loops, and to the case of a modulated carrier are straightforward. The new results presented give the cycle skipping rate of the PLL as a function of the input carrier to noise ratio when the PLL natural frequency is equal to the bandpass filter bandwidth. Preliminary results showing the variation of the output noise power and cycle skipping rates of the PLL as a function of the loop damping ratio for the PLL natural frequency equal to the bandpass filter bandwidth are also included.
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.
1998-01-01
We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.
Cryogenic metal mesh bandpass filters for submillimeter astronomy
NASA Technical Reports Server (NTRS)
Dragovan, M.
1984-01-01
The design and performance of a tunable double-half-wave bandpass filter centered at 286 microns (Delta lambda/lambda = 0.16) and operating at cryogenic temperatures (for astronomy applications) are presented. The operating principle is explained, and the fabrication of the device, which comprises two identical mutually coupled Fabry-Perot filters with electroformed Ni-mesh reflectors and is tuned by means of variable spacers, is described. A drawing of the design and graphs of computed and measured performance are provided. Significantly improved bandpass characteristics are obtained relative to the single Fabry-Perot filter.
NASA Astrophysics Data System (ADS)
Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.
2018-04-01
Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.
Acoustic wave filter based on periodically poled lithium niobate.
Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain
2012-09-01
Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.
NASA Astrophysics Data System (ADS)
Lu, Hua; Yue, Zengqi; Zhao, Jianlin
2018-05-01
We propose and investigate a new kind of bandpass filters based on the plasmonically induced transparency (PIT) effect in a special metal-insulator-metal (MIM) waveguide system. The finite element method (FEM) simulations illustrate that the obvious PIT response can be generated in the metallic nanostructure with the stub and coupled cavities. The lineshape and position of the PIT peak are particularly dependent on the lengths of the stub and coupled cavities, the waveguide width, as well as the coupling distance between the stub and coupled cavities. The numerical simulations are in accordance with the results obtained by the temporal coupled-mode theory. The multi-peak PIT effect can be achieved by integrating multiple coupled cavities into the plasmonic waveguide. This PIT response contributes to the flexible realization of chip-scale multi-channel bandpass filters, which could find crucial applications in highly integrated optical circuits for signal processing.
Gas refractometry based on an all-fiber spatial optical filter.
Silva, Susana; Coelho, L; André, R M; Frazão, O
2012-08-15
A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.
Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz
2013-01-01
Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n = 117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r = .10 – .35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. PMID:23747457
NASA Astrophysics Data System (ADS)
Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-01
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-29
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Colloidal Bandpass and Bandgap Filters
NASA Astrophysics Data System (ADS)
Yellen, Benjamin; Tahir, Mukarram; Ouyang, Yuyu; Nori, Franco
2013-03-01
Thermally or deterministically-driven transport of objects through asymmetric potential energy landscapes (ratchet-based motion) is of considerable interest as models for biological transport and as methods for controlling the flow of information, material, and energy. Here, we provide a general framework for implementing a colloidal bandpass filter, in which particles of a specific size range can be selectively transported through a periodic lattice, whereas larger or smaller particles are dynamically trapped in closed-orbits. Our approach is based on quasi-static (adiabatic) transition in a tunable potential energy landscape composed of a multi-frequency magnetic field input signal with the static field of a spatially-periodic magnetization. By tuning the phase shifts between the input signal and the relative forcing coefficients, large-sized particles may experience no local energy barriers, medium-sized particles experience only one local energy barrier, and small-sized particles experience two local energy barriers. The odd symmetry present in this system can be used to nudge the medium-sized particles along an open pathway, whereas the large or small beads remain trapped in a closed-orbit, leading to a bandpass filter, and vice versa for a bandgap filter. NSF CMMI - 0800173, Youth 100 Scholars Fund
Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.
Sil Kar, Sudeshna; Maity, Santi P
2016-09-01
Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass filter is found to be very much effective in edge enhancement whereas fuzzy conditional entropy efficiently distinguishes vessels of different widths. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2011-02-28
We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.
A miniature filter on a suspended substrate with a two-sided pattern of strip conductors
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Voloshin, A. S.; Bulavchuk, A. S.; Galeev, R. G.
2016-06-01
A miniature bandpass filter of new design with original stripline resonators on suspended substrate has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and mush smaller size in comparison to analogs. It is shown that a broad stopband extending above three-fold central bandpass frequency is determined by weak coupling of resonators at resonances of the second and third modes. A prototype sixth-order filter with a central frequency of 1 GHz, manufactured on a ceramic substrate with dielectric permittivity ɛ = 80, has contour dimensions of 36.6 × 4.8 × 0.5 mm3. Parametric synthesis of the filter, based on electrodynamic 3D model simulations, showed quite good agreement with the results of measurements.
NASA Astrophysics Data System (ADS)
Kwak, J. S.; Lee, J. H.; Kim, C. O.; Hong, J. P.; Han, S. K.; Char, K.
2002-07-01
Highly selective high-temperature superconducting band-pass filters based on spiral meander line structures have been developed for base transceiver station applications of digital cellular communication systems. The filter comprised 12-pole microstrip line resonators with a circuit size of 0.5 × 17 × 41 mm3. The filter was designed to have a bandwidth of 25 MHz at a centre frequency of 834 MHz. Particularly, the physical size of each resonator was chosen not only to reduce far-field radiation, but also to have reasonable tunability in the filter. Device characteristics exhibited a low insertion loss of 0.4 dB with a 0.2 dB ripple and a return loss better than 10 dB in the pass-band at 65 K. The out-of-band signals were attenuated better than 60 dB at about 3.5 MHz from the lower band edge, and 3.8 MHz from the higher band edge.
Optimum filters for narrow-band frequency modulation.
NASA Technical Reports Server (NTRS)
Shelton, R. D.
1972-01-01
The results of a computer search for the optimum type of bandpass filter for low-index angle-modulated signals are reported. The bandpass filters are discussed in terms of their low-pass prototypes. Only filter functions with constant numerators are considered. The pole locations for the optimum filters of several cases are shown in a table. The results are fairly independent of modulation index and bandwidth.
CLAES blocker filter rejection requirements. [Cryogenic Limb Array Etalon Spectrometer
NASA Technical Reports Server (NTRS)
James, T. C.; Kumer, J. B.; Roche, A. E.; Sterritt, L. W.; Uplinger, W. G.
1986-01-01
Some details of the calculations of out-of-band spectral rejection requirements for the CLAES blocker filters are described. For a particular blocker centered within an etalon bandpass, the signal to be expected when a particular etalon transmission peak is centered at the central wavelength of the blocker filter is calculated. This signal is compared with the total signal arising from all other transmission peaks within the etalon bandpass and all of the radiation from the entire spectrum outside of the etalon bandpass. The results for a few of the blocker filters are listed, and the design goals are compared with theoretical design results.
Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun
2017-01-23
In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.
Novel Spectro-Temporal Codes and Computations for Auditory Signal Representation and Separation
2013-02-01
responses are shown). Bottom right panel (c) shows the Frequency responses of the tunable bandpass filter ( BPF ) triplets that adapt to the incoming...signal. One BPF triplet is associated with each fixed filter, such that coarse filtering of the fixed gammatone filters is followed by additional, finer...is achieved using a second layer of narrower bandpass filters ( BPFs , Q=8) that emulate the filtering functions of outer hair cells (OHCs). In the
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Tsevetanov, Zlatan; Woodruff, Bob; Mooney, Thomas A.
1998-01-01
Advanced optical bandpass filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) have been developed on a filter-by-filter basis through detailed studies which take into account the instrument's science goals, available optical filter fabrication technology, and developments in ACS's charge-coupled-device (CCD) detector technology. These filters include a subset of filters for the Sloan Digital Sky Survey (SDSS) which are optimized for astronomical photometry using today's charge-coupled-devices (CCD's). In order for ACS to be truly advanced, these filters must push the state-of-the-art in performance in a number of key areas at the same time. Important requirements for these filters include outstanding transmitted wavefront, high transmittance, uniform transmittance across each filter, spectrally structure-free bandpasses, exceptionally high out of band rejection, a high degree of parfocality, and immunity to environmental degradation. These constitute a very stringent set of requirements indeed, especially for filters which are up to 90 mm in diameter. The highly successful paradigm in which final specifications for flight filters were derived through interaction amongst the ACS Science Team, the instrument designer, the lead optical engineer, and the filter designer and vendor is described. Examples of iterative design trade studies carried out in the context of science needs and budgetary and schedule constraints are presented. An overview of the final design specifications for the ACS bandpass and ramp filters is also presented.
Rational engineering of nanoporous anodic alumina optical bandpass filters
NASA Astrophysics Data System (ADS)
Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan
2016-08-01
Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical bandpass filters based on glass and plastic.Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical bandpass filters based on glass and plastic. Electronic supplementary information (ESI) available: An example demonstrating the effect of pore widening on the position and width of the transmission band of a NAA-BPF and a comprehensive table summarising the position and FWHM of the different bands of the NAA-BPFs produced in this study. See DOI: 10.1039/c6nr03490j
2017-08-01
accessories for mounting e. Laser power supply f. TEC power supply 12. Optical filters from SEMROCK ®, THORLABS Inc., EDMUND OPTICS® a. 532-nm, laser...line filter ( SEMROCK ®) b. 550-nm, hard-coated, short-pass filter (THORLABS Inc.) c. 532-nm long-pass filter ( SEMROCK ®) d. 808-nm laser-line filter... SEMROCK ®) e. 850-nm /10-nm full width at half maximum (FWHM) bandpass filter ( SEMROCK ®) f. 980-nm bandpass filter ( SEMROCK ®) g. 976-nm laser-line
Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures
Horie, Yu; Arbabi, Amir; Arbabi, Ehsan; ...
2016-05-19
Here, we propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Perot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwichedmore » metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.« less
NASA Astrophysics Data System (ADS)
Wang, Tengxing; Rahman, B. M. Farid; Peng, Yujia; Xia, Tian; Wang, Guoan
2015-05-01
A well designed coplanar waveguide (CPW) based center frequency tunable bandpass filter (BPF) at 4 GHz enabled with patterned Permalloy (Py) thin film has been implemented. The operating frequency of BPF is tunable with only DC current without the use of any external magnetic field. Electromagnetic bandgap resonators structure is adopted in the BPF and thus external DC current can be applied between the input and output of the filter for tuning of Py permeability. Special configurations of resonators with multiple narrow parallel sections have been considered for larger inductance tenability; the tunability of CPW transmission lines of different widths with patterned Py thin film on the top of the signal lines is compared and measured. Py thin film patterned as bars is deposited on the top of the multiple narrow parallel sections of the designed filter. No extra area is required for the designed filter configuration. Filter is measured and results show that its center frequency could be tuned from 4 GHz to 4.02 GHz when the DC current is applied from 0 mA to 400 mA.
Williams, Calum; Rughoobur, Girish; Flewitt, Andrew J; Wilkinson, Timothy D
2016-11-10
A single-step fabrication method is presented for ultra-thin, linearly variable optical bandpass filters (LVBFs) based on a metal-insulator-metal arrangement using modified evaporation deposition techniques. This alternate process methodology offers reduced complexity and cost in comparison to conventional techniques for fabricating LVBFs. We are able to achieve linear variation of insulator thickness across a sample, by adjusting the geometrical parameters of a typical physical vapor deposition process. We demonstrate LVBFs with spectral selectivity from 400 to 850 nm based on Ag (25 nm) and MgF2 (75-250 nm). Maximum spectral transmittance is measured at ∼70% with a Q-factor of ∼20.
Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon
2014-11-17
Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.
Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2
NASA Astrophysics Data System (ADS)
Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur
2018-05-01
A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.
NASA Technical Reports Server (NTRS)
Deboo, G. J.; Hedlund, R. C. (Inventor)
1973-01-01
An electronic filter is described which simultaneously maintains a constant bandwidth and a constant center frequency gain as the input signal frequency varies, and remains self-tuning to that center frequency over a decade range. The filter utilizes a field effect transistor (FET) as a voltage variable resistance in the bandpass frequency determining circuit. The FET is responsive to a phase detector to achieve self-tuning.
2016-09-01
as an example the integration of cryogenic superconductor components, including filters and amplifiers to improve the pulse quality and validate the...5 5.1 CRYOGENIC BAND-PASS FILTERS .............................................................................10 6. BIBLIOGRAPHY...10 16. Gain plot of DARPA SURF tunable band-pass filter tuned to 950-MHz .............................. 10 v 17. VSG at -50 dBm: Experimental
Lifetime Fluorescence and Raman Imaging for Detection of Wound Failure and Heterotopic Ossification
2015-12-01
containing ten bandpass filters ( Semrock Fluorescence filters) centered at: 407nm, 434 nm, 465 nm, 494 nm, 520 nm, 542 nm, 572 nm, 605 nm, 652 nm, 676 nm...meat (~2 - 3 mm thickness), and a bottom piece (~8 mm). The system was built around an 852 nm tunable narrow-band optical filter ( Semrock , LL01-852...optical filters to block light that falls outside the detection band: 785 nm notch filter ( Semrock , NF03-785E-25), and a bandpass filter at 842 nm
Lifetime Fluorescence and Raman Imaging for Detection of Wound Failure and Heterotopic Ossification
2014-10-01
Filter Wheel) containing ten bandpass filters ( Semrock Fluorescence filters) centered at: 407nm, 434 nm, 465 nm, 494 nm, 520 nm, 542 nm, 572 nm...and a bottom piece (~8 mm). The system was built around an 852 nm tunable narrow-band optical filter ( Semrock , LL01-852-25) mounted in front of...light that falls outside the detection band: 785 nm notch filter ( Semrock , NF03-785E-25), and a bandpass filter at 842 nm ( Semrock , FF01-842/56-25
NASA Astrophysics Data System (ADS)
Abdalla, M. A.; Choudhary, D. Kumar; Chaudhary, R. Kumar
2018-02-01
This paper presents the design of two reduced size dual-band metamaterial bandpass filters and its simulation followed by measurements of proposed filters. These filters are supporting different frequency bands and primarily could be utilize in radio frequency identification (RFID) application. The filter includes three cells in which two are symmetrical and both inductively coupled with the third cell which is present in between them. In the proposed designs, three different metamaterial composite right/left handed (CRLH) cell resonators have been analysed for compactness. The CRLH cell consists of an interdigital capacitor, a stub/meander line/spiral inductor and a via to connect the top of the structure and ground plane. Finally, the proposed dual band bandpass filters (using meander line and spiral inductor) are showing size reduction by 65% and 50% (with 25% operating frequency reduction), respectively, in comparison with reference filter using stub inductor. More than 30 dB attenuation has been achieved between the two passbands.
Far-infrared bandpass filters from cross-shaped grids
NASA Technical Reports Server (NTRS)
Tomaselli, V. P.; Edewaard, D. C.; Gillan, P.; Moller, K. D.
1981-01-01
The optical transmission characteristics of electroformed metal grids with inductive and capacitive cross patterns have been investigated in the far-infrared spectral region. The transmission characteristics of one- and two-grid devices are represented by transmission line theory parameters. Results are used to suggest construction guidelines for two-grid bandpass filters.
A dense grid of narrow bandpass steep edge filters for the JST/T250 telescope: summary of results
NASA Astrophysics Data System (ADS)
Brauneck, U.; Sprengard, R.; Bourquin, S.; Marín-Franch, A.
2017-09-01
On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA) has setup a new wide field telescope, the JST/T250: a 2.55 m telescope with a plate scale of 22.67"/mm and a 3° diameter field of view. To conduct a photometric sky survey, a large format mosaic camera made of 14 individual CCDs is used in combination with filter trays containing 14 filters each of theses 101.7 x 96.5 mm in size. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters which were recently completed. The filter set consists of bandpass filters in the range between 348,5 nm and 910 nm and a longpass filter at 915 nm. Most of the filters have FWHM of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. Inspite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass having a defined overlap with its neighbors. In addition, the blocking of the filters is better than OD5 in the range 250-1050 nm. A high image quality required a low transmitted wavefront error (4 locally and 2 on the whole aperture) which was achieved even by combining 2 or 3 substrates. We report on the spectral and interferometric results measured on the whole set of filters. λλ
Pass-band reconfigurable spoof surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun
2018-04-01
In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.
NASA Astrophysics Data System (ADS)
Fangxiong, Chen; Min, Lin; Heping, Ma; Hailong, Jia; Yin, Shi; Forster, Dai
2009-08-01
An asymmetric MOSFET-C band-pass filter (BPF) with on chip charge pump auto-tuning is presented. It is implemented in UMC (United Manufacturing Corporation) 0.18 μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump outputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point (IIP3) is 16.621 dBm, with 50 Ω as the source impedance. The input referred noise is about 47.455 μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm2 and it can be utilized in GPS (global positioning system) and Bluetooth systems.
Binocular contrast-gain control for natural scenes: Image structure and phase alignment.
Huang, Pi-Chun; Dai, Yu-Ming
2018-05-01
In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radiation Hard Bandpass Filters for Mid- to Far-IR Planetary Instruments
NASA Technical Reports Server (NTRS)
Brown, Ari D.; Aslam, Shahid; Chervenack, James A.; Huang, Wei-Chung; Merrell, Willie C.; Quijada, Manuel; Steptoe-Jackson, Rosalind; Wollack, Edward J.
2012-01-01
We present a novel method to fabricate compact metal mesh bandpass filters for use in mid- to far-infrared planetary instruments operating in the 20-600 micron wavelength spectral regime. Our target applications include thermal mapping instruments on ESA's JUICE as well as on a de-scoped JEO. These filters are novel because they are compact, customizable, free-standing copper mesh resonant bandpass filters with micromachined silicon support frames. The filters are well suited for thermal mapping mission to the outer planets and their moons because the filter material is radiation hard. Furthermore, the silicon support frame allows for effective hybridization with sensors made on silicon substrates. Using a Fourier Transform Spectrometer, we have demonstrated high transmittance within the passband as well as good out-of-band rejection [1]. In addition, we have developed a unique method of filter stacking in order to increase the bandwidth and sharpen the roll-off of the filters. This method allows one to reliably control the spacing between filters to within 2 microns. Furthermore, our method allows for reliable control over the relative position and orienta-tion between the shared faces of the filters.
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Serzhantov, A. M.; Bal'va, Ya. F.; Leksikov, An. A.; Galeev, R. G.
2015-05-01
A microstrip bandpass filter of new design based on original resonators with an interdigital structure of conductors has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and much smaller size than analogs. It is established that a broad stop band, extending up to a sixfold central bandpass frequency, is determined by low unloaded Q of higher resonance mode and weak coupling of resonators in the pass band. It is shown for the first time that, as the spacing of interdigital stripe conductors decreases, the Q of higher resonance mode monotonically drops, while the Q value for the first operating mode remains high. A prototype fourth-order filter with a central frequency of 0.9 GHz manufactured on a ceramic substrate with dielectric permittivity ɛ = 80 has microstrip topology dimensions of 9.5 × 4.6 × 1 mm3. The electrodynamic 3D model simulations of the filter characteristics agree well with the results of measurements.
Design of miniature type parallel coupled microstrip hairpin filter in UHF range
NASA Astrophysics Data System (ADS)
Hasan, Adib Belhaj; Rahman, Maj Tarikur; Kahhar, Azizul; Trina, Tasnim; Saha, Pran Kanai
2017-12-01
A microstrip parallel coupled line bandpass filter is designed in UHF range and the filter size is reduced by microstrip hairpin structure. The FR4 substrate is used as base material of the filter. The filter is analyzed by both ADS and CST design studio in the frequency range of 500 MHz to 650 MHz. The Bandwidth is found 13.27% with a center frequency 570 MHz. Simulation from both ADS and CST shows a very good agreement of performance of the filter.
Reactanceless synthesized impedance bandpass amplifier
NASA Technical Reports Server (NTRS)
Kleinberg, L. L. (Inventor)
1985-01-01
An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.
Microwave active filters based on coupled negative resistance method
NASA Astrophysics Data System (ADS)
Chang, Chi-Yang; Itoh, Tatsuo
1990-12-01
A novel coupled negative resistance method for building a microwave active bandpass filter is introduced. Based on this method, four microstrip line end-coupled filters were built. Two are fixed-frequency one-pole and two-pole filters, and two are tunable one-pole and two-pole filters. In order to broaden the bandwidth of the end-coupled filter, a modified end-coupled structure is proposed. Using the modified structure, an active filter with a bandwidth up to 7.5 percent was built. All of the filters show significant passband performance improvement. Specifically, the passband bandwidth was broadened by a factor of 5 to 20.
Contrast enhancement for in vivo visible reflectance imaging of tissue oxygenation.
Crane, Nicole J; Schultz, Zachary D; Levin, Ira W
2007-08-01
Results are presented illustrating a straightforward algorithm to be used for real-time monitoring of oxygenation levels in blood cells and tissue based on the visible spectrum of hemoglobin. Absorbance images obtained from the visible reflection of white light through separate red and blue bandpass filters recorded by monochrome charge-coupled devices (CCDs) are combined to create enhanced images that suggest a quantitative correlation between the degree of oxygenated and deoxygenated hemoglobin in red blood cells. The filter bandpass regions are chosen specifically to mimic the color response of commercial 3-CCD cameras, representative of detectors with which the operating room laparoscopic tower systems are equipped. Adaptation of this filter approach is demonstrated for laparoscopic donor nephrectomies in which images are analyzed in terms of real-time in vivo monitoring of tissue oxygenation.
Isotropically sensitive optical filter employing atomic resonance transitions
Marling, John B.
1981-01-01
An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.
A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data
Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.
2005-01-01
A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Waveguide bandpass filter with easily adjustable transmission zeros and 3-dB bandwidth
NASA Astrophysics Data System (ADS)
Bage, Amit; Das, Sushrut; Murmu, Lakhindar; Pattapu, Udayabhaskar; Biswal, Sonika
2018-07-01
This paper presents a compact waveguide bandpass filter with adjustable transmission zeros (TZs) and bandwidth. The design provides the flexibility to place the TZs at the desired locations for better interference rejection. To demonstrate, initially a three-pole bandpass filter has been designed by placing three single slot resonator structures inside a WR-90 waveguide. Next, two additional asymmetrical slot structures have been used with each of the above resonators to generate two TZs, one on each side of the passband. Since three resonators were used, this process results in six asymmetric slot structures those results in six TZs. The final filter operates at 9.98 GHz with a 3-dB bandwidth of 1.02 GHz and TZs at 8.23/8.70/9.16/10.9/11.6 and 13.115 GHz. Equivalent circuits and necessary design equations have been provided. To validate the simulation, the proposed filter has been fabricated and measured. The measured data show good agreement with simulated data.
Tunable multimode-interference bandpass fiber filter.
Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P
2010-02-01
We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.
2017-04-01
complementary fusion: Fourth-order Butterworth filter was used to high -pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept...information introduced by luminance change. The high - frequency cutoff was added to reject the flickering noise for indoor usage. The filtered signals from the...function of the low- pass filter is to attenuate high - frequency noise. The final band-pass filter transfer function is in Eq. 2. (()
Optical emission line monitor with background observation and cancellation
Goff, D.R.; Notestein, J.E.
1985-01-04
A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.
Optical emission line monitor with background observation and cancellation
Goff, David R.; Notestein, John E.
1986-01-01
A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.
Khodaee, M; Banakermani, M; Baghban, H
2015-10-10
Engineering metamaterial-based devices such as terahertz bandpass filters (BPFs) play a definitive role in advancement of terahertz technology. In this article, we propose a design procedure to obtain a considerably broadband terahertz BPF at a normal incidence; it shows promising filtering characteristics, including a wide passband of ∼1.34 THz at a central frequency of 1.17 THz, a flat top in a broad band, and high transmission, compared to previous reports. Then, exploiting the voltage-dependent carrier density control in an AlGaN/GaN heterostructure with a Schottky gate configuration, we investigate the tuning of the transmission properties in a narrow-band terahertz filter. A combination of the ultra-wide, flat-top BPF in series with the tunable, narrow band filter designed in the current study offers the ability to tune the desired resonance frequency along with high out-of-band rejection and the suppression of unwanted resonances in a large spectral range. The proposed structure exhibits a frequency tunability of 103 GHz for a voltage change between -8 and 2 V, and a transmission amplitude change of ∼0.51. This scheme may open up a route for the improved design of terahertz filters and modulators.
Cselyuszka, Norbert; Sakotic, Zarko; Kitic, Goran; Crnojevic-Bengin, Vesna; Jankovic, Nikolina
2018-05-29
In this paper, we present two novel dual-band bandpass filters based on surface plasmon polariton-like (SPP-like) propagation induced by structural dispersion of substrate integrated waveguide (SIW). Both filters are realized as a three-layer SIW where each layer represents a sub-SIW structure with intrinsic effective permittivity that depends on its width and filling dielectric material. The layers are designed to have effective permittivities of opposite signs in certain frequency ranges, which enables SPP-like propagation to occur at their interfaces. Since three layers can provide two distinct SPP-like propagations, the filters exhibit dual-band behaviour. A detailed theoretical and numerical analysis and numerical optimization have been used to design the filters, which were afterwards fabricated using standard printed circuit board technology. The independent choice of geometrical parameters of sub-SIWs and/or the corresponding dielectric materials provide a great freedom to arbitrarily position the passbands in the spectrum, which is a significant advantage of the proposed filters. At the same time, they meet the requirements for low-cost low-profile configuration since they are realized as SIW structures, as well as for excellent in-band characteristics and selectivity which is confirmed by the measurement results.
Differential BPFs with Multiple Transmission Zeros Based on Terminated Coupled Lines
NASA Astrophysics Data System (ADS)
Niu, Yiming; Yang, Guo; Wu, Wen
2018-04-01
Differential bandpass filters (BPFs) named Filter A and Filter B based on Terminated Coupled Lines (TCLs) are proposed in this letter. The TCLs contributes to not only three poles in differential-mode (DM) for wideband filtering response but also multiple zeros in both DM and common-mode (CM) offering wide DM out-of-band rejection and good CM suppression. Fabricated filters centred at 3.5 GHz with wide DM passband and wideband CM suppression have been designed and measured. The filters improved the noise suppression capability of the communication and radiometer systems. The simulated and measured results are in good agreement.
A MEMS disk resonator-based band pass filter electrical equivalent circuit simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, G. M.; Angira, Mahesh; Gupta, Navneet
In this paper, coupled beam bandpass Disk filter is designed for 1 MHz bandwidth. Filter electrical equivalent circuit simulation is performed using circuit simulators. Important filter parameters such as insertion loss, shape factor and Q factor aresetimated using coventorware simulation. Disk resonator based radial contour mode filter provides 1.5 MHz bandwidth and unloaded quality factor of resonator and filter as 233480, 21797 respectively. From the simulation result it’s found that insertion loss minimum is 151.49 dB, insertion loss maximum is 213.94 dB, and 40 dB shape factor is 4.17.
Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao
2018-01-01
We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.
Ultranarrow-bandwidth filter based on a thermal EIT medium.
Wang, Gang; Wang, Yu-Sheng; Huang, Emily Kay; Hung, Weilun; Chao, Kai-Lin; Wu, Ping-Yeh; Chen, Yi-Hsin; Yu, Ite A
2018-05-21
We present high-contrast electromagnetically-induced-transparency (EIT) spectra in a heated vapor cell of single isotope 87 Rb atoms. The EIT spectrum has both high resonant transmission up to 67% and narrow linewidth of 1.1 MHz. We get rid of the possible amplification resulted from the effects of amplification without population inversion and four-wave mixing. Therefore, this high transmitted light is not artificial. The theoretical prediction of the probe transmission agrees well with the data and the experimental parameters can be derived reasonably from the model. Such narrow and high-contrast spectral profile can be employed as a high precision bandpass filter, which provides a significant advantage in terms of stability and tunability. The central frequency tuning range of the filter is larger than 100 MHz with out-of-band blocking ≥15 dB. This bandpass filter can effectively produce light fields with subnatural linewidth. Nonlinearity associating with the narrow-linewidth and high-contrast EIT profile can be very useful in the applications utilizing the EIT effect.
Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil.
Rauscher, Markus S; Tremmel, Anton J; Schardt, Michael; Koch, Alexander W
2017-02-18
The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.
Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil
Rauscher, Markus S.; Tremmel, Anton J.; Schardt, Michael; Koch, Alexander W.
2017-01-01
The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit. PMID:28218701
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, Stephen F.; Castleberry, Kim N.
1998-01-01
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, S.F.; Castleberry, K.N.
1998-06-16
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.
Design of a Balun Bandpass Filter with Asymmetrical Coupled Microstrip Lines
NASA Astrophysics Data System (ADS)
Wang, Xuedao; Wang, Jianpeng; Zhang, Gang; Huang, Feng
2017-07-01
A new microstrip coupled-line balun topology and its application to the balun bandpass filter (BPF) with a triple mode response are proposed in this paper. The involved balun structure is composed of two back-to-back quarter-wavelength (λ/4) asymmetrical coupled-line sections. Detailed design formulas based on the asymmetrical coupled-line theory are given to validate the feasibility of the balun. Besides, to obtain filtering performance simultaneously, the balun is then effectively integrated with a pair of triple mode resonators. To demonstrate the design concept of the balun BPF, a prototype operating at 2.4 GHz with the fractional bandwidth (FBW) of about 19.2 % is designed, fabricated, and measured. Results indicate that between the two balanced outputs, the amplitude imbalance is less than 0.3 dB and the phase difference is within 180°±5° inside the whole passband. Both simulated and experimental results are in good agreement.
Dense grid of narrow bandpass filters for the JST/T250 telescope: summary of results
NASA Astrophysics Data System (ADS)
Brauneck, Ulf; Sprengard, Ruediger; Bourquin, Sebastien; Marín-Franch, Antonio
2018-01-01
On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon has setup two telescopes, the JST/T250 and the JAST/T80. The JAST/T80 telescope integrates T80Cam, a large format, single CCD camera while the JST/T250 will mount the JPCam instrument, a 1.2Gpix camera equipped with a 14-CCD mosaic using the new large format e2v 9.2k×9.2k 10-μm pixel detectors. Both T80Cam and JPCam integrate a large number of filters in dimensions of 106.8×106.8 mm2 and 101.7×95.5 mm2, respectively. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters, which were recently completed. The filter set consists of bandpass filters in the range between 348.5 and 910 nm and a longpass filter at 915 nm. Most of the filters have full-width at half-maximum (FWHM) of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. In spite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass has a defined overlap with its neighbors. A high image quality required a low transmitted wavefront error (<λ/4 locally and <λ/2 on the whole aperture), which was achieved even by combining two or three substrates. We report on the spectral and interferometric results measured on the whole set of filters.
SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters
NASA Astrophysics Data System (ADS)
Bessell, Michael; Bloxham, Gabe; Schmidt, Brian; Keller, Stefan; Tisserand, Patrick; Francis, Paul
2011-07-01
The SkyMapper Southern Sky Survey will be conducted from Siding Spring Observatory with u, v, g, r, i, and z filters that comprise glued glass combination filters with dimensions of 309 × 309 × 15 mm. In this article we discuss the rationale for our bandpasses and physical characteristics of the filter set. The u, v, g, and z filters are entirely glass filters, which provide highly uniform bandpasses across the complete filter aperture. The i filter uses glass with a short-wave pass coating, and the r filter is a complete dielectric filter. We describe the process by which the filters were constructed, including the processes used to obtain uniform dielectric coatings and optimized narrowband antireflection coatings, as well as the technique of gluing the large glass pieces together after coating using UV transparent epoxy cement. The measured passbands, including extinction and CCD QE, are presented.
Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.
Brauers, Johannes; Aach, Til
2011-02-01
High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.
Cope, Davis; Blakeslee, Barbara; McCourt, Mark E
2013-05-01
The difference-of-Gaussians (DOG) filter is a widely used model for the receptive field of neurons in the retina and lateral geniculate nucleus (LGN) and is a potential model in general for responses modulated by an excitatory center with an inhibitory surrounding region. A DOG filter is defined by three standard parameters: the center and surround sigmas (which define the variance of the radially symmetric Gaussians) and the balance (which defines the linear combination of the two Gaussians). These parameters are not directly observable and are typically determined by nonlinear parameter estimation methods applied to the frequency response function. DOG filters show both low-pass (optimal response at zero frequency) and bandpass (optimal response at a nonzero frequency) behavior. This paper reformulates the DOG filter in terms of a directly observable parameter, the zero-crossing radius, and two new (but not directly observable) parameters. In the two-dimensional parameter space, the exact region corresponding to bandpass behavior is determined. A detailed description of the frequency response characteristics of the DOG filter is obtained. It is also found that the directly observable optimal frequency and optimal gain (the ratio of the response at optimal frequency to the response at zero frequency) provide an alternate coordinate system for the bandpass region. Altogether, the DOG filter and its three standard implicit parameters can be determined by three directly observable values. The two-dimensional bandpass region is a potential tool for the analysis of populations of DOG filters (for example, populations of neurons in the retina or LGN), because the clustering of points in this parameter space may indicate an underlying organizational principle. This paper concentrates on circular Gaussians, but the results generalize to multidimensional radially symmetric Gaussians and are given as an appendix.
Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert
2013-04-01
An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.
Distributed optical signal processing for microwave photonics subsystems.
Chew, Suen Xin; Nguyen, Linh; Yi, Xiaoke; Song, Shijie; Li, Liwei; Bian, Pengju; Minasian, Robert
2016-03-07
We propose and experimentally demonstrate a novel and practical microwave photonic system that is capable of executing cascaded signal processing functions comprising a microwave photonic bandpass filter and a phase shifter, while providing separate and independent control for each function. The experimental results demonstrate a single bandpass microwave photonic filter with a 3-dB bandwidth of 15 MHz and an out-of-band ratio of over 40 dB, together with a simultaneous RF phase tuning control of 0-215° with less than ± 3 dB filter shape variance.
NASA Astrophysics Data System (ADS)
Butt, M. A.; Fomchenkov, S. A.; Ullah, A.; Verma, P.; Khonina, S. N.
2016-08-01
We report a design for creating a multilayer dielectric optical filters based on TiO2 and SiO2/MgF2 alternating layers. We have selected Titanium dioxide (TiO2) for high refractive index (2.5), Silicon dioxide (SiO2) and Magnesium fluoride (MgF2) as a low refractive index layer (1.45 & 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging.
Tilsch, Markus; Hendrix, Karen
2008-05-01
A triple bandpass filter (28 solutions received) and a nonpolarizing beam splitter (23 solutions received) were the subjects of the design contest held in conjunction with the 2007 Optical Interference Coatings topical meeting of the Optical Society of America. Fifteen designers participated using a wide spectrum of design approaches and optimization strategies to create the submissions. The results differ significantly, but all meet the contest requirements. Fabien Lemarchand wins both contests by submitting the thinnest (6254 nm) triple bandpass design and the widest (61.7 nm) nonpolarizing beam-splitter design. Michael Trubetskov is in second place, followed by Vladimir Pervak in both contests. The submitted designs are described and evaluated.
Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing
2015-01-01
This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264
Photonic crystal ring resonator based optical filters for photonic integrated circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, S., E-mail: mail2robinson@gmail.com
In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which ismore » highly suitable of photonic integrated circuits.« less
Multispectral Filter Arrays: Recent Advances and Practical Implementation
Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre
2014-01-01
Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904
Chang, Sun-Il; Yoon, Euisik
2009-01-01
We report an energy efficient pseudo open-loop amplifier with programmable band-pass filter developed for neural interface systems. The proposed amplifier consumes 400nA at 2.5V power supply. The measured thermal noise level is 85nV/ radicalHz and input-referred noise is 1.69microV(rms) from 0.3Hz to 1 kHz. The amplifier has a noise efficiency factor of 2.43, the lowest in the differential topologies reported up to date to our knowledge. By programming the switched-capacitor frequency and bias current, we could control the bandwidth of the preamplifier from 138 mHz to 2.2 kHz to meet various application requirements. The entire preamplifier including band-pass filters has been realized in a small area of 0.043mm(2) using a 0.25microm CMOS technology.
Ultra-compact UHF Band-pass Filter Designed by Archimedes Spiral Capacitor and Shorted-loaded Stubs
NASA Astrophysics Data System (ADS)
Peng, Lin; Jiang, Xing
2015-01-01
UHF microstrip band-pass filters (BPFs) that much smaller than the referred BPFs are proposed in this communication. For the designing purpose of compactness, archimedes spiral capacitor and ground-loaded stubs are utilized to enhance capacitances and inductance of a filter. Two compact BPFs denoted as BPF 1 and BPF 2 are designed by applying these techniques. The size of BPF 1 and BPF 2 are 0.062 λg × 0.056 λg and 0.047 λg × 0.043 λg, respectively, where λg are guided wavelengths of the centre frequencies of the corresponding filters. The proposed filters were constructed and measured, and the measured results are in good agreement with the simulated ones.
Guided-mode resonant filters and reflectors: Principles, design, and fabrication
NASA Astrophysics Data System (ADS)
Niraula, Manoj
In this dissertation, we overview the operational principles of these resonant periodic structures, discuss the methods of their design and fabrication, and propose and demonstrate novel functionalities for spatial and spectral filtering, and unpolarized wideband reflection. Fashioned with materially sparse gratings, these optical devices are easy to fabricate and integration friendly compared to their traditional multi-layer counterparts making their research and development critical for practical applications. We study, theoretically, modal properties and parametric dependence of resonant periodic bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. We provide the first experimental demonstration of high-efficiency and narrow-linewidth resonant bandpass filter applying a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband, high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. We demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of resonant periodic devices. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both angular and spectral domains and realized with carefully crafted nanogratings operating in the non-subwavelength regime. We study the pathway and inter-modal interference effects inducing this intriguing reflection state. In a proof-of-concept experiment, we obtain angular and spectral bandwidths of 4 mrad and 1 nm, respectively. This filter concept can be used for focus-free spectral and spatial filtering in compact holographic and interferometric optical instruments. We report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with inverse numerical methods, our elemental gratings consist of a partially etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band possessing bandwidth exceeding those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500-nm-wide wavelength band in the near-infrared domain. Moreover, the resonant unpolarized broadband accommodates an ultra-high-reflection band spanning 85 nm and exceeding 99.9% in efficiency. The elemental polarization-sensitive reflectors based on one-dimensional resonant gratings have simple design, robust performance, and are straightforward to fabricate. Hence, this technology is a promising alternative to traditional multilayer thin-film reflectors especially at longer wavelengths of light where multilayer deposition may be infeasible or impractical. We demonstrate an interesting attribute of resonant bandpass filters which is high angular stability for fully conical light incidence. Fashioning an experimental bandpass filter with a subwavelength silicon grating on a quartz substrate, we show that fully conical incidence provides an angular full-width at half-maximum linewidth of 9.5° compared to a linewidth of 0.1° for classical incidence. Slow angular variation of the central wavelength with full conical incidence arises via a corresponding slow angular variation of the resonant second diffraction orders driving the pertinent leaky modes. Moreover, full conical incidence maintains a profile with a single passband as opposed to the formation of two passbands characteristic of resonant subwavelength gratings under classical incidence. Our experimental results demonstrate excellent stability in angle, spectral profile, linewidth, and efficiency. Finally, we propose a novel method of design and fabrication of photonic lattices that incorporates the best of both worlds: a polarized resonant grating can be designed and converted to its unpolarized lattice equivalent using the same design parameters to obtain a similar performance. We show this in context of a single-layer polarized bandpass filter operating at 1550 nm with 100% transmission efficiency. An unpolarized square-hole lattice with identical parameters operates as a bandpass filter at 1560 nm with 70% transmission efficiency. Moreover, conventional laser interference lithography technique for mask patterning is limited to circular-hole photoresist lattice. We propose a method to lay down a metal hard-mask by lifting-off patterned photoresist in two steps for a square-hole lattice. Our comprehensive study provides new principles for easy design and fabrication of square-hole photonic lattices for unpolarized guided-mode resonance applications. (Abstract shortened by ProQuest.).
Daryasafar, Navid; Baghbani, Somaye; Moghaddasi, Mohammad Naser; Sadeghzade, Ramezanali
2014-01-01
We intend to design a broadband band-pass filter with notch-band, which uses coupled transmission lines in the structure, using new models of coupled transmission lines. In order to realize and present the new model, first, previous models will be simulated in the ADS program. Then, according to the change of their equations and consequently change of basic parameters of these models, optimization and dependency among these parameters and also their frequency response are attended and results of these changes in order to design a new filter are converged.
NASA Astrophysics Data System (ADS)
Walbaum, T.; Fallnich, C.
2012-07-01
We present the tuning of multimode interference bandpass filters made of standard fibers by mechanical bending. Our setup allows continuous adjustment of the bending radius from infinity down to about 5 cm. The impact of bending on the transmission spectrum and on polarization is investigated experimentally, and a filter with a continuous tuning range of 13.6 nm and 86 % peak transmission was realized. By use of numerical simulations employing a semi-analytical mode expansion approach, we obtain quantitative understanding of the underlying physics. Further breakdown of the governing equations enables us to identify the fiber parameters that are relevant for the design of customized filters.
Ploux, Sylvain; Swerdlow, Charles D; Eschalier, Romain; Monteil, Benjamin; Ouali, Sana; Haïssaguerre, Michel; Bordachar, Pierre
2016-07-01
Diaphragmatic myopotential oversensing (DMO) causes inhibition of pacing and inappropriate detection of ventricular fibrillation in implantable cardioverter defibrillators (ICDs). It occurs almost exclusively with integrated bipolar leads and is extremely rare with dedicated bipolar leads. If DMO cannot be corrected by reducing programmed sensitivity, ventricular lead revision is often required. The new Low Frequency Attenuation (LFA) filter in St. Jude Medical ICDs (St. Jude Medical, Sylmar, CA, USA) alters the sensing bandpass to reduce T-wave oversensing. This paper aims to present the LFA filter as a reversible cause of DMO. Unnecessary lead revision can be avoided by the simple programming solution of deactivating this LFA filter. ©2016 Wiley Periodicals, Inc.
Design of a terahertz photonic crystal transmission filter containing ferroelectric material.
King, Tzu-Chyang; Chen, Jian-Jie; Chang, Kai-Chun; Wu, Chien-Jang
2016-10-10
The ferroelectric material KTaO3 (KTO) has a very high refractive index, which is advantageous to the photonic crystal (PC) design. KTO polycrystalline crystal has a high extinction coefficient. In this work, we perform a theoretical study of the transmission properties of a PC bandpass filter made of polycrystalline KTO at terahertz (THz) frequencies. Our results show that the defect modes of usual PC narrowband filters no longer exist because of the existence of the high loss. We provide a new PC structure for the high-extinction materials and show that it has defect modes in its transmittance spectra, providing a possible bandpass filter design in the THz region.
All-fiber optical filter with an ultranarrow and rectangular spectral response.
Zou, Xihua; Li, Ming; Pan, Wei; Yan, Lianshan; Azaña, José; Yao, Jianping
2013-08-15
Optical filters with an ultranarrow and rectangular spectral response are highly desired for high-resolution optical/electrical signal processing. An all-fiber optical filter based on a fiber Bragg grating with a large number of phase shifts is designed and fabricated. The measured spectral response shows a 3 dB bandwidth of 650 MHz and a rectangular shape factor of 0.513 at the 25 dB bandwidth. This is the narrowest rectangular bandpass response ever reported for an all-fiber filter, to the best of our knowledge. The filter has also the intrinsic advantages of an all-fiber implementation.
Optimisation of SIW bandpass filter with wide and sharp stopband using space mapping
NASA Astrophysics Data System (ADS)
Xu, Juan; Bi, Jun Jian; Li, Zhao Long; Chen, Ru shan
2016-12-01
This work presents a substrate integrated waveguide (SIW) bandpass filter with wide and precipitous stopband, which is different from filters with a direct input/output coupling structure. Higher modes in the SIW cavities are used to generate the finite transmission zeros for improved stopband performance. The design of SIW filters requires full wave electromagnetic simulation and extensive optimisation. If a full wave solver is used for optimisation, the design process is very time consuming. The space mapping (SM) approach has been called upon to alleviate this problem. In this case, the coarse model is optimised using an equivalent circuit model-based representation of the structure for fast computations. On the other hand, the verification of the design is completed with an accurate fine model full wave simulation. A fourth-order filter with a passband of 12.0-12.5 GHz is fabricated on a single layer Rogers RT/Duroid 5880 substrate. The return loss is better than 17.4 dB in the passband and the rejection is more than 40 dB in the stopband. The stopband is from 2 to 11 GHz and 13.5 to 17.3 GHz, demonstrating a wide bandwidth performance.
Bandpass x-ray diode and x-ray multiplier detector
Wang, C.L.
1982-09-27
An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.
NASA Astrophysics Data System (ADS)
Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo
2014-04-01
To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.
Choi, Kwangseok; Mogami, Tomofumi; Suzuki, Teruo
2014-04-01
To detect electrostatic discharges generated by polymer granules within a metal silo, we developed a novel and simple electrostatic discharge detector that utilizes a photosensor. The novel detector consists of a photosensor module in a metal cylinder, an optical band-pass filter, a quartz glass, a power supply, an amplifier for the photosensor module, and a digital oscilloscope. In this study, we conducted experiments at a real pneumatic powder transport facility that includes a metal silo to evaluate the novel detector using polypropylene granules. To determine the performance of the novel detector, we observed the electrostatic discharge within the metal silo using a conventional image intensifier system. The results obtained from the experiments show that the novel detector worked well in this study. The signals obtained with the novel detector were identical to the electrostatic discharges obtained with the conventional image intensifier system. The greatest advantage of this novel detector is that it is effective even when placed under external lights. In addition, the influence of various optical band-pass filters on the performance of the novel detector was discussed. Our study confirmed that an optical band-pass filter with a center wavelength of λ 330 nm (λ1/2: 315-345 nm) was the best performer among the optical band-pass filters used in this study.
NASA Astrophysics Data System (ADS)
Ford, Eric B.; Colon, K. D.; Blake, C.; Lee, B.; Mahadevan, S.
2010-01-01
We present the first exoplanet observations from the Gran Telescopio Canarias (GTC) using the OSIRIS tunable filter imager. Our narrow-band transit follow-up observations set a new record for ground-based, narrow-band photometric precision of an exoplanet transit. The demonstrated precision would allow the detection of a transiting super-Earth-sized planet at near-infrared wavelengths. Such high-precision follow-up observations could significantly improve measurements of the size and orbit of transiting super-Earth and Earth-like planets to be discovered by the CoRoT and Kepler space missions (Colon & Ford 2009). OSIRIS is one of two first light instruments for the GTC and features a tunable filter imaging mode. We observed the planet's host star along with several nearby reference stars during each transit, rapidly alternating observations between multiple narrow band-passes. The GTC's large aperture results in small photon noise and minimal scintillation noise, so care must be taken to minimize other potential systematic noise sources. The use of a narrow bandpass (2nm) reduces the effects of differential extinction, and we chose bandpasses that minimize atmospheric absorption and variability. We measure the flux of the target star relative to an ensemble of reference stars, using an aperture photometry algorithm adapted to allow for: 1) the center of the band-pass varying across the field and resulting in sky rings, and 2) a significant defocus to reduce flat fielding uncertainties and increase observing efficiency. We present results from the first tunable filter observations of an exoplanet transit and outline the exciting prospects for future GTC/OSIRIS observations to study super-Earth planets and the atmospheres of giant planets via occultation photometry. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.
NASA Astrophysics Data System (ADS)
Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh
2017-02-01
In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better center frequency ( f 0 = 10.588 GHz) and comparable ripple and attenuation bandwidth performance on par with Cu thin film.
3D Display Using Conjugated Multiband Bandpass Filters
NASA Technical Reports Server (NTRS)
Bae, Youngsam; White, Victor E.; Shcheglov, Kirill
2012-01-01
Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.
All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.
Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther
2016-09-05
We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion.
Optimal frequency domain textural edge detection filter
NASA Technical Reports Server (NTRS)
Townsend, J. K.; Shanmugan, K. S.; Frost, V. S.
1985-01-01
An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the given model and filter bandwidth, the filter maximizes the amount of output image energy placed within a specified resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edge detection via the complex low-pass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of the prolate spheroidal wave functions translated in frequency. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and nonideal textures. In addition, the filter can be adjusted to detect textural edges in noisy images at the expense of edge resolution.
Design and manufacture of super-multilayer optical filters based on PARMS technology
NASA Astrophysics Data System (ADS)
Lü, Shaobo; Wang, Ruisheng; Ma, Jing; Jiang, Chao; Mu, Jiali; Zhao, Shuaifeng; Yin, Xiaojun
2018-04-01
Three multilayer interference optical filters, including a UV band-pass, a VIS dual-band-pass and a notch filter, were designed by using Ta2O5, Nb2O5, Al2O3 and SiO2 as high- and low-index materials. During the design of the coating process, a hybrid optical monitoring and RATE-controlled layer thickness control scheme was adopted. The coating process was simulated by using the optical monitoring system (OMS) Simulator, and the simulation result indicated that the layer thickness can be controlled within an error of less than ±0.1%. The three filters were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) coating machine. The measurements indicate that for the UV band-pass filter, the peak transmittance is higher than 95% and the blocking density is better than OD6 in the 300-1100 nm region, whereas for the dual-band-pass filter, the center wavelength positioning accuracy of the two passbands are less than ±2 nm, the peak transmittance is higher than 95% and blocking density is better than OD6 in the 300-950 nm region. Finally, for the notch filter, the minimum transmittance rates are >90% and >94% in the visible and near infrared, respectively, and the blocking density is better than OD5.5 at 808 nm.
Tin-polyimide and indium-polyimide thin-film composites as soft X-ray bandpass filters
NASA Technical Reports Server (NTRS)
Powell, Stephen F.; Allen, Maxwell J.; Willis, Thomas D.
1993-01-01
A tin-polyimide and an indium-polyimide soft X-ray bandpass filter were fabricated with thicknesses of 1400 and 1750 A for the metal and polyimide components, respectively. The transmission of each filter was measured at the Stanford Synchrotron Radiation Laboratory. The transmission of the tin-polyimide filter was found to be about 40 percent for radiation with wavelengths between 60 and 80 A. The transmission of the indium-polyimide filter was greater than 40 percent between 70 and 90 A. The indium was about 5 percent more transmissive than the tin and attained a maximum transmission of about 48 percent at 76 A. Such filters have potential applications to soft X-ray telescopes that operate in this region. They might also be of interest to investigators who work with X-ray microscopes that image live biological specimens in the 23-44-A water window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Iizuka, Hideo; Mizuno, Shintaro
2014-09-28
We have theoretically demonstrated a new light-trapping mechanism to reduce emission from a photovoltaic (PV) cell used for a monochromatic light source, which improves limiting conversion efficiency determined by the detailed balance. A multilayered bandpass filter formed on the surface of a PV cell has been found to prevent the light generated inside by radiative recombination from escaping the cell, resulting in a remarkable decrease of the effective solid angle for the emission. We have clarified a guide to design a suitable configuration of the bandpass filter and achieved significant reduction of the emission. The resultant gain in monochromatic conversionmore » efficiency in the radiative limit due to the optimally designed 18-layerd bandpass filters is as high as 6% under normally incident 1064 nm illumination of 10 mW/cm²~ 1 kW/cm², compared with the efficiency for the perfect anti-reflection treatment to the surface of a conventional solar cell.« less
Narrow bandpass steep edge optical filter for the JAST/T80 telescope instrumentation
NASA Astrophysics Data System (ADS)
Reichel, S.; Brauneck, U.; Bourquin, S.; Marín-Franch, A.
2013-09-01
The Observatorio Astrofisico de Javalambre in Spain observes with its JAST/T80 telescope galaxies in the Local Universe in a systematic study. This is accomplished with a multi-band photometric all sky survey called Javalambre Photometric Local Universe Survey (J-PLUS). A wide field camera receives the signals from universe via optical filters. In this presentation the development and design of a narrow bandpass steep edge filter with wide suppression will be shown. The filter has a full width half maximum in the range of 13-15 nm (with <1 nm tolerance) with central wavelengths in the range 350-860nm and an average transmission larger than 90% in the passband. Signals beyond the passband (blocking range) have to be suppressed down to 250nm and up to 1050nm (spectral regime), where a blocking of OD 5 (transmission < 10-5) is required. The edges have to be steep for a small transition width from 5% to 80%. The spectral requirements result in a large number of layers which are deposited with magnetron sputtering. The transmitted wavefront error of the optical filter must be less than lambda/2 over the 100mm aperture and the central wavelength uniformity must be better than +/- 0.4% over the clear aperture. The filter consists of optical filter glass and a coated substrate in order to reach the spectral requirements. The substrate is coated with more than 120 layers. The total filter thickness was specified to be 8.0mm. Results of steep edge narrow bandpass filters will be demonstrated fulfilling all these demanding requirements.
NASA Astrophysics Data System (ADS)
Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming
2018-01-01
We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.
Isotropically sensitive optical filter employing atomic resonance transitions
Marling, J.B.
An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.
Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P
2014-06-01
A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.
Modal parameter identification using the log decrement method and band-pass filters
NASA Astrophysics Data System (ADS)
Liao, Yabin; Wells, Valana
2011-10-01
This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.
NASA Astrophysics Data System (ADS)
Iga, Mitsuhiro; Kakuryu, Nobuyuki; Tanaami, Takeo; Sajiki, Jiro; Isozaki, Katsumi; Itoh, Tamitake
2012-10-01
We describe the development of a hyper-spectral imaging (HSI) system composed of thin-film tunable band-pass filters (TF-TBPFs) and its application to inhomogeneous sample surfaces. Compared with existing HSI systems, the system has a simpler optical arrangement and has an optical transmittance of up to 80% owing to polarization independence. The HSI system exhibits a constant spectral resolution over a spectral window of 80 nm (530 to 610 nm) and tunable spectral resolution from 1.5 to 3.0 nm, and requires only 5.4 s per measurement. Plasmon resonance and surface enhanced Raman scattering (SERS) from inhomogeneous surfaces dispersed with Ag nanoparticles (NP) have been measured with the HSI system. The measurement of multiple Ag NPs is consistent with conventional isolated NP measurements as explained by the electromagnetic mechanism of SERS, demonstrating the validity of the HSI system.
Noncoherent pseudonoise code tracking performance of spread spectrum receivers
NASA Technical Reports Server (NTRS)
Simon, M. K.
1977-01-01
The optimum design and performance of two noncoherent PN tracking loop configurations, namely, the delay-locked loop and tau-dither loop, are described. In particular, the bandlimiting effects of the bandpass arm filters are considered by demonstrating that for a fixed data rate and data signal-to-noise ratio, there exists an optimum filter bandwidth in the sense of minimizing the loop's tracking jitter. Both the linear and nonlinear loop analyses are presented, and the region of validity of the former relative to the latter is indicated. In addition, numerical results are given for several filter types. For example, assuming ideal bandpass arm filters, it is shown that the tau-dither loop requires approximately 1 dB more signal-to-noise ratio than the delay-locked loop for equal rms tracking jitters.
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Gulkis, S.
1991-01-01
The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).
NASA Technical Reports Server (NTRS)
Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.
1981-01-01
The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.
Research on spectroscopic imaging. Volume 1: Technical discussion. [birefringent filters
NASA Technical Reports Server (NTRS)
Title, A.; Rosenberg, W.
1979-01-01
The principals of operation and the capabilities of birefringent filters systems are examined. Topics covered include: Lyot, Solc, and partial polarizer filters; transmission profile management; tuning birefringent filters; field of view; bandpass control; engineering considerations; and recommendations. Improvements for field of view effects, and the development of birefringent filters for spaceflight are discussed in appendices.
NASA Astrophysics Data System (ADS)
Thiede, Christian; Niehues, Iris; Schmidt, Anke B.; Donath, Markus
2018-06-01
Inverse photoemission is the most versatile experimental tool to study the unoccupied electronic structure at surfaces of solids. Typically, the experiments are performed in the isochromat mode with bandpass photon detectors. For gas-filled counters, the bandpass behavior is realized by the combination of the photoionization threshold of the counting gas as the high-pass filter and the ultraviolet transmission cutoff of an alkaline earth fluoride entrance window as the low-pass filter. The transmission characteristics of the entrance window determine the optical bandpass. The performance of the counter depends on the composition of the detection gas and the fill-gas pressure, the readout electronics and the counter geometry. For the well-known combination of acetone and CaF2, the detector can be operated in proportional and Geiger–Müller modes. In this work, we review aspects concerning the working principles, the counter construction and the read-out electronics. We identify optimum working parameters and provide a step-by-step recipe how to build, install and operate the device.
Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications
NASA Astrophysics Data System (ADS)
Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.
2016-08-01
Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.
Use of acousto-optic tunable filter in fluorescence imaging endoscopy
NASA Astrophysics Data System (ADS)
Bouhifd, Mounir; Whelan, Maurice; Aprahamian, Marc
2003-10-01
A prototype instrument for fluorescence-based medical diagnostics in vivo is described. The system consists of a rigid endoscope comprising a UV laser-source for fluorescence excitation and a white light source for direct imaging. An acousto-optic tuneable filter (AOTF) is employed as a full-field tuneable bandpass filter. This allows fast continuous or random-access tuning with high filtering efficiency. A study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on a rat model. In particular, the aim was to detect autofluorescence of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response.
Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy
Eom, Seunghyun; Memon, Muhammad Usman; Lim, Sungjoon
2017-01-01
In this paper, we have proposed a frequency-switchable complementary split-ring resonator (CSRR)-loaded quarter-mode substrate-integrated-waveguide (QMSIW) band-pass filter. For frequency switching, a microfluidic channel and liquid metal are used. The liquid metal used is eutectic gallium-indium (EGaIn), consisting of 24.5% indium and 75.5% gallium. The microfluidic channels are built using the elastomer polydimethylsiloxane (PDMS) and three-dimensional-printed microfluidic channel frames. The CSRR-loaded QMSIW band-pass filter is designed to have two states. Before the injection of the liquid metal, the measured center frequency and fractional bandwidths are 2.205 GHz and 6.80%, respectively. After injection, the center frequency shifts from 2.205 GHz to 2.56 GHz. Although the coupling coefficient is practically unchanged, the fractional bandwidth changes from 6.8% to 9.38%, as the CSRR shape changes and the external quality factor decreases. After the removal of the liquid metal, the measured values are similar to the values recorded before the liquid metal was injected. The repeatability of the frequency-switchable mechanism is, therefore, verified. PMID:28350355
Band-pass Fabry-Pèrot magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Tulapurkar, Ashwin. A.; Muralidharan, Bhaskaran
2018-05-01
We propose a high-performance magnetic tunnel junction by making electronic analogs of optical phenomena such as anti-reflections and Fabry-Pèrot resonances. The devices we propose feature anti-reflection enabled superlattice heterostructures sandwiched between the fixed and the free ferromagnets of the magnetic tunnel junction structure. Our predictions are based on non-equilibrium Green's function spin transport formalism coupled self-consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation. Owing to the physics of bandpass spin filtering in the bandpass Fabry-Pèrot magnetic tunnel junction device, we demonstrate an ultra-high boost in the tunnel magneto-resistance (≈5 × 104%) and nearly 1200% suppression of spin transfer torque switching bias in comparison to a traditional trilayer magnetic tunnel junction device. The proof of concepts presented here can lead to next-generation spintronic device design harvesting the rich physics of superlattice heterostructures and exploiting spintronic analogs of optical phenomena.
Tunable antenna radome based on graphene frequency selective surface
NASA Astrophysics Data System (ADS)
Qu, Meijun; Rao, Menglou; Li, Shufang; Deng, Li
2017-09-01
In this paper, a graphene-based frequency selective surface (FSS) is proposed. The proposed FSS exhibits a tunable bandpass filtering characteristic due to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells. A conventional omnidirectional dipole can realize a two-beam directional pattern when it is placed into the proposed antenna radome. Forward and backward endfire radiations of the dipole loaded with the radome is realized by properly adjusting the chemical potential. The proposed antenna radome is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems when the gain of a conventional antenna needs to be enhanced.
Properties of multilayer filters
NASA Technical Reports Server (NTRS)
Baumeister, P. W.
1973-01-01
New methods were investigated of using optical interference coatings to produce bandpass filters for the spectral region 110 nm to 200 nm. The types of filter are: triple cavity metal dielectric filters; all dielectric reflection filters; and all dielectric Fabry Perot type filters. The latter two types use thorium fluoride and either cryolite films or magnesium fluoride films in the stacks. The optical properties of the thorium fluoride were also measured.
225-255-GHz InP DHBT Frequency Tripler MMIC Using Complementary Split-Ring Resonator
NASA Astrophysics Data System (ADS)
Li, Xiao; Zhang, Yong; Li, Oupeng; Sun, Yan; Lu, Haiyan; Cheng, Wei; Xu, Ruimin
2017-02-01
In this paper, a novel design of frequency tripler monolithic microwave integrated circuit (MMIC) using complementary split-ring resonator (CSRR) is proposed based on 0.5-μm InP DHBT process. The CSRR-loaded microstrip structure is integrated in the tripler as a part of impedance matching network to suppress the fundamental harmonic, and another frequency tripler based on conventional band-pass filter is presented for comparison. The frequency tripler based on CSRR-loaded microstrip generates an output power between -8 and -4 dBm from 228 to 255 GHz when the input power is 6 dBm. The suppression of fundamental harmonic is better than 20 dBc at 77-82 GHz input frequency within only 0.15 × 0.15 mm2 chip area of the CSRR structure on the ground layer. Compared with the frequency tripler based on band-pass filter, the tripler using CSRR-loaded microstrip obtains a similar suppression level of unwanted harmonics and higher conversion gain within a much smaller chip area. To our best knowledge, it is the first time that CSRR is used for harmonic suppression of frequency multiplier at such high frequency band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiede, Christian, E-mail: christian.thiede@uni-muenster.de; Schmidt, Anke B.; Donath, Markus
2015-08-15
Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination,more » temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.« less
Technology optimization techniques for multicomponent optical band-pass filter manufacturing
NASA Astrophysics Data System (ADS)
Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.
2016-04-01
Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.
Burr formation detector for fiber laser cutting based on a photodiode sensor system
NASA Astrophysics Data System (ADS)
Schleier, Max; Adelmann, Benedikt; Neumeier, Benedikt; Hellmann, Ralf
2017-11-01
We report a unique sensor system based on a InGaAs photodiode to detect the formation of burr during near infrared fiber laser cutting. The sensor approach encompasses the measurement of the thermal radiation form the process zone, optical filtering, digitalized sampling at 20 kHz, digital filtering using an elliptical band-pass filter 12th order and calculation of the standard deviation. We find a linear correlation between the deduced sensor signal and the generated burr height with this functionality being experimentally confirmed for laser cutting of mild and stainless steel of different thicknesses. The underlying mechanism of this transducer concept is attributed to the melt flow dynamics inside the cut kerf.
NASA Astrophysics Data System (ADS)
Liu, Chanjuan; van Netten, Jaap J.; Klein, Marvin E.; van Baal, Jeff G.; Bus, Sicco A.; van der Heijden, Ferdi
2013-12-01
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Quantum-behaved particle swarm optimization for the synthesis of fibre Bragg gratings filter
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Sun, Yunxu; Yao, Yong; Tian, Jiajun; Cong, Shan
2011-12-01
A method based on the quantum-behaved particle swarm optimization algorithm is presented to design a bandpass filter of the fibre Bragg gratings. In contrast to the other optimization algorithms such as the genetic algorithm and particle swarm optimization algorithm, this method is simpler and easier to implement. To demonstrate the effectiveness of the QPSO algorithm, we consider a bandpass filter. With the parameters the half the bandwidth of the filter 0.05 nm, the Bragg wavelength 1550 nm, the grating length with 2cm is divided into 40 uniform sections and its index modulation is what should be optimized and whole feasible solution space is searched for the index modulation. After the index modulation profile is known for all the sections, the transfer matrix method is used to verify the final optimal index modulation by calculating the refection spectrum. The results show the group delay is less than 12ps in band and the calculated dispersion is relatively flat inside the passband. It is further found that the reflective spectrum has sidelobes around -30dB and the worst in-band dispersion value is less than 200ps/nm . In addition, for this design, it takes approximately several minutes to find the acceptable index modulation values with a notebook computer.
Development of a Comb Limiter Combiner with Sub band Known Interference Cancellation
2017-10-17
Juarez, Head 55190 Networks Division ACRONYMS ABSF absorptive bandstop filters ATP applied thin films BAW bulk acoustic waves BPF bandpass filter ...BSF bandstop filters CW continuous wave CWSP Commercial Wideband Satellite Program DAC digital to analog converter DAC digital to analog converter...8 3.2 FREQUENCY AGILE ABSORPTIVE NOTCH FILTERS ................................................. 9 3.3 INTEGRATION OF
Temperature Tunable Air-Gap Etalon Filter
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.
1998-01-01
We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.
Thermoluminescence dosimeters with narrow bandpass filters
Walker, Scottie W.
2004-07-20
A dosimetry method exposes more than one thermoluminescence crystals to radiation without using conventional filters, and reads the energy stored in the crystals by converting the energy to light in a conventional manner, and then filters each crystal output in a different portion of the spectrum generated by the crystals.
RF-MEMS tunable interdigitated capacitor and fixed spiral inductor for band pass filter applications
NASA Astrophysics Data System (ADS)
Bade, Ladon Ahmed; Dennis, John Ojur; Khir, M. Haris Md; Wen, Wong Peng
2016-11-01
This research presents the tunable Radio Frequency Micro Electromechanical Systems (RF-MEMS) coupled band-pass filter (BPF), which possess a wide tuning range and constructed by using the Chebyshev fourth degree equivalent circuit consisting of fixed inductors and interdigitated tunable capacitors. The suggested method was authenticated by designing a new tunable BPF with a 100% tuning range from 3.1 GHz to 4.9 GHz. The Metal Multi-User MEMS Process (Metal MUMPs) was involved in the process of design of this band-pass filter. It aimed to achieve the reconfiguration of frequencies and show high efficiency of RF in the applications that using Ultra Wide Band (UWB) such as wireless sensor networks. The RF performance of this filter was found to be very satisfactory due to its simple fabrication. Moreover, it showed less insertion loss of around 4 dB and high return loss of around 20 dB.
Programmable Spectral Source and Design Tool for 3D Imaging Using Complementary Bandpass Filters
NASA Technical Reports Server (NTRS)
Bae, Youngsam (Inventor); Korniski, Ronald J. (Inventor); Ream, Allen (Inventor); Shearn, Michael J. (Inventor); Shahinian, Hrayr Karnig (Inventor); Fritz, Eric W. (Inventor)
2017-01-01
An endoscopic illumination system for illuminating a subject for stereoscopic image capture, includes a light source which outputs light; a first complementary multiband bandpass filter (CMBF) and a second CMBF, the first and second CMBFs being situated in first and second light paths, respectively, where the first CMBF and the second CMBF filter the light incident thereupon to output filtered light; and a camera which captures video images of the subject and generates corresponding video information, the camera receiving light reflected from the subject and passing through a pupil CMBF pair and a detection lens. The pupil CMBF includes a first pupil CMBF and a second pupil CMBF, the first pupil CMBF being identical to the first CMBF and the second pupil CMBF being identical to the second CMBF, and the detection lens includes one unpartitioned section that covers both the first pupil CMBF and the second pupil CMBF.
NASA Astrophysics Data System (ADS)
Hariyadi, T.; Mulyasari, S.; Mukhidin
2018-02-01
In this paper we have designed and simulated a Band Pass Filter (BPF) at X-band frequency. This filter is designed for X-band weather radar application with 9500 MHz center frequency and bandwidth -3 dB is 120 MHz. The filter design was performed using a hairpin microstrip combined with an open stub and defected ground structure (DGS). The substrate used is Rogers RT5880 with a dielectric constant of 2.2 and a thickness of 1.575 mm. Based on the simulation results, it is found that the filter works on frequency 9,44 - 9,56 GHz with insertion loss value at pass band is -1,57 dB.
Online frequency estimation with applications to engine and generator sets
NASA Astrophysics Data System (ADS)
Manngård, Mikael; Böling, Jari M.
2017-07-01
Frequency and spectral analysis based on the discrete Fourier transform is a fundamental task in signal processing and machine diagnostics. This paper aims at presenting computationally efficient methods for real-time estimation of stationary and time-varying frequency components in signals. A brief survey of the sliding time window discrete Fourier transform and Goertzel filter is presented, and two filter banks consisting of: (i) sliding time window Goertzel filters (ii) infinite impulse response narrow bandpass filters are proposed for estimating instantaneous frequencies. The proposed methods show excellent results on both simulation studies and on a case study using angular speed data measurements of the crankshaft of a marine diesel engine-generator set.
Assessing FRET using Spectral Techniques
Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.
2015-01-01
Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. PMID:23929684
Assessing FRET using spectral techniques.
Leavesley, Silas J; Britain, Andrea L; Cichon, Lauren K; Nikolaev, Viacheslav O; Rich, Thomas C
2013-10-01
Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein-protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP-Epac-YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.
Resolution Enhancement In Ultrasonic Imaging By A Time-Varying Filter
NASA Astrophysics Data System (ADS)
Ching, N. H.; Rosenfeld, D.; Braun, M.
1987-09-01
The study reported here investigates the use of a time-varying filter to compensate for the spreading of ultrasonic pulses due to the frequency dependence of attenuation by tissues. The effect of this pulse spreading is to degrade progressively the axial resolution with increasing depth. The form of compensation required to correct for this effect is impossible to realize exactly. A novel time-varying filter utilizing a bank of bandpass filters is proposed as a realizable approximation of the required compensation. The performance of this filter is evaluated by means of a computer simulation. The limits of its application are discussed. Apart from improving the axial resolution, and hence the accuracy of axial measurements, the compensating filter could be used in implementing tissue characterization algorithms based on attenuation data.
Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina
Fyk-Kolodziej, Bozena; Cohn, Jesse
2014-01-01
In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376
Spectroscopic imaging using acousto-optic tunable filters
NASA Astrophysics Data System (ADS)
Bouhifd, Mounir; Whelan, Maurice
2007-07-01
We report on novel hyper-spectral imaging filter-modules based on acousto-optic tuneable filters (AOTF). The AOTF functions as a full-field tuneable bandpass filter which offers fast continuous or random access tuning with high filtering efficiency. Due to the diffractive nature of the device, the unfiltered zero-order and the filtered first-order images are geometrically separated. The modules developed exploit this feature to simultaneously route both the transmitted white-light image and the filtered fluorescence image to two separate cameras. Incorporation of prisms in the optical paths and careful design of the relay optics in the filter module have overcome a number of aberrations inherent to imaging through AOTFs, leading to excellent spatial resolution. A number of practical uses of this technique, both for in vivo auto-fluorescence endoscopy and in vitro fluorescence microscopy were demonstrated. We describe the operational principle and design of recently improved prototype instruments for fluorescence-based diagnostics and demonstrate their performance by presenting challenging hyper-spectral fluorescence imaging applications.
Polarization-selective infrared bandpass filter based on a two-layer subwavelength metallic grating
NASA Astrophysics Data System (ADS)
Hohne, Andrew J.; Moon, Benjamin; Baumbauer, Carol L.; Gray, Tristan; Dilts, James; Shaw, Joseph A.; Dickensheets, David L.; Nakagawa, Wataru
2017-08-01
We present the design, fabrication, and characterization of a polarization-selective infrared bandpass filter based on a two-layer subwavelength metallic grating for use in polarimetric imaging. Gold nanowires were deposited via physical vapor deposition (PVD) onto a silicon surface relief grating that was patterned using electron beam lithography (EBL) and fabricated using standard silicon processing techniques. Optical characterization with a broad-spectrum tungsten halogen light source and a grating spectrometer showed normalized peak TM transmission of 53% with a full-width at half-maximum (FWHM) of 122 nm, which was consistent with rigorous coupled-wave analysis (RCWA) simulations. Simulation results suggested that device operation relied on suppression of the TM transmission caused by surface plasmon polariton (SPP) excitation at the gold-silicon interface and an increase in TM transmission caused by a Fabry-Perot (FP) resonance in the cavity between the gratings. TE rejection occurred at the initial air/gold interface. We also present simulation results of an improved design based on a two-dielectric grating where two different SPP resonances allowed us to improve the shape of the passband by suppressing the side lobes. This newer design resulted in improved side-band performance and increased peak TM transmission.
NASA Astrophysics Data System (ADS)
Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei
2017-09-01
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
NASA Astrophysics Data System (ADS)
Lin, Baoqin; Wu, Jia-liang; Da, Xin-yu; Li, Wei; Ma, Jia-jun
2017-01-01
In this work, we propose a linear-to-circular transmission polarization converter based on a second-order band-pass frequency selective surface (FSS). The FSS is composed of a three-layer aperture-coupled-patch structure, it can be interpreted as an array of antenna-filter-antenna modules, wherein the antenna is just a circularly polarized corner-truncated square microstrip antenna. A prototype of the proposed polarization converter is analyzed, fabricated and tested. Both simulation and experimental results show that the 3-dB axial ratio relative bandwidth of the polarization converter is over 30%, and the maximum insertion loss is only 1.87 dB; in addition, it can maintain good performance over a wide angular bandwidth at TE incidence.
Continued Development of an Ultra-Narrow Bandpass Filter for Solar Research
NASA Technical Reports Server (NTRS)
Rust, David M.
1993-01-01
The objective of work under this task was to develop ultranarrow optical bandpass filters and related technology necessary for construction of a compact solar telescope capable of operating unattended in space. The scientific problems to which such a telescope could be applied include solar seismology, solar activity monitoring, solar irradiance variations, solar magnetic field evolution, and the location of targets for narrow-field specialized telescopes. We have demonstrated a Y-cut lithium-niobate Fabry-Perot etalon. This filter will be used on the Flare Genesis Experiment. We also obtained solar images with a Z-cut etalon. The technical report on etalon filters is attached to this final report. We believe that work under this grant will lead to the commercial availability of a universal optical filter with approximately 0.1 A bandwidth. Progress was made toward making a suitable 1-2 A tunable blocker filter, but it now appears that the best approach is to make a double-cavity etalon that will not require such a narrow blocker. Broader band blockers are commercially available.
UWB Filtering Power Divider with Two Narrow Notch-bands and Wide Stop-band
NASA Astrophysics Data System (ADS)
Wei, Feng; Wang, Xin-Yi; Zou, Xin Tong; Shi, Xiao Wei
2017-12-01
A compact filtering ultra-wideband (UWB) microstrip power divider (PD) with two sharply rejected notch-bands and wide stopband is analyzed and designed in this paper. The proposed UWB PD is based on a conventional Wilkinson power divider, while two stub loaded resonators (SLRs) are coupled into two symmetrical output ports to achieve a bandpass filtering response. The simplified composite right/left-handed (SCRLH) resonators are employed to generate the dual notched bands. Defected ground structure (DGS) is introduced to improve the passband performance. Good insertion/return losses, isolation and notch-band rejection are achieved as demonstrated in both simulation and experiment.
1991-11-08
saturation limit. The control action is sent via a digital-to-analog converter to a power amplifier to activate the NITINOL fibers embedded inside the...feedback approaches in the design of a modal- eiipl.’ i,, n e .ti )tal filters with feedfor.ard and feedback based active control system. There are...photocells; and a series of narrow bandpass filters with silicon photodetectors. The sensor outputs are fed through an anolog to digital converter into the
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; Vignesparamoorthy, Sivaruban; Mueller, Carl; VanKeuls, Fred; Warner, Joseph; Miranda, Felix A.
2001-01-01
The main purpose of this work is to study the effect of a selectively etched ferroelectric thin film layer on the performance of an electrically tunable filter. An X-band tunable filter was designed, fabricated and tested on a selectively etched Barium Strontium Titanate (BSTO) ferroelectric thin film layer. Tunable filters with varying lengths of BSTO thin-film in the input and output coupling gaps were modeled, as well as experimentally tested. Experimental results showed that filters with coupling gaps partially filled with BSTO maintained frequency tunability and improved the insertion loss by approx. 2dB. To the best of our knowledge, these results represent the first experimental demonstration of the advantages of selective etching in the performance of thin film ferroelectric-based tunable microwave components.
Design of an S band narrow-band bandpass BAW filter
NASA Astrophysics Data System (ADS)
Gao, Yang; Zhao, Kun-li; Han, Chao
2017-11-01
An S band narrowband bandpass filter BAW with center frequency 2.460 GHz, bandwidth 41MHz, band insertion loss - 1.154 dB, the passband ripple 0.9 dB, the out of band rejection about -42.5dB@2.385 GHz; -45.5dB@2.506 GHz was designed for potential UAV measurement and control applications. According to the design specifications, the design is as follows: each FBAR's stack was designed in BAW filter by using Mason model. Each FBAR's shape was designed with the method of apodization electrode. The layout of BAW filter was designed. The acoustic-electromagnetic cosimulation model was built to validate the performance of the designed BAW filter. The presented design procedure is a common one, and there are two characteristics: 1) an A and EM co-simulation method is used for the final BAW filter performance validation in the design stage, thus ensures over-optimistic designs by the bare 1D Mason model are found and rejected in time; 2) An in-house developed auto-layout method is used to get compact BAW filter layout, which simplifies iterative error-and-try work here and output necessary in-plane geometry information to the A and EM cosimulation model.
Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator
NASA Astrophysics Data System (ADS)
Xu, Jin
2016-01-01
This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Enrique, E-mail: villae@unican.es; Aja, Beatriz; Cagigas, Jaime
2013-12-15
This paper presents the analysis, design, and characterization of a wideband 90° phase switch in Ka-band. The phase switch is based on two microstrip bandpass filters in which the commutation is performed by a novel single-pole double-throw (SPDT) switch. The analysis of π-network bandpass filters is provided, obtaining the phase difference and amplitude imbalance between filters and their scattering parameters; tested results show an average phase difference of 88.9° ± 5° and an amplitude imbalance of 0.15 dB from 24 to 37 GHz. The new broadband SPDT switch is based on a coplanar waveguide-to-slotline-to-microstrip structure, which enables a full planarmore » integration with shifting branches. PIN diodes are used to perform the switching between outputs. The SPDT shows isolation better than 19 dB, insertion loss of around 1.8 dB, and return loss better than 15 dB. The full integration of the phase switch achieves a return loss better than 11 dB and insertion loss of around 4 dB over the band 26–36 GHz, with an average phase difference of 87.1° ± 4° and an average amplitude imbalance of 0.3 dB. It provides an excellent performance for this frequency range, suitable for radio-astronomy receivers.« less
Image quality, space-qualified UV interference filters
NASA Technical Reports Server (NTRS)
Mooney, Thomas A.
1992-01-01
The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.
Active imaging system with Faraday filter
Snyder, James J.
1993-01-01
An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.
Active imaging system with Faraday filter
Snyder, J.J.
1993-04-13
An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.
Hybrid recursive active filters for duplexing in RF transmitter front-ends
NASA Astrophysics Data System (ADS)
Gottardo, Giuseppe; Donati, Giovanni; Musolff, Christian; Fischer, Georg; Felgentreff, Tilman
2016-08-01
Duplex filters in modern base transceiver stations shape the channel in order to perform common frequency division duplex operations. Usually, they are designed as cavity filters, which are expensive and have large dimensions. Thanks to the emerging digital technology and fast digital converters, it is possible to transfer the efforts of designing analog duplex filters into digital numeric algorithms applied to feedback structures, operating on power. This solution provides the shaping of the signal spectrum directly at the output of the radio frequency (RF) power amplifiers (PAs) relaxing the transmitter design especially in the duplexer and in the antenna sections. The design of a digital baseband feedback applied to the analog power RF amplifiers (hybrid filter) is presented and verified by measurements. A model to describe the hybrid system is investigated, and the relation between phase and resonance peaks of the resulting periodic band-pass transfer function is described. The stability condition of the system is analyzed using Nyquist criterion. A solution involving a number of digital feedback and forward branches is investigated defining the parameters of the recursive structure. This solution allows the closed loop system to show a periodic band pass with up to 500 kHz bandwidth at the output of the RF amplifier. The band-pass magnitude reaches up to 17 dB selectivity. The rejection of the PA noise in the out-of-band frequencies is verified by measurements. The filter is tested with a modulated LTE (Long Term Evolution) signal showing an ACPR (Adjacent Channel Power Ratio) enhancement of 10 dB of the transmitted signal.
A bandpass filter for the enhancement of an X-ray reconstruction of the tissue in the spinal canal
NASA Technical Reports Server (NTRS)
Reed, I. S.; Glenn, W. V.; Kwoh, Y. S.; Truong, T. K.
1980-01-01
In this communication, a new bandpass reconstruction filter is developed to partially remove the low spatial frequencies of the bone and the soft tissue in an X-ray reconstruction of a lumbar spine. This partial removal of the low frequencies suppresses the bony vertebral body and the soft tissue components within the projections of actual clinical data. It also has the effect of enhancing the sharp edges of the fatty tissue surrounding the spinal cord region. The intent of this effort is to directly visualize the spinal cord without the need for water-soluble contrast (e.g., metrizamide) to be installed through lumbar punctures.
NASA Astrophysics Data System (ADS)
Umeshkumar, Dubey Suhmita; Kumar, Manish
2018-04-01
This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.
Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase.
Zhu, Xiaoqi; Chen, Feiya; Peng, Huanfa; Chen, Zhangyuan
2017-04-17
We propose and demonstrate a novel optical frequency comb (OFC) based microwave photonic filter which is able to realize arbitrary filtering shape with linear phase response. The shape of filter response is software programmable using finite impulse response (FIR) filter design method. By shaping the OFC spectrum using a programmable waveshaper, we can realize designed amplitude of FIR taps. Positive and negative sign of FIR taps are achieved by balanced photo-detection. The double sideband (DSB) modulation and symmetric distribution of filter taps are used to maintain the linear phase condition. In the experiment, we realize a fully programmable filter in the range from DC to 13.88 GHz. Four basic types of filters (lowpass, highpass, bandpass and bandstop) with different bandwidths, cut-off frequencies and central frequencies are generated. Also a triple-passband filter is realized in our experiment. To the best of our knowledge, it is the first demonstration of a programmable multiple passband MPF with linear phase response. The experiment shows good agreement with the theoretical result.
High-Q microwave photonic filter with a tuned modulator.
Capmany, J; Mora, J; Ortega, B; Pastor, D
2005-09-01
We propose the use of tuned electro-optic or electroabsorption external modulators to implement high-quality (high-Q) factor, single-bandpass photonic filters for microwave signals. Using this approach, we experimentally demonstrate a transversal finite impulse response with a Q factor of 237. This is to our knowledge the highest value ever reported for a passive finite impulse-response microwave photonic filter.
2007-05-25
of-the-art optical filters. Specifically, a FF01 -510/84 Semrock green band-pass filter (transmission >95% with 1% standard deviation between 467nm...used to reject the UV laser light (-390nm) exciting the CH radicals, and a NF0I-532U Semrock notch filter (transmission ə 04 % at 527nm, and >95
Pimenta, S; Cardoso, S; Miranda, A; De Beule, P; Castanheira, E M S; Minas, G
2015-08-01
This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman's rank correlation test (Spearman's correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia.
Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco
2013-01-01
A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems.
Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz
2013-01-01
A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366
Logic elements for reactor period meter
McDowell, William P.; Bobis, James P.
1976-01-01
Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.
Restrepo-Agudelo, Sebastian; Roldan-Vasco, Sebastian; Ramirez-Arbelaez, Lina; Cadavid-Arboleda, Santiago; Perez-Giraldo, Estefania; Orozco-Duque, Andres
2017-08-01
The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Buchholz, Jörg M
2011-07-01
Coloration detection thresholds (CDTs) were measured for a single reflection as a function of spectral content and reflection delay for diotic stimulus presentation. The direct sound was a 320-ms long burst of bandpass-filtered noise with varying lower and upper cut-off frequencies. The resulting threshold data revealed that: (1) sensitivity decreases with decreasing bandwidth and increasing reflection delay and (2) high-frequency components contribute less to detection than low-frequency components. The auditory processes that may be involved in coloration detection (CD) are discussed in terms of a spectrum-based auditory model, which is conceptually similar to the pattern-transformation model of pitch (Wightman, 1973). Hence, the model derives an auto-correlation function of the input stimulus by applying a frequency analysis to an auditory representation of the power spectrum. It was found that, to successfully describe the quantitative behavior of the CDT data, three important mechanisms need to be included: (1) auditory bandpass filters with a narrower bandwidth than classic Gammatone filters, the increase in spectral resolution was here linked to cochlear suppression, (2) a spectral contrast enhancement process that reflects neural inhibition mechanisms, and (3) integration of information across auditory frequency bands. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Tianyang; Chu, Fulei; Han, Qinkai
2017-03-01
Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.
2000-01-01
We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.
Dense grid sibling frames with linear phase filters
NASA Astrophysics Data System (ADS)
Abdelnour, Farras
2013-09-01
We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.
Cryogenic 160-GHz MMIC Heterodyne Receiver Module
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah
2011-01-01
A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz. Additionally, the use of a W-band isolator between the receiver module and the local oscillator source also improved the noise temperature substantially. This may be because the mixer was presented with a better impedance match with the use of the isolator. Cryogenic testing indicates a system noise temperature of 100 K or less at 166 GHz. Prior tests of the MMIC amplifiers alone have resulted in a system noise temperature of 65.70 K in the same frequency range (.160 GHz) when cooled to an ambient temperature of 20 K. While other detector systems may be slightly more sensitive (such as SIS mixers), they require more cooling (to 4 K ambient) and are not as easily scalable to build a large array, due to the need for large magnets and other equipment. When cooled to 20 K, this receiver module achieves approximately 100 K system noise temperature, which is slightly higher than single-amplifier module results obtained at JPL (65.70 K when an amplifier is corrected for back-end noise contributions). If this performance can be realized in practice, and a scalable array can be produced, the impact on cosmic microwave background experiments, astronomical and Earth spectroscopy, interferometry, and radio astronomy in general will be dramatic.
Approximate bandpass and frequency response models of the difference of Gaussian filter
NASA Astrophysics Data System (ADS)
Birch, Philip; Mitra, Bhargav; Bangalore, Nagachetan M.; Rehman, Saad; Young, Rupert; Chatwin, Chris
2010-12-01
The Difference of Gaussian (DOG) filter is widely used in optics and image processing as, among other things, an edge detection and correlation filter. It has important biological applications and appears to be part of the mammalian vision system. In this paper we analyse the filter and provide details of the full width half maximum, bandwidth and frequency response in order to aid the full characterisation of its performance.
Raman imaging using fixed bandpass filter
NASA Astrophysics Data System (ADS)
Landström, L.; Kullander, F.; Lundén, H.; Wästerby, P.
2017-05-01
By using fixed narrow band pass optical filtering and scanning the laser excitation wavelength, hyperspectral Raman imaging could be achieved. Experimental, proof-of-principle results from the Chemical Warfare Agent (CWA) tabun (GA) as well as the common CWA simulant tributyl phosphate (TBP) on different surfaces/substrates are presented and discussed.
Space qualification of IR-reflecting coverslides for GaAs solar cells
NASA Technical Reports Server (NTRS)
Meulenberg, Andrew
1995-01-01
Improvements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, T.; Hagihara, R.; Yugo, M.
1994-12-31
The authors have successfully developed and industrialized a new frequency-shift anti-islanding protection method using a twin-peak band-pass filter (BPF) for grid-interconnected photovoltaic (PV) systems. In this method, the power conditioner has a twin-peak BPF in a current feed back loop in place of the normal BPF. The new method works perfectly for various kinds of loads such as resistance, inductive and capacitive loads connected to the PV system. Furthermore, because there are no mis-detections, the system enables the most effective generation of electric energy from solar cells. A power conditioner equipped with this protection was officially certified as suitable formore » grid-interconnection.« less
Metallic nano-structures for polarization-independent multi-spectral filters
NASA Astrophysics Data System (ADS)
Tang, Yongan; Vlahovic, Branislav; Brady, David Jones
2011-05-01
Cross-shaped-hole arrays (CSHAs) are selected for diminishing the polarization-dependent transmission differences of incident plane waves. We investigate the light transmission spectrum of the CSHAs in a thin gold film over a wide range of features. It is observed that two well-separated and high transmission efficiency peaks could be obtained by designing the parameters in the CSHAs for both p-polarized and s-polarized waves; and a nice transmission band-pass is also observed by specific parameters of a CSHA too. It implicates the possibility to obtain a desired polarization-independent transmission spectrum from the CSHAs by designing their parameters. These findings provide potential applications of the metallic nano-structures in optical filters, optical band-pass, optical imaging, optical sensing, and biosensors.
Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures
NASA Astrophysics Data System (ADS)
Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.
2015-05-01
Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.
Compact Focal Plane Assembly for Planetary Science
NASA Technical Reports Server (NTRS)
Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind
2013-01-01
A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles. These detectors consist of 30-layer thermopiles deposited in series upon a silicon nitride membrane. At 300 K, the thermopile arrays are highly linear over many orders of magnitude of incident IR power, and have a reported specific detectivity that exceeds the requirements imposed on future mission concepts. The bandpass filter array board is integrated with a thermopile array board by mounting both boards on a machined aluminum jig.
NASA Astrophysics Data System (ADS)
He, Haizhen; Luo, Rongming; Hu, Zhenhua; Wen, Lei
2017-07-01
A current-mode field programmable analog array(FPAA) is presented in this paper. The proposed FPAA consists of 9 configurable analog blocks(CABs) which are based on current differencing transconductance amplifiers (CDTA) and trans-impedance amplifier (TIA). The proposed CABs interconnect through global lines. These global lines contain some bridge switches, which used to reduce the parasitic capacitance effectively. High-order current-mode low-pass and band-pass filter with transmission zeros based on the simulation of general passive RLC ladder prototypes is proposed and mapped into the FPAA structure in order to demonstrate the versatility of the FPAA. These filters exhibit good performance on bandwidth. Filter's cutoff frequency can be tuned from 1.2MHz to 40MHz.The proposed FPAA is simulated in a standard Charted 0.18μm CMOS process with +/-1.2V power supply to confirm the presented theory, and the results have good agreement with the theoretical analysis.
Parallel Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.
1995-01-01
Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-01-01
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies. PMID:26552584
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-11-10
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.
Pimenta, S.; Cardoso, S.; Miranda, A.; De Beule, P.; Castanheira, E.M.S.; Minas, G.
2015-01-01
This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman’s rank correlation test (Spearman’s correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769
Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems
2014-08-31
a Gel Logic System using UV transillumination and a 535 nm optical filter ( Kodak ). The positive control PCR was performed by taking an aliquot of the...described in the section above. Samples were excited by a UV transilluminator ( Kodak ). For imaging, a 520 ± 10 nm bandpass filter (Edmund Optics) was
Design of Multilayer Dual-Band BPF and Diplexer with Zeros Implantation Using Suspended Stripline
NASA Astrophysics Data System (ADS)
Ho, Min-Hua; Hsu, Wei-Hong
In this paper, a dual-band bandpass filter (BPF) of multilayer suspended stripline (SSL) structure and an SSL diplexer composed of a low-pass filter (LPF) and a high-pass filter (HPF) are proposed. Bandstop structure creating transmission zeros is adopted in the BPF and diplexer, enhancing the signal selectivity of the former and increasing the isolation between the diverting ports of the latter. The dual-band BPF possesses two distinct bandpass structures and a bandstop circuit, all laid on different metallic layers. The metallic layers together with the supporting substrates are vertically stacked up to save the circuit dimension. The LPF and HPF used in the diplexer structure are designed by a quasi-lumped approach, which the LC lumped-elements circuit models are developed to analyze filters' characteristics and to emulate their frequency responses. Half-wavelength resonating slots are employed in the diplexer's structure to increase the isolation between its two signal diverting ports. Experiments are conducted to verify the multilayer dual-band BPF and the diplexer design. Agreements are observed between the simulation and the measurement.
NASA Astrophysics Data System (ADS)
Zhang, Gaohui; Zhao, Guozhong; Zhang, Shengbo
2012-12-01
The terahertz transmission characteristics of bilayer metallic meshes are studied based on the finite difference time domain method. The bilayer well-shaped grid, the array of complementary square metallic pill and the cross wire-hole array were investigated. The results show that the bilayer well-shaped grid achieves a high-pass of filter function, while the bilayer array of complementary square metallic pill achieves a low-pass of filter function, the bilayer cross wire-hole array achieves a band-pass of filter function. Between two metallic microstructures, the medium need to be deposited. Obviously, medium thicknesses have an influence on the terahertz transmission characteristics of metallic microstructures. Simulation results show that with increasing the thicknesses of the medium the cut-off frequency of high-pass filter and low-pass filter move to low frequency. But the bilayer cross wire-hole array possesses two transmission peaks which display competition effect.
Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy
NASA Technical Reports Server (NTRS)
Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel
2011-01-01
The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.
Flexible RF filter using a nonuniform SCISSOR.
Zhuang, Leimeng
2016-03-15
This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40 dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated.
Test Of A Microwave Amplifier With Superconductive Filter
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.
1995-01-01
Report describes design and low-temperature tests of low-noise GaAs microwave amplifier combined with microstrip band-pass filter. Two versions of microstrip filter used in alternate tests; in one version, microstrips formed as films of high-transition-temperature superconductor Y/Ba/Cu/O on lanthanum aluminate substrate with gold film as ground plane. Other version identical except microstrips as well as ground plane made of gold, normally conductive.
Dual-Band Band-Pass Filter with Fixed Low Band and Fluidically-Tunable High Band
Park, Eiyong; Lim, Daecheon
2017-01-01
In this work, we present a dual-band band-pass filter with fixed low-band resonant frequency and tunable high-band resonant frequency. The proposed filter consists of two split-ring resonators (SRRs) with a stub and microfluidic channels. The lower resonant frequency is determined by the length of the SRR alone, whereas the higher resonant frequency is determined by the lengths of the SRR and the stub. Using this characteristic, we fix the lower resonant frequency by fixing the SRR length and tune the higher resonant frequency by controlling the stub length by injecting liquid metal in the microfluidic channel. We fabricated the filter on a Duroid substrate. The microfluidic channel was made from polydimethylsiloxane (PDMS), and eutectic gallium–indium (EGaIn) was used as the liquid metal. This filter operates in two states—with, and without, the liquid metal. In the state without the liquid metal, the filter has resonant frequencies at 1.85 GHz and 3.06 GHz, with fractional bandwidths of 4.34% and 2.94%, respectively; and in the state with the liquid metal, it has resonant frequencies at 1.86 GHz and 2.98 GHz, with fractional bandwidths of 4.3% and 2.95%, respectively. PMID:28813001
Kadota, Michio; Tanaka, Shuji
2015-05-01
A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space.
Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.
2015-01-01
A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549
Lequime, Michel; Liukaityte, Simona; Zerrad, Myriam; Amra, Claude
2015-10-05
We present the improved structure and operating principle of a spectrophotometric mean that allows us for the recording of the transmittance of a thin-film filter over an ultra-wide range of optical densities (from 0 to 11) between 400 and 1000 nm. The operation of this apparatus is based on the combined use of a high power supercontinuum laser source, a tunable volume hologram filter, a standard monochromator and a scientific grade CCD camera. The experimentally recorded noise floor is in good accordance with the optical density values given by the theoretical approach. A demonstration of the sensitivity gain provided by this new set-up with respect to standard spectrophotometric means is performed via the characterization of various types of filters (band-pass, long-pass, short-pass, and notch).
NASA Astrophysics Data System (ADS)
Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo
This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)
1999-01-01
A cable tester is described for low frequency testing of a cable for faults. The tester allows for testing a cable beyond a point where a signal conditioner is installed, minimizing the number of connections which have to be disconnected. A magnetic pickup coil is described for detecting a test signal injected into the cable. A narrow bandpass filter is described for increasing detection of the test signal. The bandpass filter reduces noise so that a high gain amplifier provided for detecting a test signal is not completely saturate by noise. To further increase the accuracy of the cable tester, processing gain is achieved by comparing the signal from the amplifier with at least one reference signal emulating the low frequency input signal injected into the cable. Different processing techniques are described evaluating a detected signal.
Alkali metal for ultraviolet band-pass filter
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)
1993-01-01
An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.
Sah, Parimal; Das, Bijoy Krishna
2018-03-20
It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500 nm≤λ≤1650 nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24 nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2 nm) exhibits a pass bandwidth down to ∼10 nm.
Gao, Xin; Che, Wenquan; Feng, Wenjie
2018-02-06
In this paper, one kind of novel non-periodic spoof surface plasmon polaritons (SSPPs) with H-shaped cells is proposed. As we all know, the cutoff frequency exists inherently for the conventional comb-shaped SSPPs, which is a kind of periodic groove shape structures and fed by a conventional coplanar waveguide (CPW). In this work, instead of increasing the depth of all the grooves, two H-shaped cells are introduced to effectively reduce the cutoff frequency of the conventional comb-shaped SSPPs (about 12 GHz) for compact design. More importantly, the guide waves can be gradually transformed to SSPP waves with high efficiency, and better impedance matching from 50 Ω to the novel SSPP strip is achieved. Based on the proposed non-periodic SSPPs with H-shaped cells, a wideband bandpass filter (the 3-dB fractional bandwidths 68%) is realized by integrating the spiral-shaped defected ground structure (DGS) etched on CPW. Specifically, the filter shows high passband selectivity (Δf 3 dB /Δf 20 dB = 0.91) and wide upper stopband with -20 dB rejection. A prototype is fabricated for demonstration. Good agreements can be observed between the measured and simulated results, indicating potential applications in the integrated plasmonic devices and circuits at microwave and even THz frequencies.
Photometer for detection of sodium day airglow.
NASA Technical Reports Server (NTRS)
Mcmahon, D. J.; Manring, E. R.; Patty, R. R.
1973-01-01
Description of a photometer for daytime ground-based measurements of sodium airglow emission. The photometer described can be characterized by the following principal features: (1) a narrow (4.5-A) interference filter for initial discrimination; (2) cooled photomultiplier detector to reduce noise from dark current fluctuations and chopping to eliminate the average dark current; (3) a sodium vapor resonance cell to provide an effective bandpass comparable to the Doppler line width; (4) separate detection of all light transmitted by the interference filter to evaluate the Rayleigh and Mie components within the Doppler width of the resonance cell; and (5) temperature quenching of the resonance cell to evaluate and account for instrumental imperfections.
Ultra narrow flat-top filter based on multiple equivalent phase shifts
NASA Astrophysics Data System (ADS)
Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong
2008-11-01
Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.
Stewart, W R; Ramsey, M W; Jones, C J
1994-08-01
A system for the measurement of arterial pulse wave velocity is described. A personal computer (PC) plug-in transputer board is used to process the audio signals from two pocket Doppler ultrasound units. The transputer is used to provide a set of bandpass digital filters on two channels. The times of excursion of power through thresholds in each filter are recorded and used to estimate the onset of systolic flow. The system does not require an additional spectrum analyser and can work in real time. The transputer architecture provides for easy integration into any wider physiological measurement system.
Pascazio, Vito; Schirinzi, Gilda
2002-01-01
In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.
Phase recovery from a single interferogram with closed fringes by phase unwrapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz-Maciel, Jesus; Casillas-Rodriguez, Francisco J.; Mora-Gonzalez, Miguel
2011-01-01
We describe a new algorithm for phase determination from a single interferogram with closed fringes based on an unwrapping procedure. Here we use bandpass filtering in the Fourier domain, obtaining two wrapped phases with sign changes corresponding to the orientation of the applied filters. An unwrapping scheme that corrects the sign ambiguities by comparing the local derivatives is then proposed. This can be done, assuming that the phase derivatives do not change abruptly among adjacent areas as occurs with smooth continuous phase maps. The proposed algorithm works fast and is robust against noise, as demonstrated in experimental and simulated data.
All-printed, flexible, reconfigurable frequency selective surfaces
NASA Astrophysics Data System (ADS)
Haghzadeh, Mahdi; Akyurtlu, Alkim
2016-11-01
We demonstrate a new fully printed, conformal, band-pass frequency selective surface (FSS) utilizing a novel interdigitated capacitor (IDC), in which the space between the fingers can be filled with dielectric materials with different dielectric constants. Every dielectric constant corresponds to a different resonance frequency for the FSS, leading to a bandpass performance that can be tuned in a static manner based on the dielectric choice. The 2-D FSS consists of a periodic array of non-resonant and subwavelength structures (i.e., a metallic square loop and a wire grid) printed on either side of a flexible polyimide film using direct-ink writing methodologies. The miniaturized-element nature of this metamaterial-inspired FSS results in localized frequency-selective properties with very low sensitivity to the angle of incidence. Moreover, its symmetric design makes it polarization independent. A multiphase barium strontium titanate/cyclic olefin copolymer (BST/COC) composite with two different BST loadings, corresponding to two different dielectric constants, is the dielectric ink that is printed on the IDCs to vary the resonance frequency of the FSS. Different models of the FSS involving various IDC designs, with a first-order bandpass response at X-band, were simulated, printed, and measured. The center frequency of the template FSS with the air-filled IDC was tuned by 4.52% and 21.08% from 9.96 GHz by printing BST/COC dielectrics with different BST loadings on the IDCs. Moreover, the operation mode of the FSS was switched from a first order filter to a dual-band filter using printed BST/COC ink in a novel FSS design.
Auditory traits of "own voice".
Kimura, Marino; Yotsumoto, Yuko
2018-01-01
People perceive their recorded voice differently from their actively spoken voice. The uncanny valley theory proposes that as an object approaches humanlike characteristics, there is an increase in the sense of familiarity; however, eventually a point is reached where the object becomes strangely similar and makes us feel uneasy. The feeling of discomfort experienced when people hear their recorded voice may correspond to the floor of the proposed uncanny valley. To overcome the feeling of eeriness of own-voice recordings, previous studies have suggested equalization of the recorded voice with various types of filters, such as step, bandpass, and low-pass, yet the effectiveness of these filters has not been evaluated. To address this, the aim of experiment 1 was to identify what type of voice recording was the most representative of one's own voice. The voice recordings were presented in five different conditions: unadjusted recorded voice, step filtered voice, bandpass filtered voice, low-pass filtered voice, and a voice for which the participants freely adjusted the parameters. We found large individual differences in the most representative own-voice filter. In order to consider roles of sense of agency, experiment 2 investigated if lip-synching would influence the rating of own voice. The result suggested lip-synching did not affect own voice ratings. In experiment 3, based on the assumption that the voices used in previous experiments corresponded to continuous representations of non-own voice to own voice, the existence of an uncanny valley was examined. Familiarity, eeriness, and the sense of own voice were rated. The result did not support the existence of an uncanny valley. Taken together, the experiments led us to the following conclusions: there is no general filter that can represent own voice for everyone, sense of agency has no effect on own voice rating, and the uncanny valley does not exist for own voice, specifically.
Spectral analysis and filtering techniques in digital spatial data processing
Pan, Jeng-Jong
1989-01-01
A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author
Filter Design and Performance Evaluation for Fingerprint Image Segmentation
Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten
2016-01-01
Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150
Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade.
Furtula, V; Salewski, M; Leipold, F; Michelsen, P K; Korsholm, S B; Meo, F; Moseev, D; Nielsen, S K; Stejner, M; Johansen, T
2012-01-01
Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background on the order of 100 eV under presence of gyrotron stray radiation that is several orders of magnitude stronger than the signal to be detected. The receiver down converts the frequencies of scattered radiation (100-110 GHz) to intermediate frequencies (IF) (4.5-14.5 GHz) by heterodyning. The IF signal is divided into 50 IF channels tightly spaced in frequency space. The channels are terminated by square-law detector diodes that convert the signal power into DC voltages. We present measurements of the transmission characteristics and performance of the main receiver components operating at mm-wave frequencies (notch, bandpass, and lowpass filters, a voltage-controlled variable attenuator, and an isolator), the down-converter unit, and the IF components (amplifiers, bandpass filters, and detector diodes). Furthermore, we determine the performance of the receiver as a unit through spectral response measurements and find reasonable agreement with the expectation based on the individual component measurements.
NASA Astrophysics Data System (ADS)
Benítez, P.; Mohedano, R.; Buljan, M.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.
2011-12-01
A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band-pass filter sends the IR photons in the 900-1200 nm band to the silicon cell. Computer simulations predict that four-terminal terminal designs could achieve ˜46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ˜100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%.
Goswami, Usha; Cumming, Ruth; Chait, Maria; Huss, Martina; Mead, Natasha; Wilson, Angela M.; Barnes, Lisa; Fosker, Tim
2016-01-01
Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed. PMID:27303348
Stürzl, Ninette; Lebedkin, Sergei; Klumpp, Stefanie; Hennrich, Frank; Kappes, Manfred M
2013-05-07
We describe a micro-Raman setup allowing for efficient resonance Raman spectroscopy (RRS), i.e., mapping of Raman spectra as a function of tunable laser excitation wavelength. The instrument employs angle-tunable bandpass optical filters which are integrated into software-controlled Raman and laser cleanup filter devices. These automatically follow the excitation laser wavelength and combine tunability with high bandpass transmission as well as high off-band blocking of light. Whereas the spectral intervals which can be simultaneously acquired are bandpass limited to ~350 cm(-1), they can be tuned across the spectrum of interest to access all characteristic Raman features. As an illustration of performance, we present Raman mapping of single-walled carbon nanotubes (SWNTs): (i) in a small volume of water-surfactant dispersion as well as (ii) after deposition onto a substrate. A significant improvement in the acquisition time (and efficiency) is demonstrated compared to previous RRS implementations. These results may help to establish (micro) Raman spectral mapping as a routine tool for characterization of SWNTs as well as other materials with a pronounced resonance Raman response in the visible-near-infrared spectral region.
A novel filter bank for biotelemetry.
Karagözoglu, B
2001-03-01
In a multichannel biotelemetry system, signals taken from a patient are distributed along the available frequency range (bandwidth) of the system through frequency-division-multiplexing, and combined into a single composite signal. Biological signals that are limited to low frequencies (below 10 Hz) modulate the frequencies of respective sub-carriers. Other biological signals are carried in amplitude-modulated forms. It is recognized that recovering original signals from a composite signal at the receiver side is a technical challenge when a telemetry system with narrow bandwidth capacity is used, since such a system leaves little frequency spacing between information channels. A filter bank is therefore utilized for recovering biological signals that are transmitted. The filter bank contains filter units comprising switched-capacitor filter integrated circuits. The filters have two distinct and opposing outputs (band-stop (notch) and band-pass). Since most biological signals are at low frequencies, and modulated signals occupy a narrow band around the carrier, notch filters can be used to efficiently stop signals in the narrow frequency range. Once the interim channels are removed, other channels become well separated from each other, and band-pass filters can select them. In the proposed system, efficient filtering of closely packed channels is achieved, with low interference, from neighboring channels. The filter bank is applied to a system that carries four biological signals and a battery status indicator signal. Experimental results reinforce theoretical predictions that the filter bank successfully de-multiplexes closely packed information channels with low crosstalk between them. It is concluded that the proposed filter bank allows utilization of cost-effective multichannel biotelemetry systems that are designed around commercial audio devices, and that it can be readily adapted to a broad range of physiological recording requirements.
NASA Astrophysics Data System (ADS)
Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.
2013-12-01
We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.
Implementation of real-time digital signal processing systems
NASA Technical Reports Server (NTRS)
Narasimha, M.; Peterson, A.; Narayan, S.
1978-01-01
Special purpose hardware implementation of DFT Computers and digital filters is considered in the light of newly introduced algorithms and IC devices. Recent work by Winograd on high-speed convolution techniques for computing short length DFT's, has motivated the development of more efficient algorithms, compared to the FFT, for evaluating the transform of longer sequences. Among these, prime factor algorithms appear suitable for special purpose hardware implementations. Architectural considerations in designing DFT computers based on these algorithms are discussed. With the availability of monolithic multiplier-accumulators, a direct implementation of IIR and FIR filters, using random access memories in place of shift registers, appears attractive. The memory addressing scheme involved in such implementations is discussed. A simple counter set-up to address the data memory in the realization of FIR filters is also described. The combination of a set of simple filters (weighting network) and a DFT computer is shown to realize a bank of uniform bandpass filters. The usefulness of this concept in arriving at a modular design for a million channel spectrum analyzer, based on microprocessors, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju
A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less
NASA Astrophysics Data System (ADS)
Kumari, Puja; Mudiganti, Jagadish Chandra
2017-11-01
In this work bandpass filter based on SIW technology with an adequate fractional bandwidth as well as refinement in the stopband performance is presented. Its application lies with the receiver filter working in the Ka band used mainly in the ground terminal for satellite communication. Additionally analysis of divergent input/output arrangement is also demonstrated. Three SIW filter having a varying passband from 19.2GHz -21.2GHz depending on the input/output are synthesized on a planar substrate having height of 0.508mm RT/duroid 6002 using periodically arranged metal via holes through a regulated PCB process. Simulated outputs has a in-band insertion loss 0.9dB and the improved stopband attenuation within the frequency range of 29.5GHz - 31GHz is around 45 dB. It is observed that the experimented results coincide completely with the results simulated in HFSS/CST.
Characterization and Modeling of Dual Stage Quadruple Pass Configurations
NASA Astrophysics Data System (ADS)
Sellami, M.; Sellami, A.; Berrah, S.
In this paper, the proposed system achieves a gain of 62dBs. It employs a dual-stage (DS) to enhance the amplification and a tunable band-pass filter (TBF) to filter out the backward amplified spontaneous emission (ASE) that degrades the signal amplification at the input end of the EDFA. The technique there by reduces the effect of ASE self-saturation [1]. This configuration is also useful in reducing the sensitivity of the EDFA to extra strenuous reflections caused by imperfections of the splices and other optical components [2]. as well as improving noise figure and gain. The experimental work will build up by using the active component Silica based EDF (Si-EDF) in Dual Stage Quadruple Pass (DSQP) configuration. By using Tunable Band pass Filter (TBF) in DSQP between the port 1 and port 2 of circulators (CRT2, CRT3) to filter out the unwanted ASE.
Universal Network Access System
2003-11-01
128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1
High speed high dynamic range high accuracy measurement system
Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng
2016-11-29
A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.
SiC: filter for extreme ultraviolet
NASA Astrophysics Data System (ADS)
Mitrofanov, Alexander V.; Pudonin, Fedor A.; Zhitnik, Igor A.
1994-09-01
It is proposed to use thin films of silicon carbide as Extreme Ultraviolet bandpass filters transparent within 135-304 A band and with excellent cutoff blocking of the strong L(subscript (alpha) ) 1216 A line radiation. Mesh or particle track porous membrane supporting 200-800 A thickness SiC filters have been made by RF sputtering techniques. We describe the design and performance of these filters. Such type SiC filter was used in front of the microchannel plate detector of the TEREK X-Ray Telescope mounted on the Solar Observatory CORONAS-I which was successfully launched on March 2, 1994.
Thermal control design of the Lightning Mapper Sensor narrow-band spectral filter
NASA Technical Reports Server (NTRS)
Flannery, Martin R.; Potter, John; Raab, Jeff R.; Manlief, Scott K.
1992-01-01
The performance of the Lightning Mapper Sensor is dependent on the temperature shifts of its narrowband spectral filter. To perform over a 10 degree FOV with an 0.8 nm bandwidth, the filter must be 15 cm in diameter and mounted externally to the telescope optics. The filter thermal control required a filter design optimized for minimum bandpass shift with temperature, a thermal analysis of substrate materials for maximum temperature uniformity, and a thermal radiation analysis to determine the parameter sensitivity of the radiation shield for the filter, the filter thermal recovery time after occultation, and heater power to maintain filter performance in the earth-staring geosynchronous environment.
Quantitative Measurements of Daytime Near Infrared Sky Brightness at the AEOS 3.6 m Telescope
2014-09-01
photometric filters. In the case of the 1250 nm filter, the quoted results reflect the brightness that would be seen through a standard 2MASS J filter [9...brightness per unit wavelength through the broader 2MASS filter with 162 nm bandpass. Given the known colors of the star, we estimate this error to be...Megeath, S. T. “Spectral irradiance calibration in the infrared. XIV. The absolute calibration of 2MASS ,” Astron. J., 126, 1090–1096 (2003) [10] Jim
Quantum Optics with Atom-like Systems in Diamond
2013-11-19
emission from the NV is separated by dichroic filters from the 532 nm excitation path ( Semrock LPD01-532RS-25) and ZPL path ( Semrock Di01- R635-25x35...before being filtered to remove any leakage or dominant raman lines (2x Semrock NF01-633U-25, Semrock LP01-633RS-25). It is then coupled into a...filtered by two narrow frequency filters (custom Andover 1 nm bandpass around 638 nm, Semrock FF01-640/14-25) and detected by a low-dark count APD (Micro
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Diego, J. A.; De Leo, M. A.; Cepa, J.
Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. Wemore » compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.« less
A Study of a Mulilayer BPF with Attenuation Poles by Using Folded Resonators with Open-Circuited End
NASA Astrophysics Data System (ADS)
Kasamai, Masashi; Usie, Masahiko; Wada, Kouji
We propose a multilayer bandpass filter(BPF) with attenuation poles using folded resonators with open-circuited end. Firstly, the basic characteristics of a folded resonator with open-circuited end under the change of the parameters is examined by an electromagnetic simulator. Secondly, 3-pole multilayer BPFs using the resonators above are proposed, simulated and experimented. As a result, the bandpass characteristics with attenuation poles near the lower and higher side of the center frequency is realized by the proposed structure.
A sonic transducer to detect fluid leaks
NASA Technical Reports Server (NTRS)
Cimerman, I.; Janus, J.
1972-01-01
Ultrasonic detector utilizes set of contact transducers and bandpass filters to detect and analyze sonic energy produced by flow or leakage. Detector covers wide frequency range and is operable at cryogenic temperatures and in vacuum.
Chen, Hua-Pin
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963
A three-mode microstrip resonator and a miniature ultra-wideband filter based on it
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Khodenkov, S. A.; Leksikov, An. A.; Shabanov, V. F.
2017-06-01
An original microstrip resonator design with a strip conductor split by a slot at one of its ends is investigated. It is demonstrated that at the optimal slot sizes, when the eigenfrequency of the second oscillation mode hits the center between the first and third oscillation modes, the resonator can work as a thirdorder bandpass filter. The structure formed from only two such resonators electromagnetically coupled by split conductor sections is a miniature six-order wideband filter with high selectivity. The test prototype of the filter with a central passband frequency of 1.2 GHz and a passband width of 0.75 GHz fabricated on a substrate (45 × 11 × 1) mm3 in size with a permittivity of 80 is characterized by minimum loss in a passband of 0.5 dB. The parametric synthesis of the filter structure was performed using electrodynamic analysis of the 3D model. The measured characteristics of the test prototype agree well with the calculated data.
Wang, Li Xian; Zhu, Ning Hua; Zheng, Jian Yu; Liu, Jian Guo; Li, Wei
2012-05-20
We induce a microwave photonic bandpass filter into an optoelectronic oscillator to generate a chaotic ultra-wideband signal in both the optical and electrical domain. The theoretical analysis and numerical simulation indicate that this system is capable of generating band-limited high-dimensional chaos. Experimental results coincide well with the theoretical prediction and show that the power spectrum of the generated chaotic signal basically meets the Federal Communications Commission indoor mask. The generated chaotic carrier is further intensity modulated by a 10 MHz square wave, and the waveform of the output ultra-wideband signal is measured for demonstrating the chaotic on-off keying modulation.
Determination of lunar ilmentite abundances from remotely sensed data
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Larson, S. M.; Singer, Robert B.
1990-01-01
The mapping of ilmenite on the surface of the moon is a necessary precursor to the investigation of prospective lunar base sites. Telescopic observations of the moon using a variety of narrow bandpass optical interference filters are being performed as a preliminary means of achieving this goal. Specifically, ratios of images obtained using filters centered at 0.40 and 0.56 microns provide quantitative estimates of TiO2 abundances. Analysis of preliminary distribution maps of TiO2 concentrations allows identification of specific high-Ti areas. Investigations of these areas using slit spectra in the range 0.03 to 0.85 microns are underway to search for discrete spectral signatures attributable to ilmenite.
Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong
2014-01-01
The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes’ hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized. PMID:25317171
Combined Linear and Nonlinear Radar: Waveform Generation and Capture
2013-04-01
Instrument Control Toolbox in MATLAB (v7.0.0.19920, R14). The graphical user interface (GUI) in figure 11 was created using MATLAB’s “ guide ” function. The...filtered second harmonic of the captured Vtrans: 16 2trans BPF transV t h t V t , (21) and hBPF is a bandpass filter with
NASA Astrophysics Data System (ADS)
Sekiya, N.
2016-08-01
We have developed two high-order high-temperature superconducting (HTS) dual-band bandpass filters (BPFs) with a receiver subsystem for future mobile communication systems. They feature stub-loaded hair-pin resonators with two types of microstrip lines between them. One has a six-pole design, and the other has an eight-pole design. Both were designed to operate at 2.15 GHz with a 43-MHz (2%) bandwidth for the lower passband and at 3.50 GHz with a 70-MHz (2%) bandwidth for the upper one. They were fabricated using YBa2Cu3Oy thin film on a CeO2-bufferd r-Al2O3 substrate. The measured results for both filters agree well with the simulated ones. The HTS dual-band BPF receiver subsystem uses a pulse tube cryocooler and a wideband low noise amplifier (LNA). We measured the frequency response of the six-pole dual-band BPF with and without a wideband LNA with a gain of 10 dB. The measured return losses were close.
Landsat Data Continuity Mission (LDCM) - Optimizing X-Band Usage
NASA Technical Reports Server (NTRS)
Garon, H. M.; Gal-Edd, J. S.; Dearth, K. W.; Sank, V. I.
2010-01-01
The NASA version of the low-density parity check (LDPC) 7/8-rate code, shortened to the dimensions of (8160, 7136), has been implemented as the forward error correction (FEC) schema for the Landsat Data Continuity Mission (LDCM). This is the first flight application of this code. In order to place a 440 Msps link within the 375 MHz wide X band we found it necessary to heavily bandpass filter the satellite transmitter output . Despite the significant amplitude and phase distortions that accompanied the spectral truncation, the mission required BER is maintained at < 10(exp -12) with less than 2 dB of implementation loss. We utilized a band-pass filter designed ostensibly to replicate the link distortions to demonstrate link design viability. The same filter was then used to optimize the adaptive equalizer in the receiver employed at the terminus of the downlink. The excellent results we obtained could be directly attributed to the implementation of the LDPC code and the amplitude and phase compensation provided in the receiver. Similar results were obtained with receivers from several vendors.
Holtzman, Tahl; Jörntell, Henrik
2011-01-01
Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297
Q-band 4-state phase shifter in planar technology: Circuit design and performance analysis.
Villa, E; Cagigas, J; Aja, B; de la Fuente, L; Artal, E
2016-09-01
A 30% bandwidth phase shifter with four phase states is designed to be integrated in a radio astronomy receiver. The circuit has two 90° out-of-phase microwave phase-shifting branches which are combined by Wilkinson power dividers. Each branch is composed of a 180° phase shifter and a band-pass filter. The 180° phase shifter is made of cascaded hybrid rings with microwave PIN diodes as switching devices. The 90° phase shift is achieved with the two band-pass filters. Experimental characterization has shown significant results, with average phase shift values of -90.7°, -181.7°, and 88.5° within the operation band, 35-47 GHz, and mean insertion loss of 7.4 dB. The performance of its integration in a polarimetric receiver for radio astronomy is analyzed, which validates the use of the presented phase shifter in such type of receiver.
Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter
NASA Technical Reports Server (NTRS)
Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel
2013-01-01
This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels, with 50-GHz bandwidth, were designed, each using multiple transmission line media such as microstrip, coplanar waveguide, and quasi-lumped components on 0.45- m thick silicon. In the design process, modeling issues had to be overcome. Due to the extremely high frequencies, very thin Si substrate, and the superconducting metal layers, most commercially available software fails in various ways. These issues were mitigated by using alternative software that was capable of handling them at the expense of greater simulation time. The design of on-chip components for the filter characterization, such as a broadband antenna, Wilkinson power dividers, attenuators, detectors, and transitions has been completed.
Star Observations by Asteroid Multiband Imaging Camera (AMICA) on Hayabusa (MUSES-C) Cruising Phase
NASA Astrophysics Data System (ADS)
Saito, J.; Hashimoto, T.; Kubota, T.; Hayabusa AMICA Team
Muses-C is the first Japanese asteroid mission and also a technology demonstration one to the S-type asteroid, 25143 Itokawa (1998SF36). It was launched at May 9, 2003, and renamed Hayabusa after the spacecraft was confirmed to be on the interplanetary orbit. This spacecraft has the event of the Earth-swingby for gravitational assist in the way to Itokawa on 2004 May. The arrival to Itokawa is scheduled on 2005 summer. During the visit to Itokawa, the remote-sensing observation with AMICA, NIRS (Near Infrared Spectrometer), XRS (X-ray Fluorescence Spectrometer), and LIDAR are performed, and the spacecraft descends and collects the surface samples at the touch down to the surface. The captured asteroid sample will be returned to the Earth in the middle of 2007. The telescopic optical navigation camera (ONC-T) with seven bandpass filters (and one wide-band filter) and polarizers is called AMICA (Asteroid Multiband Imaging CAmera) when ONC-T is used for scientific observations. The AMICA's seven bandpass filters are nearly equivalent to the seven filters of the ECAS (Eight Color Asteroid Survey) system. Obtained spectroscopic data will be compared with previously obtained ECAS observations. AMICA also has four polarizers, which are located on one edge of the CCD chip (covering 1.1 x 1.1 degrees each). Using the polarizers of AMICA, we can obtain polarimetric information of the target asteroid's surface. Since last November, we planned the test observations of some stars and planets by AMICA and could successfully obtain these images. Here, we briefly report these observations and its calibration by the ground-based observational data. In addition, we also present a current status of AMICA.
MIR-ATR sensor for process monitoring
NASA Astrophysics Data System (ADS)
Geörg, Daniel; Schalk, Robert; Methner, Frank-Jürgen; Beuermann, Thomas
2015-06-01
A mid-infrared attenuated total reflectance (MIR-ATR) sensor has been developed for chemical reaction monitoring. The optical setup of the compact and low-priced sensor consists of an IR emitter as light source, a zinc selenide (ZnSe) ATR prism as boundary to the process, and four thermopile detectors, each equipped with an optical bandpass filter. The practical applicability was tested during esterification of ethanol and formic acid to ethyl formate and water as a model reaction with subsequent distillation. For reference analysis, a Fourier transform mid-infrared (FT-MIR) spectrometer with diamond ATR module was applied. On-line measurements using the MIR-ATR sensor and the FT-MIR spectrometer were performed in a bypass loop. The sensor was calibrated by multiple linear regression in order to link the measured absorbance in the four optical channels to the analyte concentrations. The analytical potential of the MIR-ATR sensor was demonstrated by simultaneous real-time monitoring of all four chemical substances involved in the esterification and distillation process. The temporal courses of the sensor signals are in accordance with the concentration values achieved by the commercial FT-MIR spectrometer. The standard error of prediction for ethanol, formic acid, ethyl formate, and water were 0.38 mol L - 1, 0.48 mol L - 1, 0.38 mol L - 1, and 1.12 mol L - 1, respectively. A procedure based on MIR spectra is presented to simulate the response characteristics of the sensor if the transmission ranges of the filters are varied. Using this tool analyte specific bandpass filters for a particular chemical reaction can be identified. By exchanging the optical filters, the sensor can be adapted to a wide range of processes in the chemical, pharmaceutical, and beverage industries.
Comparison of sEMG processing methods during whole-body vibration exercise.
Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S
2015-12-01
The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P < 0.001), the error increased with increasing mean values to a higher degree for the band-stop filter. After adjusting the sEMG(RMS) during WBV for the bias, the performance of the interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Filter frequency response of time dependent signal using Laplace transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestakov, Aleksei I.
We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/t c) 2 e -t/tmore » $$_c$$, where t c = const. We consider lowpass, highpass and bandpass filters.« less
Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban
2003-01-01
The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.
Analysis of JPSS J1 VIIRS Polarization Sensitivity Using the NIST T-SIRCUS
NASA Technical Reports Server (NTRS)
McIntire, Jeffrey W.; Young, James B.; Moyer, David; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong
2015-01-01
The polarization sensitivity of the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) measured pre-launch using a broadband source was observed to be larger than expected for many reflective bands. Ray trace modeling predicted that the observed polarization sensitivity was the result of larger diattenuation at the edges of the focal plane filter spectral bandpass. Additional ground measurements were performed using a monochromatic source (the NIST T-SIRCUS) to input linearly polarized light at a number of wavelengths across the bandpass of two VIIRS spectral bands and two scan angles. This work describes the data processing, analysis, and results derived from the T-SIRCUS measurements, comparing them with broadband measurements. Results have shown that the observed degree of linear polarization, when weighted by the sensor's spectral response function, is generally larger on the edges and smaller in the center of the spectral bandpass, as predicted. However, phase angle changes in the center of the bandpass differ between model and measurement. Integration of the monochromatic polarization sensitivity over wavelength produced results consistent with the broadband source measurements, for all cases considered.
A high temperature superconductor notch filter for the Sardinia Radio Telescope
NASA Astrophysics Data System (ADS)
Bolli, Pietro; Cresci, Luca; Huang, Frederick; Mariotti, Sergio; Panella, Dario
2018-04-01
A High Temperature Superconductor filter operating in the C-band between 4200 and 5600 MHz has been developed for one of the radio astronomical receivers of the Sardinia Radio Telescope. The motivation was to attenuate an interference from a weather radar at 5640 MHz, whose power level exceeds the linear region of the first active stages of the receiver. A very sharp transition after the nominal maximum passband frequency is reached by combining a 6th order band-pass filter with a 6th order stop-band. This solution is competitive with an alternative layout based on a cascaded triplet filter. Three units of the filter have been measured with two different calibration approaches to investigate pros and cons of each, and data repeatability. The final performance figures of the filters are: ohmic losses of the order of 0.15-0.25 dB, matching better than -15 dB, and -30 dB attenuation at 5640 MHz. Finally, a more accurate model of the connection between external connector and microstrip shows a better agreement between simulations and experimental data.
Multifractal spectrum of physiological signals: a mechanism-related approach
NASA Astrophysics Data System (ADS)
Pavlov, Alexey N.; Pavlova, Olga N.; Abdurashitov, Arkady S.; Arinushkin, Pavel A.; Runnova, Anastasiya E.; Semyachkina-Glushkovskaya, Oxana V.
2017-04-01
In this paper we discuss an approach for mechanism-related analysis of physiological signals performed with the wavelet-based multifractal formalism. This approach assumes estimation of the singularity spectrum for the band-pass filtered processes at different physiological conditions in order to provide explanation of the occurred changes in the Hölder exponents and the multi-fractality degree. We illustrate the considered approach using two examples, namely, the dynamics of the cerebral blood flow (CBF) and the electrical activity of the brain.
SED-dependent galactic extinction prescription for Euclid and future cosmological surveys
NASA Astrophysics Data System (ADS)
Galametz, Audrey; Saglia, Roberto; Paltani, Stéphane; Apostolakos, Nikolaos; Dubath, Pierre
2017-02-01
The outcome of upcoming cosmological surveys will depend on the accurate estimates of photometric redshifts. In the framework of the implementation of the photometric redshift algorithm for the ESA Euclid mission, we are exploring new avenues to improve current template-fitting methods. This paper focusses in particular on the prescription of the extinction of a source light by dust in the Milky Way. Since Galactic extinction strongly correlates with wavelength and photometry is commonly obtained through broad-band filters, the amount of absorption depends on the source intrinsic spectral energy distribution (SED), a point however neglected as the source SED is not known a-priori. A consequence of this dependence is that the observed EB-V (=AB-AV) will in general be different from the EB-V used to normalise the Galactic absorption law kλ (=Aλ/EB-V). Band-pass corrections are thus required to adequately renormalise the law for a given SED. In this work, we assess the band-pass corrections of a range of SEDs and find they vary by up to 20%. We have investigated how neglecting these corrections biases the calibration of dust into reddening map and how the scaling of the map depends of the sources used for its calibration. We derive dust-to-reddening scaling factors from the colour excesses of z< 0.4 SDSS red galaxies and show that band-pass corrections predict the observed differences. Extinction corrections are then estimated for a range of SEDs and a set of optical to near-infrared filters relevant to Euclid and upcoming cosmological ground-based surveys. For high extinction line-of-sights (EB-V> 0.1, 8% of the Euclid Wide survey), the variations in corrections can be up to 0.1 mag in the "bluer" optical filters (ugr) and up to 0.04 mag in the near-infrared filters. We find that an inaccurate correction of Galactic extinction critically affects photometric redshift estimates. In particular, for high extinction lines of sights and z < 0.5, the bias (I.e. the mean Δz = zphot-zreal) exceeds 0.2%(1 + z), the precision required for weak-lensing analyses. Additional uncertainty on the parametrisation of the Milky Way extinction curve itself further reduces the photometric redshift precision. We propose a new prescription of Galactic absorption for template-fitting algorithms which takes into consideration the dependence of extinction with SED.
Photonic Analog-to-Digital Converters
2006-03-01
Edward W. Taylor, “Gamma-Ray Induced Damage and Recovery Behavior in an Erbium-Doped Fiber Laser ”, SPIE Proceedings, Vol. 4547, Sep. 2001, pp.126-133...requirements. The center frequency of the bandpass filter determined the laser mode-locked frequency. SNDP’s COEO had an operating frequency of... laser . Better filters and amplifiers were needed to improve operation and to reduce the phase noise to a level comparable with Delfyett’s actively
Faraday imaging at high temperatures
Hackel, L.A.; Reichert, P.
1997-03-18
A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.
Faraday imaging at high temperatures
Hackel, Lloyd A.; Reichert, Patrick
1997-01-01
A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.
Ultra-wideband microwave photonic link based on single-sideband modulation
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu
2017-10-01
Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.
Fibre Optic Mechanical Sensors For Aerospace Applications
NASA Astrophysics Data System (ADS)
Batchellor, C. R.; Dakin, J. P.; Pearce, D. A. J.
1989-04-01
A fiber optic multisensor methane detection system matched to topology and environment of a coal mine is reported. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic or molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity upon spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.
Self-Referenced Fiber Optic System For Remote Methane Detection
NASA Astrophysics Data System (ADS)
Zientkiewicz, Jacek K.
1989-10-01
The paper discusses a fiber optic multisensor methane detection system matched to topology and environment of the underground mine. The system involves time domain multiplexed (TDM) methane sensors based on selective absorption of source radiation by atomic/molecular species in the gas sensing heads. A two-wavelength ratiometric approach allows simple self-referencing, cancels out errors arising from other contaminants, and improves the measurement contrast. The laboratory system consists of a high radiance LED source, multimode fiber, optical sensing head, optical bandpass filters, and involves synchronous detection with low noise photodiodes and a lock-in amplifier. Detection sensitivity versus spectral resolution of the optical filters has also been investigated and described. The system performance was evaluated and the results are presented.
NASA Astrophysics Data System (ADS)
Chen, Huaiyu; Cao, Li
2017-06-01
In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.
Broadband unidirectional ultrasound propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Dipen N.; Pantea, Cristian
A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystalmore » provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.« less
Integrable microwave filter based on a photonic crystal delay line.
Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo
2012-01-01
The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.
Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)
NASA Astrophysics Data System (ADS)
Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le
2017-02-01
A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.
Bunegin, L; Wahl, D; Albin, M S
1994-03-01
Cerebral embolism has been implicated in the development of cognitive and neurological deficits following bypass surgery. This study proposes methodology for estimating cerebral air embolus volume using transcranial Doppler sonography. Transcranial Doppler audio signals of air bubbles in the middle cerebral artery obtained from in vivo experiments were subjected to a fast-Fourier transform analysis. Audio segments when no air was present as well as artifact resulting from electrocautery and sensor movement were also subjected to fast-Fourier transform analysis. Spectra were compared, and frequency and power differences were noted and used for development of audio band-pass filters for isolation of frequencies associated with air emboli. In a bench model of the middle cerebral artery circulation, repetitive injections of various air volumes between 0.5 and 500 microL were made. Transcranial Doppler audio output was band-pass filtered, acquired digitally, then subjected to a fast-Fourier transform power spectrum analysis and power spectrum integration. A linear least-squares correlation was performed on the data. Fast-Fourier transform analysis of audio segments indicated that frequencies between 250 and 500 Hz are consistently dominant in the spectrum when air emboli are present. Background frequencies appear to be below 240 Hz, and artifact resulting from sensor movement and electrocautery appears to be below 300 Hz. Data from the middle cerebral artery model filtered through a 307- to 450-Hz band-pass filter yielded a linear relation between emboli volume and the integrated value of the power spectrum near 40 microL. Detection of emboli less than 0.5 microL was inconsistent, and embolus volumes greater than 40 microL were indistinguishable from one another. The preliminary technique described in this study may represent a starting point from which automated detection and volume estimation of cerebral emboli might be approached.
NASA Astrophysics Data System (ADS)
Liu, Danian; Zhu, Jiang; Shu, Yeqiang; Wang, Dongxiao; Wang, Weiqiang; Cai, Shuqun
2018-06-01
The Northwestern Tropical Pacific Ocean (NWTPO) moorings observing system, including 15 moorings, was established in 2013 to provide velocity profile data. Observing system simulation experiments (OSSEs) were carried out to assess the ability of the observation system to monitor intraseasonal variability in a pilot study, where ideal "mooring-observed" velocity was assimilated using Ensemble Optimal Interpolation (EnOI) based on the Regional Oceanic Modeling System (ROMS). Because errors between the control and "nature" runs have a mesoscale structure, a random ensemble derived from 20-90-day bandpass-filtered nine-year model outputs is proved to be more appropriate for the NWTPO mooring array assimilation than a random ensemble derived from a 30-day running mean. The simulation of the intraseasonal currents in the North Equatorial Current (NEC), North Equatorial Countercurrent (NECC), and Equatorial Undercurrent (EUC) areas can be improved by assimilating velocity profiles using a 20-90-day bandpass-filtered ensemble. The root mean square errors (RMSEs) of the intraseasonal zonal (U) and meridional velocity (V) above 500 m depth within the study area (between 0°N-18°N and 122°E-147°E) were reduced by 15.4% and 16.9%, respectively. Improvements in the downstream area of the NEC moorings transect were optimum where the RMSEs of the intraseasonal velocities above 500 m were reduced by more than 30%. Assimilating velocity profiles can have a positive impact on the simulation and forecast of thermohaline structure and sea level anomalies in the ocean.
The application of digital signal processing techniques to a teleoperator radar system
NASA Technical Reports Server (NTRS)
Pujol, A.
1982-01-01
A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.
The Volumetric Imaging System for the Ionosphere (VISION)
2011-01-01
telescope mirror is an 80 mm focal length, 50 mm diameter, first surface mirror with magnesium fluoride over aluminum coating on a zerodur blank...will be either a wedge–and–strip anode or a codacon. The telescope mirror is an 80 mm focal length, 2.5 cm diameter, first surface mirror with...magnesium fluoride over aluminum coating on a zerodur blank. The filters are the three reflection bandpass filters developed for and flown on
NASA Technical Reports Server (NTRS)
Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)
1995-01-01
A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
A wideband UHF high-temperature superconducting filter system with a fractional bandwidth over 108%
NASA Astrophysics Data System (ADS)
Huang, Haibo; Wu, Yun; Wang, Jia; Bian, Yongbo; Wang, Xu; Li, Guoqiang; Zhang, Xueqiang; Li, Chunguang; Sun, Liang; He, Yusheng
2018-07-01
A High-temperature superconducting (HTS) bandpass filter system containing a lowpass filter, a highpass filter and an LNA has been fabricated to meet the demands of wideband wireless signal receiving system. The filter system has an ultimate fractional bandwidth over 108% with the passband from 820 MHz to 2750 MHz. Besides, the filter system showed good frequency selectivity and out-of-band rejection. The 40 dB to 3 dB rectangle coefficient of our filter system is 1.4, which is better than that of an 8-pole Chebyshev filter, and the out-of-band rejection is better than 40 dB. Through systematical optimization, a return loss of better than 9.8 dB was received in the filter system. This system also showed advantages in design and fabrication precision.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
NASA Astrophysics Data System (ADS)
Thilker, David
2017-08-01
We request 17 orbits to conduct a pilot study to examine the effectiveness of the WFC3/UVIS F300X filter for studying fundamental problems in star formation in the low density regime. In principle, the broader bandpass and higher throughput of F300X can halve the required observing time relative to F275W, the filter of choice for studying young stellar populations in nearby galaxies. Together with F475W and F600LP, this X filter set may be as effective as standard UVIS broadband filters for characterizing the physical properties of such populations. We will observe 5 low surface brightness targets with a range of properties to test potential issues with F300X: the red tail to 4000A and a red leak beyond, ghosts, and the wider bandpass. Masses and ages of massive stars, young star clusters, and clumps derived from photometry from the X filter set will be compared with corresponding measurements from standard filters. Beyond testing, our program will provide the first sample spanning a range of LSB galaxy properties for which HST UV imaging will be obtained, and a glimpse into the ensemble properties of the quanta of star formation in these strange environments. The increased observing efficiency would make more tractable programs which require several tens to hundreds of orbits to aggregate sufficient numbers of massive stars, young star clusters, and clumps to build statistical samples. We are hopeful that our pilot observations will broadly enable high-resolution UV imaging exploration of the low density frontier of star formation while HST is still in good health.
Theoretical colours and isochrones for some Hubble Space Telescope colour systems. II
NASA Technical Reports Server (NTRS)
Paltoglou, G.; Bell, R. A.
1991-01-01
A grid of synthetic surface brightness magnitudes for 14 bandpasses of the Hubble Space Telescope Faint Object Camera is presented, as well as a grid of UBV, uvby, and Faint Object Camera surface brightness magnitudes derived from the Gunn-Stryker spectrophotometric atlas. The synthetic colors are used to examine the transformations between the ground-based Johnson UBV and Stromgren uvby systems and the Faint Object Camera UBV and uvby. Two new four-color systems, similar to the Stromgren system, are proposed for the determination of abundance, temperature, and surface gravity. The synthetic colors are also used to calculate color-magnitude isochrones from the list of theoretical tracks provided by VandenBerg and Bell (1990). It is shown that by using the appropriate filters it is possible to minimize the dependence of this color difference on metallicity. The effects of interstellar reddening on various Faint Object Camera colors are analyzed as well as the observational requirements for obtaining data of a given signal-to-noise for each of the 14 bandpasses.
NASA Astrophysics Data System (ADS)
de Denus-Baillargeon, Marie-Maude
2007-05-01
Light coming from far-away astronomical objects carries a variety of information ranging from chemical composition to distance and kinematics. Amongst these astronomical bodies, galaxies are widely studied objects: they are slowly rotating entities made of gas, stars and dark matter, and their properties are broadly distributed. Rotation velocities of galaxies yield very important information, namely the mass enclosed in the rotation radius, and thus the respective distribution of luminous and dark matter. To determine the rotation velocity, the Doppler effect is a convenient tool. As an emission or absorption line shifts from its reference position, it is possible to calculate the approaching or receding velocity. The maximal rotation velocity difference between the approaching and receding sides is at most a few hundreds of km/s, which translates in a few nm shift from the rest wavelength at most, thus calling for very precise spectral information.Due to their distance, the objects observed with astronomical instrumentation are very faint. Optical instruments for astronomy thus require high throughput optical film systems, particularly those based on notch/bandpass filters with low/high in-band transmission and high/low out-of-band blocking power. This calls for very high film uniformity and high precision of film monitoring and process control. Such filters must also survive extreme environmental conditions ranging from fresh and humid climate to cryogenic temperatures.In the present work, we describe all steps leading from filter design to filter fabrication, process monitoring, and characterization. In particular, we focus on the comparison of the performance of graded-index (rugate) filters and quarter-wave stack narrowband filters deposited by plasma enhanced chemical vapor deposition and dual ion beam sputtering using SiO 2 , TiO 2 and Ta 2 O 5.Optical and mechanical properties of the individual films have been evaluated and are consistent with those found in the litterature reporting on the same tech niques. Namely, we find values of compressive stress of 160 and 410 MPa for layers of Ta 2 O 5 and SiO 2 deposited by DIBS and of 150 and 60 MPa for PECVD- deposited SiO 2 /TiO 2 mixtures rich in SiO 2 and TiO 2 respectively. Young's modulus of 109, 73, 55 and 94 GPa and refraction index of 2,13, 1,49, 1,59 and 2,09 have also been measured for those same materials. Properties of materials mixtures behave qualitatively as the ones reported in references on the subject.Attention is paid to the effect of temperature on the variation of the central wavelength and bandpass width. The results are discussed in terms of film material and filter design. We report variations of ~ =0,04°C for multilayers DIBS-produced filters and -0,0041/°C and 0,19°C for PECVD-deposited quarter- wave stacks and rugate filters respectively. These results match the predictions made by Takashashi's formulae. The bandwidth varies as well with temperature, and the extent of the variation seems related to the number of cavities in the filter. Further work is still needed in order to clearly establish the relation between the number of cavities and the bandpass' narrowing/widening with temperature.
NASA Astrophysics Data System (ADS)
de Denus-Baillargeon, Marie-Maude
Light coming from far-away astronomical objects carries a variety of information ranging from chemical composition to distance and kinematics. Amongst these astronomical bodies, galaxies are widely studied objects: they are slowly rotating entities made of gas, stars and dark matter, and their properties are broadly distributed. Rotation velocities of galaxies yield very important information, namely the mass enclosed in the rotation radius, and thus the respective distribution of luminous and dark matter. To determine the rotation velocity, the Doppler effect is a convenient tool. As an emission or absorption line shifts from its reference position, it is possible to calculate the approaching or receding velocity. The maximal rotation velocity difference between the approaching and receding sides is at most a few hundreds of km/s, which translates in a few nm shift from the rest wavelength at most, thus calling for very precise spectral information. Due to their distance, the objects observed with astronomical instrumentation are very faint. Optical instruments for astronomy thus require high throughput optical film systems, particularly those based on notch/bandpass filters with low/high in-band transmission and high/low out-of-band blocking power. This calls for very high film uniformity and high precision of film monitoring and process control. Such filters must also survive extreme environmental conditions ranging from fresh and humid climate to cryogenic temperatures. In the present work, we describe all steps leading from filter design to filter fabrication, process monitoring, and characterization. In particular, we focus on the comparison of the performance of graded-index (rugate) filters and quarter-wave stack narrowband filters deposited by plasma enhanced chemical vapor deposition and dual ion beam sputtering using SiO 2 , TiO 2 and Ta 2 O 5. Optical and mechanical properties of the individual films have been evaluated and are consistent with those found in the litterature reporting on the same techniques. Namely, we find values of compressive stress of 160 and 410 MPa for layers of Ta 2 O 5 and SiO 2 deposited by DIBS and of 150 and 60 MPa for PECVD- deposited SiO 2 /TiO 2 mixtures rich in SiO 2 and TiO 2 respectively. Young's modulus of 109, 73, 55 and 94 GPa and refraction index of 2,13, 1,49, 1,59 and 2,09 have also been measured for those same materials. Properties of materials mixtures behave qualitatively as the ones reported in references on the subject. Attention is paid to the effect of temperature on the variation of the central wavelength and bandpass width. The results are discussed in terms of film material and filter design. We report variations of ~ =0,04Å/°C for multilayers DIBS-produced filters and -0,0041/°C and 0,19Å/°C for PECVD-deposited quarter- wave stacks and rugate filters respectively. These results match the predictions made by Takashashi's formulae. The bandwidth varies as well with temperature, and the extent of the variation seems related to the number of cavities in the filter. Further work is still needed in order to clearly establish the relation between the number of cavities and the bandpass' narrowing/widening with temperature.
1987-03-01
FILTER--------------------------------- 76 F. ANNEALING --------------------------------------- 80 V. RESULTS...85 C. BANDPASS FILTERS------------------------------- 101 D. CURRENT ANNEALING ------------------------------ 106 4 " m ix , ’* * .S...VaA 2 (l + A1 )(1 + a) - VbA1A2 (1 + a))/(A I + (I+a)) (3) for C20A-2: Vo2 = (Va - Vb)(AIA 2 (I + a))/(A 2 +(l+a)) (4) for C20A-3: V 3 = (VaAIA2
Dual-domain point diffraction interferometer
Naulleau, Patrick P.; Goldberg, Kenneth Alan
2000-01-01
A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.
NASA Astrophysics Data System (ADS)
Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.
2009-11-01
We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.
Design and characterization of a 20 Gbit/s clock recovery circuit
NASA Astrophysics Data System (ADS)
Monteiro, Paulo M.; Matos, J. N.; Gameiro, Atilio M. S.; da Rocha, Jose F.
1995-02-01
In this communication we report the design of a clock recovery circuit produced for the 20 Gbit/s demonstrator of the RACE 2011 project `TRAVEL' of the European Community. The clock recovery circuit is based on an open loop structure using a dielectric resonator narrow bandpass filter with a high quality factor. A detailed electrical characterization of the circuit and also its sensitivity to temperature and detuning variations are presented. The experimental results show that the circuit is a very attractive solution for the forthcoming STM-128 optical links.
High Q-factor metasurfaces based on miniaturized asymmetric single split resonators
NASA Astrophysics Data System (ADS)
Al-Naib, Ibraheem A. I.; Jansen, Christian; Koch, Martin
2009-04-01
We introduce asymmetric single split rectangular resonators as bandstop metasurfaces, which exhibit very high Q-factors in combination with low passband losses and a small electrical footprint. The effect of the degree of asymmetry on the frequency response is thoroughly studied. Furthermore, complementary structures, which feature a bandpass behavior, were derived by applying Babinet's principle and investigated with regards to their transmission characteristics. In future, asymmetric single split rectangular resonators could provide efficient unit cells for frequency selective surface devices, such as thin-film sensors or high performance filters.
Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H
2016-04-01
A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.
Digital Filter ASIC for NASA Deep Space Radio Science
NASA Technical Reports Server (NTRS)
Kowalski, James E.
1995-01-01
This paper is about the implementation of an 80 MHz, 16-bit, multi-stage digital filter to decimate by 1600, providing a 50 kHz output with bandpass ripple of less than +/-0.1 dB. The chip uses two decimation by five units and six decimations by two executed by a single decimation by two units. The six decimations by two consist of six halfband filters, five having 30-taps and one having 51-taps. Use of a 16x16 register file for the digital delay lines enables implementation in the Vitesse 350K gate array.
Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters
NASA Technical Reports Server (NTRS)
Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.
1993-01-01
The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.
A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW
NASA Astrophysics Data System (ADS)
Weng, Min-Hang; Ye, Chang-Sin; Hung, Cheng-Yuan; Huang, Chun-Yueh
A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.
Frey, Laurent; Masarotto, Lilian; D'Aillon, Patrick Gros; Pellé, Catherine; Armand, Marilyn; Marty, Michel; Jamin-Mornet, Clémence; Lhostis, Sandrine; Le Briz, Olivier
2014-07-10
Filter technologies implemented on CMOS image sensors for spectrally selective applications often use a combination of on-chip organic resists and an external substrate with multilayer dielectric coatings. The photopic-like and near-infrared bandpass filtering functions respectively required by ambient light sensing and user proximity detection through time-of-flight can be fully integrated on chip with multilayer metal-dielectric filters. Copper, silicon nitride, and silicon oxide are the materials selected for a technological proof-of-concept on functional wafers, due to their immediate availability in front-end semiconductor fabs. Filter optical designs are optimized with respect to specific performance criteria, and the robustness of the designs regarding process errors are evaluated for industrialization purposes.
Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters
NASA Astrophysics Data System (ADS)
Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard
2018-05-01
A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.
Dual-band frequency selective surface with large band separation and stable performance
NASA Astrophysics Data System (ADS)
Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo
2012-05-01
A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.
Apodized coupled resonator waveguides.
Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A
2007-08-06
In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.
Time-Frequency, Bi-Frequency Detection Analysis of Noise Technology Radar
2006-09-01
it is helpful to use the UWB guidelines . These guidelines are that as the fractional bandwidth of the radar is greater than 0.25 with no...Figure 3 below, the transmitted noise is between 1 to 2 GHz. The first bandpass filter ( BPF ) is centered at 1.5 GHz with a bandwidth of 1 GHz. The...now centered on and filtered around 160 MHz at the IF BPF . Continuing on, the received signal of interest continues down the PD3 (power divider 3
Enhanced-Contrast Viewing of White-Hot Objects in Furnaces
NASA Technical Reports Server (NTRS)
Witherow, William K.; Holmes, Richard R.; Kurtz, Robert L.
2006-01-01
An apparatus denoted a laser image contrast enhancement system (LICES) increases the contrast with which one can view a target glowing with blackbody radiation (a white-hot object) against a background of blackbody radiation in a furnace at a temperature as high as approximately 1,500 C. The apparatus utilizes a combination of narrowband illumination, along with band-pass filtering and polarization filtering to pass illumination reflected by the target while suppressing blackbody light from both the object and its background.
47 CFR 101.131 - Transmitter construction and installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by the licensee. (b) In any case where the maximum modulating frequency of a transmitter is prescribed by the Commission, the transmitter must be equipped with a low-pass or band-pass modulation filter of suitable performance characteristics. In those cases where a modulation limiter is employed, the...
Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1993-01-01
Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.
Pangerc, Urška; Jager, Franc
2015-08-01
In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).
Weld quality inspection using laser-EMAT ultrasonic system and C-scan method
NASA Astrophysics Data System (ADS)
Yang, Lei; Ume, I. Charles
2014-02-01
Laser/EMAT ultrasonic technique has attracted more and more interests in weld quality inspection because of its non-destructive and non-contact characteristics. When ultrasonic techniques are used to detect welds joining relative thin plates, the dominant ultrasonic waves present in the plates are Lamb waves, which propagate all through the thickness. Traditional Time of Flight(ToF) method loses its power. The broadband nature of laser excited ultrasound plus dispersive and multi-modal characteristic of Lamb waves make the EMAT acquired signals very complicated in this situation. Challenge rises in interpreting the received signals and establishing relationship between signal feature and weld quality. In this paper, the laser/EMAT ultrasonic technique was applied in a C-scan manner to record full wave propagation field over an area close to the weld. Then the effect of weld defect on the propagation field of Lamb waves was studied visually by watching an movie resulted from the recorded signals. This method was proved to be effective to detect the presence of hidden defect in the weld. Discrete wavelet transform(DWT) was applied to characterize the acquired ultrasonic signals and ideal band-pass filter was used to isolate wave components most sensitive to the weld defect. Different interactions with the weld defect were observed for different wave components. Thus this C-Scan method, combined with DWT and ideal band-pass filter, proved to be an effective methodology to experimentally study interactions of various laser excited Lamb Wave components with weld defect. In this work, the method was demonstrated by inspecting a hidden local incomplete penetration in weld. In fact, this method can be applied to study Lamb Wave interactions with any type of structural inconsistency. This work also proposed a ideal filtered based method to effectively reduce the total experimental time.
A handheld laser-induced fluorescence detector for multiple applications.
Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun
2016-04-01
In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. Copyright © 2015 Elsevier B.V. All rights reserved.
On the estimation of phase synchronization, spurious synchronization and filtering
NASA Astrophysics Data System (ADS)
Rios Herrera, Wady A.; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F.
2016-12-01
Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.
Improved color coordinates of green monochromatic pc-LED capped with a band-pass filter.
Oh, Ji Hye; Yang, Su Ji; Sung, Yeon-Goog; Do, Young Rag
2013-02-25
This study introduces a "greener" green monochromatic phosphor-converted light-emitting diode (pc-LED) using a band-pass filter (BPF) combined with a long-pass dichroic filter (LPDF) and a short-pass dichroic filter (SPDF) to improve the color quality of our previously developed LPDF-capped green pc-LED. This can also address the drawbacks of III-V semiconductor-type green LEDs, which show a low luminous efficacy and a poor current dependence of the efficacy and color coordinates compared to blue semiconductor-type LEDs. The optical properties of green monochromatic pc-LEDs using a BPF are compared with those of LPDF-capped green pc-LEDs, which have a broad band spectrum, and III-V semiconductor-type green LEDs by changing the transmittance wavelength range of the BPF and the peak wavelength of the green phosphors. BPF-capped green monochromatic pc-LEDs provide a high luminous efficacy (134 lm/W at 60 mA), and "greener" 1931 Commission Internationale d'Eclairage (CIE; CIEx, CIEy) color coordinates (0.24, 0.66) owing to the narrowed emission spectrum. We also propose a two-dimensional (2D) polystyrene (PS) microbead (2-μm diameter) monolayer as a scattering layer to overcome the poor angular dependence of the color coordinates of the transmitted light through a nano-multilayered dichroic filter such as an LPDF or BPF. The 2D PS scattering layer improves the angular dependence of the green color emitted from a BPF-capped green pc-LED with only 3% loss of luminous efficacy.
Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors
NASA Astrophysics Data System (ADS)
Haridasan, Vrinda
Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband rejection, and constant bandwidth is designed, simulated, fabricated and measured. The filters are fabricated using barium strontium titanate (BST) varactors. Electromagnetic simulations and measured results of the tunable two-pole ferroelectric filter are analyzed to explore the origins of high insertion loss in ferroelectric filters. The results indicate that the high-permittivity of the BST (a ferroelectric) not only makes the filters tunable and compact, but also increases the conductive loss of the ferroelectric-based tunable resonators which translates into high insertion loss in ferroelectric filters.
Sukarno; Law, Cheryl Suwen; Santos, Abel
2017-06-08
We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.
UHF FM receiver having improved frequency stability and low RFI emission
Lupinetti, Francesco
1990-02-27
A UHF receiver which converts UHF modulated carrier signals to baseband video signals without any heterodyne or frequency conversion stages. A bandpass filter having a fixed frequency first filters the signals. A low noise amplifier amplifies the filtered signal and applies the signal through further amplification stages to a limited FM demodulator circuit. The UHF signal is directly converted to a baseband video signal. The baseband video signal is clamped by a clamping circuit before driving a monitor. Frequency stability for the receivers is at a theoretical maximum, and interference to adjacent receivers is eliminated due to the absence of a local oscillator.
Cleanliness evaluation of rough surfaces with diffuse IR reflectance
NASA Technical Reports Server (NTRS)
Pearson, L. H.
1995-01-01
Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.
Sensitivity of bandpass filters using recirculating delay-line structures
NASA Astrophysics Data System (ADS)
Heyde, Eric C.
1996-12-01
Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.
He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R
2015-07-14
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.
Alternative Post-Processing on a CMOS Chip to Fabricate a Planar Microelectrode Array
López-Huerta, Francisco; Herrera-May, Agustín L.; Estrada-López, Johan J.; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S.
2011-01-01
We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+-type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications. PMID:22346681
NASA Astrophysics Data System (ADS)
Zhang, W. J.; Yang, X. Y.; Li, H.; You, L. X.; Lv, C. L.; Zhang, L.; Zhang, C. J.; Liu, X. Y.; Wang, Z.; Xie, X. M.
2018-07-01
Superconducting nanowire single-photon detectors (SNSPDs) with both high system detection efficiency (SDE) and low dark count rate (DCR) play significant roles in quantum information processes and various applications. The background dark counts of SNSPDs originate from the room temperature blackbody radiation coupled to the device via a fiber. Therefore, a bandpass filter (BPF) operated at low temperature with minimal insert loss is necessary to suppress the background DCR. Herein, a low-loss BPF integrated on a single-mode fiber end-face was designed, fabricated and verified for the low temperature implement. The fiber end-face BPF was featured with a typical passband width about 40 nm in the 1550 nm telecom band and a peak transmittance of over 0.98. SNSPD with high SDE fabricated on a distributed Bragg reflector was coupled to the BPF. The device with such a BPF showed an SDE of 80% at a DCR of 0.5 Hz, measured at 2.1 K. Compared the same device without a BPF, the DCR was reduced by over 13 dB with an SDE decrease of <3%.
Alternative post-processing on a CMOS chip to fabricate a planar microelectrode array.
López-Huerta, Francisco; Herrera-May, Agustín L; Estrada-López, Johan J; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S
2011-01-01
We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+ -type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications.
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection
He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.
2015-01-01
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225
Lightning mapper sensor design study
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.
1983-01-01
World-wide continuous measurement of lightning location, intensity, and time during both day and night is to be provided by the Lightning Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the lightning events as based on recent above-cloud NASA/U2 lightning measurements.
Quantification of fibre polymerization through Fourier space image analysis
Nekouzadeh, Ali; Genin, Guy M.
2011-01-01
Quantification of changes in the total length of randomly oriented and possibly curved lines appearing in an image is a necessity in a wide variety of biological applications. Here, we present an automated approach based upon Fourier space analysis. Scaled, band-pass filtered power spectral densities of greyscale images are integrated to provide a quantitative measurement of the total length of lines of a particular range of thicknesses appearing in an image. A procedure is presented to correct for changes in image intensity. The method is most accurate for two-dimensional processes with fibres that do not occlude one another. PMID:24959096
Multi-spectral endogenous fluorescence imaging for bacterial differentiation
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.
2017-07-01
In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.
Huang, Yuhua; Zhou, Ying; Doyle, Charlie; Wu, Shin-Tson
2006-02-06
We have investigated the physical and optical properties of the left-handed chiral dopant ZLI-811 mixed in a nematic liquid crystal (LC) host BL006. The solubility of ZLI-811 in BL006 at room temperature is ~24 wt%, but can be enhanced by increasing the temperature. Consequently, the photonic band gap of the cholesteric liquid crystal (CLC) mixed with more than 24 wt% chiral dopant ZLI-811 is blue shifted as the temperature increases. Based on this property, we demonstrate two applications in thermally tunable band-pass filters and dye-doped CLC lasers.
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Xu, Shan; Zhao, Junfa; Li, Hongqiang; Bai, Hua; Miao, Changyun
2017-12-01
A differential intensity-modulated refractive index (RI) sensor consisting of a no-core fiber (NCF) filter, a circulator and two fiber Bragg gratings (FBGs) is proposed and demonstrated. A section of the NCF is sandwiched between two parts of single mode fibers (SMFs) to form a band-pass filter. The Bragg wavelengths of the FBGs are chosen at the two edges of the filter, respectively. The peak wavelength of the NCF filter has a red-shift with the increase of the surrounding refractive index (SRI) while the Bragg wavelengths have no change, which results in the variation of the difference of the two FBGs reflective intensities, thus the differential intensity modulation to the SRI can be accomplished. Compared with directly connecting the NCF filter and the FBGs, this sensing structure can increase the output power so as to improve the measuring resolution. The experimental results show that the RI sensitivities are -99.191 dB/RIU and -139.958 dB/RIU at the range of 1.3329-1.3781 and 1.3781-1.401, respectively. In addition, the disturbance from the light source fluctuation and temperature cross sensitivity can be minimized effectively, which has great potential in actual applications.
(abstract) Topographic Signatures in Geology
NASA Technical Reports Server (NTRS)
Farr, Tom G.; Evans, Diane L.
1996-01-01
Topographic information is required for many Earth Science investigations. For example, topography is an important element in regional and global geomorphic studies because it reflects the interplay between the climate-driven processes of erosion and the tectonic processes of uplift. A number of techniques have been developed to analyze digital topographic data, including Fourier texture analysis. A Fourier transform of the topography of an area allows the spatial frequency content of the topography to be analyzed. Band-pass filtering of the transform produces images representing the amplitude of different spatial wavelengths. These are then used in a multi-band classification to map units based on their spatial frequency content. The results using a radar image instead of digital topography showed good correspondence to a geologic map, however brightness variations in the image unrelated to topography caused errors. An additional benefit to the use of Fourier band-pass images for the classification is that the textural signatures of the units are quantative measures of the spatial characteristics of the units that may be used to map similar units in similar environments.
NASA Astrophysics Data System (ADS)
Maser, Jörg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan
2016-12-01
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of Δ E/ E = 10-4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as Δ E/ E = 10-2 into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. To quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software " HYBRID."
Real-Time Wavelength Discrimination for Improved Neutron Discrimination in CLYC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornback, Donald Eric; Hu, Michael Z.; Bell, Zane W.
We investigated the effects of optical filters on the pulse shape discrimination properties of Cs 2LiYCl 6:Ce (CLYC) scintillator crystals. By viewing the scintillation light through various optical filters, we attempted to better distinguish between neutron and gamma ray events in the crystal. We applied commercial interference and colored glass filters in addition to fabricating quantum dot (QD) filters by suspending QDs in plastic films and glass. QD filters ultimately failed because of instability of the QDs with respect to oxidation when exposed to ambient air, and the tendency of the QDs to aggregate in the plastic. Of the commercialmore » filters, the best results were obtained with a bandpass interference filter covering the spectral region containing core-valence luminescence (CVL) light. However, the PSD response of filtered CLYC light was always poorer than the response exhibited by unfiltered light because filters always reduced the amount of light available for signal processing.« less
NASA Astrophysics Data System (ADS)
Turnbull, Margaret
The WFIRST mission is now envisioned to include a coronagraph for the purpose of direct detection of nearby exoplanets, including planets known to exist via radial velocity detection and new discoveries. Assuming that starlight rejection sufficient for planet detection (~1e-9) can be achieved, what can be learned about these planets given a realistic spectral resolution and signal-to-noise ratio? We propose to investigate the potential for WFIRST to efficiently discriminate planets from background sources, and to characterize planets in terms of important diagnostic atmospheric features, using broad- and intermediate band color data. We will map out this capability as a function of signal-to-noise ratio, bandpass location, and bandpass width. Our investigation will place emphasis on gas giants, ice giants, and mini-Neptunes (compatible with current AFTA-C baseline performance specifications), as well as a variety of super-Earths (an AFTA-C "stretch" goal). We will explore a variety of compositions, cloud types, phase angles, and (in the case of super-Earths with semi-transparent atmospheres) surface types. Noiseless spectra generated for these model planets will be passed through (a) standard bandpasses for comparison to prior work and (b) filter transmission curves corresponding to bandpasses of 5-20% over the full range of WFIRST's expected bandpass (400 - 1,000 nm). From this, filter combinations will be used to generate planet colors and find filter sets that most efficiently discriminate between planets and background sources, and between planets of different type. We will then repeat this exercise for S/N levels of 1-1,000 in order to (1) explore the true efficacy of broadband measurements in exoplanet studies, and (2) provide an estimate of total required integration time for a compelling WFIRST exoplanet program. To accomplish this, we will use model spectra for mini-Neptunes, and ice and gas giants of varying composition (Hu et al. 2013), and observed spectra for Solar System objects (Jupiter, Saturn, Uranus, Neptune, and Titan; Karcoschka 1994). We will also use observed SCIAMACHY spectra for the desert, ocean, forest, and icy Earth, in order to build a diverse set of spatially integrated super-Earth spectra, plus variations in atmospheric composition. Simulated observed spectra will be generated for planets placed under the irradiance of stellar spectral types corresponding to WFIRST's highest priority targets for exoplanet imaging (approximately K5V through F5V). The colors extracted from these spectra will be compared to colors extracted from spectra for a wide range of likely extragalactic sources (Bruzual & Charlott 2003) and extincted stellar background sources. Finally, we will assess the "background threat" for the 100 most favorable targets for exoplanet imaging with WFIRST. This flag will be assigned based on number and type of background sources expected at various galactic latitudes, and the above results indicating how readily such sources can be discriminated from exoplanets. As a result of this intensive, three year effort, we will deliver to the community a library of planet spectra and colors in standard and proposed "designer" passbands for planets of all types under stars of varying spectral type, plus colors for a wide range of expected stellar and extragalactic background sources. These data will be available for future work in simulating images and eventual "double blind" studies in extracting planet sources and atmospheric signatures. We expect that our investigation will inform WFIRST and all future direct imaging missions of (1) how different planets will appear at "first glance" from the likely sea of background of stars and unresolved extragalactic sources, and (2) the necessary performance specifications required to characterize the most important atmospheric constituents and discriminate between planets of varying type.
Wearable Sensing of Cardiac Timing Intervals from Cardiogenic Limb Vibration Signals
Wiens, Andrew D.; Johnson, Ann; Inan, Omer T.
2017-01-01
In this paper we describe a new method to measure aortic valve opening (AVO) and closing (AVC) from cardiogenic limb vibrations (i.e., wearable ballistocardiogram [BCG] signals). AVO and AVC were detected for each heartbeat with accelerometers on the upper arm (A), wrist (W), and knee (K) of 22 subjects following isometric exercise. Exercise-induced changes were recorded with impedance cardiography. The method, Filter BCG, detects peaks in distal vibrations after filtering with individually-tuned bandpass filters. In agreement with recent studies, we did not find peaks at AVO and AVC in limb vibrations directly. Interestingly, distal vibrations filtered with FilterBCG yielded reliable peaks at AVO (r2 = 0.95 A, 0.94 W, 0.77 K) and AVC (r2= 0.92 A, 0.89 W, 0.68 K). FilterBCG measures AVO and AVC accurately from arm, wrist, and knee vibrations, and it outperforms the standard R-J interval method. PMID:29123459
670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)
2014-01-01
A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
Active integrated filters for RF-photonic channelizers.
El Nagdi, Amr; Liu, Ke; LaFave, Tim P; Hunt, Louis R; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L; Christensen, Marc P
2011-01-01
A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1-5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain.
Optical filters for UV to near IR space applications
NASA Astrophysics Data System (ADS)
Begou, T.; Krol, H.; Hecquet, Christophe; Bondet, C.; Lumeau, J.; Grèzes-Besset, C.; Lequime, M.
2017-11-01
We present hereafter the results on the fabrication of complex optical filters within the Institut Fresnel in close collaboration with CILAS. Bandpass optical filters dedicated to astronomy and space applications, with central wavelengths ranging from ultraviolet to near infrared, were deposited on both sides of glass substrates with performances in very good congruence with theoretical designs. For these applications, the required functions are particularly complex as they must present a very narrow bandwidth as well as a high level of rejection over a broad spectral range. In addition to those severe optical performances, insensitivity to environmental conditions is necessary. For this purpose, robust solutions with particularly stable performances have to be proposed.
Squids in the Study of Cerebral Magnetic Field
NASA Astrophysics Data System (ADS)
Romani, G. L.; Narici, L.
The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.
1986-01-01
Ultrasonic test system input-output characteristics were investigated by directly coupling the transmitting and receiving transducers face to face without a test specimen. Some of the fundamentals of digital signal processing were summarized. Input and output signals were digitized by using a digital oscilloscope, and the digitized data were processed in a microcomputer by using digital signal-processing techniques. The continuous-time test system was modeled as a discrete-time, linear, shift-invariant system. In estimating the unit-sample response and frequency response of the discrete-time system, it was necessary to use digital filtering to remove low-amplitude noise, which interfered with deconvolution calculations. A digital bandpass filter constructed with the assistance of a Blackman window and a rectangular time window were used. Approximations of the impulse response and the frequency response of the continuous-time test system were obtained by linearly interpolating the defining points of the unit-sample response and the frequency response of the discrete-time system. The test system behaved as a linear-phase bandpass filter in the frequency range 0.6 to 2.3 MHz. These frequencies were selected in accordance with the criterion that they were 6 dB below the maximum peak of the amplitude of the frequency response. The output of the system to various inputs was predicted and the results were compared with the corresponding measurements on the system.
NASA Astrophysics Data System (ADS)
Torkildsen, H. E.; Hovland, H.; Opsahl, T.; Haavardsholm, T. V.; Nicolas, S.; Skauli, T.
2014-06-01
In some applications of multi- or hyperspectral imaging, it is important to have a compact sensor. The most compact spectral imaging sensors are based on spectral filtering in the focal plane. For hyperspectral imaging, it has been proposed to use a "linearly variable" bandpass filter in the focal plane, combined with scanning of the field of view. As the image of a given object in the scene moves across the field of view, it is observed through parts of the filter with varying center wavelength, and a complete spectrum can be assembled. However if the radiance received from the object varies with viewing angle, or with time, then the reconstructed spectrum will be distorted. We describe a camera design where this hyperspectral functionality is traded for multispectral imaging with better spectral integrity. Spectral distortion is minimized by using a patterned filter with 6 bands arranged close together, so that a scene object is seen by each spectral band in rapid succession and with minimal change in viewing angle. The set of 6 bands is repeated 4 times so that the spectral data can be checked for internal consistency. Still the total extent of the filter in the scan direction is small. Therefore the remainder of the image sensor can be used for conventional imaging with potential for using motion tracking and 3D reconstruction to support the spectral imaging function. We show detailed characterization of the point spread function of the camera, demonstrating the importance of such characterization as a basis for image reconstruction. A simplified image reconstruction based on feature-based image coregistration is shown to yield reasonable results. Elimination of spectral artifacts due to scene motion is demonstrated.
Majidi-Ahy, Gholamreza; Bloom, David M.
1991-01-01
A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.
DMD-based implementation of patterned optical filter arrays for compressive spectral imaging.
Rueda, Hoover; Arguello, Henry; Arce, Gonzalo R
2015-01-01
Compressive spectral imaging (CSI) captures multispectral imagery using fewer measurements than those required by traditional Shannon-Nyquist theory-based sensing procedures. CSI systems acquire coded and dispersed random projections of the scene rather than direct measurements of the voxels. To date, the coding procedure in CSI has been realized through the use of block-unblock coded apertures (CAs), commonly implemented as chrome-on-quartz photomasks. These apertures block or permit us to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. This paper extends the framework of CSI by replacing the traditional block-unblock photomasks by patterned optical filter arrays, referred to as colored coded apertures (CCAs). These, in turn, allow the source to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed CCAs are synthesized through linear combinations of low-pass, high-pass, and bandpass filters, paired with binary pattern ensembles realized by a digital micromirror device. The optical forward model of the proposed CSI architecture is presented along with a proof-of-concept implementation, which achieves noticeable improvements in the quality of the reconstruction.
Evaluating the articulation index for auditory-visual input.
Grant, K W; Braida, L D
1991-06-01
An investigation of the auditory-visual (AV) articulation index (AI) correction procedure outlined in the ANSI standard [ANSI S3.5-1969 (R1986)] was made by evaluating auditory (A), visual (V), and auditory-visual sentence identification for both wideband speech degraded by additive noise and a variety of bandpass-filtered speech conditions presented in quiet and in noise. When the data for each of the different listening conditions were averaged across talkers and subjects, the procedure outlined in the standard was fairly well supported, although deviations from the predicted AV score were noted for individual subjects as well as individual talkers. For filtered speech signals with AIA less than 0.25, there was a tendency for the standard to underpredict AV scores. Conversely, for signals with AIA greater than 0.25, the standard consistently overpredicted AV scores. Additionally, synergistic effects, where the AIA obtained from the combination of different bandpass-filtered conditions was greater than the sum of the individual AIA's, were observed for all nonadjacent filter-band combinations (e.g., the addition of a low-pass band with a 630-Hz cutoff and a high-pass band with a 3150-Hz cutoff). These latter deviations from the standard violate the basic assumption of additivity stated by Articulation Theory, but are consistent with earlier reports by Pollack [I. Pollack, J. Acoust. Soc. Am. 20, 259-266 (1948)], Licklider [J. C. R. Licklider, Psychology: A Study of a Science, Vol. 1, edited by S. Koch (McGraw-Hill, New York, 1959), pp. 41-144], and Kryter [K. D. Kryter, J. Acoust. Soc. Am. 32, 547-556 (1960)].
Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory
NASA Astrophysics Data System (ADS)
Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.
2007-12-01
Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.
Design of a lock-amplifier circuit
NASA Astrophysics Data System (ADS)
Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.
2017-01-01
The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.
NASA Astrophysics Data System (ADS)
Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta
2013-11-01
A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.
Versatile current-mode universal biquadratic filter using DO-CCIIs
NASA Astrophysics Data System (ADS)
Chen, Hua-Pin
2013-07-01
In this article, a new three-input and three-output versatile current-mode universal biquadratic filter is proposed. The circuit employs three dual-output current conveyors (DO-CCIIs) as active elements together with three grounded resistors and two grounded capacitors. The proposed configuration exhibits low-input impedance and high-output impedance which is important for easy cascading in the current-mode operations. It can be used as either a single-input and three-output or three-input and two-output circuit. In the operation of single-input and three-output circuit, the lowpass, bandpass and bandreject can be realised simultaneously, while the highpass filtering response can be easily obtained by connecting appropriated output current directly without using addition stages. In the operation of three-input and two-output circuit, all five generic filtering functions can be easily realised by selecting different three input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no component matching conditions or inverting-type input current signals are imposed. All the passive and active sensitivities are low. HSPICE simulation results based on using TSMC 0.18 µm 1P6M CMOS process technology and supply voltages ±0.9 V to verify the theoretical analysis.
Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.
Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W
2008-10-01
Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.
NASA Astrophysics Data System (ADS)
Fernandes, Mariana S.; Correia, José H.; Mendes, Paulo M.
2011-05-01
Wearable devices are used to record several physiological signals, providing unobtrusive and continuous monitoring. A main challenge in these systems is to develop new recording sensors, specially envisioning bioelectric activity detection. Available devices are difficult to integrate, mainly due to the amount of electrical wires and components needed. This work proposes a fiber-optic based device, which basis of operation relies on the electro-optic effect. A Lithium Niobate (LiBnO3) Mach-Zehnder Interferometer (MZI) modulator is used as the core sensing component, followed by a signal conversion and processing stage. Tests were performed in order to validate the proposed acquisition system in terms of signal amplification and quality, stability and frequency response. A light source with a wavelength operation of 1530- 1565 nm was used. The modulated intensity is amplified and converted to an output voltage with a high transimpedance gain. The filtering and electric amplification included a 50Hz notch filter, a bandpass filter with a -3 dB bandwidth from 0.50 to 35 Hz. The obtained system performance on key elements such as sensitivity, frequency content, and signal quality, have shown that the proposed acquisition system allows the development of new wearable bioelectric monitoring solutions based on optical technologies.
Design of a Compact Quad-Channel Diplexer
NASA Astrophysics Data System (ADS)
Xu, Jin
2016-01-01
This paper presents a compact quad-channel diplexer by using two asymmetrical coupling shorted stub loaded stepped-impedance (SSLSIR) dual-band bandpass filters (DB-BPFs) to replace two single-band BPFs in a traditional BPF-based diplexer. Part of its impedance matching circuit is implemented by using a three-element lowpass T-network to acquire the desired phase shift. Detailed design procedures are given to guide the diplexer design. The fabricated quad-channel diplexer occupies a compact circuit area of 0.168λg×0.136λg. High band-to-band isolation and wide stopband performance are achieved. Good agreement is shown between the simulated and measured results.
Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E
2014-01-01
This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.
Extended spectrum SWIR camera with user-accessible Dewar
NASA Astrophysics Data System (ADS)
Benapfl, Brendan; Miller, John Lester; Vemuri, Hari; Grein, Christoph; Sivananthan, Siva
2017-02-01
Episensors has developed a series of extended short wavelength infrared (eSWIR) cameras based on high-Cd concentration Hg1-xCdxTe absorbers. The cameras have a bandpass extending to 3 microns cutoff wavelength, opening new applications relative to traditional InGaAs-based cameras. Applications and uses are discussed and examples given. A liquid nitrogen pour-filled version was initially developed. This was followed by a compact Stirling-cooled version with detectors operating at 200 K. Each camera has unique sensitivity and performance characteristics. The cameras' size, weight and power specifications are presented along with images captured with band pass filters and eSWIR sources to demonstrate spectral response beyond 1.7 microns. The soft seal Dewars of the cameras are designed for accessibility, and can be opened and modified in a standard laboratory environment. This modular approach allows user flexibility for swapping internal components such as cold filters and cold stops. The core electronics of the Stirlingcooled camera are based on a single commercial field programmable gate array (FPGA) that also performs on-board non-uniformity corrections, bad pixel replacement, and directly drives any standard HDMI display.
Vibrational Spectroscopy of Laser Cooled CaH
2015-10-28
about 1 mW 369 nm laser with a bandpass filter ( Semrock 395/20 nm) that reflects the 21 399 nm laser and transmits the 369 nm laser, which are sent along...and the back mirror is a flat broadband 67 ( Semrock MaxMirror) mirror that has over 99% reflectivity over a wide range as shown in Fig. 28. The lasers
Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime
NASA Astrophysics Data System (ADS)
Du, Bujie; Jiang, Xingya; Das, Anindita; Zhou, Qinhan; Yu, Mengxiao; Jin, Rongchao; Zheng, Jie
2017-11-01
The glomerular filtration barrier is known as a 'size cutoff' slit, which retains nanoparticles or proteins larger than 6-8 nm in the body and rapidly excretes smaller ones through the kidneys. However, in the sub-nanometre size regime, we have found that this barrier behaves as an atomically precise 'bandpass' filter to significantly slow down renal clearance of few-atom gold nanoclusters (AuNCs) with the same surface ligands but different sizes (Au18, Au15 and Au10-11). Compared to Au25 (∼1.0 nm), just few-atom decreases in size result in four- to ninefold reductions in renal clearance efficiency in the early elimination stage, because the smaller AuNCs are more readily trapped by the glomerular glycocalyx than larger ones. This unique in vivo nano-bio interaction in the sub-nanometre regime also slows down the extravasation of sub-nanometre AuNCs from normal blood vessels and enhances their passive targeting to cancerous tissues through an enhanced permeability and retention effect. This discovery highlights the size precision in the body's response to nanoparticles and opens a new pathway to develop nanomedicines for many diseases associated with glycocalyx dysfunction.
Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization
Lyu, Siwei; Simoncelli, Eero P.
2011-01-01
We consider the problem of efficiently encoding a signal by transforming it to a new representation whose components are statistically independent. A widely studied linear solution, known as independent component analysis (ICA), exists for the case when the signal is generated as a linear transformation of independent nongaussian sources. Here, we examine a complementary case, in which the source is nongaussian and elliptically symmetric. In this case, no invertible linear transform suffices to decompose the signal into independent components, but we show that a simple nonlinear transformation, which we call radial gaussianization (RG), is able to remove all dependencies. We then examine this methodology in the context of natural image statistics. We first show that distributions of spatially proximal bandpass filter responses are better described as elliptical than as linearly transformed independent sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either nearby pairs or blocks of bandpass filter responses is significantly greater than that achieved by ICA. Finally, we show that the RG transformation may be closely approximated by divisive normalization, which has been used to model the nonlinear response properties of visual neurons. PMID:19191599
NASA Astrophysics Data System (ADS)
Ma, Xing-Bing; Jiang, Ting
2018-04-01
A wideband bandpass filter (BPF) with an adjustable notched-band and high selectivity is proposed. The proposed BPF consists of a multi-mode resonator (MMR), two λ/2 resonators, and I/O feed lines with 50 ohm characteristic impedance. The MMR, connected as a whole by a wide stub, is composed of one I-shaped resonator and two open-loop resonators. Tightly coupling is built between MMR and λ/2 resonators. I/O feed lines are directly connected with two λ/2 resonators, respectively. Due to the use of tapped-line coupling, one transmission zero (TZ) is formed near low-edge of aim passband. High-edge of passband with one attendant TZ can be tuned to desired location by adjusting bottom-side position of used wide stub or bottom-side length of I-shaped resonator in MMR. The top-side length of I-shaped resonator is applied to improve upper stopband performance and shift undesired resonant mode of MMR near high-edge of aim passband to proper frequency point. The notched-band in aim passband is dominated by top-side position of wide stub in MMR. Good agreement is observed between simulated and measured results.
Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintenberg, A.L.
1985-04-01
An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15/sup 0/. Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, andmore » produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity.« less
NASA Astrophysics Data System (ADS)
Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-García, J. C.; Jáuregui-Vázquez, D.; Sierra-Hernández, J. M.; Rojas-Laguna, R.; Mata-Chavez, R. I.; Samano-Aguilar, L. F.
2016-09-01
In this work, we study the changes of polarization at different wavelengths in a supercontinuum source generated through a microchip laser in the IR spectrum. We use a microchip laser pulsed as pumped source, 1064 nm of wavelength, and a photonic crystal fiber by generated a supercontinuum spectrum. We twist the fiber to the purpose to induce birefringence and study the changes of the state of polarization, and through bandpass filters we observe a single wavelength of the broad spectrum obtained. Besides, ellipticity study for different filters and its relation with the supercontinuum results is discussed.
Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft
NASA Technical Reports Server (NTRS)
Hanser, F. A.; Sellers, B.; Briehl, D. C.
1978-01-01
An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Visual tool for estimating the fractal dimension of images
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Rusu, M. V.; Jipa, Al.; Bordeianu, C. C.; Felea, D.
2009-10-01
This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from "noise", we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not. Program summaryProgram title: Fractal Analysis v01 Catalogue identifier: AEEG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29 690 No. of bytes in distributed program, including test data, etc.: 4 967 319 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 30M Classification: 14 Nature of problem: Estimating the fractal dimension of images. Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from "noise". User friendly graphical interface. Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format. Running time: In a first approximation, the algorithm is linear.
NASA Astrophysics Data System (ADS)
Asgari, Somayyeh; Granpayeh, Nosrat
2017-06-01
Two parallel graphene sheet waveguides and a graphene cylindrical resonator between them is proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. One end of each graphene waveguide is the input and output port. The resonance and the prominent mid-infrared band-pass filtering effect are achieved. The transmittance spectrum is tuned by varying the radius of the graphene cylindrical resonator, the dielectric inside it, and also the chemical potential of graphene utilizing gate voltage. Simulation results are in good agreement with theoretical calculations. As an application, a multi/demultiplexer is proposed and analyzed. Our studies demonstrate that graphene based ultra-compact, nano-scale devices can be designed for optical processing and photonic integrated devices.
Characterization on Smart Optics Using Ellipsometry
NASA Technical Reports Server (NTRS)
Song, Kyo D.
2002-01-01
Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.
Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F
2009-11-18
Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.
Laser- and Multi-Spectral Monitoring of Natural Objects from UAVs
NASA Astrophysics Data System (ADS)
Reiterer, Alexander; Frey, Simon; Koch, Barbara; Stemmler, Simon; Weinacker, Holger; Hoffmann, Annemarie; Weiler, Markus; Hergarten, Stefan
2016-04-01
The paper describes the research, development and evaluation of a lightweight sensor system for UAVs. The system is composed of three main components: (1) a laser scanning module, (2) a multi-spectral camera system, and (3) a processing/storage unit. All three components are newly developed. Beside measurement precision and frequency, the low weight has been one of the challenging tasks. The current system has a total weight of about 2.5 kg and is designed as a self-contained unit (incl. storage and battery units). The main features of the system are: laser-based multi-echo 3D measurement by a wavelength of 905 nm (totally eye save), measurement range up to 200 m, measurement frequency of 40 kHz, scanning frequency of 16 Hz, relative distance accuracy of 10 mm. The system is equipped with both GNSS and IMU. Alternatively, a multi-visual-odometry system has been integrated to estimate the trajectory of the UAV by image features (based on this system a calculation of 3D-coordinates without GNSS is possible). The integrated multi-spectral camera system is based on conventional CMOS-image-chips equipped with a special sets of band-pass interference filters with a full width half maximum (FWHM) of 50 nm. Good results for calculating the normalized difference vegetation index (NDVI) and the wide dynamic range vegetation index (WDRVI) have been achieved using the band-pass interference filter-set with a FWHM of 50 nm and an exposure times between 5.000 μs and 7.000 μs. The system is currently used for monitoring of natural objects and surfaces, like forest, as well as for geo-risk analysis (landslides). By measuring 3D-geometric and multi-spectral information a reliable monitoring and interpretation of the data-set is possible. The paper gives an overview about the development steps, the system, the evaluation and first results.
Maser, Jorg; Shi, Xianbo; Reininger, Ruben; ...
2016-02-22
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ΔE/E = 10 –4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ΔE/E = 10 –2 into a focal spot ofmore » 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. Furthermore, to quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software “HYBRID.”« less
Symmetric/Asymmetrical SIRs Dual-Band BPF Design for WLAN Applications
NASA Astrophysics Data System (ADS)
Ho, Min-Hua; Ho, Hao-Hung; Chen, Mingchih
This paper presents the dual-band bandpass filters (BPFs) design composed of λ/2 and symmetrically/asymmetrically paired λ/4 stepped impedance resonators (SIRs) for the WLAN applications. The filters cover both the operating frequencies of 2.45 and 5.2GHz. The dual-coupling mechanism is used in the filter design to provide alternative routes for signals of selected frequencies. A prototype filter is composed of λ/2 and symmetrical λ/4 SIRs. The enhanced wide-stopband filter is then developed from the filter with the symmetrical λ/4 SIRs replaced by the asymmetrical ones. The asymmetrical λ/4 SIRs have their higher resonances frequencies isolated from the adjacent I/O SIRs and extend the enhanced filter an upper stopband limit beyond ten time the fundamental frequency. Also, the filter might possess a cross-coupling structure which introduces transmission zeros by the passband edges to improve the signal selectivity. The tapped-line feed is adopted in this circuit to create additional attenuation poles for improving the stopband rejection levels. Experiments are conducted to verify the circuit performance.
Improving Photometric Calibration of Meteor Video Camera Systems
NASA Technical Reports Server (NTRS)
Ehlert, Steven; Kingery, Aaron; Suggs, Robert
2017-01-01
We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.
NASA Astrophysics Data System (ADS)
Vass, J.; Šmíd, R.; Randall, R. B.; Sovka, P.; Cristalli, C.; Torcianti, B.
2008-04-01
This paper presents a statistical technique to enhance vibration signals measured by laser Doppler vibrometry (LDV). The method has been optimised for LDV signals measured on bearings of universal electric motors and applied to quality control of washing machines. Inherent problems of LDV are addressed, particularly the speckle noise occurring when rough surfaces are measured. The presence of speckle noise is detected using a new scalar indicator kurtosis ratio (KR), specifically designed to quantify the amount of random impulses generated by this noise. The KR is a ratio of the standard kurtosis and a robust estimate of kurtosis, thus indicating the outliers in the data. Since it is inefficient to reject the signals affected by the speckle noise, an algorithm for selecting an undistorted portion of a signal is proposed. The algorithm operates in the time domain and is thus fast and simple. The algorithm includes band-pass filtering and segmentation of the signal, as well as thresholding of the KR computed for each filtered signal segment. Algorithm parameters are discussed in detail and instructions for optimisation are provided. Experimental results demonstrate that speckle noise is effectively avoided in severely distorted signals, thus improving the signal-to-noise ratio (SNR) significantly. Typical faults are finally detected using squared envelope analysis. It is also shown that the KR of the band-pass filtered signal is related to the spectral kurtosis (SK).
Gevelber, Michael; Xu, Bing; Smith, Douglas
2006-03-01
A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.
2010-09-01
received beams (Fig. 2). Narrow bandpass filters were used to dedicate each subaperture to a specific wave from a single beacon. In this paper we...r , (6) where 1 1 ( )Mn n mmI M I − = = ∑ r is the aperture-average intensity for the nth frame. The index S in Eq. (6) denotes averaging over
Study of Designing BPF by Using LC Tap-Coupling Resonators
NASA Astrophysics Data System (ADS)
Yasuzumi, Takenori; Wada, Kouji; Nakajima, Naoko; Hashimoto, Osamu
The resonance characteristics of short-ended half-wavelength coplanar waveguide(CPW) LC tap-coupling resonators are examined theoretically and experimentally. The characteristics near the passband have been improved by applying the presented CPW resonator to a design of a bandpass filter(BPF). Moreover, the difference between the calculation and the measurement results is examined by using the equivalent circuit about the presented BPF.
Variability in total ozone associated with baroclinic waves
NASA Technical Reports Server (NTRS)
Mote, Philip W.; Holton, James R.; Wallace, John M.
1991-01-01
One-point regression maps of total ozone formed by regressing the time series of bandpass-filtered geopotential height data have been analyzed against Total Ozone Mapping Spectrometer data. Results obtained reveal a strong signature of baroclinic waves in the ozone variability. The regressed patterns are found to be similar in extent and behavior to the relative vorticity patterns reported by Lim and Wallace (1991).
Cooled optical filters for Q-band infrared astronomy (15-40 μm)
NASA Astrophysics Data System (ADS)
Hawkins, Gary J.; Sherwood, Richard E.; Djotni, Karim; Threadgold, Timothy M.
2016-07-01
With a growing interest in mid- and far-infrared astronomy using cooled imaging and spectrometer instruments in highaltitude observatories and spaceflight telescopes, it is becoming increasingly important to characterise and assess the spectral performance of cooled multilayer filters across the Q-band atmospheric window. This region contains spectral features emitted by many astrophysical phenomena and objects fundamental to circumstellar and planetary formation theories. However extending interference filtering to isolate radiation at progressively longer wavelengths and improve photometric accuracy is an area of ongoing and challenging thin-film research. We have successfully fabricated cooled bandpass and edge filters with high durability for operation across the 15-30 μm Q-band region. In this paper we describe the rationale for selection of optical materials and properties of fabricated thin-film coatings for this region, together with FTIR spectral measurements and assessment of environmental durability.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
A luminescence lifetime assisted ratiometric fluorimeter for biological applications
Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah
2009-01-01
In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth. PMID:20059156
A luminescence lifetime assisted ratiometric fluorimeter for biological applications.
Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah
2009-12-01
In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system--a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.
A luminescence lifetime assisted ratiometric fluorimeter for biological applications
NASA Astrophysics Data System (ADS)
Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah
2009-12-01
In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.
Location of acoustic emission sources generated by air flow
Kosel; Grabec; Muzic
2000-03-01
The location of continuous acoustic emission sources is a difficult problem of non-destructive testing. This article describes one-dimensional location of continuous acoustic emission sources by using an intelligent locator. The intelligent locator solves a location problem based on learning from examples. To verify whether continuous acoustic emission caused by leakage air flow can be located accurately by the intelligent locator, an experiment on a thin aluminum band was performed. Results show that it is possible to determine an accurate location by using a combination of a cross-correlation function with an appropriate bandpass filter. By using this combination, discrete and continuous acoustic emission sources can be located by using discrete acoustic emission sources for locator learning.
Macro-motion detection using ultra-wideband impulse radar.
Xin Li; Dengyu Qiao; Ye Li
2014-01-01
Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.
A Millimeter Wave BPF using WG Mode High Permittivity Dielectric Resonators
NASA Astrophysics Data System (ADS)
Sato, Yosuke; Kogami, Yoshinori; Tomabechi, Yoshiro; Matsumura, Kazuhito
In this paper, a design technique of whispering gallery mode high Q value dielectric disk resonators for a millimeter-wave bandpass filter is described. To minimize the resonator size, some high permittivity materials are used. In this resonator design, unloaded Q value of an interested mode and the higher order modes are calculated and then optimum resonator size for the WG mode dielectric filter is determined. For a designed resonator, the higher order modes are hardly excited while the Q value of the fundamental mode can be maximized. Finally, some 3stage BPFs are constructed at 60GHz by using these designed resonators.
Least-squares luma-chroma demultiplexing algorithm for Bayer demosaicking.
Leung, Brian; Jeon, Gwanggil; Dubois, Eric
2011-07-01
This paper addresses the problem of interpolating missing color components at the output of a Bayer color filter array (CFA), a process known as demosaicking. A luma-chroma demultiplexing algorithm is presented in detail, using a least-squares design methodology for the required bandpass filters. A systematic study of objective demosaicking performance and system complexity is carried out, and several system configurations are recommended. The method is compared with other benchmark algorithms in terms of CPSNR and S-CIELAB ∆E∗ objective quality measures and demosaicking speed. It was found to provide excellent performance and the best quality-speed tradeoff among the methods studied.
Environmentally stable seed source for high power ultrafast laser
NASA Astrophysics Data System (ADS)
Samartsev, Igor; Bordenyuk, Andrey; Gapontsev, Valentin
2017-02-01
We present an environmentally stable Yb ultrafast ring oscillator utilizing a new method of passive mode-locking. The laser is using all-fiber architecture which makes it insensitive to environmental factors, like temperature, humidity, vibrations, and shocks. The new method of mode-locking is utilizing crossed bandpass transmittance filters in ring architecture to discriminate against CW lasing. Broadband pulse evolves from cavity noise under amplification, after passing each filter, causing strong spectral broadening. The laser is self-starting. It generates transform limited spectrally flat pulses of 1 - 50 nm width at 6 - 15 MHz repetition rate and pulse energy 0.2 - 15 nJ at 1010 - 1080 nm CWL.
Crankshaft position sensing with combined starter alternator
Brandenburg, Larry Raymond; Miller, John Michael
2000-06-13
A crankshaft position sensing apparatus for use with an engine (16) having a combined starter/alternator assembly (18). The crankshaft position sensing apparatus includes a tone ring (38) with a sensor (36) and bandpass filter (46), having a cylinder identification input from a camshaft sensor (48), and a gain limiter (54). The sensing apparatus mounts near the rotor (30) of the combined starter/alternator assembly (18). The filtered crankshaft position signal can then be input into a vehicle system controller (58) and an inner loop controller (60). The starter/alternator assembly (18) in combination with an internal combustion engine is particularly useful for a hybrid electric vehicle system.
Artificial high effective permittivity medium in a SIW filled with metallic cylinders
NASA Astrophysics Data System (ADS)
Vicent, G.; Bronchalo, E.; Coves, A.; Torregrosa, G.
2018-02-01
A new topology of step-impedance band-pass filters in Substrate Integrated Waveguide (SIW) technology has been recently demonstrated in which low effective permittivity regions have been achieved by removing part of the substrate material and then shielding the perforated structure. Alternatively, in this work a new way to obtain an increased relative permittivity in the guiding region is proposed by periodically inserting metallic inclusions. This paper shows the results of a systematic study of the effective permittivity obtained in this way in a SIW in order to synthesize a higher effective permittivity, which can be used in the filter design.
NASA Astrophysics Data System (ADS)
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.
THz near-field spectral encoding imaging using a rainbow metasurface.
Lee, Kanghee; Choi, Hyun Joo; Son, Jaehyeon; Park, Hyun-Sung; Ahn, Jaewook; Min, Bumki
2015-09-24
We demonstrate a fast image acquisition technique in the terahertz range via spectral encoding using a metasurface. The metasurface is composed of spatially varying units of mesh filters that exhibit bandpass features. Each mesh filter is arranged such that the centre frequencies of the mesh filters are proportional to their position within the metasurface, similar to a rainbow. For imaging, the object is placed in front of the rainbow metasurface, and the image is reconstructed by measuring the transmitted broadband THz pulses through both the metasurface and the object. The 1D image information regarding the object is linearly mapped into the spectrum of the transmitted wave of the rainbow metasurface. Thus, 2D images can be successfully reconstructed using simple 1D data acquisition processes.
A novel compact dual-wideband BPF with multiple transmission zeros and super wide upper stopband
NASA Astrophysics Data System (ADS)
Mirzaee, Milad; Nosrati, Mehdi
2013-05-01
In this article, a novel miniaturised dual-wideband bandpass filter (DWB-BPF) based on two different resonators including a quasi-spiral loaded multiple-mode resonator (QSL-MMR) and L-shaped transmission line (LS-TL) is presented. At the first step, in order to design a single wideband BPF filter with controllable transmission zeros near the centre frequency, the open circuit impedance parameter of quasi-spiral loaded resonator Z21 is determined in terms of ABCD matrix. Then an equivalent circuit model of the proposed structure is derived and the impedance characteristic and electrical length of LS-TLs to achieve a DWB-BPF with excellent selectivity are calculated through even- and odd-mode analysis. The proposed filter possesses both compact and simple structure as well as two wide passbands with fractional bandwidth (FBW) of 70% and 22.8% for its first and second passbands, respectively. The proposed technique creates two transmission zeros at the lower and upper stopbands of each passband resulting in a very sharp roll-off accompanied by a wide stopband. Notably, the circuit size is reduced and the bandwidth is enhanced in comparison with its conventional counterparts. The theoretical performance of the filter is verified by the experimental one where a good agreement is reported between them.
Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser
NASA Astrophysics Data System (ADS)
Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa
2018-02-01
A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.
Design of Complex BPF with Automatic Digital Tuning Circuit for Low-IF Receivers
NASA Astrophysics Data System (ADS)
Kondo, Hideaki; Sawada, Masaru; Murakami, Norio; Masui, Shoichi
This paper describes the architecture and implementations of an automatic digital tuning circuit for a complex bandpass filter (BPF) in a low-power and low-cost transceiver for applications such as personal authentication and wireless sensor network systems. The architectural design analysis demonstrates that an active RC filter in a low-IF architecture can be at least 47.7% smaller in area than a conventional gm-C filter; in addition, it features a simple implementation of an associated tuning circuit. The principle of simultaneous tuning of both the center frequency and bandwidth through calibration of a capacitor array is illustrated as based on an analysis of filter characteristics, and a scalable automatic digital tuning circuit with simple analog blocks and control logic having only 835 gates is introduced. The developed capacitor tuning technique can achieve a tuning error of less than ±3.5% and lower a peaking in the passband filter characteristics. An experimental complex BPF using 0.18µm CMOS technology can successfully reduce the tuning error from an initial value of -20% to less than ±2.5% after tuning. The filter block dimensions are 1.22mm × 1.01mm; and in measurement results of the developed complex BPF with the automatic digital tuning circuit, current consumption is 705µA and the image rejection ratio is 40.3dB. Complete evaluation of the BPF indicates that this technique can be applied to low-power, low-cost transceivers.
A comparative analysis of signal processing methods for motion-based rate responsive pacing.
Greenhut, S E; Shreve, E A; Lau, C P
1996-08-01
Pacemakers that augment heart rate (HR) by sensing body motion have been the most frequently prescribed rate responsive pacemakers. Many comparisons between motion-based rate responsive pacemaker models have been published. However, conclusions regarding specific signal processing methods used for rate response (e.g., filters and algorithms) can be affected by device-specific features. To objectively compare commonly used motion sensing filters and algorithms, acceleration and ECG signals were recorded from 16 normal subjects performing exercise and daily living activities. Acceleration signals were filtered (1-4 or 15-Hz band-pass), then processed using threshold crossing (TC) or integration (IN) algorithms creating four filter/algorithm combinations. Data were converted to an acceleration indicated rate and compared to intrinsic HR using root mean square difference (RMSd) and signed RMSd. Overall, the filters and algorithms performed similarly for most activities. The only differences between filters were for walking at an increasing grade (1-4 Hz superior to 15-Hz) and for rocking in a chair (15-Hz superior to 1-4 Hz). The only differences between algorithms were for bicycling (TC superior to IN), walking at an increasing grade (IN superior to TC), and holding a drill (IN superior to TC). Performance of the four filter/algorithm combinations was also similar over most activities. The 1-4/IN (filter [Hz]/algorithm) combination performed best for walking at a grade, while the 15/TC combination was best for bicycling. However, the 15/TC combination tended to be most sensitive to higher frequency artifact, such as automobile driving, downstairs walking, and hand drilling. Chair rocking artifact was highest for 1-4/IN. The RMSd for bicycling and upstairs walking were large for all combinations, reflecting the nonphysiological nature of the sensor. The 1-4/TC combination demonstrated the least intersubject variability, was the only filter/algorithm combination insensitive to changes in footwear, and gave similar RMSd over a large range of amplitude thresholds for most activities. In conclusion, based on overall error performance, the preferred filter/algorithm combination depended upon the type of activity.
Li, Wen-Di; Chou, Stephen Y
2010-01-18
We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.
The multi-spectral line-polarization MSE system on Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M.; Scott, S. D.
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
The multi-spectral line-polarization MSE system on Alcator C-Mod
Mumgaard, R. T.; Scott, S. D.; Khoury, M.
2016-08-17
A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSEmore » emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. Furthermore, all system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.« less
Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien
2018-07-01
This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.
Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip
2014-10-31
OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter
CMOS Bit-Stream Band-Pass Beamforming
2016-03-31
unlimited. with direct IF sampling, most of the signal processing, including digital down-conversion ( DDC ), is carried out in the digital domain, and I/Q...level digitized signals are directly processed without decimation filtering for I/Q DDC and phase shifting. This novel BSP approach replaces bulky...positive feedback. The resonator center frequency of fs/4 (260MHz) simplifies the design of DDC . 4b tunable capacitors adjust the center frequency
Regional Seismic Amplitude Modeling and Tomography for Earthquake-Explosion Discrimination
2008-09-01
explosions from earthquakes, using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites ...Battone et al., 2002). For example, in Figure 1 we compare an earthquake and an explosion at each of four major test sites (rows), bandpass filtered...explosions as the frequency increases. Note also there are interesting differences between the test sites , indicating that emplacement conditions (depth
NASA Astrophysics Data System (ADS)
Choi, Muhan; Kang, Byungsoo; Yi, Yoonsik; Lee, Seung Hoon; Kim, Inbo; Han, Jae-Hyung; Yi, Minwoo; Ahn, Jaewook; Choi, Choon-Gi
2016-05-01
We introduce a flexible multilayered THz metamaterial designed by using the Babinet's principle with the functionality of narrow band-pass filter. The metamaterial gives us systematic way to design frequency selective surfaces working on intended frequencies and bandwidths. It shows highly enhanced transmission of 80% for the normal incident THz waves due to the strong coupling of the two layers of metamaterial complementary to each other.
Distributed Bandpass Filtering and Signal Demodulation in Cortical Network Models
NASA Astrophysics Data System (ADS)
McDonnell, Mark D.
Experimental recordings of cortical activity often exhibit narrowband oscillations, at various center frequencies ranging in the order of 1-200 Hz. Many neuronal mechanisms are known to give rise to oscillations, but here we focus on a population effect known as sparsely synchronised oscillations. In this effect, individual neurons in a cortical network fire irregularly at slow average spike rates (1-10 Hz), but the population spike rate oscillates at gamma frequencies (greater than 40 Hz) in response to spike bombardment from the thalamus. These cortical networks form recurrent (feedback) synapses. Here we describe a model of sparsely synchronized population oscillations using the language of feedback control engineering, where we treat spiking as noisy feedback. We show, using a biologically realistic model of synaptic current that includes a delayed response to inputs, that the collective behavior of the neurons in the network is like a distributed bandpass filter acting on the network inputs. Consequently, the population response has the character of narrowband random noise, and therefore has an envelope and instantaneous frequency with lowpass characteristics. Given that there exist biologically plausible neuronal mechanisms for demodulating the envelope and instantaneous frequency, we suggest there is potential for similar effects to be exploited in nanoscale electronics implementations of engineered communications receivers.
YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates
NASA Technical Reports Server (NTRS)
Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.
1996-01-01
Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.
Cong, Fengyu; Puoliväli, Tuomas; Alluri, Vinoo; Sipola, Tuomo; Burunat, Iballa; Toiviainen, Petri; Nandi, Asoke K; Brattico, Elvira; Ristaniemi, Tapani
2014-02-15
Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto
2016-02-01
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. Inmore » this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.« less
NASA Astrophysics Data System (ADS)
Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.
2013-03-01
This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.
Mattu, M J; Small, G W; Arnold, M A
1997-11-15
A multivariate calibration method is described in which Fourier transform near-infrared interferogram data are used to determine clinically relevant levels of glucose in an aqueous matrix of bovine serum albumin (BSA) and triacetin. BSA and triacetin are used to model the protein and triglycerides in blood, respectively, and are present in levels spanning the normal human physiological range. A full factorial experimental design is constructed for the data collection, with glucose at 10 levels, BSA at 4 levels, and triacetin at 4 levels. Gaussian-shaped band-pass digital filters are applied to the interferogram data to extract frequencies associated with an absorption band of interest. Separate filters of various widths are positioned on the glucose band at 4400 cm-1, the BSA band at 4606 cm-1, and the triacetin band at 4446 cm-1. Each filter is applied to the raw interferogram, producing one, two, or three filtered interferograms, depending on the number of filters used. Segments of these filtered interferograms are used together in a partial least-squares regression analysis to build glucose calibration models. The optimal calibration model is realized by use of separate segments of interferograms filtered with three filters centered on the glucose, BSA, and triacetin bands. Over the physiological range of 1-20 mM glucose, this 17-term model exhibits values of R2, standard error of calibration, and standard error of prediction of 98.85%, 0.631 mM, and 0.677 mM, respectively. These results are comparable to those obtained in a conventional analysis of spectral data. The interferogram-based method operates without the use of a separate background measurement and employs only a short section of the interferogram.
NASA Astrophysics Data System (ADS)
Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong
2018-04-01
We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.
High-resolution land cover classification using low resolution global data
NASA Astrophysics Data System (ADS)
Carlotto, Mark J.
2013-05-01
A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.
The Science Advantage of a Redder Filter for WFIRST
NASA Astrophysics Data System (ADS)
Bauer, James; Stauffer, John; Milam, Stefanie N.; Holler, Bryan J.
2018-01-01
WFIRST will be capable of providing Hubble-quality imaging performance over several thousand square degrees of the sky. The wide-area, high spatial resolution survey data from WFIRST will be unsurpassed for probably many decades into the future. With the current baseline design, the WFIRST filter complement will extend from the bluest wavelength allowed by the optical design to a reddest filter (F184W) that has a red cutoff at 2.0 microns. Extension of the imaging capabilities even slightly beyond the 2.0 micron wavelength cut-off would provide significant advantages over the presently proposed science for objects both near and far. The inclusion of a Ks (2.0-2.3 micron) filter would result in a wider range and more comprehensive set of Solar System investigations. It would also extend the range of higher-redshift population studies. In this poster, we outline some of the science advantages for adding a K filter, similar in bandpass to the 2MASS Ks filter, in order to extend the wavelength range for WFIRST as far to the red as the thermal performance of the spacecraft allows.
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Zhiwen; Miao, Qiang; Zhang, Xin
2018-03-01
A time-frequency analysis method based on ensemble local mean decomposition (ELMD) and fast kurtogram (FK) is proposed for rotating machinery fault diagnosis. Local mean decomposition (LMD), as an adaptive non-stationary and nonlinear signal processing method, provides the capability to decompose multicomponent modulation signal into a series of demodulated mono-components. However, the occurring mode mixing is a serious drawback. To alleviate this, ELMD based on noise-assisted method was developed. Still, the existing environmental noise in the raw signal remains in corresponding PF with the component of interest. FK has good performance in impulse detection while strong environmental noise exists. But it is susceptible to non-Gaussian noise. The proposed method combines the merits of ELMD and FK to detect the fault for rotating machinery. Primarily, by applying ELMD the raw signal is decomposed into a set of product functions (PFs). Then, the PF which mostly characterizes fault information is selected according to kurtosis index. Finally, the selected PF signal is further filtered by an optimal band-pass filter based on FK to extract impulse signal. Fault identification can be deduced by the appearance of fault characteristic frequencies in the squared envelope spectrum of the filtered signal. The advantages of ELMD over LMD and EEMD are illustrated in the simulation analyses. Furthermore, the efficiency of the proposed method in fault diagnosis for rotating machinery is demonstrated on gearbox case and rolling bearing case analyses.
Technological development of multispectral filter assemblies for micro bolometer
NASA Astrophysics Data System (ADS)
Le Goff, Roland; Tanguy, François; Fuss, Philippe; Etcheto, Pierre
2017-11-01
Since 2007 Sodern has successfully developed visible and near infrared multispectral filter assemblies for Earth remote sensing imagers. Filter assembly is manufactured by assembling several sliced filter elements (so-called strips), each corresponding to one spectral band. These strips are cut from wafers using a two dimensional accuracy precision process. In the frame of a 2011 R&T preparatory initiative undertaken by the French agency CNES, the filter assembly concept was adapted by Sodern to the long wave infrared spectral band taken into account the germanium substrate, the multilayer bandpass filters and the F-number of the optics. Indeed the current trend in space instrumentation toward more compact uncooled infrared radiometer leads to replace the filter wheel with a multispectral filter assembly mounted directly above the micro bolometer window. The filter assembly was customized to fit the bolometer size. For this development activity we consider a ULIS VGA LWIR micro bolometer with 640 by 480 pixels and 25 microns pixel pitch. The feasibility of the concept and the ability to withstand space environment were investigated and demonstrated by bread boarding activities. The presentation will contain a detailed description of the bolometer and filter assembly design, the stray light modeling analysis assessing the crosstalk between adjacent spectral bands and the results of the manufacturing and environmental tests (damp heat and thermal vacuum cycling).
NASA Astrophysics Data System (ADS)
Correa-Mena, Ana Gabriela; Zaldívar-Huerta, Ignacio E.; Abril García, Jose Humberto; García-Juárez, Alejandro; Vera-Marquina, Alicia
2016-10-01
A practical application of a bidirectional microwave photonic filter (MPF) to transmit simultaneous analog TV signals coded on microwave carriers is experimentally demonstrated. The frequency response of the bidirectional MPF is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.55 μm associated to the free-spectral range of the optical source, the chromatic dispersion parameter of the optical fiber, as well as the length of the optical link. The filtered microwave bandpass window generated around 2 GHz is used as electrical carrier in order to simultaneously transmit TV signals of 67.25 and 61.25 MHz in both directions. The obtained signal-to-noise ratios for the transmitted signals of 67.25 and 61.25 MHz are 37.62 and 44.77 dB, respectively.
Circuit for echo and noise suppression of accoustic signals transmitted through a drill string
Drumheller, Douglas S.; Scott, Douglas D.
1993-01-01
An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output.
Estimation of Uncertainties of Full Moment Tensors
2017-10-06
Nevada Test Site (tab. 1 of Ford et al., 2009). Figure 1 shows the three regions and the stations used within the moment tensor inversions . For the...and additional bandpass filtering, were applied during the moment tensor inversions . We use high-frequency P waves for the Uturuncu and NTS events...reliable when we align the P waves on the observed P arrival time. 3.2 Methods Seismic moment tensor inversion requires specifying a misfit function
NASA Astrophysics Data System (ADS)
Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano
2016-05-01
Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.
Wang, Shiguang; Chen, Hongwei; Xin, Ming; Chen, Minghua; Xie, Shizhong
2009-10-15
A simple and feasible technique for ultra-wide-band (UWB) pulse bipolar modulation (PBM) and pulse shape modulation (PSM) in the optical domain is proposed and demonstrated. The PBM and PSM are performed using a symmetric phase modulation to intensity modulation conversion architecture, including a couple of phase modulators and an optical bandpass filter (OBPF). Two optical carriers, which are separately phase modulated by two appropriate electrical pulse patterns, are at the long- and short-wavelength linear slopes of the OBPF spectrum, respectively. The high-speed PBM and PSM without limit of chip length, polarity, and shape are implemented in simulation and are also verified by experiment. (c) 2009 Optical Society of America.
Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors
NASA Technical Reports Server (NTRS)
Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.
Covert, Intelligent, and Spectrally-Efficient MIMO-Based Noise Radar Networks
2009-01-31
a/,(t-2r0 - jtd) + nj2(t-r0) + nb2{t) ;=i xt{t-2r0) + M,(t) Yjajxl(t-2r() -jrd) + n2(r) 7=1 (112) where nbl (f) and nb2(t) are...bandpass filter which flows to correlator 1 is given by . xlc](t) = h(t)®[xl(t-2t0) + nfl(t-T0)] + nbl (t) M M = Z«/*.(’-2r0 -rmi) + Y«,"/,(t ~2r0 -r... nbl (r) M = ^or,.xl(r-2r0-rm,) + nml(0 i=i M where nmi (?) - ^ CXtnfl (t - 2t0 - Tml) + nbl (t) represents the noise term of JC1CI (t). i=i
The unbalanced signal measuring of automotive brake drum
NASA Astrophysics Data System (ADS)
Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng
2005-04-01
For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.
A Plenoptic Multi-Color Imaging Pyrometer
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Hutchins, William D.; Fahringer, Timothy; Thurow, Brian S.
2017-01-01
A three-color pyrometer has been developed based on plenoptic imaging technology. Three bandpass filters placed in front of a camera lens allow separate 2D images to be obtained on a single image sensor at three different and adjustable wavelengths selected by the user. Images were obtained of different black- or grey-bodies including a calibration furnace, a radiation heater, and a luminous sulfur match flame. The images obtained of the calibration furnace and radiation heater were processed to determine 2D temperature distributions. Calibration results in the furnace showed that the instrument can measure temperature with an accuracy and precision of 10 Kelvins between 1100 and 1350 K. Time-resolved 2D temperature measurements of the radiation heater are shown.
Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method
NASA Astrophysics Data System (ADS)
Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie
2018-07-01
One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
NASA Astrophysics Data System (ADS)
Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng
2017-08-01
A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.
Gravity Survey of the Rye Patch KGRA, Rye Patch, Nevada
NASA Astrophysics Data System (ADS)
Mcdonald, M. R.; Gosnold, W. D.
2011-12-01
The Rye Patch Known Geothermal Resource Area (KGRA) is located in Pershing County Nevada on the west side of the Humboldt Range and east of the Rye Patch Reservoir approximately 200 km northeast of Reno, Nevada. Previous studies include an earlier gravity survey, 3-D seismic reflection, vertical seismic profiling (VSP) on a single well, 3-D seismic imaging, and a report of the integrated seismic studies. Recently, Presco Energy conducted an aeromagnetic survey and is currently in the process of applying 2-D VSP methods to target exploration and production wells at the site. These studies have indicated that geothermal fluid flow primarily occurs along faults and fractures and that two potential aquifers include a sandstone/siltstone member of the Triassic Natchez Pass Formation and a karst zone that occurs at the interface between Mesozoic limestone and Tertiary volcanics. We hypothesized that addition of a high-resolution gravity survey would better define the locations, trends, lengths, and dip angles of faults and possible solution cavity features. The gravity survey encompassed an area of approximately 78 km2 (30 mi2) within the boundary of the KGRA along with portions of 8 sections directly to the west and 8 sections directly to the east. The survey included 203 stations that were spaced at 400 m intervals. The simple Bouguer anomaly patterns were coincident with elevation, and those patterns remained after terrain corrections were performed. To remove this signal, the data were further processed using wave-length (bandpass) filtering techniques. The results of the filtering and comparison with the recent aeromagnetic survey indicate that the location and trend of major fault systems can be identified using this technique. Dip angles can be inferred by the anomaly contour gradients. By further reductions in the bandpass window, other features such as possible karst solution channels may also be recognizable. Drilling or other geophysical methods such as a magnetotelluric survey may assist in confirming the results. However, lengths of the features were difficult to interpret as the wavelength filtering tends to truncate features in accordance with the bandpass window. Additional gravity measurements would aid in providing higher resolution for the identification and interpretation of features, particularly in the vicinity of the Humboldt House to the north and in an area located to the south of the study area where a large feature was identified in both the aeromagnetic and gravity surveys.
Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.
St-Yves, Jonathan; Bahrami, Hadi; Jean, Philippe; LaRochelle, Sophie; Shi, Wei
2015-12-01
Next-generation high-capacity optical networks require flexible allocation of spectrum resources, for which low-cost optical filters with an ultra-wide bandwidth tunability beyond 100 GHz are desired. We demonstrate an integrated band-pass filter with the bandwidth continuously tuned across 670 GHz (117-788 GHz) which, to the best of our knowledge, is the widest tuning span ever demonstrated on a silicon chip. The filter also features simultaneous wavelength tuning and an unlimited free spectral range. We measured an out-of-band contrast of up to 55 dB, low in-band ripples of less than 0.3 dB, and in-band group delay variation of less than 8 ps. This result was achieved using cascaded Bragg-grating-assisted contra-directional couplers and micro-heaters on the 220 nm silicon-on-insulator platform with a very compact footprint of less than 7000 μm2. Another design with the bandwidth continuously tunable from 50 GHz to 1 THz is also presented.
Faghihi, Faramarz; Moustafa, Ahmed A.
2015-01-01
Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the importance of cooperation of Hebbian mechanism with regulation of neurotransmitter release induced by rapid diffused retrograde messenger in neurons with synapses as low and band-pass filters to obtain high encoding efficiency in different environmental and physiological conditions. PMID:25972786
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
NASA Astrophysics Data System (ADS)
Kertzscher, Gustavo; Beddar, Sam
2016-11-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
Kertzscher, Gustavo; Beddar, Sam
2016-01-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from > 5% to < 1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was < 3% as long as the source distance from the scintillator was < 7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by > 5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence. PMID:27740947
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy.
Kertzscher, Gustavo; Beddar, Sam
2016-11-07
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Circuit for echo and noise suppression of acoustic signals transmitted through a drill string
Drumheller, D.S.; Scott, D.D.
1993-12-28
An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.
Rare Earth Optical Temperature Sensor
NASA Technical Reports Server (NTRS)
Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)
2004-01-01
A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.
Millimeter And Submillimeter-Wave Integrated Circuits On Quartz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter
1995-01-01
Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.
Free-form Fresnel RXI-RR Köhler design for high-concentration photovoltaics with spectrum-splitting
NASA Astrophysics Data System (ADS)
Buljan, M.; Benítez, P.; Mohedano, R.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.
2011-10-01
Development of a novel HCPV nonimaging concentrator with high concentration (>500x) and built-in spectrum splitting concept is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it - Both the POE and SOE performing Köhler integration to produce light homogenization on the receiver. The band-pass filter transmits the IR photons in the 900-1200 nm band to the silicon cell. A design target of an "equivalent" cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level larger than 500X with a wide acceptance angle of +/-1°. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%.
Design of a Steerable Two-beam System for Simultaneous On- and Off-axis Imaging with GUFI
NASA Astrophysics Data System (ADS)
Chambers, V. J.; Butler, R. F.; Goncharov, A. V.
2008-02-01
The GUFI (Galway Ultra Fast Imager) has been primarily developed for high throughput differential photometry, in order to study variability in challenging circumstances, such as near bright sources or within crowded fields. The instrument features a low light level charged coupled device (L3-CCD) that enhances detector speed and sensitivity but only covers small fields of view. This presents limitations on possible science targets when suitable differential photometry comparison stars are not in the immediate vicinity of the target. Conventional solutions for imaging larger portions of sky without sacrificing SNR include telescope focal reduction methods and large arrays of CCDs. Our alternative solution entails a two-path, `outrigger' optical design to image target and comparison stars separately. This new approach allows detection of variable targets that formerly were not reachable with smaller-field detectors. The mechanical design was originally generated with AutoCAD® drafting software before being compiled in, and vetted with an OSLO® optical design package. Through filters B, V and I, the limiting design aberration was chromatic focal shift that appeared most severe in the B-filter's bandpass range. However, the degree of image blurring caused by this aberration and others did not exceed the scale of that already produced by atmospheric turbulence. For each bandpass, the model's imaging performance met and exceeded expectations set by all design constraints.
Gilmore, Adam Matthew
2014-01-01
Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.
Bernstein, Leslie R; Trahiotis, Constantine
2014-02-01
Sensitivity to ongoing interaural temporal disparities (ITDs) was measured using bandpass-filtered pulse trains centered at 4600, 6500, or 9200 Hz. Save for minor differences in the exact center frequencies, those target stimuli were those employed by Majdak and Laback [J. Acoust. Soc. Am. 125, 3903-3913 (2009)]. At each center frequency, threshold ITD was measured for pulse repetition rates ranging from 64 to 609 Hz. The results and quantitative predictions by a cross-correlation-based model indicated that (1) at most pulse repetition rates, threshold ITD increased with center frequency, (2) the cutoff frequency of the putative envelope low-pass filter that determines sensitivity to ITD at high envelope rates appears to be inversely related to center frequency, and (3) both outcomes were accounted for by assuming that, independent of the center frequency, the listeners' decision variable was a constant criterion change in interaural correlation of the stimuli as processed internally. The finding of an inverse relation between center frequency and the envelope rate limitation, while consistent with much prior literature, runs counter to the conclusion reached by Majdak and Laback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in
A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less
Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator
NASA Astrophysics Data System (ADS)
Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad
2011-03-01
In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.
NASA Astrophysics Data System (ADS)
Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet
2017-05-01
This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
NASA Astrophysics Data System (ADS)
Arce-Guevara, Valdemar E.; Alba-Cadena, Alfonso; Mendez, Martín O.
Quadrature bandpass filters take a real-valued signal and output an analytic signal from which the instantaneous amplitude and phase can be computed. For this reason, they represent a useful tool to extract time-varying, narrow-band information from electrophysiological signals such as electroencephalogram (EEG) or electrocardiogram. One of the defining characteristics of quadrature filters is its null response to negative frequencies. However, when the frequency band of interest is close to 0 Hz, a careless filter design could let through negative frequencies, producing distortions in the amplitude and phase of the output. In this work, three types of quadrature filters (Ideal, Gabor and Sinusoidal) have been evaluated using both artificial and real EEG signals. For the artificial signals, the performance of each filter was measured in terms of the distortion in amplitude and phase, and sensitivity to noise and bandwidth selection. For the real EEG signals, a qualitative evaluation of the dynamics of the synchronization between two EEG channels was performed. The results suggest that, while all filters under study behave similarly under noise, they differ in terms of their sensitivity to bandwidth choice. In this study, the Sinusoidal filter showed clear advantages for the estimation of low-frequency EEG synchronization.
Hadoux, Xavier; Kumar, Dinesh Kant; Sarossy, Marc G; Roger, Jean-Michel; Gorretta, Nathalie
2016-05-19
Visible and near-infrared (Vis-NIR) spectra are generated by the combination of numerous low resolution features. Spectral variables are thus highly correlated, which can cause problems for selecting the most appropriate ones for a given application. Some decomposition bases such as Fourier or wavelet generally help highlighting spectral features that are important, but are by nature constraint to have both positive and negative components. Thus, in addition to complicating the selected features interpretability, it impedes their use for application-dedicated sensors. In this paper we have proposed a new method for feature selection: Application-Dedicated Selection of Filters (ADSF). This method relaxes the shape constraint by enabling the selection of any type of user defined custom features. By considering only relevant features, based on the underlying nature of the data, high regularization of the final model can be obtained, even in the small sample size context often encountered in spectroscopic applications. For larger scale deployment of application-dedicated sensors, these predefined feature constraints can lead to application specific optical filters, e.g., lowpass, highpass, bandpass or bandstop filters with positive only coefficients. In a similar fashion to Partial Least Squares, ADSF successively selects features using covariance maximization and deflates their influences using orthogonal projection in order to optimally tune the selection to the data with limited redundancy. ADSF is well suited for spectroscopic data as it can deal with large numbers of highly correlated variables in supervised learning, even with many correlated responses. Copyright © 2016 Elsevier B.V. All rights reserved.
Monte-Carlo modelling to determine optimum filter choices for sub-microsecond optical pyrometry.
Ota, Thomas A; Chapman, David J; Eakins, Daniel E
2017-04-01
When designing a spectral-band pyrometer for use at high time resolutions (sub-μs), there is ambiguity regarding the optimum characteristics for a spectral filter(s). In particular, while prior work has discussed uncertainties in spectral-band pyrometry, there has been little discussion of the effects of noise which is an important consideration in time-resolved, high speed experiments. Using a Monte-Carlo process to simulate the effects of noise, a model of collection from a black body has been developed to give insights into the optimum choices for centre wavelength and passband width. The model was validated and then used to explore the effects of centre wavelength and passband width on measurement uncertainty. This reveals a transition centre wavelength below which uncertainties in calculated temperature are high. To further investigate system performance, simultaneous variation of the centre wavelength and bandpass width of a filter is investigated. Using data reduction, the effects of temperature and noise levels are illustrated and an empirical approximation is determined. The results presented show that filter choice can significantly affect instrument performance and, while best practice requires detailed modelling to achieve optimal performance, the expression presented can be used to aid filter selection.
Dissipative elastic metamaterial with a low-frequency passband
NASA Astrophysics Data System (ADS)
Liu, Yongquan; Yi, Jianlin; Li, Zheng; Su, Xianyue; Li, Wenlong; Negahban, Mehrdad
2017-06-01
We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.
Stray light correction of array spectroradiometer measurement in ultraviolet
NASA Astrophysics Data System (ADS)
Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Li, Ling
2018-02-01
For most of the array spectroradiometer, stray light is significant in UV band. Stray light correction of a UV array spectroradiometer is investigated using optical filters. If a group of filters with continuous bandpass are chosen, stray light contribution due to all the bands can be obtained using a numerical algorithm. The array spectroradiometer with the stray light corrected is used to measure the spectral irradiance of several UV lamps. The measurement results are compared to a double monochromator spectroradiometer. When xenon lamp is the array spectroradiometer calibration lamp, after stray light correction, the difference can be improved from nearly 10% to 2.0% in UVC band. When tungsten lamp is the calibration lamp, the difference can be improved from around 90% to less than 20%.
1990-08-01
reference signal 25 5 A METHOD FOR MEASURING LOW-PRF PULSED SIGNALS 28 5.1 Using a NWA with a smaller BPF 28 5.2 Using the HP 8510B external trigger...2nd LO 11Q 3MHz BPF lOkHz BPF Fig. 4: Receiver block diagram The receiver is a double conversion superheterodyne with a 10 kHz wide BandPass Filter... BPF ) in the second IF. This 10 kHz filter is the component that dictates how the HP 8510B responds to pulsed signals. For the pulsed-RF test signal
Dispersion-free pulse duration reduction of passively Q-switched microchip lasers.
Lehneis, R; Steinmetz, A; Jauregui, C; Limpert, J; Tünnermann, A
2012-11-01
We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
A self-sensing active magnetic bearing based on a direct current measurement approach.
Niemann, Andries C; van Schoor, George; du Rand, Carel P
2013-09-11
Active magnetic bearings (AMBs) have become a key technology in various industrial applications. Self-sensing AMBs provide an integrated sensorless solution for position estimation, consolidating the sensing and actuating functions into a single electromagnetic transducer. The approach aims to reduce possible hardware failure points, production costs, and system complexity. Despite these advantages, self-sensing methods must address various technical challenges to maximize the performance thereof. This paper presents the direct current measurement (DCM) approach for self-sensing AMBs, denoting the direct measurement of the current ripple component. In AMB systems, switching power amplifiers (PAs) modulate the rotor position information onto the current waveform. Demodulation self-sensing techniques then use bandpass and lowpass filters to estimate the rotor position from the voltage and current signals. However, the additional phase-shift introduced by these filters results in lower stability margins. The DCM approach utilizes a novel PA switching method that directly measures the current ripple to obtain duty-cycle invariant position estimates. Demodulation filters are largely excluded to minimize additional phase-shift in the position estimates. Basic functionality and performance of the proposed self-sensing approach are demonstrated via a transient simulation model as well as a high current (10 A) experimental system. A digital implementation of amplitude modulation self-sensing serves as a comparative estimator.
A UV-Vis photoacoustic spectrophotometer.
Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D
2014-06-17
A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.
Optofluidic tuning of multimode interference fiber filters
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; May-Arrioja, D. A.; LiKamWa, P.
2009-05-01
We report on the optofluidic tuning of MMI-based bandpass filters. It is well known that MMI devices exhibit their highest sensitivity when their diameter (D) is modified, since they have a D2 wavelength dependence. In order to increase the MMF diameter we use a special fiber, called No-Core fiber, which is basically a MMF with a diameter of 125 μm with air as the cover. Therefore, when this No-Core fiber is immersed in liquids with different refractive indexes, as a result of the Goes-Hänchen shift the effective width (fundamental mode width) of the No-Core fiber is increased, and thus the peak wavelength is tuned. A tunability of almost 40 nm in going from air (n=1.333) to ethylene glycol (n=1.434) was easily obtained, with a minimum change in peak transmission, contrast, and bandwidth. Moreover, since replacing the entire liquid can be difficult, the device was placed vertically and the liquid was covering the No-Core fiber in small steps. This provided similar amount of tuning as before, but a more controllable tuning mechanism.
Modulation of Polymorphonuclear Neutrophil Response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine
1988-11-10
mi. Blood drawing was done by a team of ALAAS certified technicians. Previous experience had shown it to be tolerated without evidence of pain or...collected through a 525 nM bandpass filter on a linear scale . G. SIGNAL TRANSDUCTION STUDIES-PERTUSSIS TOXIN PMNs separated on percol gradients were...Clin. Immun. and Immunopath., 15:525, 1980. 16. Gray, G.D., Ohlmann, G.M., Morton. D.R. and Schaaub, R.G., Feline Polymorphonuclear Leukocytes Respond
Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A
2014-05-06
A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.
NittanySat Final Report for University Nanosatellite-5 Program
2009-10-12
Figures 9 through 12 and tabulated in Table 2. Figure 9 – 14-MHz BPF . Figure 10 – 21-MHz BPF . Page 13 Figure 11 – 28-MHz BPF ...Figure 12 – 50-MHz BPF . Table 2 - Narrow Band-pass Filter Parameters Frequency Band [MHz] Bandwidth Range [MHz] Insertion Loss [dB] Return Loss...surface area, and surface properties (e.g., absorptivity, emissivity) of the various components. In order to make predictions and guide design choices, an
Advanced LPI (Low-Probability-of-Intercept) Intercept Detector Research
1985-11-13
following comparisons, we select a nominal loss figure of - 1.5 dB. We note that the above losses pertain to a rectangular BPF ; other filter ships will...this brief expose on the useful properties of the LLR moment- * generating functions, we can now prove the BPF theorem in a rather compact fashion...can be performed following guidelines similar to those in Appendix C, as follows: Let the bandpass AWGN n(t) be represented by 0) n(t) -T2 nj (t) cos
2007-09-01
stations at test sites around the world (e.g., Nevada, Lop Nor, Novaya Zemlya, Semipalatinsk , India, Pakistan, and North Korea). We show this pattern...regional P/S amplitudes tended to be dominated by frequencies around 1 Hz. As shown in Figure 2 at a number of major nuclear test sites , these...Figure 2. Bandpass filtered 1-2 Hz seismograms of earthquake (red) and explosion (blue) pairs at nuclear test sites show little consistent
The ISEE-C plasma wave investigation
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.
1978-01-01
The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.
High angular resolution observations of the cool giant V Hya
NASA Astrophysics Data System (ADS)
Pedretti, E.; Monnier, J. D.; Millan Gabet, R.; Traub, W. A.; Tuthill, P.; Danchi, W.; Berger, J.; Schloerb, F. P.; Thureau, N. D.; Carleton, N. P.; Lacasse, M. G.; Schuller, P. A.; Ragland, S.; Brewer, M.
2005-12-01
We present the preliminary interferometric observations of the cool giant star V Hya. V Hya, which is known to have mass-loss and to be surrounded by a dust shell,was observed in three narrow-band filters in the H bandpass at the infrared optical telescope array (IOTA), using the IONIC three-telescope beam combiner. The star was also observed at the Keck telescope using an aperture mask. We discuss the results and try to fit simple models to the observed data.
Fiber laser refractometer based on tunable bandpass filter tailored FBG reflection
NASA Astrophysics Data System (ADS)
Zhao, Junfa; Wang, Juan; Zhang, Cheng; Xu, Wei; Sun, Xiaodong; Bai, Hua; Chen, Liying
2018-02-01
A fiber laser refractometer based on single-mode-no-core-single-mode (SNS) structure cascaded with a FBG is proposed and experimentally demonstrated. The output wavelength of the fiber laser keeps constant because the oscillating wavelength is only determined by the central wavelength of the FBG which is insensitive to the surrounding refractive index (SRI). However, the output power is sensitive to the SRI because the intracavity loss of the fiber laser varies with the SRI. A cost-effective power detection refractometer with reflective operation can be realized through measuring the variation of the fiber laser's output power. The refractometer has a sensitivity of 195.52 dB/RIU and 365.52 dB/RIU in the RI range of 1.3330-1.3687 and 1.3687-1.4135, respectively. Moreover, the refractometer can also be used for temperature measurement through discriminating the output wavelength of the fiber laser.
Phase and amplitude analysis in time-frequency space--application to voluntary finger movement.
Ginter, J; Blinowska, K J; Kamiński, M; Durka, P J
2001-09-30
Two methods operating in time-frequency space were applied to analysis of EEG activity accompanying voluntary finger movements. The first one, based on matching pursuit approach provided high-resolution distributions of power in time-frequency space. The phenomena of event related desynchronization (ERD) and synchronization (ERS) were investigated without the need of band-pass filtering. Time evolution of mu- and beta-components was observed in a detailed way. The second method was based on a multichannel autoregressive model (MVAR) adapted for investigation of short-time changes in EEG signal. The direction and spectral content of the EEG activity propagation was estimated by means of short-time directed transfer function (SDTF). The evidence of 'cross-talk' between different areas of motor and sensory cortex was found. The earlier known phenomena, connected with voluntary movements, were confirmed and a new evidence concerning focal ERD/surround ERS and beta activity post-movement synchronization was found.
Quasi-distributed sol-gel coated fiber optic oxygen sensing probe
NASA Astrophysics Data System (ADS)
Zolkapli, Maizatul; Saharudin, Suhairi; Herman, Sukreen Hana; Abdullah, Wan Fazlida Hanim
2018-03-01
In the field of aquaculture, optical sensor technology is beginning to provide alternatives to the conventional electrical sensor. Hence, the development and characterization of a multipoint quasi-distributed optical fiber sensor for oxygen measurement is reported. The system is based on 1 mm core diameter plastic optical fiber where sections of cladding have been removed and replaced with three metal complexes sol-gel films to form sensing points. The sensing locations utilize luminophores that have emission peaks at 385 nm, 405 nm and 465 nm which associated with each of the sensing points. Interrogation of the optical sensor system is through a fiber optic spectrometer incorporating narrow bandpass emission optical filter. The sensors showed comparable sensitivity and repeatability, as well as fast response and recovery towards oxygen.
MSE commissioning and other major diagnostic updates on KSTAR
NASA Astrophysics Data System (ADS)
Ko, Jinseok; Kstar Team
2015-11-01
The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR). The 25-channel MSE system with the polarization-preserving front optics and precise tilt-tuning narrow bandpass filters provides the spatial resolution less than 1 cm in most of the plasma cross section and about 10 millisecond of time resolution. The polarization response curves with the daily Faraday rotation correction provides reliable pitch angle profiles for the KSTAR discharges with the MSE-optimized energy combination in the three-ion-source neutral beam injection. Some major diagnostic advances such as the poloidal charge exchange spectroscopy, the improved Thomson-scatting system, and the divertor infrared TV are reported as well. Work supported by the Ministry of Science, ICT and Future Planning, Korea.
NASA Astrophysics Data System (ADS)
Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej
2015-03-01
Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, G; Beddar, S
Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety ofmore » experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.« less
Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A
2014-12-01
While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses hidden in vibration signals and performs well for bearing fault diagnosis.
Zeid, Elias Abou; Sereshkeh, Alborz Rezazadeh; Chau, Tom
2016-12-01
In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.
NASA Astrophysics Data System (ADS)
Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Chau, Tom
2016-12-01
Objective. In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have attempted single trial classification of RP via spatial and temporal filtering methods, or by combining the RP with event-related desynchronization. However, RP feature extraction remains challenging due to the slow non-oscillatory nature of the potential, its variability among participants and the inherent noise in EEG signals. Here, we propose a participant-specific, individually optimized pipeline of spatio-temporal filtering (PSTF) to improve RP feature extraction for laterality prediction. Approach. PSTF applies band-pass filtering on RP signals, followed by Fisher criterion spatial filtering to maximize class separation, and finally temporal window averaging for feature dimension reduction. Optimal parameters are simultaneously found by cross-validation for each participant. Using EEG data from 14 participants performing self-initiated left or right key presses as well as two benchmark BCI datasets, we compared the performance of PSTF to two popular methods: common spatial subspace decomposition, and adaptive spatio-temporal filtering. Main results. On the BCI benchmark data sets, PSTF performed comparably to both existing methods. With the key press EEG data, PSTF extracted more discriminative features, thereby leading to more accurate (74.99% average accuracy) predictions of RP laterality than that achievable with existing methods. Significance. Naturalistic and volitional interaction with the world is an important capacity that is lost with traditional system-paced BCIs. We demonstrated a significant improvement in fine movement laterality prediction from RP features alone. Our work supports further study of RP-based BCI for intuitive asynchronous control of the environment, such as augmentative communication or wheelchair navigation.
NASA Astrophysics Data System (ADS)
Hazelaar, Colien; Dahele, Max; Mostafavi, Hassan; van der Weide, Lineke; Slotman, Ben; Verbakel, Wilko
2018-06-01
Lung tumors treated in breath-hold are subject to inter- and intra-breath-hold variations, which makes tumor position monitoring during each breath-hold important. A markerless technique is desirable, but limited tumor visibility on kV images makes this challenging. We evaluated if template matching + triangulation of kV projection images acquired during breath-hold stereotactic treatments could determine 3D tumor position. Band-pass filtering and/or digital tomosynthesis (DTS) were used as image pre-filtering/enhancement techniques. On-board kV images continuously acquired during volumetric modulated arc irradiation of (i) a 3D-printed anthropomorphic thorax phantom with three lung tumors (n = 6 stationary datasets, n = 2 gradually moving), and (ii) four patients (13 datasets) were analyzed. 2D reference templates (filtered DRRs) were created from planning CT data. Normalized cross-correlation was used for 2D matching between templates and pre-filtered/enhanced kV images. For 3D verification, each registration was triangulated with multiple previous registrations. Generally applicable image processing/algorithm settings for lung tumors in breath-hold were identified. For the stationary phantom, the interquartile range of the 3D position vector was on average 0.25 mm for 12° DTS + band-pass filtering (average detected positions in 2D = 99.7%, 3D = 96.1%, and 3D excluding first 12° due to triangulation angle = 99.9%) compared to 0.81 mm for band-pass filtering only (55.8/52.9/55.0%). For the moving phantom, RMS errors for the lateral/longitudinal/vertical direction after 12° DTS + band-pass filtering were 1.5/0.4/1.1 mm and 2.2/0.3/3.2 mm. For the clinical data, 2D position was determined for at least 93% of each dataset and 3D position excluding first 12° for at least 82% of each dataset using 12° DTS + band-pass filtering. Template matching + triangulation using DTS + band-pass filtered images could accurately determine the position of stationary lung tumors. However, triangulation was less accurate/reliable for targets with continuous, gradual displacement in the lateral and vertical directions. This technique is therefore currently most suited to detect/monitor offsets occurring between initial setup and the start of treatment, inter-breath-hold variations, and tumors with predominantly longitudinal motion.
NASA Astrophysics Data System (ADS)
Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas
2016-10-01
Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.
Tunable Filter Made From Three Coupled WGM Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey
2006-01-01
A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery-modes of the third WGM resonator to an output optical fiber. The filter operates at a nominal wavelength of 1,550 nm and can be tuned over a frequency range of plus or minus 12 GHz by applying a potential in the range of plus or minus 150 V to the electrodes. The insertion loss (the loss between the input and output coupling optical fibers) was found to be repeatable at 6 dB. The resonance quality factor (Q) of the main sequence of resonator modes was found to be 5 x 10(exp 6), which corresponds to a bandwidth of 30 MHz. The filter can be shifted from one operating frequency to another within a tuning time less than or equal to 30 micro seconds. The transmission curve of the filter at frequencies near the middle of the passband closely approximates a theoretical third-order Butterworth filter profile, as shown in Figure 2.
Sub-band/transform compression of video sequences
NASA Technical Reports Server (NTRS)
Sauer, Ken; Bauer, Peter
1992-01-01
The progress on compression of video sequences is discussed. The overall goal of the research was the development of data compression algorithms for high-definition television (HDTV) sequences, but most of our research is general enough to be applicable to much more general problems. We have concentrated on coding algorithms based on both sub-band and transform approaches. Two very fundamental issues arise in designing a sub-band coder. First, the form of the signal decomposition must be chosen to yield band-pass images with characteristics favorable to efficient coding. A second basic consideration, whether coding is to be done in two or three dimensions, is the form of the coders to be applied to each sub-band. Computational simplicity is of essence. We review the first portion of the year, during which we improved and extended some of the previous grant period's results. The pyramid nonrectangular sub-band coder limited to intra-frame application is discussed. Perhaps the most critical component of the sub-band structure is the design of bandsplitting filters. We apply very simple recursive filters, which operate at alternating levels on rectangularly sampled, and quincunx sampled images. We will also cover the techniques we have studied for the coding of the resulting bandpass signals. We discuss adaptive three-dimensional coding which takes advantage of the detection algorithm developed last year. To this point, all the work on this project has been done without the benefit of motion compensation (MC). Motion compensation is included in many proposed codecs, but adds significant computational burden and hardware expense. We have sought to find a lower-cost alternative featuring a simple adaptation to motion in the form of the codec. In sequences of high spatial detail and zooming or panning, it appears that MC will likely be necessary for the proposed quality and bit rates.
SWAP: an EUV imager for solar monitoring on board of PROBA2
NASA Astrophysics Data System (ADS)
Katsiyannis, Athanassios C.; Berghmans, David; Hochedez, Jean-Francois; Nicula, Bogdan; Lawrence, Gareth; Defise, Jean-Marc; Ben-Moussa, Ali; Delouille, Veronique; Dominique, Marie; Lecat, Jean-Herve; Schmutz, W.; Theissen, Armin; Slemzin, Vladimir
2005-08-01
PROBA2 is an ESA technology demonstration mission to be launched in early 2007. The two primary scientific instruments on board of PROBA2 are SWAP (Sun Watcher using Active Pixel System detector and Image Processing) and the LYRA VUV radiometer. SWAP provides a full disk solar imaging capability with a bandpass filter centred at 17.5 nm (FeIX-XI) and a fast cadence of ≈1 min. The telescope is based on an off-axis Ritchey Chretien design while an extreme ultraviolet (EUV) enhanced APS CMOS will be used as a detector. As the prime goal of the SWAP is solar monitoring and advance warning of Coronal Mass Ejections (CME), on-board intellige nce will be implemented. Image recognition software using experimental algorithms will be used to detect CMEs during the first phase of eruption so the event can be tracked by the spacecraft without huma n intervention. LYRA will monitor solar irradiance in four different VUV passbands with a cadence of up to 100 Hz. The four channels were chosen for their relevance to solar physics, aeronomy and space weather: 115-125 nm (Lyman-α), 200-220 nm Herzberg continuum, the 17-70 nm Aluminium filter channel (that includes the HeII line at 30.4 nm) and the 1-20 nm Zirconium filter channel. On-board calibration sources will monitor the stability of the detectors and the filters throughout the duration of the mission.
NASA Astrophysics Data System (ADS)
Chong, See Yenn; Victor, Jared J.; Todd, Michael D.
2017-04-01
In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability
3D hand motion trajectory prediction from EEG mu and beta bandpower.
Korik, A; Sosnik, R; Siddique, N; Coyle, D
2016-01-01
A motion trajectory prediction (MTP) - based brain-computer interface (BCI) aims to reconstruct the three-dimensional (3D) trajectory of upper limb movement using electroencephalography (EEG). The most common MTP BCI employs a time series of bandpass-filtered EEG potentials (referred to here as the potential time-series, PTS, model) for reconstructing the trajectory of a 3D limb movement using multiple linear regression. These studies report the best accuracy when a 0.5-2Hz bandpass filter is applied to the EEG. In the present study, we show that spatiotemporal power distribution of theta (4-8Hz), mu (8-12Hz), and beta (12-28Hz) bands are more robust for movement trajectory decoding when the standard PTS approach is replaced with time-varying bandpower values of a specified EEG band, ie, with a bandpower time-series (BTS) model. A comprehensive analysis comprising of three subjects performing pointing movements with the dominant right arm toward six targets is presented. Our results show that the BTS model produces significantly higher MTP accuracy (R~0.45) compared to the standard PTS model (R~0.2). In the case of the BTS model, the highest accuracy was achieved across the three subjects typically in the mu (8-12Hz) and low-beta (12-18Hz) bands. Additionally, we highlight a limitation of the commonly used PTS model and illustrate how this model may be suboptimal for decoding motion trajectory relevant information. Although our results, showing that the mu and beta bands are prominent for MTP, are not in line with other MTP studies, they are consistent with the extensive literature on classical multiclass sensorimotor rhythm-based BCI studies (classification of limbs as opposed to motion trajectory prediction), which report the best accuracy of imagined limb movement classification using power values of mu and beta frequency bands. The methods proposed here provide a positive step toward noninvasive decoding of imagined 3D hand movements for movement-free BCIs. © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tower, J. R.; Cope, A. D.; Pellion, L. E.; McCarthy, B. M.; Strong, R. T.; Kinnard, K. F.; Moldovan, A. G.; Levine, P. A.; Elabd, H.; Hoffman, D. M.
1985-12-01
Performance measurements of two Multispectral Linear Array focal planes are presented. Both pushbroom sensors have been developed for application in remote sensing instruments. A buttable, four-spectral-band, linear-format charge coupled device (CCD) and a but-table, two-spectral-band, linear-format, shortwave infrared charge coupled device (IRCCD) have been developed under NASA funding. These silicon integrated circuits may be butted end to end to provide very-high-resolution multispectral focal planes. The visible CCD is organized as four sensor lines of 1024 pixels each. Each line views the scene in a different spectral window defined by integral optical bandpass filters. A prototype focal plane with five devices, providing 4x5120-pixel resolution has been demonstrated. The high quantum efficiency of the backside-illuminated CCD technology provides excellent signal-to-noise performance and unusually high MTF across the entire visible and near-IR spectrum. The shortwave infrared (SWIR) sensor is organized as two line sensors of 512 detectors each. The SWIR (1-2.5 μm) spectral windows may be defined by bandpass filters placed in close proximity to the devices. The dual-band sensor consists of Schottky barrier detectors read out by CCD multiplexers. This monolithic sensor operates at 125°K with radiometric performance. A prototype five-device focal plane providing 2x2560 detectors has been demonstrated. The devices provide very high uniformity, and excellent MTF across the SWIR band.
Fabrication of dense wavelength division multiplexing filters with large useful area
NASA Astrophysics Data System (ADS)
Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng
2006-08-01
Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.
Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters
NASA Technical Reports Server (NTRS)
Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)
2018-01-01
A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.
Tracking variations in the alpha activity in an electroencephalogram
NASA Technical Reports Server (NTRS)
Prabhu, K. S.
1971-01-01
The problem of tracking Alpha voltage variations in an electroencephalogram is discussed. This problem is important in encephalographic studies of sleep and effects of different stimuli on the brain. Very often the Alpha voltage is tracked by passing the EEG signal through a bandpass filter centered at the Alpha frequency, which hopefully will filter out unwanted noise from the Alpha activity. Some alternative digital techniques are suggested and their performance is compared with the standard technique. These digital techniques can be used in an environment where an electroencephalograph is interfaced with a small digital computer via an A/D convertor. They have the advantage that statistical statements about their variability can sometimes be made so that the effect sought can be assessed correctly in the presence of random fluctuations.
NASA Astrophysics Data System (ADS)
Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-Garcia, J. C.; Lauterio-Cruz, J. P.; Jáuregui-Vázquez, D.; Ibarra-Escamilla, B.; Rojas-Laguna, R.; Pottiez, O.; Kuzin, E. A.
2016-03-01
In this work we show the changes of polarization at different wavelengths in the end of a photonic crystal fiber (PCF) by means bandpass filters in a supercontinuum light source. A linear and circular polarization was introduced in a piece of PCF, showing the changes of the polarization for each wavelength of each one of the filters from 450 to 700nm. We used a microchip laser as pumping source with wavelength of 532nm and short pulses of 650ps with repetition rate of 5kHz. We obtained a continuous spectrum in the visible spectral region, showing a comparison of the polarization state at the fiber input with respect to polarization state in the fiber output for different wavelengths by rotating the axes of the PCF.
Advanced study of video signal processing in low signal to noise environments
NASA Technical Reports Server (NTRS)
Carden, F.; Henry, R.
1972-01-01
A nonlinear analysis of a multifilter phase-lockloop (MPLL) by using the method of harmonic balance is presented. The particular MPLL considered has a low-pass filter and a band-pass filter in parallel. An analytic expression for the relationship between the input signal phase deviation and the phase error is determined for sinusoidal FM in the absence of noise. The expression is used to determine bounds on the proper operating region for the MPLL and to investigate the jump phenomenon previously observed. From these results the proper modulation index, modulating frequency, etc. used for the design of a MPLL are determined. Data for the loop unlock boundary obtained from the theoretical expression are compared to data obtained from analog computer simulations of the MPLL.
NASA Astrophysics Data System (ADS)
Fathy, Ibrahim
2016-07-01
This paper presents a statistical study of different types of large-scale geomagnetic pulsation (Pc3, Pc4, Pc5 and Pi2) detected simultaneously by two MAGDAS stations located at Fayum (Geo. Coordinates 29.18 N and 30.50 E) and Aswan (Geo. Coordinates 23.59 N and 32.51 E) in Egypt. The second order butter-worth band-pass filter has been used to filter and analyze the horizontal H-component of the geomagnetic field in one-second data. The data was collected during the solar minimum of the current solar cycle 24. We list the most energetic pulsations detected by the two stations instantaneously, in addition; the average amplitude of the pulsation signals was calculated.
NASA Technical Reports Server (NTRS)
Fischer, Erich M.; Pieters, Carle M.; Head, James W.
1992-01-01
Modern visible and near-infrared detectors are critically important for the accurate identification and relative abundance measurement of lunar minerals; however, even a very small number of well-placed visible and near-infrared bandpass channels provide a significant amount of general information about crucial lunar resources. The Galileo Solid State Imaging system (SSI) multispectral data are an important example of this. Al/Si and soil maturity will be discussed as examples of significant general lunar resource information that can be gleaned from moderate spectral resolution visible and near-infrared data with relative ease. Because quantitative-albedo data are necessary for these kinds of analyses, data such as those obtained by Galileo SSI are critical. SSI obtained synoptic digital multispectral image data for both the nearside and farside of the Moon during the first Galileo Earth-Moon encounter in December 1990. The data consist of images through seven filters with bandpasses ranging from 0.40 microns in the ultraviolet to 0.99 microns in the near-infrared. Although these data are of moderate spectral resolution, they still provide information for the following lunar resources: (1) titanium content of mature mare soils based upon the 0.40/0.56-micron (UV/VIS) ratio; (2) mafic mineral abundance based upon the 0.76/0.99-micron ratio; and (3) the maturity or exposure age of the soils based upon the 0.56-0.76-micron continuum and the 0.76/0.99-micron ratio. Within constraints, these moderate spectral resolution visible and near-infrared reflectance data can also provide elemental information such as Al/Si for mature highland soils.
Improving Photometric Calibration of Meteor Video Camera Systems.
Ehlert, Steven; Kingery, Aaron; Suggs, Robert
2017-09-01
We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera band pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at ∼ 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to ∼ 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.
Measurement of curvature and temperature using multimode interference devices
NASA Astrophysics Data System (ADS)
Guzman-Sepulveda, J. R.; Aguilar-Soto, J. G.; Torres-Cisneros, M.; Ibarra-Manzano, O. G.; May-Arrioja, D. A.
2011-09-01
In this paper we propose the fabrication, implementation, and testing of a novel fiber optic sensor based on Multimode Interference (MMI) effects for independent measurement of curvature and temperature. The development of fiber based MMI devices is relatively new and since they exhibit a band-pass filter response they can be used in different applications. The operating mechanism of our sensor is based on the self-imaging phenomena that occur in multimode fibers (MMF), which is related to the interference of the propagating modes and their accumulated phase. We demonstrate that the peak wavelength shifts with temperature variations as a result of changes in the accumulated phase through thermo-optics effects, while the intensity of the peak wavelength is reduced as the curvature increases since we start to loss higher order modes. In this way both measurements are obtained independently with a single fiber device. Compared to other fiber-optic sensors, our sensor features an extremely simple structure and fabrication process, and hence cost effectiveness.
Hilbert-Huang transform based instrumental assessment of intention tremor in multiple sclerosis
NASA Astrophysics Data System (ADS)
Carpinella, Ilaria; Cattaneo, Davide; Ferrarin, Maurizio
2015-08-01
Objective. This paper describes a method to extract upper limb intention tremor from gyroscope data, through the Hilbert-Huang transform (HHT), a technique suitable for the study of nonlinear and non-stationary processes. The aims of the study were to: (i) evaluate the method’s ability to discriminate between healthy controls and MS subjects; (ii) validate the proposed procedure against clinical tremor scores assigned using Fahn’s tremor rating scale (FTRS); and (iii) compare the performance of the HHT-based method with that of linear band-pass filters. Approach. HHT was applied on gyroscope data collected on 20 MS subjects and 13 healthy controls (CO) during finger-to-nose tests (FNTs) instrumented with an inertial sensor placed on the hand. The results were compared to those obtained after traditional linear filtering. The tremor amplitude was quantified with instrumental indexes (TIs) and clinical FTRS ratings. Main results. The TIs computed after HHT-based filtering discriminated between CO and MS subjects with clinically-detected intention tremor (MS_T). In particular, TIs were significantly higher in the final part of the movement (TI2) with respect to the first part (TI1), and, for all components (X, Y, Z), MST showed a TI2 significantly higher than in CO subjects. Moreover, the HHT detected subtle alterations not visible from clinical ratings, as TI2 (Z-component) was significantly increased in MS subjects without clinically-detected tremor (MS_NT). The method’s validity was demonstrated by significant correlations between clinical FTRS scores and TI2 related to X (rs = 0.587, p = 0.006) and Y (rs = 0.682, p < 0.001) components. Contrarily, fewer differences among the groups and no correlation between instrumental and clinical indexes emerged after traditional filtering. Significance. The present results supported the use of the HHT-based procedure for a fully-automated quantitative and objective measure of intention tremor in MS, which can overcome the limitations of clinical scales and provide supplementary information about this sign.
High quality silicon-based substrates for microwave and millimeter wave passive circuits
NASA Astrophysics Data System (ADS)
Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.
2017-09-01
Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous silicon as new substrate, such as characterization of FinFET components.
Tonotopic tuning in a sound localization circuit.
Slee, Sean J; Higgs, Matthew H; Fairhall, Adrienne L; Spain, William J
2010-05-01
Nucleus laminaris (NL) neurons encode interaural time difference (ITD), the cue used to localize low-frequency sounds. A physiologically based model of NL input suggests that ITD information is contained in narrow frequency bands around harmonics of the sound frequency. This suggested a theory, which predicts that, for each tone frequency, there is an optimal time course for synaptic inputs to NL that will elicit the largest modulation of NL firing rate as a function of ITD. The theory also suggested that neurons in different tonotopic regions of NL require specialized tuning to take advantage of the input gradient. Tonotopic tuning in NL was investigated in brain slices by separating the nucleus into three regions based on its anatomical tonotopic map. Patch-clamp recordings in each region were used to measure both the synaptic and the intrinsic electrical properties. The data revealed a tonotopic gradient of synaptic time course that closely matched the theoretical predictions. We also found postsynaptic band-pass filtering. Analysis of the combined synaptic and postsynaptic filters revealed a frequency-dependent gradient of gain for the transformation of tone amplitude to NL firing rate modulation. Models constructed from the experimental data for each tonotopic region demonstrate that the tonotopic tuning measured in NL can improve ITD encoding across sound frequencies.
Photon collider: a four-channel autoguider solution
NASA Astrophysics Data System (ADS)
Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.
2010-07-01
The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.
Digital signal processing the Tevatron BPM signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cancelo, G.; James, E.; Wolbers, S.
2005-05-01
The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describesmore » the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.« less
Time-frequency model for echo-delay resolution in wideband biosonar.
Neretti, Nicola; Sanderson, Mark I; Intrator, Nathan; Simmons, James A
2003-04-01
A time/frequency model of the bat's auditory system was developed to examine the basis for the fine (approximately 2 micros) echo-delay resolution of big brown bats (Eptesicus fuscus), and its performance at resolving closely spaced FM sonar echoes in the bat's 20-100-kHz band at different signal-to-noise ratios was computed. The model uses parallel bandpass filters spaced over this band to generate envelopes that individually can have much lower bandwidth than the bat's ultrasonic sonar sounds and still achieve fine delay resolution. Because fine delay separations are inside the integration time of the model's filters (approximately 250-300 micros), resolving them means using interference patterns along the frequency dimension (spectral peaks and notches). The low bandwidth content of the filter outputs is suitable for relay of information to higher auditory areas that have intrinsically poor temporal response properties. If implemented in fully parallel analog-digital hardware, the model is computationally extremely efficient and would improve resolution in military and industrial sonar receivers.
Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI.
Sengupta, Ayan; Pollmann, Stefan; Hanke, Michael
2018-01-01
Spatial filtering strategies, combined with multivariate decoding analysis of BOLD images, have been used to investigate the nature of the neural signal underlying the discriminability of brain activity patterns evoked by sensory stimulation -- primarily in the visual cortex. Reported evidence indicates that such signals are spatially broadband in nature, and are not primarily comprised of fine-grained activation patterns. However, it is unclear whether this is a general property of the BOLD signal, or whether it is specific to the details of employed analyses and stimuli. Here we performed an analysis of publicly available, high-resolution 7T fMRI on the response BOLD response to musical genres in primary auditory cortex that matches a previously conducted study on decoding visual orientation from V1. The results show that the pattern of decoding accuracies with respect to different types and levels of spatial filtering is comparable to that obtained from V1, despite considerable differences in the respective cortical circuitry.
Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.
Azevedo, Anthony W; Wilson, Rachel I
2017-10-11
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of near infrared spectrometer for gem materials study
NASA Astrophysics Data System (ADS)
Jindata, W.; Meesiri, W.; Wongkokua, W.
2015-07-01
Most of gem materials can be characterized by infrared absorption spectroscopy. Normally, mid infrared absorption technique has been applied for investigating fundamental vibrational modes. However, for some gem materials, such as tourmaline, NIR is a better choice due to differentiation. Most commercial NIR spectrometers employ complicated dispersive grating or Fourier transform techniques. In this work, we developed a filter type NIR spectrometer with the availability of high efficiency and low-cost narrow bandpass NIR interference filters to be taught in a physics laboratory. The instrument was designed for transmission-mode configuration. A 50W halogen lamp was used as NIR source. There were fourteen NIR filters mounted on a rotatory wheel for wavelength selection ranging from 1000-1650 nm with steps of 50 nm. A 1.0 mm diameter of InGaAs photodiode was used as the detector for the spectrometer. Hence, transparent gem materials can be used as samples for experiment. Student can learn vibrational absorption spectroscopy as well as Beer-Lambert law from the development of this instrument.
Characteristics of an axisymmetric sudden expansion flow
NASA Technical Reports Server (NTRS)
Stevenson, W. H.; Thompson, H. D.
1985-01-01
A two-color, two component Laser Doppler Velocimeter (LDV) system operating in forward scatter has been developed in order to make simultaneous measurements of the axial and radial velocity components in an axisymmetric sudden expansion flow with and without combustion. The LDV system includes Bragg cell modulators in the four beam paths to allow a net frequency shift of 5MHz in both the green and blue beams. This permits an unambiguous measurement of negative velocities and also eliminates incomplete signal bias. The green beam probe volume has a waist diameter of 0.200 mm and is approximately 2mm long. The blue beam has a probe volume waist of 0.250 mm and is approximately 1 mm long. The scattered light from the probe volume is separated so that approximately 80% of each color passes to its respective photomultiplier tube by using a dichroic filter. Narrow bandpass filters are used to further filter unwanted signals before they are detected. A schematic diagram of the LDV system is shown.
Cousin, Seth L; Bueno, Juan M; Forget, Nicolas; Austin, Dane R; Biegert, J
2012-08-01
We demonstrate a simplified arrangement for spatiotemporal ultrashort pulse characterization called Hartmann-Shack assisted, multidimensional, shaper-based technique for electric-field reconstruction. It employs an acousto-optic pulse shaper in combination with a second-order nonlinear crystal and a Hartmann-Shack wavefront sensor. The shaper is used as a tunable bandpass filter, and the wavefronts and intensities of quasimonochromatic spectral slices of the pulse are obtained using the Hartmann-Shack wavefront sensor. The wavefronts and intensities of the spectral slices are related to one another using shaper-assisted frequency-resolved optical gating measurements, performed at particular points in the beam. This enables a three-dimensional reconstruction of the amplitude and phase of the pulse. We present some example pulse measurements and discuss the operating parameters of the device.
Fiber ring laser based on SMF-TCF-SMF structure for strain and refractive index sensing
NASA Astrophysics Data System (ADS)
Yu, Fen; Xu, Ben; Zhang, Yixin; Wang, Dongning
2017-12-01
An erbium-doped fiber ring laser with embedded Mach-Zehnder interferometer (MZI) is constructed and experimentally demonstrated for strain and refractive index (RI) measurement. The MZI consists of a segment of thin-core fiber sandwiched between two single-mode fibers and acts as both the sensing component as well as a bandpass filter to select the lasing wavelength. The strain sensitivity of ˜-0.97 pm/μɛ and RI sensitivity of ˜44.88 nm/RIU are obtained in the range of 0 to 1750 μɛ and 1.3300 to 1.3537, respectively. The high-optical signal-to-noise ratio of >50 dB and narrow 3-dB bandwidth of <0.11 nm obtained indicate that the fiber ring laser sensor is promising for high-precision strain and RI measurement.
Sapphire Fabry-Perot high-temperature sensor study
NASA Astrophysics Data System (ADS)
Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian
2017-04-01
A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
Temperature Variations from HST Imagery of NGC 7009
NASA Astrophysics Data System (ADS)
Rubin, R. H.; Bhatt, N.; Dufour, R. J.; Buckalew, B.; Barlow, M. J.; Liu, X.; Storey, P. J.; Balick, B.; Ferland, G. J.; Harrington, J. P.; Martin, P. G.
2000-12-01
We present new HST/WFPC2 imagery for the planetary nebula (PN) NGC 7009. Observations were made in line filters F437N, F487N, F502N, and F656N plus continuum filter F547M. The primary goal was to develop a high spatial resolution ( ~0.1'') map of the intrinsic line ratio [O 3] 4363/5007 and thereby evaluate the electron temperature (Te) and the mean-square Te variation (t2) across the nebula. In this process we developed an extinction map from the F487N (Hβ ) and F656N (Hα ) images by comparing the observed line ratios in each pixel to the theoretical ratio and computing a c(Hβ ) map which was used to correct the observed 4363/5007 ratios for reddening. As has been known, extinction is not large for this PN as we further demonstrate in our reddening map. The most difficult and uncertain step is to extract the flux for [O 3] 4363 from the F437N data. Because this line is relatively weak, the continuum contribution to the observed F437N filter data is not negligible. Additionally, it is necessary to adjust for Hγ ``leakage" in the F437N bandpass. Because the dominant contribution to the nebular continuum for NGC 7009 is recombination processes, we correct for the continuum emission as well as the Hγ ``leakage" into the F437N bandpass using our F487N (Hβ ) image. A preliminary tie-in with ground-based spectra indicates this is best done by subtracting 0.012*F487N from F437N. We present a picture of the [O 3] Te map, as well as our determinations of t2. The preliminary map is rather uniform; almost all values are between 9000 -- 10500 K, with the higher Tes closely coinciding with the inner He++-zone as seen in blue in the WFPC2 image of Balick et al. (1998, AJ, 116, 360). Improvements are in progress that utilize our recent HST/STIS long-slit spectra to provide excellent co-spatial registration with the WFPC2 data to test/refine our methodology and analysis. Supported by AURA/STScI grant related to GO-8114.
Automated Data Processing (ADP) Research and Development,
1995-08-14
individual explosions were 16x16 ft for M1 and 18x18 ft for M2. 740 I L 1 tic 4 MI I f"hom~ \\fl i\\ 1l-2 t’lkercd li111c <, Crtc > jut!d WSHItlhZ ll cro...National Laboratory under contract W-7405-ENG-48. 733 1 . OBJECTIVES Our primary objective is to develop efficient and reliable automated event location and...real seismograms; Figure 1 shows example wavelet coefficients (in the transform domain) and bandpass filtering versions of a seismogram as a function of
2007-07-31
number of photon-pairs per pulse is μ ( 1<<μ ) and the laser repetition frequency isν . The average noise photon numbers per pulse are sμ and iμ for the...and 1563-nm center wavelength pass through a tunable bandpass filter to remove the background noise from the EDFA. The pump is then frequency doubled...generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber", Opt. Express, 13, 7832 (2005) #83485 - $15.00 USD Received 29 May