Sample records for bandwidth estimation techniques

  1. Coarse-Grain Bandwidth Estimation Techniques for Large-Scale Space Network

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Jennings, Esther

    2013-01-01

    In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-andforward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.

  2. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less

  3. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    NASA Technical Reports Server (NTRS)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  4. IEEE 802.15.4 ZigBee-Based Time-of-Arrival Estimation for Wireless Sensor Networks.

    PubMed

    Cheon, Jeonghyeon; Hwang, Hyunsu; Kim, Dongsun; Jung, Yunho

    2016-02-05

    Precise time-of-arrival (TOA) estimation is one of the most important techniques in RF-based positioning systems that use wireless sensor networks (WSNs). Because the accuracy of TOA estimation is proportional to the RF signal bandwidth, using broad bandwidth is the most fundamental approach for achieving higher accuracy. Hence, ultra-wide-band (UWB) systems with a bandwidth of 500 MHz are commonly used. However, wireless systems with broad bandwidth suffer from the disadvantages of high complexity and high power consumption. Therefore, it is difficult to employ such systems in various WSN applications. In this paper, we present a precise time-of-arrival (TOA) estimation algorithm using an IEEE 802.15.4 ZigBee system with a narrow bandwidth of 2 MHz. In order to overcome the lack of bandwidth, the proposed algorithm estimates the fractional TOA within the sampling interval. Simulation results show that the proposed TOA estimation algorithm provides an accuracy of 0.5 m at a signal-to-noise ratio (SNR) of 8 dB and achieves an SNR gain of 5 dB as compared with the existing algorithm. In addition, experimental results indicate that the proposed algorithm provides accurate TOA estimation in a real indoor environment.

  5. A review of demodulation techniques for amplitude-modulation atomic force microscopy

    PubMed Central

    Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J

    2017-01-01

    In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596

  6. Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator

    PubMed Central

    Sherman, AJ; Shrier, A; Cooper, E

    1999-01-01

    Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359

  7. 1998 NASA Review: Center for Space Telemetering and Telecommunication Systems

    NASA Technical Reports Server (NTRS)

    Cunningham, Garry

    1998-01-01

    The following topics are included in the conference proceedings following the program overview: (1) Coding and Carrier Recovery Techniques; (2) Carrier Frequency Estimation Under Unknown Doppler Shifts; (3) Small Satellite Experiments; (4) Bandwidth Efficient Modulation/Equalization Techniques.

  8. Optimal Bandwidth for Multitaper Spectrum Estimation

    DOE PAGES

    Haley, Charlotte L.; Anitescu, Mihai

    2017-07-04

    A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less

  9. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.

    PubMed

    Gosálbez, J; Wright, W M D; Jiang, W; Carrión, A; Genovés, V; Bosch, I

    2018-08-01

    In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding

    NASA Astrophysics Data System (ADS)

    Dung, Lan-Rong; Lin, Meng-Chun

    This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.

  11. Fuzzy-Estimation Control for Improvement Microwave Connection for Iraq Electrical Grid

    NASA Astrophysics Data System (ADS)

    Hoomod, Haider K.; Radi, Mohammed

    2018-05-01

    The demand for broadband wireless services is increasing day by day (as internet or radio broadcast and TV etc.) for this reason and optimal exploiting for this bandwidth may be other reasons indeed be there is problem in the communication channels. it’s necessary that exploiting the good part form this bandwidth. In this paper, we propose to use estimation technique for estimate channel availability in that moment and next one to know the error in the bandwidth channel for controlling the possibility data transferring through the channel. The proposed estimation based on the combination of the least Minimum square (LMS), Standard Kalman filter, and Modified Kalman filter. The error estimation in channel use as control parameter in fuzzy rules to adjusted the rate and size sending data through the network channel, and rearrangement the priorities of the buffered data (workstation control parameters, Texts, phone call, images, and camera video) for the worst cases of error in channel. The propose system is designed to management data communications through the channels connect among the Iraqi electrical grid stations. The proposed results show that the modified Kalman filter have a best result in time and noise estimation (0.1109 for 5% noise estimation to 0.3211 for 90% noise estimation) and the packets loss rate is reduced with ratio from (35% to 385%).

  12. EMG-Torque Dynamics Change With Contraction Bandwidth.

    PubMed

    Golkar, Mahsa A; Jalaleddini, Kian; Kearney, Robert E

    2018-04-01

    An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.

  13. A comparison of foveated acquisition and tracking performance relative to uniform resolution approaches

    NASA Astrophysics Data System (ADS)

    Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William

    2009-05-01

    Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.

  14. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    NASA Astrophysics Data System (ADS)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  15. An enhanced multi-channel bacterial foraging optimization algorithm for MIMO communication system

    NASA Astrophysics Data System (ADS)

    Palanimuthu, Senthilkumar Jayalakshmi; Muthial, Chandrasekaran

    2017-04-01

    Channel estimation and optimisation are the main challenging tasks in Multi Input Multi Output (MIMO) wireless communication systems. In this work, a Multi-Channel Bacterial Foraging Optimization Algorithm approach is proposed for the selection of antenna in a transmission area. The main advantage of this method is, it reduces the loss of bandwidth during data transmission effectively. Here, we considered the channel estimation and optimisation for improving the transmission speed and reducing the unused bandwidth. Initially, the message is given to the input of the communication system. Then, the symbol mapping process is performed for converting the message into signals. It will be encoded based on the space-time encoding technique. Here, the single signal is divided into multiple signals and it will be given to the input of space-time precoder. Hence, the multiplexing is applied to transmission channel estimation. In this paper, the Rayleigh channel is selected based on the bandwidth range. This is the Gaussian distribution type channel. Then, the demultiplexing is applied on the obtained signal that is the reverse function of multiplexing, which splits the combined signal arriving from a medium into the original information signal. Furthermore, the long-term evolution technique is used for scheduling the time to channels during transmission. Here, the hidden Markov model technique is employed to predict the status information of the channel. Finally, the signals are decoded and the reconstructed signal is obtained after performing the scheduling process. The experimental results evaluate the performance of the proposed MIMO communication system in terms of bit error rate, mean squared error, average throughput, outage capacity and signal to interference noise ratio.

  16. A practical model for pressure probe system response estimation (with review of existing models)

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  17. Estimating Bottleneck Bandwidth using TCP

    NASA Technical Reports Server (NTRS)

    Allman, Mark

    1998-01-01

    Various issues associated with estimating bottleneck bandwidth using TCP are presented in viewgraph form. Specific topics include: 1) Why TCP is wanted to estimate the bottleneck bandwidth; 2) Setting ssthresh to an appropriate value to reduce loss; 3) Possible packet-pair solutions; and 4) Preliminary results: ACTS and the Internet.

  18. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes.

    PubMed

    Dorize, Christian; Awwad, Elie

    2018-05-14

    Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or by vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent ϕ-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).

  19. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes

    NASA Astrophysics Data System (ADS)

    Dorize, Christian; Awwad, Elie

    2018-05-01

    Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent phase-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).

  20. On Estimating End-to-End Network Path Properties

    NASA Technical Reports Server (NTRS)

    Allman, Mark; Paxson, Vern

    1999-01-01

    The more information about current network conditions available to a transport protocol, the more efficiently it can use the network to transfer its data. In networks such as the Internet, the transport protocol must often form its own estimates of network properties based on measurements per-formed by the connection endpoints. We consider two basic transport estimation problems: determining the setting of the retransmission timer (RTO) for are reliable protocol, and estimating the bandwidth available to a connection as it begins. We look at both of these problems in the context of TCP, using a large TCP measurement set [Pax97b] for trace-driven simulations. For RTO estimation, we evaluate a number of different algorithms, finding that the performance of the estimators is dominated by their minimum values, and to a lesser extent, the timer granularity, while being virtually unaffected by how often round-trip time measurements are made or the settings of the parameters in the exponentially-weighted moving average estimators commonly used. For bandwidth estimation, we explore techniques previously sketched in the literature [Hoe96, AD98] and find that in practice they perform less well than anticipated. We then develop a receiver-side algorithm that performs significantly better.

  1. Bandwidth compression of multispectral satellite imagery

    NASA Technical Reports Server (NTRS)

    Habibi, A.

    1978-01-01

    The results of two studies aimed at developing efficient adaptive and nonadaptive techniques for compressing the bandwidth of multispectral images are summarized. These techniques are evaluated and compared using various optimality criteria including MSE, SNR, and recognition accuracy of the bandwidth compressed images. As an example of future requirements, the bandwidth requirements for the proposed Landsat-D Thematic Mapper are considered.

  2. [Estimation of rice LAI by using NDVI at different spectral bandwidths].

    PubMed

    Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen

    2007-11-01

    The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.

  3. Effects of Restricted Launch Conditions for the Enhancement of Bandwidth-Distance Product of Multimode Fiber Links

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    2000-01-01

    Several techniques had been proposed to enhance multimode fiber bandwidth-distance product. Single mode-to-multimode offset launch condition technique had been experimented with at Kennedy Space Center. Significant enhancement in multimode fiber link bandwidth is achieved using this technique. It is found that close to three-fold bandwidth enhancement can be achieved compared to standard zero offset launch technique. Moreover, significant reduction in modal noise has been observed as a function of offset launch displacement. However, significant reduction in the overall signal-to-noise ratio is also observed due to signal attenuation due to mode radiation from fiber core to its cladding.

  4. Enhancing active and passive remote sensing in the ocean using broadband acoustic transmissions and coherent hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Tran, Duong Duy

    The statistics of broadband acoustic signal transmissions in a random continental shelf waveguide are characterized for the fully saturated regime. The probability distribution of broadband signal energies after saturated multi-path propagation is derived using coherence theory. The frequency components obtained from Fourier decomposition of a broadband signal are each assumed to be fully saturated, where the energy spectral density obeys the exponential distribution with 5.6 dB standard deviation and unity scintillation index. When the signal bandwidth and measurement time are respectively larger than the correlation bandwidth and correlation time of its energy spectral density components, the broadband signal energy obtained by integrating the energy spectral density across the signal bandwidth then follows the Gamma distribution with standard deviation smaller than 5.6 dB and scintillation index less than unity. The theory is verified with broadband transmissions in the Gulf of Maine shallow water waveguide in the 300-1200 Hz frequency range. The standard deviations of received broadband signal energies range from 2.7 to 4.6 dB for effective bandwidths up to 42 Hz, while the standard deviations of individual energy spectral density components are roughly 5.6 dB. The energy spectral density correlation bandwidths of the received broadband signals are found to be larger for signals with higher center frequency. Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing using a single low-frequency (< 2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth, located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the array. The dependence of broadband energy on bandwidth and measurement time was verified employing recorded sperm whale clicks in the Gulf of Maine.

  5. Application of Model Based Parameter Estimation for RCS Frequency Response Calculations Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    1998-01-01

    An implementation of the Model Based Parameter Estimation (MBPE) technique is presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily shaped, three-dimensional perfect electric conductor (PEC) bodies. An Electric Field Integral Equation (EFTE) is solved using the Method of Moments (MoM) to compute the RCS. The electric current is expanded in a rational function and the coefficients of the rational function are obtained using the frequency derivatives of the EFIE. Using the rational function, the electric current on the PEC body is obtained over a frequency band. Using the electric current at different frequencies, RCS of the PEC body is obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth. Good agreement between MBPE and the exact solution over the bandwidth is observed.

  6. Flight control synthesis for flexible aircraft using Eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, J. B.; Schmidt, D. K.

    1986-01-01

    The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired eigenvector elements effects the synthesis results.

  7. Comparing bandwidth requirements for digital baseband signals.

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Green, T. A.

    1972-01-01

    This paper describes the relative bandwidth requirements of the common digital baseband signaling techniques used for data transmission. Bandwidth considerations include the percentage of total power in a properly encoded PN sequence passed at bandwidths of 0.5, 1, 2 and 3 times the reciprocal of the bit interval. The signals considered in this study are limited to the binary class. The study compares such signaling techniques as delay modulation, bipolar, biternary, duobinary, pair selected ternary and time polarity control in addition to the conventional NRZ, RZ and BI-phi schemes.

  8. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication.

    PubMed

    Sima, Chaotan; Gates, J C; Holmes, C; Mennea, P L; Zervas, M N; Smith, P G R

    2013-09-01

    Terahertz bandwidth photonic Hilbert transformers are proposed and experimentally demonstrated. The integrated device is fabricated via a direct UV grating writing technique in a silica-on-silicon platform. The photonic Hilbert transformer operates at bandwidths of up to 2 THz (~16 nm) in the telecom band, a 10-fold greater bandwidth than any previously reported experimental approaches. Achieving this performance requires detailed knowledge of the system transfer function of the direct UV grating writing technique; this allows improved linearity and yields terahertz bandwidth Bragg gratings with improved spectral quality. By incorporating a flat-top reflector and Hilbert grating with a waveguide coupler, an ultrawideband all-optical single-sideband filter is demonstrated.

  9. Closed-loop carrier phase synchronization techniques motivated by likelihood functions

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Hinedi, S.; Simon, M.

    1994-01-01

    This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.

  10. Region of interest and windowing-based progressive medical image delivery using JPEG2000

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Mukhopadhyay, Sudipta; Wheeler, Frederick W.; Avila, Ricardo S.

    2003-05-01

    An important telemedicine application is the perusal of CT scans (digital format) from a central server housed in a healthcare enterprise across a bandwidth constrained network by radiologists situated at remote locations for medical diagnostic purposes. It is generally expected that a viewing station respond to an image request by displaying the image within 1-2 seconds. Owing to limited bandwidth, it may not be possible to deliver the complete image in such a short period of time with traditional techniques. In this paper, we investigate progressive image delivery solutions by using JPEG 2000. An estimate of the time taken in different network bandwidths is performed to compare their relative merits. We further make use of the fact that most medical images are 12-16 bits, but would ultimately be converted to an 8-bit image via windowing for display on the monitor. We propose a windowing progressive RoI technique to exploit this and investigate JPEG 2000 RoI based compression after applying a favorite or a default window setting on the original image. Subsequent requests for different RoIs and window settings would then be processed at the server. For the windowing progressive RoI mode, we report a 50% reduction in transmission time.

  11. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    PubMed

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2018-06-01

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  12. Automatic Focusing for a 675 GHz Imaging Radar with Target Standoff Distances from 14 to 34 Meters

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Siegel, Peter H.

    2013-01-01

    This paper dicusses the issue of limited focal depth for high-resolution imaging radar operating over a wide range of standoff distances. We describe a technique for automatically focusing a THz imaging radar system using translational optics combined with range estimation based on a reduced chirp bandwidth setting. The demonstarted focusing algorithm estimates the correct focal depth for desired targets in the field of view at unknown standoffs and in the presence of clutter to provide good imagery at 14 to 30 meters of standoff.

  13. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  14. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  15. Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers

    NASA Astrophysics Data System (ADS)

    Nikandish, Gholamreza; Medi, Ali

    2015-02-01

    The transformer-feedback (TRFB) interstage bandwidth enhancement technique for broadband multistage amplifiers is presented. Theory of the TRFB bandwidth enhancement and the design conditions for maximum bandwidth, maximally flat gain, and maximally flat group delay are provided. It is shown that the TRFB bandwidth enhancement can provide higher bandwidth compared to the conventional techniques based on reactive impedance matching networks. A three-stage low-noise amplifier (LNA) monolithic microwave integrated circuit with the TRFB between its consecutive stages is designed and implemented in a 0.1- μm GaAs pHEMT process. The TRFB is realized by coupling between the drain bias lines of transistors. The reuse of bias lines leads to bandwidth enhancement without increasing the chip area and power consumption. The LNA features average gain of 23 dB and 3-dB bandwidth of 11-39 GHz. It provides a noise figure of 2.1-3.0 dB and an output 1-dB compression point of 8.6 dBm, while consuming 40 mA of current from a 2-V supply.

  16. Scalable Motion Estimation Processor Core for Multimedia System-on-Chip Applications

    NASA Astrophysics Data System (ADS)

    Lai, Yeong-Kang; Hsieh, Tian-En; Chen, Lien-Fei

    2007-04-01

    In this paper, we describe a high-throughput and scalable motion estimation processor architecture for multimedia system-on-chip applications. The number of processing elements (PEs) is scalable according to the variable algorithm parameters and the performance required for different applications. Using the PE rings efficiently and an intelligent memory-interleaving organization, the efficiency of the architecture can be increased. Moreover, using efficient on-chip memories and a data management technique can effectively decrease the power consumption and memory bandwidth. Techniques for reducing the number of interconnections and external memory accesses are also presented. Our results demonstrate that the proposed scalable PE-ringed architecture is a flexible and high-performance processor core in multimedia system-on-chip applications.

  17. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1986-01-01

    An approach to the design of digital phase locked loops (DPLLs), using estimation theory concepts in the selection of a loop filter, is presented. The key concept is that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor. The estimator provides recursive estimates of phase, frequency, and higher order derivatives, while the predictor compensates for the transport lag inherent in the loop. This decomposition results in a straightforward loop filter design procedure, enabling use of techniques from optimal and sub-optimal estimation theory. A design example for a particular choice of estimator is presented, followed by analysis of the associated bandwidth, gain margin, and steady state errors caused by unmodeled dynamics. This approach is under consideration for the design of the Deep Space Network (DSN) Advanced Receiver Carrier DPLL.

  18. Microwave-photonics direction finding system for interception of low probability of intercept radio frequency signals

    NASA Astrophysics Data System (ADS)

    Pace, Phillip Eric; Tan, Chew Kung; Ong, Chee K.

    2018-02-01

    Direction finding (DF) systems are fundamental electronic support measures for electronic warfare. A number of DF techniques have been developed over the years; however, these systems are limited in bandwidth and resolution and suffer from a complex design for frequency downconversion. The design of a photonic DF technique for the detection and DF of low probability of intercept (LPI) signals is investigated. Key advantages of this design include a small baseline, wide bandwidth, high resolution, minimal space, weight, and power requirement. A robust postprocessing algorithm that utilizes the minimum Euclidean distance detector provides consistence and accurate estimation of angle of arrival (AoA) for a wide range of LPI waveforms. Experimental tests using frequency modulation continuous wave (FMCW) and P4 modulation signals were conducted in an anechoic chamber to verify the system design. Test results showed that the photonic DF system is capable of measuring the AoA of the LPI signals with 1-deg resolution over a 180 deg field-of-view. For an FMCW signal, the AoA was determined with a RMS error of 0.29 deg at 1-deg resolution. For a P4 coded signal, the RMS error in estimating the AoA is 0.32 deg at 1-deg resolution.

  19. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  20. A fast and objective multidimensional kernel density estimation method: fastKDE

    DOE PAGES

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.; ...

    2016-03-07

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  1. Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea

    Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.

  2. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  3. Comparison study on disturbance estimation techniques in precise slow motion control

    NASA Astrophysics Data System (ADS)

    Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.

    2010-08-01

    Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.

  4. Coarse-Grain Bandwidth Estimation Scheme for Large-Scale Network

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Jennings, Esther H.; Sergui, John S.

    2013-01-01

    A large-scale network that supports a large number of users can have an aggregate data rate of hundreds of Mbps at any time. High-fidelity simulation of a large-scale network might be too complicated and memory-intensive for typical commercial-off-the-shelf (COTS) tools. Unlike a large commercial wide-area-network (WAN) that shares diverse network resources among diverse users and has a complex topology that requires routing mechanism and flow control, the ground communication links of a space network operate under the assumption of a guaranteed dedicated bandwidth allocation between specific sparse endpoints in a star-like topology. This work solved the network design problem of estimating the bandwidths of a ground network architecture option that offer different service classes to meet the latency requirements of different user data types. In this work, a top-down analysis and simulation approach was created to size the bandwidths of a store-and-forward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. These techniques were used to estimate the WAN bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network. A new analytical approach, called the "leveling scheme," was developed to model the store-and-forward mechanism of the network data flow. The term "leveling" refers to the spreading of data across a longer time horizon without violating the corresponding latency requirement of the data type. Two versions of the leveling scheme were developed: 1. A straightforward version that simply spreads the data of each data type across the time horizon and doesn't take into account the interactions among data types within a pass, or between data types across overlapping passes at a network node, and is inherently sub-optimal. 2. Two-state Markov leveling scheme that takes into account the second order behavior of the store-and-forward mechanism, and the interactions among data types within a pass. The novelty of this approach lies in the modeling of the store-and-forward mechanism of each network node. The term store-and-forward refers to the data traffic regulation technique in which data is sent to an intermediate network node where they are temporarily stored and sent at a later time to the destination node or to another intermediate node. Store-and-forward can be applied to both space-based networks that have intermittent connectivity, and ground-based networks with deterministic connectivity. For groundbased networks, the store-and-forward mechanism is used to regulate the network data flow and link resource utilization such that the user data types can be delivered to their destination nodes without violating their respective latency requirements.

  5. Wide-bandwidth, wide-beamwidth, high-resolution, millimeter-wave imaging for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-05-01

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Travis A.; Kashinath, Karthik; Cavanaugh, Nicholas R.

    Numerous facets of scientific research implicitly or explicitly call for the estimation of probability densities. Histograms and kernel density estimates (KDEs) are two commonly used techniques for estimating such information, with the KDE generally providing a higher fidelity representation of the probability density function (PDF). Both methods require specification of either a bin width or a kernel bandwidth. While techniques exist for choosing the kernel bandwidth optimally and objectively, they are computationally intensive, since they require repeated calculation of the KDE. A solution for objectively and optimally choosing both the kernel shape and width has recently been developed by Bernacchiamore » and Pigolotti (2011). While this solution theoretically applies to multidimensional KDEs, it has not been clear how to practically do so. A method for practically extending the Bernacchia-Pigolotti KDE to multidimensions is introduced. This multidimensional extension is combined with a recently-developed computational improvement to their method that makes it computationally efficient: a 2D KDE on 10 5 samples only takes 1 s on a modern workstation. This fast and objective KDE method, called the fastKDE method, retains the excellent statistical convergence properties that have been demonstrated for univariate samples. The fastKDE method exhibits statistical accuracy that is comparable to state-of-the-science KDE methods publicly available in R, and it produces kernel density estimates several orders of magnitude faster. The fastKDE method does an excellent job of encoding covariance information for bivariate samples. This property allows for direct calculation of conditional PDFs with fastKDE. It is demonstrated how this capability might be leveraged for detecting non-trivial relationships between quantities in physical systems, such as transitional behavior.« less

  7. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1988-01-01

    During the period December 1, 1987 through May 31, 1988, progress was made in the following areas: construction of Multi-Dimensional Bandwidth Efficient Trellis Codes with MPSK modulation; performance analysis of Bandwidth Efficient Trellis Coded Modulation schemes; and performance analysis of Bandwidth Efficient Trellis Codes on Fading Channels.

  8. Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire.

    PubMed

    Kwon, Oh Kee; Han, Young Tak; Baek, Yong Soon; Chung, Yun C

    2012-05-21

    We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e., junction capacitance) and bonding wire (i.e, wire inductance). We analyze the effects of the lengths of the bonding wires on the frequency responses of EML by using an equivalent circuit model. To verify this analysis, we package a lumped EML chip on the sub-mount and measure its frequency responses. The results show that, by using the proposed technique, we can increase the modulation bandwidth of EML from ~16 GHz to ~28 GHz.

  9. Single-Shot Rotational Raman Thermometry for Turbulent Flames Using a Low-Resolution Bandwidth Technique

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2007-01-01

    An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.

  10. Survival analysis for the missing censoring indicator model using kernel density estimation techniques

    PubMed Central

    Subramanian, Sundarraman

    2008-01-01

    This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented. PMID:18953423

  11. Survival analysis for the missing censoring indicator model using kernel density estimation techniques.

    PubMed

    Subramanian, Sundarraman

    2006-01-01

    This article concerns asymptotic theory for a new estimator of a survival function in the missing censoring indicator model of random censorship. Specifically, the large sample results for an inverse probability-of-non-missingness weighted estimator of the cumulative hazard function, so far not available, are derived, including an almost sure representation with rate for a remainder term, and uniform strong consistency with rate of convergence. The estimator is based on a kernel estimate for the conditional probability of non-missingness of the censoring indicator. Expressions for its bias and variance, in turn leading to an expression for the mean squared error as a function of the bandwidth, are also obtained. The corresponding estimator of the survival function, whose weak convergence is derived, is asymptotically efficient. A numerical study, comparing the performances of the proposed and two other currently existing efficient estimators, is presented.

  12. New bandwidth selection criterion for Kernel PCA: approach to dimensionality reduction and classification problems.

    PubMed

    Thomas, Minta; De Brabanter, Kris; De Moor, Bart

    2014-05-10

    DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.

  13. Fault identification and localization for Ethernet Passive Optical Network using L-band ASE source and various types of fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi

    2018-01-01

    This paper presents a centralized and fault localization technique for Ethernet Passive Optical Access Network. This technique employs L-band Amplified Spontaneous Emission (ASE) as the monitoring source and various fiber Bragg Gratings (FBGs) as the fiber's identifier. An FBG with a unique combination of Bragg wavelength, reflectivity and bandwidth is inserted at each distribution fiber. The FBG reflection spectrum will be analyzed using an optical spectrum analyzer (OSA) to monitor the condition of the distribution fiber. Various FBGs reflection spectra is employed to optimize the limited bandwidth of monitoring source, thus allows more fibers to be monitored. Basically, one Bragg wavelength is shared by two distinct FBGs with different reflectivity and bandwidth. The experimental result shows that the system is capable to monitor up to 32 customers with OSNR value of ∼1.2 dB and monitoring power received of -24 dBm. This centralized and simple monitoring technique demonstrates a low power, cost efficient and low bandwidth requirement system.

  14. Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors

    NASA Astrophysics Data System (ADS)

    Balaji, K. A.; Prabu, K.

    2018-03-01

    There is an immense demand for high bandwidth and high data rate systems, which is fulfilled by wireless optical communication or free space optics (FSO). Hence FSO gained a pivotal role in research which has a added advantage of both cost-effective and licence free huge bandwidth. Unfortunately the optical signal in free space suffers from irradiance and phase fluctuations due to atmospheric turbulence and pointing errors which deteriorates the signal and degrades the performance of communication system over longer distance which is undesirable. In this paper, we have considered polarization shift keying (POLSK) system applied with wavelength and time diversity technique over Malaga(M)distribution to mitigate turbulence induced fading. We derived closed form mathematical expressions for estimating the systems outage probability and average bit error rate (BER). Ultimately from the results we can infer that wavelength and time diversity schemes enhances these systems performance.

  15. Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Chien, Hung-Chang

    2014-08-25

    We theoretically and experimentally investigate a time-domain digital pre-equalization (DPEQ) scheme for bandwidth-limited optical coherent communication systems, which is based on feedback of channel characteristics from the receiver-side blind and adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi- modulus algorithms (CMA, MMA). Based on the proposed DPEQ scheme, we theoretically and experimentally study its performance in terms of various channel conditions as well as resolutions for channel estimation, such as filtering bandwidth, taps length, and OSNR. Using a high speed 64-GSa/s DAC in cooperation with the proposed DPEQ technique, we successfully synthesized band-limited 40-Gbaud signals in modulation formats of polarization-diversion multiplexed (PDM) quadrature phase shift keying (QPSK), 8-quadrature amplitude modulation (QAM) and 16-QAM, and significant improvement in both back-to-back and transmission BER performances are also demonstrated.

  16. Broadening the optical bandwidth of quantum cascade lasers using RF noise current perturbations.

    PubMed

    Pinto, Tomás H P; Kirkbride, James M R; Ritchie, Grant A D

    2018-04-15

    We report on the broadening of the optical bandwidth of a distributed feedback quantum cascade laser (QCL) caused by the application of radio frequency (RF) noise to the injection current. The broadening is quantified both via Lamb-dip spectroscopy and the frequency noise power spectral density (PSD). The linewidth of the unperturbed QCL (emitting at ∼5.3  μm) determined by Lamb-dip spectroscopy is 680±170  kHz, and is in reasonable agreement with the linewidth of 460±40  kHz estimated by integrating the PSD measured under the same laser operating conditions. Measurements with both techniques reveal that by mixing the driving current with broadband RF noise the laser lineshape was reproducibly broadened up to ca 6 MHz with an increasing Gaussian contribution. The effects of linewidth broadening are then demonstrated in the two-color coherent transient spectra of nitric oxide.

  17. Adaptive coding of MSS imagery. [Multi Spectral band Scanners

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Samulon, A. S.; Fultz, G. L.; Lumb, D.

    1977-01-01

    A number of adaptive data compression techniques are considered for reducing the bandwidth of multispectral data. They include adaptive transform coding, adaptive DPCM, adaptive cluster coding, and a hybrid method. The techniques are simulated and their performance in compressing the bandwidth of Landsat multispectral images is evaluated and compared using signal-to-noise ratio and classification consistency as fidelity criteria.

  18. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  19. A MAP blind image deconvolution algorithm with bandwidth over-constrained

    NASA Astrophysics Data System (ADS)

    Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong

    2018-03-01

    We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.

  20. Video bandwidth compression system

    NASA Astrophysics Data System (ADS)

    Ludington, D.

    1980-08-01

    The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.

  1. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  2. Electromagnetic Counter-Counter Measure (ECCM) Techniques of the Digital Microwave Radio.

    DTIC Science & Technology

    1982-05-01

    Frequency hopping requires special synthesizers and filter banks. Large bandwidth expansion in a microwave radio relay application can best be achieved with...34 processing gain " performance as a function of jammer modulation type " pulse jammer performance • emission bandwidth and spectral shaping 0... spectral efficiency, implementation complexity, and suitability for ECCK techniques will be considered. A sumary of the requirements and characteristics of

  3. Second year technical report on-board processing for future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Brandon, W. T.; Green, W. K.; Hoffman, M.; Jean, P. N.; Neal, W. R.; White, B. E.

    1980-01-01

    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively.

  4. Second year technical report on-board processing for future satellite communications systems

    NASA Astrophysics Data System (ADS)

    Brandon, W. T.; Green, W. K.; Hoffman, M.; Jean, P. N.; Neal, W. R.; White, B. E.

    1980-10-01

    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively.

  5. On the influence of latency estimation on dynamic group communication using overlays

    NASA Astrophysics Data System (ADS)

    Vik, Knut-Helge; Griwodz, Carsten; Halvorsen, Pål

    2009-01-01

    Distributed interactive applications tend to have stringent latency requirements and some may have high bandwidth demands. Many of them have also very dynamic user groups for which all-to-all communication is needed. In online multiplayer games, for example, such groups are determined through region-of-interest management in the application. We have investigated a variety of group management approaches for overlay networks in earlier work and shown that several useful tree heuristics exist. However, these heuristics require full knowledge of all overlay link latencies. Since this is not scalable, we investigate the effects that latency estimation techqniues have ton the quality of overlay tree constructions. We do this by evaluating one example of our group management approaches in Planetlab and examing how latency estimation techqniues influence their quality. Specifically, we investigate how two well-known latency estimation techniques, Vivaldi and Netvigator, affect the quality of tree building.

  6. Ultrasonic data compression via parameter estimation.

    PubMed

    Cardoso, Guilherme; Saniie, Jafar

    2005-02-01

    Ultrasonic imaging in medical and industrial applications often requires a large amount of data collection. Consequently, it is desirable to use data compression techniques to reduce data and to facilitate the analysis and remote access of ultrasonic information. The precise data representation is paramount to the accurate analysis of the shape, size, and orientation of ultrasonic reflectors, as well as to the determination of the properties of the propagation path. In this study, a successive parameter estimation algorithm based on a modified version of the continuous wavelet transform (CWT) to compress and denoise ultrasonic signals is presented. It has been shown analytically that the CWT (i.e., time x frequency representation) yields an exact solution for the time-of-arrival and a biased solution for the center frequency. Consequently, a modified CWT (MCWT) based on the Gabor-Helstrom transform is introduced as a means to exactly estimate both time-of-arrival and center frequency of ultrasonic echoes. Furthermore, the MCWT also has been used to generate a phase x bandwidth representation of the ultrasonic echo. This representation allows the exact estimation of the phase and the bandwidth. The performance of this algorithm for data compression and signal analysis is studied using simulated and experimental ultrasonic signals. The successive parameter estimation algorithm achieves a data compression ratio of (1-5N/J), where J is the number of samples and N is the number of echoes in the signal. For a signal with 10 echoes and 2048 samples, a compression ratio of 96% is achieved with a signal-to-noise ratio (SNR) improvement above 20 dB. Furthermore, this algorithm performs robustly, yields accurate echo estimation, and results in SNR enhancements ranging from 10 to 60 dB for composite signals having SNR as low as -10 dB.

  7. Orientation masking and cross-orientation suppression (XOS): implications for estimates of filter bandwidth.

    PubMed

    Meese, Tim S; Holmes, David J

    2010-10-01

    Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.

  8. Analytical study of acoustic response of a semireverberant enclosure with application to active noise control

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Schein, D. B.; Gridley, D.

    1985-01-01

    The acoustic response of a semireverberant enclosure with two interacting, velocity-prescribed source distributions was analyzed using standard modal analysis techniques with a view toward a better understanding of active noise control. Different source and enclosure dimensions, source separations, and single-wall admittances were studied over representative frequency bandwidths of 10 Hz with source relative phase as a parameter. Results indicate that power radiated into the enclosure agree qualitatively with the spatial average of the mean square pressure, even though the reverberant field is nondiffuse. Decreases in acoustic power can therefore be used to estimate global noise reduction in a nondiffuse semireverberant environment. As might be expected, parametric studies indicate that maximum power reductions of up to 25 dB can be achieved when secondary and primary sources are compact and closely spaced. Although less success is achieved with increasing frequency and source separation or size, significant suppression of up to 8 dB still occurs over the 1 to 2 Hz bandwidth.

  9. Responsivity-based criterion for accurate calibration of FTIR emission spectra: theoretical development and bandwidth estimation.

    PubMed

    Rowe, Penny M; Neshyba, Steven P; Walden, Von P

    2011-03-14

    An analytical expression for the variance of the radiance measured by Fourier-transform infrared (FTIR) emission spectrometers exists only in the limit of low noise. Outside this limit, the variance needs to be calculated numerically. In addition, a criterion for low noise is needed to identify properly calibrated radiances and optimize the instrument bandwidth. In this work, the variance and the magnitude of a noise-dependent spectral bias are calculated as a function of the system responsivity (r) and the noise level in its estimate (σr). The criterion σr/r<0.3, applied to downwelling and upwelling FTIR emission spectra, shows that the instrument bandwidth is specified properly for one instrument but needs to be restricted for another.

  10. A Bandwidth-Optimized Multi-Core Architecture for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    This paper presents an architecture template for next-generation high performance computing systems specifically targeted to irregular applications. We start our work by considering that future generation interconnection and memory bandwidth full-system numbers are expected to grow by a factor of 10. In order to keep up with such a communication capacity, while still resorting to fine-grained multithreading as the main way to tolerate unpredictable memory access latencies of irregular applications, we show how overall performance scaling can benefit from the multi-core paradigm. At the same time, we also show how such an architecture template must be coupled with specific techniquesmore » in order to optimize bandwidth utilization and achieve the maximum scalability. We propose a technique based on memory references aggregation, together with the related hardware implementation, as one of such optimization techniques. We explore the proposed architecture template by focusing on the Cray XMT architecture and, using a dedicated simulation infrastructure, validate the performance of our template with two typical irregular applications. Our experimental results prove the benefits provided by both the multi-core approach and the bandwidth optimization reference aggregation technique.« less

  11. Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2001-01-01

    A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64 GHz) and increases simultaneous bandwidth by 500 MHz.

  12. Radar targets reveal all to automated tester

    NASA Astrophysics Data System (ADS)

    Hartman, R. E.

    1985-09-01

    Technological developments in the field of automated test equipment for low radar-cross-section (RCS) systems are reviewed. Emphasis is given to an Automated Digital Analysis and Measurement (ADAM) system for measuring, scattering, and evaluating RCS using a minicomputer in combination with a vector network analyzer and a positioner programmer. ADAM incorporates a stepped CW measurement technique to obtain RCS as a function of both range and frequency at a fixed aspect angle. The operating characteristics and calibration procedures of the ADAM system are described and estimates of RCS sensitivity are obtained. The response resolution of the ADAM system is estimated to be 36 cm per measurement bandwidth (in GHz) for a minimum window. A block diagram of the error checking routine of the ADAM system is provided.

  13. A Design Method for a State Feedback Microcomputer Controller of a Wide Bandwidth Analog Plant.

    DTIC Science & Technology

    1983-12-01

    Il IIIz NAVAL POSTGRADUATE SCHOOLMonterey, California THESIS A A DESIGN METHOD FOR A STATE FEEDBACK MICROCOMPUTER CONTROLLER OF A WIDE BANDWIDTH...of a microcomputer regulator, continuous or discrete method can be applied. The o:bjective of this thesis is to provide a continuous controller ...estimation and control type problem. In this thesis , a wide bandwidth analog computer system is chosen as the plant so that the effect of transport

  14. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe.

    PubMed

    Kearney, Sean P; Scoglietti, Daniel J

    2013-03-15

    We demonstrate an approach for picosecond probe-beam generation that enables hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering (CARS) measurements in flames. Sum-frequency generation of bandwidth-compressed picosecond radiation from femtosecond pumps with phase-conjugate chirps provides probe pulses with energies in excess of 1 mJ that are temporally locked to the femtosecond pump/Stokes preparation. This method overcomes previous limitations on hybrid femtosecond/picosecond rotational CARS techniques, which have relied upon less efficient bandwidth-reduction processes that have generally resulted in prohibitively low probe energy for flame measurements. We provide the details of the second-harmonic approach and demonstrate the technique in near-adiabatic hydrogen/air flames.

  15. Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles.

    PubMed

    Stilwell, Daniel J; Bishop, Bradley E; Sylvester, Caleb A

    2005-08-01

    An approach to real-time trajectory generation for platoons of autonomous vehicles is developed from well-known control techniques for redundant robotic manipulators. The partially decentralized structure of this approach permits each vehicle to independently compute its trajectory in real-time using only locally generated information and low-bandwidth feedback generated by a system exogenous to the platoon. Our work is motivated by applications for which communications bandwidth is severely limited, such for platoons of autonomous underwater vehicles. The communication requirements for our trajectory generation approach are independent of the number of vehicles in the platoon, enabling platoons composed of a large number of vehicles to be coordinated despite limited communication bandwidth.

  16. Frequency tracking and variable bandwidth for line noise filtering without a reference.

    PubMed

    Kelly, John W; Collinger, Jennifer L; Degenhart, Alan D; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2011-01-01

    This paper presents a method for filtering line noise using an adaptive noise canceling (ANC) technique. This method effectively eliminates the sinusoidal contamination while achieving a narrower bandwidth than typical notch filters and without relying on the availability of a noise reference signal as ANC methods normally do. A sinusoidal reference is instead digitally generated and the filter efficiently tracks the power line frequency, which drifts around a known value. The filter's learning rate is also automatically adjusted to achieve faster and more accurate convergence and to control the filter's bandwidth. In this paper the focus of the discussion and the data will be electrocorticographic (ECoG) neural signals, but the presented technique is applicable to other recordings.

  17. Layer-based buffer aware rate adaptation design for SHVC video streaming

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  18. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    NASA Astrophysics Data System (ADS)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  19. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation.

    PubMed

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  20. A multiprocessor computer simulation model employing a feedback scheduler/allocator for memory space and bandwidth matching and TMR processing

    NASA Technical Reports Server (NTRS)

    Bradley, D. B.; Irwin, J. D.

    1974-01-01

    A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.

  1. Spectral analysis of pair-correlation bandwidth: application to cell biology images.

    PubMed

    Binder, Benjamin J; Simpson, Matthew J

    2015-02-01

    Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time.

  2. Segmentation of the Speaker's Face Region with Audiovisual Correlation

    NASA Astrophysics Data System (ADS)

    Liu, Yuyu; Sato, Yoichi

    The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.

  3. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  4. Nonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data

    NASA Astrophysics Data System (ADS)

    Bura, E.; Zhmurov, A.; Barsegov, V.

    2009-01-01

    Dynamic force spectroscopy and steered molecular simulations have become powerful tools for analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and aggregates. Probability density functions of the unfolding forces and unfolding times for proteins, and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the forced unfolding and unbinding transitions, and mapping the biomolecular free energy landscape. The inference of the unknown probability distribution functions from the experimental and simulated forced unfolding and unbinding data, as well as the assessment of analytically tractable models of the protein unfolding and unbinding requires the use of a bandwidth. The choice of this quantity is typically subjective as it draws heavily on the investigator's intuition and past experience. We describe several approaches for selecting the "optimal bandwidth" for nonparametric density estimators, such as the traditionally used histogram and the more advanced kernel density estimators. The performance of these methods is tested on unimodal and multimodal skewed, long-tailed distributed data, as typically observed in force spectroscopy experiments and in molecular pulling simulations. The results of these studies can serve as a guideline for selecting the optimal bandwidth to resolve the underlying distributions from the forced unfolding and unbinding data for proteins.

  5. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.

    PubMed

    Djordjevic, Ivan B

    2007-04-02

    The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.

  6. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source.

    PubMed

    Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui

    2015-11-15

    A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables.

  7. Digital coding of Shuttle TV

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Batson, B.

    1976-01-01

    Space Shuttle will be using a field-sequential color television system for the first few missions, but the present plans are to switch to a NTSC color TV system for future missions. The field-sequential color TV system uses a modified black and white camera, producing a TV signal with a digital bandwidth of about 60 Mbps. This article discusses the characteristics of the Shuttle TV systems and proposes a bandwidth-compression technique for the field-sequential color TV system that could operate at 13 Mbps to produce a high-fidelity signal. The proposed bandwidth-compression technique is based on a two-dimensional DPCM system that utilizes temporal, spectral, and spatial correlation inherent in the field-sequential color TV imagery. The proposed system requires about 60 watts and less than 200 integrated circuits.

  8. Split-spectrum processing technique for SNR enhancement of ultrasonic guided wave.

    PubMed

    Pedram, Seyed Kamran; Fateri, Sina; Gan, Lu; Haig, Alex; Thornicroft, Keith

    2018-02-01

    Ultrasonic guided wave (UGW) systems are broadly used in several branches of industry where the structural integrity is of concern. In those systems, signal interpretation can often be challenging due to the multi-modal and dispersive propagation of UGWs. This results in degradation of the signals in terms of signal-to-noise ratio (SNR) and spatial resolution. This paper employs the split-spectrum processing (SSP) technique in order to enhance the SNR and spatial resolution of UGW signals using the optimized filter bank parameters in real time scenario for pipe inspection. SSP technique has already been developed for other applications such as conventional ultrasonic testing for SNR enhancement. In this work, an investigation is provided to clarify the sensitivity of SSP performance to the filter bank parameter values for UGWs such as processing bandwidth, filter bandwidth, filter separation and a number of filters. As a result, the optimum values are estimated to significantly improve the SNR and spatial resolution of UGWs. The proposed method is synthetically and experimentally compared with conventional approaches employing different SSP recombination algorithms. The Polarity Thresholding (PT) and PT with Minimization (PTM) algorithms were found to be the best recombination algorithms. They substantially improved the SNR up to 36.9dB and 38.9dB respectively. The outcome of the work presented in this paper paves the way to enhance the reliability of UGW inspections. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Million, S.; Shah, B.; Hinedi, S.

    1994-01-01

    Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.

  10. Dynamic model inversion techniques for breath-by-breath measurement of carbon dioxide from low bandwidth sensors.

    PubMed

    Sivaramakrishnan, Shyam; Rajamani, Rajesh; Johnson, Bruce D

    2009-01-01

    Respiratory CO(2) measurement (capnography) is an important diagnosis tool that lacks inexpensive and wearable sensors. This paper develops techniques to enable use of inexpensive but slow CO(2) sensors for breath-by-breath tracking of CO(2) concentration. This is achieved by mathematically modeling the dynamic response and using model-inversion techniques to predict input CO(2) concentration from the slow-varying output. Experiments are designed to identify model-dynamics and extract relevant model-parameters for a solidstate room monitoring CO(2) sensor. A second-order model that accounts for flow through the sensor's filter and casing is found to be accurate in describing the sensor's slow response. The resulting estimate is compared with a standard-of-care respiratory CO(2) analyzer and shown to effectively track variation in breath-by-breath CO(2) concentration. This methodology is potentially useful for measuring fast-varying inputs to any slow sensor.

  11. Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis.

    PubMed

    Aboy, Mateo; Hornero, Roberto; Abásolo, Daniel; Alvarez, Daniel

    2006-11-01

    Lempel-Ziv complexity (LZ) and derived LZ algorithms have been extensively used to solve information theoretic problems such as coding and lossless data compression. In recent years, LZ has been widely used in biomedical applications to estimate the complexity of discrete-time signals. Despite its popularity as a complexity measure for biosignal analysis, the question of LZ interpretability and its relationship to other signal parameters and to other metrics has not been previously addressed. We have carried out an investigation aimed at gaining a better understanding of the LZ complexity itself, especially regarding its interpretability as a biomedical signal analysis technique. Our results indicate that LZ is particularly useful as a scalar metric to estimate the bandwidth of random processes and the harmonic variability in quasi-periodic signals.

  12. OSLG: A new granting scheme in WDM Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Razmkhah, Ali; Rahbar, Akbar Ghaffarpour

    2011-12-01

    Several granting schemes have been proposed to grant transmission window and dynamic bandwidth allocation (DBA) in passive optical networks (PON). Generally, granting schemes suffer from bandwidth wastage of granted windows. Here, we propose a new granting scheme for WDM Ethernet PONs, called optical network unit (ONU) Side Limited Granting (OSLG) that conserves upstream bandwidth, thus resulting in decreasing queuing delay and packet drop ratio. In OSLG instead of optical line terminal (OLT), each ONU determines its transmission window. Two OSLG algorithms are proposed in this paper: the OSLG_GA algorithm that determines the size of its transmission window in such a way that the bandwidth wastage problem is relieved, and the OSLG_SC algorithm that saves unused bandwidth for more bandwidth utilization later on. The OSLG can be used as granting scheme of any DBA to provide better performance in the terms of packet drop ratio and queuing delay. Our performance evaluations show the effectiveness of OSLG in reducing packet drop ratio and queuing delay under different DBA techniques.

  13. Spectral and spread-spectral teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  14. 170 GHz Uni-Traveling Carrier Photodiodes for InP-based photonic integrated circuits.

    PubMed

    Rouvalis, E; Chtioui, M; van Dijk, F; Lelarge, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J

    2012-08-27

    We demonstrate the capability of fabricating extremely high-bandwidth Uni-Traveling Carrier Photodiodes (UTC-PDs) using techniques that are suitable for active-passive monolithic integration with Multiple Quantum Well (MQW)-based photonic devices. The devices achieved a responsivity of 0.27 A/W, a 3-dB bandwidth of 170 GHz, and an output power of -9 dBm at 200 GHz. We anticipate that this work will deliver Photonic Integrated Circuits with extremely high bandwidth for optical communications and millimetre-wave applications.

  15. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  16. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  17. Preventing Bandwidth Abuse at the Router through Sending Rate Estimate-based Active Queue Management

    DTIC Science & Technology

    2007-06-01

    behavior is growing in the Internet. These non-responsive sources can monopolize network bandwidth and starve the “congestion friendly” flows. Without...unnecessarily complex because most of the flows in the Internet are short flows usually termed as “web mice ” [7]. Moreover, having a separate queue for each

  18. Harmonics analysis of the photonic time stretch system.

    PubMed

    Mei, Yuan; Xu, Boyu; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin

    2016-09-10

    Photonic time stretch (PTS) has been intensively investigated in recent decades due to its potential application to ultra-wideband analog-to-digital conversion. A high-speed analog signal can be captured by an electronic analog-to-digital converter (ADC) with the help of the PTS technique, which slows down the speed of signal in the photonic domain. Unfortunately, the process of the time stretch is not linear due to the nonlinear modulation of the electro-optic intensity modulator in the PTS system, which means the undesired harmonics distortion. In this paper, we present an exact analytical model to fully characterize the harmonics generation in the PTS systems for the first time, to the best of our knowledge. We obtain concise and closed-form expressions for all harmonics of the PTS system with either a single-arm Mach-Zehnder modulator (MZM) or a push-pull MZM. The presented model can largely simplify the PTS system design and the system parameters estimation, such as system bandwidth, harmonics power, time-bandwidth product, and dynamic range. The correctness of the mathematic model is verified by the numerical and experimental results.

  19. Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan

    An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.

  20. Investigation of spectral analysis techniques for randomly sampled velocimetry data

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    1993-01-01

    It is well known that velocimetry (LV) generates individual realization velocity data that are randomly or unevenly sampled in time. Spectral analysis of such data to obtain the turbulence spectra, and hence turbulence scales information, requires special techniques. The 'slotting' technique of Mayo et al, also described by Roberts and Ajmani, and the 'Direct Transform' method of Gaster and Roberts are well known in the LV community. The slotting technique is faster than the direct transform method in computation. There are practical limitations, however, as to how a high frequency and accurate estimate can be made for a given mean sampling rate. These high frequency estimates are important in obtaining the microscale information of turbulence structure. It was found from previous studies that reliable spectral estimates can be made up to about the mean sampling frequency (mean data rate) or less. If the data were evenly samples, the frequency range would be half the sampling frequency (i.e. up to Nyquist frequency); otherwise, aliasing problem would occur. The mean data rate and the sample size (total number of points) basically limit the frequency range. Also, there are large variabilities or errors associated with the high frequency estimates from randomly sampled signals. Roberts and Ajmani proposed certain pre-filtering techniques to reduce these variabilities, but at the cost of low frequency estimates. The prefiltering acts as a high-pass filter. Further, Shapiro and Silverman showed theoretically that, for Poisson sampled signals, it is possible to obtain alias-free spectral estimates far beyond the mean sampling frequency. But the question is, how far? During his tenure under 1993 NASA-ASEE Summer Faculty Fellowship Program, the author investigated from his studies on the spectral analysis techniques for randomly sampled signals that the spectral estimates can be enhanced or improved up to about 4-5 times the mean sampling frequency by using a suitable prefiltering technique. But, this increased bandwidth comes at the cost of the lower frequency estimates. The studies further showed that large data sets of the order of 100,000 points, or more, high data rates, and Poisson sampling are very crucial for obtaining reliable spectral estimates from randomly sampled data, such as LV data. Some of the results of the current study are presented.

  1. Real-time ultrawide-band group delay profile monitoring through low-noise incoherent temporal interferometry.

    PubMed

    Park, Yongwoo; Malacarne, Antonio; Azaña, José

    2011-02-28

    A simple, highly accurate measurement technique for real-time monitoring of the group delay (GD) profiles of photonic dispersive devices over ultra-broad spectral bandwidths (e.g. an entire communication wavelength band) is demonstrated. The technique is based on time-domain self-interference of an incoherent light pulse after linear propagation through the device under test, providing a measurement wavelength range as wide as the source spectral bandwidth. Significant enhancement in the signal-to-noise ratio of the self-interference signal has been observed by use of a relatively low-noise incoherent light source as compared with the theoretical estimate for a white-noise light source. This fact combined with the use of balanced photo-detection has allowed us to significantly reduce the number of profiles that need to be averaged to reach a targeted GD measurement accuracy, thus achieving reconstruction of the device GD profile in real time. We report highly-accurate monitoring of (i) the group-delay ripple (GDR) profile of a 10-m long chirped fiber Bragg grating over the full C band (~42 nm), and (ii) the group velocity dispersion (GVD) and dispersion slope (DS) profiles of a ~2-km long dispersion compensating fiber module over an ~72-nm wavelength range, both captured at a 15 frames/s video rate update, with demonstrated standard deviations in the captured GD profiles as low as ~1.6 ps.

  2. Direct Fault Tolerant RLV Altitude Control: A Singular Perturbation Approach

    NASA Technical Reports Server (NTRS)

    Zhu, J. J.; Lawrence, D. A.; Fisher, J.; Shtessel, Y. B.; Hodel, A. S.; Lu, P.; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper, we present a direct fault tolerant control (DFTC) technique, where by "direct" we mean that no explicit fault identification is used. The technique will be presented for the attitude controller (autopilot) for a reusable launch vehicle (RLV), although in principle it can be applied to many other applications. Any partial or complete failure of control actuators and effectors will be inferred from saturation of one or more commanded control signals generated by the controller. The saturation causes a reduction in the effective gain, or bandwidth of the feedback loop, which can be modeled as an increase in singular perturbation in the loop. In order to maintain stability, the bandwidth of the nominal (reduced-order) system will be reduced proportionally according to the singular perturbation theory. The presented DFTC technique automatically handles momentary saturations and integrator windup caused by excessive disturbances, guidance command or dispersions under normal vehicle conditions. For multi-input, multi-output (MIMO) systems with redundant control effectors, such as the RLV attitude control system, an algorithm is presented for determining the direction of bandwidth cutback using the method of minimum-time optimal control with constrained control in order to maintain the best performance that is possible with the reduced control authority. Other bandwidth cutback logic, such as one that preserves the commanded direction of the bandwidth or favors a preferred direction when the commanded direction cannot be achieved, is also discussed. In this extended abstract, a simplistic example is proved to demonstrate the idea. In the final paper, test results on the high fidelity 6-DOF X-33 model with severe dispersions will be presented.

  3. Defect imaging for plate-like structures using diffuse field.

    PubMed

    Hayashi, Takahiro

    2018-04-01

    Defect imaging utilizing a scanning laser source (SLS) technique produces images of defects in a plate-like structure, as well as spurious images occurring because of resonances and reverberations within the specimen. This study developed defect imaging by the SLS using diffuse field concepts to reduce the intensity of spurious images, by which the energy of flexural waves excited by laser can be estimated. The experimental results in the different frequency bandwidths of excitation waves and in specimens with different attenuation proved that clearer images of defects are obtained in broadband excitation using a chirp wave and in specimens with low attenuation, which produce diffuse fields easily.

  4. Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers

    NASA Astrophysics Data System (ADS)

    Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.

    2018-04-01

    Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.

  5. Bandwidth Constraints to Using Video and Other Rich Media in Behavior Change Websites

    PubMed Central

    Jazdzewski, Stephen A; McKay, H Garth; Hudson, Clinton R

    2005-01-01

    Background Web-based behavior change interventions often include rich media (eg, video, audio, and large graphics). The rationale for using rich media includes the need to reach users who are not inclined or able to use text-based website content, encouragement of program engagement, and following the precedent set by news and sports websites. Objectives We describe the development of a bandwidth usage index, which seeks to provide a practical method to gauge the extent to which websites can successfully be used within different Internet access scenarios (eg, dial-up and broadband). Methods We conducted three studies to measure bandwidth consumption. In Study 1, we measured the bandwidth usage index for three video-rich websites (for smoking cessation, for caregivers, and for improving eldercare by family members). We then estimated the number of concurrent users that could be accommodated by each website under various Internet access scenarios. In Study 2, we sought to validate our estimated threshold number of concurrent users by testing the video-rich smoking cessation website with different numbers of concurrent users. In Study 3, we calculated the bandwidth usage index and threshold number of concurrent users for three versions of the smoking cessation website: the video-rich version (tested in Study 1), an audio-rich version, and a Web-enabled CD-ROM version in which all media-rich content was placed on a CD-ROM on the client computer. Results In Study 1, we found that the bandwidth usage index of the video-rich websites ranged from 144 Kbps to 93 Kbps. These results indicated that dial-up modem users would not achieve a “good user experience” with any of the three rich media websites. Results for Study 2 confirmed that usability was compromised when the estimated threshold number of concurrent users was exceeded. Results for Study 3 indicated that changing a website from video- to audio-rich content reduced the bandwidth requirement by almost 50%, but it remained too large to allow satisfactory use in dial-up modem scenarios. The Web-enabled CD-ROM reduced bandwidth requirements such that even a dial-up modem user could have a good user experience with the rich media content. Conclusions We conclude that the bandwidth usage index represents a practical tool that can help developers and researchers to measure the bandwidth requirements of their websites as well as to evaluate the feasibility of certain website designs in terms of specific use cases. These findings are discussed in terms of reaching different groups of users as well accommodating the intended number of concurrent users. We also discuss the promising option of using Web-enabled CD-ROMs to deliver rich media content to users with dial-up Internet access. We introduce a number of researchable themes for improving our ability to develop Web-based behavior change interventions that can better deliver what they promise. PMID:16236701

  6. Bandwidth constraints to using video and other rich media in behavior change websites.

    PubMed

    Danaher, Brian G; Jazdzewski, Stephen A; McKay, H Garth; Hudson, Clinton R

    2005-09-16

    Web-based behavior change interventions often include rich media (eg, video, audio, and large graphics). The rationale for using rich media includes the need to reach users who are not inclined or able to use text-based website content, encouragement of program engagement, and following the precedent set by news and sports websites. We describe the development of a bandwidth usage index, which seeks to provide a practical method to gauge the extent to which websites can successfully be used within different Internet access scenarios (eg, dial-up and broadband). We conducted three studies to measure bandwidth consumption. In Study 1, we measured the bandwidth usage index for three video-rich websites (for smoking cessation, for caregivers, and for improving eldercare by family members). We then estimated the number of concurrent users that could be accommodated by each website under various Internet access scenarios. In Study 2, we sought to validate our estimated threshold number of concurrent users by testing the video-rich smoking cessation website with different numbers of concurrent users. In Study 3, we calculated the bandwidth usage index and threshold number of concurrent users for three versions of the smoking cessation website: the video-rich version (tested in Study 1), an audio-rich version, and a Web-enabled CD-ROM version in which all media-rich content was placed on a CD-ROM on the client computer. In Study 1, we found that the bandwidth usage index of the video-rich websites ranged from 144 Kbps to 93 Kbps. These results indicated that dial-up modem users would not achieve a "good user experience" with any of the three rich media websites. Results for Study 2 confirmed that usability was compromised when the estimated threshold number of concurrent users was exceeded. Results for Study 3 indicated that changing a website from video- to audio-rich content reduced the bandwidth requirement by almost 50%, but it remained too large to allow satisfactory use in dial-up modem scenarios. The Web-enabled CD-ROM reduced bandwidth requirements such that even a dial-up modem user could have a good user experience with the rich media content. We conclude that the bandwidth usage index represents a practical tool that can help developers and researchers to measure the bandwidth requirements of their websites as well as to evaluate the feasibility of certain website designs in terms of specific use cases. These findings are discussed in terms of reaching different groups of users as well accommodating the intended number of concurrent users. We also discuss the promising option of using Web-enabled CD-ROMs to deliver rich media content to users with dial-up Internet access. We introduce a number of researchable themes for improving our ability to develop Web-based behavior change interventions that can better deliver what they promise.

  7. Design of ultrathin dual-resonant reflective polarization converter with customized bandwidths

    NASA Astrophysics Data System (ADS)

    Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay

    2017-10-01

    In this paper, an ultrathin dual-resonant reflective polarization converter is proposed to obtain customized bandwidths using precise space-filling technique to its top geometry. The unit cell of the dual-resonant prototype consists of conductive square ring with two diagonally arranged slits, supported by metal-backed thin dielectric layer. It offers two narrow bands with fractional bandwidths of 3.98 and 6.65% and polarization conversion ratio (PCR) of 97.16 and 98.87% at 4.52 and 6.97 GHz, respectively. The resonances are brought in proximity to each other by changing the length of surface current paths of the two resonances. By virtue of this mechanism, two polarization converters with two different types of bandwidths are obtained. One polarization converter produces a full-width at half-maxima PCR bandwidth of 34%, whereas another polarization converter produces a 90% PCR bandwidth of 19%. All the proposed polarization converters are insensitive to wide variations of incident angle for both TE- and TM-polarized incident waves. Measured results show good agreement with the numerically simulated results.

  8. Development of Information Assurance Protocol for Low Bandwidth Nanosatellite Communications

    DTIC Science & Technology

    2017-09-01

    INFORMATION ASSURANCE PROTOCOL FOR LOW BANDWIDTH NANOSATELLITE COMMUNICATIONS by Cervando A. Banuelos II September 2017 Thesis Advisor...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information . Send comments

  9. YouTube and Video Quizzes

    ERIC Educational Resources Information Center

    Yee, Kevin; Hargis, Jace

    2010-01-01

    The Internet sensation YouTube (http://www.youtube.com) has become such a force online that it was estimated in 2006 to account for a full tenth of the bandwidth by the entire Internet in the United States (WebProNews, 2007), and to use as much bandwidth in 2007 as the entire Internet had done in 2000 (Carter, 2008). Like many technological tools…

  10. Signal-to-noise ratio of arbitrarily filtered spontaneous emission

    NASA Astrophysics Data System (ADS)

    Šprem, Marko; Bosiljevac, Marko; Babić, Dubravko

    2018-02-01

    The signal-to-noise ratio (SNR) of filtered incoherent light can be approximated from the product of the coherence time of the light and the equivalent (electrical) noise bandwidth of the detector. This approximation holds only for the light with very short coherence time, that is in the case where the optical bandwidth of the light is much larger than the electrical bandwidth. We present here an expression for accurate evaluation of the SNR of the filtered incoherent light, which computes SNR from arbitrary shapes of optical and electrical filter power spectral densities (PSD). The PSDs of the filters can be measured using optical and electrical spectrum analyzers. Using our expression, we show that the SNR reaches unity when the electrical filter bandwidth is becoming larger than the optical filter bandwidth. To prove the theory, we evaluate and directly measure SNR of an incoherent light source filtered with several optical filters with bandwidths larger and commensurate with the bandwidth of the detector. For later we used optical and electrical filters with 3-dB bandwidths of 15 GHz and 10 GHz, respectively. Using our expression to evaluate SNR we obtained results in a good agreement with directly measured SNR. The results also prove that the approximation for evaluating SNR does not provide accurate results. The PSD of the detector with large noise bandwidth is difficult to measure using spectrum analyzer. There- fore, we report here a method for measuring the electrical noise bandwidth of the detector using the heterodyne linewidth measurement technique with tunable laser.

  11. Managing Documents in the Wider Area: Intelligent Document Management.

    ERIC Educational Resources Information Center

    Bittleston, Richard

    1995-01-01

    Discusses techniques for managing documents in wide area networks, reviews technique limitations, and offers recommendations to database designers. Presented techniques include: increasing bandwidth, reducing data traffic, synchronizing documentation, partial synchronization, audit trials, navigation, and distribution control and security. Two…

  12. How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation.

    PubMed

    Harpole, Jared K; Woods, Carol M; Rodebaugh, Thomas L; Levinson, Cheri A; Lenze, Eric J

    2014-09-01

    Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (KDE). This article provides an introduction to KDE and examines alternative methods for specifying the smoothing bandwidth in terms of their ability to recover the true density. We also illustrate the comparison and use of KDE methods with 2 empirical examples. Simulations were carried out in which we compared 8 bandwidth selection methods (Sheather-Jones plug-in [SJDP], normal rule of thumb, Silverman's rule of thumb, least squares cross-validation, biased cross-validation, and 3 adaptive kernel estimators) using 5 true density shapes (standard normal, positively skewed, bimodal, skewed bimodal, and standard lognormal) and 9 sample sizes (15, 25, 50, 75, 100, 250, 500, 1,000, 2,000). Results indicate that, overall, SJDP outperformed all methods. However, for smaller sample sizes (25 to 100) either biased cross-validation or Silverman's rule of thumb was recommended, and for larger sample sizes the adaptive kernel estimator with SJDP was recommended. Information is provided about implementing the recommendations in the R computing language. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Video multiple watermarking technique based on image interlacing using DWT.

    PubMed

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  14. Power amplifier linearization technique with IQ imbalance and crosstalk compensation for broadband MIMO-OFDM transmitters

    NASA Astrophysics Data System (ADS)

    Gregorio, Fernando; Cousseau, Juan; Werner, Stefan; Riihonen, Taneli; Wichman, Risto

    2011-12-01

    The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM) systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ) modulator to translate the predistorted baseband signal to RF. Furthermore, the coupling effects, which occur when the MIMO paths are implemented in the same reduced size chipset, cannot be avoided in MIMO transceivers structures. This study proposes a MIMO-PD system that linearizes the power amplifier response and compensates nonlinear crosstalk and IQ imbalance effects for each branch of the multiantenna system. Efficient recursive algorithms are presented to estimate the complete MIMO-PD coefficients. The algorithms avoid the high computational complexity in previous solutions based on least squares estimation. The performance of the proposed MIMO-PD structure is validated by simulations using a two-transmitter antenna MIMO system. Error vector magnitude and adjacent channel power ratio are evaluated showing significant improvement compared with conventional MIMO-PD systems.

  15. Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration.

    PubMed

    Zhang, Peng; Jiang, Youen; Zhou, Shenlei; Fan, Wei; Li, Xuechun

    2014-12-10

    A new technique is presented for obtaining a large broadband nanosecond-laser pulse. This technique is based on multipass phase modulation of a single-frequency nanosecond-laser pulse from the integrated front-end source, and it is able to shape the temporal profile of the pulse arbitrarily, making this approach attractive for high-energy-density physical experiments in current laser fusion facilities. Two kinds of cavity configuration for multipass modulation are proposed, and the performances of both of them are discussed theoretically in detail for the first time to our knowledge. Simulation results show that the bandwidth of the generated laser pulse by this approach can achieve more than 100 nm in principle if adjustment accuracy of the time interval between contiguous passes is controlled within 0.1% of a microwave period. In our preliminary experiment, a 2 ns laser pulse with 1.35-nm bandwidth in 1053 nm is produced via this technique, which agrees well with the theoretical result. Owing to an all-solid-state structure, the energy of the pulse achieves 25 μJ. In the future, with energy compensation and spectrum filtering, this technique is expected to generate a nanosecond-laser pulse of 3 nm or above bandwidth with energy of about 100 μJ.

  16. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  17. Virtual Acoustic Displays for Teleconferencing: Intelligibility Advantage for "Telephone Grade" Audio

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    Speech intelligibility was evaluated using a virtual acoustic ("3-D audio") display using the method specified by ANSI. Ten subjects were evaluated with stimuli either unfiltered or low-pass filtered at 4 kHz. Results show virtual acoustic techniques are advantageous for both full-bandwidth (44.1 kHz srate) and low (8 kHz srate) bandwidth "telephone-grade" teleconferencing systems.

  18. Skylab S-193 radar altimeter experiment analyses and results

    NASA Technical Reports Server (NTRS)

    Brown, G. S. (Editor)

    1977-01-01

    The design of optimum filtering procedures for geoid recovery is discussed. Statistical error bounds are obtained for pointing angle estimates using average waveform data. A correlation of tracking loop bandwidth with magnitude of pointing error is established. The impact of ocean currents and precipitation on the received power are shown to be measurable effects. For large sea state conditions, measurements of sigma 0 deg indicate a distinct saturation level of about 8 dB. Near-nadir less than 15 deg values of sigma 0 deg are also presented and compared with theoretical models. Examination of Great Salt Lake Desert scattering data leads to rejection of a previously hypothesized specularly reflecting surface. Pulse-to-pulse correlation results are in agreement with quasi-monochromatic optics theoretical predictions and indicate a means for estimating direction of pointing error. Pulse compression techniques for and results of estimating significant waveheight from waveform data are presented and are also shown to be in good agreement with surface truth data. A number of results pertaining to system performance are presented.

  19. Improvements in aircraft extraction programs

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.; Maine, R. E.

    1976-01-01

    Flight data from an F-8 Corsair and a Cessna 172 was analyzed to demonstrate specific improvements in the LRC parameter extraction computer program. The Cramer-Rao bounds were shown to provide a satisfactory relative measure of goodness of parameter estimates. It was not used as an absolute measure due to an inherent uncertainty within a multiplicative factor, traced in turn to the uncertainty in the noise bandwidth in the statistical theory of parameter estimation. The measure was also derived on an entirely nonstatistical basis, yielding thereby also an interpretation of the significance of off-diagonal terms in the dispersion matrix. The distinction between coefficients as linear and non-linear was shown to be important in its implication to a recommended order of parameter iteration. Techniques of improving convergence generally, were developed, and tested out on flight data. In particular, an easily implemented modification incorporating a gradient search was shown to improve initial estimates and thus remove a common cause for lack of convergence.

  20. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function.

    PubMed

    Granegger, Marcus; Moscato, Francesco; Casas, Fernando; Wieselthaler, Georg; Schima, Heinrich

    2012-08-01

    Estimation of instantaneous flow in rotary blood pumps (RBPs) is important for monitoring the interaction between heart and pump and eventually the ventricular function. Our group has reported an algorithm to derive ventricular contractility based on the maximum time derivative (dQ/dt(max) as a substitute for ventricular dP/dt(max) ) and pulsatility of measured flow signals. However, in RBPs used clinically, flow is estimated with a bandwidth too low to determine dQ/dt(max) in the case of improving heart function. The aim of this study was to develop a flow estimator for a centrifugal pump with bandwidth sufficient to provide noninvasive cardiac diagnostics. The new estimator is based on both static and dynamic properties of the brushless DC motor. An in vitro setup was employed to identify the performance of pump and motor up to 20 Hz. The algorithm was validated using physiological ventricular and arterial pressure waveforms in a mock loop which simulated different contractilities (dP/dt(max) 600 to 2300 mm Hg/s), pump speeds (2 to 4 krpm), and fluid viscosities (2 to 4 mPa·s). The mathematically estimated pump flow data were then compared to the datasets measured in the mock loop for different variable combinations (flow ranging from 2.5 to 7 L/min, pulsatility from 3.5 to 6 L/min, dQ/dt(max) from 15 to 60 L/min/s). Transfer function analysis showed that the developed algorithm could estimate the flow waveform with a bandwidth up to 15 Hz (±2 dB). The mean difference between the estimated and measured average flows was +0.06 ± 0.31 L/min and for the flow pulsatilities -0.27 ± 0.2 L/min. Detection of dQ/dt(max) was possible up to a dP/dt(max) level of 2300 mm Hg/s. In conclusion, a flow estimator with sufficient frequency bandwidth and accuracy to allow determination of changes in ventricular contractility even in the case of improving heart function was developed. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Design of a 0.13 µm SiGe Limiting Amplifier with 14.6 THz Gain-Bandwidth-Product

    NASA Astrophysics Data System (ADS)

    Park, Sehoon; Du, Xuan-Quang; Grözing, Markus; Berroth, Manfred

    2017-09-01

    This paper presents the design of a limiting amplifier with 1-to-3 fan-out implementation in a 0.13 µm SiGe BiCMOS technology and gives a detailed guideline to determine the circuit parameters of the amplifier for optimum high-frequency performance based on simplified gain estimations. The proposed design uses a Cherry-Hooper topology for bandwidth enhancement and is optimized for maximum group delay flatness to minimize phase distortion of the input signal. With regard to a high integration density and a small chip area, the design employs no passive inductors which might be used to boost the circuit bandwidth with inductive peaking. On a RLC-extracted post-layout simulation level, the limiting amplifier exhibits a gain-bandwidth-product of 14.6 THz with 56.6 dB voltage gain and 21.5 GHz 3 dB bandwidth at a peak-to-peak input voltage of 1.5 mV. The group delay variation within the 3 dB bandwidth is less than 0.5 ps and the power dissipation at a power supply voltage of 3 V including output drivers is 837 mW.

  2. Negative inductance circuits for metamaterial bandwidth enhancement

    NASA Astrophysics Data System (ADS)

    Avignon-Meseldzija, Emilie; Lepetit, Thomas; Ferreira, Pietro Maris; Boust, Fabrice

    2017-12-01

    Passive metamaterials have yet to be translated into applications on a large scale due in large part to their limited bandwidth. To overcome this limitation many authors have suggested coupling metamaterials to non-Foster circuits. However, up to now, the number of convincing demonstrations based on non-Foster metamaterials has been very limited. This paper intends to clarify why progress has been so slow, i.e., the fundamental difficulty in making a truly broadband and efficient non-Foster metamaterial. To this end, we consider two families of metamaterials, namely Artificial Magnetic Media and Artificial Magnetic Conductors. In both cases, it turns out that bandwidth enhancement requires negative inductance with almost zero resistance. To estimate bandwidth enhancement with actual non-Foster circuits, we consider two classes of such circuits, namely Linvill and gyrator. The issue of stability being critical, both metamaterial families are studied with equivalent circuits that include advanced models of these non-Foster circuits. Conclusions are different for Artificial Magnetic Media coupled to Linvill circuits and Artificial Magnetic Conductors coupled to gyrator circuits. In the first case, requirements for bandwidth enhancement and stability are very hard to meet simultaneously whereas, in the second case, an adjustment of the transistor gain does significantly increase bandwidth.

  3. Design of the annular suspension and pointing system /ASPS/ through decoupling and pole placement. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Lin, W. C. W.

    1980-01-01

    A decoupling and pole-placement technique has been developed for the Annular Suspension and Pointing System (ASPS) of the Space Shuttle which uses bandwidths as performance criteria. The dynamics of the continuous-data ASPS allows the three degrees of freedom to be totally decoupled by state feedback through constant gains, so that the bandwidth of each degree of freedom can be independently specified without interaction. Although it is found that the digital ASPS cannot be completely decoupled, the bandwidth requirements are satisfied by pole placement and a trial-and-error method based on approximate decoupling.

  4. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution.

    PubMed

    Chong, A; Liu, H; Nie, B; Bale, B G; Wabnitz, S; Renninger, W H; Dantus, M; Wise, F W

    2012-06-18

    With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration.

  5. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  6. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  7. High Performance Power Amplifiers Utilizing Novel Balun Design Techniques

    NASA Astrophysics Data System (ADS)

    Stameroff, Alexander Nicholas

    In this PhD. research, a new power amplifier architecture is introduced. This work develops the push-pull architecture into a multifunctional matching network and combiner to create a high power, high efficiency, linear power amplifier (PA) that operates over a wide bandwidth. The traditional push-pull architecture uses an input balun to split a single ended signal into a differential signal, amplify it, and recombine it. This new technique realizes this architecture as a planar, hybrid, PA in X band. The first contribution of this work is the development of planar Marchand baluns that operate over a wide bandwidth. An analysis technique is developed and broadside coupled, Marchand baluns in an inhomogeneous medium are employed. These baluns operate over a bandwidth from 5 to 26 GHz with amplitude and phase imbalances less than 0.5 dB and 5 °, respectively. The even and odd mode behavior of the Marchand balun is utilized to provide harmonic matching for the PA. The balun inherently presents an open circuit to common mode signals at its center frequency. This is utilized to match the second harmonic to an open circuit condition. A band-stop filter is used as a harmonic trap to match the third harmonic to a short circuit. This achieves inverse class F matching for high efficiency operation. This network simultaneously acts as a combiner and matching network for high power and efficiency. A prototype PA was fabricated to prove this concept and achieves a saturated output power, Psat, greater than 33 dBm and a power added efficiency, PAE, greater than 62% over the bandwidth from 9.7 to 10.3 GHz. This technique was refined to operate over a wide bandwidth. The harmonic trap was removed and the out-of-band behavior of the balun was used to provide the short circuit matching at the third harmonic. A prototype PA was fabricated that achieved a 1 dB compressed power, P1dB, and PAE greater than 40 dBm and 55% respectively over the band from 8 to 12 GHz. Finally, the technique was extended to combine power from four transistors by the development of a 4-to-1 balun. A prototype PA was fabricated to prove this concept and achieves a P1dB and PAE greater than 43 dBm and 55% over the band from 8 to 12 GHz.

  8. Suboptimal distributed control and estimation: application to a four coupled tanks system

    NASA Astrophysics Data System (ADS)

    Orihuela, Luis; Millán, Pablo; Vivas, Carlos; Rubio, Francisco R.

    2016-06-01

    The paper proposes an innovative estimation and control scheme that enables the distributed monitoring and control of large-scale processes. The proposed approach considers a discrete linear time-invariant process controlled by a network of agents that may both collect information about the evolution of the plant and apply control actions to drive its behaviour. The problem makes full sense when local observability/controllability is not assumed and the communication between agents can be exploited to reach system-wide goals. Additionally, to reduce agents bandwidth requirements and power consumption, an event-based communication policy is studied. The design procedure guarantees system stability, allowing the designer to trade-off performance, control effort and communication requirements. The obtained controllers and observers are implemented in a fully distributed fashion. To illustrate the performance of the proposed technique, experimental results on a quadruple-tank process are provided.

  9. Material parameter estimation with terahertz time-domain spectroscopy.

    PubMed

    Dorney, T D; Baraniuk, R G; Mittleman, D M

    2001-07-01

    Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.

  10. Coherent broadband sonar signal processing with the environmentally corrected matched filter

    NASA Astrophysics Data System (ADS)

    Camin, Henry John, III

    The matched filter is the standard approach for coherently processing active sonar signals, where knowledge of the transmitted waveform is used in the detection and parameter estimation of received echoes. Matched filtering broadband signals provides higher levels of range resolution and reverberation noise suppression than can be realized through narrowband processing. Since theoretical processing gains are proportional to the signal bandwidth, it is typically desirable to utilize the widest band signals possible. However, as signal bandwidth increases, so do environmental effects that tend to decrease correlation between the received echo and the transmitted waveform. This is especially true for ultra wideband signals, where the bandwidth exceeds an octave or approximately 70% fractional bandwidth. This loss of coherence often results in processing gains and range resolution much lower than theoretically predicted. Wiener filtering, commonly used in image processing to improve distorted and noisy photos, is investigated in this dissertation as an approach to correct for these environmental effects. This improved signal processing, Environmentally Corrected Matched Filter (ECMF), first uses a Wiener filter to estimate the environmental transfer function and then again to correct the received signal using this estimate. This process can be viewed as a smarter inverse or whitening filter that adjusts behavior according to the signal to noise ratio across the spectrum. Though the ECMF is independent of bandwidth, it is expected that ultra wideband signals will see the largest improvement, since they tend to be more impacted by environmental effects. The development of the ECMF and demonstration of improved parameter estimation with its use are the primary emphases in this dissertation. Additionally, several new contributions to the field of sonar signal processing made in conjunction with the development of the ECMF are described. A new, nondimensional wideband ambiguity function is presented as a way to view the behavior of the matched filter with and without the decorrelating environmental effects; a new, integrated phase broadband angle estimation method is developed and compared to existing methods; and a new, asymptotic offset phase angle variance model is presented. Several data sets are used to demonstrate these new contributions. High fidelity Sonar Simulation Toolset (SST) synthetic data is used to characterize the theoretical performance. Two in-water data sets were used to verify assumptions that were made during the development of the ECMF. Finally, a newly collected in-air data set containing ultra wideband signals was used in lieu of a cost prohibitive underwater experiment to demonstrate the effectiveness of the ECMF at improving parameter estimates.

  11. Timing noise measurement of 320 GHz optical pulses using an improved optoelectronic harmonic mixer.

    PubMed

    Tsuchida, Hidemi

    2006-03-01

    An improved optoelectronic harmonic mixer (OEHM) has been employed for measuring the timing noise of 320 GHz optical pulses that are generated from a 160 GHz mode-locked laser diode by the temporal Talbot effect. The OEHM makes use of a low-drive voltage LiNbO3 modulator and a W-band unitraveling carrier photodiode for converting the 320 GHz pulse intensity into a low-frequency electrical signal. The time domain demodulation technique has been used for the precise evaluation of phase noise power spectral density. The rms timing jitter has been estimated to be 311 fs for the 10 Hz-18.6 MHz bandwidth.

  12. Equalizer design techniques for dispersive cables with application to the SPS wideband kicker

    NASA Astrophysics Data System (ADS)

    Platt, Jason; Hofle, Wolfgang; Pollock, Kristin; Fox, John

    2017-10-01

    A wide-band vertical instability feedback control system in development at CERN requires 1-1.5 GHz of bandwidth for the entire processing chain, from the beam pickups through the feedback signal digital processing to the back-end power amplifiers and kicker structures. Dispersive effects in cables, amplifiers, pickup and kicker elements can result in distortions in the time domain signal as it proceeds through the processing system, and deviations from linear phase response reduce the allowable bandwidth for the closed-loop feedback system. We have developed an equalizer analog circuit that compensates for these dispersive effects. Here we present a design technique for the construction of an analog equalizer that incorporates the effect of parasitic circuit elements in the equalizer to increase the fidelity of the implemented equalizer. Finally, we show results from the measurement of an assembled backend equalizer that corrects for dispersive elements in the cables over a bandwidth of 10-1000 MHz.

  13. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high temperatures.

    PubMed

    Shih, Jeanne-Louise; Kobayashi, Makiko; Jen, Cheng-Kuei

    2010-09-01

    Piezoelectric films have been deposited by a sol-gel spray technique onto 75-μm-thick titanium and stainless steel (SS) membranes and have been fabricated into flexible ultrasonic transducers (FUTs). FUTs using titanium membranes were glued and those using SS membranes brazed onto steel pipes, procedures that serve as on-site installation techniques for the purpose of offering continuous thickness monitoring capabilities at up to 490 °C. At 150 °C, the thickness measurement accuracy of a pipe with an outer diameter of 26.6 mm and a wall thickness of 2.5 mm was estimated to be 26 μm and the center frequency of the FUT was 10.8 MHz. It is demonstrated that the frequency bandwidth of the FUTs and SNR of signals using glue or brazing materials as high-temperature couplant for FUTs are sufficient to inspect the steel pipes even with a 2.5 mm wall thickness.

  14. High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data

    NASA Astrophysics Data System (ADS)

    Goel, K.; Adam, N.

    2012-07-01

    In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.

  15. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  16. Bandwidth and SIMDUCE as simulator fidelity criteria

    NASA Technical Reports Server (NTRS)

    Key, David

    1992-01-01

    The potential application of two concepts from the new Handling Qualities Specification for Military Rotorcraft was discussed. The first concept is bandwidth, a measure of the dynamic response to control. The second is a qualitative technique developed for assessing the visual cue environment the pilot has in bad weather and at night. Simulated Day Usable Cue Environment (SIMDUCE) applies this concept to assessing the day cuing fidelity in the simulator.

  17. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    PubMed

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.

  18. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time is reduced, resulting in a faster detection of the unwanted effects. The paper will present an example of this new investigation technique on a vortex generator in the test facility that belongs to ICPE- CA.

  19. Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings

    NASA Astrophysics Data System (ADS)

    LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.

    2016-05-01

    Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.

  20. Pseudo-differential CMOS analog front-end circuit for wide-bandwidth optical probe current sensor

    NASA Astrophysics Data System (ADS)

    Uekura, Takaharu; Oyanagi, Kousuke; Sonehara, Makoto; Sato, Toshiro; Miyaji, Kousuke

    2018-04-01

    In this paper, we present a pseudo-differential analog front-end (AFE) circuit for a novel optical probe current sensor (OPCS) aimed for high-frequency power electronics. It employs a regulated cascode transimpedance amplifier (RGC-TIA) to achieve a high gain and a large bandwidth without using an extremely high performance operational amplifier. The AFE circuit is designed in a 0.18 µm standard CMOS technology achieving a high transimpedance gain of 120 dB Ω and high cut off frequency of 16 MHz. The measured slew rate is 70 V/µs and the input referred current noise is 1.02 pA/\\sqrt{\\text{Hz}} . The magnetic resolution and bandwidth of OPCS are estimated to be 1.29 mTrms and 16 MHz, respectively; the bandwidth is higher than that of the reported Hall effect current sensor.

  1. Telepsychiatry: assessment of televideo psychiatric interview reliability with present- and next-generation internet infrastructures.

    PubMed

    Yoshino, A; Shigemura, J; Kobayashi, Y; Nomura, S; Shishikura, K; Den, R; Wakisaka, H; Kamata, S; Ashida, H

    2001-09-01

    We assessed the reliability of remote video psychiatric interviews conducted via the internet using narrow and broad bandwidths. Televideo psychiatric interviews conducted with 42 in-patients with chronic schizophrenia using two bandwidths (narrow, 128 kilobits/s; broad, 2 megabits/s) were assessed in terms of agreement with face-to-face interviews in a test-retest fashion. As a control, agreement was assessed between face-to-face interviews. Psychiatric symptoms were rated using the Oxford version of the Brief Psychiatric Rating Scale (BPRS), and agreement between interviews was estimated as the intraclass correlation coefficient (ICC). The ICC was significantly lower in the narrow bandwidth than in the broad bandwidth and the control for both positive symptoms score and total score. While reliability of televideo psychiatric interviews is insufficient using the present narrow-band internet infrastructure, the next generation of infrastructure (broad-band) may permit reliable diagnostic interviews.

  2. LESS: Link Estimation with Sparse Sampling in Intertidal WSNs

    PubMed Central

    Ji, Xiaoyu; Chen, Yi-chao; Li, Xiaopeng; Xu, Wenyuan

    2018-01-01

    Deploying wireless sensor networks (WSN) in the intertidal area is an effective approach for environmental monitoring. To sustain reliable data delivery in such a dynamic environment, a link quality estimation mechanism is crucial. However, our observations in two real WSN systems deployed in the intertidal areas reveal that link update in routing protocols often suffers from energy and bandwidth waste due to the frequent link quality measurement and updates. In this paper, we carefully investigate the network dynamics using real-world sensor network data and find it feasible to achieve accurate estimation of link quality using sparse sampling. We design and implement a compressive-sensing-based link quality estimation protocol, LESS, which incorporates both spatial and temporal characteristics of the system to aid the link update in routing protocols. We evaluate LESS in both real WSN systems and a large-scale simulation, and the results show that LESS can reduce energy and bandwidth consumption by up to 50% while still achieving more than 90% link quality estimation accuracy. PMID:29494557

  3. A bandwidth compressive modulation system using multi-amplitude minimum shift keying /MAMSK/. [for spacecraft communication

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III; Stanton, P. H.; Sumida, J. T.

    1978-01-01

    A bandwidth compressive modem making use of multi-amplitude minimum shift keying (MAMSK) has been designed and implemented in a laboratory environment at microwave frequencies. This system achieves a substantial bandwidth reduction over binary PSK and operates within 0.5 dB of theoretical performance. A number of easily implemented microwave transmitters have been designed to generate the required set of 16 signals. The receiver has been designed to work at 1 Mbit/s and contains the necessary phase tracking, AGC, and symbol synchronization loops as well as a lock detector, SNR estimator and provisions for differential decoding. This paper describes this entire system and presents the experimental results.

  4. Nonlinear Detection, Estimation, and Control for Free-Space Optical Communication

    DTIC Science & Technology

    2008-08-17

    original message. The promising features of this communication scheme such as high-bandwidth, power efficiency, and security, render it a viable means...bandwidth, power efficiency, and security, render it a viable means for high data rate point-to-point communication. In this dissertation, we adopt a...Department of Electrical and Computer Engineering In free-space optical communication, the intensity of a laser beam is modulated by a message, the beam

  5. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1989-01-01

    The performance of bandwidth efficient trellis codes on channels with phase jitter, or those disturbed by jamming and impulse noise is analyzed. An heuristic algorithm for construction of bandwidth efficient trellis codes with any constraint length up to about 30, any signal constellation, and any code rate was developed. Construction of good distance profile trellis codes for sequential decoding and comparison of random coding bounds of trellis coded modulation schemes are also discussed.

  6. High resolution time of arrival estimation for a cooperative sensor system

    NASA Astrophysics Data System (ADS)

    Morhart, C.; Biebl, E. M.

    2010-09-01

    Distance resolution of cooperative sensors is limited by the signal bandwidth. For the transmission mainly lower frequency bands are used which are more narrowband than classical radar frequencies. To compensate this resolution problem the combination of a pseudo-noise coded pulse compression system with superresolution time of arrival estimation is proposed. Coded pulsecompression allows secure and fast distance measurement in multi-user scenarios which can easily be adapted for data transmission purposes (Morhart and Biebl, 2009). Due to the lack of available signal bandwidth the measurement accuracy degrades especially in multipath scenarios. Superresolution time of arrival algorithms can improve this behaviour by estimating the channel impulse response out of a band-limited channel view. For the given test system the implementation of a MUSIC algorithm permitted a two times better distance resolution as the standard pulse compression.

  7. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation.

    PubMed

    Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul

    2016-10-13

    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size.

  8. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation

    PubMed Central

    Hasan, Md. Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul

    2016-01-01

    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size. PMID:28773951

  9. Observations and Characterization of Binary Near-Earth Asteroid 65803 Didymos, the Target of the AIDA Mission

    NASA Astrophysics Data System (ADS)

    Naidu, S.; Benner, L.; Brozovic, M.; Ostro, S. J.; Nolan, M. C.; Margot, J. L.; Giorgini, J. D.; Magri, C.; Pravec, P.; Scheirich, P.; Scheeres, D. J.; Hirabayashi, M.

    2016-12-01

    Binary near-Earth asteroid 65803 Didymos is the target of the proposed Asteroid Impact and Deflection Assessment (AIDA) space mission. The mission consists of two spacecraft, the Demonstration for Autonomous Rendezvous Technology (DART) spacecraft that will impact the asteroid's satellite and the Asteroid Impact Mission (AIM) spacecraft that will observe the impact. We used radar observations obtained at Arecibo and Goldstone in 2003, and lightcurve data from Pravec et al. (2006) to model the shapes, sizes, and spin states of the components. The primary is top shaped and has an equatorial ridge similar to the one seen on 2000 DP107 (Naidu et al. 2015). A 300 m long flat region is also seen along the equator. The primary has an equivalent diameter of 780 m (+/- 10 %) and its extents along the principal axes are 826 m, 813 m, and 786 m (10% uncertainties). It has a spin period of 2.2600 +/- 0.0001 h. A grid search for the spin pole resulted in the best fit at ecliptic (longitude, latitude) = (296, +71) degrees (+/- 15 degrees). This estimate is consistent with the spin pole being aligned to the binary orbit normal at (310, -84) degrees. Dividing the primary mass of 5.24e11 kg (Fang & Margot 2012) by the model volume we estimate a bulk density of 2100 kg m-3 (+/- 30 %). We summed multiple radar runs to estimate the range and Doppler extents of the satellite. We estimated the motion in successive images and used a shift-and-sum technique to mitigate smearing due to translational motion. This boosted the SNRs and allowed us to obtain size and bandwidth estimates of the satellite. The visible range extent of the satellite is roughly 60-75 m at the 15 m resolution of the Arecibo images. Assuming that the true extent is twice the visible extent, we obtain a diameter estimate of 120-150 m. The bandwidth of the satellite suggests a spin period between 9-12 h that is consistent with the orbit period of 11.9 hours and with synchronous rotation.

  10. Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes Using Ballistocardiogram Measurements on a High Bandwidth Force Plate

    PubMed Central

    Ashouri, Hazar; Orlandic, Lara; Inan, Omer T.

    2016-01-01

    Unobtrusive and inexpensive technologies for monitoring the cardiovascular health of heart failure (HF) patients outside the clinic can potentially improve their continuity of care by enabling therapies to be adjusted dynamically based on the changing needs of the patients. Specifically, cardiac contractility and stroke volume (SV) are two key aspects of cardiovascular health that change significantly for HF patients as their condition worsens, yet these parameters are typically measured only in hospital/clinical settings, or with implantable sensors. In this work, we demonstrate accurate measurement of cardiac contractility (based on pre-ejection period, PEP, timings) and SV changes in subjects using ballistocardiogram (BCG) signals detected via a high bandwidth force plate. The measurement is unobtrusive, as it simply requires the subject to stand still on the force plate while holding electrodes in the hands for simultaneous electrocardiogram (ECG) detection. Specifically, we aimed to assess whether the high bandwidth force plate can provide accuracy beyond what is achieved using modified weighing scales we have developed in prior studies, based on timing intervals, as well as signal-to-noise ratio (SNR) estimates. Our results indicate that the force plate BCG measurement provides more accurate timing information and allows for better estimation of PEP than the scale BCG (r2 = 0.85 vs. r2 = 0.81) during resting conditions. This correlation is stronger during recovery after exercise due to more significant changes in PEP (r2 = 0.92). The improvement in accuracy can be attributed to the wider bandwidth of the force plate. ∆SV (i.e., changes in stroke volume) estimations from the force plate BCG resulted in an average error percentage of 5.3% with a standard deviation of ±4.2% across all subjects. Finally, SNR calculations showed slightly better SNR in the force plate measurements among all subjects but the small difference confirmed that SNR is limited by motion artifacts rather than instrumentation. PMID:27240380

  11. A 25-Gbps high-sensitivity optical receiver with 10-Gbps photodiode using inductive input coupling for optical interconnects

    NASA Astrophysics Data System (ADS)

    Oku, Hideki; Narita, Kiyomi; Shiraishi, Takashi; Ide, Satoshi; Tanaka, Kazuhiro

    2012-01-01

    A 25-Gbps high-sensitivity optical receiver with a 10-Gbps photodiode (PD) using inductive input coupling has been demonstrated for optical interconnects. We introduced the inductive input coupling technique to achieve the 25-Gbps optical receiver using a 10-Gbps PD. We implemented an input inductor (Lin) between the PD and trans-impedance amplifier (TIA), and optimized inductance to enhance the bandwidth and reduce the input referred noise current through simulation with the RF PD-model. Near the resonance frequency of the tank circuit formed by PD capacitance, Lin, and TIA input capacitance, the PD photo-current through Lin into the TIA is enhanced. This resonance has the effects of enhancing the bandwidth at TIA input and reducing the input equivalent value of the noise current from TIA. We fabricated the 25-Gbps optical receiver with the 10-Gbps PD using an inductive input coupling technique. Due to the application of an inductor, the receiver bandwidth is enhanced from 10 GHz to 14.2 GHz. Thanks to this wide-band and low-noise performance, we were able to improve the sensitivity at an error rate of 1E-12 from non-error-free to -6.5 dBm. These results indicate that our technique is promising for cost-effective optical interconnects.

  12. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate measurement. An additional advantage over prior art is that, computationally, the DCF requires significantly fewer real-time calculations than a Kalman filter formulation. There are essentially two reasons for this: the DCF state is not augmented with angular rate, and measurement updates occur at the slower gyro rate instead of the faster ARS sampling rate. Finally, the DCF has a simple and compelling architecture. The DCF is exactly equivalent to flying two identical attitude observers, one at low rate and one at high rate. These attitude observers are exactly of the form currently flown on typical three-axis spacecraft.

  13. Measuring the critical band for speech.

    PubMed

    Healy, Eric W; Bacon, Sid P

    2006-02-01

    The current experiments were designed to measure the frequency resolution employed by listeners during the perception of everyday sentences. Speech bands having nearly vertical filter slopes and narrow bandwidths were sharply partitioned into various numbers of equal log- or ERBN-width subbands. The temporal envelope from each partition was used to amplitude modulate a corresponding band of low-noise noise, and the modulated carriers were combined and presented to normal-hearing listeners. Intelligibility increased and reached asymptote as the number of partitions increased. In the mid- and high-frequency regions of the speech spectrum, the partition bandwidth corresponding to asymptotic performance matched current estimates of psychophysical tuning across a number of conditions. These results indicate that, in these regions, the critical band for speech matches the critical band measured using traditional psychoacoustic methods and nonspeech stimuli. However, in the low-frequency region, partition bandwidths at asymptote were somewhat narrower than would be predicted based upon psychophysical tuning. It is concluded that, overall, current estimates of psychophysical tuning represent reasonably well the ability of listeners to extract spectral detail from running speech.

  14. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  15. Hardware architecture design of a fast global motion estimation method

    NASA Astrophysics Data System (ADS)

    Liang, Chaobing; Sang, Hongshi; Shen, Xubang

    2015-12-01

    VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.

  16. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.

  17. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.

  18. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  19. Sliceable transponders for metro-access transmission links

    NASA Astrophysics Data System (ADS)

    Wagner, C.; Madsen, P.; Spolitis, S.; Vegas Olmos, J. J.; Tafur Monroy, I.

    2015-01-01

    This paper presents a solution for upgrading optical access networks by reusing existing electronics or optical equipment: sliceable transponders using signal spectrum slicing and stitching back method after direct detection. This technique allows transmission of wide bandwidth signals from the service provider (OLT - optical line terminal) to the end user (ONU - optical network unit) over an optical distribution network (ODN) via low bandwidth equipment. We show simulation and experimental results for duobinary signaling of 1 Gbit/s and 10 Gbit/s waveforms. The number of slices is adjusted to match the lowest analog bandwidth of used electrical devices and scale from 2 slices to 10 slices. Results of experimental transmission show error free signal recovery by using post forward error correction with 7% overhead.

  20. Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit per second communication architectures

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.

    2012-06-01

    Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.

  1. Source levels of foraging humpback whale calls.

    PubMed

    Fournet, Michelle E H; Matthews, Leanna P; Gabriele, Christine M; Mellinger, David K; Klinck, Holger

    2018-02-01

    Humpback whales produce a wide range of low- to mid-frequency vocalizations throughout their migratory range. Non-song "calls" dominate this species' vocal repertoire while on high-latitude foraging grounds. The source levels of 426 humpback whale calls in four vocal classes were estimated using a four-element planar array deployed in Glacier Bay National Park and Preserve, Southeast Alaska. There was no significant difference in source levels between humpback whale vocal classes. The mean call source level was 137 dB RMS re 1 μPa @ 1 m in the bandwidth of the call (range 113-157 dB RMS re 1 μPa @ 1 m), where bandwidth is defined as the frequency range from the lowest to the highest frequency component of the call. These values represent a robust estimate of humpback whale source levels on foraging grounds and should append earlier estimates.

  2. Optical interconnects for satellite payloads: overview of the state-of-the-art

    NASA Astrophysics Data System (ADS)

    Vervaeke, Michael; Debaes, Christof; Van Erps, Jürgen; Karppinen, Mikko; Tanskanen, Antti; Aalto, Timo; Harjanne, Mikko; Thienpont, Hugo

    2010-05-01

    The increased demand of broadband communication services like High Definition Television, Video On Demand, Triple Play, fuels the technologies to enhance the bandwidth of individual users towards service providers and hence the increase of aggregate bandwidths on terrestial networks. Optical solutions clearly leverage the bandwidth appetite easily whereas electrical interconnection schemes require an ever-increasing effort to counteract signal distortions at higher bitrates. Dense wavelength division multiplexing and all-optical signal regeneration and switching solve the bandwidth demands of network trunks. Fiber-to-the-home, and fiber-to-the-desk are trends towards providing individual users with greatly increased bandwidth. Operators in the satellite telecommunication sector face similar challenges fuelled by the same demands as for their terrestial counterparts. Moreover, the limited number of orbital positions for new satellites set the trend for an increase in payload datacommunication capacity using an ever-increasing number of complex multi-beam active antennas and a larger aggregate bandwidth. Only satellites with very large capacity, high computational density and flexible, transparent fully digital payload solutions achieve affordable communication prices. To keep pace with the bandwidth and flexibility requirements, designers have to come up with systems requiring a total digital througput of a few Tb/s resulting in a high power consuming satellite payload. An estimated 90 % of the total power consumption per chip is used for the off-chip communication lines. We have undertaken a study to assess the viability of optical datacommunication solutions to alleviate the demands regarding power consumption and aggregate bandwidth imposed on future satellite communication payloads. The review on optical interconnects given here is especially focussed on the demands of the satellite communication business and the particular environment in which the optics have to perform their functionality: space.

  3. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    PubMed Central

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level—a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (∼50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers. PMID:28090078

  4. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level--a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (~50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers.

  5. A new multifunction acousto-optic signal processor

    NASA Technical Reports Server (NTRS)

    Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.

    1984-01-01

    An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.

  6. Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes

    PubMed Central

    Li, Degui; Li, Runze

    2016-01-01

    In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory. PMID:27667894

  7. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  8. A Posteriori Restoration of Block Transform-Compressed Data

    NASA Technical Reports Server (NTRS)

    Brown, R.; Boden, A. F.

    1995-01-01

    The Galileo spacecraft will use lossy data compression for the transmission of its science imagery over the low-bandwidth communication system. The technique chosen for image compression is a block transform technique based on the Integer Cosine Transform, a derivative of the JPEG image compression standard. Considered here are two known a posteriori enhancement techniques, which are adapted.

  9. Novel pre-equalization transimpedance amplifier for 10 Gb/s optical interconnects

    NASA Astrophysics Data System (ADS)

    Qiwei, Song; Luhong, Mao; Sheng, Xie; Yuzhuo, Kang

    2015-07-01

    This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive π-network and Gm-boosting technique. The introduction of this technique compensates the transferred signal at the input port of the TIA without an increase in power dissipation. Furthermore, a novel miller capacitance degeneration method is designed in the gain stage for further bandwidth improvement. The TIA is realized in UMC 0.18 πm CMOS technology and tested with an on-chip 0.3 pF capacitor to emulate a photodetector (PD). The measured transimpedance gain amounts to 57 dBΩ with a -3 dB bandwidth of about 8.2 GHz and consumes only 22 mW power from a single 1.8 V supply. Project supported by the National Natural Science Foundation of China (Nos. 61036002, 61474081).

  10. Classified one-step high-radix signed-digit arithmetic units

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    1998-08-01

    High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.

  11. Full complex spatial filtering with a phase mostly DMD. [Deformable Mirror Device

    NASA Technical Reports Server (NTRS)

    Florence, James M.; Juday, Richard D.

    1991-01-01

    A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

  12. Compression of transmission bandwidth requirements for a certain class of band-limited functions.

    NASA Technical Reports Server (NTRS)

    Smith, I. R.; Schilling, D. L.

    1972-01-01

    A study of source-encoding techniques that afford a reduction of data-transmission rates is made with particular emphasis on the compression of transmission bandwidth requirements of band-limited functions. The feasibility of bandwidth compression through analog signal rooting is investigated. It is found that the N-th roots of elements of a certain class of entire functions of exponential type possess contour integrals resembling Fourier transforms, the Cauchy principal values of which are compactly supported on an interval one N-th the size of that of the original function. Exploring this theoretical result, it is found that synthetic roots can be generated, which closely approximate the N-th roots of a certain class of band-limited signals and possess spectra that are essentially confined to a bandwidth one N-th that of the signal subjected to the rooting operation. A source-encoding algorithm based on this principle is developed that allows the compression of data-transmission requirements for a certain class of band-limited signals.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey, D.; Ryan, W.; Ross, M.

    A method for more efficiently utilizing the frequency bandwidth allocated for data transmission is presented. Current space and range communication systems use modulation and coding schemes that transmit 0.5 to 1.0 bits per second per Hertz of radio frequency bandwidth. The goal in this LDRD project is to increase the bandwidth utilization by employing advanced digital communications techniques. This is done with little or no increase in the transmit power which is usually very limited on airborne systems. Teaming with New Mexico State University, an implementation of trellis coded modulation (TCM), a coding and modulation scheme pioneered by Ungerboeck, wasmore » developed for this application and simulated on a computer. TCM provides a means for reliably transmitting data while simultaneously increasing bandwidth efficiency. The penalty is increased receiver complexity. In particular, the trellis decoder requires high-speed, application-specific digital signal processing (DSP) chips. A system solution based on the QualComm Viterbi decoder and the Graychip DSP receiver chips is presented.« less

  14. Performance constraints and compensation for teleoperation with delay

    NASA Technical Reports Server (NTRS)

    Mclaughlin, J. S.; Staunton, B. D.

    1989-01-01

    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.

  15. Automated ambiguity estimation for VLBI Intensive sessions using L1-norm

    NASA Astrophysics Data System (ADS)

    Kareinen, Niko; Hobiger, Thomas; Haas, Rüdiger

    2016-12-01

    Very Long Baseline Interferometry (VLBI) is a space-geodetic technique that is uniquely capable of direct observation of the angle of the Earth's rotation about the Celestial Intermediate Pole (CIP) axis, namely UT1. The daily estimates of the difference between UT1 and Coordinated Universal Time (UTC) provided by the 1-h long VLBI Intensive sessions are essential in providing timely UT1 estimates for satellite navigation systems and orbit determination. In order to produce timely UT1 estimates, efforts have been made to completely automate the analysis of VLBI Intensive sessions. This involves the automatic processing of X- and S-band group delays. These data contain an unknown number of integer ambiguities in the observed group delays. They are introduced as a side-effect of the bandwidth synthesis technique, which is used to combine correlator results from the narrow channels that span the individual bands. In an automated analysis with the c5++ software the standard approach in resolving the ambiguities is to perform a simplified parameter estimation using a least-squares adjustment (L2-norm minimisation). We implement L1-norm as an alternative estimation method in c5++. The implemented method is used to automatically estimate the ambiguities in VLBI Intensive sessions on the Kokee-Wettzell baseline. The results are compared to an analysis set-up where the ambiguity estimation is computed using the L2-norm. For both methods three different weighting strategies for the ambiguity estimation are assessed. The results show that the L1-norm is better at automatically resolving the ambiguities than the L2-norm. The use of the L1-norm leads to a significantly higher number of good quality UT1-UTC estimates with each of the three weighting strategies. The increase in the number of sessions is approximately 5% for each weighting strategy. This is accompanied by smaller post-fit residuals in the final UT1-UTC estimation step.

  16. Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders

    NASA Astrophysics Data System (ADS)

    Napoli, Antonio; Berenguer, Pablo Wilke; Rahman, Talha; Khanna, Ginni; Mezghanni, Mahdi M.; Gardian, Lennart; Riccardi, Emilio; Piat, Anna Chiadò; Calabrò, Stefano; Dris, Stefanos; Richter, André; Fischer, Johannes Karl; Sommerkorn-Krombholz, Bernd; Spinnler, Bernhard

    2018-02-01

    Digital pre-compensation techniques are among the enablers for cost-efficient high-capacity transponders. In this paper we describe various methods to mitigate the impairments introduced by state-of-the-art components within modern optical transceivers. Numerical and experimental results validate their performance and benefits.

  17. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.

    1986-01-01

    High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.

  18. Cross-orientation interactions in human vision.

    PubMed

    Roeber, Urte; Wong, Elaine M Y; Freeman, Alan W

    2008-03-18

    Humans can discriminate one visual contour from another on the basis of small differences in orientation. This capability depends on cortical detectors that are selective for a small range of orientations. We have measured this orientation bandwidth and the suppression that helps to shape it, with a reverse correlation technique. Human subjects were presented with a stream of randomly oriented gratings at a rate of 30 per second. Their task was to press a key whenever they saw an orientation nominated as the target. We analyzed the data by finding the probability density of two orientations: One preceded the key-press by the reaction time, and the second preceded the first by up to 100 ms. The results were as follows: (1) One grating facilitated the following one in producing a key-press when the gratings differed little in orientation. The estimate of orientation bandwidth resulting from this facilitation was 38 degrees . (2) A large angle between the two orientations reduced the probability of a key-press. This finding was best modelled as a suppression that did not vary with orientation, consistent with the idea that cross-orientation suppression is non-oriented. (3) Analysis of non-consecutive grating pairs showed that cross-orientation interactions lasted no longer than 67 ms.

  19. End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change

    NASA Astrophysics Data System (ADS)

    Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro

    This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.

  20. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    PubMed

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Optimization of Connector Position Offset for Bandwidth Enhancement of a Multimode Optical Fiber Link

    NASA Technical Reports Server (NTRS)

    Rawat, Banmali

    2000-01-01

    The multimode fiber bandwidth enhancement techniques to meet the Gigabit Ethernet standards for local area networks (LAN) of the Kennedy Space Center and other NASA centers have been discussed. Connector with lateral offset coupling between single mode launch fiber cable and the multimode fiber cable has been thoroughly investigated. An optimization of connector position offset for 8 km long optical fiber link at 1300 nm with 9 micrometer diameter single mode fiber (SMF) and 50 micrometer diameter multimode fiber (MMF) coupling has been obtained. The optimization is done in terms of bandwidth, eye-pattern, and bit pattern measurements. It is simpler, is a highly practical approach and is cheaper as no additional cost to manufacture the offset type of connectors is involved.

  2. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  3. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    PubMed Central

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  4. Broad-Bandwidth Chiral Sum Frequency Generation Spectroscopy for Probing the Kinetics of Proteins at Interfaces

    PubMed Central

    2016-01-01

    The kinetics of proteins at interfaces plays an important role in biological functions and inspires solutions to fundamental problems in biomedical sciences and engineering. Nonetheless, due to the lack of surface-specific and structural-sensitive biophysical techniques, it still remains challenging to probe protein kinetics in situ and in real time without the use of spectroscopic labels at interfaces. Broad-bandwidth chiral sum frequency generation (SFG) spectroscopy has been recently developed for protein kinetic studies at interfaces by tracking the chiral vibrational signals of proteins. In this article, we review our recent progress in kinetic studies of proteins at interfaces using broad-bandwidth chiral SFG spectroscopy. We illustrate the use of chiral SFG signals of protein side chains in the C–H stretch region to monitor self-assembly processes of proteins at interfaces. We also present the use of chiral SFG signals from the protein backbone in the N–H stretch region to probe the real-time kinetics of proton exchange between protein and water at interfaces. In addition, we demonstrate the applications of spectral features of chiral SFG that are typical of protein secondary structures in both the amide I and the N–H stretch regions for monitoring the kinetics of aggregation of amyloid proteins at membrane surfaces. These studies exhibit the power of broad-bandwidth chiral SFG to study protein kinetics at interfaces and the promise of this technique in research areas of surface science to address fundamental problems in biomedical and material sciences. PMID:26196215

  5. An analysis of carrier phase jitter in an MPSK receiver utilizing map estimation. Ph.D. Thesis Semiannual Status Report, Jul. 1993 - Jan. 1994

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1994-01-01

    The use of 8 and 16 PSK TCM to support satellite communications in an effort to achieve more bandwidth efficiency in a power-limited channel has been proposed. This project addresses the problem of carrier phase jitter in an M-PSK receiver utilizing the high SNR approximation to the maximum aposteriori estimation of carrier phase. In particular, numerical solutions to the 8 and 16 PSK self-noise and phase detector gain in the carrier tracking loop are presented. The effect of changing SNR on the loop noise bandwidth is also discussed. These data are then used to compute variance of phase error as a function of SNR. Simulation and hardware data are used to verify these calculations. The results show that there is a threshold in the variance of phase error versus SNR curves that is a strong function of SNR and a weak function of loop bandwidth. The M-PSK variance thresholds occur at SNR's in the range of practical interest for the use of 8 and 16-PSK TCM. This suggests that phase error variance is an important consideration in the design of these systems.

  6. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    NASA Astrophysics Data System (ADS)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.

  7. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  8. Network Implementation Trade-Offs in Existing Homes

    NASA Astrophysics Data System (ADS)

    Keiser, Gerd

    2013-03-01

    The ever-increasing demand for networking of high-bandwidth services in existing homes has resulted in several options for implementing an in-home network. Among the options are power-line communication techniques, twisted-pair copper wires, wireless links, and plastic or glass optical fibers. Whereas it is easy to install high-bandwidth optical fibers during the construction of new living units, retrofitting of existing homes with networking capabilities requires some technology innovations. This article addresses some trade-offs that need to be made on what transmission media can be retrofitted most effectively in existing homes.

  9. 4800 B/S speech compression techniques for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Townes, S. A.; Barnwell, T. P., III; Rose, R. C.; Gersho, A.; Davidson, G.

    1986-01-01

    This paper will discuss three 4800 bps digital speech compression techniques currently being investigated for application in the mobile satellite service. These three techniques, vector adaptive predictive coding, vector excitation coding, and the self excited vocoder, are the most promising among a number of techniques being developed to possibly provide near-toll-quality speech compression while still keeping the bit-rate low enough for a power and bandwidth limited satellite service.

  10. On the bandwidth of the plenoptic function.

    PubMed

    Do, Minh N; Marchand-Maillet, Davy; Vetterli, Martin

    2012-02-01

    The plenoptic function (POF) provides a powerful conceptual tool for describing a number of problems in image/video processing, vision, and graphics. For example, image-based rendering is shown as sampling and interpolation of the POF. In such applications, it is important to characterize the bandwidth of the POF. We study a simple but representative model of the scene where band-limited signals (e.g., texture images) are "painted" on smooth surfaces (e.g., of objects or walls). We show that, in general, the POF is not band limited unless the surfaces are flat. We then derive simple rules to estimate the essential bandwidth of the POF for this model. Our analysis reveals that, in addition to the maximum and minimum depths and the maximum frequency of painted signals, the bandwidth of the POF also depends on the maximum surface slope. With a unifying formalism based on multidimensional signal processing, we can verify several key results in POF processing, such as induced filtering in space and depth-corrected interpolation, and quantify the necessary sampling rates. © 2011 IEEE

  11. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  12. Spectrum Efficiency Improvements via PHY-Layer and PDCP-Layer Techniques

    ERIC Educational Resources Information Center

    Wu, Wenhao

    2017-01-01

    The past decades have witnessed an ever-growing demand for higher network capacity. Given practical radio resource constraints such as bandwidth and power, a wide variety of spectral efficiency techniques have been thoroughly explored by research efforts around the world. In this dissertation, we examine two less conventional approaches to boost…

  13. Estimating the delay-Doppler of target echo in a high clutter underwater environment using wideband linear chirp signals: Evaluation of performance with experimental data.

    PubMed

    Yu, Ge; Yang, T C; Piao, Shengchun

    2017-10-01

    A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.

  14. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  15. Evaluation of architectures for an ASP MPEG-4 decoder using a system-level design methodology

    NASA Astrophysics Data System (ADS)

    Garcia, Luz; Reyes, Victor; Barreto, Dacil; Marrero, Gustavo; Bautista, Tomas; Nunez, Antonio

    2005-06-01

    Trends in multimedia consumer electronics, digital video and audio, aim to reach users through low-cost mobile devices connected to data broadcasting networks with limited bandwidth. An emergent broadcasting network is the digital audio broadcasting network (DAB) which provides CD quality audio transmission together with robustness and efficiency techniques to allow good quality reception in motion conditions. This paper focuses on the system-level evaluation of different architectural options to allow low bandwidth digital video reception over DAB, based on video compression techniques. Profiling and design space exploration techniques are applied over the ASP MPEG-4 decoder in order to find out the best HW/SW partition given the application and platform constraints. An innovative SystemC-based system-level design tool, called CASSE, is being used for modelling, exploration and evaluation of different ASP MPEG-4 decoder HW/SW partitions. System-level trade offs and quantitative data derived from this analysis are also presented in this work.

  16. On the recovery of missing low and high frequency information from bandlimited reflectivity data

    NASA Astrophysics Data System (ADS)

    Sacchi, M. D.; Ulrych, T. J.

    2007-12-01

    During the last two decades, an important effort in the seismic exploration community has been made to retrieve broad-band seismic data by means of deconvolution and inversion. In general, the problem can be stated as a spectral reconstruction problem. In other words, given limited spectral information about the earth's reflectivity sequence, one attempts to create a broadband estimate of the Fourier spectra of the unknown reflectivity. Techniques based on the principle of parsimony can be effectively used to retrieve a sparse spike sequence and, consequently, a broad band signal. Alternatively, continuation methods, e.g., autoregressive modeling, can be used to extrapolate the recorded bandwidth of the seismic signal. The goal of this paper is to examine under what conditions the recovery of low and high frequencies from band-limited and noisy signals is possible. At the heart of the methods we discuss, is the celebrated non-Gaussian assumption so important in many modern signal processing methods, such as ICA, for example. Spectral recovery from limited information tends to work when the reflectivity consist of a few well isolated events. Results degrade with the number of reflectors, decreasing SNR and decreasing bandwidth of the source wavelet. Constrains and information-based priors can be used to stabilize the recovery but, as in all inverse problems, the solution is nonunique and effort is required to understand the level of recovery that is achievable, always keeping the physics of the problem in mind. We provide in this paper, a survey of methods to recover broad-band reflectivity sequences and examine the role that these techniques can play in the processing and inversion as applied to exploration and global seismology.

  17. Optical injection phase-lock loops

    NASA Astrophysics Data System (ADS)

    Bordonalli, Aldario Chrestani

    Locking techniques have been widely applied for frequency synchronisation of semiconductor lasers used in coherent communication and microwave signal generation systems. Two main locking techniques, the optical phase-lock loop (OPLL) and optical injection locking (OIL) are analysed in this thesis. The principal limitations on OPLL performance result from the loop propagation delay, which makes difficult the implementation of high gain and wide bandwidth loops, leading to poor phase noise suppression performance and requiring the linewidths of the semiconductor laser sources to be less than a few megahertz for practical values of loop delay. The OIL phase noise suppression is controlled by the injected power. The principal limitations of the OIL implementation are the finite phase error under locked conditions and the narrow stable locking range the system provides at injected power levels required to reduce the phase noise output of semiconductor lasers significantly. This thesis demonstrates theoretically and experimentally that it is possible to overcome the limitations of OPLL and OIL systems by combining them, to form an optical injection phase-lock loop (OIPLL). The modelling of an OIPLL system is presented and compared with the equivalent OPLL and OIL results. Optical and electrical design of an homodyne OIPLL is detailed. Experimental results are given which verify the theoretical prediction that the OIPLL would keep the phase noise suppression as high as that of the OIL system over a much wider stable locking range, even with wide linewidth lasers and long loop delays. The experimental results for lasers with summed linewidth of 36 MHz and a loop delay of 15 ns showed measured phase error variances as low as 0.006 rad2 (500 MHz bandwidth) for locking bandwidths greater than 26 GHz, compared with the equivalent OPLL phase error variance of around 1 rad2 (500 MHz bandwidth) and the equivalent OIL locking bandwidth of less than 1.2 GHz.

  18. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick composite materials where attenuation is high and signal amplitude and bandwidth are at a premium.

  19. Study of on-board compression of earth resources data

    NASA Technical Reports Server (NTRS)

    Habibi, A.

    1975-01-01

    The current literature on image bandwidth compression was surveyed and those methods relevant to compression of multispectral imagery were selected. Typical satellite multispectral data was then analyzed statistically and the results used to select a smaller set of candidate bandwidth compression techniques particularly relevant to earth resources data. These were compared using both theoretical analysis and simulation, under various criteria of optimality such as mean square error (MSE), signal-to-noise ratio, classification accuracy, and computational complexity. By concatenating some of the most promising techniques, three multispectral data compression systems were synthesized which appear well suited to current and future NASA earth resources applications. The performance of these three recommended systems was then examined in detail by all of the above criteria. Finally, merits and deficiencies were summarized and a number of recommendations for future NASA activities in data compression proposed.

  20. Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

  1. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.

    PubMed

    Brown, Jeremy; Sharma, Srikanta; Leadbetter, Jeff; Cochran, Sandy; Adamson, Rob

    2014-11-01

    We have developed a technique of applying multiple matching layers to high-frequency (>30 MHz) imaging transducers, by using carefully controlled vacuum deposition alone. This technique uses a thin mass-spring matching layer approach that was previously described in a low-frequency (1 to 10 MHz) transducer design with epoxied layers. This mass- spring approach is more suitable to vacuum deposition in highfrequency transducers over the conventional quarter-wavelength resonant cavity approach, because thinner layers and more versatile material selection can be used, the difficulty in precisely lapping quarter-wavelength matching layers is avoided, the layers are less attenuating, and the layers can be applied to a curved surface. Two different 3-mm-diameter 45-MHz planar lithium niobate transducers and one geometrically curved 3-mm lithium niobate transducer were designed and fabricated using this matching layer approach with copper as the mass layer and parylene as the spring layer. The first planar lithium niobate transducer used a single mass-spring matching network, and the second planar lithium niobate transducer used a single mass-spring network to approximate the first layer in a dual quarter-wavelength matching layer system in addition to a conventional quarter-wavelength layer as the second matching layer. The curved lithium niobate transducer was press focused and used a similar mass-spring plus quarter-wavelength matching layer network. These transducers were then compared with identical transducers with no matching layers and the performance improvement was quantified. The bandwidth of the lithium niobate transducer with the single mass-spring layer was measured to be 46% and the insertion loss was measured to be -21.9 dB. The bandwidth and insertion loss of the lithium niobate transducer with the mass-spring network plus quarter-wavelength matching were measured to be 59% and -18.2 dB, respectively. These values were compared with the unmatched transducer, which had a bandwidth of 28% and insertion loss of -34.1 dB. The bandwidth and insertion loss of the curved lithium niobate transducer with the mass-spring plus quarter-wavelength matching layer combination were measured to be 68% and -26 dB, respectively; this compared with the measured unmatched bandwidth and insertion loss of 35% and -37 dB. All experimentally measured values were in excellent agreement with theoretical Krimholtz-Leedom-Matthaei (KLM) model predictions.

  2. Photovoltaic-Model-Based Solar Irradiance Estimators: Performance Comparison and Application to Maximum Power Forecasting

    NASA Astrophysics Data System (ADS)

    Scolari, Enrica; Sossan, Fabrizio; Paolone, Mario

    2018-01-01

    Due to the increasing proportion of distributed photovoltaic (PV) production in the generation mix, the knowledge of the PV generation capacity has become a key factor. In this work, we propose to compute the PV plant maximum power starting from the indirectly-estimated irradiance. Three estimators are compared in terms of i) ability to compute the PV plant maximum power, ii) bandwidth and iii) robustness against measurements noise. The approaches rely on measurements of the DC voltage, current, and cell temperature and on a model of the PV array. We show that the considered methods can accurately reconstruct the PV maximum generation even during curtailment periods, i.e. when the measured PV power is not representative of the maximum potential of the PV array. Performance evaluation is carried out by using a dedicated experimental setup on a 14.3 kWp rooftop PV installation. Results also proved that the analyzed methods can outperform pyranometer-based estimations, with a less complex sensing system. We show how the obtained PV maximum power values can be applied to train time series-based solar maximum power forecasting techniques. This is beneficial when the measured power values, commonly used as training, are not representative of the maximum PV potential.

  3. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  4. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Time Tagging the Data

    DTIC Science & Technology

    2015-09-01

    this report made use of posttest processing techniques to provide packet-level time tagging with an accuracy close to 3 µs relative to Coordinated...h set of test records. The process described herein made use of posttest processing techniques to provide packet-level time tagging with an accuracy

  5. Study of strong turbulence effects for optical wireless links

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Meric, Hasim; Kunter, Fulya

    2012-10-01

    Strong turbulence measurements that are taken using real time optical wireless experimental setups are valuable when studying the effects of turbulence regimes on a propagating optical beam. In any kind of FSO system, for us to know the strength of the turbulence thus the refractive index structure constant, is beneficial for having an optimum bandwidth of communication. Even if the FSO Link is placed very well-high-above the ground just to have weak enough turbulence effects, there can be severe atmospheric conditions that can change the turbulence regime. Having a successful theory that will cover all regimes will give us the chance of directly processing the image in existing or using an additional hardware thus deciding on the optimum bandwidth of the communication line at firsthand. For this purpose, Strong Turbulence data has been collected using an outdoor optical wireless setup placed about 85 centimeters above the ground with an acceptable declination and a path length of about 250 meters inducing strong turbulence to the propagating beam. Variations of turbulence strength estimation methods as well as frame image analysis techniques are then been applied to the experimental data in order to study the effects of different parameters on the result. Such strong turbulence data is compared with existing weak and intermediate turbulence data. Aperture Averaging Factor for different turbulence regimes is also investigated.

  6. Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

    NASA Astrophysics Data System (ADS)

    Tajima, Takuro; Kosugi, Toshihiko; Song, Ho-Jin; Hamada, Hiroshi; El Moutaouakil, Amine; Sugiyama, Hiroki; Matsuzaki, Hideaki; Yaita, Makoto; Kagami, Osamu

    2016-12-01

    Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.

  7. Aeronautical audio broadcasting via satellite

    NASA Technical Reports Server (NTRS)

    Tzeng, Forrest F.

    1993-01-01

    A system design for aeronautical audio broadcasting, with C-band uplink and L-band downlink, via Inmarsat space segments is presented. Near-transparent-quality compression of 5-kHz bandwidth audio at 20.5 kbit/s is achieved based on a hybrid technique employing linear predictive modeling and transform-domain residual quantization. Concatenated Reed-Solomon/convolutional codes with quadrature phase shift keying are selected for bandwidth and power efficiency. RF bandwidth at 25 kHz per channel, and a decoded bit error rate at 10(exp -6) with E(sub b)/N(sub o) at 3.75 dB are obtained. An interleaver, scrambler, modem synchronization, and frame format were designed, and frequency-division multiple access was selected over code-division multiple access. A link budget computation based on a worst-case scenario indicates sufficient system power margins. Transponder occupancy analysis for 72 audio channels demonstrates ample remaining capacity to accommodate emerging aeronautical services.

  8. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.

    PubMed

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-16

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  9. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    PubMed Central

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  10. Design & Performance of Wearable Ultra Wide Band Textile Antenna for Medical Applications

    NASA Astrophysics Data System (ADS)

    Singh, Nikhil; Singh, Ashutosh Kumar; Singh, Vinod Kumar

    2015-02-01

    The concept of wearable products such as textile antenna are being developed which are capable of monitoring, alerting and demanding attention whenever hospital emergency is needed, hence minimizing labour and resource. In the proposed work by using textile material as a substrate the ultra wideband antenna is designed especially for medical applications.Simulated and measured results here shows that the proposed antenna design meets the requirements of wide working bandwidth and provides 13.08 GHz bandwidth with very small size, washable (if using conductive thread for conductive parts) and flexible materials. Results in terms of bandwidth, radiation pattern, return loss as well as gain and efficiency are presented to validate the usefulness of the current proposed design. The work done here has many implications for future research and it could help patients with such flexible and comfortable medical monitoring techniques.

  11. Spectrum-based estimators of the bivariate Hurst exponent

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav

    2014-12-01

    We discuss two alternate spectrum-based estimators of the bivariate Hurst exponent in the power-law cross-correlations setting, the cross-periodogram and local X -Whittle estimators, as generalizations of their univariate counterparts. As the spectrum-based estimators are dependent on a part of the spectrum taken into consideration during estimation, a simulation study showing performance of the estimators under varying bandwidth parameter as well as correlation between processes and their specification is provided as well. These estimators are less biased than the already existent averaged periodogram estimator, which, however, has slightly lower variance. The spectrum-based estimators can serve as a good complement to the popular time domain estimators.

  12. Development of orientation tuning in simple cells of primary visual cortex

    PubMed Central

    Moore, Bartlett D.

    2012-01-01

    Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631

  13. Concatenated Coding Using Trellis-Coded Modulation

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1997-01-01

    In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.

  14. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  15. Charge and Spin Dynamics of the Hubbard Chains

    NASA Technical Reports Server (NTRS)

    Park, Youngho; Liang, Shoudan

    1999-01-01

    We calculate the local correlation functions of charge and spin for the one-chain and two-chain Hubbard model using density matrix renormalization group method and the recursion technique. Keeping only finite number of states we get good accuracy for the low energy excitations. We study the charge and spin gaps, bandwidths and weights of the spectra for various values of the on-site Coulomb interaction U and the electron filling. In the low energy part, the local correlation functions are different for the charge and spin. The bandwidths are proportional to t for the charge and J for the spin respectively.

  16. Volume three-dimensional flow measurements using wavelength multiplexing.

    PubMed

    Moore, Andrew J; Smith, Jason; Lawson, Nicholas J

    2005-10-01

    Optically distinguishable seeding particles that emit light in a narrow bandwidth, and a combination of bandwidths, were prepared by encapsulating quantum dots. The three-dimensional components of the particles' displacement were measured within a volume of fluid with particle tracking velocimetry (PTV). Particles are multiplexed to different hue bands in the camera images, enabling an increased seeding density and (or) fewer cameras to be used, thereby increasing the measurement spatial resolution and (or) reducing optical access requirements. The technique is also applicable to two-phase flow measurements with PTV or particle image velocimetry, where each phase is uniquely seeded.

  17. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A., Jr.

    1989-01-01

    Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.

  18. Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary JO; Whyte, Wayne A.

    1991-01-01

    Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.

  19. High-speed electronic beam steering using injection locking of a laser-diode array

    NASA Astrophysics Data System (ADS)

    Swanson, E. A.; Abbas, G. L.; Yang, S.; Chan, V. W. S.; Fujimoto, J. G.

    1987-01-01

    High-speed electronic steering of the output beam of a 10-stripe laser-diode array is reported. The array was injection locked to a single-frequency laser diode. High-speed steering of the locked 0.5-deg-wide far-field lobe is demonstrated either by modulating the injection current of the array or by modulating the frequency of the master laser. Closed-loop tracking bandwidths of 70 kHz and 3 MHz, respectively, were obtained. The beam-steering bandwidths are limited by the FM responses of the modulated devices for both techniques.

  20. Application of Fiber-Optical Techniques in the Access Transmission and Backbone Transport of Mobile Networks

    NASA Astrophysics Data System (ADS)

    Hilt, Attila; Pozsonyi, László

    2012-09-01

    Fixed access networks widely employ fiber-optical techniques due to the extremely wide bandwidth offered to subscribers. In the last decade, there has also been an enormous increase of user data visible in mobile systems. The importance of fiber-optical techniques within the fixed transmission/transport networks of mobile systems is therefore inevitably increasing. This article summarizes a few reasons and gives examples why and how fiber-optic techniques are employed efficiently in second-generation networks.

  1. Phase-tuning Metasurface for Circularly Polarized Broadside Radiation in Broadband.

    PubMed

    Zhang, Youfei; Wang, Haogang; Liao, Dashuang; Fu, Weijie

    2018-02-14

    Metasurface antennas (MAs) have been proposed as innovative alternatives to conventional bulky configurations for satellite applications because of their low profile, low cost, and high gain. The general method of surface impedance modulation for designing MAs is complicated, and achieving broad operation bandwidth remains a challenge because of its high dispersion response. We propose a novel and easy technique to control cylindrical surface waves radiated by a phase-tuning metasurface. Simultaneously, this technique exhibits a considerably wide working bandwidth. A detailed analysis of the radiation mechanism is discussed. A left-hand circularly polarized (LHCP) antenna and a right-hand circularly polarized (RHCP) antenna that are based on the phase-tuning metasurface are simulated and measured. The measured fractional 3-dB gain bandwidth and gain are higher than 17% and 15.57 dBi, respectively, which are consistent with the simulated results. Moreover, 30% 3-dB axial ratio is achieved for the LHCP and RHCP antennas. To the best knowledge of the authors, it is for the first time to realize a circularly polarized broadband MA by using the phase-tuning mechanism. The approach can be regarded as a new starting point for antenna design, thereby paving the way for the development of broadband and low-profile antennas for future satellite communication.

  2. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    PubMed

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  3. A digital communications system for manned spaceflight applications.

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Moorehead, R. W.

    1973-01-01

    A highly efficient, all-digital communications signal design employing convolutional coding and PN spectrum spreading is described for two-way transmission of voice and data between a manned spacecraft and ground. Variable-slope delta modulation is selected for analog/digital conversion of the voice signal, and a convolutional decoder utilizing the Viterbi decoding algorithm is selected for use at each receiving terminal. A PN spread spectrum technique is implemented to protect against multipath effects and to reduce the energy density (per unit bandwidth) impinging on the earth's surface to a value within the guidelines adopted by international agreement. Performance predictions are presented for transmission via a TDRS (tracking and data relay satellite) system and for direct transmission between the spacecraft and earth. Hardware estimates are provided for a flight-qualified communications system employing the coded digital signal design.

  4. Optimized tracking of RF carriers with phase noise, including Pioneer 10 results

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Hurd, W. J.; Brown, D. H.

    1987-01-01

    The ability to track very weak signals from distant spacecraft is limited by the phase instabilities of the received signal and of the local oscillator employed by the receiver. These instabilities ultimately limit the minimum loop bandwidth that can be used in a phase-coherent receiver, and hence limit the ratio of received carrier power to noise spectral density which can be tracked phase coherently. A method is presented for near real time estimation of the received carrier phase and additive noise spectrum, and optimization of the phase locked loop bandwidth. The method was used with the breadboard Deep Space Network (DSN) Advanced Receiver to optimize tracking of very weak signals from the Pioneer 10 spacecraft, which is now more distant that the edge of the solar system. Tracking with bandwidths of 0.1 Hz to 1.0 Hz reduces tracking signal threshold and increases carrier loop signal to noise ratio (SNR) by 5 dB to 15 dB compared to the 3 Hz bandwidth of the receivers now used operationally in the DSN. This will enable the DSN to track Pioneer 10 until its power sources fails near the end of the century.

  5. Significantly Improving Regional Seismic Amplitude Tomography at Higher Frequencies by Determining S -Wave Bandwidth

    DOE PAGES

    Fisk, Mark D.; Pasyanos, Michael E.

    2016-05-03

    Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies ofmore » SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as F max) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new F max criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using our assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.« less

  6. The effect of recording and analysis bandwidth on acoustic identification of delphinid species.

    PubMed

    Oswald, Julie N; Rankin, Shannon; Barlow, Jay

    2004-11-01

    Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n = 484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours.

  7. Silicon graphene Bragg gratings.

    PubMed

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-03-10

    We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

  8. Modal analysis and control of flexible manipulator arms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Neto, O. M.

    1974-01-01

    The possibility of modeling and controlling flexible manipulator arms was examined. A modal approach was used for obtaining the mathematical model and control techniques. The arm model was represented mathematically by a state space description defined in terms of joint angles and mode amplitudes obtained from truncation on the distributed systems, and included the motion of a two link two joint arm. Three basic techniques were used for controlling the system: pole allocation with gains obtained from the rigid system with interjoint feedbacks, Simon-Mitter algorithm for pole allocation, and sensitivity analysis with respect to parameter variations. An improvement in arm bandwidth was obtained. Optimization of some geometric parameters was undertaken to maximize bandwidth for various payload sizes and programmed tasks. The controlled system is examined under constant gains and using the nonlinear model for simulations following a time varying state trajectory.

  9. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  10. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Sohn, Donggyu B.; Kim, Seunghwi; Bahl, Gaurav

    2018-02-01

    Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light-sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.

  11. Four-dimensional modulation and coding: An alternate to frequency-reuse

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Sleeper, H. A.

    1983-01-01

    Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. "Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-d modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.

  12. Four-dimensional modulation and coding - An alternate to frequency-reuse

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Sleeper, H. A.; Srinath, N. K.

    1984-01-01

    Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. 'Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-D modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.

  13. Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae

    2006-12-01

    We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.

  14. Micromachined 1-3 composites for ultrasonic air transducers

    NASA Astrophysics Data System (ADS)

    Haller, M. I.; Khuri-Yakub, B. T.

    1994-06-01

    Airborne ultrasound has many applications, such as robotic sensing, NDE, and gas flow measurements. Coupling of ultrasound into air from plane piston piezoelectric transducers is inefficient because of the large impedance mismatch between the piezoelectric and air, and the lack of appropriate matching materials. Standard design practice requires the use of a matching layer material with an acoustic impedance of approximately 0.02 MRayls and a thickness of a quarter-wavelength. Such materials are not readily available. A method to manufacture low impedance materials using micromachining techniques for matching piezoelectrics into air are presented here. These materials are capped 1-3 composites of air and Kapton(R). The acoustic effect of the cap is significant and necessitates a modified design technique. This technique involves the use of two matching layers with inverted acoustic impedances. Using the new fabrication technology and the new design technique, an 860-kHz transducer was fabricated with a one-way insertion loss of 17 dB and a fractional 3 dB bandwidth of 6%. It is believed that, using this technology, a transducer with a one-way insertion loss of 10 dB and a fractional bandwidth of 10% is possible.

  15. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    PubMed

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.

  16. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves.

  17. Modeling T1 and T2 relaxation in bovine white matter

    NASA Astrophysics Data System (ADS)

    Barta, R.; Kalantari, S.; Laule, C.; Vavasour, I. M.; MacKay, A. L.; Michal, C. A.

    2015-10-01

    The fundamental basis of T1 and T2 contrast in brain MRI is not well understood; recent literature contains conflicting views on the nature of relaxation in white matter (WM). We investigated the effects of inversion pulse bandwidth on measurements of T1 and T2 in WM. Hybrid inversion-recovery/Carr-Purcell-Meiboom-Gill experiments with broad or narrow bandwidth inversion pulses were applied to bovine WM in vitro. Data were analysed with the commonly used 1D-non-negative least squares (NNLS) algorithm, a 2D-NNLS algorithm, and a four-pool model which was based upon microscopically distinguishable WM compartments (myelin non-aqueous protons, myelin water, non-myelin non-aqueous protons and intra/extracellular water) and incorporated magnetization exchange between adjacent compartments. 1D-NNLS showed that different T2 components had different T1 behaviours and yielded dissimilar results for the two inversion conditions. 2D-NNLS revealed significantly more complicated T1/T2 distributions for narrow bandwidth than for broad bandwidth inversion pulses. The four-pool model fits allow physical interpretation of the parameters, fit better than the NNLS techniques, and fits results from both inversion conditions using the same parameters. The results demonstrate that exchange cannot be neglected when analysing experimental inversion recovery data from WM, in part because it can introduce exponential components having negative amplitude coefficients that cannot be correctly modeled with nonnegative fitting techniques. While assignment of an individual T1 to one particular pool is not possible, the results suggest that under carefully controlled experimental conditions the amplitude of an apparent short T1 component might be used to quantify myelin water.

  18. Scientific issues and potential remote-sensing requirements for plant biochemical content

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Hubbard, G. S.

    1992-01-01

    Application of developments in imaging spectrometry to the study of terrestrial ecosystems, which began in 1983, demonstrate the potential to estimate lignin and nitrogen concentrations of plant canopies by remote-sensing techniques. Estimation of these parameters from the first principles of radiative transfer and the interactions of light with plant materials is not presently possible, principally because of lack of knowledge about internal leaf scattering and specific absorption involving biochemical compounds. From the perspective of remote-sensing instrumentation, sensors are needed to support derivative imaging spectroscopy. Biochemical absorption features tend to occur in functional groupings throughout the 1100- to 2500-nm region. Derivative spectroscopy improves the information associated with the weaker, narrower absorption features of biochemical absorption that are superimposed on the strong absolute variations due to foliar biomass, pigments, and leaf water content of plant canopies. Preliminary sensor specifications call for 8-nm bandwidths at 2-nm centers in four spectral regions (about 400 bands total) and a signal-to-noise performance of at least 1000:1 for 20 percent albedo targets in the 2000-nm region.

  19. Bandwidth in bolometric interferometry

    NASA Astrophysics Data System (ADS)

    Charlassier, R.; Bunn, E. F.; Hamilton, J.-Ch.; Kaplan, J.; Malu, S.

    2010-05-01

    Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing. Aims: We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra. Methods: We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works like its monochromatic version (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency subbands. Using an angular power spectrum estimator that accounts for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation is performed that confirms the analytical results. Results: We conclude that (i) broadband bolometric interferometers allow broadband visibilities to be reconstructed regardless of the type of phase shifters used and (ii) for dedicated B-mode bolometric interferometers, the sensitivity loss caused by bandwidth smearing is quite acceptable, even for wideband instruments (a factor of 2 loss for a typical 20% bandwidth experiment).

  20. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.

    PubMed

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Bandwidth characteristics of multimedia data traffic on a local area network

    NASA Technical Reports Server (NTRS)

    Chuang, Shery L.; Doubek, Sharon; Haines, Richard F.

    1993-01-01

    Limited spacecraft communication links call for users to investigate the potential use of video compression and multimedia technologies to optimize bandwidth allocations. The objective was to determine the transmission characteristics of multimedia data - motion video, text or bitmap graphics, and files transmitted independently and simultaneously over an ethernet local area network. Commercial desktop video teleconferencing hardware and software and Intel's proprietary Digital Video Interactive (DVI) video compression algorithm were used, and typical task scenarios were selected. The transmission time, packet size, number of packets, and network utilization of the data were recorded. Each data type - compressed motion video, text and/or bitmapped graphics, and a compressed image file - was first transmitted independently and its characteristics recorded. The results showed that an average bandwidth of 7.4 kilobits per second (kbps) was used to transmit graphics; an average bandwidth of 86.8 kbps was used to transmit an 18.9-kilobyte (kB) image file; a bandwidth of 728.9 kbps was used to transmit compressed motion video at 15 frames per second (fps); and a bandwidth of 75.9 kbps was used to transmit compressed motion video at 1.5 fps. Average packet sizes were 933 bytes for graphics, 498.5 bytes for the image file, 345.8 bytes for motion video at 15 fps, and 341.9 bytes for motion video at 1.5 fps. Simultaneous transmission of multimedia data types was also characterized. The multimedia packets used transmission bandwidths of 341.4 kbps and 105.8kbps. Bandwidth utilization varied according to the frame rate (frames per second) setting for the transmission of motion video. Packet size did not vary significantly between the data types. When these characteristics are applied to Space Station Freedom (SSF), the packet sizes fall within the maximum specified by the Consultative Committee for Space Data Systems (CCSDS). The uplink of imagery to SSF may be performed at minimal frame rates and/or within seconds of delay, depending on the user's allocated bandwidth. Further research to identify the acceptable delay interval and its impact on human performance is required. Additional studies in network performance using various video compression algorithms and integrated multimedia techniques are needed to determine the optimal design approach for utilizing SSF's data communications system.

  2. Design challenges of EO polymer based leaky waveguide deflector for 40 Gs/s all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2016-08-01

    Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.

  3. Digital implementation of a laser frequency stabilisation technique in the telecommunications band

    NASA Astrophysics Data System (ADS)

    Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael

    2016-02-01

    Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.

  4. Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh

    2017-12-01

    A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.

  5. A study of data coding technology developments in the 1980-1985 time frame, volume 2

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Shahsavari, M. M.

    1978-01-01

    The source parameters of digitized analog data are discussed. Different data compression schemes are outlined and analysis of their implementation are presented. Finally, bandwidth compression techniques are given for video signals.

  6. Overcoming the detection bandwidth limit in precision spectroscopy: The analytical apparatus function for a stepped frequency scan

    NASA Astrophysics Data System (ADS)

    Rohart, François

    2017-01-01

    In a previous paper [Rohart et al., Phys Rev A 2014;90(042506)], the influence of detection-bandwidth properties on observed line-shapes in precision spectroscopy was theoretically modeled for the first time using the basic model of a continuous sweeping of the laser frequency. Specific experiments confirmed general theoretical trends but also revealed several insufficiencies of the model in case of stepped frequency scans. As a consequence in as much as up-to-date experiments use step-by-step frequency-swept lasers, a new model of the influence of the detection-bandwidth is developed, including a realistic timing of signal sampling and frequency changes. Using Fourier transform techniques, the resulting time domain apparatus function gets a simple analytical form that can be easily implemented in line-shape fitting codes without any significant increase of computation durations. This new model is then considered in details for detection systems characterized by 1st and 2nd order bandwidths, underlining the importance of the ratio of detection time constant to frequency step duration, namely for the measurement of line frequencies. It also allows a straightforward analysis of corresponding systematic deviations on retrieved line frequencies and broadenings. Finally, a special attention is paid to consequences of a finite detection-bandwidth in Doppler Broadening Thermometry, namely to experimental adjustments required for a spectroscopic determination of the Boltzmann constant at the 1-ppm level of accuracy. In this respect, the interest of implementing a Butterworth 2nd order filter is emphasized.

  7. Full-band TDM-OPDMA for OBI-reduced simultaneous multiple access in a single-wavelength optical access network.

    PubMed

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-14

    Simultaneous multiple access (MA) within a single wavelength can increase the data rate and split ratio in a passive optical network while optical beat interference (OBI) becomes serious in the uplink. Previous techniques to reduce OBI were limited by their complexity and lack of extendibility; as well, bandwidth allocation among MA signals is needed for single photo diode (PD) detection. We proposed and experimentally demonstrated full-band optical pulse division multiplexing-based MA (OPDMA) in an optical access network, which can effectively reduce OBI with extendibility and fully utilize frequency resources of optical modulator without bandwidth allocation in a single-wavelength MA.

  8. Flexible stator control on the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Kopf, E. H.; Brown, T. K.; Marsh, E. L.

    1979-01-01

    Galileo is a dual-spin spacecraft designed to deliver a probe to Jupiter and then orbit the planet. The stator, or despun section, contains four flexible modes below 10 Hz and the despun actuator is separated from the inertial sensors by this flexibility. Control loop separation by bandwidth proved unacceptable due to performance requirements. To obtain the desired performance, a control scheme was devised which consists of three parts. First, flexibility damping and control notch filtering are accomplished by phase locked loop techniques. Second, slewing maneuvers are produced by torque profiles which are nonexcitatory to the structure. Finally, a low bandwidth perturbation controller is supplied to remove spacecraft disturbances.

  9. Defence Technology Strategy for the Demands of the 21st Century

    DTIC Science & Technology

    2006-10-01

    understanding of human capability in the CBM role. Ownership of the intellectual property behind algorithms may be sovereign10, but implementation will...synchronisation schemes. · coding schemes. · modulation techniques. · access schemes. · smart spectrum usage . · low probability of intercept. · implementation...modulation techniques; access schemes; smart spectrum usage ; low probability of intercept Spectrum and bandwidth management · cross layer technologies to

  10. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  11. Advanced Millimeter-Wave Security Portal Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  12. Millisecond Microwave Spikes: Statistical Study and Application for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Rozhansky, I. V.; Fleishman, G. D.; Huang, G.-L.

    2008-07-01

    We analyze a dense cluster of solar radio spikes registered at 4.5-6 GHz by the Purple Mountain Observatory spectrometer (Nanjing, China), operating in the 4.5-7.5 GHz range with 5 ms temporal resolution. To handle the data from the spectrometer, we developed a new technique that uses a nonlinear multi-Gaussian spectral fit based on χ2 criteria to extract individual spikes from the originally recorded spectra. Applying this method to the experimental raw data, we eventually identified about 3000 spikes for this event, which allows us to make a detailed statistical analysis. Various statistical characteristics of the spikes have been evaluated, including the intensity distributions, the spectral bandwidth distributions, and the distribution of the spike mean frequencies. The most striking finding of this analysis is the distributions of the spike bandwidth, which are remarkably asymmetric. To reveal the underlaying microphysics, we explore the local-trap model with the renormalized theory of spectral profiles of the electron cyclotron maser (ECM) emission peak in a source with random magnetic irregularities. The distribution of the solar spike relative bandwidths calculated within the local-trap model represents an excellent fit to the experimental data. Accordingly, the developed technique may offer a new tool with which to study very low levels of magnetic turbulence in the spike sources, when the ECM mechanism of the spike cluster is confirmed.

  13. Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique.

    PubMed

    Doménech, J D; Muñoz, P; Capmany, J

    2011-01-15

    In this Letter, the amplitude and group delay characteristics of coupled resonator optical waveguides apodized through the longitudinal offset technique are presented. The devices have been fabricated in silicon-on-insulator technology employing deep ultraviolet lithography. The structures analyzed consisted of three racetracks resonators uniform (nonapodized) and apodized with the aforementioned technique, showing a delay of 5 ± 3 ps and 4 ± 0.5 ps over 1.6 and 1.4 nm bandwidths, respectively.

  14. Universal test fixture for monolithic mm-wave integrated circuits calibrated with an augmented TRD algorithm

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Shalkhauser, Kurt A.

    1989-01-01

    The design and evaluation of a novel fixturing technique for characterizing millimeter wave solid state devices is presented. The technique utilizes a cosine-tapered ridge guide fixture and a one-tier de-embedding procedure to produce accurate and repeatable device level data. Advanced features of this technique include nondestructive testing, full waveguide bandwidth operation, universality of application, and rapid, yet repeatable, chip-level characterization. In addition, only one set of calibration standards is required regardless of the device geometry.

  15. Magnetoacoustic Tomography with Magnetic Induction: Bioimepedance reconstruction through vector source imaging

    PubMed Central

    Mariappan, Leo; He, Bin

    2013-01-01

    Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761

  16. Ultrasonography in lung pathologies: new perspectives.

    PubMed

    Demi, Libertario; Demi, Marcello; Smargiassi, Andrea; Inchingolo, Riccardo; Faita, Francesco; Soldati, Gino

    2014-01-01

    Nowadays, ultrasound techniques have not gained importance in the diagnosis and monitoring of lung pathologies yet because of the high mismatch in acoustic impedance between air and intercostal tissues. However, it is evident that B-mode imaging provides important information on pulmonary tissue, although in the form of image artifacts. Notwithstanding medical evidences, there exists no ultrasound-based method dedicated to the lung, hampering de facto the full exploitation of ultrasound potentials. A chance is given by the experience acquired in other fields, where acoustic attenuation is used to estimate concentrations of suspended particles in liquids and of air-bubbles in aerated foods. Custom hardware must be developed since commercial echographic equipment has been optimized to work with low acoustic impedance mismatches, and, in general, does not provide the primitive radiofrequency (RF) signals nor the possibility to tune key acquisition parameters such as ultrasound carrier frequency and pulse bandwidth, which are surely needed for our application.

  17. Ultrasonography in lung pathologies: new perspectives

    PubMed Central

    2014-01-01

    Background Nowadays, ultrasound techniques have not gained importance in the diagnosis and monitoring of lung pathologies yet because of the high mismatch in acoustic impedance between air and intercostal tissues. However, it is evident that B-mode imaging provides important information on pulmonary tissue, although in the form of image artifacts. Findings Notwithstanding medical evidences, there exists no ultrasound-based method dedicated to the lung, hampering de facto the full exploitation of ultrasound potentials. A chance is given by the experience acquired in other fields, where acoustic attenuation is used to estimate concentrations of suspended particles in liquids and of air-bubbles in aerated foods. Conclusions Custom hardware must be developed since commercial echographic equipment has been optimized to work with low acoustic impedance mismatches, and, in general, does not provide the primitive radiofrequency (RF) signals nor the possibility to tune key acquisition parameters such as ultrasound carrier frequency and pulse bandwidth, which are surely needed for our application. PMID:24834347

  18. The Value Estimation of an HFGW Frequency Time Standard for Telecommunications Network Optimization

    NASA Astrophysics Data System (ADS)

    Harper, Colby; Stephenson, Gary

    2007-01-01

    The emerging technology of gravitational wave control is used to augment a communication system using a development roadmap suggested in Stephenson (2003) for applications emphasized in Baker (2005). In the present paper consideration is given to the value of a High Frequency Gravitational Wave (HFGW) channel purely as providing a method of frequency and time reference distribution for use within conventional Radio Frequency (RF) telecommunications networks. Specifically, the native value of conventional telecommunications networks may be optimized by using an unperturbed frequency time standard (FTS) to (1) improve terminal navigation and Doppler estimation performance via improved time difference of arrival (TDOA) from a universal time reference, and (2) improve acquisition speed, coding efficiency, and dynamic bandwidth efficiency through the use of a universal frequency reference. A model utilizing a discounted cash flow technique provides an estimation of the additional value using HFGW FTS technology could bring to a mixed technology HFGW/RF network. By applying a simple net present value analysis with supporting reference valuations to such a network, it is demonstrated that an HFGW FTS could create a sizable improvement within an otherwise conventional RF telecommunications network. Our conservative model establishes a low-side value estimate of approximately 50B USD Net Present Value for an HFGW FTS service, with reasonable potential high-side values to significant multiples of this low-side value floor.

  19. Analysis and application of intelligence network based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    With the continued rapid growth of Internet, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. The bandwidth requirement increase continuously. Network technique, optical device technical development is swift and violent. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. Firstly, it introduces the main service which FTTH supports, main analysis key technology such as FTTH system composition way, topological structure, multiplexing, optical cable and device. It focus two kinds of realization methods - PON, P2P technology. Then it proposed that the solution of FTTH can support comprehensive access (service such as broadband data, voice, video and narrowband private line). Finally, it shows the engineering application for FTTH in the district and building. It brings enormous economic benefits and social benefit.

  20. Research on Robustness of Tree-based P2P Streaming

    NASA Astrophysics Data System (ADS)

    Chu, Chen; Yan, Jinyao; Ding, Kuangzheng; Wang, Xi

    Research on P2P streaming media is a hot topic in the area of Internet technology. It has emerged as a promising technique. This new paradigm brings a number of unique advantages such as scalability, resilience and also effectiveness in coping with dynamics and heterogeneity. However, There are also many problems in P2P streaming media systems using traditional tree-based topology such as the bandwidth limits between parents and child nodes; node's joining or leaving has a great effect on robustness of tree-based topology. This paper will introduce a method of measuring the robustness of tree-based topology: using network measurement, we observe and record the bandwidth between all the nodes, analyses the correlation between all the sibling flows, measure the robustness of tree-based topology. And the result shows that in the Tree-based topology, the different links which have similar routing paths would share the bandwidth bottleneck, reduce the robustness of the Tree-based topology.

  1. APHiD: Hierarchical Task Placement to Enable a Tapered Fat Tree Topology for Lower Power and Cost in HPC Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelogiannakis, George; Ibrahim, Khaled Z.; Shalf, John

    The power and procurement cost of bandwidth in system-wide networks has forced a steady drop in the byte/flop ratio. This trend of computation becoming faster relative to the network is expected to hold. In this paper, we explore how cost-oriented task placement enables reducing the cost of system-wide networks by enabling high performance even on tapered topologies where more bandwidth is provisioned at lower levels. We describe APHiD, an efficient hierarchical placement algorithm that uses new techniques to improve the quality of heuristic solutions and reduces the demand on high-level, expensive bandwidth in hierarchical topologies. We apply APHiD to amore » tapered fat-tree, demonstrating that APHiD maintains application scalability even for severely tapered network configurations. Using simulation, we show that for tapered networks APHiD improves performance by more than 50% over random placement and even 15% in some cases over costlier, state-of-the-art placement algorithms.« less

  2. Analysis and design of arrayed waveguide gratings with MMI couplers.

    PubMed

    Munoz, P; Pastor, D; Capmany, J

    2001-09-24

    We present an extension of the AWG model and design procedure described in [1] to incorporate multimode interference, MMI, couplers. For the first time to our knowledge, a closed formula for the passing bands bandwidth and crosstalk estimation plots are derived.

  3. Blind Deconvolution of Astronomical Images with a Constraint on Bandwidth Determined by the Parameters of the Optical System

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fan, Min; Shen, Mang-zuo

    2008-01-01

    Atmospheric turbulence severely restricts the spatial resolution of astronomical images obtained by a large ground-based telescope. In order to reduce effectively this effect, we propose a method of blind deconvolution, with a bandwidth constraint determined by the parameters of the telescope's optical system based on the principle of maximum likelihood estimation, in which the convolution error function is minimized by using the conjugate gradient algorithm. A relation between the parameters of the telescope optical system and the image's frequency-domain bandwidth is established, and the speed of convergence of the algorithm is improved by using the positivity constraint on the variables and the limited-bandwidth constraint on the point spread function. To avoid the effective Fourier frequencies exceed the cut-off frequency, it is required that each single image element (e.g., the pixel in the CCD imaging) in the sampling focal plane should be smaller than one fourth of the diameter of the diffraction spot. In the algorithm, no object-centered constraint was used, so the proposed method is suitable for the image restoration of a whole field of objects. By the computer simulation and by the restoration of an actually-observed image of α Piscium, the effectiveness of the proposed method is demonstrated.

  4. The impact of capacity growth in national telecommunications networks.

    PubMed

    Lord, Andrew; Soppera, Andrea; Jacquet, Arnaud

    2016-03-06

    This paper discusses both UK-based and global Internet data bandwidth growth, beginning with historical data for the BT network. We examine the time variations in consumer behaviour and how this is statistically aggregated into larger traffic loads on national core fibre communications networks. The random nature of consumer Internet behaviour, where very few consumers require maximum bandwidth simultaneously, provides the opportunity for a significant statistical gain. The paper looks at predictions for how this growth might continue over the next 10-20 years, giving estimates for the amount of bandwidth that networks should support in the future. The paper then explains how national networks are designed to accommodate these traffic levels, and the various network roles, including access, metro and core, are described. The physical layer network is put into the context of how the packet and service layers are designed and the applications and location of content are also included in an overall network overview. The specific role of content servers in alleviating core network traffic loads is highlighted. The status of the relevant transmission technologies in the access, metro and core is given, showing that these technologies, with adequate research, should be sufficient to provide bandwidth for consumers in the next 10-20 years. © 2016 The Author(s).

  5. Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation

    NASA Astrophysics Data System (ADS)

    Lenz, Andreas; Stein, Manuel S.; Swindlehurst, A. Lee

    2018-05-01

    In this article, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog pre-filter $B$ to the rate of the analog-to-digital converter $f_s$ to comply with the well-known Nyquist-Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm $B\\leq f_s$. To this end, at the receiver, we allow for a higher pre-filter bandwidth $B>f_s$ and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cram\\'{e}r-Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters which are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte-Carlo simulations of a likelihood-based estimator.

  6. Alternative techniques for high-resolution spectral estimation of spectrally encoded endoscopy

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahta; Duan, Lian; Javidi, Tara; Ellerbee, Audrey K.

    2015-09-01

    Spectrally encoded endoscopy (SEE) is a minimally invasive optical imaging modality capable of fast confocal imaging of internal tissue structures. Modern SEE systems use coherent sources to image deep within the tissue and data are processed similar to optical coherence tomography (OCT); however, standard processing of SEE data via the Fast Fourier Transform (FFT) leads to degradation of the axial resolution as the bandwidth of the source shrinks, resulting in a well-known trade-off between speed and axial resolution. Recognizing the limitation of FFT as a general spectral estimation algorithm to only take into account samples collected by the detector, in this work we investigate alternative high-resolution spectral estimation algorithms that exploit information such as sparsity and the general region position of the bulk sample to improve the axial resolution of processed SEE data. We validate the performance of these algorithms using bothMATLAB simulations and analysis of experimental results generated from a home-built OCT system to simulate an SEE system with variable scan rates. Our results open a new door towards using non-FFT algorithms to generate higher quality (i.e., higher resolution) SEE images at correspondingly fast scan rates, resulting in systems that are more accurate and more comfortable for patients due to the reduced image time.

  7. Performance limitations of a white light extrinsic Fabry-Perot interferometric displacement sensor

    NASA Astrophysics Data System (ADS)

    Moro, Erik A.; Todd, Michael D.; Puckett, Anthony D.

    2012-06-01

    Non-contacting interferometric fiber optic sensors offer a minimally invasive, high-accuracy means of measuring a structure's kinematic response to loading. The performance of interferometric sensors is often dictated by the technique employed for demodulating the kinematic measurand of interest from phase in the observed optical signal. In this paper a white-light extrinsic Fabry-Perot interferometer is implemented, offering robust displacement sensing performance. Displacement data is extracted from an estimate of the power spectral density, calculated from the interferometer's received optical power measured as a function of optical transmission frequency, and the sensor's performance is dictated by the details surrounding the implementation of this power spectral density estimation. One advantage of this particular type of interferometric sensor is that many of its control parameters (e.g., frequency range, frequency sampling density, sampling rate, etc.) may be chosen to so that the sensor satisfies application-specific performance needs in metrics such as bandwidth, axial displacement range, displacement resolution, and accuracy. A suite of user-controlled input values is investigated for estimating the spectrum of power versus wavelength data, and the relationships between performance metrics and input parameters are described in an effort to characterize the sensor's operational performance limitations. This work has been approved by Los Alamos National Laboratory for unlimited public release (LA-UR 12-01512).

  8. Wideband electromagnetic energy harvesting from ambient vibrations

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Podder, Pranay; Roy, Saibal

    2015-06-01

    Different bandwidth widening schemes of electromagnetic energy harvesters have been reported in this work. The devices are fabricated on FR4 substrate using laser micromachining techniques. The linear device operate in a narrow band around the resonance; in order to tune resonant frequency of the device electrically, two different types of complex load topologies are adopted. Using capacitive load, the resonant frequency is tuned in the low frequency direction whereas using inductive load, the resonant frequency is tuned in the high frequency direction. An overall tuning range of ˜2.4 Hz is obtained at 0.3g though the output power dropped significantly over the tuning range. In order to improve the off-resonance performance, nonlinear oscillation based systems are adopted. A specially designed spring arm with fixed-guided configuration produced single well nonlinear monostable configuration. With increasing input acceleration, wider bandwidth is obtained with such a system as large displacement, stretching nonlinearity comes into play and 9.55 Hz bandwidth is obtained at 0.5g. The repulsive force between one static and one vibrating oppositely polarized magnets are used to generate bistable nonlinear potential system. The distance between the mentioned magnets is varied between 4 to 10 mm to produce tunable nonlinearity with a maximum half power bandwidth over 3 Hz at 0.5g.

  9. A CMOS Low-Power Optical Front-End for 5 Gbps Applications

    NASA Astrophysics Data System (ADS)

    Zohoori, Soorena; Dolatshahi, Mehdi

    2018-01-01

    In this paper, a new low-power optical receiver front-end is proposed in 90 nm CMOS technology for 5 Gb/s AApplications. However, to improve the gain-bandwidth trade-off, the proposed Trans-Impedance Amplifier (TIA) uses an active modified inverter-based topology followed by a common-source amplifier, which uses active inductive peaking technique to enhance the frequency bandwidth in an increased gain level for a reasonable power consumption value. The proposed TIA is analyzed and simulated in HSPICE using 90 nm CMOS technology parameters. Simulation results show a 53.5dBΩ trans-impedance gain, 3.5 GHz frequency bandwidth, 16.8pA/√Hz input referred noise, and 1.28 mW of power consumption at 1V supply voltage. The Optical receiver is completed using three stages of differential limiting amplifiers (LAs), which provide 27 dB voltage gain while consume 3.1 mW of power. Finally, the whole optical receiver front-end consumes only 5.6 mW of power at 1 V supply and amplifies the input signal by 80 dB, while providing 3.7 GHz of frequency bandwidth. Finally, the simulation results indicate that the proposed optical receiver is a proper candidate to be used in a low-power 5 Gbps optical communication system.

  10. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.

    PubMed

    Kim, Hyungseup; Park, Yunjong; Ko, Youngwoon; Mun, Yeongjin; Lee, Sangmin; Ko, Hyoungho

    2018-01-01

    Wearable healthcare systems require measurements from electrocardiograms (ECGs) and photoplethysmograms (PPGs), and the blood pressure of the user. The pulse transit time (PTT) can be calculated by measuring the ECG and PPG simultaneously. Continuous-time blood pressure without using an air cuff can be estimated by using the PTT. This paper presents a biosignal acquisition integrated circuit (IC) that can simultaneously measure the ECG and PPG for wearable healthcare applications. Included in this biosignal acquisition circuit are a voltage mode instrumentation amplifier (IA) for ECG acquisition and a current mode transimpedance amplifier for PPG acquisition. The analog outputs from the ECG and PPG channels are muxed and converted to digital signals using 12-bit successive approximation register (SAR) analog-to-digital converter (ADC). The proposed IC is fabricated by using a standard 0.18 μm CMOS process with an active area of 14.44 mm2. The total current consumption for the multichannel IC is 327 μA with a 3.3 V supply. The measured input referred noise of ECG readout channel is 1.3 μVRMS with a bandwidth of 0.5 Hz to 100 Hz. And the measured input referred current noise of the PPG readout channel is 0.122 nA/√Hz with a bandwidth of 0.5 Hz to 100 Hz. The proposed IC, which is implemented using various circuit techniques, can measure ECG and PPG signals simultaneously to calculate the PTT for wearable healthcare applications.

  11. Digital Signal Processing For Low Bit Rate TV Image Codecs

    NASA Astrophysics Data System (ADS)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  12. Transceiver optics for interplanetary communications

    NASA Astrophysics Data System (ADS)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  13. Star Tracker Based ATP System Conceptual Design and Pointing Accuracy Estimation

    NASA Technical Reports Server (NTRS)

    Orfiz, Gerardo G.; Lee, Shinhak

    2006-01-01

    A star tracker based beaconless (a.k.a. non-cooperative beacon) acquisition, tracking and pointing concept for precisely pointing an optical communication beam is presented as an innovative approach to extend the range of high bandwidth (> 100 Mbps) deep space optical communication links throughout the solar system and to remove the need for a ground based high power laser as a beacon source. The basic approach for executing the ATP functions involves the use of stars as the reference sources from which the attitude knowledge is obtained and combined with high bandwidth gyroscopes for propagating the pointing knowledge to the beam pointing mechanism. Details of the conceptual design are presented including selection of an orthogonal telescope configuration and the introduction of an optical metering scheme to reduce misalignment error. Also, estimates are presented that demonstrate that aiming of the communications beam to the Earth based receive terminal can be achieved with a total system pointing accuracy of better than 850 nanoradians (3 sigma) from anywhere in the solar system.

  14. SNR Degradation in Undersampled Phase Measurement Systems

    PubMed Central

    Salido-Monzú, David; Meca-Meca, Francisco J.; Martín-Gorostiza, Ernesto; Lázaro-Galilea, José L.

    2016-01-01

    A wide range of measuring applications rely on phase estimation on sinusoidal signals. These systems, where the estimation is mainly implemented in the digital domain, can generally benefit from the use of undersampling to reduce the digitizer and subsequent digital processing requirements. This may be crucial when the application characteristics necessarily imply a simple and inexpensive sensor. However, practical limitations related to the phase stability of the band-pass filter prior digitization establish restrictions to the reduction of noise bandwidth. Due to this, the undersampling intensity is practically defined by noise aliasing, taking into account the amount of signal-to-noise ratio (SNR) reduction caused by it considering the application accuracy requirements. This work analyzes the relationship between undersampling frequency and SNR reduction, conditioned by the stability requirements of the filter that defines the noise bandwidth before digitization. The effect of undersampling is quantified in a practical situation where phase differences are measured by in-phase and quadrature (I/Q) demodulation for an infrared ranging application. PMID:27783033

  15. An Auditory-Masking-Threshold-Based Noise Suppression Algorithm GMMSE-AMT[ERB] for Listeners with Sensorineural Hearing Loss

    NASA Astrophysics Data System (ADS)

    Natarajan, Ajay; Hansen, John H. L.; Arehart, Kathryn Hoberg; Rossi-Katz, Jessica

    2005-12-01

    This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT) in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths (ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters characteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations. However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on the normal auditory system.

  16. JPEG XS-based frame buffer compression inside HEVC for power-aware video compression

    NASA Astrophysics Data System (ADS)

    Willème, Alexandre; Descampe, Antonin; Rouvroy, Gaël.; Pellegrin, Pascal; Macq, Benoit

    2017-09-01

    With the emergence of Ultra-High Definition video, reference frame buffers (FBs) inside HEVC-like encoders and decoders have to sustain huge bandwidth. The power consumed by these external memory accesses accounts for a significant share of the codec's total consumption. This paper describes a solution to significantly decrease the FB's bandwidth, making HEVC encoder more suitable for use in power-aware applications. The proposed prototype consists in integrating an embedded lightweight, low-latency and visually lossless codec at the FB interface inside HEVC in order to store each reference frame as several compressed bitstreams. As opposed to previous works, our solution compresses large picture areas (ranging from a CTU to a frame stripe) independently in order to better exploit the spatial redundancy found in the reference frame. This work investigates two data reuse schemes namely Level-C and Level-D. Our approach is made possible thanks to simplified motion estimation mechanisms further reducing the FB's bandwidth and inducing very low quality degradation. In this work, we integrated JPEG XS, the upcoming standard for lightweight low-latency video compression, inside HEVC. In practice, the proposed implementation is based on HM 16.8 and on XSM 1.1.2 (JPEG XS Test Model). Through this paper, the architecture of our HEVC with JPEG XS-based frame buffer compression is described. Then its performance is compared to HM encoder. Compared to previous works, our prototype provides significant external memory bandwidth reduction. Depending on the reuse scheme, one can expect bandwidth and FB size reduction ranging from 50% to 83.3% without significant quality degradation.

  17. Effect of Stimulus Level and Bandwidth on Speech-Evoked Envelope Following Responses in Adults With Normal Hearing.

    PubMed

    Easwar, Vijayalakshmi; Purcell, David W; Aiken, Steven J; Parsa, Vijay; Scollie, Susan D

    2015-01-01

    The use of auditory evoked potentials as an objective outcome measure in infants fitted with hearing aids has gained interest in recent years. This article proposes a test paradigm using speech-evoked envelope following responses (EFRs) for use as an objective-aided outcome measure. The method uses a running speech-like, naturally spoken stimulus token /susa∫i/ (fundamental frequency [f0] = 98 Hz; duration 2.05 sec), to elicit EFRs by eight carriers representing low, mid, and high frequencies. Each vowel elicited two EFRs simultaneously, one from the region of formant one (F1) and one from the higher formants region (F2+). The simultaneous recording of two EFRs was enabled by lowering f0 in the region of F1 alone. Fricatives were amplitude modulated to enable recording of EFRs from high-frequency spectral regions. The present study aimed to evaluate the effect of level and bandwidth on speech-evoked EFRs in adults with normal hearing. As well, the study aimed to test convergent validity of the EFR paradigm by comparing it with changes in behavioral tasks due to bandwidth. Single-channel electroencephalogram was recorded from the vertex to the nape of the neck over 300 sweeps in two polarities from 20 young adults with normal hearing. To evaluate the effects of level in experiment I, EFRs were recorded at test levels of 50 and 65 dB SPL. To evaluate the effects of bandwidth in experiment II, EFRs were elicited by /susa∫i/ low-pass filtered at 1, 2, and 4 kHz, presented at 65 dB SPL. The 65 dB SPL condition from experiment I represented the full bandwidth condition. EFRs were averaged across the two polarities and estimated using a Fourier analyzer. An F test was used to determine whether an EFR was detected. Speech discrimination using the University of Western Ontario Distinctive Feature Differences test and sound quality rating using the Multiple Stimulus Hidden Reference and Anchors paradigm were measured in identical bandwidth conditions. In experiment I, the increase in level resulted in a significant increase in response amplitudes for all eight carriers (mean increase of 14 to 50 nV) and the number of detections (mean increase of 1.4 detections). In experiment II, an increase in bandwidth resulted in a significant increase in the number of EFRs detected until the low-pass filtered 4 kHz condition and carrier-specific changes in response amplitude until the full bandwidth condition. Scores in both behavioral tasks increased with bandwidth up to the full bandwidth condition. The number of detections and composite amplitude (sum of all eight EFR amplitudes) significantly correlated with changes in behavioral test scores. Results suggest that the EFR paradigm is sensitive to changes in level and audible bandwidth. This may be a useful tool as an objective-aided outcome measure considering its running speech-like stimulus, representation of spectral regions important for speech understanding, level and bandwidth sensitivity, and clinically feasible test times. This paradigm requires further validation in individuals with hearing loss, with and without hearing aids.

  18. Multi-band transmission color filters for multi-color white LEDs based visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng

    2017-11-01

    Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.

  19. Low-sensitivity, frequency-selective amplifier circuits for hybrid and bipolar fabrication.

    NASA Technical Reports Server (NTRS)

    Pi, C.; Dunn, W. R., Jr.

    1972-01-01

    A network is described which is suitable for realizing a low-sensitivity high-Q second-order frequency-selective amplifier for high-frequency operation. Circuits are obtained from this network which are well suited for realizing monolithic integrated circuits and which do not require any process steps more critical than those used for conventional monolithic operational and video amplifiers. A single chip version using compatible thin-film techniques for the frequency determination elements is then feasible. Center frequency and bandwidth can be set independently by trimming two resistors. The frequency selective circuits have a low sensitivity to the process variables, and the sensitivity of the center frequency and bandwidth to changes in temperature is very low.

  20. Design, fabrication, test and delivery of a K-band antenna breadboard model

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a research effort to develop a Ku-Band single channel monopulse antenna with significant improvements in efficiency and bandwidth are reported. A single aperture, multimode horn, utilized in a near field Cassegrainian configuration, was the technique selected for achieving the desired efficiency and bandwidth performance. In order to provide wide polarization flexibility, a wire grid, space filter polarizer was developed. A solid state switching network with appropriate driving electronics provides the receive channel sum and difference signal interface with an existing Apollo type tracking electronics subsystem. A full scale breadboard model of the antenna was fabricated and tested. Performance of the model was well within the requirements and goals of the contract.

  1. Ghost imaging via optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Li, Hong-Guo; Zhang, De-Jian; Xu, De-Qin; Zhao, Qiu-Li; Wang, Sen; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2015-10-01

    We investigate theoretically and experimentally thermal light ghost imaging where the light transmitted through the object as the seed light is amplified by an optical parametric amplifier (OPA). In conventional lens imaging systems with OPA, the spectral bandwidth of OPA dominates the image resolution. Theoretically, we prove that in ghost imaging via optical parametric amplification (GIOPA) the bandwidth of OPA will not affect the image resolution. The experimental results show that for weak seed light the image quality in GIOPA is better than that of conventional ghost imaging. Our work may be valuable in remote sensing with ghost imaging technique, where the light passed through the object is weak after a long-distance propagation.

  2. Time-dependent local density measurements in unsteady flows

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.

    1979-01-01

    A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.

  3. Variable word length encoder reduces TV bandwith requirements

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1965-01-01

    Adaptive variable resolution encoding technique provides an adaptive compression pseudo-random noise signal processor for reducing television bandwidth requirements. Complementary processors are required in both the transmitting and receiving systems. The pretransmission processor is analog-to-digital, while the postreception processor is digital-to-analog.

  4. A circularly polarized Ka-band stacked patch antenna with increased gain

    NASA Technical Reports Server (NTRS)

    Zawadzki, M.

    2002-01-01

    Stacking layers of microstrip patches is a technique often used to improve the bandwidth of a patch antenna, but rarely used to increase its gain. The work presented here scales the three-layer S-band work done in to Ka-band.

  5. A comparative study between different approaches to improve the RCS of a compact double-layer absorber

    NASA Astrophysics Data System (ADS)

    El-Hakim, H. A.; Mahmoud, K. R.

    2017-10-01

    In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than -16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.

  6. MR CAT scan: a modular approach for hybrid imaging.

    PubMed

    Hillenbrand, C; Hahn, D; Haase, A; Jakob, P M

    2000-07-01

    In this study, a modular concept for NMR hybrid imaging is presented. This concept essentially integrates different imaging modules in a sequential fashion and is therefore called CAT (combined acquisition technique). CAT is not a single specific measurement sequence, but rather a sequence design concept whereby distinct acquisition techniques with varying imaging parameters are employed in rapid succession in order to cover k-space. The power of the CAT approach is that it provides a high flexibility toward the acquisition optimization with respect to the available imaging time and the desired image quality. Important CAT sequence optimization steps include the appropriate choice of the k-space coverage ratio and the application of mixed bandwidth technology. Details of both the CAT methodology and possible CAT acquisition strategies, such as FLASH/EPI-, RARE/EPI- and FLASH/BURST-CAT are provided. Examples from imaging experiments in phantoms and healthy volunteers including mixed bandwidth acquisitions are provided to demonstrate the feasibility of the proposed CAT concept.

  7. An ultra-wide bandwidth-based range/GPS tight integration approach for relative positioning in vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Shen, Feng; Wayn Cheong, Joon; Dempster, Andrew G.

    2015-04-01

    Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively.

  8. Femtosecond-pulse inscription of fiber Bragg gratings with single or multiple phase-shifts in the structure

    NASA Astrophysics Data System (ADS)

    Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey

    2018-05-01

    In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.

  9. Atmospheric Remote Sensing via Infrared-Submillimeter Double Resonance

    NASA Astrophysics Data System (ADS)

    Srikantaiah, Sree; Holt, Jennifer; Neese, Christopher F.; Phillips, Dane; Everitt, Henry O.; De Lucia, Frank C.

    2016-06-01

    Specificity and sensitivity in atmospheric pressure remote sensing have always been big challenges. This is especially true for approaches that involve the submillimeter/terahertz (smm/THz) spectral region because atmospheric pressure broadening precludes taking advantage of the small Doppler broadening in the region. The Infrared-submillimeter (IR-smm) double resonance spectroscopic technique allows us to obtain a more specific two-dimensional signature as well as a means of modulating the molecular signal to enhance its separation from background and system variation. Applying this technique at atmospheric pressure presents a unique bandwidth requirement on the IR pump laser, and the smm/THz receiver. We will discuss the pump system comprising of a CO2 TEA laser, plasma switch and a free induction decay hot cell designed to produce fast IR pulses on the time scale of atmospheric pressure relaxation and a high bandwidth fast pulse smm/THz receiver. System diagnostics will also be discussed. Results as a function of pressure and pump pulse width will be presented.

  10. Collaboration tools and techniques for large model datasets

    USGS Publications Warehouse

    Signell, R.P.; Carniel, S.; Chiggiato, J.; Janekovic, I.; Pullen, J.; Sherwood, C.R.

    2008-01-01

    In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional datasets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters - no advanced programming support is necessary. ?? 2007 Elsevier B.V. All rights reserved.

  11. First Planet Confirmation with a Dispersed Fixed-Delay Interferometer

    NASA Astrophysics Data System (ADS)

    van Eyken, J. C.; Ge, J.; Mahadevan, S.; DeWitt, C.

    2004-01-01

    The Exoplanet Tracker is a prototype of a new type of fiber-fed instrument for performing high-precision relative Doppler measurements to detect extrasolar planets. A combination of Michelson interferometer and medium-resolution spectrograph, this low-cost instrument facilitates radial velocity measurements with high throughput over a small bandwidth (~300 Å) and has the potential to be designed for multiobject operation with moderate bandwidths (~1000 Å). We present the first planet detection with this new type of instrument, a successful confirmation of the well-established planetary companion to 51 Peg, showing an rms precision of 11.5 m s-1 over 5 days. We also show comparison measurements of the radial velocity stable star, η Cas, showing an rms precision of 7.9 m s-1 over 7 days. These new results are starting to approach the precision levels obtained with traditional radial velocity techniques based on cross-dispersed echelles. We anticipate that this new technique could have an important impact in the search for extrasolar planets.

  12. Design and development of broadband piezoelectric vibration energy harvester based on compliant orthoplanar spring

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari

    With advancement in technology, power requirements are reduced drastically for sensor nodes. The piezoelectric vibration energy harvesters generate sufficient power to low-powered sensor nodes. The main requirement of energy harvester is to provide a broad bandwidth. A conventional linear harvester does not satisfy this requirement. Therefore, the research focus is shifted to exploiting nonlinearity to widen the bandwidth of the harvester. Although nonlinear techniques are promising for broadening a bandwidth, reverse sweep shows reduced response as compared to the forward sweep. To overcome this issue, this thesis presents the design and development of a broadband piezoelectric vibration energy harvester based on a nonlinear multi-frequency compliant orthoplanar spring. This thesis is divided into three parts. The first part presents the design and experimental study of a tri-leg compliant orthoplanar spring for a broadband energy harvesting. The harvester performance is enhanced through the use of lightweight masses, which bring nonlinear vibration modes closer. The performance of the harvester is analyzed through development of a mathematical model based on the Duffing oscillator. The experimental and numerical results are in good agreement. The parametric study shows that an optimum performance is achieved by further reducing a gap in between the vibration modes using different weight masses. In the second part of the research, multiple (bi, quad and pent) leg compliant orthoplanar springs are designed to understand their role in expanding the bandwidth and reducing gap between vibration modes. The designed harvesters are compared by calculating the figure of merits. The quad-leg design provides a better performance in terms of power density and bandwidth among all the designs. The reverse sweep response is comparable to the forward sweep in terms of bandwidth. In the final part, a magnetic force is applied to the tri-leg harvester, which enhanced the voltage output and bandwidth. In addition, vibration modes have been brought even closer by reducing the gap between the modes. Overall, the proposed harvester performance is significantly improved using multiple legs attached with piezoelectric plates and masses, bringing the modes closer in the forward and reverse sweeps, making it advantageous to harvest energy from wideband environmental vibrations.

  13. Accessibility to health care facilities in Montreal Island: an application of relative accessibility indicators from the perspective of senior and non-senior residents.

    PubMed

    Paez, Antonio; Mercado, Ruben G; Farber, Steven; Morency, Catherine; Roorda, Matthew

    2010-10-25

    Geographical access to health care facilities is known to influence health services usage. As societies age, accessibility to health care becomes an increasingly acute public health concern. It is known that seniors tend to have lower mobility levels, and it is possible that this may negatively affect their ability to reach facilities and services. Therefore, it becomes important to examine the mobility situation of seniors vis-a-vis the spatial distribution of health care facilities, to identify areas where accessibility is low and interventions may be required. Accessibility is implemented using a cumulative opportunities measure. Instead of assuming a fixed bandwidth (i.e. a distance threshold) for measuring accessibility, in this paper the bandwidth is defined using model-based estimates of average trip length. Average trip length is an all-purpose indicator of individual mobility and geographical reach. Adoption of a spatial modelling approach allows us to tailor these estimates of travel behaviour to specific locations and person profiles. Replacing a fixed bandwidth with these estimates permits us to calculate customized location- and person-based accessibility measures that allow inter-personal as well as geographical comparisons. The case study is Montreal Island. Geo-coded travel behaviour data, specifically average trip length, and relevant traveller's attributes are obtained from the Montreal Household Travel Survey. These data are complemented with information from the Census. Health care facilities, also geo-coded, are extracted from a comprehensive business point database. Health care facilities are selected based on Standard Industrial Classification codes 8011-21 (Medical Doctors and Dentists). Model-based estimates of average trip length show that travel behaviour varies widely across space. With the exception of seniors in the downtown area, older residents of Montreal Island tend to be significantly less mobile than people of other age cohorts. The combination of average trip length estimates with the spatial distribution of health care facilities indicates that despite being more mobile, suburban residents tend to have lower levels of accessibility compared to central city residents. The effect is more marked for seniors. Furthermore, the results indicate that accessibility calculated using a fixed bandwidth would produce patterns of exposure to health care facilities that would be difficult to achieve for suburban seniors given actual mobility patterns. The analysis shows large disparities in accessibility between seniors and non-seniors, between urban and suburban seniors, and between vehicle owning and non-owning seniors. This research was concerned with potential accessibility levels. Follow up research could consider the results reported here to select case studies of actual access and usage of health care facilities, and related health outcomes.

  14. New learning based super-resolution: use of DWT and IGMRF prior.

    PubMed

    Gajjar, Prakash P; Joshi, Manjunath V

    2010-05-01

    In this paper, we propose a new learning-based approach for super-resolving an image captured at low spatial resolution. Given the low spatial resolution test image and a database consisting of low and high spatial resolution images, we obtain super-resolution for the test image. We first obtain an initial high-resolution (HR) estimate by learning the high-frequency details from the available database. A new discrete wavelet transform (DWT) based approach is proposed for learning that uses a set of low-resolution (LR) images and their corresponding HR versions. Since the super-resolution is an ill-posed problem, we obtain the final solution using a regularization framework. The LR image is modeled as the aliased and noisy version of the corresponding HR image, and the aliasing matrix entries are estimated using the test image and the initial HR estimate. The prior model for the super-resolved image is chosen as an Inhomogeneous Gaussian Markov random field (IGMRF) and the model parameters are estimated using the same initial HR estimate. A maximum a posteriori (MAP) estimation is used to arrive at the cost function which is minimized using a simple gradient descent approach. We demonstrate the effectiveness of the proposed approach by conducting the experiments on gray scale as well as on color images. The method is compared with the standard interpolation technique and also with existing learning-based approaches. The proposed approach can be used in applications such as wildlife sensor networks, remote surveillance where the memory, the transmission bandwidth, and the camera cost are the main constraints.

  15. Design of a digital compression technique for shuttle television

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Fultz, G.

    1976-01-01

    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power.

  16. Advanced Millimeter-Wave Imaging Enhances Security Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-01-12

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  17. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  18. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  19. Mirror Langmuir probe: a technique for real-time measurement of magnetized plasma conditions using a single Langmuir electrode.

    PubMed

    LaBombard, B; Lyons, L

    2007-07-01

    A new method for the real-time evaluation of the conditions in a magnetized plasma is described. The technique employs an electronic "mirror Langmuir probe" (MLP), constructed from bipolar rf transistors and associated high-bandwidth electronics. Utilizing a three-state bias wave form and active feedback control, the mirror probe's I-V characteristic is continuously adjusted to be a scaled replica of the "actual" Langmuir electrode immersed in a plasma. Real-time high-bandwidth measurements of the plasma's electron temperature, ion saturation current, and floating potential can thereby be obtained using only a single electrode. Initial tests of a prototype MLP system are reported, proving the concept. Fast-switching metal-oxide-semiconductor field-effect transistors produce the required three-state voltage bias wave form, completing a full cycle in under 1 mus. Real-time outputs of electron temperature, ion saturation current, and floating potential are demonstrated, which accurately track an independent computation of these values from digitally stored I-V characteristics. The MLP technique represents a significant improvement over existing real-time methods, eliminating the need for multiple electrodes and sampling all three plasma parameters at a single spatial location.

  20. High-resolution hot-film measurement of surface heat flux to an impinging jet

    NASA Astrophysics Data System (ADS)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  1. Advanced millimeter wave imaging systems

    NASA Technical Reports Server (NTRS)

    Schuchardt, J. M.; Gagliano, J. A.; Stratigos, J. A.; Webb, L. L.; Newton, J. M.

    1980-01-01

    Unique techniques are being utilized to develop self-contained imaging radiometers operating at single and multiple frequencies near 35, 95 and 183 GHz. These techniques include medium to large antennas for high spatial resolution, lowloss open structures for RF confinemnt and calibration, wide bandwidths for good sensitivity plus total automation of the unit operation and data collection. Applications include: detection of severe storms, imaging of motor vehicles, and the remote sensing of changes in material properties.

  2. Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling.

    PubMed

    Schmogrow, R; Meyer, M; Schindler, P C; Nebendahl, B; Dreschmann, M; Meyer, J; Josten, A; Hillerkuss, D; Ben-Ezra, S; Becker, J; Koos, C; Freude, W; Leuthold, J

    2014-01-13

    We demonstrate two efficient processing techniques for Nyquist signals, namely computation of signals using dynamic precision as well as arbitrary rational oversampling factors. With these techniques along with massively parallel processing it becomes possible to generate and receive high data rate Nyquist signals with flexible symbol rates and bandwidths, a feature which is highly desirable for novel flexgrid networks. We achieved maximum bit rates of 252 Gbit/s in real-time.

  3. Downhole drilling network using burst modulation techniques

    DOEpatents

    Hall,; David R. , Fox; Joe, [Spanish Fork, UT

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  4. 47 CFR 101.111 - Emission limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... using transmissions other than those employing digital modulation techniques: (i) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 decibels; (ii) On any frequency removed from the assigned frequency by more...

  5. Ultrafast chirped optical waveform recorder using a time microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Corey Vincent

    2015-04-21

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  6. Assessment of autonomic response by broad-band respiration

    NASA Technical Reports Server (NTRS)

    Berger, R. D.; Saul, J. P.; Cohen, R. J.

    1989-01-01

    We present a technique for introducing broad-band respiratory perturbations so that the response characteristics of the autonomic nervous system can be determined noninvasively over a wide range of physiologically relevant frequencies. A subject's respiratory bandwidth was broadened by breathing on cue to a sequence of audible tones spaced by Poisson intervals. The transfer function between the respiratory input and the resulting instantaneous heart rate was then computed using spectral analysis techniques. Results using this method are comparable to those found using traditional techniques, but are obtained with an economy of data collection.

  7. Study of radar pulse compression for high resolution satellite altimetry

    NASA Technical Reports Server (NTRS)

    Dooley, R. P.; Nathanson, F. E.; Brooks, L. W.

    1974-01-01

    Pulse compression techniques are studied which are applicable to a satellite altimeter having a topographic resolution of + 10 cm. A systematic design procedure is used to determine the system parameters. The performance of an optimum, maximum likelihood processor is analysed, which provides the basis for modifying the standard split-gate tracker to achieve improved performance. Bandwidth considerations lead to the recommendation of a full deramp STRETCH pulse compression technique followed by an analog filter bank to separate range returns. The implementation of the recommended technique is examined.

  8. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance.

  9. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  10. Power cepstrum technique with application to model helicopter acoustic data

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.

    1986-01-01

    The application of the power cepstrum to measured helicopter-rotor acoustic data is investigated. A previously applied correction to the reconstructed spectrum is shown to be incorrect. For an exact echoed signal, the amplitude of the cepstrum echo spike at the delay time is linearly related to the echo relative amplitude in the time domain. If the measured spectrum is not entirely from the source signal, the cepstrum will not yield the desired echo characteristics and a cepstral aliasing may occur because of the effective sample rate in the frequency domain. The spectral analysis bandwidth must be less than one-half the echo ripple frequency or cepstral aliasing can occur. The power cepstrum editing technique is a useful tool for removing some of the contamination because of acoustic reflections from measured rotor acoustic spectra. The cepstrum editing yields an improved estimate of the free field spectrum, but the correction process is limited by the lack of accurate knowledge of the echo transfer function. An alternate procedure, which does not require cepstral editing, is proposed which allows the complete correction of a contaminated spectrum through use of both the transfer function and delay time of the echo process.

  11. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C. W.; Protheroe, R. J.; Ekers, R. D.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aimmore » of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.« less

  12. Baseline-free damage detection in composite plates based on the reciprocity principle

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Zeng, Liang; Lin, Jing

    2018-01-01

    Lamb wave based damage detection techniques have been widely used in composite structures. In particular, these techniques usually rely on reference signals, which are significantly influenced by the operational and environmental conditions. To solve this issue, this paper presents a baseline-free damage inspection method based on the reciprocity principle. If a localized nonlinear scatterer exists along the wave path, the reciprocity breaks down. Through estimating the loss of reciprocity, the delamination could be detected. A reciprocity index (RI), which compares the discrepancy between the signal received in transducer B when emitting from transducer A and the signal received in A when the same source is located in B, is established to quantitatively analyze the reciprocity. Experimental results show that the RI value of a damaged path is much higher than that of a healthy path. In addition, the effects of the parameters of excitation signal (i.e., central frequency and bandwidth) and the position of delamination on the RI value are discussed. Furthermore, a RI based probabilistic imaging algorithm is proposed for detecting delamination damage of composite plates without reference signals. Finally, the effectiveness of this baseline-free damage detection method is validated by an experimental example.

  13. Hidden Markov analysis of mechanosensitive ion channel gating.

    PubMed

    Khan, R Nazim; Martinac, Boris; Madsen, Barry W; Milne, Robin K; Yeo, Geoffrey F; Edeson, Robert O

    2005-02-01

    Patch clamp data from the large conductance mechanosensitive channel (MscL) in E. coli was studied with the aim of developing a strategy for statistical analysis based on hidden Markov models (HMMs) and determining the number of conductance levels of the channel, together with mean current, mean dwell time and equilibrium probability of occupancy for each level. The models incorporated state-dependent white noise and moving average adjustment for filtering, with maximum likelihood parameter estimates obtained using an EM (expectation-maximisation) based iteration. Adjustment for filtering was included as it could be expected that the electronic filter used in recording would have a major effect on obviously brief intermediate conductance level sojourns. Preliminary data analysis revealed that the brevity of intermediate level sojourns caused difficulties in assignment of data points to levels as a result of over-estimation of noise variances. When reasonable constraints were placed on these variances using the better determined noise variances for the closed and fully open levels, idealisation anomalies were eliminated. Nevertheless, simulations suggested that mean sojourn times for the intermediate levels were still considerably over-estimated, and that recording bandwidth was a major limitation; improved results were obtained with higher bandwidth data (10 kHz sampled at 25 kHz). The simplest model consistent with these data had four open conductance levels, intermediate levels being approximately 20%, 51% and 74% of fully open. The mean lifetime at the fully open level was about 1 ms; estimates for the three intermediate levels were 54-92 micros, probably still over-estimates.

  14. A Comparison of Potential IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements From Space

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed

    2014-01-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  15. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  16. Compensated individually addressable array technology for human breast imaging

    DOEpatents

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  17. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  18. Matter-wave coherence limit owing to cosmic gravitational wave background

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2017-12-01

    We study matter-wave interferometry in the presence of a stochastic background of gravitational waves. It is shown that if the background has a scale-invariant spectrum over a wide bandwidth (which is expected in a class of inflationary models of Big Bang cosmology), then separated-path interference cannot be observed for a lump of matter of size above a limit which is very insensitive to the strength and bandwidth of the fluctuations, unless the interferometer is servo-controlled or otherwise protected. For ordinary solid matter this limit is of order 1-10 mm. A servo-controlled or cross-correlated device would also exhibit limits to the observation of macroscopic interference, which we estimate for ordinary matter moving at speeds small compared to c.

  19. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication.

  20. Modulation bandwidth of spin torque oscillators under current modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble

    2014-10-13

    For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less

  1. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    NASA Astrophysics Data System (ADS)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  3. Quasi-phase-matching and second-harmonic generation enhancement in a semiconductor microresonator array using slow-light effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumeige, Yannick

    We theoretically analyze the second-harmonic generation process in a sequence of unidirectionnaly coupled doubly resonant whispering gallery mode semiconductor resonators. By using a convenient design, it is possible to coherently sum the second-harmonic fields generated inside each resonator. We show that resonator coupling allows the bandwidth of the phase-matching curve to be increased with respect to single-resonator configurations simultaneously taking advantage of the resonant feature of the resonators. This quasi-phase-matching technique could be applied to obtain small-footprint nonlinear devices with large bandwidth and limited nonlinear losses. The results are discussed in the framework of the slow-light-effect enhancement of second-order opticalmore » nonlinearities.« less

  4. Discriminator aided phase lock acquisition for suppressed carrier signals

    NASA Technical Reports Server (NTRS)

    Carson, L. M.; Krasin, F. E. (Inventor)

    1982-01-01

    A discriminator aided technique for acquisition of phase lock to a suppressed carrier signal utilizes a Costas loop which is initially operated open loop and control voltage for its VCXO is derived from a phase detector that compares the VCXO to a reference frequency thus establishing coarse frequency resolution with the received signal. Then the Costas loop is closed with the low-pass filter of the channel having a bandwidth much greater (by a factor of about 10) than in the I channel so that a frequency discriminator effect results to aid carrier resolution. Finally, after carrier acquisition, the Q-channel filter of the Costas loop is switched to a bandwidth substantially equal to that of the I-channel for carrier tracking.

  5. An analysis of a nonlinear instability in the implementation of a VTOL control system

    NASA Technical Reports Server (NTRS)

    Weber, J. M.

    1982-01-01

    The contributions to nonlinear behavior and unstable response of the model following yaw control system of a VTOL aircraft during hover were determined. The system was designed as a state rate feedback implicit model follower that provided yaw rate command/heading hold capability and used combined full authority parallel and limited authority series servo actuators to generate an input to the yaw reaction control system of the aircraft. Both linear and nonlinear system models, as well as describing function linearization techniques were used to determine the influence on the control system instability of input magnitude and bandwidth, series servo authority, and system bandwidth. Results of the analysis describe stability boundaries as a function of these system design characteristics.

  6. Investigation of Bandwidth-Efficient Coding and Modulation Techniques

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    The necessary technology was studied to improve the bandwidth efficiency of the space-to-ground communications network using the current capabilities of that network as a baseline. The study was aimed at making space payloads, for example the Hubble Space Telescope, more capable without the need to completely redesign the link. Particular emphasis was placed on the following concepts: (1) what the requirements are which are necessary to convert an existing standard 4-ary phase shift keying communications link to one that can support, as a minimum, 8-ary phase shift keying with error corrections applied; and (2) to determine the feasibility of using the existing equipment configurations with additional signal processing equipment to realize the higher order modulation and coding schemes.

  7. A review on channel models in free space optical communication systems

    NASA Astrophysics Data System (ADS)

    Anbarasi, K.; Hemanth, C.; Sangeetha, R. G.

    2017-12-01

    Free Space Optical communication (FSO) is a wireless communication technology which uses light to transmit the data in free space. FSO has advantages like unlicensed spectrum and higher bandwidth. In this paper FSO system merits and demerits, challenges in FSO, and various channel models are discussed. To mitigate the turbulence in FSO the mitigation techniques like relaying, diversity schemes and adopting different modulation techniques used in different channels are discussed and its performance comparison is given.

  8. Modulation/demodulation techniques for satellite communications. Part 1: Background

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  9. A ROF transport system using phase & polarization modulation based on OFDM technique

    NASA Astrophysics Data System (ADS)

    Mallick, Khaleda; Patra, Ardhendu Sekhar

    2018-05-01

    A radio-over-fiber (ROF) transport system using phase and polarization modulator based on orthogonal frequency division multiplexing (OFDM) technique has been proposed and demonstrated, to transmit 2.5 Gbps at 7.5 GHz over 40 km single mode fiber (SMF). The transmission performance is observed by proper bit error rate and clear eye diagram. Our proposed system become a prominent alternative, as it has advantages of communication link for greater bandwidth and data rates.

  10. A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model

    NASA Astrophysics Data System (ADS)

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-04-01

    The paper is about a methodology to combine a noisy satellite-only global gravity field model (GGM) with other noisy datasets to estimate a local quasi-geoid model using weighted least-squares techniques. In this way, we attempt to improve the quality of the estimated quasi-geoid model and to complement it with a full noise covariance matrix for quality control and further data processing. The methodology goes beyond the classical remove-compute-restore approach, which does not account for the noise in the satellite-only GGM. We suggest and analyse three different approaches of data combination. Two of them are based on a local single-scale spherical radial basis function (SRBF) model of the disturbing potential, and one is based on a two-scale SRBF model. Using numerical experiments, we show that a single-scale SRBF model does not fully exploit the information in the satellite-only GGM. We explain this by a lack of flexibility of a single-scale SRBF model to deal with datasets of significantly different bandwidths. The two-scale SRBF model performs well in this respect, provided that the model coefficients representing the two scales are estimated separately. The corresponding methodology is developed in this paper. Using the statistics of the least-squares residuals and the statistics of the errors in the estimated two-scale quasi-geoid model, we demonstrate that the developed methodology provides a two-scale quasi-geoid model, which exploits the information in all datasets.

  11. A coherent detection technique via optically biased field for broadband terahertz radiation.

    PubMed

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  12. Hazard Function Estimation with Cause-of-Death Data Missing at Random.

    PubMed

    Wang, Qihua; Dinse, Gregg E; Liu, Chunling

    2012-04-01

    Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data.

  13. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  14. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  15. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  16. Single- and multi-channel underwater acoustic communication channel capacity: a computational study.

    PubMed

    Hayward, Thomas J; Yang, T C

    2007-09-01

    Acoustic communication channel capacity determines the maximum data rate that can be supported by an acoustic channel for a given source power and source/receiver configuration. In this paper, broadband acoustic propagation modeling is applied to estimate the channel capacity for a time-invariant shallow-water waveguide for a single source-receiver pair and for vertical source and receiver arrays. Without bandwidth constraints, estimated single-input, single-output (SISO) capacities approach 10 megabitss at 1 km range, but beyond 2 km range they decay at a rate consistent with previous estimates by Peloquin and Leinhos (unpublished, 1997), which were based on a sonar equation calculation. Channel capacities subject to source bandwidth constraints are approximately 30-90% lower than for the unconstrained case, and exhibit a significant wind speed dependence. Channel capacity is investigated for single-input, multi-output (SIMO) and multi-input, multi-output (MIMO) systems, both for finite arrays and in the limit of a dense array spanning the entire water column. The limiting values of the SIMO and MIMO channel capacities for the modeled environment are found to be about four times higher and up to 200-400 times higher, respectively, than for the SISO case. Implications for underwater acoustic communication systems are discussed.

  17. Improved PLL For FM Demodulator

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold; Jackson, Shannon P.

    1992-01-01

    Phase-locked loop (PLL) for frequency demodulator contains improved frequency-to-voltage converter producing less ripple than conventional phase detector. In improved PLL, phase detector replaced by state estimator, implemented by ramp/sample-and-hold circuit. Intended to reduce noise in receiver of frequency-modulated (FM) telemetry link without sacrificing bandwidth. Also applicable to processing received FM signals.

  18. Topics in Microeconometrics: Estimation of a Dynamic Model of Occupational Transitions, Wage and Non-Wage Benefits Cross Validation Bandwidth Selection for Derivatives of Various Dimensional Densities Testing the Additive Separability of the Teacher Value Added Effect Semiparametrically

    ERIC Educational Resources Information Center

    Baird, Matthew David

    2012-01-01

    I study three separate questions in this dissertation. In Chapter 1, I develop and estimate a structural dynamic model of occupation and job choice to test hypotheses of the importance of wages and non-wages and learning in occupational transitions, and find that wages are approximately 3 times as important as non-wage benefits in decisions and…

  19. Visualization of spatial patterns and temporal trends for aerial surveillance of illegal oil discharges in western Canadian marine waters.

    PubMed

    Serra-Sogas, Norma; O'Hara, Patrick D; Canessa, Rosaline; Keller, Peter; Pelot, Ronald

    2008-05-01

    This paper examines the use of exploratory spatial analysis for identifying hotspots of shipping-based oil pollution in the Pacific Region of Canada's Exclusive Economic Zone. It makes use of data collected from fiscal years 1997/1998 to 2005/2006 by the National Aerial Surveillance Program, the primary tool for monitoring and enforcing the provisions imposed by MARPOL 73/78. First, we present oil spill data as points in a "dot map" relative to coastlines, harbors and the aerial surveillance distribution. Then, we explore the intensity of oil spill events using the Quadrat Count method, and the Kernel Density Estimation methods with both fixed and adaptive bandwidths. We found that oil spill hotspots where more clearly defined using Kernel Density Estimation with an adaptive bandwidth, probably because of the "clustered" distribution of oil spill occurrences. Finally, we discuss the importance of standardizing oil spill data by controlling for surveillance effort to provide a better understanding of the distribution of illegal oil spills, and how these results can ultimately benefit a monitoring program.

  20. Time-dependent, multimode interaction analysis of the gyroklystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K.

    2016-08-15

    In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such asmore » beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.« less

  1. Principles, performance, and applications of spectral reconstitution (SR) in quantitative analysis of oils by Fourier transform infrared spectroscopy (FT-IR).

    PubMed

    García-González, Diego L; Sedman, Jacqueline; van de Voort, Frederik R

    2013-04-01

    Spectral reconstitution (SR) is a dilution technique developed to facilitate the rapid, automated, and quantitative analysis of viscous oil samples by Fourier transform infrared spectroscopy (FT-IR). This technique involves determining the dilution factor through measurement of an absorption band of a suitable spectral marker added to the diluent, and then spectrally removing the diluent from the sample and multiplying the resulting spectrum to compensate for the effect of dilution on the band intensities. The facsimile spectrum of the neat oil thus obtained can then be qualitatively or quantitatively analyzed for the parameter(s) of interest. The quantitative performance of the SR technique was examined with two transition-metal carbonyl complexes as spectral markers, chromium hexacarbonyl and methylcyclopentadienyl manganese tricarbonyl. The estimation of the volume fraction (VF) of the diluent in a model system, consisting of canola oil diluted to various extents with odorless mineral spirits, served as the basis for assessment of these markers. The relationship between the VF estimates and the true volume fraction (VF(t)) was found to be strongly dependent on the dilution ratio and also depended, to a lesser extent, on the spectral resolution. These dependences are attributable to the effect of changes in matrix polarity on the bandwidth of the ν(CO) marker bands. Excellent VF(t) estimates were obtained by making a polarity correction devised with a variance-spectrum-delineated correction equation. In the absence of such a correction, SR was shown to introduce only a minor and constant bias, provided that polarity differences among all the diluted samples analyzed were minimal. This bias can be built into the calibration of a quantitative FT-IR analytical method by subjecting appropriate calibration standards to the same SR procedure as the samples to be analyzed. The primary purpose of the SR technique is to simplify preparation of diluted samples such that only approximate proportions need to be adhered to, rather than using exact weights or volumes, the marker accounting for minor variations. Additional applications discussed include the use of the SR technique in extraction-based, quantitative, automated FT-IR methods for the determination of moisture, acid number, and base number in lubricating oils, as well as of moisture content in edible oils.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, Mark D.; Pasyanos, Michael E.

    Characterizing regional seismic signals continues to be a difficult problem due to their variability. Calibration of these signals is very important to many aspects of monitoring underground nuclear explosions, including detecting seismic signals, discriminating explosions from earthquakes, and reliably estimating magnitude and yield. Amplitude tomography, which simultaneously inverts for source, propagation, and site effects, is a leading method of calibrating these signals. A major issue in amplitude tomography is the data quality of the input amplitude measurements. Pre-event and prephase signal-to-noise ratio (SNR) tests are typically used but can frequently include bad signals and exclude good signals. The deficiencies ofmore » SNR criteria, which are demonstrated here, lead to large calibration errors. To ameliorate these issues, we introduce a semi-automated approach to assess the bandwidth of a spectrum where it behaves physically. We determine the maximum frequency (denoted as F max) where it deviates from this behavior due to inflections at which noise or spurious signals start to bias the spectra away from the expected decay. We compare two amplitude tomography runs using the SNR and new F max criteria and show significant improvements to the stability and accuracy of the tomography output for frequency bands higher than 2 Hz by using our assessments of valid S-wave bandwidth. We compare Q estimates, P/S residuals, and some detailed results to explain the improvements. Lastly, for frequency bands higher than 4 Hz, needed for effective P/S discrimination of explosions from earthquakes, the new bandwidth criteria sufficiently fix the instabilities and errors so that the residuals and calibration terms are useful for application.« less

  3. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  4. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  5. POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2007-01-01

    A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable.

  6. Composeable Chat over Low-Bandwidth Intermittent Communication Links

    DTIC Science & Technology

    2007-04-01

    Compression (STC), introduced in this report, is a data compression algorithm intended to compress alphanumeric... Ziv - Lempel coding, the grandfather of most modern general-purpose file compression programs, watches for input symbol sequences that have previously... data . This section applies these techniques to create a new compression algorithm called Small Text Compression . Various sequence compression

  7. Phase-locked Optical Signal Recovery

    DTIC Science & Technology

    2009-01-01

    detection . However, implementing an optical phase lock loop ( OPLL ) to generate the synchronised carrier for the homodyne technique requires... Loop (OIPLL) in which a narrow bandwidth optical phase lock loop ( OPLL ) is used to control the free -running frequency of an optically injection...receiver uses an Optical Injection Phase Lock Loop (OIPLL) for carrier recovery,

  8. Phase-locked Optical Signal Recovery

    DTIC Science & Technology

    2009-01-01

    detection . However, implementing an optical phase lock loop ( OPLL ) to generate the synchronised carrier for the homodyne technique requires... Loop (OIPLL) in which a narrow bandwidth optical phase lock loop ( OPLL ) is used to control the free -running frequency of an optically injection...The receiver uses an Optical Injection Phase Lock Loop (OIPLL) for carrier

  9. 47 CFR 87.479 - Harmful interference to radionavigation land stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to establish wide-band systems using frequency-hopping spread spectrum techniques in the 960-1215 MHz... spectrum uniformly across the band; (2) The radiated pulse varies from the specified width of 6.4... peak of the JTIDS spectrum as measured in a 300 kHz bandwidth. The JTIDS will be prohibited from...

  10. 47 CFR 87.479 - Harmful interference to radionavigation land stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to establish wide-band systems using frequency-hopping spread spectrum techniques in the 960-1215 MHz... spectrum uniformly across the band; (2) The radiated pulse varies from the specified width of 6.4... peak of the JTIDS spectrum as measured in a 300 kHz bandwidth. The JTIDS will be prohibited from...

  11. 47 CFR 87.479 - Harmful interference to radionavigation land stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to establish wide-band systems using frequency-hopping spread spectrum techniques in the 960-1215 MHz... spectrum uniformly across the band; (2) The radiated pulse varies from the specified width of 6.4... peak of the JTIDS spectrum as measured in a 300 kHz bandwidth. The JTIDS will be prohibited from...

  12. An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.

    PubMed

    Gurun, Gokce; Zahorian, Jaime S; Sisman, Alper; Karaman, Mustafa; Hasler, Paul E; Degertekin, F Levent

    2012-10-01

    We designed and fabricated a dynamic receive beamformer integrated circuit (IC) in 0.35-μm CMOS technology. This beamformer IC is suitable for integration with an annular array transducer for high-frequency (30-50 MHz) intravascular ultrasound (IVUS) imaging. The beamformer IC consists of receive preamplifiers, an analog dynamic delay-and-sum beamformer, and buffers for 8 receive channels. To form an analog dynamic delay line we designed an analog delay cell based on the current-mode first-order all-pass filter topology, as the basic building block. To increase the bandwidth of the delay cell, we explored an enhancement technique on the current mirrors. This technique improved the overall bandwidth of the delay line by a factor of 6. Each delay cell consumes 2.1-mW of power and is capable of generating a tunable time delay between 1.75 ns to 2.5 ns. We successfully integrated the fabricated beamformer IC with an 8-element annular array. Experimental test results demonstrated the desired buffering, preamplification and delaying capabilities of the beamformer.

  13. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  14. SU-F-E-02: A Feasibility Study for Application of Metal Artifact Reduction Techniques in MR-Guided Brachytherapy Gynecological Cancer with Titanium Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadbi, M

    Purpose: Utilization of Titanium Tandem and Ring (T&R) applicators in MR-guided brachytherapy has become widespread for gynecological cancer treatment. However, Titanium causes magnetic field disturbance and susceptibility artifact, which complicate image interpretation. In this study, metal artifact reduction techniques were employed to improve the image quality and reduce the metal related artifacts. Methods: Several techniques were employed to reduce the metal artifact caused by titanium T&R applicator. These techniques include Metal Artifact Reduction Sequence (MARS), View Angle Tilting (VAT) to correct in-plane distortion, and Slice Encoding for Metal Artifact Correction (SEMAC) for through-plane artifact correction. Moreover, MARS can be combinedmore » with VAT to further reduce the in-plane artifact by reapplying the selection gradients during the readout (MARS+VAT). SEMAC uses a slice selective excitation but acquires additional z-encodings in order to resolve off-resonant signal and to reduce through-plane distortions. Results: Comparison between the clinical sequences revealed that increasing the bandwidth reduces the error in measured diameter of T&R. However, the error is larger than 4mm for the best case with highest bandwidth and spatial resolution. MARS+VAT with isotropic resolution of 1mm reduced the error to 1.9mm which is the least among the examined 2D sequences. The measured diameter of tandem from SEMAC+VAT has the closest value to the actual diameter of tandem (3.2mm) and the error was reduced to less than 1mm. In addition, SEMAC+VAT significantly reduces the blooming artifact in the ring compared to clinical sequences. Conclusion: A higher bandwidth and spatial resolution sequence reduces the artifact and diameter of applicator with a slight compromise in SNR. Metal artifact reduction sequences decrease the distortion associated with titanium applicator. SEMAC+VAT sequence in combination with VAT revealed promising results for titanium imaging and can be utilized for MR-guided brachytherapy in gynecological cancer. The author is employee with Philips Healthcare.« less

  15. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    NASA Astrophysics Data System (ADS)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  16. A narrowband CDMA communications payload for little LEOS applications

    NASA Astrophysics Data System (ADS)

    Michalik, H.; Hävecker, W.; Ginati, A.

    1996-09-01

    In recent years Code Division Multiple Access (CDMA) techniques have been investigated for application in Local Area Networks [J. A. Salehi, IEEE Trans. Commun. 37 (1989)]as well as in Mobile Communications [R. Kohno et al., IEEE Commun. Mag. Jan (1995)]. The main attraction of these techniques is due to potential higher throughput and capacity of such systems under certain conditions compared to conventional multi-access schemes like frequency and time division multiplexing. Mobile communication over a Satellite Link represents in some terms the "worst case" for operating a CDMA-system. Considering e.g. the uplink case from mobile to satellite, the imperfections due to different and time varying channel conditions will add to the well known effects of Multiple Access Interference (MAI) between the simultaneously active users at the satellite receiver. In addition, bandwidth constraints due to the non-availability of large bandwidth channels in the interesting frequency bands, exist for small systems. As a result, for a given service in terms of user data rates, the practical code sequence lengths are limited as well as the available number of codes within a code set. In this paper a communications payload for Small Satellite Applications with CDMA uplink and C/TDMA downlink under the constraint of bandwidth limitations is proposed. To optimise the performance under the above addressed imperfections the system provides ability for power control and synchronisation for the CDMA uplink. The major objectives of this project are studying, development and testing of such a system for educational purposes and technology development at Hochschule Bremen.

  17. Detection and Estimation of an Optical Image by Photon-Counting Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Lily Lee

    1973-01-01

    Statistical description of a photoelectric detector is given. The photosensitive surface of the detector is divided into many small areas, and the moment generating function of the photo-counting statistic is derived for large time-bandwidth product. The detection of a specified optical image in the presence of the background light by using the hypothesis test is discussed. The ideal detector based on the likelihood ratio from a set of numbers of photoelectrons ejected from many small areas of the photosensitive surface is studied and compared with the threshold detector and a simple detector which is based on the likelihood ratio by counting the total number of photoelectrons from a finite area of the surface. The intensity of the image is assumed to be Gaussian distributed spatially against the uniformly distributed background light. The numerical approximation by the method of steepest descent is used, and the calculations of the reliabilities for the detectors are carried out by a digital computer.

  18. Towards Transparent Throughput Elasticity for IaaS Cloud Storage: Exploring the Benefits of Adaptive Block-Level Caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolae, Bogdan; Riteau, Pierre; Keahey, Kate

    Storage elasticity on IaaS clouds is a crucial feature in the age of data-intensive computing, especially when considering fluctuations of I/O throughput. This paper provides a transparent solution that automatically boosts I/O bandwidth during peaks for underlying virtual disks, effectively avoiding over-provisioning without performance loss. The authors' proposal relies on the idea of leveraging short-lived virtual disks of better performance characteristics (and thus more expensive) to act during peaks as a caching layer for the persistent virtual disks where the application data is stored. Furthermore, they introduce a performance and cost prediction methodology that can be used both independently tomore » estimate in advance what trade-off between performance and cost is possible, as well as an optimization technique that enables better cache size selection to meet the desired performance level with minimal cost. The authors demonstrate the benefits of their proposal both for microbenchmarks and for two real-life applications using large-scale experiments.« less

  19. Real-time edge-enhanced optical correlator

    NASA Astrophysics Data System (ADS)

    Shihabi, Mazen M.; Hinedi, Sami M.; Shah, Biren N.

    1992-08-01

    The performance of five symbol lock detectors are compared. They are the square-law detector with overlapping (SQOD) and non-overlapping (SQNOD) integrators, the absolute value detectors with overlapping and non-overlapping (AVNOD) integrators and the signal power estimator detector (SPED). The analysis considers various scenarios when the observation interval is much larger or equal to the symbol synchronizer loop bandwidth, which has not been considered in previous analyses. Also, the case of threshold setting in the absence of signal is considered. It is shown that the SQOD outperforms all others when the threshold is set in the presence of signal, independent of the relationship between loop bandwidth and observation period. On the other hand, the SPED outperforms all others when the threshold is set in the presence of noise only.

  20. Real-time edge-enhanced optical correlator

    NASA Technical Reports Server (NTRS)

    Shihabi, Mazen M. (Inventor); Hinedi, Sami M. (Inventor); Shah, Biren N. (Inventor)

    1992-01-01

    The performance of five symbol lock detectors are compared. They are the square-law detector with overlapping (SQOD) and non-overlapping (SQNOD) integrators, the absolute value detectors with overlapping and non-overlapping (AVNOD) integrators and the signal power estimator detector (SPED). The analysis considers various scenarios when the observation interval is much larger or equal to the symbol synchronizer loop bandwidth, which has not been considered in previous analyses. Also, the case of threshold setting in the absence of signal is considered. It is shown that the SQOD outperforms all others when the threshold is set in the presence of signal, independent of the relationship between loop bandwidth and observation period. On the other hand, the SPED outperforms all others when the threshold is set in the presence of noise only.

  1. Advanced Receiver tracking of Voyager 2 near solar conjunction

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.; Vilnrotter, V. A.; Wiggins, J. D.

    1988-01-01

    The Advanced Receiver (ARX) was used to track the Voyager 2 spacecraft at low Sun-Earth-Probe (SEP) angles near solar conjunction in December of 1987. The received carrier signal exhibited strong fluctuations in both phase and amplitude. The ARX used spectral estimation and mathematical modeling of the phase and receiver noise processes to set an optimum carrier tracking bandwidth. This minimized the mean square phase error in tracking carrier phase and thus minimized the loss in the telemetry signal-to-noise ratio due to the carrier loop. Recovered symbol SNRs and errors in decoded engineering data for the ARX are compared with those for the current Block 3 telemetry stream. Optimum bandwidths are plotted against SEP angle. Measurements of the power spectral density of the solar phase and amplitude fluctuations are also given.

  2. Low Noise in a Diffusion-Cooled Hot-Electron Mixer at 2.5 THz

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1997-01-01

    The noise performance of a Nb hot-electron bolometer mixer at 2.5 THz has been investigated. The devices are fabricated from a 12-nm-thick Nb film, and have a 0.30 micrometer x 0.15 micrometer in-plane size, thus exploiting diffusion as the electron cooling mechanism. The rf coupling was provided by a twin-slot planar antenna on an elliptical Si lens. The experimentally measured double sideband noise temperature of the receiver was as low as 2750 +/- 250 K with an estimated mixer noise temperature of approximately equal 900 K. The mixer bandwidth derived from both noise bandwidth and IF impedance measurements was approximately equal 1.4 GHz. These results demonstrate the low-noise operation of the diffusion-cooled bolometer mixer above 2 THz.

  3. A Feasibility Study for Simultaneous Measurements of Water Vapor and Precipitation Parameters using a Three-frequency Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.; Tian, L.

    2005-01-01

    The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. The coupling between the precipitation and water vapor estimates is generally weak but increases with bandwidth and the amount of non-Rayleigh scattering of the hydrometeors. The coupling leads to biases in the estimates of water vapor absorption that are related primarily to the phase state and the median mass diameter of the hydrometeors. For a down-looking radar, path-averaged estimates of water vapor absorption are possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Simulations of the water vapor attenuation retrieval show that the largest source of error typically arises from the variance in the measured radar return powers. Although the error can be mitigated by a combination of a high pulse repetition frequency, pulse compression, and averaging in range and time, the radar receiver must be stable over the averaging period. For fractional bandwidths of 20% or less, the potential exists for simultaneous measurements at the three frequencies with a single antenna and transceiver, thereby significantly reducing the cost and mass of the system.

  4. Design, Validation, and Testing of a Hot-Film Anemometer for Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Sheplak, Mark

    The application of constant-temperature hot-film anemometry to hypersonic flow has been reviewed and extended in this thesis. The objective of this investigation was to develop a measurement tool capable of yielding continuous, high-bandwidth, quantitative, normal mass-flux and total -temperature measurements in moderate-enthalpy environments. This research has produced a probe design that represents a significant advancement over existing designs, offering the following improvements: (1) a five-fold increase in bandwidth; (2) true stagnation-line sensor placement; (3) a two order-of-magnitude decrease in sensor volume; and (4) over a 70% increase in maximum film temperature. These improvements were achieved through substrate design, sensor placement, the use of high-temperature materials, and state -of-the-art microphotolithographic fabrication techniques. The experimental study to characterize the probe was performed in four different hypersonic wind tunnels at NASA-Langley Research Center. The initial test consisted of traversing the hot film through a Mach 6, flat-plate, turbulent boundary layer in air. The detailed static-calibration measurements that followed were performed in two different hypersonic flows: a Mach 11 helium flow and Mach 6 air flow. The final test of this thesis consisted of traversing the probe through the Mach 6 wake of a 70^ circ blunt body. The goal of this test was to determine the state (i.e., laminar or turbulent) of the wake. These studies indicate that substrate conduction effects result in instrumentation characteristics that prevent the hot-film anemometer from being used as a quantitative tool. The extension of this technique to providing quantitative information is dependent upon the development of lower thermal-conductivity substrate materials. However, the probe durability, absence of strain gauging, and high bandwidth represent significant improvements over the hot-wire technique for making qualitative measurements. Potential uses for this probe are: frequency identification for resonant flows, transition studies, turbulence detection for quiet-tunnel development and reattaching turbulent shear flows, and qualitative turbulence studies of shock-wave/turbulent boundary layer interactions.

  5. Early Breast Cancer Diagnosis Using Microwave Imaging via Space-Frequency Algorithm

    NASA Astrophysics Data System (ADS)

    Vemulapalli, Spandana

    The conventional breast cancer detection methods have limitations ranging from ionizing radiations, low specificity to high cost. These limitations make way for a suitable alternative called Microwave Imaging, as a screening technique in the detection of breast cancer. The discernible differences between the benign, malignant and healthy breast tissues and the ability to overcome the harmful effects of ionizing radiations make microwave imaging, a feasible breast cancer detection technique. Earlier studies have shown the variation of electrical properties of healthy and malignant tissues as a function of frequency and hence stimulates high bandwidth requirement. A Ultrawideband, Wideband and Narrowband arrays have been designed, simulated and optimized for high (44%), medium (33%) and low (7%) bandwidths respectively, using the EM (electromagnetic software) called FEKO. These arrays are then used to illuminate the breast model (phantom) and the received backscattered signals are obtained in the near field for each case. The Microwave Imaging via Space-Time (MIST) beamforming algorithm in the frequency domain, is next applied to these near field backscattered monostatic frequency response signals for the image reconstruction of the breast model. The main purpose of this investigation is to access the impact of bandwidth and implement a novel imaging technique for use in the early detection of breast cancer. Earlier studies show the implementation of the MIST imaging algorithm on the time domain signals via a frequency domain beamformer. The performance evaluation of the imaging algorithm on the frequency response signals has been carried out in the frequency domain. The energy profile of the breast in the spatial domain is created via the frequency domain Parseval's theorem. The beamformer weights calculated using these the MIST algorithm (not including the effect of the skin) has been calculated for Ultrawideband, Wideband and Narrowband arrays, respectively. Quality metrics such as dynamic range, radiometric resolution etc. are also evaluated for all the three types of arrays.

  6. Silicon Nanophotonics for Many-Core On-Chip Networks

    NASA Astrophysics Data System (ADS)

    Mohamed, Moustafa

    Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is superior to existing solutions in terms of power and performance. In fact, our solution can scale to thousand core with low overhead.

  7. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  8. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  9. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  10. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  11. 47 CFR 24.133 - Emission limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement... outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement...

  12. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  13. The N/Rev phenomenon in simulating a blade-element rotor system

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1983-01-01

    When a simulation model produces frequencies that are beyond the bandwidth of a discrete implementation, anomalous frequencies appear within the bandwidth. Such is the case with blade element models of rotor systems, which are used in the real time, man in the loop simulation environment. Steady state, high frequency harmonics generated by these models, whether aliased or not, obscure piloted helicopter simulation responses. Since these harmonics are attenuated in actual rotorcraft (e.g., because of structural damping), a faithful environment representation for handling qualities purposes may be created from the original model by using certain filtering techniques, as outlined here. These include harmonic consideration, conventional filtering, and decontamination. The process of decontamination is of special interest because frequencies of importance to simulation operation are not attenuated, whereas superimposed aliased harmonics are.

  14. Ultrafast FADC multiplexer

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Cortina, J.; Lorenz, E.; Martinez, M.; Ostankov, A.; Paneque, D.

    2002-10-01

    Ultrafast Flash amplitude-to-digital converters (FADCs) are still very expensive. Here we propose a multiplexing scheme allowing one in common trigger mode to read out multiple signal sources by using a single FADC channel. Usual coaxial cables can be used in the multiplexer as analog signal delay elements. The limited bandwidth of the coaxial cable, depending on its type and length will set an upper limit to the number of multiplexed channels. Better bandwidth and the correspondingly higher number of multiplexed channels one can obtain when using the technique of transmission of analog signals via optical fibers. Low-cost vertical cavity surface emitting laser (VCSEL) diodes can be used as converters of fast electrical signals into near infrared light. Multiplexing can be an economically priced solution when one needs ultrafast digitization of hundreds of fast signal channels.

  15. The Scalable Checkpoint/Restart Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, A.

    The Scalable Checkpoint/Restart (SCR) library provides an interface that codes may use to worite our and read in application-level checkpoints in a scalable fashion. In the current implementation, checkpoint files are cached in local storage (hard disk or RAM disk) on the compute nodes. This technique provides scalable aggregate bandwidth and uses storage resources that are fully dedicated to the job. This approach addresses the two common drawbacks of checkpointing a large-scale application to a shared parallel file system, namely, limited bandwidth and file system contention. In fact, on current platforms, SCR scales linearly with the number of compute nodes.more » It has been benchmarked as high as 720GB/s on 1094 nodes of Atlas, which is nearly two orders of magnitude faster thanthe parallel file system.« less

  16. Development of high frequency and wide bandwidth Johnson noise thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law abovemore » T ∼ 100 K.« less

  17. Compression of surface myoelectric signals using MP3 encoding.

    PubMed

    Chan, Adrian D C

    2011-01-01

    The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).

  18. Hazard Function Estimation with Cause-of-Death Data Missing at Random

    PubMed Central

    Wang, Qihua; Dinse, Gregg E.; Liu, Chunling

    2010-01-01

    Hazard function estimation is an important part of survival analysis. Interest often centers on estimating the hazard function associated with a particular cause of death. We propose three nonparametric kernel estimators for the hazard function, all of which are appropriate when death times are subject to random censorship and censoring indicators can be missing at random. Specifically, we present a regression surrogate estimator, an imputation estimator, and an inverse probability weighted estimator. All three estimators are uniformly strongly consistent and asymptotically normal. We derive asymptotic representations of the mean squared error and the mean integrated squared error for these estimators and we discuss a data-driven bandwidth selection method. A simulation study, conducted to assess finite sample behavior, demonstrates that the proposed hazard estimators perform relatively well. We illustrate our methods with an analysis of some vascular disease data. PMID:22267874

  19. Holistic design in high-speed optical interconnects

    NASA Astrophysics Data System (ADS)

    Saeedi, Saman

    Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s. Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW. Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be 64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

  20. Quantitative susceptibility mapping across two clinical field strengths: Contrast-to-noise ratio enhancement at 1.5T.

    PubMed

    Ippoliti, Matteo; Adams, Lisa C; Winfried, Brenner; Hamm, Bernd; Spincemaille, Pascal; Wang, Yi; Makowski, Marcus R

    2018-04-16

    Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content. To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.5T and 3T and to optimize the contrast-to-noise ratio (CNR) at 1.5T through bandwidth tuning. Prospective. Sixteen healthy volunteers (10 men, 6 women; age range 24-37; mean age 27.8 ± 3.2 years). 1.5T and 3T systems from the same vendor. Four spoiled gradient echo (SPGR) sequences were designed with different acquisition bandwidths. QSM reconstruction was achieved through a nonlinear morphology-enabled dipole inversion (MEDI) algorithm employing L1 regularization. CNR was calculated in seven regions of interest (ROIs), while reproducibility and consistency of QSM measurements were evaluated through voxel-based and region-specific linear correlation analyses and Bland-Altman plots. Interclass correlation, Wilcoxon rank sum test, linear regression analysis, Bland-Altman analysis, Welch's t-test. CNR analysis showed a statistically significant (P < 0.05) increase in four out of seven ROIs for the lowest bandwidth employed with respect to the highest (25.18% increase in CNR of caudate nucleus). All sequences reported an excellent correlation across field strength and bandwidth variation (R ≥ 0.96, widest limits of agreement from -18.7 to 25.8 ppb) in the ROI-based analysis, while the correlation was found to be good for the voxel-based analysis of averaged maps (R ≥ 0.90, widest limits of agreement from -9.3 to 9.1 ppb). CNR of QSM images reconstructed from 1.5T acquisitions can be enhanced through bandwidth tuning. MEDI-based QSM reconstruction demonstrated to be reproducible and consistent both across field strengths (1.5T and 3T) and bandwidth variation. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an excitation signal to the transducer and amplifying the signal received from the transducer. The excitation signal may be either a wide-bandwidth signal to excite the transducer across its entire operational spectrum, or a narrow-bandwidth signal optimized for a particular measurement technique. The transducer face is applied to the skin covering the bone to be characterized, and may be operated in through-transmission mode using two transducers, or in pulse-echo mode. The transducer is a unique combination of material, design, and fabrication technique. It is based on single-crystal lead magnesium niobate lead titanate (PMN-PT) piezoelectric material. As compared to the commonly used piezoceramics, this piezocrystal has superior piezoelectric and elastic properties, which results in devices with superior bandwidth, source level, and power requirements. This design necessitates a single resonant frequency. However, by operating in a transverse length-extensional mode, with the electric field applied orthogonally to the extensional direction, resonators of different sizes can share common electrodes, resulting in a multiply-resonant structure. With carefully sized resonators, and the superior bandwidth of piezocrystal, the resonances can be made to overlap to form a smooth, wide-bandwidth characteristic.

  2. Characterization of MgB2 Superconducting Hot Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  3. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/sqrt{Hz} when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ˜3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ˜110 charges in a single scan.

  4. Coherence bandwidth loss in transionospheric radio propagation

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.

    1980-01-01

    In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.

  5. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-15

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3more » kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.« less

  6. Broadening the Efficiency Bandwidth Product of Electrically small Antenna through Direct Antenna Modulation (DAM) Transmitting

    DTIC Science & Technology

    2017-12-04

    public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...Project Contribution: International Collaboration: International Travel : National Academy Member: N Person Months Worked: 6.00 Funding...Support: Project Contribution: International Collaboration: International Travel : National Academy Member: N Participant Type

  7. Study of adaptive methods for data compression of scanner data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The performance of adaptive image compression techniques and the applicability of a variety of techniques to the various steps in the data dissemination process are examined in depth. It is concluded that the bandwidth of imagery generated by scanners can be reduced without introducing significant degradation such that the data can be transmitted over an S-band channel. This corresponds to a compression ratio equivalent to 1.84 bits per pixel. It is also shown that this can be achieved using at least two fairly simple techniques with weight-power requirements well within the constraints of the LANDSAT-D satellite. These are the adaptive 2D DPCM and adaptive hybrid techniques.

  8. Bandwidth-Tunable Fiber Bragg Gratings Based on UV Glue Technique

    NASA Astrophysics Data System (ADS)

    Fu, Ming-Yue; Liu, Wen-Feng; Chen, Hsin-Tsang; Chuang, Chia-Wei; Bor, Sheau-Shong; Tien, Chuen-Lin

    2007-07-01

    In this study, we have demonstrated that a uniform fiber Bragg grating (FBG) can be transformed into a chirped fiber grating by a simple UV glue adhesive technique without shifting the reflection band with respect to the center wavelength of the FBG. The technique is based on the induced strain of an FBG due to the UV glue adhesive force on the fiber surface that causes a grating period variation and an effective index change. This technique can provide a fast and simple method of obtaining the required chirp value of a grating for applications in the dispersion compensators, gain flattening in erbium-doped fiber amplifiers (EDFAs) or optical filters.

  9. Fractional order implementation of Integral Resonant Control - A nanopositioning application.

    PubMed

    San-Millan, Andres; Feliu-Batlle, Vicente; Aphale, Sumeet S

    2017-10-04

    By exploiting the co-located sensor-actuator arrangement in typical flexure-based piezoelectric stack actuated nanopositioners, the polezero interlacing exhibited by their axial frequency response can be transformed to a zero-pole interlacing by adding a constant feed-through term. The Integral Resonant Control (IRC) utilizes this unique property to add substantial damping to the dominant resonant mode by the use of a simple integrator implemented in closed loop. IRC used in conjunction with an integral tracking scheme, effectively reduces positioning errors introduced by modelling inaccuracies or parameter uncertainties. Over the past few years, successful application of the IRC control technique to nanopositioning systems has demonstrated performance robustness, easy tunability and versatility. The main drawback has been the relatively small positioning bandwidth achievable. This paper proposes a fractional order implementation of the classical integral tracking scheme employed in tandem with the IRC scheme to deliver damping and tracking. The fractional order integrator introduces an additional design parameter which allows desired pole-placement, resulting in superior closed loop bandwidth. Simulations and experimental results are presented to validate the theory. A 250% improvement in the achievable positioning bandwidth is observed with proposed fractional order scheme. Copyright © 2017. Published by Elsevier Ltd.

  10. The human as a detector of changes in variance and bandwidth

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Govindaraj, T.

    1977-01-01

    The detection of changes in random process variance and bandwidth was studied. Psychophysical thresholds for these two parameters were determined using an adaptive staircase technique for second order random processes at two nominal periods (1 and 3 seconds) and damping ratios (0.2 and 0.707). Thresholds for bandwidth changes were approximately 9% of nominal except for the (3sec,0.2) process which yielded thresholds of 12%. Variance thresholds averaged 17% of nominal except for the (3sec,0.2) process in which they were 32%. Detection times for suprathreshold changes in the parameters may be roughly described by the changes in RMS velocity of the process. A more complex model is presented which consists of a Kalman filter designed for the nominal process using velocity as the input, and a modified Wald sequential test for changes in the variance of the residual. The model predictions agree moderately well with the experimental data. Models using heuristics, e.g. level crossing counters, were also examined and are found to be descriptive but do not afford the unification of the Kalman filter/sequential test model used for changes in mean.

  11. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption.

    PubMed

    Zhou, Ziheng; Chen, Ke; Zhao, Junming; Chen, Ping; Jiang, Tian; Zhu, Bo; Feng, Yijun; Li, Yue

    2017-11-27

    The metasurfaces have recently been demonstrated to provide full control of the phase responses of electromagnetic (EM) wave scattering over subwavelength scales, enabling a wide range of practical applications. Here, we propose a comprehensive scheme for the efficient and flexible design of metasurface Salisbury screen (MSS) capable of absorbing the impinging EM wave in an ultra-wide frequency band. We show that properly designed reflective metasurface can be used to substitute the metallic ground of conventional Salisbury screen for generating diverse resonances in a desirable way, thus providing large controllability over the absorption bandwidth. Based on this concept, we establish an equivalent circuit model to qualitatively analysis the resonances in MSS and design algorithms to optimize the overall performance of the MSS. Experiments have been carried out to demonstrate that the absorption bandwidth from 6 GHz to 30 GHz with an efficiency higher than 85% can be achieved by the proposal, which is apparently much larger than that of conventional Salisbury screen (7 GHz - 17 GHz). The proposed concept of MSS could offer opportunities for flexibly designing thin electromagnetic absorbers with simultaneously ultra-wide bandwidth, polarization insensitivity, and wide incident angle, exhibiting promising potentials for many applications such as in EM compatibility, stealth technique, etc.

  12. Wideband LTE power amplifier with integrated novel analog pre-distorter linearizer for mobile wireless communications.

    PubMed

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.

  13. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  14. Wideband LTE Power Amplifier with Integrated Novel Analog Pre-Distorter Linearizer for Mobile Wireless Communications

    PubMed Central

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA’s power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics. PMID:25033049

  15. Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: Signal design

    NASA Astrophysics Data System (ADS)

    Widanage, W. D.; Barai, A.; Chouchelamane, G. H.; Uddin, K.; McGordon, A.; Marco, J.; Jennings, P.

    2016-08-01

    The Pulse Power Current (PPC) profile is often the signal of choice for obtaining the parameters of a Lithium-ion (Li-ion) battery Equivalent Circuit Model (ECM). Subsequently, a drive-cycle current profile is used as a validation signal. Such a profile, in contrast to a PPC, is more dynamic in both the amplitude and frequency bandwidth. Modelling errors can occur when using PPC data for parametrisation since the model is optimised over a narrower bandwidth than the validation profile. A signal more representative of a drive-cycle, while maintaining a degree of generality, is needed to reduce such modelling errors. In Part 1 of this 2-part paper a signal design technique defined as a pulse-multisine is presented. This superimposes a signal known as a multisine to a discharge, rest and charge base signal to achieve a profile more dynamic in amplitude and frequency bandwidth, and thus more similar to a drive-cycle. The signal improves modelling accuracy and reduces the experimentation time, per state-of-charge (SoC) and temperature, to several minutes compared to several hours for an PPC experiment.

  16. Predictive Cache Modeling and Analysis

    DTIC Science & Technology

    2011-11-01

    metaheuristic /bin-packing algorithm to optimize task placement based on task communication characterization. Our previous work on task allocation showed...Cache Miss Minimization Technology To efficiently explore combinations and discover nearly-optimal task-assignment algorithms , we extended to our...it was possible to use our algorithmic techniques to decrease network bandwidth consumption by ~25%. In this effort, we adapted these existing

  17. Argo Development Program.

    DTIC Science & Technology

    1986-06-01

    nonlinear form and account for uncertainties in model parameters, structural simplifications of the model, and disturbances. This technique summarizes...SHARPS system. *The take into account the coupling between axes two curves are nearly identical, except that the without becoming unwieldy. The low...are mainly caused by errors and control errors and accounts for the bandwidth limitations and the simulated current. observed offsets. The overshoot

  18. Bandwidth compression of color video signals. Ph.D. Thesis Final Report, 1 Oct. 1979 - 30 Sep. 1980

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1980-01-01

    The different encoder/decoder strategies to digitally encode video using an adaptive delta modulation are described. The techniques employed are: (1) separately encoding the R, G, and B components; (2) separately encoding the I, Y, and Q components; and (3) encoding the picture in a line sequential manner.

  19. A cooperative positioning algorithm for DSRC enabled vehicular networks

    NASA Astrophysics Data System (ADS)

    Efatmaneshnik, M.; Kealy, A.; Alam, N.; Dempster, A. G.

    2011-12-01

    Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an inter-vehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.

  20. Load Balancing in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Zhu, Yingwu

    In this chapter we start by addressing the importance and necessity of load balancing in structured P2P networks, due to three main reasons. First, structured P2P networks assume uniform peer capacities while peer capacities are heterogeneous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash function used to generate node IDs and data item keys leads to imbalanced overlay address space and item distribution. Lastly, placement of data items cannot be randomized in some applications (e.g., range searching). We then present an overview of load aggregation and dissemination techniques that are required by many load balancing algorithms. Two techniques are discussed including tree structure-based approach and gossip-based approach. They make different tradeoffs between estimate/aggregate accuracy and failure resilience. To address the issue of load imbalance, three main solutions are described: virtual server-based approach, power of two choices, and address-space and item balancing. While different in their designs, they all aim to improve balance on the address space and data item distribution. As a case study, the chapter discusses a virtual server-based load balancing algorithm that strives to ensure fair load distribution among nodes and minimize load balancing cost in bandwidth. Finally, the chapter concludes with future research and a summary.

  1. A novel LTE scheduling algorithm for green technology in smart grid.

    PubMed

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid

    2015-01-01

    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.

  2. A Novel LTE Scheduling Algorithm for Green Technology in Smart Grid

    PubMed Central

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin; Chayon, Muhammad Hasibur Rashid

    2015-01-01

    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application’s priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively. PMID:25830703

  3. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings.

    PubMed

    Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2016-08-01

    A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.

  4. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    NASA Astrophysics Data System (ADS)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators for supercomputers. Finally, the dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).

  5. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.

    PubMed

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thevenaz, Luc; Capmany, José

    2013-11-18

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes.

  6. An improved model to predict bandwidth enhancement in an inductively tuned common source amplifier.

    PubMed

    Reza, Ashif; Misra, Anuraag; Das, Parnika

    2016-05-01

    This paper presents an improved model for the prediction of bandwidth enhancement factor (BWEF) in an inductively tuned common source amplifier. In this model, we have included the effect of drain-source channel resistance of field effect transistor along with load inductance and output capacitance on BWEF of the amplifier. A frequency domain analysis of the model is performed and a closed-form expression is derived for BWEF of the amplifier. A prototype common source amplifier is designed and tested. The BWEF of amplifier is obtained from the measured frequency response as a function of drain current and load inductance. In the present work, we have clearly demonstrated that inclusion of drain-source channel resistance in the proposed model helps to estimate the BWEF, which is accurate to less than 5% as compared to the measured results.

  7. HgCdTe APDs for time-resolved space applications

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.

    2017-12-01

    The use of HgCdTe avalanche photodiodes (APDs) for resolving the temporal variation of faint light level signals is analyzed. The analysis is based on the performance characteristics such as the gain, the response time, and dark currents in the APDs, measured as a function of operating temperature and Cd composition, and on recently developed detector demonstrator modules. The choice of Cd composition in the APDs is strongly dependent on the application needs in terms of electrical bandwidth and signal-to-noise ratio. A performance model has been developed and used to predict the performance of the future detector modules for different applications such as high bandwidth and/or deep space free space optical telecommunications and lidar, associated with sensitivities down to single photon level at low operating temperature and close to single-photon operation at bandwidth of 10 GHz at room temperature. The predictions are corroborated by the results obtained on detector modules that have been developed and used in lidar and deep space optical communications. In a first lidar prototype, integrating a 200 µm APD, we obtained a maximum sensitivity of 25 fW/√Hz at T = 190 K operating temperature. The detector has been used for differential absorption lidar estimations of the absorption due to presence of CO2 in the atmosphere. A random error of 3-10% was obtained for the estimation of the optical thickness at a distance of 100-3000 m, for a range resolution of 100 m and using and averaging time of 4 s. The pursuit of this development is pending on the space qualification of the technology. Results from first proton and irradiation tests are reported that shows on a close to constant performance during and after the irradiation and endurance tests.

  8. Coding Local and Global Binary Visual Features Extracted From Video Sequences.

    PubMed

    Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2015-11-01

    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the bag-of-visual word model. Several applications, including, for example, visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget while attaining a target level of efficiency. In this paper, we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can conveniently be adopted to support the analyze-then-compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs the visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the compress-then-analyze (CTA) paradigm. In this paper, we experimentally compare the ATC and the CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: 1) homography estimation and 2) content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with the CTA, especially in bandwidth limited scenarios.

  9. Coding Local and Global Binary Visual Features Extracted From Video Sequences

    NASA Astrophysics Data System (ADS)

    Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2015-11-01

    Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.

  10. Coherent beam combining performance in harsh environment

    NASA Astrophysics Data System (ADS)

    Lombard, L.; Canat, G.; Durecu, A.; Bourdon, P.

    2014-03-01

    Coherent beam combining (CBC) is a promising solution for high power directed energy weapons. We investigate several particular issues for this application: First, we study the evolution of phase noise spectrum for increasing pump power in 100 W MOPFA. The main variations in the spectrum are located in the low frequency region corresponding to thermal transfer between the fiber core heated by the pump absorption and the fiber environment. The phase noise root mean square evolves linearly with the pump power. Noise spectrum is not shifted to higher frequencies. Second, we investigate the influence of fiber packaging and amplifier packaging on the phase noise and estimate the LOCSET controller bandwidth (BW) requirement in each case. Results show large variation of BW depending on the packaging, and not on the power. Then, we investigate the performances of CBC in harsh environment. For this purpose, we implement CBC of a 20-W fiber amplifier and a passive fiber using the LOCSET technique and simulate harsh environment by applying strong vibrations with a hammering drill on the optical table. The applied vibration spectrum ranges from 1 Hz to ~10 kHz with a standard deviation of 9 m/s2. CBC of the amplifier output and the passive fiber output is performed on a second table, isolated from vibrations. Measurements of the phase difference between both outputs and of the applied vibrations are simultaneously performed. Residual phase error of λ/40 (i.e. > 99 % CBC efficiency) is achieved under strong vibrations at 20 W. The -3 dB bandwidth of the LOCSET controller has been measured to be ~4.5 kHz. Results are in agreement with simulations.

  11. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study

    NASA Astrophysics Data System (ADS)

    Troudi, Molka; Alimi, Adel M.; Saoudi, Samir

    2008-12-01

    The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.

  12. A novel approach for clock recovery without pattern effect from degraded signal

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi

    2003-04-01

    A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.

  13. High-Speed TCP Testing

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.

    1999-01-01

    Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.

  14. Fiber optic sensors; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985

    NASA Technical Reports Server (NTRS)

    Arditty, Herve J. (Editor); Jeunhomme, Luc B. (Editor)

    1986-01-01

    The conference presents papers on distributed sensors and sensor networks, signal processing and detection techniques, temperature measurements, chemical sensors, and the measurement of pressure, strain, and displacements. Particular attention is given to optical fiber distributed sensors and sensor networks, tactile sensing in robotics using an optical network and Z-plane techniques, and a spontaneous Raman temperature sensor. Other topics include coherence in optical fiber gyroscopes, a high bandwidth two-phase flow void fraction fiber optic sensor, and a fiber-optic dark-field microbend sensor.

  15. Optical signal suppression by a cascaded SOA/RSOA for wavelength reusing reflective PON upstream transmission.

    PubMed

    Jung, Sang Min; Mun, Kyoung Hak; Kang, Soo Min; Han, Sang Kook

    2017-09-18

    An optical signal suppression technique based on a cascaded SOA and RSOA is proposed for the reflective passive optical networks (PONs) with wavelength division multiplexing (WDM). By suppressing the downstream signal of the optical carrier, the proposed reflective PON effectively reuses the downstream optical carrier for upstream signal transmission. As an experimental demonstration, we show that the proposed optical signal suppression technique is effective in terms of the signal bandwidth and bit-error-rate (BER) performance of the remodulated upstream transmission.

  16. Enhanced compressed sensing for visual target tracking in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Qiang, Guo

    2017-11-01

    Moving object tracking in wireless sensor networks (WSNs) has been widely applied in various fields. Designing low-power WSNs for the limited resources of the sensor, such as energy limitation, energy restriction, and bandwidth constraints, is of high priority. However, most existing works focus on only single conflicting optimization criteria. An efficient compressive sensing technique based on a customized memory gradient pursuit algorithm with early termination in WSNs is presented, which strikes compelling trade-offs among energy dissipation for wireless transmission, certain types of bandwidth, and minimum storage. Then, the proposed approach adopts an unscented particle filter to predict the location of the target. The experimental results with a theoretical analysis demonstrate the substantially superior effectiveness of the proposed model and framework in regard to the energy and speed under the resource limitation of a visual sensor node.

  17. An investigation of networking techniques for the ASRM facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Robert J., II; Smith, Wayne D.; Thompson, Dale R.

    1992-01-01

    This report is based on the early design concepts for a communications network for the Advanced Solid Rocket Motor (ASRM) facility being built at Yellow Creek near Iuka, MS. The investigators have participated in the early design concepts and in the evaluation of the initial concepts. The continuing system design effort and any modification of the plan will require a careful evaluation of the required bandwidth of the network, the capabilities of the protocol, and the requirements of the controllers and computers on the network. The overall network, which is heterogeneous in protocol and bandwidth, is being modeled, analyzed, simulated, and tested to obtain some degree of confidence in its performance capabilities and in its performance under nominal and heavy loads. The results of the proposed work should have an impact on the design and operation of the ASRM facility.

  18. A wide-band dual-polarized VHF microstrip antenna for global sensing of sea ice thickness

    NASA Technical Reports Server (NTRS)

    Huang, John; Hussein, Ziad; Petros, Argy

    2005-01-01

    A VHF microstrip patch antenna was developed to achieve a bandwidth of 45 MHz (30%) from 127 MHz to 172 MHz with dual-linear-polarization capability. This microstrip antenna used foam substrates and dual stacked patches with capacitive probe feeds to achieve wide bandwidth. Four such capacitive feeds were used to achieve dual polarizations with less than -20 dB of cross-polarization level. Twenty-four shorting pins were used on the lower patch to achieve acceptable isolation between the four feed probes. This antenna has a measured gain of 8.5 dB at 137 MHz and 10 dB at 162 MHz. By using the Method of Moments technique, multipath scattering patterns were calculated when the antenna is mounted on the outside of a Twin Otter aircraft.

  19. Optimal modified tracking performance for MIMO networked control systems with communication constraints.

    PubMed

    Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng

    2017-05-01

    This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Bandwidth Efficient Modulation and Coding Techniques for NASA's Existing Ku/Ka-Band 225 MHz Wide Service

    NASA Technical Reports Server (NTRS)

    Gioannini, Bryan; Wong, Yen; Wesdock, John

    2005-01-01

    The National Aeronautics and Space Administration (NASA) has recently established the Tracking and Data Relay Satellite System (TDRSS) K-band Upgrade Project (TKUP), a project intended to enhance the TDRSS Ku-band and Ka-band Single Access Return 225 MHz (Ku/KaSAR-225) data service by adding the capability to process bandwidth efficient signal design and to replace the White Sand Complex (WSC) KSAR high data rate ground equipment and high rate switches which are nearing obsolescence. As a precursor to this project, a modulation and coding study was performed to identify signal structures which maximized the data rate through the Ku/KaSAR-225 channel, minimized the required customer EIRP and ensured acceptable hardware complexity on the customer platform. This paper presents the results and conclusions of the TKUP modulation and coding study.

  1. Nuclear magnetic resonance imaging at microscopic resolution

    NASA Astrophysics Data System (ADS)

    Johnson, G. Allan; Thompson, Morrow B.; Gewalt, Sally L.; Hayes, Cecil E.

    Resolution limits in NMR imaging are imposed by bandwidth considerations, available magnetic gradients for spatial encoding, and signal to noise. This work reports modification of a clinical NMR imaging device with picture elements of 500 × 500 × 5000 μm to yield picture elements of 50 × 50 × 1000 μm. Resolution has been increased by using smaller gradient coils permitting gradient fields >0.4 mT/cm. Significant improvements in signal to noise are achieved with smaller rf coils, close attention to choice of bandwidth, and signal averaging. These improvements permit visualization of anatomical structures in the rat brain with an effective diameter of 1 cm with the same definition as is seen in human imaging. The techniques and instrumentation should open a number of basic sciences such as embryology, plant sciences, and teratology to the potentials of NMR imaging.

  2. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun

    2018-05-01

    We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.

  3. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    PubMed

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  4. A high capacity data centre network: simultaneous 4-PAM data at 20 Gbps and 2 GHz phase modulated RF clock signal over a single VCSEL carrier

    NASA Astrophysics Data System (ADS)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.

  5. Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions

    PubMed Central

    Zhan, Tingting; Chevoneva, Inna; Iglewicz, Boris

    2010-01-01

    The family of weighted likelihood estimators largely overlaps with minimum divergence estimators. They are robust to data contaminations compared to MLE. We define the class of generalized weighted likelihood estimators (GWLE), provide its influence function and discuss the efficiency requirements. We introduce a new truncated cubic-inverse weight, which is both first and second order efficient and more robust than previously reported weights. We also discuss new ways of selecting the smoothing bandwidth and weighted starting values for the iterative algorithm. The advantage of the truncated cubic-inverse weight is illustrated in a simulation study of three-components normal mixtures model with large overlaps and heavy contaminations. A real data example is also provided. PMID:20835375

  6. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals

    PubMed Central

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Lu, Mingquan

    2017-01-01

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm. PMID:29035350

  7. Recent activities in printed Antennas at LeRC

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.

  8. Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals.

    PubMed

    Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Zhao, Sihao; Lu, Mingquan

    2017-10-16

    Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm.

  9. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  10. Tunable Bandwidth Quantum Well Infrared Photo Detector (TB-QWIP)

    DTIC Science & Technology

    2003-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited. TUNABLE...Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In this thesis a

  11. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  12. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  13. High bandwidth specialty optical fibers for data communications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Sun, Xiaoguang

    2008-11-01

    Perhaps the most common specialty optical fiber is HCS hard polymer clad silica fiber. It was invented almost 30 years ago for transmitting laser light to initiate explosives in mining industry and later adapted to be used in a variety of new applications, such as data communications. The most typical HCS fiber typically consists of a 200 μm pure silica glass core, a thin coating of low refractive index hard polymer as the cladding, and an ETFE buffer. This design enables the "crimp-and-cleave" technique of terminating and connectorizing fibers quickly and reliably. Its greater glass diameter also renders greater robustness allowing the fiber to endure greater forces during installation. Due to its larger core size and high numerical aperture (NA), the fiber can be used with a plastic connector and low cost LED transmitter that can greatly reduce the system cost. It can also be used at higher temperature and humidity conditions than standard optical fibers coated with telecommunications grade acrylate material. As applications evolve and require greater bandwidth and/or performance over a greater distance, the challenge now is to develop specialty optical fibers with significantly greater bandwidth-length product while maintaining all other characteristics critical to their ease of use and performance. As a response to the demand, two new fiber types have been designed and developed as higher bandwidth versions of the original HCS fiber. In this paper, we will discuss some of the main design requirements for the fibers, describe in detail the two designs, and present the results of fiber performance.

  14. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    NASA Technical Reports Server (NTRS)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  15. A 1- to 10-GHz downconverter for high-resolution microwave survey

    NASA Technical Reports Server (NTRS)

    Mcwatters, D.

    1994-01-01

    A downconverter was designed, built, and tested for the High Resolution Microwave Survey project. The input frequency range is 1 to 10 GHz with instantaneous bandwidth of 350 MHz and dynamic range of 125 dB/Hz. Requirements were derived for the local oscillators and special design techniques were implemented to achieve the high degree of spectral purity required.

  16. A Standard for RF Modulation Factor,

    DTIC Science & Technology

    1979-09-01

    Mathematics of Physics and Chemistry, pp. 474-477 (D. Van Nostrand Co., Inc., New York, N.Y., 1943). [23] Graybill , F. A., An Introduction to Linear ...circuit model . The primary limitation on the quadratic technique is the linearity and bandwidth of the analog multiplier. A high speed (5 MHz...o ...... . ..... 39 7.2.1. Nonlinearity Model ............................................... 41 7.2.2. Model Parameters

  17. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  18. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  19. Bivariate discrete beta Kernel graduation of mortality data.

    PubMed

    Mazza, Angelo; Punzo, Antonio

    2015-07-01

    Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on P-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors.

  20. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.

    PubMed

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-10-09

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.

  1. MOSAIC - A space-multiplexing technique for optical processing of large images

    NASA Technical Reports Server (NTRS)

    Athale, Ravindra A.; Astor, Michael E.; Yu, Jeffrey

    1993-01-01

    A technique for Fourier processing of images larger than the space-bandwidth products of conventional or smart spatial light modulators and two-dimensional detector arrays is described. The technique involves a spatial combination of subimages displayed on individual spatial light modulators to form a phase-coherent image, which is subsequently processed with Fourier optical techniques. Because of the technique's similarity with the mosaic technique used in art, the processor used is termed an optical MOSAIC processor. The phase accuracy requirements of this system were studied by computer simulation. It was found that phase errors of less than lambda/8 did not degrade the performance of the system and that the system was relatively insensitive to amplitude nonuniformities. Several schemes for implementing the subimage combination are described. Initial experimental results demonstrating the validity of the mosaic concept are also presented.

  2. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk

    2014-01-20

    This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds particular promise for the study of dynamic combusting flows. A proof-of-concept numerical demonstration is presented, using representative phantoms to model conditions typically prevailing in near-atmospheric or high pressure flames. The simulations reveal both the feasibility of the proposed technique and its robustness. Our calculations indicate precisions of ∼70 K at flame temperatures and ∼0.05 bars at high pressure from reconstructions featuring as much as 5% Gaussian noise in the projections.

  3. Analyzing mobile WiMAX base station deployment under different frequency planning strategies

    NASA Astrophysics Data System (ADS)

    Salman, M. K.; Ahmad, R. B.; Ali, Ziad G.; Aldhaibani, Jaafar A.; Fayadh, Rashid A.

    2015-05-01

    The frequency spectrum is a precious resource and scarce in the communication markets. Therefore, different techniques are adopted to utilize the available spectrum in deploying WiMAX base stations (BS) in cellular networks. In this paper several types of frequency planning techniques are illustrated, and a comprehensive comparative study between conventional frequency reuse of 1 (FR of 1) and fractional frequency reuse (FFR) is presented. These techniques are widely used in network deployment, because they employ universal frequency (using all the available bandwidth) in their base station installation/configuration within network system. This paper presents a network model of 19 base stations in order to be employed in the comparison of the aforesaid frequency planning techniques. Users are randomly distributed within base stations, users' resource mapping and their burst profile selection are based on the measured signal to interference plus-noise ratio (SINR). Simulation results reveal that the FFR has advantages over the conventional FR of 1 in various metrics. 98 % of downlink resources (slots) are exploited when FFR is applied, whilst it is 81 % at FR of 1. Data rate of FFR has been increased to 10.6 Mbps, while it is 7.98 Mbps at FR of 1. The spectral efficiency is better enhanced (1.072 bps/Hz) at FR of 1 than FFR (0.808 bps/Hz), since FR of 1 exploits all the Bandwidth. The subcarrier efficiency shows how many data bits that can be carried by subcarriers under different frequency planning techniques, the system can carry more data bits under FFR (2.40 bit/subcarrier) than FR of 1 (1.998 bit/subcarrier). This study confirms that FFR can perform better than conventional frequency planning (FR of 1) which made it a strong candidate for WiMAX BS deployment in cellular networks.

  4. Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers

    PubMed Central

    Luu, Loc; Dinh, Anh

    2018-01-01

    The aim of this study is on the investigation of motion noise removal techniques using two-accelerometer sensor system and various placements of the sensors on gentle movement and walking of the patients. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design filters in the motion noise removal techniques and peak signal detection. There are two main techniques of combining signals from the two sensors to mitigate the motion artifact: analog processing and digital processing. The analog processing comprises analog circuits performing adding or subtracting functions and bandpass filter to remove artifact noises before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The two techniques are tested on three placements of accelerometer sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are the best techniques to deal with gentle motion on all sensor placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to traditional methods using only one accelerometer. With walking motion, ADDER and z-axis acceleration are the best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer method. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. PMID:29614821

  5. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  6. An analysis and demonstration of clock synchronization by VLBI

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.

    1972-01-01

    A prototype of a semireal-time system for synchronizing the DSN station clocks by radio interferometry was successfully demonstrated. The system utilized an approximate maximum likelihood estimation procedure for processing the data, thereby achieving essentially optimum time synchronization estimates for a given amount of data, or equivalently, minimizing the amount of data required for reliable estimation. Synchronization accuracies as good as 100 nsec rms were achieved between DSS 11 and DSS 12, both at Goldstone, California. The accuracy can be improved by increasing the system bandwidth until the fundamental limitations due to position uncertainties of baseline and source and atmospheric effects are reached. These limitations are under ten nsec for transcontinental baselines.

  7. Comparison of Fatigue Life Estimation Using Equivalent Linearization and Time Domain Simulation Methods

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Dhainaut, Jean-Michel

    2000-01-01

    The Monte Carlo simulation method in conjunction with the finite element large deflection modal formulation are used to estimate fatigue life of aircraft panels subjected to stationary Gaussian band-limited white-noise excitations. Ten loading cases varying from 106 dB to 160 dB OASPL with bandwidth 1024 Hz are considered. For each load case, response statistics are obtained from an ensemble of 10 response time histories. The finite element nonlinear modal procedure yields time histories, probability density functions (PDF), power spectral densities and higher statistical moments of the maximum deflection and stress/strain. The method of moments of PSD with Dirlik's approach is employed to estimate the panel fatigue life.

  8. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-01-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/\\documentclass[12pt]{minimal}\\begin{document}$\\sqrt{\\mbox{Hz}}$\\end{document}Hz when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ∼3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ∼110 charges in a single scan. PMID:22225232

  9. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    PubMed Central

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  10. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    PubMed

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  11. Results of using frequency banded SAFT for examining three types of defects

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Barker, Alan; Santos-Villalobos, Hector

    2017-02-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties; its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include the containment building, spent fuel pool, and cooling towers. This use has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular Nondestructive Evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply the frequency banded Synthetic Aperture Focusing Technique (SAFT) technique to a 2.134 m × 2.134 m × 1.016 m concrete test specimen with twenty deliberately embedded defects. These twenty embedded defects simulate voids (honeycombs), delamination, and embedded organic construction debris. Using the time-frequency technique of wavelet packet decomposition and reconstruction, the spectral content of the signal can be divided into two resulting child nodes. The resulting two nodes can then also be divided into two child nodes with each child node containing half of the bandwidth (spectral content) of its parent node. This process can be repeated until the bandwidth of the child nodes is sufficiently small. Once the desired bandwidth has been obtained, the band limited signal can be analyzed using SAFT, enabling the visualization of reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. This paper examines the benefits of using frequency banded SAFT.

  12. Generation of short and intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Khan, Sabih Ud Din

    Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ˜100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ˜20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ˜9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ˜100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract intense SAP from an APT driven by blue laser pulses. We also demonstrated compression of long blue pulses into >240 microJ broad-bandwidth pulses using neon filled hollow core fiber, which is the highest reported pulse energy of short blue pulses. However, compression of phase using chirp mirrors is still a technical challenge.

  13. Electromagnetic properties of absorber fabric coated with BaFe12O19/MWCNTs/PANi nanocomposite in X and Ku bands frequency

    NASA Astrophysics Data System (ADS)

    Afzali, Arezoo; Mottaghitalab, Vahid; Seyyed Afghahi, Seyyed Salman; Jafarian, Mojtaba; Atassi, Yomen

    2017-11-01

    Current investigation focuses on the electromagnetic properties of nonwoven fabric coated with BaFe12O19 (BHF) /MWCNTs/PANi nanocomposite in X and Ku bands. The BHF/MWCNTs and BHF/MWCNTs/PANi nanocomposites are prepared using the sol gel and in-situ polymerization methods respectively. The absorbent fabric was prepared based on applying a 40 wt% of BHF/MWCNTs/PANi nanocomposite in silicon resin on nonwoven fabric via roller coating technique The X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and vector network analysis (VNA) are used to peruse microstructural, magnetic and electromagnetic features of the composite and absorber fabric respectively. The microscopic images of the fabric coated with magnetic nanocomposite shows a homogenous layer of nanoparticles on the fabric surface. The maximum reflection loss of binary nano-composite BHF/MWCNTs was measured about -28.50 dB at 11.72 GHz with 1.7 GHz bandwidth (RL < -10 dB) in X band. Moreover in Ku band, the maximum reflection loss is -29.66 dB at 15.78 GHz with 3.2 GHz bandwidths. Also the ternary nanocomposite BHF/MWCNTs/PANi exhibits a broad band absorber over a wide range of X band with a maximum reflection loss of -36.2 dB at 10.2 GHz with 1.5 GHz bandwidth and in the Ku band has arrived a maximum reflection loss of -37.65 dB at 12.84 GHz with 2.43 GHz bandwidth. This result reflects the synergistic effect of the different components with different loss mechanisms. As it is observed due to the presence of PANi in the structure of nanocomposite, the amount of absorption has increased extraordinarily. The absorber fabric exhibits a maximum reflection loss of -24.2 dB at 11.6 GHz with 4 GHz bandwidth in X band. However, in Ku band, the absorber fabric has had the maximum absorption in 16.88 GHz that is about -24.34 dB with 6 GHz bandwidth. Therefore, results indicate that the fabric samples coated represents appreciable maximum absorption value of more than 99% in X and Ku bands which can be attributed to presence of carbon and polyaniline structure in composite material.

  14. Paired comparisons of nonlinear frequency compression, extended bandwidth, and restricted bandwidth hearing-aid processing for children and adults with hearing loss

    PubMed Central

    Brennan, Marc A.; McCreery, Ryan; Kopun, Judy; Hoover, Brenda; Alexander, Joshua; Lewis, Dawna; Stelmachowicz, Patricia G.

    2014-01-01

    Background Preference for speech and music processed with nonlinear frequency compression and two controls (restricted and extended bandwidth hearing-aid processing) was examined in adults and children with hearing loss. Purpose Determine if stimulus type (music, sentences), age (children, adults) and degree of hearing loss influence listener preference for nonlinear frequency compression, restricted bandwidth and extended bandwidth. Research Design Within-subject, quasi-experimental study. Using a round-robin procedure, participants listened to amplified stimuli that were 1) frequency-lowered using nonlinear frequency compression, 2) low-pass filtered at 5 kHz to simulate the restricted bandwidth of conventional hearing aid processing, or 3) low-pass filtered at 11 kHz to simulate extended bandwidth amplification. The examiner and participants were blinded to the type of processing. Using a two-alternative forced-choice task, participants selected the preferred music or sentence passage. Study Sample Sixteen children (8–16 years) and 16 adults (19–65 years) with mild-to-severe sensorineural hearing loss. Intervention All subjects listened to speech and music processed using a hearing-aid simulator fit to the Desired Sensation Level algorithm v.5.0a (Scollie et al, 2005). Results Children and adults did not differ in their preferences. For speech, participants preferred extended bandwidth to both nonlinear frequency compression and restricted bandwidth. Participants also preferred nonlinear frequency compression to restricted bandwidth. Preference was not related to degree of hearing loss. For music, listeners did not show a preference. However, participants with greater hearing loss preferred nonlinear frequency compression to restricted bandwidth more than participants with less hearing loss. Conversely, participants with greater hearing loss were less likely to prefer extended bandwidth to restricted bandwidth. Conclusion Both age groups preferred access to high frequency sounds, as demonstrated by their preference for either the extended bandwidth or nonlinear frequency compression conditions over the restricted bandwidth condition. Preference for extended bandwidth can be limited for those with greater degrees of hearing loss, but participants with greater hearing loss may be more likely to prefer nonlinear frequency compression. Further investigation using participants with more severe hearing loss may be warranted. PMID:25514451

  15. Si photonics technology for future optical interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Krishnamoorthy, Ashok V.

    2011-12-01

    Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.

  16. A high gain wide dynamic range transimpedance amplifier for optical receivers

    NASA Astrophysics Data System (ADS)

    Lianxi, Liu; Jiao, Zou; Yunfei, En; Shubin, Liu; Yue, Niu; Zhangming, Zhu; Yintang, Yang

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.

  17. Broadband seismic : case study modeling and data processing

    NASA Astrophysics Data System (ADS)

    Cahyaningtyas, M. B.; Bahar, A.

    2018-03-01

    Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.

  18. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, K. P.

    1986-01-01

    Data obtained from UHF Radar observation of direct-lightning strikes to the NASA F-106B airplane have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero volts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The new system was implemented with four shutter-type field mills located at strategic points on the airplane. The bandwidth of the new system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 Hz to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite-difference time-domain electromagnetic computer code.

  19. A wide bandwidth electrostatic field sensor for lightning research

    NASA Technical Reports Server (NTRS)

    Zaepfel, Klaus P.

    1989-01-01

    Data obtained from UHF radar observation of direct-lightning strikes to the NASA F-106B aircraft have indicated that most of the 690 strikes acquired during direct-strike lightning tests were triggered by the aircraft. As an aid in understanding the triggered lightning process, a wide bandwidth electric field measuring system was designed for the F-106B by implementing a clamped-detection signal processing concept originated at the Air Force Cambridge Research Lab in 1953. The detection scheme combines the signals from complementary stator pairs clamped to zero bolts at the exact moment when each stator pair is maximally shielded by the rotor, a process that restores the dc level lost by the charge amplifier. The system was implemented with four shutter-type field mills located at strategic points on the aircraft. The bandwidth of the system was determined in the laboratory to be from dc to over 100 Hz, whereas past designs had upper limits of 10 to 100 Hz. To obtain the undisturbed electric field vector and total aircraft charge, the airborne field mill system is calibrated by using techniques involving results from ground and flight calibrations of the F-106B, laboratory tests of a metallized model, and a finite difference time-domain electromagnetic computer code.

  20. Frequency selective reflection and transmission at a layer composed of a periodic dielectric

    NASA Technical Reports Server (NTRS)

    Bertoni, Henry L.; Cheo, Li-Hsiang S.; Tamir, Theodor

    1987-01-01

    The feasibility of using a periodic dielectric layer, composed of alternating bars having dielectric constants epsilon sub 1 and epsilon sub 2, as a frequency selective subreflector in order to permit feed separation in large aperture reflecting antenna systems was examined. For oblique incidence, it is found that total transmission and total reflection can be obtained at different frequencies for proper choices of epsilon sub 1, epsilon 2, and the geometric parameters. The frequencies of total reflection and transmission can be estimated from wave phenomena occurring in a layer of uniform dielectric constant equal to the average for the periodic layers. About some of the frequencies of total transmission, the bandwidth for 90% transmission is found to be 40%. However, the bandwidth for 90% reflection is always found to be much narrower; the greatest value found being 2.5%.

  1. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  2. Design optimization of condenser microphone: a design of experiment perspective.

    PubMed

    Tan, Chee Wee; Miao, Jianmin

    2009-06-01

    A well-designed condenser microphone backplate is very important in the attainment of good frequency response characteristics--high sensitivity and wide bandwidth with flat response--and low mechanical-thermal noise. To study the design optimization of the backplate, a 2(6) factorial design with a single replicate, which consists of six backplate parameters and four responses, has been undertaken on a comprehensive condenser microphone model developed by Zuckerwar. Through the elimination of insignificant parameters via normal probability plots of the effect estimates, the projection of an unreplicated factorial design into a replicated one can be performed to carry out an analysis of variance on the factorial design. The air gap and slot have significant effects on the sensitivity, mechanical-thermal noise, and bandwidth while the slot/hole location interaction has major influence over the latter two responses. An organized and systematic approach of designing the backplate is summarized.

  3. Mobile free-space optical communications: a feasibility study of various battlefield scenarios

    NASA Astrophysics Data System (ADS)

    Harris, Alan; Al-Akkoumi, Mouhammad K.; Sluss, James J., Jr.

    2012-06-01

    Free Space Optics (FSO) technology was originally envisioned to be a viable solution for the provision of high bandwidth optical connectivity in the last mile of today's telecommunications infrastructure. Due to atmospheric limitations inherent to FSO technology, FSO is now widely envisioned as a solution for the provision of high bandwidth, temporary mobile communications links. The need for FSO communications links will increase as mobility is introduced to this technology. In this paper, a theoretical solution for adding mobility to FSO communication links is introduced. Three-dimensional power estimation studies are presented to represent mobile FSO transmission under various weather conditions. Three wavelengths, 0.85, 1.55 and 10 um, are tested and compared to illustrate the pros and cons of each source wavelength used for transmission, depending on prevalent weather conditions and atmospheric turbulence conditions. A simulation analysis of the transmission properties of the source wavelengths used in the study is shown.

  4. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    PubMed

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  5. Bandwidth enhancement in microwave absorption of binary nanocomposite ferrites hollow microfibers.

    PubMed

    Song, Fuzhan; Shen, Xiangqian; Yang, Xinchun; Meng, Xianfeng; Xiang, Jun; Liu, Ruijiang; Dong, Mingdong

    2013-04-01

    The binary Ba0.5Sr0.5Fe12O19 (BSFO)/Ni0.5Zn0.5Fe2O4 (NZFO) nanocomposite ferrites hollow microfibers with high aspect ratios have been prepared by the gel precursor transformation process. These microfibers possess a high specific surface area about 45.2 m2 g(-1), and a ratio of the hollow diameter to the fiber diameter estimated about 5/7. The binary nanocomposite ferrites are formed after the precursor calcined at 750 degrees C for 3 h. Their minimum reflection loss (RL) is -38.1 dB at 10.4 GHz. The microwave absorption bandwidth with RL value exceeding -20 dB covers the whole X-band (8.2-12.4 GHz) and Ku-band (12.4-18 GHz). This enhancement in microwave absorption can be attributed to the exchange-coupling interaction, interfacial polarization and small size effect in nanocomposite hollow microfibers.

  6. 520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    He, Huijun; Wang, Zhaohua; Hu, Chenyang; Jiang, Jianwang; Qin, Shuang; He, Peng; Zhang, Ninghua; Yang, Peilong; Li, Zhiyuan; Wei, Zhiyi

    2018-02-01

    We report on a 520-µJ, 1-kHz mid-infrared femtosecond optical parametric amplifier system driven by a Ti:sapphire laser system. The seeding signal was generated from white-light continuum in YAG plate and then amplified in four non-collinear amplification stages and the idler was obtained in the last stage with central wavelength at 2.8 µm and bandwidth of 525 nm. To maximize the bandwidth of the idler, a theoretical method was developed to give an optimum non-collinear angle and estimate the conversion efficiency and output spectrum. As an experimental result, laser pulse energy up to 1.8 mJ for signal wave and 520 µJ for idler wave were obtained in the last stage under 10-mJ pump energy, corresponding to a pump-to-idler conversion efficiency of 5.2%, which meets well with the numerical calculation.

  7. FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods.

    PubMed

    Zierke, Stephanie; Bakos, Jason D

    2010-04-12

    Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10x speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs).

  8. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.

    PubMed

    Mero, M; Sipos, A; Kurdi, G; Osvay, K

    2011-05-09

    Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal

    Open Computing Language (OpenCL) is a high-level language that enables software programmers to explore Field Programmable Gate Arrays (FPGAs) for application acceleration. The Intel FPGA software development kit (SDK) for OpenCL allows a user to specify applications at a high level and explore the performance of low-level hardware acceleration. In this report, we present the FPGA performance and power consumption results of the single-precision floating-point vector add OpenCL kernel using the Intel FPGA SDK for OpenCL on the Nallatech 385A FPGA board. The board features an Arria 10 FPGA. We evaluate the FPGA implementations using the compute unit duplication andmore » kernel vectorization optimization techniques. On the Nallatech 385A FPGA board, the maximum compute kernel bandwidth we achieve is 25.8 GB/s, approximately 76% of the peak memory bandwidth. The power consumption of the FPGA device when running the kernels ranges from 29W to 42W.« less

  10. Application of AWE for RCS Frequency Response Calculations Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.

    1996-01-01

    An implementation of the Asymptotic Waveform Evaluation (AWE) technique is presented for obtaining the frequency response of the Radar Cross Section (RCS) of arbitrarily shaped, three-dimensional perfect electric conductor (PEC) bodies. An Electric Field Integral Equation (EFIE) is solved using the Method of Moments (MoM) to compute the RCS. The electric current, thus obtained, is expanded in a Taylor series around the frequency of interest. The coefficients of the Taylor series (called 'moments') are obtained using the frequency derivatives of the EFIE. Using the moments, the electric current on the PEC body is obtained over a frequency band. Using the electric current at different frequencies, RCS of the PEC body is obtained over a wide frequency band. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth. A good agreement between AWE and the exact solution over the bandwidth is observed.

  11. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    PubMed

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  12. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W.; Jamison, S. P.

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immunemore » to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.« less

  13. Intensity autocorrelation measurements of frequency combs in the terahertz range

    NASA Astrophysics Data System (ADS)

    Benea-Chelmus, Ileana-Cristina; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jérôme

    2017-09-01

    We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.

  14. Characteristics and instabilities of mode-locked quantum-dot diode lasers.

    PubMed

    Li, Yan; Lester, Luke F; Chang, Derek; Langrock, Carsten; Fejer, M M; Kane, Daniel J

    2013-04-08

    Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.

  15. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    PubMed

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm.

  16. Micromachined ultrasonic transducers: 11.4 MHz transmission in air and more

    NASA Astrophysics Data System (ADS)

    Ladabaum, Igal; Khuri-Yakub, B. T.; Spoliansky, Dimitri

    1996-01-01

    The fabrication and modeling of novel, capacitive, ultrasonic air transducers is reported. Transmission experiments in air at 11.4, 9.2, and 3.1 MHz are shown to correspond with theory. The transducers are made using surface micromachining techniques, which enable the realization of center frequencies ranging from 1.8 to 11.6 MHz. The bandwidth of the transducers ranges from 5% to 20%, depending on processing parameters. Custom circuitry is able to detect 10 MHz capacitance fluctuations as small as 10-18 F, which correspond to displacements on the order of 10-3 Å, in a bandwidth of 2 MHz with a signal to noise ratio of 20 dB. Such detection sensitivity is shown to yield air transducer systems capable of withstanding over 100 dB of signal attenuation, a figure of merit that has significant implications for ultrasonic imaging, nondestructive evaluation, gas flow and composition measurements, and range sensing.

  17. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.

  18. High-power microstrip RF switch

    NASA Technical Reports Server (NTRS)

    Choi, S. D.

    1971-01-01

    A microstrip-type single-pole double-throw (SPDT) switch whose RF and bias portions contain only a metallized alumina substrate and two PIN diodes has been developed. A technique developed to eliminate the dc blocking capacitors needed for biasing the diodes is described. These capacitors are extra components and could lower the reliability significantly. An SPDT switch fabricated on a 5.08 x 5.08 x 0.127-cm (2 x 2 x 0.050-in.) substrate has demonstrated an RF power-handling capability greater than 50 W at S-band. The insertion loss is less than 0.25 db and the input-to-off port isolation is greater than 36 db over a bandwidth larger than 30 MHz. The input voltage standing-wave ratio is lower than 1.07 over the same bandwidth. Theoretical development of the switch characteristics and experimental results, which are in good agreement with theory, are presented.

  19. Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John

    2010-01-01

    The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.

  20. Searches for electromagnetic signals from extraterrestrial beings

    NASA Astrophysics Data System (ADS)

    Zuckerman, B.

    The techniques and rationale used in six radio-frequency surveys to detect possible signals from extraterrestrial beings (ETs) are reviewed. Reception attempts have been made by pointing antennas at the stars within 80 light years, toward F, G, K, andd M main sequence stars, and binary star systems with component separation less than one-third or more than three times the radius of the habitable zone around the main star. All of the searches explored narrow bandwidths, with attention given to rapid variability. Stars exhibiting variability were re-examined for longer periods, using the 21 cm bandwidth, which is not used for transmissions on earth. The best spectrum analyzer in operation for ET signal search purposes has a capacity of 200,000 channels. Further studies may be carried out at the 10 micron IR wavelength, which could detect planetary-size construction projects by ET civilizations.

  1. Nonparametric methods for doubly robust estimation of continuous treatment effects.

    PubMed

    Kennedy, Edward H; Ma, Zongming; McHugh, Matthew D; Small, Dylan S

    2017-09-01

    Continuous treatments (e.g., doses) arise often in practice, but many available causal effect estimators are limited by either requiring parametric models for the effect curve, or by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that requires only mild smoothness assumptions on the effect curve, and still allows for misspecification of either the treatment density or outcome regression. We derive asymptotic properties and give a procedure for data-driven bandwidth selection. The methods are illustrated via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties.

  2. Optimal firing rate estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    We define a measure for evaluating the quality of a predictive model of the behavior of a spiking neuron. This measure, information gain per spike (Is), indicates how much more information is provided by the model than if the prediction were made by specifying the neuron's average firing rate over the same time period. We apply a maximum Is criterion to optimize the performance of Gaussian smoothing filters for estimating neural firing rates. With data from bullfrog vestibular semicircular canal neurons and data from simulated integrate-and-fire neurons, the optimal bandwidth for firing rate estimation is typically similar to the average firing rate. Precise timing and average rate models are limiting cases that perform poorly. We estimate that bullfrog semicircular canal sensory neurons transmit in the order of 1 bit of stimulus-related information per spike.

  3. Applications That Participate in Their Own Defense (APOD)

    DTIC Science & Technology

    2003-05-01

    bandwidth requirements from multiple applications and uses ssh to directly login the RSVP routers to reconfigure the priority queues. This approach...detect flooding. 3 Emerald makes use of some signature matching techniques on BSM logs, but the unique strength of Emerald technology is in event...mechanisms that provide awareness, and IDSs form an important class of these4. We investigated several COTS and research IDSs including Emerald

  4. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  5. Special Course on Interaction of Propagation and Digital Transmission Techniques

    DTIC Science & Technology

    1986-10-01

    military roles. Many working systems have been demonstrated, and there are a number of fully operational civil systems, see for example (Western Union ...provided by the previous analogue systems, impose increased bandwidth demands which are difficult to fulfill in the spectrally-congested European...AGARD, 1984, "Propagation influences on digital transmission systems - problems and solutions", AGARD CP No.363. 2. Western Union

  6. Network Adaptability from WMD Disruption and Cascading Failures

    DTIC Science & Technology

    2016-04-01

    Figure 1(b) shows a typical timeline before and after an attack with an example of average offered and requested bandwidth utilization. Telecom ...and security of our nation. Telecom networks and the Internet were originally designed to provide end-to-end communications which can survive failures...technology transfer The techniques developed for WMD-aware reprovisioning are also applicable for any disaster-aware provisioning on telecom

  7. Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide.

    PubMed

    Wang, Ke-Yao; Foster, Mark A; Foster, Amy C

    2015-06-15

    Using a deposited hydrogenated amorphous silicon (a-Si:H) waveguide, we demonstrate ultra-broad bandwidth (60 THz) parametric amplification via four-wave mixing (FWM), and subsequently achieve the first silicon optical parametric oscillator (OPO) at near-IR wavelengths. Utilization of the time-dispersion-tuned technique provides an optical source with active wavelength tuning over 42 THz with a fixed pump wave.

  8. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors.

    PubMed

    Fortier, T M; Roos, P A; Jones, D J; Cundiff, S T; Bhat, R D R; Sipe, J E

    2004-04-09

    We demonstrate quantum interference control of injected photocurrents in a semiconductor using the phase stabilized pulse train from a mode-locked Ti:sapphire laser. Measurement of the comb offset frequency via this technique results in a signal-to-noise ratio of 40 dB (10 Hz resolution bandwidth), enabling solid-state detection of carrier-envelope phase shifts of a Ti:sapphire oscillator.

  9. Sigint Application for Polymorphous Computing Architecture (PCA): Wideband DF

    DTIC Science & Technology

    2006-08-01

    Polymorphous Computing Architecture (PCA) program as stated by Robert Graybill is to Develop the computing foundation for agile systems by establishing...ubiquitous MUSIC algorithm rely upon an underlying narrowband signal model [8]. In this case, narrowband means that the signal bandwidth is less than...a wideband DF algorithm is needed to compensate for this model inadequacy. Among the various wideband DF techniques available, the coherent signal

  10. Novel Multiplexing Technique for Detector and Mixer Arrays

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.

    2001-01-01

    Future submillimeter and far-infrared space telescopes will require large-format (many 1000's of elements) imaging detector arrays to perform state-of-the-art astronomical observations. A crucial issue related to a focal plane array is a readout scheme which is compatible with large numbers of cryogenically-cooled (typically < 1 K) detectors elements. When the number of elements becomes of the order of thousands, the physical layout for individual readout amplifiers becomes nearly impossible to realize for practical systems. Another important concern is the large number of wires leading to a 0.1-0.3 K platform. In the case of superconducting transition edge sensors (TES), a scheme for time-division multiplexing of SQUID read-out amplifiers has been recently demonstrated. In this scheme the number of SQUIDs is equal to the number (N) of the detectors, but only one SQUID is turned on at a time. The SQUIDs are connected in series in each column of the array, so the number of wires leading to the amplifiers can be reduced, but it is still of the order of N. Another approach uses a frequency domain multiplexing scheme of the bolometer array. The bolometers are biased with ac currents whose frequencies are individual for each element and are much higher than the bolometer bandwidth. The output signals are connected in series in a summing loop which is coupled to a single SQUID amplifier. The total number of channels depends on the ratio between the SQUID bandwidth and the bolometer bandwidth and can be at least 100 according to the authors. An important concern about this technique is a contribution of the out-of-band Johnson noise which multiplies by factor N(exp 1/2) for each frequency channel. We propose a novel solution for large format arrays based on the Hadamard transform coding technique which requires only one amplifier to read out the entire array of potentially many 1000's of elements and uses approximately 10 wires between the cold stage and room temperature electronics. This can significantly reduce the complexity of the readout circuits.

  11. BER performance of multimode fiber low-frequency passbands in subcarrier multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Patmanee, Jaruwat; Pinthong, Chairat; Kanprachar, Surachet

    2018-03-01

    Multimode fibers are normally known to have a channel for carrying a signal mainly by their 3-dB modal bandwidth ranging between 200 to 500 MHz-km, depending on the material and structure of the fiber. To use only this 3-dB modal bandwidth, a higher data rate signal cannot be successfully transmitted. Alternatively, it has been shown that the response of the multimode fibers at low-frequency region, defining as the frequency next to the 3-dB modal band, contains many passbands. Additionally, these low-frequency passbands have been shown to be predictable in terms of their peak frequencies; thus, suitable subcarrier frequencies can be obtained and used in SCM system. In this paper, the formula from the previous work for determining the peak frequency of all 6 low-frequency passbands is applied. These 6 passbands and the 3-dB modal band of the multimode fiber are used to convey a high data rate signal. The signal is separated into 7 subcarrier signals and transmitted over these 7 channels using SCM system. The performance of the received signal in terms of the bit-error-rate (BER) is determined and shown. Some modification and adjustment are done in order to improve the performance of the system. It is found that for a multimode fiber with a 200-MHz 3-dB modal bandwidth, a 500-Mbps data rate signal can be successfully transmitted with a BER of lower than 10-6 . The data rate transmitted over a multimode fiber can be increased 2.5 times comparing to the 3-dB modal bandwidth, without any coding technique applied.

  12. Frequency set on systems

    NASA Astrophysics Data System (ADS)

    Wilby, W. A.; Brett, A. R. H.

    Frequency set on techniques used in ECM applications include repeater jammers, frequency memory loops (RF and optical), coherent digital RF memories, and closed loop VCO set on systems. Closed loop frequency set on systems using analog phase and frequency locking are considered to have a number of cost and performance advantages. Their performance is discussed in terms of frequency accuracy, bandwidth, locking time, stability, and simultaneous signals. Some experimental results are presented which show typical locking performance. Future ECM systems might require a response to very short pulses. Acoustooptic and fiber-optic pulse stretching techniques can be used to meet such requirements.

  13. Extended depth measurement for a Stokes sample imaging polarimeter

    NASA Astrophysics Data System (ADS)

    Dixon, Alexander W.; Taberner, Andrew J.; Nash, Martyn P.; Nielsen, Poul M. F.

    2018-02-01

    A non-destructive imaging technique is required for quantifying the anisotropic and heterogeneous structural arrangement of collagen in soft tissue membranes, such as bovine pericardium, which are used in the construction of bioprosthetic heart valves. Previously, our group developed a Stokes imaging polarimeter that measures the linear birefringence of samples in a transmission arrangement. With this device, linear retardance and optic axis orientation; can be estimated over a sample using simple vector algebra on Stokes vectors in the Poincaré sphere. However, this method is limited to a single path retardation of a half-wave, limiting the thickness of samples that can be imaged. The polarimeter has been extended to allow illumination of narrow bandwidth light of controllable wavelength through achromatic lenses and polarization optics. We can now take advantage of the wavelength dependence of relative retardation to remove ambiguities that arise when samples have a single path retardation of a half-wave to full-wave. This effectively doubles the imaging depth of this method. The method has been validated using films of cellulose of varied thickness, and applied to samples of bovine pericardium.

  14. Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays

    PubMed Central

    Lee, Kuang-Li; Huang, Jhih-Bin; Chang, Jhih-Wei; Wu, Shu-Han; Wei, Pei-Kuen

    2015-01-01

    Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce extremely sharp asymmetric resonances for a transverse magnetic-polarized wave. An ultrasmall linewidth is formed due to the enhanced Fano coupling between the cavity resonance mode in nanoslits and surface plasmon resonance mode on periodic metallic surface. With an optimal slit length and width, the full width at half-maximum bandwidth of the Fano mode is only 3.68 nm. The wavelength sensitivity is 926 nm/RIU for 60-nm-width and 1,000-nm-period nanoslits. The figure of merit is up to 252. The obtained value is higher than the theoretically estimated upper limits of the prism-coupling SPR sensors and the previously reported record high figure-of-merit in array sensors. In addition, the structure has an ultrahigh intensity sensitivity up to 48,117%/RIU. PMID:25708955

  15. Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale.

    PubMed

    Buck, Christoph; Kneib, Thomas; Tkaczick, Tobias; Konstabel, Kenn; Pigeot, Iris

    2015-12-22

    Built environment studies provide broad evidence that urban characteristics influence physical activity (PA). However, findings are still difficult to compare, due to inconsistent measures assessing urban point characteristics and varying definitions of spatial scale. Both were found to influence the strength of the association between the built environment and PA. We simultaneously evaluated the effect of kernel approaches and network-distances to investigate the association between urban characteristics and physical activity depending on spatial scale and intensity measure. We assessed urban measures of point characteristics such as intersections, public transit stations, and public open spaces in ego-centered network-dependent neighborhoods based on geographical data of one German study region of the IDEFICS study. We calculated point intensities using the simple intensity and kernel approaches based on fixed bandwidths, cross-validated bandwidths including isotropic and anisotropic kernel functions and considering adaptive bandwidths that adjust for residential density. We distinguished six network-distances from 500 m up to 2 km to calculate each intensity measure. A log-gamma regression model was used to investigate the effect of each urban measure on moderate-to-vigorous physical activity (MVPA) of 400 2- to 9.9-year old children who participated in the IDEFICS study. Models were stratified by sex and age groups, i.e. pre-school children (2 to <6 years) and school children (6-9.9 years), and were adjusted for age, body mass index (BMI), education and safety concerns of parents, season and valid weartime of accelerometers. Association between intensity measures and MVPA strongly differed by network-distance, with stronger effects found for larger network-distances. Simple intensity revealed smaller effect estimates and smaller goodness-of-fit compared to kernel approaches. Smallest variation in effect estimates over network-distances was found for kernel intensity measures based on isotropic and anisotropic cross-validated bandwidth selection. We found a strong variation in the association between the built environment and PA of children based on the choice of intensity measure and network-distance. Kernel intensity measures provided stable results over various scales and improved the assessment compared to the simple intensity measure. Considering different spatial scales and kernel intensity methods might reduce methodological limitations in assessing opportunities for PA in the built environment.

  16. Potential digitization/compression techniques for Shuttle video

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Batson, B. H.

    1978-01-01

    The Space Shuttle initially will be using a field-sequential color television system but it is possible that an NTSC color TV system may be used for future missions. In addition to downlink color TV transmission via analog FM links, the Shuttle will use a high resolution slow-scan monochrome system for uplink transmission of text and graphics information. This paper discusses the characteristics of the Shuttle video systems, and evaluates digitization and/or bandwidth compression techniques for the various links. The more attractive techniques for the downlink video are based on a two-dimensional DPCM encoder that utilizes temporal and spectral as well as the spatial correlation of the color TV imagery. An appropriate technique for distortion-free coding of the uplink system utilizes two-dimensional HCK codes.

  17. Stationary echo canceling in velocity estimation by time-domain cross-correlation.

    PubMed

    Jensen, J A

    1993-01-01

    The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated that the filtration results in a velocity-dependent degradation of the signal-to-noise ratio. An analytic expression is given for the degradation for a realistic pulse. The probability of correct detection at low signal-to-noise ratios is influenced by signal-to-noise ratio, transducer bandwidth, center frequency, number of samples in the range gate, and number of A-lines employed in the estimation. Quantitative results calculated by a simple simulation program are given for the variation in probability from these parameters. An index reflecting the reliability of the estimate at hand can be calculated from the actual cross-correlation estimate by a simple formula and used in rejecting poor estimates or in displaying the reliability of the velocity estimated.

  18. Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2018-01-01

    Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.

  19. Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning

    NASA Astrophysics Data System (ADS)

    Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.

    2009-02-01

    Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.

  20. Development of broad bandwidth nonlinear spectroscopies for characterization of electronic states in materials systems

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.

    Carbon nanotubes are an interesting class of materials with many exceptional properties that make them appealing for optoelectronic devices. Their optical properties, particularly when cast in thin films, are not well understood. In this thesis, I describe the development of spectroscopic techniques for measuring energy and charge transport processes in thin films of semiconducting carbon nanotubes. Using transient absorption spectroscopy, I observe energy transport on two time scales in these films, with 20% of nanotubes transferring energy to smaller bandgap nanotubes within 300 fs. After 3 ps, 70% of the photoexcitation resides on small bandgap nanotubes. To study the complete landscape of energy transport in thin films of carbon nanotubes, I developed two dimensional white light spectroscopy (2D-WL). In 2D-WL spectroscopy, a broadband, white light supercontinuum is used to both excite and probe the sample. This technique has a bandwidth spanning > 500-1500 nm, a far broader bandwidth than previously reported in 2D electronic spectra. I take advantage of this large bandwidth to study the interactions and evolution of S1 and S2 excitons in a thin film of carbon nanotubes. I find that energy transfers between S1 excitons on a 2 ps time scale and occurs by a non-Forster energy transfer mechanism. In contrast, the energy in the S2 states redistributes on an ultrafast time scale, <100 fs, and undergoes autoionization producing free electrons and holes. I use 2D-WL spectroscopy to study the electronic states in thin films of bare, semiconducting carbon nanotubes. In these films, energy transfer occurs in <100 fs between bare carbon nanotubes and this energy transfer is between parallel nanotubes. By taking advantage of the laser pulse polarization for each interaction, I resolve otherwise difficult to observe couplings between electronic states. To facilitate data interpretation, the orientational response for isotropic two dimensional samples to polarized electric fields is developed. Using polarization control 2D-WL spectroscopy, I measure the coupling between nanotube S1 transitions and radial breathing modes. The doped tubes form trions with transition dipoles that are not parallel to the S1 transition and energy transfer from the S1 exciton to the trion occurs within 1 ps.

Top