Big bang photosynthesis and pregalactic nucleosynthesis of light elements
NASA Technical Reports Server (NTRS)
Audouze, J.; Lindley, D.; Silk, J.
1985-01-01
Two nonstandard scenarios for pregalactic synthesis of the light elements (H-2, He-3, He-4, and Li-7) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate He-4 (formed in the standard hot big bang) to produce H-2 and He-3. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that He-4 is synthesized by a later generation of massive stars.
BIG BANG NUCLEOSYNTHESIS WITH A NON-MAXWELLIAN DISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertulani, C. A.; Fuqua, J.; Hussein, M. S.
The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is compared to observations and to the abundance yields from the standard big bang model. We find large differences between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive statistics. We found that the observations are consistent with a non-extensive parameter q = 1{sub -} {sub 0.12}{sup +0.05}, indicating that a large deviation from the Boltzmann-Gibbs statistics (q = 1)more » is highly unlikely.« less
Frontiers of Big Bang cosmology and primordial nucleosynthesis
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kusakabe, Motohiko; Yamazaki, Dai G.
2012-11-01
We summarize some current research on the formation and evolution of the universe and overview some of the key questions surrounding the the big bang. There are really only two observational cosmological probes of the physics of the early universe. Of those two, the only probe during the relevant radiation dominated epoch is the yield of light elements during the epoch of big bang nucleosynthesis. The synthesis of light elements occurs in the temperature regime from 108 to 1010 K and times of about 1 to 104 sec into the big bang. The other probe is the spectrum of temperature fluctuations in the CMB which (among other things) contains information of the first quantum fluctuations in the universe, along with details of the distribution and evolution of dark matter, baryonic matter and photons up to the surface of photon last scattering. Here, we emphasize the role of these probes in answering some key questions of the big bang and early universe cosmology.
Reply to 'Comment on 'Heavy element production in inhomogeneous big bang nucleosynthesis''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuura, Shunji; Fujimoto, Shin-ichirou; Hashimoto, Masa-aki
2007-03-15
This is a reply to Rauscher [Phys. Rev. D 75, 068301 (2007)]. We studied heavy element production in the high baryon density region in the early universe [Phys. Rev. D 72, 123505 (2005)]. However, it is claimed by Rauscher [Phys. Rev. D 75, 068301 (2007)] that a small scale but high baryon density region contradicts observations for the light element abundance or, in order not to contradict the observations, the high density region must be so small that it cannot affect the present heavy element abundance. In this paper, we study big bang nucleosynthesis in the high baryon density regionmore » and show that in certain parameter spaces it is possible to produce enough of the heavy element without contradiction to cosmic microwave background and light element observations.« less
Revisiting big-bang nucleosynthesis constraints on long-lived decaying particles
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Kohri, Kazunori; Moroi, Takeo; Takaesu, Yoshitaro
2018-01-01
We study the effects of long-lived massive particles, which decayed during the big-bang nucleosynthesis (BBN) epoch, on the primordial abundance of light elements. Compared to previous studies, (i) the reaction rates of standard BBN reactions are updated, (ii) the most recent observational data on the light element abundance and cosmological parameters are used, (iii) the effects of the interconversion of energetic nucleons at the time of inelastic scattering with background nuclei are considered, and (iv) the effects of the hadronic shower induced by energetic high-energy antinucleons are included. We compare the theoretical predictions on the primordial abundance of light elements with the latest observational constraints, and we derive upper bounds on the relic abundance of the decaying particle as a function of its lifetime. We also apply our analysis to an unstable gravitino, the superpartner of a graviton in supersymmetric theories, and obtain constraints on the reheating temperature after inflation.
Microcomputer-based Peltier thermostat for precision optical radiation measurements
NASA Astrophysics Data System (ADS)
Zhu, Xiaosong; Krochmann, Eike; Chen, Jiashu
1992-03-01
We have developed a microcomputer-based thermostat for a light measuring head in precision optical radiation measurements. This thermostat consists of a single-chip microcomputer, a digital-to-analog converter, a liquid crystal display, a power operational amplifier, and a Peltier element (thermoelectric cooler). The Peltier element keeps the temperature of the photometer head at 20±0.1 °C in the ambient temperature range from -20 to 60 °C. A control algorithm which combines the ``Bang-Bang'' mode and proportional-plus-integral-plus-derivative mode is used to achieve fast and smooth thermostatic performance. This thermostat is effective, inexpensive, and easy to adjust. Several applications of the Peltier thermostat are mentioned.
Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.
Neutrino Masses and Mixings and Astrophysics
NASA Astrophysics Data System (ADS)
Fuller, George M.
1998-10-01
Here we discuss the implications of light neutrino masses and neutrino flavor/type mixing for dark matter, big bang nucleosynthesis, and models of heavy element nucleosynthesis in super novae. We will also argue the other way and discuss possible constraints on neutrino physics from these astrophysical considerations.
Limits to the primordial helium abundance in the baryon-inhomogeneous big bang
NASA Technical Reports Server (NTRS)
Mathews, G. J.; Schramm, D. N.; Meyer, B. S.
1993-01-01
The parameter space for baryon inhomogeneous big bang models is explored with the goal of determining the minimum helium abundance obtainable in such models while still satisfying the other light-element constraints. We find that the constraint of (D + He-3)/H less than 10 exp -4 restricts the primordial helium mass fraction from baryon-inhomogeneous big bang models to be greater than 0.231 even for a scenario which optimizes the effects of the inhomogeneities and destroys the excess lithium production. Thus, this modification to the standard big bang as well as the standard homogeneous big bang model itself would be falsifiable by observation if the primordial He-4 abundance were observed to be less than 0.231. Furthermore, a present upper limit to the observed helium mass fraction of Y(obs)(p) less than 0.24 implies that the maximum baryon-to-photon ratio allowable in the inhomogeneous models corresponds to eta less than 2.3 x 10 exp -9 (omega(b) h-squared less than 0.088) even if all conditions are optimized.
Influence of Parallel Dark Matter Sectors on Big Bang Nucleosynthesis
NASA Astrophysics Data System (ADS)
Challa, Venkata Sai Sreeharsha
Big Bang Nucleosynthesis (BBN) is a phenomenological theory that describes the synthesis of light nuclei after a few seconds of the cosmic time in the primordial universe. The twelve nuclear reactions in the first few seconds of the cosmic history are constrained by factors such as baryon to photon ratio, number of neutrino families, and present day element abundances. The belief that the expansion of the universe must be slowed down by gravity, was defeated by the recent observation of an accelerated expansion of the universe. Friedmann equations, which describe the cosmic dynamics, need to be revised considering also the existence of dark matter, another recent astronomical observation. The effects of multiple parallel universes of dark matter (dark sectors) on the accelerated expansion of the universe are studied. Collectively, these additional effects will lead to a new cosmological model. We had developed a numerical code on BBN to address the effects of such dark sectors on the abundances of all the light elements. We have studied the effect of degrees of freedom of dark-matter in the early universe on primordial abundances of light elements. The predicted abundances of light elements are compared with observed constraints to obtain bounds on the number of dark sectors, NDM. Comparison of the obtained results with the observations during the BBN epoch shows that the number of dark matter sectors are only loosely constrained, and the dark matter sectors are colder than the ordinary matter sectors. Also, we verified that the existence of parallel dark matter sectors with colder temperatures does not affect the constraints set by observations on the number of neutrino families, Nnu .
Fixing the Big Bang Theory's Lithium Problem
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
How did our universe come into being? The Big Bang theory is a widely accepted and highly successful cosmological model of the universe, but it does introduce one puzzle: the cosmological lithium problem. Have scientists now found a solution?Too Much LithiumIn the Big Bang theory, the universe expanded rapidly from a very high-density and high-temperature state dominated by radiation. This theory has been validated again and again: the discovery of the cosmic microwave background radiation and observations of the large-scale structure of the universe both beautifully support the Big Bang theory, for instance. But one pesky trouble-spot remains: the abundance of lithium.The arrows show the primary reactions involved in Big Bang nucleosynthesis, and their flux ratios, as predicted by the authors model, are given on the right. Synthesizing primordial elements is complicated! [Hou et al. 2017]According to Big Bang nucleosynthesis theory, primordial nucleosynthesis ran wild during the first half hour of the universes existence. This produced most of the universes helium and small amounts of other light nuclides, including deuterium and lithium.But while predictions match the observed primordial deuterium and helium abundances, Big Bang nucleosynthesis theory overpredicts the abundance of primordial lithium by about a factor of three. This inconsistency is known as the cosmological lithium problem and attempts to resolve it using conventional astrophysics and nuclear physics over the past few decades have not been successful.In a recent publicationled by Suqing Hou (Institute of Modern Physics, Chinese Academy of Sciences) and advisorJianjun He (Institute of Modern Physics National Astronomical Observatories, Chinese Academy of Sciences), however, a team of scientists has proposed an elegant solution to this problem.Time and temperature evolution of the abundances of primordial light elements during the beginning of the universe. The authors model (dotted lines) successfully predicts a lower abundance of the beryllium isotope which eventually decays into lithium relative to the classical Maxwell-Boltzmann distribution (solid lines), without changing the predicted abundances of deuterium or helium. [Hou et al. 2017]Questioning StatisticsHou and collaborators questioned a key assumption in Big Bang nucleosynthesis theory: that the nuclei involved in the process are all in thermodynamic equilibrium, and their velocities which determine the thermonuclear reaction rates are described by the classical Maxwell-Boltzmann distribution.But do nuclei still obey this classical distribution in the extremely complex, fast-expanding Big Bang hot plasma? Hou and collaborators propose that the lithium nuclei dont, and that they must instead be described by a slightly modified version of the classical distribution, accounted for using whats known as non-extensive statistics.The authors show that using the modified velocity distributions described by these statistics, they can successfully predict the observed primordial abundances of deuterium, helium, and lithium simultaneously. If this solution to the cosmological lithium problem is correct, the Big Bang theory is now one step closer to fully describing the formation of our universe.CitationS. Q. Hou et al 2017 ApJ 834 165. doi:10.3847/1538-4357/834/2/165
Constraining f(T) teleparallel gravity by big bang nucleosynthesis: f(T) cosmology and BBN.
Capozziello, S; Lambiase, G; Saridakis, E N
2017-01-01
We use Big Bang Nucleosynthesis (BBN) observational data on the primordial abundance of light elements to constrain f ( T ) gravity. The three most studied viable f ( T ) models, namely the power law, the exponential and the square-root exponential are considered, and the BBN bounds are adopted in order to extract constraints on their free parameters. For the power-law model, we find that the constraints are in agreement with those obtained using late-time cosmological data. For the exponential and the square-root exponential models, we show that for reliable regions of parameters space they always satisfy the BBN bounds. We conclude that viable f ( T ) models can successfully satisfy the BBN constraints.
Cosmological implications of light element abundances: theory.
Schramm, D N
1993-01-01
Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics. Images Fig. 2 PMID:11607387
Cosmological implications of light element abundances: theory.
Schramm, D N
1993-06-01
Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics.
What is your Cosmic Connection to the Elements?
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim
2003-01-01
This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.
Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Grohs, E.; Fuller, George M.; Kishimoto, C. T.; Paris, Mark W.
2017-03-01
We calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energy spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. We analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.
Non-minimally coupled varying constants quantum cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less
Big bang nucleosynthesis - The standard model and alternatives
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.
Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis
Grohs, E.; Fuller, George M.; Kishimoto, C. T.; ...
2017-03-03
In this paper, we calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energymore » spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. Finally, we analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.« less
Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohs, E.; Fuller, George M.; Kishimoto, C. T.
In this paper, we calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energymore » spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. Finally, we analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.« less
Astronomers gossip about the (cosmic) neighborhood.
Jayawardhana, R
1994-09-09
The Hague, Netherlands, last month welcomed 2000 astronomers from around the world for the 22nd General Assembly of the International Astronomical Union (IAU). From 15 to 27 August, they participated in symposia and discussions on topics ranging from the down-to-Earth issue of light and radio-frequency pollution to the creation of elements at the farthest reaches of time and space, in the big bang. Some of the most striking news, however, came in new findings from our galaxy and its immediate surroundings.
Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; ...
2015-05-11
In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less
Big bang nucleosynthesis: The standard model and alternatives
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).
Detection of pristine gas two billion years after the Big Bang.
Fumagalli, Michele; O'Meara, John M; Prochaska, J Xavier
2011-12-02
In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous.
A simple all-time model for the birth, big bang, and death of the universe
NASA Astrophysics Data System (ADS)
Fischer, Arthur E.
We model the standard ΛCDM model of the universe by the spatially flat FLRW line element dsΛCDM2 = -c2dt2 + 8πGρm,0 Λc22/3 sinh 1 23Λct4/3dσ Euclid2 which we extend for all time t ∈ (-∞,∞). Although there is a cosmological singularity at the big bang t = 0, since the spatial part of the metric collapses to zero, nevertheless, this line element is defined for all time t ∈ (-∞,∞), is C∞ for all t≠0, is C1 differentiable at t = 0, and is non-degenerate and solves Friedmann’s equation for all t≠0. Thus, we can use this extended line element to model the universe from its past-asymptotic initial state dS4- at t = -∞, through the big bang at t = 0, and onward to its future-asymptotic final state dS4+ at t = ∞. Since in this model the universe existed before the big bang, we conclude that (1) the universe was not created de novo at the big bang and (2) cosmological singularities such as black holes or the big bang itself need not be an end to spacetime. Our model shows that the universe was asymptotically created de novo out of nothing at t = -∞ from an unstable vacuum negative half de Sitter dsdS4-2 initial state and then dies asymptotically at t = ∞ as the stable positive half de Sitter dsdS4+2 final state. Since the de Sitter states are vacuum matter states, our model shows that the universe was created from nothing at t = -∞ and dies at t = ∞ to nothing.
Effects of sterile neutrino and extra-dimension on big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Jang, Dukjae; Kusakabe, Motohiko; Cheoun, Myung-Ki
2018-04-01
We study effects of the sterile neutrino in the five-dimensional universe on the big bang nucleosynthesis (BBN). Since the five-dimensional universe model leads to an additional term in the Friedmann equation and the energy density of the sterile neutrino increases the total energy density, this model can affect the primordial abundance via changing the cosmic expansion rate. The energy density of the sterile neutrino can be determined by a rate equation for production of the sterile neutrino. We show that not only the mixing angle and the mass of the sterile neutrino, but also a resonant effect in the oscillation between sterile and active neutrinos is important to determine a relic abundance of the sterile neutrino. In this study, we also investigate how the sterile neutrino in extra-dimensional model can affect the BBN, and constrain the parameters related to the above properties of the sterile neutrino by using the observational primordial abundances of light elements.
Underground Study of Big Bang Nucleosynthesis in the Precision Era of Cosmology
NASA Astrophysics Data System (ADS)
Gustavino, Carlo
2017-03-01
Big Bang Nucleosinthesis (BBN) theory provides definite predictions for the abundance of light elements produced in the early universe, as far as the knowledge of the relevant nuclear processes of the BBN chain is accurate. At BBN energies (30 ≲ Ecm ≲ 300 MeV) the cross section of many BBN processes is very low because of the Coulomb repulsion between the interacting nuclei. For this reason it is convenient to perform the measurements deep underground. Presently the world's only facility operating underground is LUNA (Laboratory for Undergound Nuclear astrophysics) at LNGS ("Laboratorio Nazionale del Gran Sasso", Italy). In this presentation the BBN measurements of LUNA are briefly reviewed and discussed. It will be shown that the ongoing study of the D(p, γ)3He reaction is of primary importance to derive the baryon density of universe Ωb with high accuracy. Moreover, this study allows to constrain the existence of the so called "dark radiation", composed by undiscovered relativistic species permeating the universe, such as sterile neutrinos.
Quark mass variations of nuclear forces, BBN, and all that
NASA Astrophysics Data System (ADS)
Meissner, Ulf-G.
2014-03-01
In this talk, I discuss the modifications of the nuclear forces due to variations of the light quark masses and of the fine structure constant. This is based on the chiral nuclear effective field theory, that successfully describes a large body of data. The generation of the light elements in the Big Bang Nucleosynthesis provides important constraints on these modifications. In addition, I discuss the role of the anthropic principle in the triple-alpha process that underlies carbon and oxygen generation in hot stars. It appears that a fine-tuning of the quark masses and the fine structure constant within 2 to 3 per cent is required to make life on Earth viable. Supported in part by DFG, HGF and the BMBF.
Supernova bangs as a tool to study big bang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blinnikov, S. I., E-mail: Sergei.Blinnikov@itep.ru
Supernovae and gamma-ray bursts are the most powerful explosions in observed Universe. This educational review tells about supernovae and their applications in cosmology. It is explained how to understand the production of light in the most luminous events with minimum required energy of explosion. These most luminous phenomena can serve as primary cosmological distance indicators. Comparing the observed distance dependence on red shift with theoretical models one can extract information on evolution of the Universe from Big Bang until our epoch.
Observational constraints on secret neutrino interactions from big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Huang, Guo-yuan; Ohlsson, Tommy; Zhou, Shun
2018-04-01
We investigate possible interactions between neutrinos and massive scalar bosons via gϕν ¯ν ϕ (or massive vector bosons via gVν ¯γμν Vμ) and explore the allowed parameter space of the coupling constant gϕ (or gV) and the scalar (or vector) boson mass mϕ (or mV) by requiring that these secret neutrino interactions (SNIs) should not spoil the success of big bang nucleosynthesis (BBN). Incorporating the SNIs into the evolution of the early Universe in the BBN era, we numerically solve the Boltzmann equations and compare the predictions for the abundances of light elements with observations. It turns out that the constraint on gϕ and mϕ in the scalar-boson case is rather weak, due to a small number of degrees of freedom (d.o.f.). However, in the vector-boson case, the most stringent bound on the coupling gV≲6 ×10-10 at 95% confidence level is obtained for mV≃1 MeV , while the bound becomes much weaker gV≲8 ×10-6 for smaller masses mV≲10-4 MeV . Moreover, we discuss in some detail how the SNIs affect the cosmological evolution and the abundances of the lightest elements.
The formation of the first stars and galaxies.
Bromm, Volker; Yoshida, Naoki; Hernquist, Lars; McKee, Christopher F
2009-05-07
Observations made using large ground-based and space-borne telescopes have probed cosmic history from the present day to a time when the Universe was less than one-tenth of its present age. Earlier still lies the remaining frontier, where the first stars, galaxies and massive black holes formed. They fundamentally transformed the early Universe by endowing it with the first sources of light and chemical elements beyond the primordial hydrogen and helium produced in the Big Bang. The interplay of theory and upcoming observations promises to answer the key open questions in this emerging field.
Murphy, Edward
2018-01-23
The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.
Evidence for Evolution as Support for Big Bang
NASA Astrophysics Data System (ADS)
Gopal-Krishna
1997-12-01
With the exception of ZERO, the concept of BIG BANG is by far the most bizarre creation of the human mind. Three classical pillars of the Big Bang model of the origin of the universe are generally thought to be: (i) The abundances of the light elements; (ii) the microwave back-ground radiation; and (iii) the change with cosmic epoch in the average properties of galaxies (both active and non-active types). Evidence is also mounting for redshift dependence of the intergalactic medium, as discussed elsewhere in this volume in detail. In this contribution, I endeavour to highlight a selection of recent advances pertaining to the third category. The widely different levels of confidence in the claimed observational constraints in the field of cosmology can be guaged from the following excerpts from two leading astrophysicists: "I would bet odds of 10 to 1 on the validity of the general 'hot Big Bang' concept as a description of how our universe has evolved since it was around 1 sec. old" -M. Rees (1995), in 'Perspectives in Astrophysical Cosmology' CUP. "With the much more sensitive observations available today, no astrophysical property shows evidence of evolution, such as was claimed in the 1950s to disprove the Steady State theory" -F. Hoyle (1987), in 'Fifty years in cosmology', B. M. Birla Memorial Lecture, Hyderabad, India. The burgeoning multi-wavelength culture in astronomy has provided a tremendous boost to observational cosmology in recent years. We now proceed to illustrate this with a sequence of examples which reinforce the picture of an evolving universe. Also provided are some relevant details of the data used in these studies so that their scope can be independently judged by the readers.
Experimental challenge to the big-bang nucleosynthesis - Cosmological 7Li problem in BBN
NASA Astrophysics Data System (ADS)
Kubono, S.; Kawabata, T.; Hou, S. Q.; He, J. J.
2018-04-01
The primordial nucleosynthesis(BBN) right after the big bang (BB) is one of the key elements that basically support the BB model. The BBN is well known that it produced primarily light elements, and explains reasonably most of the elemental abundances. However, there remains an interesting and serious question. That is so called the cosmological 7Li problem in BBN. The BBN simulations using nuclear data together with the recent detailed micro-wave background measurements explain most of the light elements including D, 4He, etc, but the 7Li abundance is over predicted roughly by a factor of three. Although this problem should be investigated in all the fields relevant including physics and astronomical observations, I will concentrate my discussion on the nuclear physics side, especially the recent progress for studying the last possible major destruction process of 7Be, the 7Be(n,α)4He reaction, which would reduce the overproduction if the cross section is large. There are several efforts recently made for the 7Be(n,α)4He reaction in the world. A new theoretical estimate was made compiling all available data of the mirror reaction 7Li(p,α)4He, suggesting about one order smaller reaction rate than the ones currently being used (Wagoner rate). The n-TOF group measured some part of the s-wave components of the reaction, suggesting that the s-wave contributions are much smaller than the Wagoner rate. The p-wave component was measured clearly at RCNP, Osaka using the time-reverse reaction 4He(α,n)7Be, indicating that the p-wave contribution dominates at the effective temperature region for the BBN. However, the sum of the s-wave and p-wave contributions is about one order of magnitude smaller than the Wagoner rate. It should be of great interest to confirm by the indirect method, Trojan-Horse method to deduce cross sections at the effective temperature region, and also see the cross sections for a wider energy range systematically, which is under way by the BELICOS project by Livio Lamia and by the CRIB collaboration lead by S. Hayakawa.
Drosophila Big bang regulates the apical cytocortex and wing growth through junctional tension.
Tsoumpekos, Giorgos; Nemetschke, Linda; Knust, Elisabeth
2018-03-05
Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth. © 2018 Tsoumpekos et al.
Capture reactions on C-14 in nonstandard big bang nucleosynthesis
NASA Technical Reports Server (NTRS)
Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl
1990-01-01
Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.
Effects of sterile neutrinos and an extra dimension on big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Jang, Dukjae; Kusakabe, Motohiko; Cheoun, Myung-Ki
2018-02-01
By assuming the existence of extra-dimensional sterile neutrinos in the big bang nucleosynthesis (BBN) epoch, we investigate the sterile neutrino (νs) effects on the BBN and constrain some parameters associated with the νs properties. First, for the cosmic expansion rate, we take into account effects of a five-dimensional bulk and intrinsic tension of the brane embedded in the bulk and constrain a key parameter of the extra dimension by using the observational element abundances. Second, effects of the νs traveling on or off the brane are considered. In this model, the effective mixing angle between a νs and an active neutrino depends on energy, which may give rise to a resonance effect on the mixing angle. Consequently, the reaction rate of the νs can be drastically changed during the cosmic evolution. We estimated abundances and temperature of the νs by solving the rate equation as a function of temperature until the sterile neutrino decoupling. We then find that the relic abundance of the νs is drastically enhanced by the extra dimension and maximized for a characteristic resonance energy Eres≳0.01 GeV . Finally, some constraints related to the νs, i.e., mixing angle and mass difference, are discussed in detail with the comparison of our BBN calculations corrected by the extra-dimensional νs to observational data on light element abundances.
The Big Bang and the Search for a Theory of Everything
NASA Technical Reports Server (NTRS)
Kogut, Alan
2010-01-01
How did the universe begin? Is the gravitational physics that governs the shape and evolution of the cosmos connected in a fundamental way to the sub-atomic physics of particle colliders? Light from the Big Bang still permeates the universe and carries within it faint clues to the physics at the start of space and time. I will describe how current and planned measurements of the cosmic microwave background will observe the Big Bang to provide new insight into a "Theory of Everything" uniting the physics of the very large with the physics of the very small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronchev, Victor T.; Nakao, Yasuyuki; Nakamura, Makoto
The standard scenario of big bang nucleosynthesis (BBN) is generalized to take into account nonthermal nuclear reactions in the primordial plasma. These reactions are naturally triggered in the BBN epoch by fast particles generated in various exoergic processes. It is found that, although such particles can appreciably enhance the rates of some individual reactions, their influence on the whole process of element production is not significant. The nonthermal corrections to element abundances are obtained to be 0.1% ({sup 3}H), -0.03% ({sup 7}Li), and 0.34 %-0.63% (CNO group).
STANDARD BIG BANG NUCLEOSYNTHESIS UP TO CNO WITH AN IMPROVED EXTENDED NUCLEAR NETWORK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coc, Alain; Goriely, Stephane; Xu, Yi
Primordial or big bang nucleosynthesis (BBN) is one of the three strong pieces of evidence for the big bang model together with the expansion of the universe and cosmic microwave background radiation. In this study, we improve the standard BBN calculations taking into account new nuclear physics analyses and enlarge the nuclear network up to sodium. This is, in particular, important to evaluate the primitive value of CNO mass fraction that could affect Population III stellar evolution. For the first time we list the complete network of more than 400 reactions with references to the origin of the rates, includingmore » Almost-Equal-To 270 reaction rates calculated using the TALYS code. Together with the cosmological light elements, we calculate the primordial beryllium, boron, carbon, nitrogen, and oxygen nuclei. We performed a sensitivity study to identify the important reactions for CNO, {sup 9}Be, and boron nucleosynthesis. We re-evaluated those important reaction rates using experimental data and/or theoretical evaluations. The results are compared with precedent calculations: a primordial beryllium abundance increase by a factor of four compared to its previous evaluation, but we note a stability for B/H and for the CNO/H abundance ratio that remains close to its previous value of 0.7 Multiplication-Sign 10{sup -15}. On the other hand, the extension of the nuclear network has not changed the {sup 7}Li value, so its abundance is still 3-4 times greater than its observed spectroscopic value.« less
Big bang and the policy prescription: health care meets the market in New Zealand.
Gauld, R D
2000-10-01
This article discusses events that led up to and the aftermath of New Zealand's radical health sector restructuring of 1993. It suggests that "big bang" policy change facilitated the introduction of a set of market-oriented ideas describable as a policy prescription. In general, the new system performed poorly, in keeping with problems of market failure endemic in health care. The system was subsequently restructured, and elements of the 1993 structures were repackaged through a series of incremental changes. Based on the New Zealand experience, big bang produces change but not necessarily a predictive model, and the policy prescription has been oversold.
Hints of a Fundamental Misconception in Cosmology
NASA Astrophysics Data System (ADS)
Prather, Edward E.; Slater, Timothy F.; Offerdahl, Erika G.
To explore the frequency and range of student ideas regarding the Big Bang, nearly 1,000 students from middle school, secondary school, and college were surveyed and asked if they had heard of the Big Bang and, if so, to describe it. In analyzing their responses, we uncovered an unexpected result that more than half of the students who stated that they had heard of the Big Bang also provided responses that suggest they believe that the Big Bang was a phenomenon that organized pre-existing matter. To further examine this result, a second group of college students was asked specifically to describe what existed or occurred before, during, and after the Big Bang. Nearly 70% gave responses clearly stating that matter existed prior to the Big Bang. These results are interpreted as strongly suggesting that most students are answering these questions by employing an internally consistent element of knowledge or reasoning (often referred to as a phenomenological primitive, or p-prim), consistent with the idea that "you can't make something from nothing." These results inform the debate about the extent to which college students have pre-existing notions that are poised to interfere with instructional efforts about contemporary physics and astronomy topics.
No ``explosion'' in Big Bang cosmology: teaching kids the truth of what cosmologists really know
NASA Astrophysics Data System (ADS)
Gangui, Alejandro
2011-06-01
Common wisdom says that cosmologists are smart: they have developed a theory that can explain the ``origin of the universe''. Every time an astro-related, heavily funded ``big-science'' project comes to the media, naturally the question arises: will science -through this or that experiment- explain the origin of the cosmos? Can this be done with the LHC, for example? Will this dream machine create other universes? Of course, the very words we employ in cosmology reinforce this misconception: so Big Bang must be associated with an ``explosion'', even if a ``peculiar'' one, as it took place nowhere (there was presumably no space before the beginning) and happened virtually in no time (supposedly, space-time was created on this peculiar -singular- event). Right, the issue sounds confusing. Let us imagine what kids may get out of all this. We have recently presented a series of brief astronomy and cosmology books aimed at helping both kids and their teachers in these and other arcane subjects, all introduced with carefully chosen words and images that young children can understand. In particular, Volume Four deals with the Big Bang and emphasizes the notion of ``evolution'' as opposed to the -wrong- notion of ``origin'' behind the scientific model. We then explain some of the pillars of Big Bang cosmology: the expansion of space that drags away distant galaxies, as seen in the redshift of their emitted light; the build-up of light elements in a cooling bath of radiation, as explained by primordial nucleosynthesis; and the existence and main features of the ubiquitous cosmic microwave background radiation, where theory and observations agree to a highly satisfactory degree. Of course, one cannot attempt to answer the ``origins'' question when it is well known that all theories so far break down close to this origin (if there was actually an origin). It is through observations, analyses, lively discussions and recognition of the basic limitations of current theories and ideas, that we are led to try and reconstruct the past and predict the future evolution of our universe. Just that. Sound science turns out to be much more attractive when we tell the truth of what we really know.
The NASA Beyond Einstein Program
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2006-01-01
Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.
JWST Telescope Integration and Test Progress
NASA Technical Reports Server (NTRS)
Matthews, Gary W.; Whitman, Tony L.; Feinberg, Lee D.; Voyton, Mark F.; Lander, Juli A.; Keski-Kuha, Ritva
2016-01-01
The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. The JWST Optical Telescope Element (Telescope) integration and test program is well underway. The telescope was completed in the spring of 2016 and the cryogenic test equipment has been through two optical test programs leading up to the final flight verification program. The details of the telescope mirror integration will be provided along with the current status of the flight observatory. In addition, the results of the two optical ground support equipment cryo tests will be shown and how these plans fold into the flight verification program.
Electron screening and its effects on big-bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Biao; Bertulani, C. A.; Balantekin, A. B.
We study the effects of electron screening on nuclear reaction rates occurring during the big-bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in detail. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-Hueckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. This work rules out electron screening as a relevant ingredient to big-bang nucleosynthesis, confirming a previous study [see Itoh et al., Astrophys. J. 488, 507 (1997)] and ruling out exotic possibilities for the treatmentmore » of screening beyond the mean-field theoretical approach.« less
The First Stars in the Universe and Cosmic Reionization
NASA Astrophysics Data System (ADS)
Barkana, Rennan
2006-08-01
The earliest generation of stars, far from being a mere novelty, transformed the universe from darkness to light. The first atoms to form after the Big Bang filled the universe with atomic hydrogen and a few light elements. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms into ions. By looking at gas between us and distant galaxies, we know that this ionization eventually pervaded all space, so that few hydrogen atoms remain today between galaxies. Knowing exactly when and how it did so is a primary goal of cosmologists, because this would tell us when the early stars formed and in what kinds of galaxies. Although this ionization is beginning to be understood by using theoretical models and computer simulations, a new generation of telescopes is being built that will map atomic hydrogen throughout the universe.
Helium synthesis, neutrino flavors, and cosmological implications
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1979-01-01
The problem of the production of helium in big bang cosmology is re-examined in the light of several recent astrophysical observations. These data, and theoretical particle physics considerations, lead to some important inconsistencies in the standard big bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid.
Standard big bang nucleosynthesis and primordial CNO abundances after Planck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coc, Alain; Uzan, Jean-Philippe; Vangioni, Elisabeth, E-mail: coc@csnsm.in2p3.fr, E-mail: uzan@iap.fr, E-mail: vangioni@iap.fr
Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo starsmore » of the Galaxy. According to the importance of this ''lithium problem{sup ,} we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of {sup 6}Li, {sup 9}Be, {sup 11}B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H ≈ (5-30)×10{sup -15}. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H∼10{sup -13}. This result is important for the study of population III star formation during the dark ages.« less
NASA Astrophysics Data System (ADS)
Winteler, Christian
2014-02-01
In this dissertation we present the main features of a new nuclear reaction network evolution code. This new code allows nucleosynthesis calculations for large numbers of nuclides. The main results in this dissertation are all obtained using this new code. The strength of standard big bang nucleosynthesis is, that all primordial abundances are determined by only one free parameter, the baryon-to-photon ratio η. We perform self consistent nucleosynthesis calculations for the latest WMAP value η = (6.16±0.15)×10^-10 . We predict primordial light element abundances: D/H = (2.84 ± 0.23)×10^-5, 3He/H = (1.07 ± 0.09)×10^-5, Yp = 0.2490±0.0005 and 7Li/H = (4.57 ± 0.55)×10^-10, in agreement with current observations and other predictions. We investigate the influence of the main production rate on the 6 Li abundance, but find no significant increase of the predicted value, which is known to be orders of magnitude lower than the observed. The r-process is responsible for the formation of about half of the elements heavier than iron in our solar system. This neutron capture process requires explosive environments with large neutron densities. The exact astrophysical site where the r-process occurs has not yet been identified. We explore jets from magnetorotational core collapse supernovae (MHD jets) as possible r-process site. In a parametric study, assuming adiabatic expansion, we find good agreement with solar system abundances for a superposition of components with different electron fraction (Ye ), ranging from Ye = 0.1 to Ye = 0.3. Fission is found to be important only for Ye ≤ 0.17. The first postprocessing calculations with data from 3D MHD core collapse supernova simulations are performed for two different simulations. Calculations are based on two different methods to extract data from the simulation: tracer particles and a two dimensional, mass weighted histogram. Both results yield almost identical results. We find that both simulations can reproduce the global solar r-process abundance pattern. The ejected mass is found to be in agreement with galactic chemical evolution for a rare event rate of one MHD jet every hundredth to thousandth supernova.
Heavy element production in inhomogeneous big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuura, Shunji; Fujimoto, Shin-ichirou; Nishimura, Sunao
2005-12-15
We present a new astrophysical site of the big bang nucleosynthesis (BBN) that are very peculiar compared with the standard BBN. Some models of the baryogenesis suggest that very high baryon density regions were formed in the early universe. On the other hand, recent observations suggest that heavy elements already exist in high red-shifts and the origin of these elements become a big puzzle. Motivated by these, we investigate BBN in very high baryon density regions. BBN proceeds in proton-rich environment, which is known to be like the p-process. However, by taking very heavy nuclei into account, we find thatmore » BBN proceeds through both the p-process and the r-process simultaneously. P-nuclei such as {sup 92}Mo, {sup 94}Mo, {sup 96}Ru, {sup 98}Ru whose origin is not well known are also synthesized.« less
Trojan Horse Method for neutrons-induced reaction studies
NASA Astrophysics Data System (ADS)
Gulino, M.; Asfin Collaboration
2017-09-01
Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.
The quark-hadron transition in cosmology and astrophysics.
Olive, K A
1991-03-08
A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.
BBN constraints on MeV-scale dark sectors. Part I. Sterile decays
NASA Astrophysics Data System (ADS)
Hufnagel, Marco; Schmidt-Hoberg, Kai; Wild, Sebastian
2018-02-01
We study constraints from Big Bang Nucleosynthesis on inert particles in a dark sector which contribute to the Hubble rate and therefore change the predictions of the primordial nuclear abundances. We pay special attention to the case of MeV-scale particles decaying into dark radiation, which are neither fully relativistic nor non-relativistic during all temperatures relevant to Big Bang Nucleosynthesis. As an application we discuss the implications of our general results for models of self-interacting dark matter with light mediators.
Beyond Einstein: From the Big Bang to Black Holes
NASA Astrophysics Data System (ADS)
White, N.
Beyond Einstein is a science-driven program of missions, education and outreach, and technology, to address three questions: What powered the Big Bang? What happens to space, time, and matter at the edge of a Black Hole? What is the mysterious Dark Energy pulling the universe apart? To address the science objectives, Beyond Einstein contains several interlinked elements. The strategic missions Constellation-X and LISA primarily investigate the nature of black holes. Constellation-X is a spectroscopic observatory that uses X-ray emitting atoms as clocks to follow the fate of matter falling into black holes. LISA will be the first space-based gravitational wave observatory uses gravitational waves to measure the dynamic structure of space and time around black holes. Moderate sized probes that are fully competed, peer-reviewed missions (300M-450M) launched every 3-5 years to address the focussed science goals: 1) Determine the nature of the Dark Energy that dominates the universe, 2) Search for the signature of the beginning of the Big Bang in the microwave background and 3) Take a census of Black Holes of all sizes and ages in the universe. The final element is a Technology Program to enable ultimate Vision Missions (after 2015) to directly detect gravitational waves echoing from the beginning of the Big Bang, and to directly image matter near the event horizon of a Black Hole. An associated Education and Public Outreach Program will inspire the next generation of scientists, and support national science standards and benchmarks.
Malone, R M; Herrmann, H W; Stoeffl, W; Mack, J M; Young, C S
2008-10-01
Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 degrees off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO(2) gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO(2) gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.
A probable stellar solution to the cosmological lithium discrepancy.
Korn, A J; Grundahl, F; Richard, O; Barklem, P S; Mashonkina, L; Collet, R; Piskunov, N; Gustafsson, B
2006-08-10
The measurement of the cosmic microwave background has strongly constrained the cosmological parameters of the Universe. When the measured density of baryons (ordinary matter) is combined with standard Big Bang nucleosynthesis calculations, the amounts of hydrogen, helium and lithium produced shortly after the Big Bang can be predicted with unprecedented precision. The predicted primordial lithium abundance is a factor of two to three higher than the value measured in the atmospheres of old stars. With estimated errors of 10 to 25%, this cosmological lithium discrepancy seriously challenges our understanding of stellar physics, Big Bang nucleosynthesis or both. Certain modifications to nucleosynthesis have been proposed, but found experimentally not to be viable. Diffusion theory, however, predicts atmospheric abundances of stars to vary with time, which offers a possible explanation of the discrepancy. Here we report spectroscopic observations of stars in the metal-poor globular cluster NGC 6397 that reveal trends of atmospheric abundance with evolutionary stage for various elements. These element-specific trends are reproduced by stellar-evolution models with diffusion and turbulent mixing. We thus conclude that diffusion is predominantly responsible for the low apparent stellar lithium abundance in the atmospheres of old stars by transporting the lithium deep into the star.
Lyman-α Emission from an Infant Black Hole in the Early Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, Brandon Kerry; Smidt, Joseph Michael; Johnson, Jarrett L.
The COSMOS survey recently discovered an exotic young galaxy, COSMOS Redshift 7 (CR7), in the early universe (1 billion years after the Big Bang), which is devoid of evidence of elements heavier than hydrogen and helium. Whereas some believe this might be the first galaxy discovered with stars made only from these elements, others think CR7 may be powered by a newborn supermassive black hole. In this paper, we summarize for a general academic audience our efforts to model the creation of this galaxy through cosmological simulations. These state-of-the-art calculations include primordial chemistry and cooling and the interaction of x-raysmore » from the black hole with surrounding gas. We simulate the process of light escaping this object with Monte Carlo Lyman-α transfer and compare our calculations with observations of CR7. Our work demonstrates the viability of the black hole interpretation for this intriguing object in the early universe.« less
Lyman-α Emission from an Infant Black Hole in the Early Universe
Wiggins, Brandon Kerry; Smidt, Joseph Michael; Johnson, Jarrett L.
2016-01-01
The COSMOS survey recently discovered an exotic young galaxy, COSMOS Redshift 7 (CR7), in the early universe (1 billion years after the Big Bang), which is devoid of evidence of elements heavier than hydrogen and helium. Whereas some believe this might be the first galaxy discovered with stars made only from these elements, others think CR7 may be powered by a newborn supermassive black hole. In this paper, we summarize for a general academic audience our efforts to model the creation of this galaxy through cosmological simulations. These state-of-the-art calculations include primordial chemistry and cooling and the interaction of x-raysmore » from the black hole with surrounding gas. We simulate the process of light escaping this object with Monte Carlo Lyman-α transfer and compare our calculations with observations of CR7. Our work demonstrates the viability of the black hole interpretation for this intriguing object in the early universe.« less
The case for the relativistic hot big bang cosmology
NASA Technical Reports Server (NTRS)
Peebles, P. J. E.; Schramm, D. N.; Kron, R. G.; Turner, E. L.
1991-01-01
What has become the standard model in cosmology is described, and some highlights are presented of the now substantial range of evidence that most cosmologists believe convincingly establishes this model, the relativistic hot big bang cosmology. It is shown that this model has yielded a set of interpretations and successful predictions that substantially outnumber the elements used in devising the theory, with no well-established empirical contradictions. Brief speculations are made on how the open puzzles and work in progress might affect future developments in this field.
The Big Bang Theory and the Nature of Science
NASA Astrophysics Data System (ADS)
Arthury, Luiz Henrique Martins; Peduzzi, Luiz O. Q.
2015-12-01
Modern cosmology was constituted, throughout the twentieth century to the present days, as a very productive field of research, resulting in major discoveries that attest to its explanatory power. The Big Bang Theory, the generic and popular name of the standard model of cosmology, is probably the most daring research program of physics and astronomy, trying to recreate the evolution of our observable universe. But contrary to what you might think, its conjectures are of a degree of refinement and corroborative evidence that make it our best explanation for the history of our cosmos. The Big Bang Theory is also an excellent field to discuss issues regarding the scientific activity itself. In this paper we discuss the main elements of this theory with an epistemological look, resulting in a text quite useful to work on educational activities with related goals.
Big Bang Day : The Great Big Particle Adventure - 3. Origins
None
2017-12-09
In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
The CMB polarization was produced as light scattered off a primordial cloud of protons and electrons nearly 14 billion years ago, about 400,000 years after the Big Bang. This marks the moment of recombination, when the universe finally cooled enough to allow electrons to join protons. The CMB is the light that broke through the fog.
Cosmological element production.
Wagoner, R V
1967-03-17
Two recent observations appear to have provided critical information about the past history of the universe. The thermal character of the microwave background radiation suggests that the universe has expanded from a state of high temperature and density, and places constraints on such a big-bang cosmology. The observations of very weak helium lines in the spectra of certain stars in the halo of our galaxy are possibly due to a low primeval abundance of this element. However, the simplest model of a big-bang cosmology leads to much higher helium abundances, such as are observed in the solar system and in many stars. The production of helium can be reduced either by altering the early expansion rate or by introducing degenerate electron neutrinos. Observations of interstellar and intergalactic deuterium and He(4), and possibly even He(3) and Li(7), are needed to test the various models.
The cosmological density of baryons from observations of 3He+ in the Milky Way.
Bania, T M; Rood, Robert T; Balser, Dana S
2002-01-03
Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.
Stars Spring up Out of the Darkness
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on the image for movie of Stars Spring up Out of the Darkness This artist's animation illustrates the universe's early years, from its explosive formation to its dark ages to its first stars and mini-galaxies. Scientists using NASA's Spitzer Space Telescope found patches of infrared light splattered across the sky that might be the collective glow of clumps of the universe's first objects. Astronomers do not know if these first objects were stars or 'quasars,' which are black holes voraciously consuming surrounding gas. The movie begins with a flash of color that represents the birth of the universe, an explosion called the Big Bang that occurred about 13.7 billion years ago. A period of darkness ensues, where gas begins to clump together. The universe's first stars are then shown springing up out of the gas clumps, flooding the universe with light, an event that probably happened about a few hundred million years after the Big Bang. Though these first stars formed out of gas alone, their deaths seeded the universe with the dusty heavy chemical elements that helped create future generations of stars. The first stars, called Population III stars (our star is a Population I star), were much bigger and brighter than any in our nearby universe, with masses about 1,000 times that of our sun. They grouped together into mini-galaxies, which then merged to form galaxies like our own mature Milky Way galaxy. The first quasars, not shown here, ultimately became the centers of powerful galaxies that are more common in the distant universe.NASA Astrophysics Data System (ADS)
Esteban, C.; García López, R. J.; Herrero, A.; Sánchez, F.
2004-03-01
1. Primordial alchemy: from the Big Bang to the present Universe G. Steigman; 2. Stellar nucleosynthesis N. Langer; 3. Obervational aspects of stellar nucleosynthesis D. L. Lambert; 4. Abundance determinations in HII regions and planetary nebulae G. Stasinska; 5. Element abundances in nearby galaxies D. R. Garnett; 6. Chemical evolution of galaxies and intracluster medium F.Matteucci; 7. Element abundances through the cosmic ages M. Pettini.
NASA Astrophysics Data System (ADS)
Esteban, C.; García López, R. J.; Herrero, A.; Sánchez, F.
2011-01-01
1. Primordial alchemy: from the Big Bang to the present Universe G. Steigman; 2. Stellar nucleosynthesis N. Langer; 3. Obervational aspects of stellar nucleosynthesis D. L. Lambert; 4. Abundance determinations in HII regions and planetary nebulae G. Stasinska; 5. Element abundances in nearby galaxies D. R. Garnett; 6. Chemical evolution of galaxies and intracluster medium F.Matteucci; 7. Element abundances through the cosmic ages M. Pettini.
Particle physics catalysis of thermal big bang nucleosynthesis.
Pospelov, Maxim
2007-06-08
We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date.
Big Bang Day : The Great Big Particle Adventure - 3. Origins
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nucleimore » existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe« less
Big Bang Day: 5 Particles - 3. The Anti-particle
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.
Big Bang Day: 5 Particles - 3. The Anti-particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existencemore » be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.« less
Observable gravitational waves in pre-big bang cosmology: an update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperini, M., E-mail: gasperini@ba.infn.it
In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. Wemore » conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and—in any case—will impose new significant constraints on the basic string theory/cosmology parameters.« less
Russell, R J
2001-12-01
The sciences and the humanities, including theology, form an epistemic hierarchy that ensures both constraint and irreducibility. At the same time, theological methodology is analogous to scientific methodology, though with several important differences. This model of interaction between science and theology can be seen illustrated in a consideration of the relation between contemporary cosmology (Big Bang cosmology, cosmic inflation, and quantum cosmology) and Christian systematic and natural theology. In light of developments in cosmology, the question of origins has become theologically less interesting than that of the cosmic evolution of a contingent universe.
The Universe Comes into Sharper Focus
2013-03-21
This graphic illustrates the evolution of satellites designed to measure ancient light leftover from the big bang that created our universe 13.8 billion years ago; NASA COBE Explorer left and WMAP middle, and ESA Planck right.
Primordial alchemy: from the Big Bang to the present universe
NASA Astrophysics Data System (ADS)
Steigman, Gary
Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts ~1010. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard cosmological model over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Physics and Cosmology beyond the current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal baryon density) and particle physics (e.g., relativistic energy density) are discussed. While this comparison reveals the stunning success of the standard model(s), there are currently some challenge which leave open the door for more theoretical and observational work with potential implications for astronomy, cosmology, and particle physics.
Fundamental studies in isotope chemistry. Progress report, 1 August 1982-1 August 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigeleisen, J.
1983-01-01
Interest in a search for superheavy elements present in nature as a remnant of the big bang or through continuous production by cosmic rays has prompted us to study the isotope chemistry of superheavy elements. Calculations of the fractionation factors of superheavy elements of masses 10, 100, 1000, and in the form of isotopes of hydrogen, carbon, selenium and uranium against the light naturally occurring isotope of the element show that the superheavy isotope, even of infinite mass, will not be sufficiently fractionated in single stage natural processes to obscure its chemistry. Calculations have been made of the elementary separationmore » factors of superheavy isotopes of carbon and oxygen by fractional distillation of CO at 80/sup 0/K. The fractionation factors are discussed in terms of a model for liquid CO in good agreement with experimental data on /sup 13/C/sup 16/O and /sup 12/C/sup 18/O. Calculations for very heavy isotopic forms of CO reveal for the first time the coupling effect between translation and internal vibration in the liquid. It is shown that a 1ow temperature distillation plant, such as the Los Alamos COLA plant, has a significant potential for enrichment of superheavy isotopes of carbon. The maximum enrichment factor is 10/sup 55/.« less
Distant Galaxies in Goods North
2014-01-07
The view is a composite of images taken in visible and near-infrared light by NASA Hubble Space Telescope. Researchers have circled four unusually red objects that appear as they existed just 500 million years after the big bang.
Big Bang 6Li nucleosynthesis studied deep underground (LUNA collaboration)
NASA Astrophysics Data System (ADS)
Trezzi, D.; Anders, M.; Aliotta, M.; Bellini, A.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Corvisiero, P.; Costantini, H.; Davinson, T.; Depalo, R.; Elekes, Z.; Erhard, M.; Ferraro, F.; Formicola, A.; Fülop, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Junker, M.; Lemut, A.; Marta, M.; Mazzocchi, C.; Menegazzo, R.; Mossa, V.; Pantaleo, F.; Prati, P.; Rossi Alvarez, C.; Scott, D. A.; Somorjai, E.; Straniero, O.; Szücs, T.; Takacs, M.
2017-03-01
The correct prediction of the abundances of the light nuclides produced during the epoch of Big Bang Nucleosynthesis (BBN) is one of the main topics of modern cosmology. For many of the nuclear reactions that are relevant for this epoch, direct experimental cross section data are available, ushering the so-called "age of precision". The present work addresses an exception to this current status: the 2H(α,γ)6Li reaction that controls 6Li production in the Big Bang. Recent controversial observations of 6Li in metal-poor stars have heightened the interest in understanding primordial 6Li production. If confirmed, these observations would lead to a second cosmological lithium problem, in addition to the well-known 7Li problem. In the present work, the direct experimental cross section data on 2H(α,γ)6Li in the BBN energy range are reported. The measurement has been performed deep underground at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator in the Laboratori Nazionali del Gran Sasso, Italy. The cross section has been directly measured at the energies of interest for Big Bang Nucleosynthesis for the first time, at Ecm = 80, 93, 120, and 133 keV. Based on the new data, the 2H(α,γ)6Li thermonuclear reaction rate has been derived. Our rate is even lower than previously reported, thus increasing the discrepancy between predicted Big Bang 6Li abundance and the amount of primordial 6Li inferred from observations.
Distant Galaxy Bursts with Stars
2011-12-21
This image from NASA Hubble telescope shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy light took 12.9 billion years to reach us.
Light Chemical Elements in Stars: Mysteries and Unsolved Problems
NASA Astrophysics Data System (ADS)
Lyubimkov, L. S.
2018-06-01
The first eight elements of the periodic table are discussed: H, He, Li, Be, B, C, N, and O. They are referred to as key elements, given their important role in stellar evolution. It is noteworthy that all of them were initially synthesized in the Big Bang. The primordial abundances of these elements calculated using the Standard Model of the Big Bang (SMBB) are presented in this review. The good agreement between the SMBB and observations of the primordial abundances of the isotopes of hydrogen and helium, D, 3He, and 4He, is noted, but there is a difference of 0.5 dex for lithium (the isotope 7Li) between the SMBB and observations of old stars in the galactic halo that has not yet been explained. The abundances of light elements in stellar atmospheres depends on the initial rotation velocity, so the typical rotation velocities of young Main Sequence (MS) stars are examined. Since the data on the abundances of light elements in stars are very extensive, the main emphasis in this review is on several unsolved problems. The helium abundance He/H in early B-type of the MS stars shows an increment with age; in particular, for the most massive B stars with masses M = 12-19M ⊙, He/H increases by more than a factor of two toward the end of the MS. Theoretical models of stars with rotation cannot explain such a large increase in He/H. For early B- and late O-type MS stars that are components of close binary systems, He/H undergoes a sharp jump in the middle of the MS stage that is a mystery for the theory. The anomalous abundance of helium (and lithium) in the atmospheres of chemically peculiar stars (types He-s, He-w, HgMn, Ap, and Am) is explained in terms of the diffusion of atoms in surface layers of the stars, but this hypothesis cannot yet explain all the features of the chemical composition of these stars. The abundances of lithium, beryllium, and boron in FGK-dwarfs manifest a trend with decreasing effective temperature T eff as well as a dip at T eff 6600 K in the Hyades and other old clusters. The two effects are among the unsolved problems. In the case of lithium, there is special interest in FGK-giants and supergiants that are rich in lithium (they have logɛ(Li)≥ 2). Most of them cannot be explained in terms of the standard theory of stellar evolution, so nonstandard hypotheses are invoked: the recent synthesis of lithium in a star and the engulfment by a star of a giant planet with mass equal to that of Jupiter or greater. An analysis of the abundances of carbon, nitrogen, and oxygen in early B- and late O-stars of the MS indicates that the C II, N II, and O II ions are overionized in their atmospheres. For early B-type MS stars, good agreement is found between observations of the N/O ratio and model calculations for rotating stars. A quantitative explanation of the well-known "nitrogen-oxygen" anticorrelation in FGK-giants and supergiants is found. It reflects the dependence of the anomalies in N and C on the initial rotation velocity V 0. The stellar rotation models which yield successful explanations for C, N. and O cannot, however, explain the observed helium enrichment in early B-type MS stars.
Metallicities and Nucleosynthesis Patterns in Early Generation Halo Stars
NASA Astrophysics Data System (ADS)
Beers, T.
2004-05-01
I review our present knowledge of the Metallicity Distribution Function of stars in the low-metallicity tail of the halo population of the Galaxy, and the variety of observed elemental signatures that might be associated with particular astrophysical origins in the early Universe. Such signatures include stars that exhibit (a) highly and mildly enhanced r-process element ratios, as compared to the solar ratios, (b) highly s-process enriched stars, (c) stars showing large enrichments of both the r- and and s-process elements, and (d) stars that are greatly enhanced in the light element species, such as CNO, and (in some cases) the alpha elements. Because the stars in which these characteristics are observed all have metallicity [Fe/H] ≤ -2.5, they are inferred to have formed no more than 0.5-1 Gyrs after the Big Bang, prior to the final assemblage of the Milky Way. As such, they provide our best available probes of the nature of early element producers, such as Type II SN and hypernovae, as well as binaries that included (now deceased) stars of intermediate (1.5 - 3 Mo) masses. I outline ongoing and future plans for dramatically accelerating the pace of discovery of these rare, but clearly important, objects. Partial support for this work has been received from NSF grants AST 00-98508 and AST 00-98549, and from JINA, the Joint Institute for Nuclear Astrophysics, an NSF Physics Frontier Center.
Generation of large coherent states by bang–bang control of a trapped-ion oscillator
Alonso, J.; Leupold, F. M.; Solèr, Z. U.; Fadel, M.; Marinelli, M.; Keitch, B. C.; Negnevitsky, V.; Home, J. P.
2016-01-01
Fast control of quantum systems is essential to make use of quantum properties before they degrade by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems towards the boundary between quantum and classical physics. ‘Bang–bang' control attains the ultimate speed limit by making large changes to control fields much faster than the system can respond, but is often challenging to implement experimentally. Here we demonstrate bang–bang control of a trapped-ion oscillator using nanosecond switching of the trapping potentials. We perform controlled displacements with which we realize coherent states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for trapped-ion quantum information processing. PMID:27046513
NASA Astrophysics Data System (ADS)
Novikov, I. D.
The underlying principles and discoveries of cosmology are presented in a qualitative form. The General Theory of Relativity is the basis for the science of the structure of the Universe, and Friedmann in 1922-4 demonstrated that the Universe is either expanding or contracting; Hubble in 1929 provided evidence for expansion. The physical processes of the evolution of the Universe to date have been projected to include origins in a superdense, superhot state with violent reactions between elementary particles. The resulting matter fragmented into the stellar systems and agglomerations presently observed. Observational data of the most distant galaxies now covers a range of 10 Gpc. Current studies focus on the missing matter in the Universe and the mean density of matter, the gravitation of vacuum, relict radiation from the Big Bang, the curvature of space-time, and theories for the earliest moments of the Universe, including pancake theories, the synthesis of light elements, and black and white holes.
Direct measurement of nuclear cross-section of astrophysical interest: Results and perspectives
NASA Astrophysics Data System (ADS)
Cavanna, Francesca; Prati, Paolo
2018-03-01
Stellar evolution and nucleosynthesis are interconnected by a wide network of nuclear reactions: the study of such connection is usually known as nuclear astrophysics. The main task of this discipline is the determination of nuclear cross-section and hence of the reaction rate in different scenarios, i.e. from the synthesis of a few very light isotopes just after the Big Bang to the heavy element production in the violent explosive end of massive stars. The experimental determination of reaction cross-section at the astrophysical relevant energies is extremely difficult, sometime impossible, due to the Coulomb repulsion between the interacting nuclei which turns out in cross-section values down to the fbar level. To overcome these obstacles, several experimental approaches have been developed and the adopted techniques can be roughly divided into two categories, i.e. direct and indirect methods. In this review paper, the general problem of nuclear astrophysics is introduced and discussed from the point of view of experimental approach. We focus on direct methods and in particular on the features of low-background experiments performed at underground laboratory facilities. The present knowledge of reactions involved in the Big Bang and stellar hydrogen-burning scenarios is discussed as well as the ongoing projects aiming to investigate mainly the helium- and carbon-burning phases. Worldwide, a new generation of experiment in the MeV range is in the design phase or at the very first steps and decisive progresses are expected to come in the next years.
Nuclear polarization effects in big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Voronchev, Victor T.; Nakao, Yasuyuki
2015-10-01
A standard nuclear reaction network for big bang nucleosynthesis (BBN) simulations operates with spin-averaged nuclear inputs—unpolarized reaction cross sections. At the same time, the major part of reactions controlling the abundances of light elements is spin dependent, i.e., their cross sections depend on the mutual orientation of reacting particle spins. Primordial magnetic fields in the BBN epoch may to a certain degree polarize particles and thereby affect some reactions between them, introducing uncertainties in standard BBN predictions. To clarify the points, we have examined the effects of induced polarization on key BBN reactions—p (n ,γ )d , d (d ,p )t , d (d ,n )
Taking the Measure of the Universe
NASA Technical Reports Server (NTRS)
Hinshaw, Gary
2009-01-01
The cosmic microwave background (CMB) radiation is the oldest light in the universe - it is literally the remnant heat left over from the Big Bang. This fossil relic has survived largely intact and it provides us with a unique probe of conditions in the early universe, long before any stars or galaxies had formed. NASA has now flown two satellites devoted to studying the CMB: 'COBE' and 'WMAP'. In this lecture I will describe what we have learned from these missions including: evidence for the Big Bang itself; new measurements of the age, shape, and content of the universe; and new evidence that all structure in the universe emerged from microscopic quantum fluctuations in the primordial soup.
Cosmological Implications of the Electron-Positron Aether
NASA Astrophysics Data System (ADS)
Rothwarf, Allen
1997-04-01
An aether is not prohibited on theoretical nor experimental grounds; only a credible physical model for it is lacking.By assuming that the particles and anti-particles created during the "big-bang" origin of the universe have not annihilated one another, but instead, form a bound state plasma, we have a model for a real aether.This aether is dominated by electron-positron pairs at very high density(10**30/cm3),in close analogy with electron-hole droplets formed in laser irradiated semiconductors. The Fermi velocity of this plasma is the speed of light, and the plasma expands at this speed. This gives results for the expanding universe in agreement with the Einstein-deSitter result for a universe dominated by radiation.The speed of light varies with time as do the other fundamental constants.This leads to an alternate explanation for cosmological redshifts. Independent,mini big bangs can occur and account for observed anomalous redshifts. The model can be tested using LIGO apparatus.
Response of discrete linear systems to forcing functions with inequality constraints.
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Riley, T. A.
1972-01-01
An analysis is made of the maximum response of discrete, linear mechanical systems to arbitrary forcing functions which lie within specified bounds. Primary attention is focused on the complete determination of the forcing function which will engender maximum displacement to any particular mass element of a multi-degree-of-freedom system. In general, the desired forcing function is found to be a bang-bang type function, i.e., a function which switches from the maximum to the minimum bound and vice-versa at certain instants of time. Examples of two-degree-of-freedom systems, with and without damping, are presented in detail. Conclusions are drawn concerning the effect of damping on the switching times and the general procedure for finding these times is discussed.
Laboratory Astrophysics in Support of the Study of Nucleosynthesis
NASA Astrophysics Data System (ADS)
den Hartog, Betsy
2017-04-01
One of the outstanding questions in our understanding of the Universe is how the elements were made. Only a few of the lightest or primordial nuclei were made just after the Big Bang. Other light nuclei up to the iron (Fe)-group are made by fusion reactions in the interior of stars. Heavier nuclei are made primarily via neutron-capture events which are categorized as either slow or rapid, the s-process or r-process, respectively. Although s-process neutron-capture is fairly well understood, the r-process, which occurs in neutron dense (explosive) environments, remains more elusive. In recent years, progress has been made in the understanding of r-process nucleosynthesis through the study of elemental abundances in metal-poor stars. These stars, which are among the oldest objects in our Galaxy, contain a fossil record of the elemental mix of the surrounding interstellar medium when they formed. The improvement of both the accuracy and precision of elemental abundances in metal-poor stars has required a long-term effort to improve the necessary laboratory data - first for the rare earth elements and more recently for the Fe-group. In this talk I will describe our laboratory effort measuring atomic transition probabilities, which are determined from a combination of radiative lifetimes and emission branching fractions. I will then show some examples of the application of our laboratory data to the determination of metal-poor star elemental abundances and discuss insights that can be gleaned from these improved data. Work in collaboration with (and supported by) Jim Lawler (NSF Grant AST-1516182, NASA Grant NNX16AE96G), Chris Sneden (NSF Grant AST-1211585) and John Cowan (NSF Grant PHY-1430152 (JINA Center for the Evolution of the Elements)), among others.
Neutrino energy transport in weak decoupling and big bang nucleosynthesis
Grohs, Evan Bradley; Paris, Mark W.; Kishimoto, Chad T.; ...
2016-04-21
In this study, we calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongsidemore » and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter N eff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.« less
Neutrino energy transport in weak decoupling and big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohs, Evan Bradley; Paris, Mark W.; Kishimoto, Chad T.
In this study, we calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongsidemore » and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter N eff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paris, Mark
A team of physicists and astrophysicists at Los Alamos National Laboratory, in collaboration with leading universities around the country, are using the Laboratory’s supercomputers to simulate the Big Bang nucleosynthesis and the early universe to unprecedented precision. These researchers developed a code, called BURST that describes the universe from a time of a few seconds after the Big Bang to several hundred thousand years later. BURST allows physicists to study the microscopic, quantum nature of fundamental particles — like nuclei and the ghostly, weakly interacting neutrinos — by simulating the universe at its largest, cosmological scale. BURST simultaneously describes allmore » the particles present in the early universe as they develop, tracking their evolution, particularly the amounts of light nuclei fused in the cosmic soup.« less
Parsons, Jenni
2008-10-01
Now that's a cheery thought! Somewhere more than 100 km below the Geneva countryside two parallel beams of subatomic particles are whizzing around a 27 km circuit in opposite directions at about 99% of the speed of light, doing over 11 000 laps per second. Physicists hope to create a 'bang' that won't end the world, but will unlock some of its mysteries. I confess I have never thought of physicists as poets, but they certainly come up with some evocative models to explain the unknown such as 'dark matter', the invisible skeleton stretching through space; or 'dark energy', which drives the expansion of the universe; or the grandiose 'God's particle' (officially named 'Higgs boson') postulated to endow other particles with mass. These are concepts both too large and too small to grasp.
NASA Astrophysics Data System (ADS)
Ross, Charles H.
2005-04-01
Aristotle thought that the universe was finite and Earth centered. Newton thought that it was infinite. Einstein guessed that the universe was finite, spherical, static, warped, and closed. Hubble's 1930 discovery of the expanding universe, Penzias and Wilson's 1968 discovery of the isotropic CMB, and measurements on light element abundances, however, established a big bang origin. Vera Rubin's 1980 dark matter discovery significantly impacted contending theories. However, 1998 is the year when sufficiently accurate supernova and primordial deuterium data was available to truly explore the universe. CMB anisotropy measurements further extended our cosmological database in 2003. On the theoretical side, Friedmann's 1922 perturbation solution of Einstein's general relativity equations for a static universe has shaped the thought and direction in cosmology for the past 80 years. It describes 3D space as a dynamic function of time. However, 80 years of trying to fit Friedmann's solution to observational data has been a bumpy road - resulting in such counter-intuitive, but necessary, features as rapid inflation, precision tuning, esoteric dark matter, and an accelerating input of esoteric dark energy.
NASA Astrophysics Data System (ADS)
Massa, Corrado
1996-03-01
The consequences of a cosmological ∧ term varying asS -2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive ∧ and gravitational ‘constant’G that increases with time. The ‘hard’ equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawS∝t (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology. In the present, matter dominated universe one findsdG/dt=2∧H/U (H is the Hubble parameter) which is consistent with observations provided ∧<10-57 cm-2. Asymptotically (S→∞) the ∧ term equalsGU/2, in agreement with other studies.
Galaxies 800 million years after the Big Bang seen with the Atacama Large Millimetre Array
NASA Astrophysics Data System (ADS)
Smit, Renske
2018-01-01
The identification of galaxies in the first billion years after the Big Bang presents a challenge for even the largest optical telescopes. When the Atacama Large Millimetre Array (ALMA) started science operations in 2011 it presented a tantalising opportunity to identify and characterise these first sources of light in a new window of the electromagnetic spectrum. I will present new sources successfully identified at z=6.8 using ALMA; the first spectroscopic confirmations of typical star-forming galaxies during the Epoch or Reionization using a sub-millimetre telescope. Moreover, these observations reveal the gas kinematics of such distant sources for the first time. The velocity gradient in these galaxies indicate that these galaxies likely have similar dynamical properties as the turbulent, yet rotation-dominated disks that have been observed for Hα emitting galaxies 2 billion years later at cosmic noon. This novel approach for confirming galaxies during Reionization paves the way for larger studies of distant galaxies with spectroscopic redshifts. Particularly important, this opens up opportunities for the measurement of high angular-resolution dynamics in galaxies less than one billion years after the Big Bang.
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.
ERIC Educational Resources Information Center
Walker, Rod
1998-01-01
Within diverse outdoor educational activities, a core experience of connection with the earth balances self, others, and nature with elements of ritual. Most effective when experiential, integrated, and technologically simple, the core experience's educative power lies in awakening awareness of interconnectedness between human and nonhuman life.…
The Universe's First Fireworks
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster VersionFigure 1Figure 2 This is an image from NASA's Spitzer Space Telescope of stars and galaxies in the Ursa Major constellation. This infrared image covers a region of space so large that light would take up to 100 million years to travel across it. Figure 1 is the same image after stars, galaxies and other sources were masked out. The remaining background light is from a period of time when the universe was less than one billion years old, and most likely originated from the universe's very first groups of objects -- either huge stars or voracious black holes. Darker shades in the image on the left correspond to dimmer parts of the background glow, while yellow and white show the brightest light. Brief History of the Universe In figure 2, the artist's timeline chronicles the history of the universe, from its explosive beginning to its mature, present-day state. Our universe began in a tremendous explosion known as the Big Bang about 13.7 billion years ago (left side of strip). Observations by NASA's Cosmic Background Explorer and Wilkinson Anisotropy Microwave Probe revealed microwave light from this very early epoch, about 400,000 years after the Big Bang, providing strong evidence that our universe did blast into existence. Results from the Cosmic Background Explorer were honored with the 2006 Nobel Prize for Physics. A period of darkness ensued, until about a few hundred million years later, when the first objects flooded the universe with light. This first light is believed to have been captured in data from NASA's Spitzer Space Telescope. The light detected by Spitzer would have originated as visible and ultraviolet light, then stretched, or redshifted, to lower-energy infrared wavelengths during its long voyage to reach us across expanding space. The light detected by the Cosmic Background Explorer and the Wilkinson Anisotropy Microwave Probe from our very young universe traveled farther to reach us, and stretched to even lower-energy microwave wavelengths. Astronomers do not know if the very first objects were either stars or quasars. The first stars, called Population III stars (our star is a Population I star), were much bigger and brighter than any in our nearby universe, with masses about 1,000 times that of our sun. These stars first grouped together into mini-galaxies. By about a few billion years after the Big Bang, the mini-galaxies had merged to form mature galaxies, including spiral galaxies like our own Milky Way. The first quasars ultimately became the centers of powerful galaxies that are more common in the distant universe. NASA's Hubble Space Telescope has captured stunning pictures of earlier galaxies, as far back as ten billion light-years away.NASA Astrophysics Data System (ADS)
Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang
2017-08-01
We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many-revolution orbital transfers.
Steering Quantum Dynamics of a Two-Qubit System via Optimal Bang-Bang Control
NASA Astrophysics Data System (ADS)
Hu, Juju; Ke, Qiang; Ji, Yinghua
2018-02-01
The optimization of control time for quantum systems has been an important field of control science attracting decades of focus, which is beneficial for efficiency improvement and decoherence suppression caused by the environment. Based on analyzing the advantages and disadvantages of the existing Lyapunov control, using a bang-bang optimal control technique, we investigate the fast state control in a closed two-qubit quantum system, and give three optimized control field design methods. Numerical simulation experiments indicate the effectiveness of the methods. Compared to the standard Lyapunov control or standard bang-bang control method, the optimized control field design methods effectively shorten the state control time and avoid high-frequency oscillation that occurs in bang-bang control.
NASA Astrophysics Data System (ADS)
Kraiko, A. N.; Valiyev, Kh. F.
2016-10-01
The new model of the Big Bang and the Universe expansion is constructed. It is based on solutions in classical and in relativistic statements of problem on the dispersion into the void of the gas compressed into a point or in a finite, but for further negligible, volume. If to restrict in relativistic statement gas speed value v by the speed of light (υ =| v |
Diversionary device history and revolutionary advancements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Paul W.; Grubelich, Mark Charles
Diversionary devices also known as flash bangs or stun grenades were first employed about three decades ago. These devices produce a loud bang accompanied by a brilliant flash of light and are employed to temporarily distract or disorient an adversary by overwhelming their visual and auditory senses in order to gain a tactical advantage. Early devices that where employed had numerous shortcomings. Over time, many of these deficiencies were identified and corrected. This evolutionary process led to today's modern diversionary devices. These present-day conventional diversionary devices have undergone evolutionary changes but operate in the same manner as their predecessors. Inmore » order to produce the loud bang and brilliant flash of light, a flash powder mixture, usually a combination of potassium perchlorate and aluminum powder is ignited to produce an explosion. In essence these diversionary devices are small pyrotechnic bombs that produce a high point-source pressure in order to achieve the desired far-field effect. This high point-source pressure can make these devices a hazard to the operator, adversaries and hostages even though they are intended for 'less than lethal' roles. A revolutionary diversionary device has been developed that eliminates this high point-source pressure problem and eliminates the need for the hazardous pyrotechnic flash powder composition. This new diversionary device employs a fuel charge that is expelled and ignited in the atmosphere. This process is similar to a fuel air or thermobaric explosion, except that it is a deflagration, not a detonation, thereby reducing the overpressure hazard. This technology reduces the hazard associated with diversionary devices to all involved with their manufacture, transport and use. An overview of the history of diversionary device development and developments at Sandia National Laboratories will be presented.« less
NASA Astrophysics Data System (ADS)
Halal, George; STAR Collaboration
2017-09-01
The properties of the nearly perfect liquid, Quark Gluon Plasma (QGP), which filled the universe a microsecond after the Big Bang are studied by colliding heavy-ions at relativistic energies. Our project focuses on building and testing an Event Plane Detector (EPD) for the STAR experiment and analyzing the data collected from collisions. When a minimum ionizing particle hits one of the optically-isolated tiles of this detector, which are made of scintillator plastic, it lights up. The light then travels through a wavelength-shifting fiber embedded in the tile to a clear optical fiber to be detected by silicon photo-multipliers. This detector is an improved version of the Beam-Beam Counter, which is currently at STAR. It will help us measure the centrality and event plane of collisions with more precision. Data collected will aid us in mapping out the transition phase between the QGP and hadronic matter, which evolved into the chemical elements we see today, and in searching for a unique critical point in the phase diagram of Quantum Chromodynamics matter. In 2017, a commissioning run has taken place at RHIC, colliding protons at 510 GeV and gold ions at 54.4 GeV. Some data analysis from one eighth of the EPD that is installed will also be discussed.
Reheating and the asymmetric production of matter
NASA Astrophysics Data System (ADS)
Adshead, Peter
The early thermal history of the universe, from the end of inflation until the light elements are produced at big-bang nucleosynthesis, remains one of the most poorly understood periods of our cosmic history. We do not understand how inflation ends, and the connection between the physics that drives inflation and the standard model is poorly constrained. Consequently, the mechanism by which the Universe is reheated from its super-cooled post-inflationary state into a thermalized plasma is unknown. Furthermore, the precise mechanism responsible for the matter-antimatter asymmetry and the detailed particle origin of dark matter are, as yet, unknown. However, it is precisely during this epoch that abundant phenomenology from fundamental physics beyond the standard model is anticipated. The objective of the proposed research is to address this gap in our understanding of the history of the Universe by exploring the connection between the physics that drives the inflationary epoch, and the physics that ignites the hot big-bang. This will be achieved by two detailed studies of the physics of reheating. The first study examines the cosmic history of dark sectors, and addresses the cosmological question of how these sectors are populated in the early universe. The second study examines detailed particle physics models of reheating where the inflaton couples to gauge fields. NASA's strategic objectives in astrophysics are to discover how the universe works and to explore how it began and evolved. The primary goal of this proposal is to address these questions by developing a deeper understanding of the history of the post-inflationary universe through cosmological observations and fundamental theory. Specifically, this proposal will advance NASA's science goal to probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity
Microwave Sky image from the WMAP Mission
NASA Technical Reports Server (NTRS)
2005-01-01
A detailed full-sky map of the oldest light in the universe. It is a 'baby picture' of the universe. Colors indicate 'warmer' (red) and 'cooler' (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be projected as an oval. The microwave light captured in this picture is from 379,000 years after the Big Bang, over 13 billion years ago. For more information, see http://map.gsfc.nasa.gov/m_mm/mr_whatsthat.html
Reaction of the French population to the supersonic bang
NASA Technical Reports Server (NTRS)
Bremond, J.
1980-01-01
A discussion of a survey dealing with the supersonic bang is presented. Topics include the position the bang has in today's pollution, annoyance caused by the bang and its dependence on sociological and psychological variables, and whether or not the perception of the ban is objective. Other questions raised are whether the frequency of exposure to the bang has an influence on attitudes and does the sensitivity to or annoyance from the bang have a linear increase with the frequency.
What We Talk About When We Talk About Light.
Forbes, Malcolm D E
2015-10-28
UNESCO (the United Nations Educational, Scientific, and Cultural Organization) has declared 2015 the "International Year of Light and Light-Based Technologies". In celebration of this proclamation, this Outlook provides a general history of light and its applications, from the earliest moments of the Big Bang through its present impact on all forms of life on the planet. Special emphasis is placed on fundamental advances in the generation and use of artificial light, as well as the harvesting and use of light from the Sun and other natural sources. During the past century, the role of light in the fields of physics, chemistry, and biology has expanded to include emerging fields such as environmental engineering, agriculture, materials science, and biomedicine. In this regard, future research challenges and new potential applications in these areas, in the context of "the central science", are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Austin D.; Meade, Roger Allen
As one of the very few people in the world to give the “go/no go” decision to detonate a nuclear device, Austin “Mac” McGuire holds a very special place in the history of both the Los Alamos National Laboratory and the world. As Commander of Joint Task Force Unit 8.1.1, on Christmas Island in the spring and summer of 1962, Mac directed the Los Alamos data collection efforts for twelve of the last atmospheric nuclear detonations conducted by the United States. Since data collection was at the heart of nuclear weapon testing, it fell to Mac to make the ultimatemore » decision to detonate each test device. He calls his experience THE LAST BIG BANG, since these tests, part of Operation Dominic, were characterized by the dramatic displays of the heat, light, and sounds unique to atmospheric nuclear detonations – never, perhaps, to be witnessed again.« less
Was the Universe actually radiation dominated prior to nucleosynthesis?
NASA Astrophysics Data System (ADS)
Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue
2017-08-01
Maybe not. String theory approaches to both beyond the Standard Model and inflationary model building generically predict the existence of scalars (moduli) that are light compared to the scale of quantum gravity. These moduli become displaced from their low energy minima in the early Universe and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper, we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big bang nucleosynthesis.
Helium-3 in Milky Way Reveals Abundance of Matter in Early Universe
NASA Astrophysics Data System (ADS)
2002-01-01
Astronomers using the National Science Foundation's 140 Foot Radio Telescope in Green Bank, West Virginia, were able to infer the amount of matter created by the Big Bang, and confirmed that it accounts for only a small portion of the effects of gravity observed in the Universe. The scientists were able to make these conclusions by determining the abundance of the rare element helium-3 (helium with only one neutron and two protons in its nucleus) in the Milky Way Galaxy. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "Moments after the Big Bang, protons and neutrons began to combine to form helium-3 and other basic elements," said Robert Rood of the University of Virginia. "By accurately measuring the abundance of this primordial element in our Galaxy today, we were able infer just how much matter was created when the Universe was only a few minutes old." Rood and his colleagues, Thomas Bania from Boston University and Dana Balser from the National Radio Astronomy Observatory (NRAO), report their findings in the January 3 edition of the scientific journal Nature. Rood began searching for helium-3 in the Milky Way Galaxy in 1978. At that time, scientists believed that stars like our Sun synthesized helium-3 in their nuclear furnaces. Surprisingly, Rood's observations indicated that there was far less of this element in the Galaxy than the current models predicted. "If stars were indeed producing helium-3, as scientists believed, then we should have detected this element in much greater concentrations," he said. This unexpected discovery prompted Rood and his colleagues to broaden their search, and to look throughout the Milky Way for signs of stellar production of helium-3. Over the course of two decades, the researchers discovered that regardless of where they looked -- whether in the areas of sparse star formation like the outer edges of the Galaxy, or in areas of intense star formation near center of the Galaxy -- the relative abundance of helium-3 remained constant. By concurrently measuring the amount of hydrogen (also created by the Big Bang) in the same areas, the scientists were able to determine the relative abundance of helium-3. "Since stellar processes appear to have little or no impact on the amount of helium-3 in the Galaxy, we were able to deduce two very important things," said Bania. "First, since our current models predict stellar production of helium-3, then we will need to rethink our understanding of the internal workings of stars like our Sun. Second, since helium-3 has not been created or destroyed in our Galaxy in any appreciable amounts, then what we detected is most likely equal to the abundance of primordial helium-3 created by the Big Bang." The scientists were able to use this discovery to calculate how much "normal" matter was created during the Big Bang. (Normal matter is anything made of baryons, subatomic particles that include neutrons and protons.) The researchers made these calculations by taking what they know of the composition of the Universe today, and essentially running time in reverse. In this case, the ratio of helium-3 to hydrogen gives the ratio of baryons to photons (the density of radiation) just after the Big Bang. By using the rate of expansion of the Universe, given by the Hubble Constant, the scientists could then infer just how much normal matter was produced during the Big Bang. "Our findings for helium-3 in fact support other studies that also constrain the amount of matter in the Universe," said Balser. "Taken together, these studies show that the matter that makes up stars, planets, and the visible Universe can only account for a small fraction of what we observe as the effects of gravity in the Universe." Dark matter, which can be both baryonic (dead stars, rocks, etc.) and non-baryonic, and other as-yet-unidentified forces appear to be the primary sources of the gravity that holds galaxies, and the larger structures of the Universe, together. "The fact that most of the matter in the Universe is non-baryonic, that is to say not made of any particle we've ever seen on Earth, is a very exciting concept," commented Rood. The astronomers conducted their research using measurements at a frequency of 8.665 GHz (3.46 cm), which is emitted naturally by ionized helium-3. The 140 Foot Radio Telescope at the NRAO in Green Bank now is decommissioned after a long and highly productive career. "Though the 140 Foot Telescope enabled us to make remarkable observations," commented Rood, "we anticipate that the new Robert C. Byrd Green Bank Telescope will greatly increase our ability to continue this research." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Response of Benthic Microalgae to Phosphorus Inputs in Grand Bay National Estuarine Research Reserve
NASA Astrophysics Data System (ADS)
Sleek, J.; Caffrey, J. M.; Baine, G. C., II; Capps, R.
2016-12-01
Benthic microalgae are an important, but often understudied component of shallow, photic estuaries in the Gulf of Mexico. Grand Bay National Estuarine Research Reserve (GBNERR) is located in a small and relatively pristine estuary in the northern Gulf of Mexico. Freshwater input into the estuary is primarily local runoff from bayous and tidal creeks, including Bayou Cumbest, Bayou Heron, and Bangs Lake. Nutrient loading to Grand Bay is relatively small, with ambient nutrient concentrations often below detection. However, several events in 2005, 2012, 2013, and 2014 due to breaches in a containment levee from a gypsum stack have led to high phosphate levels near Bangs Lake. GBNERR staff assembled a phosphate working group to investigate scientific questions related to these phosphate loadings. This working group includes members from GBNERR, regional universities, marine labs, and Mississippi Department of Environmental Quality. In marine ecosystems, nitrogen availability normally limits growth of phytoplankton and previous research has shown this to be the case in Grand Bay. However, little is known about benthic microalgae in Grand Bay and what their response is to these phosphorus inputs. Between 2013 and 2015, summer concentrations of water column and benthic chlorophyll a were positively correlated, with the highest concentrations occurring in Bangs Lake. Benthic chlorophyll was also positively correlated with the percent surface irradiance reaching the bottom. Bottom light levels range from 3 to 36% surface irradiance. This along with experiments that showed no enhancement of growth of benthic microalgae following addition of nutrients (ammonium, phosphate or both) suggest that benthic microalgae are predominantly light limited rather than nutrient limited. Preliminary nitrogen fixation measurements suggest that nitrogen fixation was positively correlated with extractable phosphate concentrations. Thus, enhanced sediment nitrogen fixation and excess phosphate from the fertilizer plant runoff in this high light environment may enhance benthic microalgal production. The results of this research are part of the larger effort by the phosphate working group to understand the impact of repeated phosphate impacts. These results will provide information needed to help manage the reserve.
Response of Benthic Microalgae to Phosphorus Inputs in Grand Bay National Estuarine Research Reserve
NASA Astrophysics Data System (ADS)
Sleek, J.; Caffrey, J. M.; Baine, G. C., II; Capps, R.
2016-02-01
Benthic microalgae are an important, but often understudied component of shallow, photic estuaries in the Gulf of Mexico. Grand Bay National Estuarine Research Reserve (GBNERR) is located in a small and relatively pristine estuary in the northern Gulf of Mexico. Freshwater input into the estuary is primarily local runoff from bayous and tidal creeks, including Bayou Cumbest, Bayou Heron, and Bangs Lake. Nutrient loading to Grand Bay is relatively small, with ambient nutrient concentrations often below detection. However, several events in 2005, 2012, 2013, and 2014 due to breaches in a containment levee from a gypsum stack have led to high phosphate levels near Bangs Lake. GBNERR staff assembled a phosphate working group to investigate scientific questions related to these phosphate loadings. This working group includes members from GBNERR, regional universities, marine labs, and Mississippi Department of Environmental Quality. In marine ecosystems, nitrogen availability normally limits growth of phytoplankton and previous research has shown this to be the case in Grand Bay. However, little is known about benthic microalgae in Grand Bay and what their response is to these phosphorus inputs. Between 2013 and 2015, summer concentrations of water column and benthic chlorophyll a were positively correlated, with the highest concentrations occurring in Bangs Lake. Benthic chlorophyll was also positively correlated with the percent surface irradiance reaching the bottom. Bottom light levels range from 3 to 36% surface irradiance. This along with experiments that showed no enhancement of growth of benthic microalgae following addition of nutrients (ammonium, phosphate or both) suggest that benthic microalgae are predominantly light limited rather than nutrient limited. Preliminary nitrogen fixation measurements suggest that nitrogen fixation was positively correlated with extractable phosphate concentrations. Thus, enhanced sediment nitrogen fixation and excess phosphate from the fertilizer plant runoff in this high light environment may enhance benthic microalgal production. The results of this research are part of the larger effort by the phosphate working group to understand the impact of repeated phosphate impacts. These results will provide information needed to help manage the reserve.
What We Talk About When We Talk About Light†
2015-01-01
UNESCO (the United Nations Educational, Scientific, and Cultural Organization) has declared 2015 the “International Year of Light and Light-Based Technologies”. In celebration of this proclamation, this Outlook provides a general history of light and its applications, from the earliest moments of the Big Bang through its present impact on all forms of life on the planet. Special emphasis is placed on fundamental advances in the generation and use of artificial light, as well as the harvesting and use of light from the Sun and other natural sources. During the past century, the role of light in the fields of physics, chemistry, and biology has expanded to include emerging fields such as environmental engineering, agriculture, materials science, and biomedicine. In this regard, future research challenges and new potential applications in these areas, in the context of “the central science”, are presented and discussed. PMID:27162995
Note: Neutron bang time diagnostic system on Shenguang-III prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Qi; Chen, Jiabin; Liu, Zhongjie
A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.
The Cosmic Abundance of 3He: Green Bank Telescope Observations
NASA Astrophysics Data System (ADS)
Balser, Dana; Bania, Thomas
2018-01-01
The Big Bang theory for the origin of the Universe predicts that during the first ~1,000 seconds significant amounts of the light elements (2H, 3He, 4He, and 7Li) were produced. Many generations of stellar evolution in the Galaxy modifies these primordial abundances. Observations of the 3He+ hyperfine transition in Galactic HII regions reveals a 3He/H abundance ratio that is constant with Galactocentric radius to within the uncertainties, and is consistent with the primordial value as determined from cosmic microwave background experiments (e.g., WMAP). This "3He Plateau" indicates that the net production and destruction of 3He in stars is approximately zero. Recent stellar evolution models that include thermohaline mixing, however, predict that 3He/H abundance ratios should slightly decrease with Galactocentric radius, or in places in the Galaxy with lower star formation rates. Here we discuss sensitive Green Bank Telescope (GBT) observations of 3He+ at 3.46 cm in a subset of our HII region sample. We develop HII region models and derive accurate 3He/H abundance ratios to better constrain these new stellar evolution models.
Non-extensive Statistics to the Cosmological Lithium Problem
NASA Astrophysics Data System (ADS)
Hou, S. Q.; He, J. J.; Parikh, A.; Kahl, D.; Bertulani, C. A.; Kajino, T.; Mathews, G. J.; Zhao, G.
2017-01-01
Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, 3He, 4He, and 7Li produced in the early universe. The primordial abundances of D and 4He inferred from observational data are in good agreement with predictions, however, BBN theory overestimates the primordial 7Li abundance by about a factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated the impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter q, and reduces to the usually assumed Maxwell-Boltzmann distribution for q = 1. We find excellent agreement between predicted and observed primordial abundances of D, 4He, and 7Li for 1.069 ≤ q ≤ 1.082, suggesting a possible new solution to the cosmological lithium problem.
Towards Limits on Neutrino Mixing Parameters from Nucleosynthesis in the Big Bang and Supernovae
NASA Astrophysics Data System (ADS)
Cardall, Christian Young
1997-11-01
Astrophysical environments can often provide stricter limits on neutrino mass and mixing parameters than terrestrial experiments. However, before firm limits can be found, there must be confidence in the understanding of the astrophysical environment being used to make these limits. In this dissertation, progress towards limits on neutrino mixing parameters from big bang nucleosynthesis and supernova r-process nucleosynthesis is sought. By way of assessment of current knowledge of neutrino oscillation parameters, we examine the potential for a 'natural' three-neutrino mixing scheme (one without sterile neutrinos) to satisfy available data and astrophysical arguments. A small parameter space currently exists for a natural three-neutrino oscillation solution meeting known constraints. If such a solution is ruled out, and current hints about neutrino oscillations are confirmed, mixing between active and sterile neutrinos will probably be required. Because mixing between active and sterile neutrinos with parameters appropriate for the atmospheric or solar neutrino problems increases the primordial 4He abundance, big bang nucleosynthesis considerations can place limits on such mixing. In the present work the overall consistency of standard big bang nucleosynthesis is discussed in light of recent discordant determinations of the primordial deuterium abundance. Cosmological considerations favor a larger baryon density, which supports the lower reported value of D/H. Studies of limits on active-sterile neutrino mixing derived from big bang nucleosynthesis considerations are here extended to consider the dependance of these constraints on the primordial deuterium abundance. If the neutrino-heated ejecta in the post-core-bounce supernova environment is the site of r-process nucleosynthesis, limits can be placed on mixing between νe, and νsbμ, or νsbτ. Refined limits will require a better understanding of this r-process environment, since current supernova models do not show a completely successful r-process. In this work it is shown that general relativistic effects associated with a more compact supernova core can provide more suitable conditions for the r-process. As a step towards analyzing the effects of neutrino mixing in such a relativistic environment, neutrino oscillations in curved spacetime are studied.
An upper limit on the neutrino rest mass.
NASA Technical Reports Server (NTRS)
Cowsik, R.; Mcclelland, J.
1972-01-01
It is pointed out that the measurement of the deceleration parameter by Sandage (1972) implies an upper limit of a few tens of electron volts on the sum of the masses of all the possible light, stable particles that interact only weakly. In the discussion of the problem, it is assumed that the universe is expanding from an initially hot and condensed state as envisaged in the 'big-bang' theories.
Evans, Rebecca E; Zimmerman, Joshua; Shishido, Sonia; Heath, Elise; Bledsoe, Amber; Johnson, Ken
2016-05-01
The aims of this study were to (1) explore the incidence of right-sided heart dysfunction (RHD) and STOP-Bang questionnaire responses consistent with obstructive sleep apnea (OSA) and (2) assess the relationship between patients with STOP-Bang questionnaire responses consistent with OSA and echocardiographic findings suggestive of RHD. Observational study. Tertiary academic center preoperative clinic. Two hundred patients presenting for elective surgery to the University of Utah preoperative clinic. Abbreviated transthoracic right-sided echocardiogram and STOP-Bang questionnaire. Tricuspid annular plane systolic excursion, tissue Doppler-derived tricuspid lateral annular systolic velocity (S'), and the tricuspid inflow E wave to tricuspid annular tissue Doppler e' wave ratio (E/e') for the presence of RHD, as well as responses to STOP-Bang questionnaire. A total of 140 echocardiograms were analyzed after exclusion of participants with incomplete STOP-Bang questionnaires and inadequate images. Thirty-five patients (25%) reported 5 or more positive responses to the STOP-Bang questionnaire. Forty-six patients (35%) had abnormal right-sided heart measurements. Of the 35 patients with STOP-Bang scores 5 or greater, 11 (31%) had evidence of RHD. No correlation was observed between STOP-Bang scores and the echocardiography metrics of RHD. This preliminary study suggests that there are numerous sources of RHD, among one of which is sleep apnea, and/or the STOP-Bang questionnaire is not a sensitive tool for predicting RHD. We conclude that although the STOP-Bang questionnaire is easy to implement in a preoperative clinical setting, it is not useful in identifying patients at risk for RHD. Copyright © 2015 Elsevier Inc. All rights reserved.
Hubble Spies Big Bang Frontiers
2017-12-08
Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the universe. Some of these galaxies formed just 600 million years after the big bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined for the first time with some confidence that these small galaxies were vital to creating the universe that we see today. An international team of astronomers, led by Hakim Atek of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, has discovered over 250 tiny galaxies that existed only 600-900 million years after the big bang— one of the largest samples of dwarf galaxies yet to be discovered at these epochs. The light from these galaxies took over 12 billion years to reach the telescope, allowing the astronomers to look back in time when the universe was still very young. Read more: www.nasa.gov/feature/goddard/hubble-spies-big-bang-frontiers Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
What is Your Cosmic Connection to the Elements?
NASA Technical Reports Server (NTRS)
Lochner, J.
2003-01-01
This booklet provides information and classroom activities covering topics in astronomy, physics, and chemistry. Chemistry teachers will find information about the cosmic origin of the chemical elements. The astronomy topics include the big bang, life cycles of small and large stars, supernovae, and cosmic rays. Physics teachers will find information on fusion processes, and physical principles important in stellar evolution. While not meant to replace a textbook, the information provided here is meant to give the necessary background for the theme of :our cosmic connection to the elements." The activities can be used to re-enforce the material across a number of disciplines, using a variety of techniques, and to engage and excite students about the topic. Additional activities, and on-line versions of the activities published here, are available at http://imagine.gsfc.nasa.gov/docs/teachers/elements/.
resource planning (ERP) solution called the Expeditionary Combat Support System (ECSS), a big - bang approach. In early 2012, the ECSS program was cancelled...Repair, and Overhaul initiative (MROi), a small- bang approach, to increase enterprise visibility and efficiency across all three Air Logistics
NASA Astrophysics Data System (ADS)
Soderberg, Alicia M.
2014-01-01
For decades, the study of stellar explosions -- supernovae -- have focused almost exclusively on the strong optical emission that dominates the bolometric luminosity in the days following the ultimate demise of the star. Yet many of the leading breakthroughs in our understanding of stellar death have been enabled by obtaining data at other wavelengths. For example, I have shown that 1% of all supernovae give rise to powerful relativistic jets, representing the biggest bangs in the Universe since the Big Bang. My recent serendipitous X-ray discovery of a supernova in the act of exploding (“in flagrante delicto”) revealed a novel technique to discover new events and provide clues on the shock physics at the heart of the explosion. With the advent of sensitive new radio telescopes, my research group combines clues from across the electromagnetic spectrum (radio to gamma-ray), leading us to a holistic study of stellar death, the physics of the explosions, and their role in fertilizing the Universe with new elements, by providing the community with cosmic autopsy reports.
NASA Astrophysics Data System (ADS)
Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.
2018-05-01
This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.
Forest, Elodie; Logeay, Rémi; Géminard, Charles; Kantar, Diala; Frayssinoux, Florence; Heron-Milhavet, Lisa; Djiane, Alexandre
2018-03-05
During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg -mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth. © 2018 Forest et al.
Enterobiasis in primary schools in Bang Khun Thian District, Bangkok, Thailand.
Changsap, B; Nithikathkul, C; Boontan, P; Wannapinyosheep, S; Vongvanich, N; Poister, C
2002-01-01
A study of enterobiasis and its correlation with various factors that could potentially influence the rate of infection was conducted among 3,621 primary school children (five to ten years old), drawn from sixteen schools in Bang Khun Thian District, Bangkok. Diagnosis was by the transparent tape swab technique, which was used to recover Enterobius vermicularis eggs from the perianal region. The transparent tape swabs were then placed on slides for examination by light microscopy. The average rate of infection for the group was 21.57%. No statistically significant differences were found between the male and female children. The younger children had a higher rate of infection. Subjects from schools located in industrial and metropolitan areas showed slightly higher rates of infection than those from agricultural areas. Data from the questionnaires in the study indicated that factors such as parental socio-economic status (occupational, income and education) and the children's personal hygiene contributed to the varying rates of infection.
NASA Astrophysics Data System (ADS)
Yang, Chao Yuan
2012-05-01
Anomalous decelerations of spacecraft Pioneer-10,11,etc could be interpreted as signal delay effect between speed of gravity and that of light as reflected in virtual scale, similar to covarying virtual scale effect in relative motion (http://arxiv.org/html/math-ph/0001019v5).A finite speed of gravity faster than light could be inferred (http://arXiv.org/html/physics/0001034v2). Measurements of gravitational variations by paraconical pendulum during a total solar eclipse infer the same(http://arXiv.org/html/physics/0001034v9). A finite Superluminal speed of gravity is the necessary condition to imply that there exists gravitational horizon (GH). Such "GH" of our Universe would stretch far beyond the cosmic event horizon of light. Dark energy may be owing to mutually interactive gravitational horizons of cousin universes. Sufficient condition for the conjecture is that the dark energy would be increasing with age of our Universe since accelerated expansion started about 5 Gyr ago, since more and more arrivals of "GH" of distant cousin universes would interact with "GH" of our Universe. The history of dark energy variations between then and now would be desirable(http://arXiv.org/html/physics/0001034). In "GH" conjecture, the neighborhood of cousin universes would be likely boundless in 4D-space-time without begining or end. The dark energy would keep all universes in continually accelerated expansion to eventual fragmentation. Fragments would crash and merge into bangs, big or small, to form another generation of cousin universes. These scenarios might offer a clue to what was before the big bang.
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-06
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.
Propellant-free Spacecraft Relative Maneuvering via Atmospheric Differential Drag
2015-07-06
functions is a challenge that varies from problem to problem, and a widely studied theory exists (see [5-7]). In this work, a quadratic Lyapunov...with respect to the duration of the maneuvers. Thus, it is assumed the drag surfaces deploy/retract instantly, generating a bang -off- bang control...It should be noted that the adaptations occur every 10 minutes and that that for a bang -off- bang control the Δt from Equations (10) and (13) is
Development Tests of a Cryogenic Filter Wheel Assembly for the NIRCam Instrument
NASA Technical Reports Server (NTRS)
McCully, Sean; Clark, Charles; Schermerhorn, Michael; Trojanek, Filip; O'Hara, Mark; Williams, Jeff; Thatcher, John
2006-01-01
The James Webb Space Telescope is an infrared-optimized space telescope scheduled for launch in 201 3. Its 6.5-m diameter primary mirror will collect light from some of the first galaxies formed after the big bang. The Near Infrared camera (NIRCam) will detect the first light from these galaxies, provide the necessary tools for studying the formation of stars, aid in discovering planets around other stars, and adjust the wave front error on the primary mirror (Fig. 1). The instrument and its complement of mechanisms and optics will operate at a cryogenic temperature of 35 K. This paper describes tests and test results of the NIRCam Filter Wheel assembly prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.
NON-EXTENSIVE STATISTICS TO THE COSMOLOGICAL LITHIUM PROBLEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, S. Q.; He, J. J.; Parikh, A.
Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, {sup 3}He, {sup 4}He, and {sup 7}Li produced in the early universe. The primordial abundances of D and {sup 4}He inferred from observational data are in good agreement with predictions, however, BBN theory overestimates the primordial {sup 7}Li abundance by about a factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated themore » impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter q , and reduces to the usually assumed Maxwell–Boltzmann distribution for q = 1. We find excellent agreement between predicted and observed primordial abundances of D, {sup 4}He, and {sup 7}Li for 1.069 ≤ q ≤ 1.082, suggesting a possible new solution to the cosmological lithium problem.« less
Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud.
Howk, J Christopher; Lehner, Nicolas; Fields, Brian D; Mathews, Grant J
2012-09-06
The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted primordial (7)Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the in situ modifications that may affect stellar atmospheres. Here we report observations of interstellar (7)Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity. The present-day (7)Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an extremely fine-tuned depletion of stellar Li with metallicity. They are also consistent with non-standard BBN.
Abumuamar, Asmaa M; Dorian, Paul; Newman, David; Shapiro, Colin M
2018-04-22
Obstructive sleep apnea (OSA) is a sleep disorder associated with significant cardiovascular comorbidities, including cardiac arrhythmia. The STOP-BANG questionnaire is an eight-item self-report questionnaire designed to screen patients for OSA and was validated in preoperative surgical patients. The STOP items are snoring, daytime tiredness, observed apneas and high blood pressure. The BANG items are body mass index >35 kg/m 2 , age >50 years, neck circumference >40 cm and male gender. We aimed to determine the screening properties of the STOP-BANG questionnaire in patients with arrhythmia. Non-selected consecutive patients were recruited from arrhythmia clinics. Patients with previously diagnosed and/or treated OSA were excluded. The STOP-BANG questionnaire was self-administered. Patients underwent two consecutive nights of home sleep recording. OSA was defined as an apnea-hypopnea index score of ≥5/hr of sleep. The screening properties of the STOP-BANG questionnaire were analysed compared with the objective diagnosis of OSA by ambulatory testing. Ninety-five patients were included in the final analysis. Eighty-five percent were found to have OSA. The STOP-BANG score of ≥3 was 89% sensitive and 36% specific for diagnosis of OSA. The STOP-BANG questionnaire had fair performance, as indicated by an area under the curve of 0.74 (p = .004). In conclusion, the STOP-BANG questionnaire is sensitive; however, it has a low specificity with a high false positive rate. Given that a large number of atrial fibrillation patients need testing for OSA, we recommend the use of a level II sleep study regardless of the results of the screening questionnaire. This approach accurately identifies OSA and may limit the cost of unnecessary level-I sleep studies. © 2018 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Gentry, Robert
2015-04-01
Big bang theory holds its central expansion redshift assumption quickly reduced the theorized radiation flash to ~ 1010 K, and then over 13.8 billion years reduced it further to the present 2.73 K CMR. Weinberg claims this 2.73 K value agrees with big bang theory so well that ``...we can be sure that this radiation was indeed left over from a time about a million years after the `big bang.' '' (TF3M, p180, 1993 ed.) Actually his conclusion is all based on big bang's in-flight wavelength expansion being a valid physical process. In fact all his surmising is nothing but science fiction because our disproof of GR-induced in-flight wavelength expansion [1] definitely proves the 2.73 K CMR could never have been the wavelength-expanded relic of any radiation, much less the presumed big bang's. This disproof of big bang's premier prediction is a death blow to the big bang as it is also to the idea that the redshifts in Hubble's redshift relation are expansion shifts; this negates Friedmann's everywhere-the-same, no-center universe concept and proves it does have a nearby Center, a place which can be identified in Psalm 103:19 and in Revelation 20:11 as the location of God's eternal throne. Widely published (Science, Nature, ARNS) evidence of Earth's fiat creation will also be presented. The research is supported by the God of Creation. This paper [1] is in for publication.
Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle
Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...
2017-05-18
We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less
Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza
We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less
Adult head-banging and stereotypic movement disorders.
Mendez, M F; Mirea, A
1998-09-01
Stereotypic movement disorders (SMD) such as head-banging, which are common among children with mental retardation or pervasive developmental disorders, may also occur in intellectually normal adults. We report a 27-year history of daily head-banging with self-injury in a 49-year-old man with normal cognition. The patient had no personal or family history of Tourette's syndrome, tic disorder, obsessive-compulsive disorder (OCD), or mental retardation. The frequency of his stereotypical head-banging increased with anxiety, loud noises with startle, and boredom. He reported a sense of pleasure from his head-banging, and the frequency of this behavior decreased when he was treated with the opioid antagonist naltrexone. Although not diagnostic, the self-stimulatory or pleasurable component of head-banging, body-rocking, thumb-sucking, and other SMD may help distinguish them from tics, Tourette's syndrome, OCD, and deliberate self-harming behavior. This report reviews the disorders associated with SMD and discusses the potential mechanisms for these behaviors. The treatment of SMD includes drugs that work through opioid, serotonergic, or dopaminergic systems.
Hubble Space Telescope Image, Supernova Remnant Cassiopeia A
NASA Technical Reports Server (NTRS)
2000-01-01
The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).
2000-01-01
The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or "Cas A" for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).
Searching for Baryon Acoustic Oscillations in Intergalactic Absorption: The Expanding Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This simulation follows the growth of density perturbations in both gas and dark matter components in a volume 1 billion light years on a side beginning shortly after the Big Bang and evolved to half the present age of the universe. Credits: Science: Michael L. Norman, Robert Harkness, Pascal Paschos, Rick Wagner, San Diego Supercomputer Center/University of California, San Diego Visualization: Mark Hereld, Joseph A. Insley, Michael E. Papka, Argonne National Laboratory; Eric C. Olson, University of Chicago
Long Fuse, Big Bang: Thomas Edison, Electricity, and the Locus of Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargadon, Andrew
2012-10-22
Calls for breakthroughs in science and technology have never been louder, and yet the demand for innovation is made more challenging by public and political misconceptions surrounding where, when, and how it happens. Professor Andrew Hargadon uses historical research to advance our current understanding of the innovation process. He discussed the social and technical context in which electric light, and the modern electric power infrastructure, were born and considers its implications for managing innovation in science and technology today.
Physics of the Cosmos: Program Annual Technology Report
NASA Technical Reports Server (NTRS)
Pham, Bruce Thai; Cardiff, Ann H.
2016-01-01
From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? PCOS focuses on that last question. Scientists investigating this broad theme use the universe itself as their laboratory, investigating its fundamental laws and properties. They test Einstein's General Theory of Relativity to see if our current understanding of space-time is borne out by observations. They examine the behavior of the most extreme environments - supermassive black holes, active galactic nuclei, and others - and the farthest reaches of the universe, to expand our understanding. With instruments sensitive across the spectrum, from radio, through infrared (IR), visible light, ultraviolet (UV), to X rays and gamma rays, as well as gravitational waves (GWs), they peer across billions of light-years, observing echoes of events that occurred instants after the Big Bang. The Laser Interferometer Gravitational-Wave Observatory (LIGO) recently recorded the first direct measurement of long-theorized GWs. Another surprising recent discovery is that the universe is expanding at an ever-accelerating rate, the first hint of so-called "dark energy," estimated to account for 75% of mass-energy in the universe. Dark matter, so called because we can only observe its effects on regular matter, accounts for another 20%, leaving only 5% for regular matter and energy. Scientists now also search for special polarization in the cosmic microwave background to support the notion that in the split-second after the Big Bang, the universe inflated faster than the speed of light! The most exciting aspect of this grand enterprise today is that we can finally develop the tools needed for such discoveries.
Big History or the 13800 million years from the Big Bang to the Human Brain
NASA Astrophysics Data System (ADS)
Gústafsson, Ludvik E.
2017-04-01
Big History is the integrated history of the Cosmos, Earth, Life, and Humanity. It is an attempt to understand our existence as a continuous unfolding of processes leading to ever more complex structures. Three major steps in the development of the Universe can be distinguished, the first being the creation of matter/energy and forces in the context of an expanding universe, while the second and third steps were reached when completely new qualities of matter came into existence. 1. Matter comes out of nothing Quantum fluctuations and the inflation event are thought to be responsible for the creation of stable matter particles in what is called the Big Bang. Along with simple particles the universe is formed. Later larger particles like atoms and the most simple chemical elements hydrogen and helium evolved. Gravitational contraction of hydrogen and helium formed the first stars und later on the first galaxies. Massive stars ended their lives in violent explosions releasing heavier elements like carbon, oxygen, nitrogen, sulfur and iron into the universe. Subsequent star formation led to star systems with bodies containing these heavier elements. 2. Matter starts to live About 9200 million years after the Big Bang a rather inconspicous star of middle size formed in one of a billion galaxies. The leftovers of the star formation clumped into bodies rotating around the central star. In some of them elements like silicon, oxygen, iron and many other became the dominant matter. On the third of these bodies from the central star much of the surface was covered with an already very common chemical compound in the universe, water. Fluid water and plenty of various elements, especially carbon, were the ingredients of very complex chemical compounds that made up even more complex structures. These were able to replicate themselves. Life had appeared, the only occasion that we human beings know of. Life evolved subsequently leading eventually to the formation of multicellular structures like plants, animals and fungi. 3. Matter starts to think A comet or an asteroid crashed into Earth about 66 million years ago, ending the dominance of dinosaurs. Small animals giving birth to living offspring were now able to evolve into a multitude of species, among them the primates. A group of primates migrated from Africa to other continents less than 100000 years ago. Their brain developed a special quality, self-conscience. This ability to reflect about oneself boosted their survival considerably. Man (Homo sapiens) had entered the scene, becoming one of the dominant species of this planet. Due to his immense ability today to handle matter and energy he has become something of a caretaker of planet Earth. Man is responsible for sustainable development for the good of his society and of the whole biosphere. If there is a fourth step in the history of the universe, discoveries in astrobiology may provide us with some clues in the next decades.
Cosmic Microwave Background Timeline
about 2.3 K 1948: George Gamow, Ralph Alpher, and Robert Herman predict that a Big Bang universe perfect blackbody spectrum and thereby strongly supporting the hot big bang model, the thermal history of anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational
ERIC Educational Resources Information Center
Kahrs, Bjorn A.; Jung, Wendy P.; Lockman, Jeffrey J.
2013-01-01
The current study examines the developmental trajectory of banging movements and its implications for tool use development. Twenty (6- to 15-month-old) infants wore reflective markers while banging a handled cube; movements were recorded at 240 Hz. Results indicated that through the second half-year, banging movements undergo developmental changes…
Lincoln, Don
2018-01-16
The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isnât true. In this video, Fermilabâs Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.
Vacuum low-temperature superconductivity is the essence of superconductivity - Atomic New Theory
NASA Astrophysics Data System (ADS)
Yongquan, Han
2010-10-01
The universe when the temperature closest to the Big Bang the temperature should be nuclear. Because, after the big bang, instant formation of atoms, nuclei and electrons between the absolute vacuum, the nucleus can not emit energy. (Radioactive elements, except in fact, radiation Yuan Su limited power emitted) which causes atomic nuclei and external temperature difference are so enormous that a large temperature difference reasons, all external particles became closer to the nucleus, affect the motion of electrons. When the conductor conductivity and thus affect the conductivity, the formation of resistance. Assumption that no particles affect the motion of electrons (except outside the nucleus) to form a potential difference will not change after the vector form, is now talking about the phenomenon of superconductivity, and then to introduce general, the gap between atoms in molecules or between small, valence electron number of high temperature superconducting conductors. This theory of atomic nuclei, but also explain the atomic and hydrogen bombs can remain after an explosion Why can release enormous energy reasons. Can also explain the ``super flow'' phenomenon. natural world. Tel 13241375685
NASA Astrophysics Data System (ADS)
2001-11-01
Sir Fred Hoyle, 1915 2001 Astronomer, author and popularizer of science 'There is a coherent plan in the universe, but I don't know what it's a plan for...' Sir Fred Hoyle, 1915 2001 Fred Hoyle, who passed away on 20 August 2001, was one of the most important figures in 20th century physics and astronomy. He is most famous for coining the term 'Big Bang' in a BBC radio broadcast in 1950, even though the fact that his comment was an insult seems to have been lost in time. He left behind a lasting body of work, foremost of which is his work with Willy Fowler and the Burbidges on the origin of the chemical elements in the 1950s. Sir Martin Rees, Astronomer Royal and Professor at the Institute of Astronomy in Cambridge, speaking to Physics Education said 'Hoyle was a great astrophysicist, who from 1945 to 1970 contributed more good creative ideas than anyone else in the world.' Fred Hoyle was born at Bingley in the West Riding of Yorkshire in June 1915. A precocious child who knew his 12 times table aged 4 and could navigate by the stars before he was 10, he won a scholarship to Bingley Grammar School and from there moved on to Emmanuel College, Cambridge. Hoyle excelled at mathematics and won several prizes before he graduated in 1936. He became fascinated by the work of physicist Rudolf Peierls, who became his PhD supervisor, before being replaced by Maurice Pryce when Peierls departed for Birmingham. Hoyle became a fellow of St John's College, Cambridge in 1939. During the war Hoyle worked at an Admiralty radar establishment on the south coast and met Eastern European émigrés Thomas Gold and Hermann Bondi. During this time they developed the theory of continuous creation known as the Steady State Theory of the universe. This states that matter is continuously created at a small rate to replace the matter lost to the expanding universe. Around this same time Ralph Alpher, Hans Bethe and George Gamow postulated the idea of a Universe forged in a hot explosion. After the war Hoyle returned to Cambridge, but kept in close contact with his collaborators. Fred Hoyle was a canny and media-savvy scientist, 40 years before such things were recognized. Martin Rees said after his death '[He] also had other dimensions to his career, his inventiveness and skill as a communicator'. It is hard to realize now the impact that Hoyle's broadcasts had in post-war Britain. His programmes for the BBC on The Nature of the Universe won greater audiences than such unlikely rivals as Bertrand Russell and Tommy Handley. Even today many people recall how they were affected by listening to these broadcasts. Hoyle used one of his broadcasts to ridicule the hot explosion theory. He referred to the idea of a 'big bang as fanciful'. Unfortunately the name stuck, much to Hoyle's chagrin. In the 1950s Hoyle began a fruitful collaboration with Willy Fowler of the California Institute of Technology in Pasadena. Hoyle was interested in the origin of the chemical elements. Hans Bethe, Charles Critchfield and Karl-Frederich von Weizsäcker had calculated in 1939 how stars could turn protons into helium nuclei by nuclear fusion. Part of the Vela supernova remmant, the debris left after the type of massive explosion in which Hoyle predicted that heavy nuclei were formed. (© Royal Observatory, Edinburgh, Anglo-Australian Observatory.) Building on earlier collaboration with Ed Saltpeter, Hoyle used data supplied by Geoffrey and Margaret Burbidge and, working with Fowler, began to piece together how the elements were formed. By looking at very large stars near the end of their lives and examining their chemical composition, they noticed that the abundances of elements almost exactly corresponded to those with a low nuclear capture cross section. Hoyle argued that all of the elements in our bodies had been formed in stars that had been and gone before our solar system had even formed. In their classic paper the elements are produced by three basic methods. The α-process, which formed elements up to and including iron using building blocks of protons, alpha particles and light elements like carbon and nitrogen. The s-process, which involved the slow capture of neutrons and then β-decay to form protons. This formed heavy elements. The r-process, where neutrons are rapidly captured by nuclei in supernovae. This mammoth paper was a milestone in our understanding of stars and of the origin of all the elements from which we are made. Later work has tidied up loose ends and explained a few anomalies but the bulk of the work stands today. Fowler received the Nobel Prize for this (and other) work in 1983 and there was widespread disbelief when Hoyle did not share the prize with him. In the early 1960s Hoyle and Roger Tayler produced a seminal paper explaining how the overly large abundance of helium (there is too much about to have been formed exclusively in stars) could be explained by its nucleosynthesis in the early universe. Ironically this is now one of the key pieces of evidence for a Big Bang. As the evidence for the Big Bang grew Hoyle never accepted the defeat of the Steady State Theory, and long after the Big Bang became conventional wisdom he continued to pick and probe at its defects. In 1972, following an acrimonious dispute with the Cambridge University authorities, he tendered his resignation, retiring to first the Lake District and then the South Coast. Hoyle, by this time knighted, was held in great esteem and held many honorary research professorships, both in the UK and in the USA, notably at Caltech and Cornell. Hoyle became increasingly involved in diverse interests away from his previous work. He wrote how life had been (and still is) transported to Earth on comets. This modern version of the Panspermia theory was one of a number of projects undertaken with Chandra Wickramasinge, Professor of Mathematics at University College, Cardiff, a former student of Hoyle's. He also suggested that viral agents were travelling through the atmosphere from space and causing epidemics. Hoyle also wrote science fiction, which he believed complemented his more serious work. His works included The Black Cloud, A for Andromeda and the children's play Rockets for Ursa Major. He also wrote a series of popular science books about cosmology and astronomy, long before every bookshop had a science section. Many generations of scientists were influenced by and benefited from Hoyle and his work and he leaves a lasting legacy not only in the field of astrophysics but also in the popularization and promotion of science. Acknowledgment The author is grateful to the staff of the Royal Astronomical Society Library for their help in finding material, to Martin Rees for finding time to talk at the busy BA Festival and to the late Roger Tayler for teaching me everything I know about the origin of the elements. References Burbidge E M, Burbidge G R, Fowler W A and Hoyle F 1957 Synthesis of the elements in stars Rev. Mod. Phys. 29 (4) 547 650 Chown M 2000 The Magic Furnance (Vintage) Hoyle F 1987 The Small World of Fred Hoyle (Marcus Joseph) Tayler R 1972 The Origin of the Chemical Elements (Wyndham) Steven Chapman British Association for the Advancement of Science
NASA Astrophysics Data System (ADS)
Gholibeigian, H.; Amirshahkarami, A.; Gholibeigian, K.
2015-12-01
In our vision it is believed that the Big Bang was Convection Bang (CB). When CB occurred, a gigantic large-scale forced convection system (LFCS) began to create space-time including gravitons and gluons in more than light speed. Then, simultaneously by a swirling wild wind, created inflation process including many quantum convection loops (QCL) in locations which had more density of temperature and energetic particles like gravitons. QCL including fundamental particles, grew and formed black holes (BHs) as the core of galaxies. LFCSs of heat and mass in planets, stars, BHs and galaxies generate gravity and electromagnetic fields and change the properties of matter and space-time around the systems. Mechanism: Samples: 1- Due to gravity fields of Sun and Moon, Earth's inner core is dislocated toward them and rotates around the Earth's center per day and generates LFCSs, Gholibeigian [AGU, 2012]. 2- Dislocated Sun's core due to gravity fields of planets/ Jupiter, rotates around the Sun's center per 25-35 days and generates LFCSs, Gholibeigian [EGU, 2014]. 3- If a planet/star falls into a BH, what happens? It means, its dislocated core rotates around its center in less than light speed and generates very fast LFCS and friction, while it is rotating/melting around/inward the center of BH. Observable Factors: 1- There is not logical relation between surface gravity fields of planets/Sun and their masses (general relativity); see Planetary Fact Sheet/Ratio to Earth Values-NASA: Earth: mass/gravity =1/1, Jupiter=317.8/2.36, Neptune=17.1/1.12, Saturn=95.2/0.916, Moon=0.0128/0.166, Sun=333000/28. 2- Convective systems in thunderstorms help bring ozone down to Earth [Brian-Kahn]. 3- In 12 surveyed BHs, produced gravity force & magnetic field strength were matched (unique LFCS source) [PhysOrg - June 4, 2014]. Justification: After BB/CB, gravitons were created without any other masses and curvature of space-time (general relativity), but by primary gigantic convection process.
State of the Universe. If Not with a Big Bang, Then What?
ERIC Educational Resources Information Center
Peterson, Ivars
1991-01-01
The Big Bang Theory and alternatives to the Big Bang Theory as an explanation for the origin of the universe are discussed. The importance of the discovery of redshift, the percentage of hydrogen found in old stars, and the existence of a uniform sea of radiation are explained. (KR)
Cool Cosmology: ``WHISPER" better than ``BANG"
NASA Astrophysics Data System (ADS)
Carr, Paul
2007-10-01
Cosmologist Fred Hoyle coined ``big bang'' as a term of derision for Belgian priest George Lemaitre's prediction that the universe had originated from the expansion of a ``primeval atom'' in space-time. Hoyle referred to Lamaitre's hypothesis sarcastically as ``this big bang idea'' during a program broadcast on March 28, 1949 on the BBC. Hoyle's continuous creation or steady state theory can not explain the microwave background radiation or cosmic whisper discovered by Penzias and Wilson in 1964. The expansion and subsequent cooling of Lemaitre's hot ``primeval atom'' explains the whisper. ``Big bang'' makes no physical sense, as there was no matter (or space) to carry the sound that Hoyle's term implies. The ``big bang'' is a conjecture. New discoveries may be able to predict the observed ``whispering cosmos'' as well as dark matter and the nature of dark energy. The ``whispering universe'' is cooler cosmology than the big bang. Reference: Carr, Paul H. 2006. ``From the 'Music of the Spheres' to the 'Whispering Cosmos.' '' Chapter 3 of Beauty in Science and Spirit. Beech River Books. Center Ossipee, NH, http://www.MirrorOfNature.org.
Sangkum, Lisa; Klair, Ikrita; Limsuwat, Chok; Bent, Sabrina; Myers, Leann; Thammasitboon, Supat
2017-09-01
The aim of this study is to evaluate whether adding the item of "apple body type" to the STOP-BANG questionnaire enhances diagnostic performance of the questionnaire for detecting obstructive sleep apnea (OSA). Cross-sectional study. Sleep center setting. Two hundred and eight subjects who were referred for an evaluation of possible OSA at Tulane Comprehensive Sleep Center. The exclusion criteria were age<18years old, incomplete or absent questionnaire, incomplete body type identification, polysomnography (PSG) refusal, and pregnant women. STOP-BANG items and body type data were collected on the initial clinic visit. An overnight PSG was performed on every participant. Descriptive analyses of the demographic data and PSG variables were performed. The predictive parameters of STOP and STOP-BANG without and with body type score (STOP-Apple and STOPBANG-Apple) were compared. The STOP questionnaire's sensitivity/specificity/positive likelihood ratio (+LR) (cut-off=2) was 96%/11%/1.1, respectively whereas the STOP-Apple questionnaire (cut-off=3) was 88%/39%/1.5. The STOP-BANG's sensitivity/specificity/+LR (cut-off=3) was 96%/19%/1.2, respectively whereas the STOP-BANG-Apple questionnaire (cut-off=4) was 90%/39%/1.5. The area under the Receiver Operating Characteristic (ROC) curve of STOP-Apple was comparable to the STOP-BANG (P=0.25). The addition of the apple body type item to the STOP-BANG questionnaire in participants with a score≥3 led to increased specificity (67.4%), increased the odds ratio of having OSA of 2.5 (95% CI, 1.2-5.3) and odds ratio of having moderate-severe OSA of 4.7 (95% CI, 2.5-8.7). In the sleep center setting, adding the body type item to the STOP-BANG questionnaire improves not only clinical prediction for PSG confirmed OSA but also predicts moderate to severe of OSA. Published by Elsevier Inc.
The Whole Shebang: How Science Produced the Big Bang Model.
ERIC Educational Resources Information Center
Ferris, Timothy
2002-01-01
Offers an account of the accumulation of evidence that has led scientists to have confidence in the big bang theory of the creation of the universe. Discusses the early work of Ptolemy, Copernicus, Kepler, Galileo, and Newton, noting the rise of astrophysics, and highlighting the birth of the big bang model (the cosmic microwave background theory…
NASA Technical Reports Server (NTRS)
Wesson, Paul S.
1994-01-01
A cosmological model is given that has good physical properties for the early and late universe but is a hypersurface in a flat five-dimensional manifold. The big bang can therefore be regarded as an effect of a choice of coordinates in a truncated higher-dimensional geometry. Thus the big bang is in some sense a geometrical illusion.
OLED lighting devices having multi element light extraction and luminescence conversion layer
Krummacher, Benjamin Claus; Antoniadis, Homer
2010-11-16
An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
Massive Star Goes Out With a Whimper Instead of a Bang
2017-05-25
This pair of visible-light and near-infrared photos from NASA's Hubble Space Telescope shows the giant star N6946-BH1 before and after it vanished out of sight by imploding to form a black hole. The left image shows the star, which is 25 times the mass of our sun, as it looked in 2007. In 2009, the star shot up in brightness to become over 1 million times more luminous than our sun for several months. But then it seemed to vanish, as seen in the right panel image from 2015. A small amount of infrared light has been detected from where the star used to be. This radiation probably comes from debris falling onto a black hole. The black hole is located 22 million light-years away in the spiral galaxy NGC 6946. https://photojournal.jpl.nasa.gov/catalog/PIA21467
Probing neutrino coupling to a light scalar with coherent neutrino scattering
NASA Astrophysics Data System (ADS)
Farzan, Yasaman; Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie
2018-05-01
Large neutrino event numbers in future experiments measuring coherent elastic neutrino nucleus scattering allow precision measurements of standard and new physics. We analyze the current and prospective limits of a light scalar particle coupling to neutrinos and quarks, using COHERENT and CONUS as examples. Both lepton number conserving and violating interactions are considered. It is shown that current (future) experiments can probe for scalar masses of a few MeV couplings down to the level of 10-4 (10-6). Scalars with masses around the neutrino energy allow to determine their mass via a characteristic spectrum shape distortion. Our present and future limits are compared with constraints from supernova evolution, Big Bang nucleosynthesis and neutrinoless double beta decay. We also outline UV-complete underlying models that include a light scalar with coupling to quarks for both lepton number violating and conserving coupling to neutrinos.
NASA Astrophysics Data System (ADS)
Ling, Eric
The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.
A Glimpse of the Young Milky Way
NASA Astrophysics Data System (ADS)
2002-10-01
VLT UVES Observes Most Metal-Deficient Star Known [1] Summary A faint star in the southern Milky Way, designated HE 0107-5240 , has been found to consist virtually only of hydrogen and helium . It has the lowest abundance of heavier elements ever observed , only 1/200,000 of that of the Sun - 20 times less than the previous record-holding star. This is the result of a major ongoing research project by an international team of astronomers [2]. It is based on a decade-long survey of the southern sky, with detailed follow-up observations by means of the powerful UV-Visual Echelle Spectrograph (UVES) on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory in Chile. This significant discovery now opens a new window towards the early times when the Milky Way galaxy was young, possibly still in the stage of formation. It proves that, contrary to most current theories, comparatively light stars like HE 0107-5240 (with 80% of the mass of the Sun) may form in environments (nearly) devoid of heavier elements. Since some years, astronomers have been desperately searching for stars of the very first stellar generation in the Milky Way, consisting only of hydrogen and helium from the Big Bang. None have been detected so far and doubts have arisen that they exist at all. The present discovery provides new hope that it will ultimately be possible to find such stellar relics from the young Universe and thereby to study "unpolluted" Big Bang material. PR Photo 25a/02 : The sky region around the very metal-deficient star HE 0107-5240 . PR Photo 25b/02 : Comparison of UVES spectra of stars with different metal abundances. Stellar generations in the Milky Way galaxy The Milky Way galaxy in which we live formed from a gigantic cloud of gas, when the Universe was still young, soon after the initial Big Bang. At the beginning, this gas was presumably composed almost exclusively of hydrogen and helium atoms produced during the Big Bang. However, once the first stars formed by contraction in that gas, many heavier elements were built up by nuclear processes in their interiors. As time passed, many of the stars of this and following stellar generations returned the processed matter to their surroundings at the ends of their lives, either during violent supernova explosions or via strong "stellar winds". In this way, the interstellar gas in the Milky Way system has ever since been continuously enriched with heavier elements. Stars of later generations like our Sun now contain those elements produced by their ancestors and we are indeed ourselves made up of them. Consequently, the early (and hence, old) stars in the Milky Way mainly differ from younger stars by containing very small amounts of such elements . Hunting the earliest stars Have some of those earliest stars survived to our days? In theory, at least, it would be possible that some of the lighter ones - having the longest lifetimes - are still around. But if so, where are they? During the past three decades, astronomers have desperately tried to find bona-fide representatives of the very first stellar generation(s) in the Milky Way, i.e. stars with no or, at most, extremely low abundance of elements other than hydrogen and helium. The researchers usually refer to such objects as Population III stars , the other two populations being stars with heavy-element abundances like the Sun (Population I) or somewhat less (Population II) [3]. The Hamburg/ESO survey Now, a group of astronomers from Germany, Sweden, Australia, Brazil and the USA [2] has found a giant star that has a concentration of heavy elements 200,000 times lower than the Sun, or about 20 times less than the previous "record" for this kind of star. It thus provides the researchers with a unique window towards the early stages of the formation of the Milky Way and a fine opportunity to study stellar gas with a composition close to that produced during the Big Bang. This is one important outcome of a systematic search for the most metal-deficient stars that is currently being carried out at Hamburger Sternwarte [4]. Over a period of more than 10 years, a large collection of photographic pictures of the southern sky were obtained with the ESO 1-m Schmidt Telescope, a wide-angle telescope at the La Silla observatory in Chile that has now been decommissioned. Thanks to a large glass prism in the front of the telescope, every object in the observed sky field - stars as well as galaxies - was imaged as a small spectrum, providing a first rough idea about its type and composition. The main aim of this "Hamburg/ESO survey" (with Dieter Reimers , Associate Director of the Hamburger Sternwarte, as Principal Investigator and Lutz Wisotzki , now at Astrophysikalisches Institut Potsdam, Germany, as Project Scientist) was to find quasars (particularly active centres of galaxies), a task that was accomplished most successfully, cf. e.g., ESO PR 10/97 and ESO PR 08/00 (Report F). A very welcome by-product of this survey has been a rich harvest of very metal-poor stars . This part of the project is led by Norbert Christlieb , also from the Hamburg Observatory, and now on sabbatical leave at the Research School of Astronomy and Astrophysics of the Australian National University (Canberra, Australia). Using fast computers and advanced pattern-recognition software to analyze the photographic exposures and thus to sift through millions of registered stellar spectra, about 8000 candidates for very metal-poor stars were found. These stars are now being scrutinized spectroscopically one-by-one with many medium-sized telescopes all over the world. Confirmed candidates are then observed with the largest telescopes in the world in order to obtain very detailed spectra (of high spectral resolution), which allow the astronomers to determine their chemical composition accurately. The very metal-deficient star HE 0107-5240 ESO PR Photo 25a/02 ESO PR Photo 25a/02 [Preview - JPEG: 400 x 458 pix - 86k [Normal - JPEG: 800 x 915 pix - 648k] ESO PR Photo 25b/02 ESO PR Photo 25b/02 [Preview - JPEG: 494 x 400 pix - 55k [Normal - JPEG: 987 x 800 pix - 216k] Caption : PR Photo 25a/02 shows a small sky field with the very metal-deficient star HE 0107-5240 at the centre (reproduced from the Digital Sky Survey [STScI Digitized Sky Survey, (C) 1993, 1994, AURA, Inc. all rights reserved - cf. http://archive.eso.org/dss/dss]). PR Photo 25b/02 displays a comparison of a region of the spectrum of the Sun (top) with that of CD -38 245 , the previously most iron-deficient star known (2nd from top), the new record-holder HE 0107-5240 (3rd from top), and a (hypothetical) Population III star [4], consisting only of elements produced in the Big Bang, i.e. hydrogen and helium, and traces of lithium. As can be seen, the spectral absorption lines become progressively weaker with decreasing content of heavier elements. While there is 1 iron atom for every 31,000 hydrogen atoms in the atmosphere of the Sun, in HE 0107-5240 this ratio is about 200,000 times smaller, or only 1 iron atom for every 6.8 billion hydrogen atoms! The two spectra in the middle show that HE 0107-5240 is indeed much more metal-poor than the previous record-holder CD -38 245 - the iron (Fe) lines in the spectrum of HE 0107-5240 are weaker (or absent) and the Nickel (Ni) line is not visible at all. One of these stars has been designated HE 0107-5240 ("HE" stands for Hamburg/ESO Survey, and the number denotes the approximate position of the star on the sky). It is about ten thousand times fainter than the faintest stars that can be seen with the unaided eye. It is located in the direction of the southern constellation Phoenix, at a distance of about 36,000 light-years. This star was observed in December 2001 with the UV-Visual Echelle Spectrograph (UVES) on the 8.2-m VLT KUEYEN telescope at the ESO Paranal Observatory (Chile). From these spectra, Norbert Christlieb and his colleagues at the Dept. of Astronomy and Space Physics, University of Uppsala (Sweden) and at the Munich University Observatory (Germany) were able to determine the chemical composition of the star. The implications HE 0107-5240 turns out to be the most metal-poor star known to date . " This is, in a way, the closest we have ever come to the conditions directly after the Big Bang by studying stars ", says Norbert Christlieb . " But obviously, a lot must have happened between the Big Bang and the formation of this star. In spite of its extreme metal-poorness, it evidently contains some metals, and they were most probably formed in a even earlier, massive star that exploded as a supernova ". Bengt Gustafsson from the University of Uppsala, who lead the chemical analysis jointly with Christlieb, adds that " this star also has an abnormally large content of carbon and nitrogen. Those elements may possibly have been formed by nuclear reactions with helium and hydrogen deep inside the star and subsequently transported upwards to the stellar surface where they can now be observed. It is also possible that a neigbouring star at the end of its life 'polluted' our star by transferring some of its enriched material to HE 0107-5240 at that moment. The ongoing observations with UVES will help us to decide which scenario is the most probable ." Renewed hope to find first-generation stars The mass of HE 0107-5240 is about 80% of that of the Sun. This discovery thus clearly demonstrates that stars with masses slightly less than the Sun can form from very metal-poor gas. This is unexpected, as most current theoretical calculations indicate that it is very difficult to form low-mass stars shortly after the Big Bang, because metals are needed to efficiently cool gas clouds as they contract into stars. But now HE 0107-5240 reveals that Nature has found a way to achieve the necessary cooling. It therefore appears that many of the model calculations must be refined. Equally important: if a star like HE 0107-5240 , with about 0.8 solar mass and 1/200,000 of the metal content of the Sun, did indeed form in the early Universe, then it should also have been possible for low-mass Population III stars to form . If so, they would have survived until today. This implies that there is new hope to find them by means of large, systematic searches like the Hamburg/ESO Survey. Until now, follow-up spectroscopic observations - which are necessarily quite time-consuming - have only been made of about one-quarter of the 8000 low-metal-abundance candidate stars identified in that survey. It is therefore not excluded that a bona-fide Population III star may eventually be found in the course of this programme. More information The information presented in this Press Release is based on a research article ("A stellar relic from the early Milky Way" by Norbert Christlieb et al.) that appears in the research journal "Nature" on October 31, 2002. Notes [1]: This press release is issued in coordination between ESO and Hamburger Sternwarte in Germany. [2]: The team consists of Norbert Christlieb (Hamburger Sternwarte, University of Hamburg, Germany; on sabbatical leave at the Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australia), Michael S. Bessell (Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australia), Timothy C. Beers (Department of Physics and Astronomy, Michigan State University, East Lansing, USA), Bengt Gustafsson, Paul S. Barklem, Torgny Karlsson, Michelle Mizuno-Wiedner (Department of Astronomy and Space Physics, University of Uppsala, Sweden), Andreas Korn (University Observatory Munich, Germany) and Silvia Rossi (Instituto de Astronomia, Geofísica e Ciencias Atmosféricas, Universidade de São Paulo, Brazil). [3]: Most stars in the Milky Way galaxy move within the disk, and for most of these, 1 to 2 percent of their mass consists of chemical elements that are heavier than hydrogen and helium; this is also the case for the Sun, which at 4.6 billion years is about one third of the age of our galaxy. There exists, however, another population of stars for which the heavy-element abundance is only 1/10 - 1/1000 of that of the Sun. Those stars are found in globular clusters, but most move in a huge swarm around the disk, in the halo of the Galaxy. These "halo stars" were born when the Milky Way galaxy was young and their motions still carry the imprint of the process by which our galaxy formed, when gravity brought the gas together and the first stars appeared. The "halo stars" are said to belong to "Population II", in contrast to the younger stars in the disk (like the Sun) that are referred to as "Population I" stars. But what is then the origin of the small amount of heavy elements in Population II stars? There must have been supernovae and other exploding stars in the very early (or even pre-) Milky Way gas, out of which Population II stars were formed. This first (still hypothetical) stellar generation has been named "Population III". There have been many attempts to find Population III stars, which are then presumably totally void of metals, but those searches have not succeeded so far. [4]: Astronomers refer to elements heavier than hydrogen and helium as "metals". Stars with a low abundance of heavier elements are thus referred to as "metal-poor" stars .
Antoniadis,; Homer, Krummacher [Mountain View, CA; Claus, Benjamin [Regensburg, DE
2008-01-22
An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.
Solving constrained minimum-time robot problems using the sequential gradient restoration algorithm
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
1991-01-01
Three constrained minimum-time control problems of a two-link manipulator are solved using the Sequential Gradient and Restoration Algorithm (SGRA). The inequality constraints considered are reduced via Valentine-type transformations to nondifferential path equality constraints. The SGRA is then used to solve these transformed problems with equality constraints. The results obtained indicate that at least one of the two controls is at its limits at any instant in time. The remaining control then adjusts itself so that none of the system constraints is violated. Hence, the minimum-time control is either a pure bang-bang control or a combined bang-bang/singular control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.
None
2017-12-09
Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Huizhi; Shao, Yaping; Liu, Yang; Sun, Jihua
2018-01-01
Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, the water and CO2 fluxes were compared over a semiarid alpine steppe (Bange, Tibetan Plateau) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau and its surrounding region. During the wet season, the evaporative fraction (EF) was strongly and linearly correlated with the soil water content (SWC) at Bange because of its sparse green grass cover. In contrast, the correlation between the EF at Lijiang and the SWC and the normalized difference vegetation index (NDVI) was very low because the atmosphere was close to saturation and the EF was relatively constant. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). The annual total NEE in 2015 was 21.8 and -230.0 g C m-2 yr-1 at Bange and Lijiang, respectively, and the NEE was tightly controlled by the NDVI at the two sites. The distinct differences in the water and CO2 fluxes at Bange and Lijiang are attributed to the large SWC difference and its effect on vegetation growth.
NASA Astrophysics Data System (ADS)
Gentry, Robert
2011-04-01
Physicists who identify the big bang with the early universe should have first noted from Hawking's A Brief History of Time, p. 42, that he ties Hubble's law to Doppler shifts from galaxy recession from a nearby center, not to bb's unvalidated and thus problematical expansion redshifts. Our PRL submission LJ12135 describes such a model, but in it Hubble's law is due to Doppler and vacuum gravity effects, the 2.73K CBR is vacuum gravity shifted blackbody cavity radiation from an outer galactic shell, and its (1 + z)-1 dilation and (M,z) relations closely fit high-z SNe Ia data; all this strongly implies our model's vacuum energy is the elusive dark energy. We also find GPS operation's GR effects falsify big bang's in-flight expansion redshift paradigm, and hence the big bang, by showing λ changes occur only at emission. Surprisingly we also discover big bang's CBR prediction is T < 2x10-8 K, not the observed 2.73K. So instead of the 2.73K affirming the big bang as cosmologists claim, it actually disproves it, to which the DAE's response is most enigmatic -- namely, CBR photons expand dλ/dt > 0, while galactic photons shrink dλ/dt < 0. Contrary to a PRL editor's claim, the above results show LJ12135 fits PRL guidelines for papers that replace established theories. For details see alphacosmos.net.
Bang-bang Model for Regulation of Local Blood Flow
Golub, Aleksander S.; Pittman, Roland N.
2013-01-01
The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2−) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the “bang-bang” or “on/off” regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2− into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen. PMID:23441827
Cosmological and supernova neutrinos
NASA Astrophysics Data System (ADS)
Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.
2014-06-01
The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.
Quantum nature of the big bang.
Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet
2006-04-14
Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.
Pre-Big Bang Bubbles from the Gravitational Instability of Generic String Vacua
NASA Astrophysics Data System (ADS)
Buonanno, A.; Damour, T.; Veneziano, G.
1998-06-01
We formulate the basic postulate of pre-big bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual big-bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically-symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the big bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-gib bang scenario.
Scale factor duality for conformal cyclic cosmologies
NASA Astrophysics Data System (ADS)
Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.
2016-11-01
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
Light and dark matter in the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This simulation follows the growth of density perturbations in both gas and dark matter components in a volume 1 billion light years on a side beginning shortly after the Big Bang and evolved to half the present age of the universe. It calculates the gravitational clumping of intergalactic gas and dark matter modeled using a computational grid of 64 billion cells and 64 billion dark matter particles. The simulation uses a computational grid of 4096^3 cells and took over 4,000,000 CPU hours to complete. Read more: http://www.anl.gov/Media_Center/News/2010/news100104.html. Credits: Science: Michael L. Norman, Robert Harkness, Pascal Paschos and Rick Wagner Visualization:more » Mark Herald, Joseph A. Insley, Eric C. Olson and Michael E. Papka« less
The Cosmic Microwave Background: Detection and Interpretation of the First Light
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2016-01-01
A host of astrophysical observations suggest the early Universe was incredibly hot, dense, and homogeneous. A powerful and useful probe of this epoch is provided by the relic radiation, which we refer to today as the Cosmic Microwave Background (CMB). Precision maps of this light contain the earliest glimpse of the Universe after the Big Bang and signatures of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, detailed composition, and geometry of the Universe can be made. A brief survey of the evolution of the radiometric and polarimetric imaging systems used in advancing our understanding of the early Universe will be reviewed. A survey of detector technologies, instrumentation techniques, and experimental challenges encountered in these efforts will be presented.
Effects of the f(R) and f(G) Gravities and the Exotic Particle on Primordial Nucleosynthesis
NASA Astrophysics Data System (ADS)
Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
A plateau Li/H abundance of metal-poor stars is smaller than those predicted in the standard big bang nucleosynthesis (BBN) model by a factor of ˜3, for the baryon density determined from Planck. This discrepancy may be caused by a non-standard cosmic thermal history or reactions of a hypothetical particle. We consider the BBN in specific modified gravity models characterized by f(R) and f(G) terms in the gravitational actions. These models have cosmic expansion rates different from that in the standard model, and abundances of all light elements are affected. The modified gravities are constrained mainly from observational deuterium abundances. No solution is found for the Li problem because a significant modification of the expansion rate results in a large change of D abundance. This result is quite a contrast to that of a BBN model including a long-lived negatively charged massive particle X-. The 7Be nuclide is destroyed via the recombination with an X- followed by the radiative proton capture. The X- particle selectively decreases the abundance of 7Be, and the primordial abundance of 7Li originating from the electron capture of 7Be is reduced. We have an important theoretical lesson: Some physical process must have operated preferentially on 7Be nuclei.
Gravitino dark matter and the lithium primordial abundance within a pre-BBN modified expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailly, Sean, E-mail: sean.bailly@lapp.in2p3.fr
2011-03-01
We present supersymmetric scenarios with gravitino LSP and stau NLSP in the case of a non-standard model of cosmology with the addition of a dark component in the pre-BBN era. In the context of the standard model of cosmology, gravitino LSP has drawn quite some attention as it is a good candidate for dark matter. It is produced in scattering processes during reheating after inflation and from the decay of the stau. With a long lifetime, the stau decays during Big Bang Nucleosynthesis. It is strongly constrained by the abundance of light elements but can however address the known ''BBNmore » lithium problem''. It requires fairly massive staus m{sub τ-tilde}∼> 1TeV and puts an upper bound on the reheating temperature T{sub R} ≅ 10{sup 7} GeV which does not satisfy the requirements for thermal leptogenesis. For the non-standard cosmological scenario, the reheating temperature bound can be strongly relaxed T{sub R} >> 10{sup 9}GeV and the lithium-7 problem solved with a stau typical mass of m{sub τ-tilde} ∼ 600–700 GeV and down to ∼ 400GeV with a very important dark component that could enable possible production and detection at the LHC.« less
Lithium-rich very metal-poor stars discovered with LAMOST and Subaru
NASA Astrophysics Data System (ADS)
Aoki, Wako; Li, Haining; Matsuno, Tadafumi; Kumar, Yerra Bharat; Shi, Jianrong; Suda, Takuma; Zhao, Gang
2018-04-01
Lithium is a unique element that is produced in the Big Bang nucleosynthesis but is destroyed by nuclear reactions inside stars. As a result, almost constant lithium abundance is found in unevolved main-sequence metal-poor stars, although the value is systematically lower than that expected from the standard Big Bang nucleosynthesis models, whereas lithium abundances of red giants are more than one order of magnitudes lower than those of unevolved stars. There are, however, a small fraction of metal-poor stars that show extremely high lithium abundances, which is not explained by standard stellar evolution models. We have discovered 12 new very metal-poor stars that have enhancement of lithium by more than 10 times compared with typical metal-poor stars at similar evolutionary stages by the large-scale spectroscopic survey with LAMOST and the follow-up high-resolution spectroscopy with the Subaru Telescope. The sample shows a wide distribution of evolutionary stages from subgiants to red giants with the metallicity of -3.3 <[Fe/H]< -1.6. The chemical abundance ratios of other elements have been obtained by our spectroscopic study, and an estimate of the binary frequency by radial velocity monitoring is ongoing. The observational results provide new constraints on the scenarios to explain lithium-rich metal-poor stars, such as extra mixing during the evolution along the red giant branch, mass-transfer from a companion AGB star, and engulfment of planet-like objects. These explanations are very unlikely for at least some of lithium-rich objects in our sample, suggesting a new mechanism that enhances lithium during the low-mass star evolution.
Tantrakul, Visasiri; Sirijanchune, Piyaporn; Panburana, Panyu; Pengjam, Janejira; Suwansathit, Worakot; Boonsarngsuk, Viboon; Guilleminault, Christian
2015-01-01
Study Objectives: Evaluation of Berlin and Stop-Bang questionnaires in detecting obstructive sleep apnea (OSA) across trimesters of pregnancy. Methods: Pregnant women from a high-risk pregnancy clinic were recruited to complete sleep evaluations including Berlin and Stop-Bang questionnaires. Overnight testing with Watch-PAT200 for diagnosis of OSA (cutoff point of apneahypopnea index ≥ 5 events/h) was performed. Results: Seventy-two singleton pregnant women participated in the study. Enrollment consisted of 23, 24, and 25 women during first, second, and third trimesters, respectively. Of 72 pregnancies, 23 patients (31.9%) had OSA. Prevalence of OSA classified by trimesters from first to third was 30.4%, 33.33%, and 32.0%, respectively. Overall predictive values of Berlin and Stop-Bang questionnaires were fair (ROC area under curve, AUC 0.72 for Berlin, p = 0.003; 0.75 for Stop-Bang, p = 0.001). When categorized according to trimesters, predictive values substantially improved in second (AUC: 0.84 for Berlin; 0.78 for Stop-Bang) and third trimesters (AUC: 0.81 for Berlin; 0.75 for Stop-Bang), whereas performances of both questionnaires during first trimester were poorer (AUC: 0.49 for Berlin; 0.71 for Stop-Bang). Multivariate analyses show that pre-pregnancy body mass index (BMI) in first trimester, snore often in second trimester, and weight gain and pregnancy BMI in third trimester were significantly associated with OSA. Conclusions: In high-risk pregnancy, Berlin and Stop-Bang questionnaires were of limited usefulness in the first trimester. However their predictive values are acceptable as pregnancy progresses, particularly in second trimester. OSA in pregnancy seems to be a dynamic process with different predictors association during each trimester. Citation: Trantrakul V, Sirijanchune P, Panburana P, Pengjam J, Suwansathit W, Boonsarngsuk V, Guilleminault C. Screening of obstructive sleep apnea during pregnancy: differences in predictive values of questionnaires across trimesters. J Clin Sleep Med 2015;11(2):157–163. PMID:25406273
Engaging with the Public on Volcanic Risk through Hands-on Interaction with the London Volcano.
NASA Astrophysics Data System (ADS)
Rodgers, M.; Pyle, D. M.; Barclay, J.; Mather, T. A.; Hicks, A.; Ratner, J.; Leonard, H.; Woods, C.
2015-12-01
London Volcano is a major public engagement and outreach effort that emerged from a large-scale interdisciplinary research project on Strengthening Resilience in Volcanic Areas (STREVA). The activity was created for a 5-day public exhibition in London, in 2014, and brought together 3 elements to illustrate the timeline of a volcanic crisis: a 5m x 3m scale model of Soufrière St Vincent, an interactive 'monitoring station' to explore technology used in monitoring and an engaging 'bin bang' sequence to simulate a volcanic explosion. Having a large hands-on volcano as a centrepiece to the exhibit enabled interaction with primary-age school children through the use of creativity and imagination. They looked at seismic traces of 'bin bang' explosions; measured dispersal of projectile ducks; and decided where to place a model house on the island, on which the model volcano sat. Over the 5-days we evolved the activity of the volcano to re-create the 1902 eruption. During the first 3 days, 94 houses were placed around the volcano, but after the cataclysmic eruption mid-week, 12 of these houses were destroyed by simulated pyroclastic flows and lahars down the flanks of the volcano model. Light and sound were key parts of the London Volcano simulation. A sound track was created to mimic the sounds reported by eyewitnesses. Between eruptions, the volcano would intermittently rumble, adding excitement and unpredictability to the eruptions. Explosions were simulated with compressed-CO2 jets, and a G-flame; but these events were rare. Creative arts are an effective mechanism for transfer of knowledge from communities living with volcanic activity, so artwork from school children living near Tungurahua, Ecuador and poems from school children on Montserrat were on display. The London Volcano was a unique opportunity to engage with over 2,000 people on volcanic risk and what it means to live near a volcano. Encouraging school children to be creative and to use their imagination allowed the volcano to come alive in ways that would have otherwise been impossible.
Dosimetry Evolution in Teletherapy: Polimer Gel
NASA Astrophysics Data System (ADS)
Hamann, J. H.; Peixoto, J. G. P.
2018-03-01
Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate
System for diffusing light from an optical fiber or light guide
Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [
2008-06-10
A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.
Correcting Geophysical Fallacies
NASA Astrophysics Data System (ADS)
Barbat, W. N.
2013-12-01
The escape velocity from a Big Bang explosion would greatly exceed the speed of light, which is impossible; William Tifft's (1976-77) observations of a common stepwise decline in photon size of 72.5 km/sec replaces a universal Doppler Red Shift, so the universe is not expanding; and the idea that all the mass and energy of the universe were instantly created is unscientific. Joseph Larmor's 1897 equation relates the radiation of photons from a moving electric charge to the square of a change of the acceleration of the charge. Hence the continual centripetal acceleration of orbiting electrons continually radiates low grade photon heat (Zero Point Energy). Shpenkov and Kreidik (2008) found that the heat source which sustains the Cosmic Background Energy at the measured peak blackbody temperature of 2.725+/-0.002K must be due to radiation from the orbital electron motion of hydrogen at its fundamental period, which they calculated to be 2.7289K. Cosmic Background Energy is not left over from a Big Bang 13 billion years ago. Of course, if nature can create energy, then it is reasonable to expect that man can create energy too. Importantly, the creation of photons by orbiting electrons and spinning protons also creates mass. Isaac Newton showed in Book 3 of Opticks that light rays bend as they pass closely over a sharp knife edge, and that the closer the ray is to the knife edge, the more the light path bends. Newton thus showed that corpuscles of light (photons) obey the law of gravitation, so photons possess mass. Photon creation inside stars builds up intense heat and pressure, splitting photons into electrons and positrons. A large positron and photon can apparently combine into a three lump particle with a charge of plus one, making a new proton. Hollow electrons can apparently surround a proton, making a neutron for fission. A small spun-off star advances up the main sequence until a buildup of iron cools and shrinks the core from its hydrogen envelope, leaving a planet. Over eons, planets increase to 70-90% of older galaxies to comprise Dark Matter. Radiation from orbiting electrons and spinning protons would comprise Dark Energy.
The Big Bang left a permanent scare in the cosmic background, 5 billion light-years from Earth
2017-12-08
The events surrounding the Big Bang were so cataclysmic that they left an indelible imprint on the fabric of the cosmos. We can detect these scars today by observing the oldest light in the universe. As it was created nearly 14 billion years ago, this light — which exists now as weak microwave radiation and is thus named the cosmic microwave background (CMB) — permeates the entire cosmos, filling it with detectable photons. The CMB can be used to probe the cosmos via something known as the Sunyaev-Zel’dovich (SZ) effect, which was first observed over 30 years ago. We detect the CMB here on Earth when its constituent microwave photons travel to us through space. On their journey to us, they can pass through galaxy clusters that contain high-energy electrons. These electrons give the photons a tiny boost of energy. Detecting these boosted photons through our telescopes is challenging but important — they can help astronomers to understand some of the fundamental properties of the universe, such as the location and distribution of dense galaxy clusters. The NASA/ESA (European Space Agency) Hubble Space Telescope observed one of most massive known galaxy clusters, RX J1347.5–1145, seen in this Picture of the Week, as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). This observation of the cluster, 5 billion light-years from Earth, helped the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to study the cosmic microwave background using the thermal Sunyaev-Zel’dovich effect. The observations made with ALMA are visible as the blue-purple hues. Image credit: ESA/Hubble & NASA, T. Kitayama (Toho University, Japan)/ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Program Annual Technology Report: Physics of the Cosmos Program Office
NASA Technical Reports Server (NTRS)
Pham, Bruce Thai; Cardiff, Ann H.
2017-01-01
From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? PCOS focuses on that last question. Scientists investigating this broad theme use the universe as their laboratory, investigating its fundamental laws and properties. They test Einstein’s General Theory of Relativity to see if our current understanding of space-time is borne out by observations. They examine the behavior of the most extreme environments – supermassive black holes, active galactic nuclei, and others – and the farthest reaches of the universe, to expand our understanding. With instruments sensitive across the spectrum, from radio, through infrared (IR), visible light, ultraviolet (UV), to X rays and gamma rays, as well as gravitational waves (GWs), they peer across billions of light-years, observing echoes of events that occurred instants after the Big Bang. Last year, the LISA Pathfinder (LPF) mission exceeded expectations in proving the maturity of technologies needed for the Laser Interferometer Space Antenna (LISA) mission, and the Laser Interferometer Gravitational-Wave Observatory (LIGO) recorded the first direct measurements of long-theorized GWs. Another surprising recent discovery is that the universe is expanding at an ever-accelerating rate, the first hint of so-called “dark energy,” estimated to account for 75% of mass-energy in the universe. Dark matter, so called because we can only observe its effects on regular matter, is thought to account for another20%, leaving only 5% for regular matter and energy. Scientists now also search for special polarization in the cosmic microwave background to support the notion that in the split-second after the Big Bang, the universe inflated faster than the speed of light! The most exciting aspect of this grand enterprise today is the extraordinary rate at which we can harness technologies to enable these key discoveries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less
Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...
2014-11-03
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less
Contracting for Agile Software Development in the Department of Defense: An Introduction
2015-08-01
Requirements are fixed at a more granular level; reviews of the work product happen more frequently and assess each individual increment rather than a “ big bang ...boundaries than “ big - bang ” development. The implementation of incremental or progressive reviews enables just that—any issues identified at the time of the...the contract needs to support the delivery of deployable software at defined increments/intervals, rather than incentivizing “ big - bang ” efforts or
From the journal archives: cyclopropane: induction and recovery with a bang!
Bokoch, Michael P; Gelb, Adrian W
2014-08-01
To review the history of the early development of cyclopropane Cyclopropane was initially investigated because it was thought to be the toxic element in ethylene. Instead, it turned out to be an excellent anesthetic with very rapid onset and recovery while maintaining stable hemodynamics. Its use was ultimately limited because it was highly explosive. Development required collaboration among laboratory scientists and clinicians in Toronto, Canada, clinicians in Madison, USA, and industry in both countries. The phenomenal success of cyclopropane in over 40 years of clinical use resulted from a lucky, but incorrect, hypothesis that it was a toxic contaminant.
Kahrs, Björn A; Jung, Wendy P; Lockman, Jeffrey J
2013-01-01
The current study examines the developmental trajectory of banging movements and its implications for tool use development. Twenty (6- to 15-month-old) infants wore reflective markers while banging a handled cube; movements were recorded at 240 Hz. Results indicated that through the second half-year, banging movements undergo developmental changes making them ideally suited for instrumental hammering and pounding. Younger infants were inefficient and variable when banging the object: Their hands followed circuitous paths of great lengths at high velocities. By 1 year, infants showed consistent and efficient straight up-down hand trajectories of smaller magnitude and velocity, allowing for precise aiming and delivering dependable levels of force. The findings suggest that tool use develops gradually from infants' existing manual behaviors. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.
WMAP - A Glimpse of the Early Universe
NASA Technical Reports Server (NTRS)
Wollack, Edward
2009-01-01
The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.
James Webb Space Telescope (JWST): The First Light Machine
NASA Technical Reports Server (NTRS)
Stahl, Philip
2009-01-01
This slide presentation review the mission objective, the organization of the mission planning, the design, and testing of the James Webb Space Telescope (JWST). There is also information about the orbit, in comparison to the Hubble Space Telescope, the mirror design, and the science instruments. Pictures of the full scale mockup of the JWST are given. A brief history of the universe is also presented from the big bang through the formation of galaxies, and the planets, to life itself. One of the goals of the JWST is to search for extra solar planets and then to search for signs of life.
Resonant Production of Sterile Neutrinos in the Early Universe
NASA Astrophysics Data System (ADS)
Gilbert, Lauren; Grohs, Evan; Fuller, George M.
2016-06-01
This study examines the cosmological impacts of a light resonantly produced sterile neutrino in the early universe. Such a neutrino could be produced through lepton number-driven Mikheyev-Smirnov-Wolfenstein (MSW) conversion of active neutrinos around big bang nucleosynthesis (BBN), resulting in a non-thermal spectrum of both sterile and electron neutrinos. During BBN, the neutron-proton ratio depends sensitively on the electron neutrino flux. If electron neutrinos are being converted to sterile neutrinos, this makes the n/p ratio a probe of possible new physics. We use observations of primordial Yp and D/H to place limits on this process.
Optimization of a Light Collection System for use in the Neutron Lifetime Project
NASA Astrophysics Data System (ADS)
Taylor, C.; O'Shaughnessy, C.; Mumm, P.; Thompson, A.; Huffman, P.
2007-10-01
The Ultracold Neutron (UCN) Lifetime Project is an ongoing experiment with the objective of improving the average measurement of the neutron beta-decay lifetime. A more accurate measurement may increase our understanding of the electroweak interaction and improve astrophysical/cosmological theories on Big Bang nucleosynthesis. The current apparatus uses 0.89 nm cold neutrons to produce UCN through inelastic collisions with superfluid 4He in the superthermal process. The lifetime of the UCN is measured by detection of scintillation light from superfluid 4He created by electrons produced in neutron decay. Competing criteria of high detection efficiency outside of the apparatus and minimum heating of the experimental cell has led to the design of an acrylic light collection system. Initial designs were based on previous generations of the apparatus. ANSYS was used to optimize the cooling system for the light guide by checking simulated end conditions based on width of contact area, number of contact points, and location on the guide itself. SolidWorks and AutoCAD were used for design. The current system is in the production process.
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A.; Anerella, M.; Cozzolino, J.
1995-07-01
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and testmore » results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less
The magnet system of the Relativistic Heavy Ion Collider (RHIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, A.; Anerella, M.; Cozzolino, J.
1996-07-01
The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing andmore » test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.« less
The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved
NASA Astrophysics Data System (ADS)
Stoica, Ovidiu Cristinel
2016-01-01
We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.
COBE looks back to the Big Bang
NASA Technical Reports Server (NTRS)
Mather, John C.
1993-01-01
An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.
Portfolio Acquisition - How the DoD Can Leverage the Commercial Product Line Model
2015-04-30
canceled (Harrison, 2011). A major contributing factor common to these failures is that the programs tried to do too much at once: they used a big - bang ...requirements in a single, big - bang approach. MDAPs take 10 to 15 years from Milestone A to initial operational capability, with many of the largest...2013). The block upgrade model for B-52, F-15, and F-16 proved successful over decades, yet with its big - bang structure the F-35 program is
Baryon symmetric big-bang cosmology. [matter-antimatter symmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Finding the First Cosmic Explosions: Hypernovae and Pair-Instability Supernovae
NASA Astrophysics Data System (ADS)
Wiggins, Brandon; Whalen, D. J.; Migenes, V.; Astrophysics Research Group at Los Alamos National Laboratory
2014-01-01
The cosmic Dark Ages ended with the formation of the first stars at z ~ 20, or ~ 200 Myr after the Big Bang. Because they literally lie at the edge of the observable universe Pop III stars will be beyond the reach of even next generation observatories like JWST and the Thirty-Meter Telescope. But primordial supernovae could soon directly probe the properties of the first stars because they can be observed at high redshifts and their masses can be inferred from their light curves. I will present numerical simulations of Pop III hypernovae and pair-instability supernovae and their light curves done with the Los Alamos RAGE and SPECTRUM codes. We find that these two types of explosions will be visible at z ~ 10 - 15, revealing the positions of ancient dim galaxies on the sky and tracing their star formation rates.
Scanned Image Projection System Employing Intermediate Image Plane
NASA Technical Reports Server (NTRS)
DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)
2014-01-01
In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.
Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle
NASA Astrophysics Data System (ADS)
MacDonald, J.; Mullan, D. J.
2009-08-01
Contrary to a common argument that a small increase in the strength of the strong force would lead to destruction of all hydrogen in the big bang due to binding of the diproton and the dineutron with a catastrophic impact on life as we know it, we show that provided the increase in strong force coupling constant is less than about 50% substantial amounts of hydrogen remain. The reason is that an increase in strong force strength leads to tighter binding of the deuteron, permitting nucleosynthesis to occur earlier in the big bang at higher temperature than in the standard big bang. Photodestruction of the less tightly bound diproton and dineutron delays their production to after the bulk of nucleosynthesis is complete. The decay of the diproton can, however, lead to relatively large abundances of deuterium.
NASA Astrophysics Data System (ADS)
Broggini, C.; Bemmerer, D.; Caciolli, A.; Trezzi, D.
2018-01-01
The essential ingredients of nuclear astrophysics are the thermonuclear reactions which shape the life and death of stars and which are responsible for the synthesis of the chemical elements in the Universe. Deep underground in the Gran Sasso Laboratory the cross sections of the key reactions responsible for the hydrogen burning in stars have been measured with two accelerators of 50 and 400 kV voltage right down to the energies of astrophysical interest. As a matter of fact, the main advantage of the underground laboratory is the reduction of the background. Such a reduction has allowed, for the first time, to measure relevant cross sections at the Gamow energy. The qualifying features of underground nuclear astrophysics are exhaustively reviewed before discussing the current LUNA program which is mainly devoted to the study of the Big-Bang nucleosynthesis and of the synthesis of the light elements in AGB stars and classical novae. The main results obtained during the study of reactions relevant to the Sun are also reviewed and their influence on our understanding of the properties of the neutrino, of the Sun and of the Universe itself is discussed. Finally, the future of LUNA during the next decade is outlined. It will be mainly focused on the study of the nuclear burning stages after hydrogen burning: helium and carbon burning. All this will be accomplished thanks to a new 3.5 MV accelerator able to deliver high current beams of proton, helium and carbon which will start running under Gran Sasso in 2019. In particular, we will discuss the first phase of the scientific case of the 3.5 MV accelerator focused on the study of 12C+12C and of the two reactions which generate free neutrons inside stars: 13C(α,n)16O and 22Ne(α,n)25Mg.
Pre-Big-Bang bubbles from the gravitational instability of generic string vacua
NASA Astrophysics Data System (ADS)
Buonanno, A.; Damour, T.; Veneziano, G.
1999-03-01
We formulate the basic postulate of pre-Big-Bang cosmology as one of ``asymptotic past triviality", by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.
NASA Astrophysics Data System (ADS)
Silk, Joseph
Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.
From the Big Bang to the Nobel Prize and on to James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mather, John C.
2008-01-01
The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.
From the Big Bang to the Nobel Prize and on to the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mather, John C.
2008-01-01
The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the univerre, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the Jarnes Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where rtars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.
From the Big Bang to the Nobel Prize and on to James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mather, John C.
2008-01-01
The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.
From the Big Bang to the Nobel Prize and on to James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mather, John C.
2009-01-01
The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA s Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein s biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA s plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.
NASA Astrophysics Data System (ADS)
2010-10-01
New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and helium as "heavy elements". [2] By carefully splitting up the faint light coming from a galaxy into its component colours using powerful telescopes and spectrographs, astronomers can identify the fingerprints of different chemicals in remote galaxies, and measure the amounts of heavy elements present. With the SINFONI instrument on the VLT astronomers can go one better and get a separate spectrum for each part of an object. This allows them to make a map that shows the quantity of heavy elements present in different parts of a galaxy and also determine where in the galaxy star formation is occurring most vigorously. More information This research was presented in a paper, Gas accretion in distant galaxies as the origin of chemical abundance gradients, by Cresci et al., to appear in Nature on 14 October 2010. The team is composed of G. Cresci (Osservatorio Astrofisico di Arcetri, Italy), F. Mannucci (Osservatorio Astrofisico di Arcetri, Italy), R. Maiolino (INAF, Osservatorio Astronomico di Roma, Italy), A. Marconi (Universitá di Firenze, Italy), A. Gnerucci (Universitá di Firenze, Italy) and L. Magrini (Osservatorio Astrofisico di Arcetri, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Bojowald, Martin
2008-06-06
When quantum gravity is used to discuss the big bang singularity, the most important, though rarely addressed, question is what role genuine quantum degrees of freedom play. Here, complete effective equations are derived for isotropic models with an interacting scalar to all orders in the expansions involved. The resulting coupling terms show that quantum fluctuations do not affect the bounce much. Quantum correlations, however, do have an important role and could even eliminate the bounce. How quantum gravity regularizes the big bang depends crucially on properties of the quantum state.
Dette, Frank G; Graf, Juergen; Cassel, Werner; Lloyd-Jones, Carla; Boehm, Stefan; Zoremba, Martin; Schramm, Patrick; Pestel, Gunther; Thal, Serge C
2016-06-01
Sleep-disordered breathing (SDB) is closely associated with perioperative complications. STOP-Bang score was validated for preoperative screening of SDB. However, STOP-Bang Score lacks adequately high specificity. We aimed to improve it by combining it with the Mallampati Score. The study included 347 patients, in which we assessed both STOP-Bang and Mallampati scores. Overnight oxygen saturation was measured to calculate ODI4%. We calculated the sensitivity and specificity for AHI and ODI4% of both scores separately and in combination. We found that STOP-Bang Score ≥3 was present in 71%, ODI≥5/h (AHI ≥5/h) in 42.6% (39.3%) and ODI≥15/h (AHI ≥15/h) in 13.5% (17.8%). For ODI4%≥5/h (AHI ≥5/h) we observed in men a response rate for sensitivity and specificity of STOP-Bang of 94.5% and 17.1% (90.9% and 12.5%) and in women 66% and 51% (57.8% and 46.9%). For ODI4%≥15/h (AHI≥15/h) it was 92% and 12% (84.6% and 10.3%) and 93% and 49% (75% and 49.2%). For ODI4%≥5 (AHI≥5) sensitivity and specificity of Mallampati score were in men 38.4% and 78.6% (27.3% and 68.2%) and in women 25% and 82.7% (21.9% and 81.3%), for ODI≥15 (AHI ≥15/h) 38.5% and 71.8% (26.9% and 69.2%) and 33.3% and 81.4% (17.9% and 79.6%). In combination, for ODI4%≥15/h, we found sensitivity in men to be 92.3% and in women 93.3%, specificity 10.3% and 41.4%. STOP-Bang Score combined with Mallampati Score fails to increase specificity. Low specificity should be considered when using both scores for preoperative screening of SDB.
Silva, Graciela E.; Vana, Kimberly D.; Goodwin, James L.; Sherrill, Duane L.; Quan, Stuart F.
2011-01-01
Study Objective: The Epworth Sleepiness Scale (ESS) has been used to detect patients with potential sleep disordered breathing (SDB). Recently, a 4-Variable screening tool was proposed to identify patients with SDB, in addition to the STOP and STOP-Bang questionnaires. This study evaluated the abilities of the 4-Variable screening tool, STOP, STOP-Bang, and ESS questionnaires in identifying subjects at risk for SDB. Methods: A total of 4,770 participants who completed polysomnograms in the baseline evaluation of the Sleep Heart Health Study (SHHS) were included. Subjects with RDIs ≥ 15 and ≥ 30 were considered to have moderate-to-severe or severe SDB, respectively. Variables were constructed to approximate those in the questionnaires. The risk of SDB was calculated by the 4-Variable screening tool according to Takegami et al. The STOP and STOP-Bang questionnaires were evaluated including variables for snoring, tiredness/sleepiness, observed apnea, blood pressure, body mass index, age, neck circumference, and gender. Sleepiness was evaluated using the ESS questionnaire and scores were dichotomized into < 11 and ≥ 11. Results: The STOP-Bang questionnaire had higher sensitivity to predict moderate-to-severe (87.0%) and severe (70.4%) SDB, while the 4-Variable screening tool had higher specificity to predict moderate-to-severe and severe SDB (93.2% for both). Conclusions: In community populations such as the SHHS, high specificities may be more useful in excluding low-risk patients, while avoiding false positives. However, sleep clinicians may prefer to use screening tools with high sensitivities, like the STOP-Bang, in order to avoid missing cases that may lead to adverse health consequences and increased healthcare costs. Citation: Silva GE; Vana KD; Goodwin JL; Sherrill DL; Quan SF. Identification of patients with sleep disordered breathing: comparing the Four-Variable screening tool, STOP, STOP-Bang, and Epworth Sleepiness Scales. J Clin Sleep Med 2011;7(5):467-472. PMID:22003341
How Did the Universe Make People? A Brief History of the Universe from the Beginning to the End
NASA Technical Reports Server (NTRS)
Mather, John C.
2009-01-01
Astronomers are beginning to know the easy part: How did the Big Bang make stars and galaxies and the chemical elements? How did solar systems form and evolve? How did the Earth and the Moon form, and how did water and carbon come to the Earth? Geologists are piecing together the history of the Earth, and biologists are coming to know the history and process of life from the earliest times. But is our planet the only life-supporting place in the universe, or are there many? Astronomers are working on that too. I will tell the story of the discovery of the Big Bang by Edwin Hubble, and how the primordial heat radiation tells the details of that universal explosion. I will tell how the James Webb Space Telescope will extend the discoveries of the Hubble Space Telescope to ever greater distances, will look inside dust clouds to see stars being born today, will measure planets around other stars, and examine the dwarf planets in the outer Solar System. I will show concepts for great new space telescopes to follow the JWST and how they could use future moon rockets to hunt for signs of life on planets around other stars.
Big-bang nucleosynthesis and the baryon density of the universe.
Copi, C J; Schramm, D N; Turner, M S
1995-01-13
For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.
[Blood pressure and sleep apnoea hypopnoea syndrome in workers. STOP-Bang test versus Epworth test].
Vicente-Herrero, M T; Capdevila-García, L; Bellido-Cambrón, M C; Ramírez-Iñiguez de la Torre, M V; Lladosa-Marco, S
OSAHS is associated with an increased risk of cardiovascular disease and stroke. Arterial hypertension is a key risk factor to consider due to its impact on health. Cross-sectional study carried out on Spanish public service workers. The nocturnal apnoea risk using the Epworth and STOP-Bang questionnaires and their influence on the mean values of blood pressure are assessed. The detection of OSAHS using the Epworth test and, particularly with the STOP-Bang shows a significant relationship with the mean values of blood pressure, with differences between both questionnaires. The Epworth and STOP-Bang questionnaires are useful for the initial detection of OSAHS and a higher prevalence of high blood pressure. Both can be used in screening procedures in occupational health. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.
Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J
2014-11-01
A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.
Introduction to big bang nucleosynthesis and modern cosmology
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Kusakabe, Motohiko; Kajino, Toshitaka
Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the testing ground upon which many cosmological models must ultimately rest. It is our only probe of the universe during the important radiation-dominated epoch in the first few minutes of cosmic expansion. This paper reviews the basic equations of space-time, cosmology, and big bang nucleosynthesis. We also summarize the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measurements are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we analyze the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.
Regularization of the big bang singularity with random perturbations
NASA Astrophysics Data System (ADS)
Belbruno, Edward; Xue, BingKan
2018-03-01
We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.
Primordial nucleosynthesis and neutrino physics
NASA Astrophysics Data System (ADS)
Smith, Christel Johanna
We study primordial nucleosynthesis abundance yields for assumed ranges of cosmological lepton numbers, sterile neutrino mass-squared differences and active-sterile vacuum mixing angles. We fix the baryon-to-photon ratio at the value derived from the cosmic microwave background (CMB) data and then calculate the deviation of the 2 H, 4 He, and 7 Li abundance yields from those expected in the zero lepton number(s), no-new-neutrino-physics case. We conclude that high precision (< 5% error) measurements of the primordial 2 H abundance from, e.g., QSO absorption line observations coupled with high precision (< 1% error) baryon density measurements from the CMB could have the power to either: (1) reveal or rule out the existence of a light sterile neutrino if the sign of the cosmological lepton number is known; or (2) place strong constraints on lepton numbers, sterile neutrino mixing properties and resonance sweep physics. Similar conclusions would hold if the primordial 4 He abundance could be determined to better than 10%. We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community. We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner Big Bang Nucleosynthesis (BBN) code. We have also added the zero temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest ˜ 0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the Coulomb correction in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.
An ancient revisits cosmology.
Greenstein, J L
1993-01-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403
Matter Under Extreme Conditions: The Early Years
NASA Astrophysics Data System (ADS)
Keeler, R. Norris; Gibson, Carl H.
2012-03-01
Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent ki- netic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >1025 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when infla- tion ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak tur- bulence until the plasma-gas transition give chains of protogalaxies with the morphology of tur- bulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Pro- togalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmologi- cal event.
NASA Astrophysics Data System (ADS)
Greenstein, Jesse L.
1993-06-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.
Big-bang nucleosynthesis revisited
NASA Technical Reports Server (NTRS)
Olive, Keith A.; Schramm, David N.; Steigman, Gary; Walker, Terry P.
1989-01-01
The homogeneous big-bang nucleosynthesis yields of D, He-3, He-4, and Li-7 are computed taking into account recent measurements of the neutron mean-life as well as updates of several nuclear reaction rates which primarily affect the production of Li-7. The extraction of primordial abundances from observation and the likelihood that the primordial mass fraction of He-4, Y(sub p) is less than or equal to 0.24 are discussed. Using the primordial abundances of D + He-3 and Li-7 we limit the baryon-to-photon ratio (eta in units of 10 exp -10) 2.6 less than or equal to eta(sub 10) less than or equal to 4.3; which we use to argue that baryons contribute between 0.02 and 0.11 to the critical energy density of the universe. An upper limit to Y(sub p) of 0.24 constrains the number of light neutrinos to N(sub nu) less than or equal to 3.4, in excellent agreement with the LEP and SLC collider results. We turn this argument around to show that the collider limit of 3 neutrino species can be used to bound the primordial abundance of He-4: 0.235 less than or equal to Y(sub p) less than or equal to 0.245.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papatheodore, Thomas L.; Messer, Bronson
Since roughly 100 million years after the big bang, the primordial elements hydrogen (H), helium (He), and lithium (Li) have been synthesized into heavier elements by thermonuclear reactions inside of the stars. The change in stellar composition resulting from these reactions causes stars to evolve over the course of their lives. Although most stars burn through their nuclear fuel and end their lives quietly as inert, compact objects, whereas others end in explosive deaths. These stellar explosions are called supernovae and are among the most energetic events known to occur in our universe. Supernovae themselves further process the matter ofmore » their progenitor stars and distribute this material into the interstellar medium of their host galaxies. In the process, they generate ∼1051 ergs of kinetic energy by sending shock waves into their surroundings, thereby contributing to galactic dynamics as well.« less
McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.
2015-01-01
The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Kankam, David (Technical Monitor)
2003-01-01
A laboratory implementation of a fuzzy logic-tracking controller using a low cost Motorola MC68HC11E9 microprocessor is described in this report. The objective is to design the most optimal yet practical controller that can be implemented and marketed, and which gives respectable performance, even when the system loads, inertia and parameters are varying. A distinguishing feature of this work is the by-product goal of developing a marketable, simple, functional and low cost controller. Additionally, real-time nonlinearities are not ignored, and a mathematical model is not required. A number of components have been designed, built and tested individually, and in various combinations of hardware and software segments. These components have been integrated with a brushless motor to constitute the drive system. A microprocessor-based FLC is incorporated to provide robust speed and position control. Design objectives that are difficult to express mathematically can be easily incorporated in a fuzzy logic-based controller by linguistic information (in the form of fuzzy IF-THEN rules). The theory and design are tested in the laboratory using a hardware setup. Several test cases have been conducted to confirm the effectiveness of the proposed controller. The results indicate excellent tracking performance for both speed and position trajectories. For the purpose of comparison, a bang-bang controller has been tested. The fuzzy logic controller performs significantly better than the traditional bang-bang controller. The bang-bang controller has been shown to be relatively inaccurate and lacking in robustness. Description of the implementation hardware system is also given.
NASA Astrophysics Data System (ADS)
Jones, Spencer
2017-09-01
A number of experiments are focused on trying to observe neutrinoless double beta decay to see if neutrinos are Majorana particles, and thus their own antiparticles. If observed, the results could lead to a more direct measurement of neutrino masses, and to an understanding of why each neutrino flavor has the mass that it does. Lepton conservation would be violated, and data could even shed light on the large discrepancy of matter to antimatter found in the universe today, as it is believed that equal amounts of both were present in the first moments after the Big Bang. We plan to study the 134Xe(3He,n)136Ba reaction to inform the proton pairing structure in 136Ba, which is necessary to validate approximations made in calculating the nuclear matrix elements for the neutrinoless double beta decay rate of 136Xe. In particular, the observation of excited 0+ strength would signal a breakdown of the BCS approximation used in QRPA calculations. Design and construction of apparatus to perform this experiment are currently underway. The design of the 3He gas target will be described. This research is supported by the Office of Nuclear Physics in the US Department of Energy Office of Science.
Origin of ΔN{sub eff} as a result of an interaction between dark radiation and dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam, E-mail: oeb@phys.au.dk, E-mail: subinoy@physik.rwth-aachen.de, E-mail: Adam.Moss@nottingham.ac.uk
2012-10-01
Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decayingmore » into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation.« less
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Smith, M.; Galbany, L.; D'Andrea, C. B.; González-Gaitán, S.; Jarvis, M. J.; Kessler, R.; Kovacs, E.; Lidman, C. Nichol, R. C.; Papadopoulos, A.; Sako, M.; Sullivan, M.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kim, A. G.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Miquel, R.; Nugent, P.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Thomas, R. C.; Walker, A. R.; DES Collaboration
2017-10-01
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ˜10 Gyr) and peaking at MAB = -22.3 ± 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400-3500 Å) properties of the SN, finding velocity of the C III feature changes by ˜5600 km s- 1 over 14 d around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5^{+3.6}_{-2.4} × 109 M⊙, which is more massive than the typical SLSN-I host galaxy.
Pan, Y. -C.; Foley, R. J.; Smith, M.; ...
2017-06-13
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically con rmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1:861 (a lookback time of 10 Gyr) and peaking at MAB = -22:3 0:1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400{3500 A) properties of the SN, nding velocity of the Ciii feature changes by 5600kms -1 over 14 days around maximum light. We nd the host galaxy of DES15E2mlf has a stellar massmore » of 3:5+3:6 -2:4 109 M , which is more massive than the typical SLSN-I host galaxy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Y. -C.; Foley, R. J.; Smith, M.
We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically con rmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1:861 (a lookback time of 10 Gyr) and peaking at MAB = -22:3 0:1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400{3500 A) properties of the SN, nding velocity of the Ciii feature changes by 5600kms -1 over 14 days around maximum light. We nd the host galaxy of DES15E2mlf has a stellar massmore » of 3:5+3:6 -2:4 109 M , which is more massive than the typical SLSN-I host galaxy.« less
The MoEDAL Experiment at the Lhc — a New Light on the High Energy Frontier
NASA Astrophysics Data System (ADS)
Pinfold, James L.
2014-01-01
In 2010, the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the seventh international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big bang unfurl at the earliest times.
The MoEDAL Experiment at the Lhc -- a New Light on the High Energy Frontier
NASA Astrophysics Data System (ADS)
Pinfold, James L.
2014-04-01
In 2010, the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the seventh international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big bang unfurl at the earliest times.
Signatures of a hidden cosmic microwave background.
Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas
2008-09-26
If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gamma<-->gamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments.
The Biological Big Bang model for the major transitions in evolution.
Koonin, Eugene V
2007-08-20
Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed concepts of the emergence of protein folds by recombination of small structural units and origin of viruses and cells from a pre-cellular compartmentalized pool of recombining genetic elements. The model is extended to encompass other major transitions. It is proposed that bacterial and archaeal phyla emerged independently from two distinct populations of primordial cells that, originally, possessed leaky membranes, which made the cells prone to rampant gene exchange; and that the eukaryotic supergroups emerged through distinct, secondary endosymbiotic events (as opposed to the primary, mitochondrial endosymbiosis). This biphasic model of evolution is substantially analogous to the scenario of the origin of universes in the eternal inflation version of modern cosmology. Under this model, universes like ours emerge in the infinite multiverse when the eternal process of exponential expansion, known as inflation, ceases in a particular region as a result of false vacuum decay, a first order phase transition process. The result is the nucleation of a new universe, which is traditionally denoted Big Bang, although this scenario is radically different from the Big Bang of the traditional model of an expanding universe. Hence I denote the phase transitions at the end of each inflationary epoch in the history of life Biological Big Bangs (BBB). A Biological Big Bang (BBB) model is proposed for the major transitions in life's evolution. According to this model, each transition is a BBB such that new classes of biological entities emerge at the end of a rapid phase of evolution (inflation) that is characterized by extensive exchange of genetic information which takes distinct forms for different BBBs. The major types of new forms emerge independently, via a sampling process, from the pool of recombining entities of the preceding generation. This process is envisaged as being qualitatively different from tree-pattern cladogenesis.
The Biological Big Bang model for the major transitions in evolution
Koonin, Eugene V
2007-01-01
Background Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. Hypothesis I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed concepts of the emergence of protein folds by recombination of small structural units and origin of viruses and cells from a pre-cellular compartmentalized pool of recombining genetic elements. The model is extended to encompass other major transitions. It is proposed that bacterial and archaeal phyla emerged independently from two distinct populations of primordial cells that, originally, possessed leaky membranes, which made the cells prone to rampant gene exchange; and that the eukaryotic supergroups emerged through distinct, secondary endosymbiotic events (as opposed to the primary, mitochondrial endosymbiosis). This biphasic model of evolution is substantially analogous to the scenario of the origin of universes in the eternal inflation version of modern cosmology. Under this model, universes like ours emerge in the infinite multiverse when the eternal process of exponential expansion, known as inflation, ceases in a particular region as a result of false vacuum decay, a first order phase transition process. The result is the nucleation of a new universe, which is traditionally denoted Big Bang, although this scenario is radically different from the Big Bang of the traditional model of an expanding universe. Hence I denote the phase transitions at the end of each inflationary epoch in the history of life Biological Big Bangs (BBB). Conclusion A Biological Big Bang (BBB) model is proposed for the major transitions in life's evolution. According to this model, each transition is a BBB such that new classes of biological entities emerge at the end of a rapid phase of evolution (inflation) that is characterized by extensive exchange of genetic information which takes distinct forms for different BBBs. The major types of new forms emerge independently, via a sampling process, from the pool of recombining entities of the preceding generation. This process is envisaged as being qualitatively different from tree-pattern cladogenesis. Reviewers This article was reviewed by William Martin, Sergei Maslov, and Leonid Mirny. PMID:17708768
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
A Quantum Universe Before the Big Bang(s)?
NASA Astrophysics Data System (ADS)
Veneziano, Gabriele
2017-08-01
The predictions of general relativity have been verified by now in a variety of different situations, setting strong constraints on any alternative theory of gravity. Nonetheless, there are strong indications that general relativity has to be regarded as an approximation of a more complete theory. Indeed theorists have long been looking for ways to connect general relativity, which describes the cosmos and the infinitely large, to quantum physics, which has been remarkably successful in explaining the infinitely small world of elementary particles. These two worlds, however, come closer and closer to each other as we go back in time all the way up to the big bang. Actually, modern cosmology has changed completely the old big bang paradigm: we now have to talk about (at least) two (big?) bangs. If we know quite something about the one closer to us, at the end of inflation, we are much more ignorant about the one that may have preceded inflation and possibly marked the beginning of time. No one doubts that quantum mechanics plays an essential role in answering these questions: unfortunately a unified theory of gravity and quantum mechanics is still under construction. Finding such a synthesis and confirming it experimentally will no doubt be one of the biggest challenges of this century’s physics.
Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng
2012-09-01
One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-14
... a ``big bang'' approach where all of the rules to be adopted under Title VII go into effect... `big bang' approach to implementation would be too disruptive to the marketplace--particularly given...
Big Bang Day : Afternoon Play - Torchwood: Lost Souls
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-13
Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to peoplemore » and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.
A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by amore » factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.« less
Big Bang Day : Afternoon Play - Torchwood: Lost Souls
None
2017-12-09
Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.
Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions
NASA Astrophysics Data System (ADS)
Leonel Rocha, J.; Taha, Abdel-Kaddous; Fournier-Prunaret, D.
2016-06-01
The main purpose of this work is to study the dynamics and bifurcation properties of generic growth functions, which are defined by the population size functions of the generic growth equation. This family of unimodal maps naturally incorporates a principal focus of ecological and biological research: the Allee effect. The analysis of this kind of extinction phenomenon allows to identify a class of Allee’s functions and characterize the corresponding Allee’s effect region and Allee’s bifurcation curve. The bifurcation analysis is founded on the performance of fold and flip bifurcations. The dynamical behavior is rich with abundant complex bifurcation structures, the big bang bifurcations of the so-called “box-within-a-box” fractal type being the most outstanding. Moreover, these bifurcation cascades converge to different big bang bifurcation curves with distinct kinds of boxes, where for the corresponding parameter values several attractors are associated. To the best of our knowledge, these results represent an original contribution to clarify the big bang bifurcation analysis of continuous 1D maps.
Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation
NASA Technical Reports Server (NTRS)
Olive, Keith A.; Schramm, David N.
1992-01-01
The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.
Thermal equilibrium control by frequent bang-bang modulation.
Yang, Cheng-Xi; Wang, Xiang-Bin
2010-05-01
In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.
NASA Astrophysics Data System (ADS)
Das, Ashok
1. Basics of geometry and relativity. 1.1. Two dimensional geometry. 1.2. Inertial and gravitational masses. 1.3. Relativity -- 2. Relativistic dynamics. 2.1. Relativistic point particle. 2.2. Current and charge densities. 2.3. Maxwell's equations in the presence of sources. 2.4. Motion of a charged particle in EM field. 2.5. Energy-momentum tensor. 2.6. Angular momentum -- 3. Principle of general covariance. 3.1. Principle of equivalence. 3.2. Principle of general covariance. 3.3. Tensor densities -- 4. Affine connection and covariant derivative. 4.1. Parallel transport of a vector. 4.2. Christoffel symbol. 4.3. Covariant derivative of contravariant tensors. 4.4. Metric compatibility. 4.5. Covariant derivative of covariant and mixed tensors. 4.6. Electromagnetic analogy. 4.7. Gradient, divergence and curl -- 5. Geodesic equation. 5.1. Covariant differentiation along a curve. 5.2. Curvature from derivatives. 5.3. Parallel transport along a closed curve. 5.4. Geodesic equation. 5.5. Derivation of geodesic equation from a Lagrangian -- 6. Applications of the geodesic equation. 6.1. Geodesic as representing gravitational effect. 6.2. Rotating coordinate system and the Coriolis force. 6.3. Gravitational red shift. 6.4. Twin paradox and general covariance. 6.5. Other equations in the presence of gravitation -- 7. Curvature tensor and Einstein's equation. 7.1. Curvilinear coordinates versus gravitational field. 7.2. Definition of an inertial coordinate frame. 7.3. Geodesic deviation. 7.4. Properties of the curvature tensor. 7.5. Einstein's equation. 7.6. Cosmological constant. 7.7. Initial value problem. 7.8. Einstein's equation from an action -- 8. Schwarzschild solution. 8.1. Line element. 8.2. Connection. 8.3. Solution of the Einstein equation. 8.4. Properties of the Schwarzschild solution. 8.5. Isotropic coordinates -- 9. Tests of general relativity. 9.1. Radar echo experiment. 9.2. Motion of a particle in a Schwarzschild background. 9.3. Motion of light rays in a Schwarzschild background. 9.4. Perihelion advance of Mercury -- 10. Black holes. 10.1. Singularities of the metric. 10.2. Singularities of the Schwarzschild metric. 10.3. Black holes -- 11. Cosmological models and the big bang theory. 11.1. Homogeneity and isotropy. 11.2. Different models of the universe. 11.3. Hubble's law. 11.4. Evolution equation. 11.5. Big bang theory and blackbody radiation.
Astrophysical S-factor for destructive reactions of lithium-7 in big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komatsubara, Tetsuro; Kwon, YoungKwan; Moon, JunYoung
One of the most prominent success with the Big Bang models is the precise reproduction of mass abundance ratio for {sup 4}He. In spite of the success, abundances of lithium isotopes are still inconsistent between observations and their calculated results, which is known as lithium abundance problem. Since the calculations were based on the experimental reaction data together with theoretical estimations, more precise experimental measurements may improve the knowledge of the Big Bang nucleosynthesis. As one of the destruction process of lithium-7, we have performed measurements for the reaction cross sections of the {sup 7}L({sup 3}He,p){sup 9}Be reaction.
[Fatal alveolar haemorrhage following a "bang" of cannabis].
Grassin, F; André, M; Rallec, B; Combes, E; Vinsonneau, U; Paleiron, N
2011-09-01
The new methods of cannabis consumption (home made water pipe or "bang") may be responsible for fatal respiratory complications. We present a case, with fatal outcome, of a man of 19 years with no previous history other than an addiction to cannabis using "bang". He was admitted to intensive care with acute dyspnoea. A CT scan showed bilateral, diffuse alveolar shadowing. He was anaemic with an Hb of 9.3g/l. Bronchoalveolar lavage revealed massive alveolar haemorrhage. Investigations for infection and immunological disorder were negative and toxicology was negative except for cannabis. Antibiotic treatment was given and favourable progress allowed early discharge. Death occurred 15 days later due to alveolar haemorrhage following a further "bang" of cannabis. Autopsy showed toxic alveolar haemorrhage. The probable mechanism is pulmonary damage due to acid anhydrides released by the incomplete combustion of cannabis in contact with plastic. These acids have a double effect on the lungs: a direct toxicity with severe inflammation of the mucosa leading to alveolar haemorrhage and subsequently the acid anhydrides may lead to the syndrome of intra-alveolar haemorrhage and anaemia described in occupational lung diseases by Herbert in Oxford in 1979. It manifests itself by haemoptysis and intravascular haemolysis. We draw attention to the extremely serious potential consequences of new methods of using cannabis, particularly the use of "bang" in homemade plastic materials. Copyright © 2011 SPLF. Published by Elsevier Masson SAS. All rights reserved.
Constructing "Nerdiness": Characterisation in "The Big Bang Theory"
ERIC Educational Resources Information Center
Bednarek, Monika
2012-01-01
This paper analyses the linguistic construction of the televisual character Sheldon--the "main nerd" in the sitcom "The Big Bang Theory" (CBS, 2007-), approaching this construction of character through both computerised and "manual" linguistic analysis. More specifically, a computer analysis of dialogue (using concordances and keyword analysis) in…
A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.
Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J
2013-04-18
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry.
Olah, George A; Mathew, Thomas; Prakash, G K Surya
2016-06-08
Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed.
Georges Lemaître: The Priest Who Invented the Big Bang
NASA Astrophysics Data System (ADS)
Lambert, Dominique
This contribution gives a concise survey of Georges Lemaître works and life, shedding some light on less-known aspects. Lemaître is a Belgian catholic priest who gave for the first time in 1927 the explanation of the Hubble law and who proposed in 1931 the "Primeval Atom Hypothesis", considered as the first step towards the Big Bang cosmology. But the scientific work of Lemaître goes far beyond Physical Cosmology. Indeed, he contributed also to the theory of Cosmis Rays, to the Spinor theory, to Analytical mechanics (regularization of 3- Bodies problem), to Numerical Analysis (Fast Fourier Transform), to Computer Science (he introduced and programmed the first computer of Louvain),… Lemaître took part to the "Science and Faith" debate. He defended a position that has some analogy with the NOMA principle, making a sharp distinction between what he called the "two paths to Truth" (a scientific one and a theological one). In particular, he never made a confusion between the theological concept of "creation" and the scientific notion of "natural beginning" (initial singularity). Lemaître was deeply rooted in his faith and sacerdotal vocation. Remaining a secular priest, he belonged to a community of priests called "The Friends of Jesus", characterized by a deep spirituality and special vows (for example the vow of poverty). He had also an apostolic activity amongst Chinese students.
Spectroscopic confirmation of a galaxy at redshift z = 8.6.
Lehnert, M D; Nesvadba, N P H; Cuby, J-G; Swinbank, A M; Morris, S; Clément, B; Evans, C J; Bremer, M N; Basa, S
2010-10-21
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the cosmic microwave background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z ≈ 6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600 million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549 ± 0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
Zylstra, A B; Herrmann, H W; Johnson, M Gatu; Kim, Y H; Frenje, J A; Hale, G; Li, C K; Rubery, M; Paris, M; Bacher, A; Brune, C R; Forrest, C; Glebov, V Yu; Janezic, R; McNabb, D; Nikroo, A; Pino, J; Sangster, T C; Séguin, F H; Seka, W; Sio, H; Stoeckl, C; Petrasso, R D
2016-07-15
Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.
Zylstra, A. B.; Herrmann, H. W.; Johnson, M. Gatu; ...
2016-07-11
Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of 6Li in low-metallicity stars. Using high energy-density plasmas we measure the T( 3He,γ) 6Li reaction rate, a candidate for anomalously high 6Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. In conclusion, this is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.
JWST Pathfinder Telescope Integration
NASA Technical Reports Server (NTRS)
Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.;
2015-01-01
The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.
Low-mass black holes as the remnants of primordial black hole formation.
Greene, Jenny E
2012-01-01
Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.
Microwave anisotropies in the light of the data from the COBE satellite
NASA Technical Reports Server (NTRS)
Dodelson, Scott; Jubas, Jay M.
1993-01-01
The recent measurement of anisotropies in the cosmic microwave background by the Cosmic Background Explorer (COBE) satellite and the recent South Pole experiment offer an excellent opportunity to probe cosmological theories. We test a class of theories in which the universe today is flat and matter dominated, and primordial perturbations are adiabatic parameterized by an index n. In this class of theories the predicted signal in the South Pole experiment depends on n, the Hubble constant, and the baryon density. For n = 1 a large region of this parameter space is ruled out, but there is still a window open which satisfies constraints from COBE, the South Pole experiment, and big bang nucleosynthesis.
NASA Astrophysics Data System (ADS)
Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong
2017-06-01
We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.
The cosmic web and microwave background fossilize the first turbulent combustion
NASA Astrophysics Data System (ADS)
Gibson, Carl H.; Keeler, R. Norris
2016-10-01
Collisional fluid mechanics theory predicts a turbulent hot big bang at Planck conditions from large, negative, turbulence stresses below the Fortov-Kerr limit (< -10113 Pa). Big bang turbulence fossilized when quarks formed, extracting the mass energy of the universe by extreme negative viscous stresses of inflation, expanding to length scales larger than the horizon scale ct. Viscous-gravitational structure formation by fragmentation was triggered at big bang fossil vorticity turbulence vortex lines during the plasma epoch, as observed by the Planck space telescope. A cosmic web of protogalaxies, protogalaxyclusters, and protogalaxysuperclusters that formed in turbulent boundary layers of the spinning voids are hereby identified as expanding turbulence fossils that falsify CDMHC cosmology.
Hybrid chip-on-board LED module with patterned encapsulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soer, Wouter Anthon; Helbing, Rene; Huang, Guan
Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than anothermore » first set of first light emitting elements (160).« less
NASA Astrophysics Data System (ADS)
Silk, Joseph
2008-11-01
The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most recent, and comprehensive, is Cosmology, in which the University of Texas physicist and Nobel Laureate, Steven Weinberg provides a concise introduction to modern cosmology. The book is aimed at the level of a final year physics undergraduate, or a first year graduate student. The discussion is self-contained, with numerous derivations. It begins with an overview of the standard cosmological model, and presents a detailed treatment of fluctuation growth. There are sections on gravitational lensing and inflationary cosmology, on microwave background fluctuations and structure growth. There are aspects however where a supplementary book is essential for the physicist being introduced to cosmology. The text is lacking in physical cosmology. The baryon physics of galaxy formation is barely mentioned, apart from a discussion of the Jeans mass. And it ignores one of the greatest contributions to the field by Russian cosmologist Yaakov Zel'dovich, who discovered the only nonspherical solution to the nonlinear evolution of density fluctuations, one that has since dominated our understanding of the large-scale structure of the universe via the cosmic web. But these are minor quibbles about what provides an outstanding introduction to modern cosmology, and one that takes us from the physics fundamentals up to the cosmic frontier. I recommend Cosmology for anyone wishing to enter the field and with a good physics background. It is ideal for the astronomer who may only have a sketchy knowledge of general relativity or particle physics. She will learn about vielbeins and scalar fields, gauge-invariant fluctuation theory and inflation. Steven Weinberg is a leading physicist who has also made important contributions to cosmology. The text provides a rigorous treatment of the standard model of cosmology, and of structure formation. Numerous exercises are provided. It provides an excellent core for a course on cosmology.
NASA Astrophysics Data System (ADS)
Truran, J. W., Jr.; Heger, A.
2003-12-01
Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).
A High-Order Test for Optimality of Bang-Bang Controls.
1983-11-01
Systems * Istituto di Matematica Applicata, Universitl di Padova, ITALY. sponsored by the United States Army under Contract No. DAAG29-80-C-0041...the first order variation at the terminal point of the trajectory lim [x(T,u ) - x(TW)]/E (1.1) Istituto di Matematica Applicata, Universitl di Padova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.
This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.
ERIC Educational Resources Information Center
Bousquet, Marc
2010-01-01
The academic year began with a bang last fall at the University of California (UC). A series of bangs, actually, featuring a united front of students, staff, and faculty in a coordinated series of walkouts and strikes across the system's ten campuses. The target of their outrage was a series of draconian layoffs, wage cuts, and drastic tuition…
After the Big Bang: What's Next in Design Education? Time to Relax?
ERIC Educational Resources Information Center
Fleischmann, Katja
2015-01-01
The article "Big Bang technology: What's next in design education, radical innovation or incremental change?" (Fleischmann, 2013) appeared in the "Journal of Learning Design" Volume 6, Issue 3 in 2013. Two years on, Associate Professor Fleischmann reflects upon her original article within this article. Although it has only been…
EMR implementation: big bang or a phased approach?
Owens, Kathleen
2008-01-01
There are two major strategies to implementing an EMR: the big-bang approach and the phased, or incremental, approach. Each strategy has pros and cons that must be considered. This article discusses these approaches and the risks and benefits of each as well as some training strategies that can be used with either approach.
The Big Bang: UK Young Scientists' and Engineers' Fair 2010
ERIC Educational Resources Information Center
Allison, Simon
2010-01-01
The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…
The Early Universe and High-Energy Physics.
ERIC Educational Resources Information Center
Schramm, David N.
1983-01-01
Many properties of new particle field theories can only be tested by comparing their predictions about the physical conditions immediately after the big bang with what can be reconstructed about this event from astronomical data. Facts/questions about big bang, unified field theories, and universe epochs/mass are among the topics discussed. (JN)
A Guided Inquiry on Hubble Plots and the Big Bang
ERIC Educational Resources Information Center
Forringer, Ted
2014-01-01
In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…
Capture of near-Earth objects with low-thrust propulsion and invariant manifolds
NASA Astrophysics Data System (ADS)
Tang, Gao; Jiang, Fanghua
2016-01-01
In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.
Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcation
NASA Astrophysics Data System (ADS)
Leonel Rocha, J.; Taha, A. K.; Fournier-Prunaret, D.
2016-02-01
In this work we consider new one-dimensional populational discrete dynamical systems in which the growth of the population is described by a family of von Bertalanffy's functions, as a dynamical approach to von Bertalanffy's growth equation. The purpose of introducing Allee effect in those models is satisfied under a correction factor of polynomial type. We study classes of von Bertalanffy's functions with different types of Allee effect: strong and weak Allee's functions. Dependent on the variation of four parameters, von Bertalanffy's functions also includes another class of important functions: functions with no Allee effect. The complex bifurcation structures of these von Bertalanffy's functions is investigated in detail. We verified that this family of functions has particular bifurcation structures: the big bang bifurcation of the so-called “box-within-a-box” type. The big bang bifurcation is associated to the asymptotic weight or carrying capacity. This work is a contribution to the study of the big bang bifurcation analysis for continuous maps and their relationship with explosion birth and extinction phenomena.
Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine.
Nagata, Sayaka; Hatakeyama, Kinta; Asami, Maki; Tokashiki, Mariko; Hibino, Hajime; Nishiuchi, Yuji; Kuwasako, Kenji; Kato, Johji; Asada, Yujiro; Kitamura, Kazuo
2013-11-29
The renin-angiotensin system (RAS), including angiotensin II (Ang II), plays an important role in the regulation of blood pressure and body fluid balance. Consequently, the RAS has emerged as a key target for treatment of kidney and cardiovascular disease. In a search for bioactive peptides using an antibody against the N-terminal portion of Ang II, we identified and characterized a novel angiotensin-related peptide from human urine as a major molecular form. We named the peptide Big angiotensin-25 (Bang-25) because it consists of 25 amino acids with a glycosyl chain and added cysteine. Bang-25 is rapidly cleaved by chymase to Ang II, but is resistant to cleavage by renin. The peptide is abundant in human urine and is present in a wide range of organs and tissues. In particular, immunostaining of Bang-25 in the kidney is specifically localized to podocytes. Although the physiological function of Bang-25 remains uncertain, our findings suggest it is processed from angiotensinogen and may represent an alternative, renin-independent path for Ang II synthesis in tissue. Copyright © 2013. Published by Elsevier Inc.
From the Big Bang to the Nobel Prize and on to James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mather, John C.
2008-01-01
The Big Bang 13.7 billion years ago started the expansion of our piece of the universe, and portions of it stopped expanding and made stars, galaxies, planets, and people. I summarize the history of the universe, and explain how humans have learned about its size, its expansion, and its constituents. The COBE (Cosmic Background Explorer) mission measured the remnant heat radiation from the Big Bang, showed that its color (spectrum) matches the predictions perfectly, and discovered hot and cold spots in the radiation that reveal the primordial density variations that enabled us to exist. My current project, the James Webb Space Telescope (JWST), is the planned successor to the Hubble Space Telescope, and will extend its scientific discoveries to ever greater distances and ever closer to the Big Bang itself. Its infrared capabilities enable it to see inside dust clouds to study the formation of stars and planets, and it may reveal the atmospheric properties of planets around other stars. Planned for launch in 2013, it is an international project led by NASA along with the European and Canadian Space Agencies.
Origins Of The Elements - An Educational Web Site
NASA Astrophysics Data System (ADS)
Samarasingha, Iranga; Ivans, I. I.
2011-01-01
This poster introduces a new and unique web site "ORIGINS OF THE ELEMENTS" to the astronomy and physics communities. The main objective of our site is to provide a useful reference guide to the origins of the elements for researchers, educators and students. Only a very few of the lightest elements have their origins at the earliest cosmological ages of the Universe, the Big Bang. Most of the elements found on the Earth, and in the rest of the Universe, owe their primary existence to stellar nucleosynthesis, either during the course of the energy generation lifetimes of stars, or in the exploding supernovae of stars at the end of their lives. A by-product of stellar energy generation and exploding supernovae is alchemy -- the ashes of the energy generation contribution of one element is another, more massive element. Although various reference sources are available to learn about nucleosynthesis, it's a challenging task to uncover appropriate study materials. In this single site, we present both data and recent research results in a concise and attractive structure. Using tables and charts, the material is presented in a multi-level style. For each of the elements in the periodic table, and for each of the stable isotopes in the chart of the nuclides, the site gives a clear visualization of their corresponding nucleosynthetic origins. As a consequence, the charts afford an insight into the patterns of nucleosynthesis. Moreover, the web site provides the student with an intuition to the relative distributions of those elements. Another important feature of our site is that users have direct access to the tabulated elemental abundances (both theoretical and observed) of stars and meteorites.
Giant Gas Cloud Made of Atoms Formed in First Stars Revealed in Universe's Most Distant Quasar
NASA Astrophysics Data System (ADS)
2003-07-01
Astronomers studying the most distant quasar yet found in the Universe have discovered a massive reservoir of gas containing atoms made in the cores of some of the first stars ever formed. The carbon-monoxide gas was revealed by the National Science Foundation's Very Large Array (VLA) and the Plateau de Bure radio interferometer in Europe. The gas, along with the young galaxy containing it, is seen as it was when the Universe was only one-sixteenth its current age, just emerging from the primeval "Dark Ages" before light could travel freely through the cosmos. VLA Image of Quasar VLA Image of J1148+5251 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) "Our discovery of this much carbon monoxide gas in such an extremely distant and young galaxy is surprising. It means that, even at a very early time in the history of the Universe, galaxies already had huge amounts of molecular gas that would eventually form new generations of stars," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The distant galaxy, dubbed J1148+5251, contains a bright quasar powered by a black hole at least a billion times more massive than the Sun. The galaxy is seen as it was only 870 million years after the Big Bang. The Universe now is 13.7 billion years old. J1148+5251 would have been among the first luminous objects in the Universe. The original atoms formed in the Universe within the first three minutes of the Big Bang were only hydrogen and helium. Carbon and oxygen -- the atoms making up carbon monoxide -- had to be made in the thermonuclear furnaces at the cores of the earliest stars. "The carbon and oxygen atoms in the gas we detected were made by some of the first stars ever formed, only about 650 million years after the Big Bang. In the next 200 million years or so, those stars -- probably very different stars from those we see today -- exploded as supernovae, spreading the carbon and oxygen out into space. Those atoms then cooled and combined into the carbon monoxide molecules we detected with our radio telescopes," said Fabian Walter, a Jansky Postdoctoral Fellow at the NRAO. Walter is lead author of a research paper in the July 24 issue of the scientific journal Nature, and, with Carilli and K.Y. Lo of NRAO, did the VLA observations. Frank Bertoldi of the Max-Planck Institute in Germany and Pierre Cox of the Institute of Space Astrophysics in Orsay, France, led the collaborators using the Plateau de Bure telescope. J1148+5251 Timeline Time Since Big Bang Event <300,000 years Universe Fully Ionized 300,000 years Hot charged particles cool and combine into neutral atoms; Universe becomes opaque; "Dark Ages" begin. ~200 million years First luminous objects form; Reionization begins. ~650 million years Stars forming in galaxy J1148+5251; Make carbon, oxygen atoms and begin to blast these atoms into interstellar space 870 million years J1148+5251 has accumulated massive reservoir of cool molecular gas containing Carbon Monoxide (CO) molecules; Radio waves from these molecules begin their journey to Earth. One billion years Reionization complete; Universe is transparent, ending "Dark Ages." 13.7 billion years Radio waves from J1148+5251's CO molecules arrive at radio telescopes on Earth. The discovery gives scientists a tantalizing direct view of one of the earliest galaxies in the young Universe, and raises questions about the nature of the first stars and how galaxies and quasars formed. "The Universe in which this galaxy existed is a very different Universe from the one we know today," Walter said. For about 300,000 years after the Big Bang, the Universe was filled with very hot gas which eventually became protons and electrons. Then, through expansion, the Universe cooled and the protons and electrons combined into neutral atoms that absorbed light and other forms of electromagnetic radiation. This period, from 300,000 years after the Big Bang, until a few hundred million years later when the first stars and galaxies began forming, is known as the cosmic Dark Ages. As the first stars and galaxies formed, intense radiation from the stars began to break apart -- or ionize -- the neutral atoms, allowing light once again to pass. As each new star's radiation ionized interstellar atoms, it formed a transparent "bubble" in the opaque Universe. The Universe began to resemble a cosmic Swiss cheese, with the holes growing larger until, about a billion years after the Big Bang, the holes all met each other and the Universe became fully transparent once again. This period is known as the Reionization Era of the Universe. In fact, combining the radio observations with data from optical telescopes shows that the transparent "bubble" around J1148+5251 is about 30 million light-years in diameter. "This is direct evidence that we are seeing this object helping reionize the Universe," Walter said. The amount of molecular gas in the galaxy -- a mass more than 10 billion times that of the Sun -- tells the scientists that things were happening quickly in the early Universe. "This is as much mass as we see in big galaxies today, and it had little time, astronomically speaking, to accumulate," said Carilli. Also, the most popular theory for how big galaxies formed is that they were built up over long spans of time by multiple mergers of smaller galaxies. "That's why it's so surprising to see such a massive galaxy so early in the Universe," said Walter. Studies of J1148+5251 and other distant objects yet to be discovered will help scientists find the answers to their questions about the Universe's early stars and galaxies. The radio observations of J1148+5251 gave astronomers a look at the galaxy itself, Walter emphasized, while optical telescopes showed only light coming from the bright quasar "engine" at the galaxy's core. Walter added that more VLA observations now being planned are aimed at producing an image of the young galaxy. Discovery Image of J1148+5251 SDSS Discovery Image of J1148+5251: Quasar is Red Dot Pointed Out by Arrow CREDIT: Sloan Digital Sky Survey At Apache Point Observatory (Click on Image for Larger Version) In addition, Walter also looks forward to studying other objects deeper into the era of reionization, both with the expanded VLA (EVLA) and with the Atacama Large Millimeter Array (ALMA), a joint North America-Europe project to be built in Chile. "With the EVLA and ALMA, we will be able to study the structures and dynamics of similar systems in great detail," Walter said. J1148+5251 was discovered by the Sloan Digital Sky Survey, using a 2.5-meter optical telescope at Apache Point, NM, earlier this year. At a distance of more than 12.8 billion light-years, it is the most distant quasar yet found in the Universe. Followup observations at the W.M. Keck Observatory in Hawaii showed a clear signature of light absorption indicating that the object is seen at the end of the reionization era. This signature, found using a spectroscope to analyze light from the object, is known as the Gunn-Peterson Effect, after James Gunn and Bruce Peterson, who predicted it in 1965. The carbon monoxide gas was found using radio telescopes that detected radio waves emitted by the gas molecules. The wavelength of this radio emission was greatly increased by the Doppler Effect produced by the expansion of the Universe. For example, at the great distance of J1148+5251, waves that left the galaxy with a length of less than one millimeter were received by the VLA at a wavelength of more than six millimeters. In addition to Walter, Carilli and Lo, who used the VLA to observe J1148+5251, other team members led by Bertoldi and Cox used the Institute of Millimeter Radio Astronomy's (IRAM) Plateau de Bure radio interferometer in France. These included Roberto Neri of IRAM; Alain Omont of the Paris Institute of Astrophysics; and Karl Menten of Germany's Max Planck Instutute for Radioastronomy. Xiaohui Fan of the University of Arizona's Steward Observatory and Michael Strauss of Princeton University were the Sloan Digital Sky Survey collaborators on the Nature paper. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Communicating the Nature of Science through "The Big Bang Theory": Evidence from a Focus Group Study
ERIC Educational Resources Information Center
Li, Rashel; Orthia, Lindy A.
2016-01-01
In this paper, we discuss a little-studied means of communicating about or teaching the nature of science (NOS)--through fiction television. We report some results of focus group research which suggest that the American sitcom "The Big Bang Theory" (2007-present), whose main characters are mostly working scientists, has influenced…
The big bang as a higher-dimensional shock wave
NASA Astrophysics Data System (ADS)
Wesson, P. S.; Liu, H.; Seahra, S. S.
2000-06-01
We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.
Limiting Time Variations of Servomotor Torques Using the Modified Bang-Bang Controller
1992-06-01
LIMITATION OF ABSTRACT OP REPORT OF THIS PAGE OF ABSTRACT UNCl ID UNCIAM UNCLWSFIED UL ISNH 54-01-210-SS00 Standard Form 298 (Rev. 2-89) Precribed by ANSI...WASHINGTON, D.C. 20375 DIRECTOR US ARMY BALLISTIC RESEARCH LABORATORY ATTN: SLCBR-IB-M (DR. BRUCE BURNS ) 1 ABERDEEN PROVING GROUND, MD 21005-5066 NOTE
Control of functional differential equations to target sets in function space
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kent, G. A.
1971-01-01
Optimal control of systems governed by functional differential equations of retarded and neutral type is considered. Problems with function space initial and terminal manifolds are investigated. Existence of optimal controls, regularity, and bang-bang properties are discussed. Necessary and sufficient conditions are derived, and several solved examples which illustrate the theory are presented.
Quantum Gravity in Cyclic (ekpyrotic) and Multiple (anthropic) Universes with Strings And/or Loops
NASA Astrophysics Data System (ADS)
Chung, T. J.
2008-09-01
This paper addresses a hypothetical extension of ekpyrotic and anthropic principles, implying cyclic and multiple universes, respectively. Under these hypotheses, from time immemorial (t = -∞), a universe undergoes a big bang from a singularity, initially expanding and eventually contracting to another singularity (big crunch). This is to prepare for the next big bang, repeating these cycles toward eternity (t = +∞), every 30 billion years apart. Infinity in time backward and forward (t = ±∞) is paralleled with infinity in space (Xi = ±∞), allowing multiple universes to prevail, each undergoing big bangs and big crunches similarly as our own universe. It is postulated that either string theory and /or loop quantum gravity might be able to substantiate these hypotheses.
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.
Lake, John R; Heyde, Keith C; Ruder, Warren C
2017-01-01
Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.
The cosmic web and microwave background fossilize the first turbulent combustion
NASA Astrophysics Data System (ADS)
Gibson, Carl H.
2015-09-01
The weblike structure of the cosmic microwave background CMB temperature fluctuations are interpreted as fossils of the first turbulent combustion that drives the big bang1,2,3. Modern turbulence theory3 requires that inertial vortex forces cause turbulence to always cascade from small scales to large, contrary to the standard turbulence model where the cascade is reversed. Assuming that the universe begins at Planck length 10-35 m and temperature 1032 K, the mechanism of the big bang is a powerful turbulent combustion instability, where turbulence forms at the Kolmogorov scale and mass-energy is extracted by < -10113 Pa negative stresses from big bang turbulence working against gravity. Prograde accretion of a Planck antiparticle on a spinning particle-antiparticle pair releases 42% of a particle rest mass from the Kerr metric, producing a spinning gas of turbulent Planck particles that cascades to larger scales at smaller temperatures (10-27 m, 1027 K) retaining the Planck density 1097 kg m-3, where quarks form and gluon viscosity fossilizes the turbulence. Viscous stress powers inflation to ~ 10 m and ~ 10100 kg. The CMB shows signatures of both plasma and big bang turbulence. Direct numerical simulations support the new turbulence theory6.
Mitigation of epidemics in contact networks through optimal contact adaptation *
Youssef, Mina; Scoglio, Caterina
2013-01-01
This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights. PMID:23906209
Mitigation of epidemics in contact networks through optimal contact adaptation.
Youssef, Mina; Scoglio, Caterina
2013-08-01
This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.
Low-cost feedback-controlled syringe pressure pumps for microfluidics applications
Lake, John R.; Heyde, Keith C.
2017-01-01
Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips. PMID:28369134
Viral ancestors of antiviral systems.
Villarreal, Luis P
2011-10-01
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Alien Asteroid Belt Compared to our Own
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.WMAP - A Portrait of the Early Universe
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2008-01-01
A host of astrophysical observations suggest that early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the 'Big Bang' and the signature of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, and geometry of the early Universe can be derived. A brief history of the evolution of the microwave radiometer systems and map making approaches used in advancing these aspects our understanding of cosmological will be reviewed. In addition, an overview of the results from NASA's Wilkinson Microwave Anisotropy (WMAP) will be presented.
Material content of the universe - Introductory survey
NASA Astrophysics Data System (ADS)
Tayler, R. J.
1986-12-01
Matter in the universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.
Serendipity: Accidental Discoveries in Science
NASA Astrophysics Data System (ADS)
Roberts, Royston M.
1989-06-01
Many of the things discovered by accident are important in our everyday lives: Teflon, Velcro, nylon, x-rays, penicillin, safety glass, sugar substitutes, and polyethylene and other plastics. And we owe a debt to accident for some of our deepest scientific knowledge, including Newton's theory of gravitation, the Big Bang theory of Creation, and the discovery of DNA. Even the Rosetta Stone, the Dead Sea Scrolls, and the ruins of Pompeii came to light through chance. This book tells the fascinating stories of these and other discoveries and reveals how the inquisitive human mind turns accident into discovery. Written for the layman, yet scientifically accurate, this illuminating collection of anecdotes portrays invention and discovery as quintessentially human acts, due in part to curiosity, perserverance, and luck.
Effects of anisotropy and spatial curvature on the pre-big-bang scenario
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Lidsey, James E.; Tavakol, Reza
1998-08-01
A class of exact, anisotropic cosmological solutions to the vacuum Brans-Dicke theory of gravity is considered within the context of the pre-big-bang scenario. Included in this class are the Bianchi type III, V and VIh models and the spatially isotropic, negatively curved Friedmann-Robertson-Walker universe. The effects of large anisotropy and spatial curvature are determined. In contrast with a negatively curved Friedmann-Robertson-Walker model, there exist regions of the parameter space in which the combined effects of curvature and anisotropy prevent the occurrence of inflation. When inflation is possible, the necessary and sufficient conditions for successful pre-big-bang inflation are more stringent than in the isotropic models. The initial state for these models is established and corresponds in general to a gravitational plane wave.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1998-01-01
An apparatus is disclosed for reading and/or writing information or to from an optical recording medium having a plurality of information storage layers. The apparatus includes a dynamic holographic optical element configured to focus light on the optical recording medium. a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element focusses light on a first one of the plurality of information storage layers when driven by the first drive signal on a second one of the plurality of information storage layers when driven by the second drive signal. An optical switch is also disclosed for connecting at least one light source in a source array to at least one light receiver in a receiver array. The switch includes a dynamic holographic optical element configured to receive light from the source array and to transmit light to the receiver array, a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element connects a first light source in the source array to a first light receiver in the receiver array when driven by the first drive signal and the holographic optical element connects the first light source with the first light receiver and a second light receiver when driven by the second drive signal.
The resolved star formation history of M51a through successive Bayesian marginalization
NASA Astrophysics Data System (ADS)
Martínez-García, Eric E.; Bruzual, Gustavo; Magris C., Gladis; González-Lópezlira, Rosa A.
2018-02-01
We have obtained the time and space-resolved star formation history (SFH) of M51a (NGC 5194) by fitting Galaxy Evolution Explorer (GALEX), Sloan Digital Sky Survey and near-infrared pixel-by-pixel photometry to a comprehensive library of stellar population synthesis models drawn from the Synthetic Spectral Atlas of Galaxies (SSAG). We fit for each space-resolved element (pixel) an independent model where the SFH is averaged in 137 age bins, each one 100 Myr wide. We used the Bayesian Successive Priors (BSP) algorithm to mitigate the bias in the present-day spatial mass distribution. We test BSP with different prior probability distribution functions (PDFs); this exercise suggests that the best prior PDF is the one concordant with the spatial distribution of the stellar mass as inferred from the near-infrared images. We also demonstrate that varying the implicit prior PDF of the SFH in SSAG does not affect the results. By summing the contributions to the global star formation rate of each pixel, at each age bin, we have assembled the resolved SFH of the whole galaxy. According to these results, the star formation rate of M51a was exponentially increasing for the first 10 Gyr after the big bang, and then turned into an exponentially decreasing function until the present day. Superimposed, we find a main burst of star formation at t ≈ 11.9 Gyr after the big bang.
Before the Big Bang? A Novel Resolution of a Profound Cosmological Puzzle
Penrose, Roger
2018-01-24
The second law of thermodynamics says, in effect, that things get more random as time progresses. Thus, we can deduce that the beginning of the universe - the Big Bang - must have been an extraordinarily precisely organized state. What was the nature of this state? How can such a special state have come about? In Penrose's talk, a novel explanation is suggested.
Gamma-rays and the case for baryon symmetric big-bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1977-01-01
The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1-200 MeV range, and a mechanism for galaxy formation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.
Gokay, Pervin; Tastan, Sevinc; Orhan, Mehmet Emin
2016-05-01
This study aimed to compare the efficiency of the STOP-BANG and Berlin Obstructive Sleep Apnoea Syndrome questionnaires for evaluating potential respiratory complications during the perioperative period. Questionnaires that are used to determine obstructive sleep apnoea risk are not widely used for surgical patients. Among the questionnaires that are commonly used for obstructive sleep apnoea screening, it remains unclear whether the STOP-BANG or Berlin Obstructive Sleep Apnoea Syndrome questionnaire is more effective in terms of ease of use, usage period and diagnosis of surgical patients with obstructive sleep apnoea risk. This study was designed as a descriptive and prospective study. The study included 126 patients over 18 years of age who were American Society of Anesthesiologists classification class I-II and underwent laparoscopic cholecystectomy. To determine the potential obstructive sleep apnoea syndrome risk, the STOP-BANG and Berlin questionnaires were administered. Respiratory complications were then observed during the perioperative period. During intubation and extubation, we observed statistically significant differences in difficult intubation, difficult facemask ventilation and desaturation frequency between the high- and low-risk groups for obstructive sleep apnoea syndrome, as determined by the STOP-BANG questionnaire. During extubation, statistically significant differences in coughing, breath-holding and desaturation frequency were observed between the high-risk and low-risk groups, according to the Berlin questionnaire. In the post-anaesthesia care unit, both questionnaires found statistically significant differences between the low- and high-risk groups. Obstructive sleep apnoea syndrome screening questionnaires administered during the preoperative period are useful for predicting perioperative respiratory complications. It may be most useful to administer the STOP-BANG questionnaire as the initial evaluation. Questionnaires may be used to determine the risk of obstructive sleep apnoea syndrome, which could impact the anaesthetisation of surgical patients. Questionnaires for determining the risk of obstructive sleep apnoea syndrome should be used regularly for surgical patients, and these questionnaires should be used to improve clinical protocols for anaesthesia and postanaesthesia care. © 2016 John Wiley & Sons Ltd.
Photovoltaic device with increased light absorption and method for its manufacture
Glatfelter, Troy; Vogeli, Craig; Call, Jon; Hammond, Ginger
1993-07-20
A photovoltaic cell having a light-directing optical element integrally formed in an encapsulant layer thereof. The optical element redirects light to increase the internal absorption of light incident on the photovoltaic device.
HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER
NASA Technical Reports Server (NTRS)
2002-01-01
Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to create the above images. Spectral data were also taken. Credit for Hubble telescope photos: NASA and H. Richer (University of British Columbia) Credit for ground-based photo: NOAO/AURA/NSF
NASA Astrophysics Data System (ADS)
Wang, L.; Liu, H.
2017-12-01
Alpine grasslands (alpine steppe and alpine meadow) are the main grassland types in China. Based on eddy covariance flux data from July 15, 2014, to December 31, 2015, environmental effects on water vapour and carbon dioxide exchange were analyzed over a semiarid alpine steppe (Bange, Tibet) and a humid alpine meadow (Lijiang, Yunnan) on the Tibetan Plateau. During the wet season, the evaporative fraction (EF) at Bange was strongly and linearly correlated with the soil water content (SWC) because of its sparse green grass cover. In contrast, the correlation between the EF and the SWC at Lijiang was very low because the atmosphere was close to saturation and the EF was relatively constant. Evapotranspiration (ET) at Lijiang could be predicted well by net radiation and air temperature. In the dry season, the EF at both sites decreased with the SWC. The net ecosystem exchange (NEE) at Bange was largely depressed at noon, while this phenomenon did not occur at Lijiang due to good soil water conditions. The saturated NEE at Bange was 24% of that at Lijiang. The temperature sensitivity coefficient of ecosystem respiration at Bange (1.7) was also much lower than that at Lijiang (3.4). Moreover, the annual total NEE at Lijiang from 2012 to 2015 generally decreased with the mean annual air temperature (MAT). An exception occurred in 2014, which had the highest MAT, because the GPP increased with the MAT, but became saturated due to the limit in photosynthetic capacity. The annual total GPP at Lijiang were substantially affected by the seasonal pattern of air temperature, especially in spring and autumn. This is consistent with results obtained using the homogeneity-of-slopes model.
IYL Blog: Astronomers travel in time and space with light
NASA Technical Reports Server (NTRS)
Mather, John C.
2015-01-01
As an astronomer, I use light to travel through the universe, and to look back in time to when the universe was young. So do you! All of us see things as they were when the light was emitted, not as they are now. The farthest thing you can easily see without a telescope is the Andromeda Nebula, which is a galaxy like the Milky Way, about 2.5 million light years away. You see it as it was 2.5 million years ago, and we really don't know what it looks like today; the disk will have rotated a bit, new stars will have been born, there could have been all kinds of exploding stars, and the black hole in the middle could be lighting up. People may be skeptical of the Big Bang theory, even though we have a TV show named for it, but we (I should say Penzias and Wilson) measured its heat radiation 51 years ago at Bell Telephone Labs in New Jersey. Their discovery marks the beginning of the era of cosmology as a measurement science rather than speculation. Penzias and Wilson received the Nobel Prize in 1978 for their finding, which had been predicted in 1948 by Alpher and Herman. By the way, heat radiation is just another form of light - we call it radiation because we can't see it, but it's exactly the same phenomenon of electromagnetic waves, and the only difference is the wavelength. In the old days of analog television, if you tuned your TV in between channels, about 1% of the snow that you could see came from the Big Bang. So when we look at the heat radiation of the early universe, we really are gazing right at what seems to us a cosmic fireball, which surrounds us completely. It's a bit of an illusion; if you can imagine what astronomers in other galaxies would see, they would also feel surrounded by the fireball, and they would also think they were in the middle. So from a mathematical version of imagination, we conclude that there is no observable center and no edge of our universe, and that the heat of the fireball fills the entire universe uniformly. Astronomers are also using light to find out whether we are alone in the universe. The Kepler observatory showed that thousands of stars blink a little when their orbiting planets pass between us and them, and other observatories use light to measure the wobble of stars as their planets pull on them. Eventually, we will find out whether planets like Earth have atmospheres like Earth's too - with water, carbon dioxide, oxygen, methane, and other gases that would be evidence of photosynthetic life. I think in a few decades we will have evidence that some planets do have life, and it will be done using light for remote chemical analysis. Also, astronomers at the SETI project are using light (long wavelength light we can pick up with radio telescopes) to look for signals from intelligent civilizations. That's a harder project because we don't know what to look for. But if we wanted to send signals all the way across the Milky Way, we could do it with laser beams, and if somebody over there knew what to look for, he or she could decode the message. On with the search! Dr. John C. Mather is a Senior Astrophysicist and is the Senior Project Scientist for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, MD. His research centers on infrared astronomy and cosmology. With the Cosmic Background Explorer (COBE) team, he showed that the cosmic microwave background radiation has a blackbody spectrum within 50 parts per million, confirming the expanding universe model (aka the Big Bang Theory) to extraordinary accuracy, and initiating the study of cosmology as a precision science. The COBE team also made the first map of the hot and cold spots in the background radiation. The COBE maps have been confirmed and improved by two succeeding space missions, the Wilkinson Microwave Anisotropy Probe (WMAP, built by GSFC with Princeton University), and the Planck mission built by ESA. Based on these maps, astronomers have now developed a "standard model" of cosmology and have built detailed numerical simulations that begin to match Hubble observations, and require the existence of both "dark matter" and "dark energy", neither of which has been detected or deduced in laboratory experiments. Dr. Mather is the recipient of numerous awards, including the Nobel Prize in Physics (2006) with George Smoot, for the COBE work, and the NASA Distinguished Service Medal (2007). He is a member of many professional societies including the National Academy of Sciences and the American Academy of Arts and Sciences. Dr. Mather is now working with teams and committees to develop plans for a future great telescope capable of observing signs of life on planets orbiting other stars.
Multiverse Space-Antispace Dual Calabi-Yau `Exciplex-Zitterbewegung' Particle Creation
NASA Astrophysics Data System (ADS)
Amoroso, Richard L.
Modeling the `creation/emergence' of matter from spacetime is as old as modern cosmology itself and not without controversy within each model such as Static, Steady-state, Big Bang or Multiverse Continuous-State. In this paper we present only a brief primitive introduction to a new form of `Exciplex-Zitterbewegung' dual space-antispace vacuum Particle Creation applicable especially to Big Bang alternatives which are well-known but ignored; Hubble discovered `Redshift' not a Doppler expansion of the universe which remains the currently popular interpretation. Holographic Anthropic Multiverse cosmology provides viable alternatives to all seemingly sacrosanct pillars of the Big Bang. A model for Multiverse Space-Antispace Dual Calabi-Yau `Exciplex-Zitterbewegung' particle creation has only become possible by incorporating the additional degrees of freedom provided by the capacity complex dimensional extended Yang-Mills Kaluza-Klein correspondence provides.
Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
A background-independent quantization of the Universe near its Big Bang singularity is considered using a drastically simplified toy model. Several conceptual issues are addressed. (1) The observable spatial-geometry characteristics of our empty-space expanding Universe is sampled by the time-dependent operator $Q=Q(t)$ of the distance between two space-attached observers (``Alice and Bob''). (2) For any pre-selected guess of the simple, non-covariant time-dependent observable $Q(t)$ one of the Kato's exceptional points (viz., $t=\\tau_{(EP)}$) is postulated {\\em real-valued}. This enables us to treat it as the time of Big Bang. (3) During our ``Eon'' (i.e., at all $t>\\tau_{(EP)}$) the observability status of operator $Q(t)$ is mathematically guaranteed by its self-adjoint nature with respect to an {\\em ad hoc} Hilbert-space metric $\\Theta(t) \
Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J
2012-10-01
The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.
Elementary Cosmology: From Aristotle's Universe to the Big Bang and Beyond
NASA Astrophysics Data System (ADS)
Kolata, James J.
2015-11-01
Cosmology is the study of the origin, size, and evolution of the entire universe. Every culture has developed a cosmology, whether it be based on religious, philosophical, or scientific principles. In this book, the evolution of the scientific understanding of the Universe in Western tradition is traced from the early Greek philosophers to the most modern 21st century view. After a brief introduction to the concept of the scientific method, the first part of the book describes the way in which detailed observations of the Universe, first with the naked eye and later with increasingly complex modern instruments, ultimately led to the development of the ``Big Bang'' theory. The second part of the book traces the evolution of the Big Bang including the very recent observation that the expansion of the Universe is itself accelerating with time.
Calixarenes and cations: a time-lapse photography of the big-bang.
Casnati, Alessandro
2013-08-07
The outstanding cation complexation properties emerging from the pioneering studies on calixarene ligands during a five-year period in the early 1980s triggered a big-bang burst of publications on such macrocycles that is still lasting at a distance of more than 30 years. A time-lapse photography of this timeframe is proposed which allows the readers to pinpoint the contributions of the different research groups.
The Big Bang of tissue growth: Apical cell constriction turns into tissue expansion.
Janody, Florence
2018-03-05
How tissue growth is regulated during development and cancer is a fundamental question in biology. In this issue, Tsoumpekos et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705104) and Forest et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705107) identify Big bang (Bbg) as an important growth regulator of the Drosophila melanogaster wing imaginal disc. © 2018 Janody.
Constraints on massive gravity theory from big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambiase, G., E-mail: lambiase@sa.infn.it
The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.
More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?
Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser
2018-01-01
The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.
More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser
2018-04-01
The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.
Dixon, Samuel E; Haas, Shelia A; Klopp, Audrey; Carlson, Judy
2016-10-01
The lack of a preoperative screening tool to detect obstructive sleep apnea (OSA) may lead to an increase in postoperative complications. The aim of the study was to implement a prescreening tool to identify diagnosed or undiagnosed OSA before a surgical procedure. The study was conducted in the surgical admission center and postanesthesia care unit at a military treatment facility in Hawaii. Participants of the study included military personnel, military family members, veterans, and veteran beneficiaries. The STOP-BANG (snore/tired/obstruction/pressure-body mass index/age/neck/gender) tool was used between April and June 2013 to identify and stratify 1,625 patients into low-risk, intermediate-risk, high-risk, and known OSA categories. The STOP-BANG tool confirmed the diagnosed OSA rate to be 13.48%, and increased at-risk OSA detection by 24.69%. Hawaiians/Pacific Islanders were more frequently found to be at risk with known OSA, likely to have complications, and be transferred to PACU 23-hour extended stay compared to other races and intermediate-risk and high-risk categories. The STOP-BANG tool identified and stratified surgical patients at risk for OSA and standardized OSA assessments. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
Optimal control solutions to sodic soil reclamation
NASA Astrophysics Data System (ADS)
Mau, Yair; Porporato, Amilcare
2016-05-01
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.
Apparatus, system, and method for laser-induced breakdown spectroscopy
Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R
2014-11-18
In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.
Front lighted optical tooling method and apparatus
Stone, W.J.
1983-06-30
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.
Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law
NASA Technical Reports Server (NTRS)
Xiong, Yong-Liang; Hewins, Roger H.
2003-01-01
Knowledge about the evaporation loss of light elements is important to our understanding of chondrule formation processes. The evaporative loss of light elements (such as B and Li) as a function of cooling rate is of special interest because recent investigations of the distribution of Li, Be and B in meteoritic chondrules have revealed that Li varies by 25 times, and B and Be varies by about 10 times. Therefore, if we can extrapolate and interpolate with confidence the evaporation loss of B and Li (and other light elements such as K, Na) at a wide range of cooling rates of interest based upon limited experimental data, we would be able to assess the full range of scenarios relating to chondrule formation processes. Here, we propose that evaporation loss of light elements as a function of cooling rate should obey the logarithmic law.
Multichannel optical sensing device
Selkowitz, S.E.
1985-08-16
A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Multichannel optical sensing device
Selkowitz, Stephen E.
1990-01-01
A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Hendrix, James Lee
2001-05-08
A Porro prism and a light polarizer are combined in a single optical element termed a Hendrix Prism. The design provides retro-reflection of incoming light of a predetermined polarization in a direction anti-parallel to the direction of light incidence, while reflecting undesired light, i.e., that having a polarization orthogonal to the predetermined polarization, from the surface of the light polarizer. The undesired light is reflected in a direction that does not interfere with the intended operation of the device in which the Hendrix Prism is installed yet provides feedback to the system in which it is used.
Bang-bang control of a qubit coupled to a quantum critical spin bath
NASA Astrophysics Data System (ADS)
Rossini, D.; Facchi, P.; Fazio, R.; Florio, G.; Lidar, D. A.; Pascazio, S.; Plastina, F.; Zanardi, P.
2008-05-01
We analytically and numerically study the effects of pulsed control on the decoherence of a qubit coupled to a quantum spin bath. When the environment is critical, decoherence is faster and we show that the control is relatively more effective. Two coupling models are investigated, namely, a qubit coupled to a bath via a single link and a spin-star model, yielding results that are similar and consistent.
2014-12-12
Role of the global Special Operation Forces (SOF) network in a resource constrained environment; that “needs to be there before the bang —in fact, to...prevent the bang !” USSOF needs to “be out there before the crisis.”29 This demonstrates that all USSOF and conventional forces, must persistently...52 Although this static is weighed favorably in line with the ability to simulate this
2010-06-24
control Defensive Test Chamber • Certified for Chem-Bio simulants • Man-in-simulant (MIST) testing Bang Box • Explosive material synthesis and testing...Explosive material synthesis and testing Bang Box –Peroxide Explosives Properties – HMTD, TATP, DADP –Peroxide Explosives as Initiators –TATP... Synthesis –HMTD Synthesis –RDX Synthesis –ANFO Mixture Mustang VILLAGE Approved for public release; distribution is unlimited. • Hotel, Post Office
Neutrino mixing and big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Bell, Nicole
2003-04-01
We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.
NASA Astrophysics Data System (ADS)
Yasa, I. B. A.; Parnata, I. K.; Susilawati, N. L. N. A. S.
2018-01-01
This study aims to apply analytical review model to analyze the influence of GCG, accounting conservatism, financial distress models and company size on good and poor financial performance of LPD in Bangli Regency. Ordinal regression analysis is used to perform analytical review, so that obtained the influence and relationship between variables to be considered further audit. Respondents in this study were LPDs in Bangli Regency, which amounted to 159 LPDs of that number 100 LPDs were determined as randomly selected samples. The test results found GCG and company size have a significant effect on both the good and poor financial performance, while the conservatism and financial distress model has no significant effect. The influence of the four variables on the overall financial performance of 58.8%, while the remaining 41.2% influenced by other variables. Size, FDM and accounting conservatism are variables, which are further recommended to be audited.
Introduction to Big Bang nucleosynthesis - Open and closed models, anisotropies
NASA Astrophysics Data System (ADS)
Tayler, R. J.
1982-10-01
A variety of observations suggest that the universe had a hot dense origin and that the pregalactic composition of the universe was determined by nuclear reactions that occurred in the first few minutes. There is no unique hot Big Bang theory, but the simplest version produces a primeval chemical composition that is in good qualitative agreement with the abundances deduced from observation. Whether or not any Big Bang theory will provide quantitative agreement with observations depends on a variety of factors in elementary particle physics (number and masses of stable or long-lived particles, half-life of neutron, structure of grand unified theories) and from observational astronomy (present mean baryon density of the universe, the Hubble constant and deceleration parameter). The influence of these factors on the abundances is discussed, as is the effect of departures from homogeneity and isotropy in the early universe.
Marques, J M C; Pais, A A C C; Abreu, P E
2012-02-05
The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.
Nuclear and particle physics in the early universe
NASA Technical Reports Server (NTRS)
Schramm, D. N.
1981-01-01
Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.
Cosmology in the laboratory: An analogy between hyperbolic metamaterials and the Milne universe
NASA Astrophysics Data System (ADS)
Figueiredo, David; Moraes, Fernando; Fumeron, Sébastien; Berche, Bertrand
2017-11-01
This article shows that the compactified Milne universe geometry, a toy model for the big crunch/big bang transition, can be realized in hyperbolic metamaterials, a new class of nanoengineered systems which have recently found its way as an experimental playground for cosmological ideas. On one side, Klein-Gordon particles, as well as tachyons, are used as probes of the Milne geometry. On the other side, the propagation of light in two versions of a liquid crystal-based metamaterial provides the analogy. It is shown that ray and wave optics in the metamaterial mimic, respectively, the classical trajectories and wave function propagation, of the Milne probes, leading to the exciting perspective of realizing experimental tests of particle tunneling through the cosmic singularity, for instance.
Cosmological constraints on neutrinos with Planck data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spinelli, M.
2015-07-15
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the valuemore » of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.« less
NASA Technical Reports Server (NTRS)
Folkner, W. M.; Bender, P. L.; Stebbins, R. T.
1998-01-01
This document presents the results of a design feasibility study for LISA (Laser Interferometer Space Antenna). The goal of LISA is to detect and study low-frequency astrophysical gravitational radiation from strongly relativistic regions. Astrophysical sources potentially visible to LISA include extra-galactic massive black hole binaries at cosmological distances, binary systems composed of a compact star and a massive black hole, galactic neutron star-black hole binaries, and background radiation from the Big Bang. The LISA mission will comprise three spacecraft located five million kilometers apart forming an equilateral triangle in an Earth-trailing orbit. Fluctuations in separation between shielded test masses located within each spacecraft will be determined by optical interferometry which determines the phase shift of laser light transmitted between the test masses.
Cosmological constraints on neutrinos with Planck data
NASA Astrophysics Data System (ADS)
Spinelli, M.
2015-07-01
Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.
Observation of an antimatter hypernucleus.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barnby, L S; Baumgart, S; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bonner, B E; Bouchet, J; Braidot, E; Brandin, A V; Bridgeman, A; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Cai, X Z; Caines, H; Calderon, M; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, P; Clarke, R F; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; DePhillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Dutta Mazumdar, M R; Efimov, L G; Elhalhuli, E; Elnimr, M; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Evdokimov, O; Fachini, P; Fatemi, R; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heinz, M; Heppelmann, S; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, B; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kauder, K; Keane, D; Kechechyan, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Konzer, J; Kopytine, M; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Krueger, K; Krus, M; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; Levine, M J; Li, C; Li, L; Li, N; Li, W; Li, X; Li, Y; Li, Z; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Luo, X; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mal, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Masui, H; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mitrovski, M K; Mohanty, B; Mondal, M M; Morozov, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Ploskon, M A; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sangaline, E; Schambach, J; Scharenberg, R P; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Selyuzhenkov, I; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Staszak, D; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wingfield, E; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, J; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, J; Zhong, C; Zhou, J; Zhou, W; Zhu, X; Zhu, Y H; Zoulkarneev, R; Zoulkarneeva, Y
2010-04-02
Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons--comprising an antiproton, an antineutron, and an antilambda hyperon--produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons ((Lambda)(3)-H) and 157 +/- 30 hypertritons (Lambda3H). The measured yields of Lambda3H ((Lambda)(3)-H) and 3He (3He) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.
[The CERN and the megascience].
Aguilar Peris, José
2006-01-01
In this work we analyse the biggest particle accelerator in the world: the LHC (Large Hadron Collider). The ring shaped tunnel is 27 km long and it is buried over 110 meters underground, straddling the border betwen France and Switzerland at the CERN laboratory near Geneva. Its mission is to recreate the conditions that existed shortly after the Big-Bang and to look for the hypothesised Higgs particle. The LHC will accelerate protons near the speed of the light and collide them head on at an energy of to 14 TeV (1 TeV = 10(12) eV). Keeping such high energy in the proton beams requires enormous magnetic fields which are generated by superconducting electromagnets chilled to less than two degrees above absolute zero. It is expected that LHC will be inaugurated in summer 2007.
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Holographic Optics for Missile Guidance Systems.
1978-12-20
according to SnelPs Law when the ray encounters a change in index of refraction (i.e., a change in the speed of light ). Conventional lenses and prisms are...AA ’ to change the magnification of the system , or individual light sources may be used to address each lens group . Each lens group consists of four...individual lens elements. Element I collimates the light from a source H, 17—mm away . Element II uses the collimated light beam , 8 —. now propagat
A method for improving the light intensity distribution in dental light-curing units.
Arikawa, Hiroyuki; Takahashi, Hideo; Minesaki, Yoshito; Muraguchi, Kouichi; Matsuyama, Takashi; Kanie, Takahito; Ban, Seiji
2011-01-01
A method for improving the uniformity of the radiation light from dental light-curing units (LCUs), and the effect on the polymerization of light-activated composite resin are investigated. Quartz-tungsten halogen, plasma-arc, and light-emitting diode LCUs were used, and additional optical elements such as a mixing tube and diffusing screen were employed to reduce the inhomogeneity of the radiation light. The distribution of the light intensity from the light guide tip was measured across the guide tip, as well as the distribution of the surface hardness of the light-activated resin emitted with the LCUs. Although the additional optical elements caused 13.2-25.9% attenuation of the light intensity, the uniformity of the light intensity of the LCUs was significantly improved in the modified LCUs, and the uniformity of the surface hardness of the resin was also improved. Our results indicate that the addition of optical elements to the LCU may be a simple and effective method for reducing inhomogeneity in radiation light from the LCUs.
The Diffuse Light of the Universe
NASA Astrophysics Data System (ADS)
Bonnet-Bidaud, Jean-Marc
2017-06-01
In 1965, the discovery of a new type of uniform radiation, located between radiowaves and infrared light, was accidental. Known today as Cosmic Microwave background (CMB), this diffuse radiation is commonly interpreted as a fossil light released in an early hot and dense universe and constitutes today the main 'pilar' of the big bang cosmology. Considerable efforts have been devoted to derive fundamental cosmological parameters from the characteristics of this radiation that led to a surprising universe that is shaped by at least three major unknown components: inflation, dark matter and dark energy. This is an important weakness of the present consensus cosmological model that justifies raising several questions on the CMB interpretation. Can we consider its cosmological nature as undisputable? Do other possible interpretations exist in the context of other cosmological theories or simply as a result of other physical mechanisms that could account for it? In an effort to questioning the validity of scientific hypotheses and the under-determination of theories compared to observations, we examine here the difficulties that still exist on the interpretation of this diffuse radiation and explore other proposed tracks to explain its origin. We discuss previous historical concepts of diffuse radiation before and after the CMB discovery and underline the limit of our present understanding.
Precision measurement of transition matrix elements via light shift cancellation.
Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S
2012-12-14
We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.
Robust fuel- and time-optimal control of uncertain flexible space structures
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi; Sunkel, John; Cox, Ken
1993-01-01
The problem of computing open-loop, fuel- and time-optimal control inputs for flexible space structures in the face of modeling uncertainty is investigated. Robustified, fuel- and time-optimal pulse sequences are obtained by solving a constrained optimization problem subject to robustness constraints. It is shown that 'bang-off-bang' pulse sequences with a finite number of switchings provide a practical tradeoff among the maneuvering time, fuel consumption, and performance robustness of uncertain flexible space structures.
Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features
2013-07-19
PERSON 19b. TELEPHONE NUMBER Francis Doyle Kristian Kempe, Kato L. Killops, Justin E. Poelma, Hyunjung Jung, Joona Bang, Richard Hoogenboom , Helen...Hyunjung Jung,# Joona Bang,# Richard Hoogenboom ,▽ Helen Tran,○ Craig J. Hawker,*,∥,¶ Ulrich S. Schubert,*,†,‡,◆ and Luis M. Campos*,○ †Laboratory of Organic...Macromolecules 2011, 44, 5825. (30) Wiesbrock, F.; Hoogenboom , R.; Leenen, M. A. M.; Meier, M. A. R.; Schubert, U. S. Macromolecules 2005, 38, 5025
NASA Astrophysics Data System (ADS)
Ambrosini, C.
2011-06-01
Big Bang Circus is an opera I composed in 2001 and which was premiered at the Venice Biennale Contemporary Music Festival in 2002. A chamber group, four singers and a ringmaster stage the story of the Universe confronting and interweaving two threads: how early man imagined it and how scientists described it. Surprisingly enough fancy, myths and scientific explanations often end up using the same images, metaphors and sometimes even words: a strong tension, a drumskin starting to vibrate, a shout…
Supply Chain Management Model for Modular or Flexible Optimally Manned Ships
2014-03-01
Navy’s New Class of Warships: Big Bucks, Little Bang .” Battleland. Accessed October 3, 2013. http://nation.time.com/2012/10/05/the-navys-new-class-of...warships- big -bucks- little- bang /. Strauch, F. C. n.d. ARROWS Model Evaluation. Project Number N9324-B11-4135, Mechanicsburg, PA: Navy Fleet Material...existing models to determine which one could be suitable for altering to meet the stakeholders’ requirements. Modeling and simulation was used to
The role of antimatter in big-bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1973-01-01
Big bang cosmology is discussed with reference to both its strong points and gaps. Characteristics of a spectral component of red shifted gamma-radiation from cosmological matter-antimatter annihilation show a flattening of the gamma-ray spectrum in the vicinity of 1 MeV, an increased gamma-ray flux between 1 and 100 MeV, and a very steep spectrum between 50 and 135 MeV. This data fits well with the theoretical predictions in energy and intensity.
Receptivity to malaria in the China-Myanmar border in Yingjiang County, Yunnan Province, China.
Chen, Tianmu; Zhang, Shaosen; Zhou, Shui-Sen; Wang, Xuezhong; Luo, Chunhai; Zeng, Xucan; Guo, Xiangrui; Lin, Zurui; Tu, Hong; Sun, Xiaodong; Zhou, Hongning
2017-11-21
The re-establishment of malaria has become an important public health issue in and out of China, and receptivity to this disease is key to its re-emergence. Yingjiang is one of the few counties with locally acquired malaria cases in the China-Myanmar border in China. This study aimed to understand receptivity to malaria in Yingjiang County, China, from June to October 2016. Light-traps were employed to capture the mosquitoes in 17 villages in eight towns which were categorized into four elevation levels: level 1, 0-599 m; level 2, 600-1199 m; level 3, 1200-1799 m; and level 4, > 1800 m. Species richness, diversity, dominance and evenness were used to picture the community structure. Similarity in species composition was compared between different elevation levels. Data of seasonal abundance of mosquitoes, human biting rate, density of light-trap-captured adult mosquitoes and larvae, parous rate, and height distribution (density) of Anopheles minimus and Anopheles sinensis were collected in two towns (Na Bang and Ping Yuan) each month from June to October, 2016. Over the study period, 10,053 Anopheles mosquitoes were collected from the eight towns, and 15 Anopheles species were identified, the most-common of which were An. sinensis (75.4%), Anopheles kunmingensis (15.6%), and An. minimus (3.5%). Anopheles minimus was the major malaria vector in low-elevation areas (< 600 m, i.e., Na Bang town), and An. sinensis in medium-elevation areas (600-1200 m, i.e., Ping Yuan town). In Na Bang, the peak human-biting rate of An. minimus at the inner and outer sites of the village occurred in June and August 2016, with 5/bait/night and 15/bait/night, respectively. In Ping Yuan, the peak human-biting rate of An. sinensis was in August, with 9/bait/night at the inner site and 21/bait/night at the outer site. The two towns exhibited seasonal abundance with high density of the two adult vectors: The peak density of An. minimus was in June and that of An. sinensis was in August. Meanwhile, the peak larval density of An. minimus was in July, but that of An. sinensis decreased during the investigation season; the slightly acidic water suited the growth of these vectors. The parous rates of An. sinensis and An. minimus were 90.46 and 93.33%, respectively. The Anopheles community was spread across different elevation levels. Its structure was complex and stable during the entire epidemic season in low-elevation areas at the border. The high human-biting rates, adult and larval densities, and parous rates of the two Anopheles vectors reveal an exceedingly high receptivity to malaria in the China-Myanmar border in Yingjiang County.
The Big Bang, Genesis, and Knocking on Heaven's Door
NASA Astrophysics Data System (ADS)
Gentry, Robert
2012-03-01
Michael Shermer recently upped the ante in the big bang-Genesis controversy by citing Lisa Randall's provocative claim (Science 334, 762 (2011)) that ``it is inconceivable that God could continue to intervene without introducing a material trace of his actions.'' So does Randall's and Shermer's agreement that no such evidence exists disprove God's existence? Not in my view because my 1970s Science, Nature and ARNS publications, and my article in the 1982 AAAS Western Division's Symposium Proceedings, Evolution Confronts Creation, all contain validation of God's existence via discovery of His Fingerprints of Creation and falsification of the big bang and geological evolution. These results came to wide public/scientific attention in my testimony at the 1981 Arkansas creation/evolution trial. There ACLU witness G Brent Dalrymple from the USGS -- and 2005 Medal of Science recipient from President Bush -- admitted I had discovered a tiny mystery (primordial polonium radiohalos) in granite rocks that indicated their almost instant creation. As a follow-up in 1992 and 1995 he sent out SOS letters to the entire AGU membership that the polonium halo evidence for fiat creation still existed and that someone needed to urgently find a naturalistic explanation for them. Is the physics community guilty of a Watergate-type cover-up of this discovery of God's existence and falsification of the big bang? For the answer see www.halos.tv.
Dynamics and control of twisting bi-stable structures
NASA Astrophysics Data System (ADS)
Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.
2018-02-01
Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states of the bi-stable twisting I-beam structures. The obtained optimal piezoelectric actuator positioning is not necessarily intuitive and when used with the proposed dynamic actuation strategy serve as a blueprint for the actuation of such multi-stable compliant structures to produce fast and large deflections with highly embeddable actuators. This class of structures has potential applications in aerospace systems and soft/compliant robotics.
New View of Distant Galaxy Reveals Furious Star Formation
NASA Astrophysics Data System (ADS)
2007-12-01
A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the star formation at those times. "This means that future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) can reveal many more such galaxies and give us a much more complete picture of star formation in the early Universe," he added. Lennox Cowie of the University of Hawaii said, "We found out in the last decade that most of the recent star formation in the Universe occurs in large dusty galaxies, but we had always expected that early star formation would be dominated by smaller and less obscured galaxies. Now it seems that even at very early times it may be the same big dusty star formers that are the sites of most of the star formation. That's quite a surprise." Astronomers believe that large galaxies originally formed through mergers of smaller objects. Seeing a large galaxy such as GOODS 850-5 forming stars so rapidly at such an early time in the history of the Universe is a surprise. "Either the mergers that formed the galaxy happened much faster than we thought or some other process altogether produced the galaxy," Wang said. Wang and Cowie worked with Jennifer van Saders of Rutgers University and NRAO, Amy Barger of the University of Wisconsin-Madison, and Jonathan Williams of the University of Hawaii. The scientists published their findings in the December 1 edition of the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.The Submillimeter Array is an 8-element interferometer located atop Mauna Kea in Hawaii. It is a collaboration between the Smithsonian Astrophysical Observatory and the Institute of Astronomy and Astrophysics of the Academia Sinica of Taiwan.
No blackhole and no atomic bomb
NASA Astrophysics Data System (ADS)
Shin, Philip
2011-11-01
Title: c=c(1+1=2) The light speed 1+1=2. So we count the number by step by step for one point. When we count the number by one point, we use the number written on the paper. This means this is not number, but the graph and line. The light speed is the truth in physics. I can prove it by number. 10%=0.1 As %=kg So 10kg=0.1 kg=1/10 x 1/10 kg=1/100 And 100%=1 So kg=100%/100 kg=% So 1kg=1%=1/100 E=mc^2 So cx kgx m^2/sec^2= 1kgx cx m^2/sec^2 cx 1/100x m^2/sec^2= 1/100x cx m^2/sec^2 So c/100=c/100 So c=c And c is the truth never changed. Title: By faith, no blackhole As to be, we glory to God and that is basic theology for christian. And I want to say that BE means just thinking. There is no clue of nature and no proposition to prove it. I just believe by feeling and emotion. I trust that it can be the physic really. There are only human beings and there is no idol that is different existence from human beings, that is true to be. So the nature we see is zero and we, human beings make the zero nature as from no start and no ending. No alpha and omega mean we are idol and that there is no blackhole. Blackhole means the block is existing in the nothing(as we are no alpha and no omega). So the block cannot be existence. So if there is blackhole, then there must be the wall to block me and never walk again. The big bang and evolution mean they are no alpha and no omega and existing by themselves. So they could be existence, but big bang and evolution are just logical fact to be. We need faith as God give us the direction into our spirit.
Telescope with a wide field of view internal optical scanner
NASA Technical Reports Server (NTRS)
Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)
2012-01-01
A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.
Farney, Robert J.; Walker, Brandon S.; Farney, Robert M.; Snow, Gregory L.; Walker, James M.
2011-01-01
Background: Various models and questionnaires have been developed for screening specific populations for obstructive sleep apnea (OSA) as defined by the apnea/hypopnea index (AHI); however, almost every method is based upon dichotomizing a population, and none function ideally. We evaluated the possibility of using the STOP-Bang model (SBM) to classify severity of OSA into 4 categories ranging from none to severe. Methods: Anthropomorphic data and the presence of snoring, tiredness/sleepiness, observed apneas, and hypertension were collected from 1426 patients who underwent diagnostic polysomnography. Questionnaire data for each patient was converted to the STOP-Bang equivalent with an ordinal rating of 0 to 8. Proportional odds logistic regression analysis was conducted to predict severity of sleep apnea based upon the AHI: none (AHI < 5/h), mild (AHI ≥ 5 to < 15/h), moderate (≥ 15 to < 30/h), and severe (AHI ≥ 30/h). Results: Linear, curvilinear, and weighted models (R2 = 0.245, 0.251, and 0.269, respectively) were developed that predicted AHI severity. The linear model showed a progressive increase in the probability of severe (4.4% to 81.9%) and progressive decrease in the probability of none (52.5% to 1.1%). The probability of mild or moderate OSA initially increased from 32.9% and 10.3% respectively (SBM score 0) to 39.3% (SBM score 2) and 31.8% (SBM score 4), after which there was a progressive decrease in probabilities as more patients fell into the severe category. Conclusions: The STOP-Bang model may be useful to categorize OSA severity, triage patients for diagnostic evaluation or exclude from harm. Citation: Farney RJ; Walker BS; Farney RM; Snow GL; Walker JM. The STOP-Bang equivalent model and prediction of severity of obstructive sleep apnea: relation to polysomnographic measurements of the apnea/hypopnea index. J Clin Sleep Med 2011;7(5):459-465. PMID:22003340
Woodling, Karina; Fiorda-Diaz, Juan; Otto, Bradley A; Barnes, Christie A; Uribe, Alberto A; Bergese, Sergio D; Yildiz, Vedat; Stoicea, Nicoleta; Guertin, Michael G
2018-02-01
Obstructive sleep apnea (OSA) may be related to episodes of oxygen de-saturation, hypercapnia, cardiovascular dysfunction, cor-pulmonale, and pulmonary hypertension. STOP-BANG is an acronym for eight specific questions used to assess the likelihood of OSA. If the individual exhibits three or more of these indicators, he/she should be considered to be at high risk for OSA complications. Therefore, the decision of proceeding with inpatient versus outpatient ENT surgery still remains controversial. The primary objective of the study was to identify and correlate desaturation (SPO2 <90%) episodes and risk factors. We conducted a single-center retrospective study between October 1, 2011 and August 31, 2014 in order to identify postoperative complications during the first 24 hours that justify postoperative monitoring and hospital admission. A total of 292 subjects were included for data analysis. Patients were divided into two groups based on the number of OSA risk factors: group A with 3-4 risk factors (n = 166), and group B with ≥5 risk factors (n = 126). The following information was collected: demographics, ASA, preoperative STOP-BANG score, length of surgery, intraoperative complications, opioid consumption, post anesthesia care unit (PACU) and overall length of stay, supplemental oxygen requirement, oxygen desaturation, and postoperative opioid consumption. No statistically significant difference was found when comparing demographic variables between both groups. All STOP-BANG variables showed statistical significance. PACU and inpatient variables were similar among both groups, with the exception of length of hospital stay (longer stay in group B when compared to group A [ p = 0.003]). Desaturation differences between both groups during PACU were statistically significant ( p = 0.008). A post-hoc analysis showed a 0% incidence of overall desaturation in the group with three STOP-BANG indicators. Our retrospective analysis concluded that patients diagnosed with three STOP-BANG risk factors did not experience postoperative complications and hospital admission was not justified. 4.
Real time infrared aerosol analyzer
Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh
1990-01-01
Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.
NASA Technical Reports Server (NTRS)
Giurgiu, I. I.
1974-01-01
The sound insulating capacity of building elements made up of light concretes is considered. Analyzing differentially the behavior of light concrete building elements under the influence of incident acoustic energy and on the basis of experimental measurements, coefficients of correction are introduced into the basic formulas for calculating the sound insulating capacity for the 100-3,2000 Hz frequency band.
Passive thermo-optic feedback for robust athermal photonic systems
Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.
2015-06-23
Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.
NASA Astrophysics Data System (ADS)
Osmaston, Miles F.
2013-09-01
Our preceding paper "Implementing Maxwell's aether......." (Paper I) concluded:- (A) Maxwell's aether, ignored in Relativity, is a massless, quasi-superfluid continuum of extremely high negative charge density; (B) Fundamental particles are not infinitesimal singularities within the aether but develop their mass by being `made out of it' (hence the name Continuum Theory) as finite-sized vortical constructs of its motion. So reproduction (`auto-creation') of more of them requires only the addition of suitable dynamical energy, with Ampere's law providing charge-coupling in shear to get rotations. (C) In the resulting gravitational process, generating the Newtonian force simultaneously also generates a radial electric field, the Gravity-Electric (G-E) field, whose action on astronomical plasmas could explain the flat tangential velocity profiles of spiral galaxies without resort to Cold Dark Matter (CDM) if outward disc flow is present. One of the objectives here is to provide that flow by axial infall and to examine its consequences. But first, if particles are `made out of aether' the associated random aether-charge motion will generate radiation (the CMB) and impose four distance-cumulative, wavelength-independent transmission effects upon electromagnetic waves. One of these - a redshift - we see here as the cosmic redshift, plus intrinsic redshifts in stellar and galaxy `atmospheres'. Such a redshift appears to have been reliably observed with caesium clocks over long ground-level paths in 1968 but, lacking an appreciation of its mechanism, its wide significance was doubted. In fact, our extrapolation to intergalactic conditions dispenses with the BigBang. The other 3 transmission effects are:- spectral line broadening, scattering and attenuation, each of which has significant astronomical/cosmological expression. If the cosmic redshift is not a velocity, the reason for Dark Energy vanishes. In the resulting no-expansion cosmology the Universe was originally equipped with randomly moving aether, from whose motion and energy content the entire mass content of the Universe has grown over time by auto-creation, the local rate of which experiences positive feedback and acceleration as gravitational accumulations drive energy levels higher. Hence the clumpiness of galaxy distributions. The infall of cosmogonally young material from the auto-creation auras of clusters has 3 major implications. (1) It completely inverts the Big Bang perspective that lowmetallicity material, widespread in galaxy haloes, is very ancient. (2) Quasi-axial infall of such broadly neutral material (mostly H) onto a Spiral will spread out in the galactic plane, driven radially from the ionizing bulge by the G-E field, maintaining constant tangential velocity; all without CDM. This pattern means that the arms, although trailing, are actually being blown outward (unwrapping). See Paper I for detail. For such ongoing disruption of Spirals to prevail so widely means that originally each must have started life as an a.m.-conserving, tightly-wound spiral of mostly neutral, cosmogonically young material (mainly H), in which G-E field action was minimal until star formation and ionization had set in. (3) In cluster interiors, other cluster members may deflect the two infall streams as they converge onto a Spiral, introducing a dynamical rotational couple near the centre, with an axis roughly in the galactic plane, to produce a Barred Spiral. Cessation of infall then results in endwise collapse of that bar, yielding a fattened Elliptical. Those are indeed typically concentrated in the centres of clusters and show a dearth of active star formation, consistent with being deprived of young infall. We present images and diagrams in support and elaboration of (2) and (3). The CT model for quasars provides large intrinsic redshift by the CT analogue of Transverse Doppler Effect and offers light-element synthesis by the evolutionary precipitation of a runaway rotational shrinkage, with mass annihilation and emission of a GRB. Of special interest, relative to the arm's-length nature of BigBang cosmology, is that continuous auto-creation (CAC) cosmology is in principle available near-by for direct study and the development of strong observational constraints. In the context of (1), the very low metallicity (Pop II) of globular (star) clusters abundantly present in the haloes of galaxies points to them being (infallen?) local concentrations of quite young auto-creation. In that case the `blue straggler' stars more recently formed in their core regions may be our youngest examples of ongoing auto-creation. In summary, CT offers a much more directly observable Universe, with no Big Bang, CDM, or Dark Energy, and a CMB that records the true temperature of intergalactic space along the path taken by the radiation. Its closely cavity-radiation character arises from the random aether's transmission-related opacity (Olbers' Paradox) of the infinite CT Universe. Fundamentally, the aether's random motion constitutes all-penetrating random electromagnetic excitation at the atomic scale that may offer the accommodation between classical physics and stochastic quantum electrodynamics so long obstructed by Relativity Theory.
Optical memory development. Volume 3: The membrane light value page composer
NASA Technical Reports Server (NTRS)
Cosentino, L. S.; Nagle, E. M.; Stewart, W. C.
1972-01-01
The feasibility of producing a page composer for optical memory systems using thin, deformable, membrane-mirror elements as light valves was investigated. The electromechanical and optical performances of such elements were determined both analytically and experimentally. It was found that fast switching (approximately 10 microseconds), high-contrast (10 or greater), fatigue-free operation over missions of cycles, and efficient utilization of input light could be obtained with membrane light valves. Several arrays of 64 elements were made on substrates with feedthroughs, allowing access to individual elements from the backside of the substrate. Single light valves on such arrays were successfully operated with the transistors designed and produced for selection and storage at each bit location. This simulated the operation of a prototype page composer with semiconductor chips beam-lead bonded to the back of the substrate.
Einstein's equations and a cosmology with finite matter
NASA Astrophysics Data System (ADS)
Clavelli, L.; Goldstein, Gary R.
2015-05-01
We discuss various space-time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.
Hodograph analysis in aircraft trajectory optimization
NASA Technical Reports Server (NTRS)
Cliff, Eugene M.; Seywald, Hans; Bless, Robert R.
1993-01-01
An account is given of key geometrical concepts involved in the use of a hodograph as an optimal control theory resource which furnishes a framework for geometrical interpretation of the minimum principle. Attention is given to the effects of different convexity properties on the hodograph, which bear on the existence of solutions and such types of controls as chattering controls, 'bang-bang' control, and/or singular control. Illustrative aircraft trajectory optimization problems are examined in view of this use of the hodograph.
2005-04-01
manuscript. RDB also thanks Dr. Barry that Kastl and colleagues (10) observed performance differences Rickman, Jon Deegan , Don Settergren, and Greg Bange for...11(5):547-53. Meitinger T. Pex gene deletions in Gy and Hyp mice provide mouse 18. Berndt T, Craig TA, Bowe AE, models for X-linked Vassiliadis J...manuscript, and Dr. S. Barry Rickman, between anatomic sites than ipsilateral data and that the Jon Deegan , and Greg Bange for helpful discussions. Dr
Minimal time spiking in various ChR2-controlled neuron models.
Renault, Vincent; Thieullen, Michèle; Trélat, Emmanuel
2018-02-01
We use conductance based neuron models, and the mathematical modeling of optogenetics to define controlled neuron models and we address the minimal time control of these affine systems for the first spike from equilibrium. We apply tools of geometric optimal control theory to study singular extremals, and we implement a direct method to compute optimal controls. When the system is too large to theoretically investigate the existence of singular optimal controls, we observe numerically the optimal bang-bang controls.
Cosmology and the weak interaction
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.
NASA Astrophysics Data System (ADS)
Hannaske, R.; Bemmerer, D.; Beyer, R.; Birgersson, E.; Ferrari, A.; Grosse, E.; Junghans, A. R.; Kempe, M.; Kögler, T.; Kosev, K.; Marta, M.; Massarczyk, R.; Matic, A.; Schilling, K. D.; Schramm, G.; Schwengner, R.; Wagner, A.; Yakorev, D.
2016-01-01
The photodissociation of the deuteron is a key reaction in Big Bang nucleosynthesis, but is only sparsely measured in the relevant energy range. To determine the cross section of the d(γ,n)p reaction we used pulsed bremsstrahlung and measured the time-of-flight of the neutrons. In this article, we describe how the efficiency of the neutron detectors was experimentally determined and how the modification of the neutron spectrum by parts of the experimental setup was simulated and corrected.
Extremely metal-poor gas at a redshift of 7.
Simcoe, Robert A; Sullivan, Peter W; Cooksey, Kathy L; Kao, Melodie M; Matejek, Michael S; Burgasser, Adam J
2012-12-06
In typical astrophysical environments, the abundance of heavy elements ranges from 0.001 to 2 times the solar value. Lower abundances have been seen in selected stars in the Milky Way's halo and in two quasar absorption systems at redshift z = 3 (ref. 4). These are widely interpreted as relics from the early Universe, when all gas possessed a primordial chemistry. Before now there have been no direct abundance measurements from the first billion years after the Big Bang, when the earliest stars began synthesizing elements. Here we report observations of hydrogen and heavy-element absorption in a spectrum of a quasar at z = 7.04, when the Universe was just 772 million years old (5.6 per cent of its present age). We detect a large column of neutral hydrogen but no corresponding metals (defined as elements heavier than helium), limiting the chemical abundance to less than 1/10,000 times the solar level if the gas is in a gravitationally bound proto-galaxy, or to less than 1/1,000 times the solar value if it is diffuse and unbound. If the absorption is truly intergalactic, it would imply that the Universe was neither ionized by starlight nor chemically enriched in this neighbourhood at z ≈ 7. If it is gravitationally bound, the inferred abundance is too low to promote efficient cooling, and the system would be a viable site to form the predicted but as yet unobserved massive population III stars.
On the nature of gravity and possible change of Earth mass during geological time
NASA Astrophysics Data System (ADS)
Sapunov, Valentin
2015-04-01
A number of circumstances can't be explained based on view of the constant force of gravity on the Earth: 1. Dimensions of fossil animals and plants. According to the laws of biomechanics of the giant dinosaurs could not move and fly. 2. The movement of continents, reliably described by A.Vegener, can only be explained on the basis of the model increasing the Earth. Gravity is only one of the fields that define the existence of the world. Field and matter are forms that can be converted into each other. Transition is described, in particular, by Poincare, perhaps not quite accurate: E = (K) mc2. There are indications of the existence of the time field (Kozyrev, 1978), which generates energy, and then the following conditional equation: T, where T is a time. Through this relationship generated energy glow of stars and planets, the mass increases. In particular, there is an increase in the mass of the Earth. This confirms the divergence of the continents and reducing the size of the animals and plants in the Earth's history. According to presented model, the size of Earth increased during 100 millions years two times in linear scale and 8 times in volume and mass scales. Understanding of general principle of space development needs collaboration of different specialists and branches of geosciences. The basis of possible scheme is: 1. The nature of gravity is not explained by science, although some of its properties are described with high accuracy, and these descriptions have predictive power. Indeed, what attracted threads of the body without physical contact? 2. The velocity of propagation of gravitational forces in the universe is many times the speed of light. Perhaps it is infinite, although it is not proven. 3. The universe is infinite, as is clear from logical calculations thinkers more ancient period. However, our universe, i.e. of the universe, available to our senses and instruments, is finite. The volume of our universe is 1070 cubic kilometers. The total mass of 1023 times the mass of the Sun. The number of stars systems is approximately 1012. 4. Apparent detectable matter - a tiny part of the whole universe. The basis of it the dark matter, which we have not observed, but guess from indirect evidence. 5. One of the most developed cosmogony concepts - the concept of the Big Bang. The basis for the creation of the concept was still unconfirmed opinion of astronomers, that all the galaxies scatter. According to Friedman, Gamov and their followers - proponents of the Big Bang, our universe began 15 billion years ago. Then it was the size of a proton! Density was 1093 g/cm 3. Its temperature was 1070 degrees. Present these values everyday consciousness is impossible. From this state, our universe began to expand. After one ten-thousandth of a second density has fallen to 1014 g/cm3. There were first the elementary particles. When the age of our universe has reached a 0.3 second the density decreased 107 g/cm 3, temperature up to 30 billion degrees. 6. Big Bang hypothesis is interesting, and, to some extent, is constructive. But she has not acquired the rank of the theory and contains too much unchecked moments. According to the principle of relativity of Poincare and Lorentz, the maximum speed of physical movement in space - the speed of light. The universe is filled with dark matter, which extends, perhaps indefinitely. She has great density and generates a flow of gravity. Chemically, it must consist of hydrogen as a primary element. In the continuum of Dark Matter sometimes cavities appears. One of them is our Universe. Similarly, when our universe came into being as a "psevdocavity" bubble in the continuum of Dark Matter, the material particles are grouped into galaxies, stars and planets. The gravitational field is emitted by all matter of the universe. This hypothesis is toward understanding of continent mobility and both geological and biological evolution of Earth.
Physics of primordial star formation
NASA Astrophysics Data System (ADS)
Yoshida, Naoki
2012-09-01
The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.
Physical and Relativistic Numerical Cosmology.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Big Bang Day: 5 Particles - 1. The Electron
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.
Nucleosynthesis in relation to cosmology
NASA Astrophysics Data System (ADS)
El Eid, Mounib F.
2018-04-01
While the primordial (or Big Bang) nucleosynthesis delivers important clues about the conditions in the high red-shift universe (termed far-field cosmology), the nucleosynthesis of the heavy elements beyond iron by the r-process or the s-process deliver information about the early phase and history of the Galaxy (termed near-field cosmology). In particular, the r-process nucleosynthesis is unique, because it is a primary process that helps to associate individual stars with the composition of the protocloud. The present contribution is intended to give a brief overview about these nucleosynthesis processes and describe their link to the early universe, stellar evolution and to the chemical evolution of the Galaxy. The focus of this present contribution is on illumination the role of nucleosynthesis in the Universe. Owing to the complexity of this subject, a general scenario is more appealing to address interested readers.
Properties of galaxies reproduced by a hydrodynamic simulation
NASA Astrophysics Data System (ADS)
Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L.
2014-05-01
Previous simulations of the growth of cosmic structures have broadly reproduced the `cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the `metal' and hydrogen content of galaxies on small scales.
Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch.
Inoue, Akio K; Tamura, Yoichi; Matsuo, Hiroshi; Mawatari, Ken; Shimizu, Ikkoh; Shibuya, Takatoshi; Ota, Kazuaki; Yoshida, Naoki; Zackrisson, Erik; Kashikawa, Nobunari; Kohno, Kotaro; Umehata, Hideki; Hatsukade, Bunyo; Iye, Masanori; Matsuda, Yuichi; Okamoto, Takashi; Yamaguchi, Yuki
2016-06-24
The physical properties and elemental abundances of the interstellar medium in galaxies during cosmic reionization are important for understanding the role of galaxies in this process. We report the Atacama Large Millimeter/submillimeter Array detection of an oxygen emission line at a wavelength of 88 micrometers from a galaxy at an epoch about 700 million years after the Big Bang. The oxygen abundance of this galaxy is estimated at about one-tenth that of the Sun. The nondetection of far-infrared continuum emission indicates a deficiency of interstellar dust in the galaxy. A carbon emission line at a wavelength of 158 micrometers is also not detected, implying an unusually small amount of neutral gas. These properties might allow ionizing photons to escape into the intergalactic medium. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Sharangovich, Sergey N.; Semkin, Artem O.
2017-12-01
In this work a theoretical model of the holographic formation of the polarization diffractive optical elements for the transformation of Gaussian light beams into Bessel-like ones in polymer-dispersed liquid crystals (PDLC) is developed. The model is based on solving the equations of photo-induced Fredericks transition processes for polarization diffractive elements formation by orthogonally polarized light beams with inhomogeneous amplitude and phase profiles. The results of numerical simulation of the material's dielectric tensor changing due to the structure's formation process are presented for various recording beams' polarization states. Based on the results of numerical simulation, the ability to form the diffractive optical elements for light beams transformation by the polarization holography methods is shown.
Mosleh, Soleiman; Rahimi, Mahmood Reza
2017-03-01
Degradation of abamectin pesticide was carried out using visible light driven Cu 2 (OH)PO 4 -HKUST-1 MOF photocatalyst through the sonophotocatalytic technique. Cu 2 (OH)PO 4 -HKUST-1 MOF as a visible-light driven photocatalyst, was synthesized and characterized by XRD, SEM, EDS and DRS. The direct bang gaps of HKUST-1 MOF and Cu 2 (OH)PO 4 -HKUST-1 MOF were estimated about 2.63 and 2.59eV, respectively, which reveals that these photocatalysts can be activated under blue light illumination. All sonophotodegradation experiments were performed using a continuous flow-loop reactor. The central composite design (CCD) methodology was applied for modeling, optimization and investigation of influence of operational parameters, i.e. irradiation time, pH, solution flow rate, oxygen flow rate, initial concentration and photocatalyst dosage on the sonophotocatalytic degradation of abamectin. The maximum degradation efficiency of 99.93% was found at optimal values as 20min, 4, 90mL/min, 0.2mL/min, 30mg/L and 0.4g/L, for irradiation time, pH, solution flow rate, oxygen flow rate, initial concentration and photocatalyst dosage, respectively. Evaluation of the synergism in the combination of ultrasonic and photocatalysis lead to a synergistic index of 2.19, which reveals that coupling of ultrasonic and photocatalysis has a greater efficiency than the sum of individual procedures for degradation of abamectin. Copyright © 2016 Elsevier B.V. All rights reserved.
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy.
Bemmerer, D; Confortola, F; Costantini, H; Formicola, A; Gyürky, Gy; Bonetti, R; Broggini, C; Corvisiero, P; Elekes, Z; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Lozza, V; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P
2006-09-22
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.
A large neutral fraction of cosmic hydrogen a billion years after the Big Bang.
Wyithe, J Stuart B; Loeb, Abraham
2004-02-26
The fraction of ionized hydrogen left over from the Big Bang provides evidence for the time of formation of the first stars and quasar black holes in the early Universe; such objects provide the high-energy photons necessary to ionize hydrogen. Spectra of the two most distant known quasars show nearly complete absorption of photons with wavelengths shorter than the Lyman alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift of z approximately 6.3, about one billion years after the Big Bang. Here we show that the IGM surrounding these quasars had a neutral hydrogen fraction of tens of per cent before the quasar activity started, much higher than the previous lower limits of approximately 0.1 per cent. Our results, when combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination therefore suggest the presence of a second peak in the mean ionization history of the Universe.
Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.
Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C
2006-12-08
Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1978-01-01
A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.
Kasner solutions, climbing scalars and big-bang singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Condeescu, Cezar; Dudas, Emilian, E-mail: cezar.condeescu@roma2.infn.it, E-mail: emilian.dudas@cpht.polytechnique.fr
We elaborate on a recently discovered phenomenon where a scalar field close to big-bang is forced to climb a steep potential by its dynamics. We analyze the phenomenon in more general terms by writing the leading order equations of motion near the singularity. We formulate the conditions for climbing to exist in the case of several scalars and after inclusion of higher-derivative corrections and we apply our results to some models of moduli stabilization. We analyze an example with steep stabilizing potential and notice again a related critical behavior: for a potential steepness above a critical value, going backwards towardsmore » big-bang, the scalar undergoes wilder oscillations, with the steep potential pushing it back at every passage and not allowing the scalar to escape to infinity. Whereas it was pointed out earlier that there are possible implications of the climbing phase to CMB, we point out here another potential application, to the issue of initial conditions in inflation.« less
Big Bang Day: 5 Particles - 4. The Neutrino
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.
Quantum Criticality and Black Holes
Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States
2017-12-09
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Continued Analysis of the NIST Neutron Lifetime Measurement Using Ultracold Neutrons
NASA Astrophysics Data System (ADS)
Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.; Yang, L.
2013-10-01
The neutron lifetime is an important parameter for constraining the Standard Model and providing input for Big Bang Nucleosynthesis. The current disagreement in the most recent generation of lifetime experiments suggests unknown or underestimated systematics and motivates the need for alternative measurement methods as well as additional investigations into potential systematics. Our measurement was performed using magnetically trapped Ultracold Neutrons in a 3.1 T Ioffe type trap configuration. The decay rate of the neutron population is recorded in real time by monitoring visible light resulting from beta decay. Data collected in late 2010 and early 2011 is being analyzed and systematic effects are being investigated. An overview of our current work on the analysis, Monte Carlo simulations, and systematic effects will be provided. This work was supported by the NSF and NIST.
Medical catheters thermally manipulated by fiber optic bundles
Chastagner, Philippe
1992-01-01
A maneuverable medical catheter comprising a flexible tube having a functional tip. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts.
Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
Wood, Charles B.
1992-01-01
A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.
Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
Wood, C.B.
1992-12-15
A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.
Rice, Lauren J; Gray, Kylie M; Howlin, Patricia; Taffe, John; Tonge, Bruce J; Einfeld, Stewart L
2016-02-06
In the present study we examined the nature and developmental trajectory of self-injurious behaviour in Prader Willi syndrome (PWS) and autism spectrum disorder (ASD). The development of interventions is greatly aided by understanding gene to behaviour pathways, and this requires an accurate description of the behaviour phenotype, that is, which types and natural history of self-injurious behaviour are more common in PWS and ASD and which are shared with other forms of developmental disability. Self-injury displayed by individuals with PWS and individuals with ASD was compared with that reported in a group of individuals with intellectual disability due to mixed aetiology (ID group). Three self-injurious behaviours (head banging, skin-picking and hitting and/or biting self) were measured on five occasions over 18 years using the Developmental Behaviour Checklist (DBC) a well-validated caregiver report measure. Rates of skin picking were higher in individuals with PWS and hitting and/or biting self was higher in individuals with ASD compared to the ID group. Rates of head banging were similar across the three groups. Over time, skin-picking and head banging increased with age for individuals with ASD and hitting and/or biting self increased for the PWS group. In the PWS and mixed ID groups head banging decreased with age. These findings suggest that the typology and developmental trajectories of self-injurious behaviours differ between those with PWS and ASD.
Rice, Lauren J.; Gray, Kylie M.; Howlin, Patricia; Taffe, John; Tonge, Bruce J.; Einfeld, Stewart L.
2016-01-01
In the present study we examined the nature and developmental trajectory of self-injurious behaviour in Prader Willi syndrome (PWS) and autism spectrum disorder (ASD). The development of interventions is greatly aided by understanding gene to behaviour pathways, and this requires an accurate description of the behaviour phenotype, that is, which types and natural history of self-injurious behaviour are more common in PWS and ASD and which are shared with other forms of developmental disability. Self-injury displayed by individuals with PWS and individuals with ASD was compared with that reported in a group of individuals with intellectual disability due to mixed aetiology (ID group). Three self-injurious behaviours (head banging, skin-picking and hitting and/or biting self) were measured on five occasions over 18 years using the Developmental Behaviour Checklist (DBC) a well-validated caregiver report measure. Rates of skin picking were higher in individuals with PWS and hitting and/or biting self was higher in individuals with ASD compared to the ID group. Rates of head banging were similar across the three groups. Over time, skin-picking and head banging increased with age for individuals with ASD and hitting and/or biting self increased for the PWS group. In the PWS and mixed ID groups head banging decreased with age. These findings suggest that the typology and developmental trajectories of self-injurious behaviours differ between those with PWS and ASD. PMID:28933389
Out of the white hole: a holographic origin for the Big Bang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B., E-mail: rpourhasan@perimeterinstitute.ca, E-mail: nafshordi@pitp.ca, E-mail: rbmann@uwaterloo.ca
While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a sphericalmore » 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ∼20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.« less
NASA Astrophysics Data System (ADS)
Chabot, N. L.
2017-12-01
As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.
LAD Prize Talk: Lab Astro and the Origins of the Chemical Elements
NASA Astrophysics Data System (ADS)
Lawler, James E.
2017-06-01
Only a few of the lightest or primordial nuclei were made just after the Big Bang. Other light nuclei up to the Fe-group are made by fusion in stars. Heavier nuclei are made primarily via r(apid)-process and s(low)-process n(eutron)-capture events. Although the s-process n-capture is fairly well understood, the r-process n-capture events remain poorly understood. The relative role of Core Collapse SNe and n-star mergers will likely be understood in the next few decades. I will discuss recent studies of old Metal-Poor stars that are revealing some new details of nucleosynthesis. This progress is due to the availability of high resolution spectra from large ground based telescopes, access to the UV via HST, and better laboratory data. Our laboratory astrophysics program has focused primarily on the measurement of transition probabilities by combining radiative lifetimes with emission branching fractions. The use of Time Resolved Laser Induced Fluorescence (TRLIF) to measure radiative lifetimes in metallic atoms and ions provides an absolute scale for transition probabilities accurate to a few percent [e.g. 1]. The development and application of TRLIF to neutral and ionized atoms of nearly all elements is due to a simple, versatile, and reliable atom/ion beam source based on a hollow cathode discharge [2, 3]. Fourier transform spectrometers (FTSs) are essential in the measurement of emission branching fractions for atoms and ions with dense spectra such as the rare earths [e.g. 4, 5]. A 3 m focal length echelle spectrometer is important to the measurement of weak branches which might otherwise be obscured by multiplex noise in FTS data [6, 7]. References: [1] E. A. Den Hartog et al., ApJS 194: 35 (2011). [2] D. W. Duquette et al., Phys. Rev. A24, 2847 (1981). [3] S. Salih & J. E. Lawler, Phys. Rev. A29, 3753, (1983). [4] J. W. Brault, J. Opt. Soc. Am. 66, 1081 (1976). [5] J. E. Lawler et al., ApJS 182, 51 (2009). [6] M. P. Wood & J. E. Lawler, Appl. Opt. 51, 8407 (2012). [7] C. Sneden et al., ApJ 817:53 (2016).
Constraining axion dark matter with Big Bang Nucleosynthesis
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; ...
2014-08-04
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Primordial lithium and the standard model(s)
NASA Technical Reports Server (NTRS)
Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.; Romanelli, Paul; Krauss, Lawrence M.
1989-01-01
The results of new theoretical work on surface Li-7 and Li-6 evolution in the oldest halo stars are presented, along with a new and refined analysis of the predicted primordial Li abundance resulting from big-bang nucleosynthesis. This makes it possible to determine the constraints which can be imposed on cosmology using primordial Li and both standard big-bang and stellar-evolution models. This leads to limits on the baryon density today of 0.0044-0.025 (where the Hubble constant is 100h km/sec Mpc) and imposes limitations on alternative nucleosynthesis scenarios.
Constraining antimatter domains in the early universe with big bang nucleosynthesis.
Kurki-Suonio, H; Sihvola, E
2000-04-24
We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of 4He. For larger domains, the limit comes from 3He overproduction. Since most of the 3He from &pmacr; 4He annihilation are themselves annihilated, the main source of primordial 3He is the photodisintegration of 4He by the electromagnetic cascades initiated by the annihilation.
Two-D results on human operator perception
NASA Technical Reports Server (NTRS)
Siapkara, A. A.; Sheridan, T. B.
1981-01-01
The application of multidimensional scaling methodology in human factors engineering is presented. The nonorthogonality of internally perceived task variables is exhibited for first and second order plants with both dependent and independent task variables. Directions of operator preference are shown for actual performance, pilot opinion rating, and subjective measures of fatigue, adaptability, and system recognition. Improvement of performance in second order systems is exhibited by the use of bang-bang feedback information. Dissimilarity measures for system comparison are suggested in order to account for human operator rotations and subjective sense of time.
Making a Big Bang on the small screen
NASA Astrophysics Data System (ADS)
Thomas, Nick
2010-01-01
While the quality of some TV sitcoms can leave viewers feeling cheated out of 30 minutes of their lives, audiences and critics are raving about the science-themed US comedy The Big Bang Theory. First shown on the CBS network in 2007, the series focuses on two brilliant postdoc physicists, Leonard and Sheldon, who are totally absorbed by science. Adhering to the stereotype, they also share a fanatical interest in science fiction, video-gaming and comic books, but unfortunately lack the social skills required to connect with their 20-something nonacademic contemporaries.
NASA Technical Reports Server (NTRS)
Schramm, David N.
1990-01-01
It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.
Constraining axion dark matter with Big Bang Nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela
We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN
Big bang nucleosynthesis: An update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olive, Keith A.
An update on the standard model of big bang nucleosynthesis (BBN) is presented. With the value of the baryon-tophoton ratio determined to high precision by WMAP, standard BBN is a parameter-free theory. In this context, the theoretical prediction for the abundances of D, {sup 4}He, and {sup 7}Li is discussed and compared to their observational determination. While concordance for D and {sup 4}He is satisfactory, the prediction for {sup 7}Li exceeds the observational determination by a factor of about four. Possible solutions to this problem are discussed.
NASA Astrophysics Data System (ADS)
Gregory, Ruth
2009-04-01
"Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.
The Big Bang and Cosmic Inflation
NASA Astrophysics Data System (ADS)
Guth, Alan H.
2014-03-01
A summary is given of the key developments of cosmology in the 20th century, from the work of Albert Einstein to the emergence of the generally accepted hot big bang model. The successes of this model are reviewed, but emphasis is placed on the questions that the model leaves unanswered. The remainder of the paper describes the inflationary universe model, which provides plausible answers to a number of these questions. It also offers a possible explanation for the origin of essentially all the matter and energy in the observed universe.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
NASA Astrophysics Data System (ADS)
Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
Multiple intensity distributions from a single optical element
NASA Astrophysics Data System (ADS)
Berens, Michael; Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter
2013-09-01
We report on an extension of the previously published two-step freeform optics tailoring algorithm using a Monge-Kantorovich mass transportation framework. The algorithm's ability to design multiple freeform surfaces allows for the inclusion of multiple distinct light paths and hence the implementation of multiple lighting functions in a single optical element. We demonstrate the procedure in the context of automotive lighting, in which a fog lamp and a daytime running lamp are integrated in a single optical element illuminated by two distinct groups of LEDs.
Biological cell classification by multiangle light scattering
Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.
1975-06-03
The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.
Cosmological and astrophysical consequences of a high primordial deuterium abundance
NASA Astrophysics Data System (ADS)
Vangioni-Flam, Elisabeth; Casse, Michel
1995-03-01
We explore the consequences of the first detection of deuterium in a high-redshift, very metal-poor absorbing cloud complex, D/H = (1.9-2.5) x 10-4, by Songaila et al. and Carswell et al., obtained with the Keck telescope. This value reflects closely the primordial abundance ratio provided that the observed spectral features are not due to the corruption of the signal by an errant hydrogen cloud of misfortunate velocity. Assuming that the measured D abundance is free from contamination, the baryon/photon ratio is now confined to the range 1.3-2 (instead of 3-4 and more), in both the classical and inhomogeneous big bangs. Other light elements (He-3, He-4 and Li-7) are consistent with these figures. The low baryonic density of the universe that ensues leaves no room for baryonic matter in the extended halos of elliptical galaxies, especially if the Hubble parameter is close to 100 km/s/Mpc. Nonbaryonic matter clearly dominates the gravitating mass of clusters of galaxies. The upper limit of the gas density at high redshift (before bulk galaxy formation) is now consistent with the baryonic one. A massive destruction of deuterium, in the course of the evolution of the galaxy (say, by a factor of 10-25) is required to match the D/H ratio observed in the local interstellar medium. The higher D destruction proposed up to now corresponds to galactic evolutionary models devised by Vangioni-Flam & Audouze (1988) and Vangioni-Flam, Olive, & Prantzos (1994). We discuss the virtues and the limits of this class of models and propose an alternative based on mass related to a galactic wind.
Engine of life and big bang of evolution: a personal perspective.
Barber, James
2004-01-01
Photosystem II (PS II) is the engine for essentially all life on our planet and its beginning 2.5 billion years ago was the 'big bang of evolution.' It produces reducing equivalents for making organic compounds on an enormous scale and at the same time provides us with an oxygenic atmosphere and protection against UV radiation (in the form of the ozone layer). In 1967, when I began my career in photosynthesis research, little was known about PS II. The Z-scheme had been formulated [Hill and Bendall (1960) Nature 186: 136-137] and Boardman and Anderson [(1964) Nature 203: 166-167] had isolated PS II as a discrete biochemical entity. PS II was known not only to be the source of oxygen but of variable chlorophyll fluorescence [Duysens and Sweers (1963) In: Studies on Microalgae and Photosynthetic Bacteria, pp. 353-372. University of Tokyo Press, Tokyo] and delayed chlorophyll fluorescence [Arnold and Davidson (1954) J Gen Physiol 37: 677-684]. P680 had just been discovered [Döring et al. (1967) Z Naturforsch 22b: 639-644]. No wonder the 'black box of PS II' was described at that time by Bessel Kok and George Cheniae [Current Topics in Bioenergetics 1: 1-47 (1966)] as the 'inner sanctum of photosynthesis.' What a change in our level of understanding of PS II since then! The contributions of many talented scientists have unraveled the mechanisms and structural basis of PS II function and we are now very close to revealing the molecular details of the remarkable and thermodynamically demanding reaction which it catalyzes, namely the splitting of water into its elemental constituents. It has been a privilege to be involved in this journey.
Big bang nucleosynthesis, the CMB, and the origin of matter and space-time
NASA Astrophysics Data System (ADS)
Mathews, Grant J.; Gangopadhyay, Mayukh; Sasankan, Nishanth; Ichiki, Kiyotomo; Kajino, Toshitaka
2018-04-01
We summarize some applications of big bang nucleosythesis (BBN) and the cosmic microwave background (CMB) to constrain the first moments of the creation of matter in the universe. We review the basic elements of BBN and how it constraints physics of the radiation-dominated epoch. In particular, how the existence of higher dimensions impacts the cosmic expansion through the projection of curvature from the higher dimension in the "dark radiation" term. We summarize current constraints from BBN and the CMB on this brane-world dark radiation term. At the same time, the existence of extra dimensions during the earlier inflation impacts the tensor to scalar ratio and the running spectral index as measured in the CMB. We summarize how the constraints on inflation shift when embedded in higher dimensions. Finally, one expects that the universe was born out of a complicated multiverse landscape near the Planck time. In these moments the energy scale of superstrings was obtainable during the early moments of chaotic inflation. We summarize the quest for cosmological evidence of the birth of space-time out of the string theory landscape. We will explore the possibility that a superstring excitations may have made itself known via a coupling to the field of inflation. This may have left an imprint of "dips" in the power spectrum of temperature fluctuations in the cosmic microwave background. The identification of this particle as a superstring is possible because there may be evidence for different oscillator states of the same superstring that appear on different scales on the sky. It will be shown that from this imprint one can deduce the mass, number of oscillations, and coupling constant for the superstring. Although the evidence is marginal, this may constitute the first observation of a superstring in Nature.
Focusing light through random scattering media by four-element division algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin
2018-01-01
The focusing of light through random scattering materials using wavefront shaping is studied in detail. We propose a newfangled approach namely four-element division algorithm to improve the average convergence rate and signal-to-noise ratio of focusing. Using 4096 independently controlled segments of light, the intensity at the target is 72 times enhanced over the original intensity at the same position. The four-element division algorithm and existing phase control algorithms of focusing through scattering media are compared by both of the numerical simulation and the experiment. It is found that four-element division algorithm is particularly advantageous to improve the average convergence rate of focusing.
A Hybrid Converter for Improving Light Load Efficiency
NASA Astrophysics Data System (ADS)
Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi
In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.
Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...
Experimental constraints on light elements in the Earth’s outer core
Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian
2016-01-01
Earth’s outer core is liquid and dominantly composed of iron and nickel (~5–10 wt%). Its density, however, is ~8% lower than that of liquid iron, and requires the presence of a significant amount of light element(s). A good way to specify the light element(s) is a direct comparison of density and sound velocity measurements between seismological data and those of possible candidate compositions at the core conditions. We report the sound velocity measurements of a model core composition in the Fe-Ni-Si system at the outer core conditions by shock-wave experiments. Combining with the previous studies, we found that the best estimate for the outer core’s light elements is ~6 wt% Si, ~2 wt% S, and possible ~1–2.5 wt% O. This composition satisfies the requirements imposed by seismology, geochemistry, and some models of the early core formation. This finding may help us to further constrain the thermal structure of the Earth and the models of Earth’s core formation. PMID:26932596
Analog of Optical Elements for Sound Waves in Air
ERIC Educational Resources Information Center
Gluck, Paul; Perkalskis, Benjamin
2009-01-01
Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…
Interstellar Message Plaques: Application of White-Light Holography
NASA Astrophysics Data System (ADS)
Matloff, G. L.
2002-01-01
During Spring / Summer 2001, a prototype white-light holographic interstellar-probe message plaque was created under Contract H-29712D of NASA Marshall Spaceflight Center (MSFC), and commercial white-light holograms were tested for space-radiation tolerance at the MSFC Space Environment Facility (SEF) in Huntsville, AL, USA. Artist C Bangs' message plaque was created at the Center for Holographic Arts in Long Island City, NY. The 57.5 X 47.5 cm rainbow hologram was delivered to MSFC after framing by Simon Liu Inc., Brooklyn, NY, USA. The prototype message plaque, which is in the collection of the MSFC Space Transportation Directorate, has six multiplexed 2-D and 3-D images representing humans, the hypothetical interstellar spacecraft, and our position in the galaxy. Consultation with John Caulfield of Fisk University, an expert in holography, revealed that micron-thick holograms not much larger than a sheet of paper could contain hundreds of thousands of images, which opens the me ssage-plaque field considerably so that work of many artists could be included. Tests of commercial holograms at up to 100 MRad of simulated solar-wind radiation were performed at MSFC / SEF. Image-quality deterioriation was monitored using the image-color- histogram of the (trademarked) Adobe Photoshop software package. No significant deterioration occurred, which is in agreement with the literature. Holographic solar sails may be a propulsive application of this technology.
[Case of exploding head syndrome].
Okura, Mutsumi; Taniguchi, Mitsutaka; Muraki, Hisae; Sugita, Hideko; Ohi, Motoharu
2010-01-01
Exploding head syndrome (EHS) attacks are characterized by the sensation of sudden loud banging noises, and are occasionally accompanied by the sensation of a flash light. Although these attacks in themselves are usually not painful, it is reported that EHS attacks may precede migraines and may be perceived as auras. A 53-year-old woman, with a 40-year history of fulgurating migraines, experienced 2 different types of EHS attacks. During most of the attacks, which were not painful, she heard sounds like someone yelling or cars passing by. Only 1 episode was accompanied with the sensation of a flash light and of sounds similar to those of an electrical short circuit. On the video-polysomnography, video-polysomnography showed 11 EHS attacks occurred during stage N1 and stage N2; these attacks were preceded by soft snoring. She also had moderate obstructive sleep apnea syndrome (Apnea Hypopnea Index: 16.7) for which an oral appliance was prescribed; the EHS attacks did not recur after this treatment. The pathophysiology of EHS is still unclear. A detailed analysis of PSG data may help in understanding the pathophysiology of this syndrome and also in the selection of therapeutic strategies.
Self-interacting inelastic dark matter: a viable solution to the small scale structure problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au
2017-03-01
Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less
NASA's Hubble Spots Embryonic Galaxy SPT0615-JD
2018-01-11
This Hubble Space Telescope image shows the farthest galaxy yet seen in an image that has been stretched and amplified by a phenomenon called gravitational lensing. The embryonic galaxy, named SPT0615-JD, existed when the universe was just 500 million years old. Though a few other primitive galaxies have been seen at this early epoch, they have essentially all looked like red dots, given their small size and tremendous distances. However, in this case, the gravitational field of a massive foreground galaxy cluster, called SPT-CL J0615-5746, not only amplified the light from the background galaxy but also smeared the image of it into an arc (about 2 arcseconds long). Image analysis shows that the galaxy weighs in at no more than 3 billion solar masses (roughly 1/100th the mass of our fully grown Milky Way galaxy). It is less than 2,500 light-years across, half the size of the Small Magellanic Cloud, a satellite galaxy of our Milky Way. The object is considered prototypical of young galaxies that emerged during the epoch shortly after the big bang. https://photojournal.jpl.nasa.gov/catalog/PIA22079
Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.
Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo
2016-08-30
The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.
Medical catheters thermally manipulated by fiber optic bundles
Chastagner, P.
1992-10-06
A maneuverable medical catheter comprising a flexible tube having a functional tip is described. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts. 10 figs.
Where Are the Logical Errors in the Theory of Big Bang?
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2015-04-01
The critical analysis of the foundations of the theory of Big Bang is proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is argued that the starting point of the theory of Big Bang contains three fundamental logical errors. The first error is the assumption that a macroscopic object (having qualitative determinacy) can have an arbitrarily small size and can be in the singular state (i.e., in the state that has no qualitative determinacy). This assumption implies that the transition, (macroscopic object having the qualitative determinacy) --> (singular state of matter that has no qualitative determinacy), leads to loss of information contained in the macroscopic object. The second error is the assumption that there are the void and the boundary between matter and void. But if such boundary existed, then it would mean that the void has dimensions and can be measured. The third error is the assumption that the singular state of matter can make a transition into the normal state without the existence of the program of qualitative and quantitative development of the matter, without controlling influence of other (independent) object. However, these assumptions conflict with the practice and, consequently, formal logic, rational dialectics, and cybernetics. Indeed, from the point of view of cybernetics, the transition, (singular state of the Universe) -->(normal state of the Universe),would be possible only in the case if there was the Managed Object that is outside the Universe and have full, complete, and detailed information about the Universe. Thus, the theory of Big Bang is a scientific fiction.
Progress towards a more predictive model for hohlraum radiation drive and symmetry
NASA Astrophysics Data System (ADS)
Jones, O. S.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Farmer, W. A.; Hansen, S. B.; Liedahl, D. A.; Mauche, C. W.; Moore, A. S.; Rosen, M. D.; Salmonson, J. D.; Strozzi, D. J.; Thomas, C. A.; Turnbull, D. P.
2017-05-01
For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.
New developments in understanding the r-process from observations of metal-poor stars
NASA Astrophysics Data System (ADS)
Frebel, Anna
2015-04-01
In their atmospheres, old metal-poor Galactic stars retain detailed information about the chemical composition of the interstellar medium at the time of their birth. Extracting such stellar abundances enables us to reconstruct the beginning of the chemical evolution shortly after the Big Bang. About 5% of metal-poor stars with [Fe/H] < - 2 . 5 display in their spectrum a strong enhancement of neutron-capture elements associated with the rapid (r-) nucleosynthesis process that is responsible for the production of the heaviest elements in the Universe. This fortuity provides a unique opportunity of bringing together astrophysics and nuclear physics because these objects act as ``cosmic lab'' for both fields of study. The so-called r-process stars are thought to have formed from material enriched in heavy neutron-capture elements that were created during an r-process event in a previous generation supernova. It appears that the few stars known with this rare chemical signature all follow the scaled solar r-process pattern (for the heaviest elements with 56 <= Z <= 90 that is). This suggests that the r-process is universal - a surprising empirical finding and a solid result that can not be obtained from any laboratory on earth. While much research has been devoted to establishing this pattern, little attention has been given to the overall level of enhancement. New results will be presented on the full extent of r-process element enrichment as observed in metal-poor stars. The challenge lies in determining how the r-process material in the earliest gas clouds was mixed and diluted. Assuming individual r-process events to have contributed the observed r-process elements. We provide empirical estimates on the amount of r-process material produced. This should become a crucial constraint for theoretical nuclear physics models of heavy element nucleosynthesis.
Tanner, David E.
1981-01-01
A nuclear reactor system is described in which a position indicator is provided for detecting and indicating the position of a movable element inside a pressure vessel. The movable element may be a valve element or similar device which moves about an axis. Light from a light source is transmitted from a source outside the pressure vessel to a first region inside the pressure vessel in alignment with the axis of the movable element. The light is redirected by a reflector prism to a second region displaced radially from the first region. The reflector prism moves in response to movement of the movable element about its axis such that the second region moves arcuately with respect to the first region. Sensors are arrayed in an arc corresponding to the arc of movement of the second region and signals are transmitted from the sensors to the exterior of the reactor vessel to provide indication of the position of the movable element.
Computational Cosmology: From the Early Universe to the Large Scale Structure.
Anninos, Peter
2001-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Computational Cosmology: from the Early Universe to the Large Scale Structure.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Big Bang Day: 5 Particles - 1. The Electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born.more » Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.« less
First impressions and beyond: marketing your practice in touch points--Part II.
Bisera, Cheryl
2012-01-01
When calling in a marketing expert to boost a practice's numbers, administrators and providers are usually looking for external marketing strategies--ways to attract new patients to the practice. However, one of the most important, yet often overlooked, elements to successfully marketing a practice is the very important work of retaining current patients and turning them into enthusiastic referrers. When new patients are simply filling the place of previous patients that have moved on, you are not building solid practice growth. You can create an atmosphere of loyal referring patients by providing positive touch points that fulfill the needs of your patients. This article will cover touch points that occur before a patient has chosen your practice. Laying the groundwork for positive touch points will give your marketing efforts a snowball effect, build growth, and deliver the most bang for your marketing bucks.
Cosmic Origins Program Annual Technology Report
NASA Technical Reports Server (NTRS)
Pham, Bruce Thai; Neff, Susan Gale
2015-01-01
What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present.
Program Annual Technology Report: Cosmic Origins Program Office
NASA Technical Reports Server (NTRS)
Pham, Thai; Neff, Susan
2017-01-01
What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life, starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy.
Properties of galaxies reproduced by a hydrodynamic simulation.
Vogelsberger, M; Genel, S; Springel, V; Torrey, P; Sijacki, D; Xu, D; Snyder, G; Bird, S; Nelson, D; Hernquist, L
2014-05-08
Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales.
Beyond Einstein: from the Big Bang to black holes
NASA Astrophysics Data System (ADS)
White, Nicholas E.; Diaz, Alphonso V.
2004-01-01
How did the Universe begin? Does time have a beginning and an end? Does space have edges? Einstein's theory of relativity replied to these ancient questions with three startling predictions: that the Universe is expanding from a Big Bang; that black holes so distort space and time that time stops at their edges; and that a dark energy could be pulling space apart, sending galaxies forever beyond the edge of the visible Universe. Observations confirm these remarkable predictions, the last finding only four years ago. Yet Einstein's legacy is incomplete. His theory raises - but cannot answer - three profound questions: What powered the Big Bang? What happens to space, time and matter at the edge of a black hole? and, What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's office of space science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches to shared science goals. The program also serves as a potent force with which to enhance science education and science literacy.
A Guided Inquiry on Hubble Plots and the Big Bang
NASA Astrophysics Data System (ADS)
Forringer, Ted
2014-04-01
In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the first time. The first challenge is in understanding and interpreting Hubble plots. The second is that some of our students have religious or cultural objections to the concept of a "Big Bang" or a universe that is billions of years old. This paper presents a guided inquiry exercise that was created with the goal of introducing students to Hubble plots and giving them the opportunity to discover for themselves why we believe our universe started with an explosion billions of years ago. The exercise is designed to be completed before the topics are discussed in the classroom. We did the exercise during a one hour and 45 minute "lab" time and it was done in groups of three or four students, but it would also work as an individual take-home assignment.
The onset of star formation 250 million years after the Big Bang
NASA Astrophysics Data System (ADS)
Hashimoto, Takuya; Laporte, Nicolas; Mawatari, Ken; Ellis, Richard S.; Inoue, Akio K.; Zackrisson, Erik; Roberts-Borsani, Guido; Zheng, Wei; Tamura, Yoichi; Bauer, Franz E.; Fletcher, Thomas; Harikane, Yuichi; Hatsukade, Bunyo; Hayatsu, Natsuki H.; Matsuda, Yuichi; Matsuo, Hiroshi; Okamoto, Takashi; Ouchi, Masami; Pelló, Roser; Rydberg, Claes-Erik; Shimizu, Ikkoh; Taniguchi, Yoshiaki; Umehata, Hideki; Yoshida, Naoki
2018-05-01
A fundamental quest of modern astronomy is to locate the earliest galaxies and study how they influenced the intergalactic medium a few hundred million years after the Big Bang1-3. The abundance of star-forming galaxies is known to decline4,5 from redshifts of about 6 to 10, but a key question is the extent of star formation at even earlier times, corresponding to the period when the first galaxies might have emerged. Here we report spectroscopic observations of MACS1149-JD16, a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age. We detect an emission line of doubly ionized oxygen at a redshift of 9.1096 ± 0.0006, with an uncertainty of one standard deviation. This precisely determined redshift indicates that the red rest-frame optical colour arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. Our results indicate that it may be possible to detect such early episodes of star formation in similar galaxies with future telescopes.
The Age of Precision Cosmology
NASA Technical Reports Server (NTRS)
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J
2008-10-01
Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.
Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.
Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich
2016-03-01
Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.
Baryon symmetric big bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleton, P P; Dearborn, D P; Lattanzio, J
2006-07-26
Low-mass stars, {approx} 1-2 solar masses, near the Main Sequence are efficient at producing {sup 3}He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of {sup 3}He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between themore » hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that {sup 3}He production in low-mass stars poses to the Big Bang nucleosynthesis of {sup 3}He.« less
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less
A Study of Thick-Target X-Ray Spectra Using Photonuclear Reactions
1983-01-01
energy k will be given by kmln-BV1+(BEb/Mxc2)] (2) Where M Is the mass of the target nucleus, c is the velocity of light , and BE. , the binding...3-8 MeV (18,23,26). The energy B at which the cross section is a maximum is approximately 20 MeV for light elements (23,26). For heavy elements, E...Detailed inspection of the giant reaonance of photonuclear reactions in light elements reveals cross section maxima and minima, or "atructure
Cosmological imprints of frozen-in light sterile neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roland, Samuel B.; Shakya, Bibhushan, E-mail: rolandsa@umich.edu, E-mail: bshakya@umich.edu
We investigate observable cosmological aspects of sterile neutrino dark matter produced via the freeze-in mechanism. The study is performed in a framework that admits many cosmologically interesting variations: high temperature production via annihilation processes from higher dimensional operators or low temperature production from decays of a scalar, with the decaying scalar in or out of equilibrium with the thermal bath, in supersymmetric or non-supersymmetric setups, thus allowing us to both extract generic properties and highlight features unique to particular variations. We find that while such sterile neutrinos are generally compatible with all cosmological constraints, interesting scenarios can arise where darkmore » matter is cold, warm, or hot, has nontrivial momentum distributions, or provides contributions to the effective number of relativistic degrees of freedom N {sub eff} during Big Bang nucleosynthesis large enough to be probed by future measurements.« less
Big Bang Day: 5 Particles - 4. The Neutrino
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-08
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". It's the most populous particle in the universe. Millions of these subatomic particles are passing through each one of us. With no charge and virtually no mass they can penetrate vast thicknesses of matter without any interaction - indeed the sun emits huge numbers that pass through earth at the speed of light. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electricmore » charge. As a result they're extremely difficult to detect . But like HG Wells' invisible man they can give themselves away by bumping into things at high energy and detectors hidden in mines are exploiting this to observe these rare interactions.« less
Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter
NASA Technical Reports Server (NTRS)
Bond, J. R.; Efstathiou, G.
1984-01-01
Detailed calculations of the temperature fluctuations in the cosmic background radiation for universes dominated by massive collisionless relics of the big bang are presented. An initially adiabatic constant curvature perturbation spectrum is assumed. In models with cold dark matter, the simplest hypothesis - that galaxies follow the mass distribution leads to small-scale anisotropies which exceed current observational limits if omega is less than 0.2 h to the -4/3. Since low values of omega are indicated by dynamical studies of galaxy clustering, cold particle models in which light traces mass are probably incorrect. Reheating of the pregalactic medium is unlikely to modify this conclusion. In cold particle or neutrino-dominated universes with omega = 1, presented predictions for small-scale and quadrupole anisotropies are below current limits. In all cases, the small-scale fluctuations are predicted to be about 10 percent linearly polarized.
Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation
NASA Astrophysics Data System (ADS)
Mohapatra, Rabindra N.; Nussinov, Shmuel
2018-01-01
The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.
The Hubble Constant from SN Refsdal
NASA Astrophysics Data System (ADS)
Vega-Ferrero, J.; Diego, J. M.; Miranda, V.; Bernstein, G. M.
2018-02-01
Hubble Space Telescope observations from 2015 December 11 detected the expected fifth counter-image of supernova (SN) Refsdal at z = 1.49. In this Letter, we compare the time-delay predictions from numerous models with the measured value derived by Kelly et al. from very early data in the light curve of the SN Refsdal and find a best value for {H}0={64}-11+9 {km} {{{s}}}-1 {{Mpc}}-1 (68% CL), in excellent agreement with predictions from cosmic microwave background and recent weak lensing data + baryon acoustic oscillations + Big Bang nucleosynthesis (from the DES Collaboration). This is the first constraint on H 0 derived from time delays between multiple-lensed SN images, and the first with a galaxy cluster lens, subject to systematic effects different from other time-delay H 0 estimates. Additional time-delay measurements from new multiply imaged SNe will allow derivation of competitive constraints on H 0.
III-V arsenide-nitride semiconductor
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2000-01-01
III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Methods for forming group III-arsenide-nitride semiconductor materials
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2002-01-01
Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Methods for forming group III-V arsenide-nitride semiconductor materials
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
2000-01-01
Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
Mediastinal emphysema after head-banging in a rock artist: pseudo shaken-baby syndrome in adulthood.
Matsuzaki, Saeko; Tsunoda, Koichi; Chong, Tonghyo; Hamaguchi, Reo
2012-12-01
A 34-year-old man was seen because of severe right neck pain. He was a guitarist in a special type of heavy metal rock (so-called visual-kei, a subgenre related to glam-rock) band and habitually shook his head violently throughout concert performances. He regularly experienced neck and chest pain after a concert, which persisted for some time. Computed tomography scanning of the neck showed mediastinal emphysema. We surmise that head-banging resemble those of shaken-baby syndrome. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Cosmological BCS mechanism and the big bang singularity
NASA Astrophysics Data System (ADS)
Alexander, Stephon; Biswas, Tirthabir
2009-07-01
We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.
Impulse damping control of an experimental structure
NASA Technical Reports Server (NTRS)
Redmond, J.; Meyer, J. L.; Silverberg, L.
1993-01-01
The characteristics associated with the fuel optimal control of a harmonic oscillator are extended to develop a near minimum fuel control algorithm for the vibration suppression of spacecraft. The operation of single level thrusters is regulated by recursive calculations of the standard deviations of displacement and velocity resulting in a bang-off-bang controller. A vertically suspended 16 ft cantilevered beam was used in the experiment. Results show that the structure's response was easily manipulated by minor alterations in the control law and the control system performance was not seriously degraded in the presence of multiple actuator failures.
Optical apparatus for forming correlation spectrometers and optical processors
Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.
1999-01-01
Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.
Optical apparatus for forming correlation spectrometers and optical processors
Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.
1999-05-18
Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.
NASA Astrophysics Data System (ADS)
Menéndez, J.
2018-01-01
Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.
Apparatus for injecting high power laser light into a fiber optic cable
Sweatt, William C.
1997-01-01
High intensity laser light is evenly injected into an optical fiber by the combination of a converging lens and a multisegment kinoform (binary optical element). The segments preferably have multi-order gratings on each which are aligned parallel to a radial line emanating from the center of the kinoform and pass through the center of the element. The grating in each segment causes circumferential (lateral) dispersion of the light, thereby avoiding detrimental concentration of light energy within the optical fiber.
Three-dimensional scanning confocal laser microscope
Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind
1999-01-01
A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.
Westlake, Katerina; Plihalova, Andrea; Pretl, Martin; Lattova, Zuzana; Polak, Jan
2016-10-01
Obstructive sleep apnea (OSA) is highly prevalent in patients with Type 2 diabetes mellitus representing an additional risk factor for already increased cardiovascular mortality. As cardiovascular diseases are the main cause of death in this population, there is a need to identify patients with moderate to severe OSA indicated for treatment. We aimed to evaluate the performance of the Berlin, STOP, and STOP-Bang screening questionnaires in a population of patients with Type 2 diabetes mellitus. 294 consecutive patients with Type 2 diabetes mellitus filled in the questionnaires and underwent overnight home sleep monitoring using a type IV sleep monitor. Severe, moderate, and mild OSA was found in 31 (10%), 61 (21%), and 121 (41%) patients, respectively. The questionnaires showed a similar sensitivity and specificity for AHI ≥ 15: 0.69 and 0.50 for Berlin, 0.65 and 0.49 for STOP, and 0.59 and 0.68 for STOP-Bang. However, the performance of the STOP-Bang questionnaire was different in men vs. women, sensitivity being 0.74 vs. 0.29 (p < 0.05) and specificity 0.56 vs. 0.82 (p < 0.05). Even the best-performing Berlin questionnaire failed to identify 31% of patients with moderate to severe OSA as being at high risk of OSA, thus preventing them from receiving a correct diagnosis and treatment. Considering that patients with Type 2 diabetes mellitus are at high risk of cardiovascular mortality and also have a high prevalence of moderate to severe OSA, we find screening based on the questionnaires suboptimal and suggest that OSA screening should be performed using home sleep monitoring devices. Copyright © 2016 Elsevier B.V. All rights reserved.
Composite adaptive control of belt polishing force for aero-engine blade
NASA Astrophysics Data System (ADS)
Zhsao, Pengbing; Shi, Yaoyao
2013-09-01
The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and significantly reduces the surface roughness.
Anisotropic, nonsingular early universe model leading to a realistic cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechant, Pierre-Philippe; Lasenby, Anthony N.; Hobson, Michael P.
2009-02-15
We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a nonsingular 'pancaking' solution: the hypersurface volume goes to zero instantaneously at the 'big bang', but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the big bang. We demonstrate that there exist geodesics extending through the big bang, but that there are also incomplete geodesics that spiral infinitely around a topologically closed spatial dimension at the big bang, rendering it, at worst, a quasiregular singularity. The model is thus reminiscent ofmore » the Taub-NUT vacuum solution in that it has biaxial Bianchi IX geometry and its evolution exhibits a dimensionality reduction at a quasiregular singularity; the two models are, however, rather different, as we will show in a future work. Here we concentrate on the cosmological implications of our model and show how the scalar field drives both isotropization and inflation, thus raising the question of whether structure on the largest scales was laid down at a time when the universe was still oblate (as also suggested by [T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 9 (2007) 6.][C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 4 (2008) 4.][A. Guemruekcueoglu, C. Contaldi, and M. Peloso, J. Cosmol. Astropart. Phys. 11 (2007) 005.]). We also discuss the stability of our model to small perturbations around biaxiality and draw an analogy with cosmological perturbations. We conclude by presenting a separate, bouncing solution, which generalizes the known bouncing solution in closed FRW universes.« less
NASA Astrophysics Data System (ADS)
Martin Rees, Lord
2017-01-01
Lord Martin Rees will discuss questions including: What does the long-range future hold? Should we be surprised that the physical laws permitted the emergence of complexity? Is physical reality even more extensive than the domain that our telescopes can probe? Are there many `big bangs'? Powerful instruments have led to astonishing progress in tracing the emergence of atoms, galaxies, stars and planets from a mysterious `beginning' nearly 14 billion years ago. Unmanned spacecraft have visited the other planets of our Solar System (and some of their moons), beaming back pictures of varied and distinctive worlds. An exciting development in the last two decades has been the realization that many other stars are orbited by retinues of planets - some resembling our Earth (and capable of harboring life). Looking further afield, observers can probe galaxies and the massive back holes at their centers and can check models of their evolution by detecting objects all the way back to an epoch only a billion years after the Big Bang. Indeed we can trace pre-galactic history with some confidence back to a nanosecond after the Big Bang. But the key parameters of our expanding universe - the expansion rate, the geometry and the content - were established far earlier still, when the physics is still conjectural but is being constrained, especially by precision measurements of the cosmic microwave background. These advances pose new questions: What does the long-range future hold? Should we be surprised that the physical laws permitted the emergence of complexity? Is physical reality even more extensive than the domain that our telescopes can probe? Are there many `big bangs'? This illustrated lecture will attempt to address such issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
Pereira, H; Xará, D; Mendonça, J; Santos, A; Abelha, F J
2013-01-01
STOP-BANG score (snore; tired; observed apnea; arterial pressure; body mass index; age; neck circumference and gender) can predict the risk of a patient having Obstructive Syndrome Apnea (OSA). The aim of this study was to evaluate the incidence STOP-BANG score≥3, in surgical patients admitted to the Post-Anesthesia Care Unit (PACU). Observational, prospective study conducted in a post-anesthesia care unit (PACU) during three weeks (2011). The study population consisted of adult patients after noncardiac and non-neurological surgery. Patients were classified as high risk of OSA (HR-OSA) if STOP-BANG score≥3 and Low-risk of OSA (LR-OSA) if STOP-BANG score<3 (LR-OSA). Patient demographics, intraoperative and postoperative data were collected. Patient characteristics were compared using Mann-Whitney U-test, t-test for independent groups, and chi-square or Fisher's exact test. A total of 357 patients were admitted to PACU; 340 met the inclusion criteria. 179 (52%) were considered HR-OSA. These patients were older, more likely to be masculine, had higher BMI, higher ASA physical status, higher incidence of ischemic heart disease, heart failure, hypertension, dyslipidemia and underwent more frequently insulin treatment for diabetes. These patients had more frequently mild/moderated hypoxia in the PACU (9% vs. 3%, p=0.012) and had a higher incidence of residual neuromuscular blockade (NMB) (20% vs. 16%, p=0.035). Patients with HR-OSA had a longer hospital stay. Patients with HR-OSA had an important incidence among patients scheduled for surgery in our hospital. These patients had more co-morbidities and were more prone to post-operative complications. Copyright © 2012 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.
Diffraction-Based Optical Switch
NASA Technical Reports Server (NTRS)
Sperno, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)
2005-01-01
Method and system for controllably redirecting a light beam, having a central wavelength lambda, from a first light-receiving site to a second light-receiving site. A diffraction grating is attached to or part of a piezoelectric substrate, which is connected to one or two controllable voltage difference sources. When a substrate voltage difference is changed and the diffraction grating length in each of one or two directions is thereby changed, at least one of the diffraction angle, the diffraction order and the central wavelength is controllably changed. A diffracted light beam component, having a given wavelength, diffraction angle and diffraction order, that is initially received at a first light receiving site (e.g., a detector or optical fiber) is thereby controllably shifted or altered and can be received at a second light receiving site. A polynomially stepped, chirped grating is used in one embodiment. In another embodiment, an incident light beam, having at least one of first and second wavelengths, lambda1 and lambda2, is received and diffracted at a first diffraction grating to provide a first diffracted beam. The first diffracted beam is received and diffracted at a second diffraction grating to produce a second diffracted beam. The second diffracted beam is received at a light-sensitive transducer, having at least first and second spaced apart light detector elements that are positioned so that, when the incident light beam has wavelength lambda1 or lambda2 (lambda1 not equal to lambda2), the second diffracted beam is received at the first element or at the second element, respectively; change in a selected physical parameter at the second grating can also be sensed or measured. A sequence of spaced apart light detector elements can be positioned along a linear or curvilinear segment with equal or unequal spacing.
Diversity of abundance patterns of neutron-capture elements in very metal-poor stars
NASA Astrophysics Data System (ADS)
Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya
2014-05-01
Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.
Quinn, Paul C; Bhatt, Ramesh S
2006-10-01
Four experiments investigated how readily infants achieve perceptual organization by lightness and form similarity. Infants were (a) familiarized with elements that could be organized into rows or columns on the basis of lightness or form similarity and tested with vertical versus horizontal bars depicting the familiar versus novel organization or (b) familiarized with bars and tested with elements. For lightness similarity, generalization occurred in both tasks; however, for form similarity, generalization occurred only in the elements --> bars task. The findings indicate that lightness similarity is more readily deployed than form similarity and are discussed in the context of (a) whether the difference reflects speed of application or experience-based learning, (b) evidence from visual agnosic patients and the time course of application of the principles in healthy adults, and (c) development of dorsal and ventral visual processing streams. Copyright 2006 APA.
Front lighted optical tooling method and apparatus
Stone, William J.
1985-06-18
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.
A Practical Guide to Experimental Geometrical Optics
NASA Astrophysics Data System (ADS)
Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.
2017-12-01
Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.
Antipodal correlation on the meron wormhole and a bang-crunch universe
NASA Astrophysics Data System (ADS)
Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga
2018-06-01
We present a covariant Euclidean wormhole solution to Einstein Yang-Mills system and study scalar perturbations analytically. The fluctuation operator has a positive definite spectrum. We compute the Euclidean Green's function, which displays maximal antipodal correlation on the smallest three sphere at the center of the throat. Upon analytic continuation, it corresponds to the Feynman propagator on a compact bang-crunch universe. We present the connection matrix that relates past and future modes. We thoroughly discuss the physical implications of the antipodal map in both the Euclidean and Lorentzian geometries and give arguments on how to assign a physical probability to such solutions.
A quasi-steady state cosmological model with creation of matter
NASA Technical Reports Server (NTRS)
Hoyle, F.; Burbidge, G.; Narlikar, J. V.
1993-01-01
A universe is envisioned in which there was a major creation episode when the mean universal density was about 10 to the -27 g/cu cm. Explicit equations are given for the creation of matter; in a cosmological approximation, these equations lead to expressions for the time-dependence of the cosmological scale factor S(t), but do not entail, as big bang cosmology does, that S(t) tend to zero at some finite time t. The equations therefore possess a universality that is absent from big bang cosmology. Creation occurs when certain conservation equations involving the gradient of a scalar field C(i) are satisfied.
The "big bang" implementation: not for the faint of heart.
Anderson, Linda K; Stafford, Cynthia J
2002-01-01
Replacing a hospital's obsolete mainframe computer system with a modern integrated clinical and administrative information system presents multiple challenges. When the new system is activated in one weekend, in "big bang" fashion, the challenges are magnified. Careful planning is essential to ensure that all hospital staff are fully prepared for this transition, knowing this conversion will involve system downtime, procedural changes, and the resulting stress that naturally accompanies change. Implementation concerns include staff preparation and training, process changes, continuity of patient care, and technical and administrative support. This article outlines how the University of Missouri Health Care addressed these operational concerns during this dramatic information system conversion.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe
2013-01-01
This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.
Nuclear Receptors, RXR, and the Big Bang.
Evans, Ronald M; Mangelsdorf, David J
2014-03-27
Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.
Gamma rays and the case for baryon symmetric big-bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1977-01-01
The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1 to 200 MeV range, and a mechanism for galaxy formation. In the context of an open universe model, the value of omega which best fits the present gamma-ray data is omega equals approx. 0.1 which does not conflict with upper limits on Comptonization distortion of the 3K background radiation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.
The Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.
1990-01-01
The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.
Cosmological space-times with resolved Big Bang in Yang-Mills matrix models
NASA Astrophysics Data System (ADS)
Steinacker, Harold C.
2018-02-01
We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.
The Early Universe: Searching for Evidence of Cosmic Inflation
NASA Technical Reports Server (NTRS)
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
Big Bang Cosmic Titanic: Cause for Concern?
NASA Astrophysics Data System (ADS)
Gentry, Robert
2013-04-01
This abstract alerts physicists to a situation that, unless soon addressed, may yet affect PRL integrity. I refer to Stanley Brown's and DAE Robert Caldwell's rejection of PRL submission LJ12135, A Cosmic Titanic: Big Bang Cosmology Unravels Upon Discovery of Serious Flaws in Its Foundational Expansion Redshift Assumption, by their claim that BB is an established theory while ignoring our paper's Titanic, namely, that BB's foundational spacetime expansion redshifts assumption has now been proven to be irrefutably false because it is contradicted by our seminal discovery that GPS operation unequivocally proves that GR effects do not produce in-flight photon wavelength changes demanded by this central assumption. This discovery causes the big bang to collapse as quickly as did Ptolemaic cosmology when Copernicus discovered its foundational assumption was heliocentric, not geocentric. Additional evidence that something is amiss in PRL's treatment of LJ12135 comes from both Brown and EiC Gene Spouse agreeing to meet at my exhibit during last year's Atlanta APS to discuss this cover-up issue. Sprouse kept his commitment; Brown didn't. Question: If Brown could have refuted my claim of a cover-up, why didn't he come to present it before Gene Sprouse? I am appealing LJ12135's rejection.
``All that Matter ... in One Big Bang ...'', &Other Cosmological Singularities
NASA Astrophysics Data System (ADS)
Elizalde, Emilio
2018-02-01
The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singularity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, $R^2$, $f(R)$, and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.
The onset of star formation 250 million years after the Big Bang.
Hashimoto, Takuya; Laporte, Nicolas; Mawatari, Ken; Ellis, Richard S; Inoue, Akio K; Zackrisson, Erik; Roberts-Borsani, Guido; Zheng, Wei; Tamura, Yoichi; Bauer, Franz E; Fletcher, Thomas; Harikane, Yuichi; Hatsukade, Bunyo; Hayatsu, Natsuki H; Matsuda, Yuichi; Matsuo, Hiroshi; Okamoto, Takashi; Ouchi, Masami; Pelló, Roser; Rydberg, Claes-Erik; Shimizu, Ikkoh; Taniguchi, Yoshiaki; Umehata, Hideki; Yoshida, Naoki
2018-05-01
A fundamental quest of modern astronomy is to locate the earliest galaxies and study how they influenced the intergalactic medium a few hundred million years after the Big Bang 1-3 . The abundance of star-forming galaxies is known to decline 4,5 from redshifts of about 6 to 10, but a key question is the extent of star formation at even earlier times, corresponding to the period when the first galaxies might have emerged. Here we report spectroscopic observations of MACS1149-JD1 6 , a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age. We detect an emission line of doubly ionized oxygen at a redshift of 9.1096 ± 0.0006, with an uncertainty of one standard deviation. This precisely determined redshift indicates that the red rest-frame optical colour arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. Our results indicate that it may be possible to detect such early episodes of star formation in similar galaxies with future telescopes.
Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
2011-01-01
The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These insights could help engineers to achieve a better "balance" between the conflicting needs of achieving a safe touchdown velocity, a low-weight landing mechanism, low engine fuel cost, and other design goals. In comparing the computed optimal control results with the preflight landing trajectory design of the Apollo-11 mission, we noted interesting similarities between the two missions.
Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory
NASA Astrophysics Data System (ADS)
Lee, Jong-Wan
2015-05-01
We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.
Element abundance measurements in gas-rich galaxies at z~5
NASA Astrophysics Data System (ADS)
Poudel, Suraj; Kulkarni, Varsha; Morrison, Sean; Peroux, Celine; Som, Debopam; Rahmani, Hadi; Quiret, Samuel
2018-01-01
Element abundances in high-redshift galaxies offer key constraints on models of the chemical evolution of galaxies. The chemical composition of galaxies at z>~5 are especially important since they constrain the star formation history in the first ~1 Gyr after the Big Bang and the initial mass function of early stars. Observations of damped Lyman-alpha (DLA) absorbers in quasar spectra enable robust measurements of the element abundances in distant gas-rich galaxies. In particular, abundances of volatile elements such as S, O and refractory elements such as Si, Fe allow determination of the dust-corrected metallicity and the depletion strength in the absorbing galaxies. Unfortunately measurements for volatile (nearly undepleted) elements are very sparse for DLAs at z > 4.5. We present abundance measurements of O, C, Si and Fe for three gas-rich galaxies at z~5 using observations from the Very Large Telescope (VLT) X-shooter spectrograph and the Keck Echellette Spectrograph and Imager. Our study has doubled the existing sample of measurements of undepleted elements at z > 4.5. After combining our measurements with those from the literature, we find that the cosmological mean metallicity of z ˜ 5 absorbers is consistent with the prediction based on z < 4.5 DLAs within < 0.5 σ. Thus, we find no significant evidence of a sudden drop in metallicity at z > 4.7 as reported by prior studies. Some of the absorbers show evidence of depletion of elements on dust grains, e.g. low [Si/O] or [Fe/O]. These absorbers along with other z~5 absorbers from the literature show some peculiarities in the relative abundances, e.g. low [C/O] in several absorbers and high [Si/O] in one absorber. We also find that the metallicity vs. velocity dispersion relation of z~5 absorbers may be different from that of lower-redshift absorbers.We acknowledge support from NASA grant NNX14AG74G and NASA/STScI support for HST programs GO-12536, 13801 to the Univ. of South Carolina.
Newton's absolute time and space in general relativity
NASA Astrophysics Data System (ADS)
Gautreau, Ronald
2000-04-01
I describe a reference system in a spherically symmetric gravitational field that is built around times recorded by radially moving geodesic clocks. The geodesic time coordinate t and the curvature spatial radial coordinate R result in spacetime descriptions of the motion of the geodesic clocks that are exactly identical with equations following from Newton's absolute time and space used with his inverse square law. I show how to use the resulting Newtonian/general-relativistic equations for geodesic clocks to generate exact relativistic metric forms in terms of the coordinates (R,t). Newtonian theory does not describe light. However, the motion of light can be determined from the (R,t) general-relativistic metric forms obtained from Newtonian theory by setting ds2(R,t)=0. In this sense, a theory of light can be related to absolute time and space of Newtonian gravitational theory. I illustrate the (R,t) methodology by first solving the equations that result from a Newtonian picture and then examining the exact metric forms for the general-relativistic problems of the Schwarzschild field, gravitational collapse and expansion of a zero-pressure perfect fluid, and zero-pressure big-bang cosmology. I also briefly describe other applications of the Newtonian/general-relativistic formulation to: embedding a Schwarzschild mass into cosmology; continuously following an expanding universe from radiation to matter domination; Dirac's Large Numbers hypothesis; the incompleteness of Kruskal-Szekeres spacetime; double valuedness in cosmology; and the de Sitter universe.
III-V aresenide-nitride semiconductor materials and devices
NASA Technical Reports Server (NTRS)
Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)
1997-01-01
III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)
1991-01-01
A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.
Composite video and graphics display for camera viewing systems in robotics and teleoperation
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)
1993-01-01
A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.
Enhanced light element imaging in atomic resolution scanning transmission electron microscopy.
Findlay, S D; Kohno, Y; Cardamone, L A; Ikuhara, Y; Shibata, N
2014-01-01
We show that an imaging mode based on taking the difference between signals recorded from the bright field (forward scattering region) in atomic resolution scanning transmission electron microscopy provides an enhancement of the detectability of light elements over existing techniques. In some instances this is an enhancement of the visibility of the light element columns relative to heavy element columns. In all cases explored it is an enhancement in the signal-to-noise ratio of the image at the light column site. The image formation mechanisms are explained and the technique is compared with earlier approaches. Experimental data, supported by simulation, are presented for imaging the oxygen columns in LaAlO₃. Case studies looking at imaging hydrogen columns in YH₂ and lithium columns in Al₃Li are also explored through simulation, particularly with respect to the dependence on defocus, probe-forming aperture angle and detector collection aperture angles. © 2013 Elsevier B.V. All rights reserved.
Focusing light through random photonic layers by four-element division algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin
2018-02-01
The propagation of waves in turbid media is a fundamental problem of optics with vast applications. Optical phase optimization approaches for focusing light through turbid media using phase control algorithm have been widely studied in recent years due to the rapid development of spatial light modulator. The existing approaches include element-based algorithms - stepwise sequential algorithm, continuous sequential algorithm and whole element optimization approaches - partitioning algorithm, transmission matrix approach and genetic algorithm. The advantage of element-based approaches is that the phase contribution of each element is very clear; however, because the intensity contribution of each element to the focal point is small especially for the case of large number of elements, the determination of the optimal phase for a single element would be difficult. In other words, the signal to noise ratio of the measurement is weak, leading to possibly local maximal during the optimization. As for whole element optimization approaches, all elements are employed for the optimization. Of course, signal to noise ratio during the optimization is improved. However, because more random processings are introduced into the processing, optimizations take more time to converge than the single element based approaches. Based on the advantages of both single element based approaches and whole element optimization approaches, we propose FEDA approach. Comparisons with the existing approaches show that FEDA only takes one third of measurement time to reach the optimization, which means that FEDA is promising in practical application such as for deep tissue imaging.
Hohimer, John P.; Craft, David C.
1994-01-01
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.
A Universe without Weak Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2006-04-07
A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scalemore » of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.« less
NASA Astrophysics Data System (ADS)
2006-08-01
Analysing a set of stars in a globular cluster with ESO's Very Large Telescope, astronomers may have found the solution to a critical cosmological and stellar riddle. Until now, an embarrassing question was why the abundance of lithium produced in the Big Bang is a factor 2 to 3 times higher than the value measured in the atmospheres of old stars. The answer, the researchers say, lies in the fact that the abundances of elements measured in a star's atmosphere decrease with time. ESO PR Photo 30/06 ESO PR Photo 30/06 Globular cluster NGC 6397, with some of the FLAMES-UVES target stars highlighted "Such trends are predicted by models that take into account the diffusion of elements in a star", said Andreas Korn, lead-author of the paper reporting the results in this week's issue of the journal Nature [1,2]. "But an observational confirmation was lacking. That is, until now." Lithium is one of the very few elements to have been produced in the Big Bang. Once astronomers know the amount of ordinary matter present in the Universe [3], it is rather straightforward to derive how much lithium was created in the early Universe. Lithium can also be measured in the oldest, metal-poor stars, which formed from matter similar to the primordial material. But the cosmologically predicted value is too high to reconcile with the measurements made in the stars. Something is wrong, but what? Diffusive processes altering the relative abundances of elements in stars are well known to play a role in certain classes of stars. Under the force of gravity, heavy elements will tend to sink out of visibility into the star over the course of billions of years. "The effects of diffusion are expected to be more pronounced in old, very metal-poor stars", said Korn. "Given their greater age, diffusion has had more time to produce sizeable effects than in younger stars like the Sun." The astronomers thus set up an observational campaign to test these model predictions, studying a variety of stars in different stages of evolution in the metal-poor globular cluster NGC 6397. Globular clusters [4] are useful laboratories in this respect, as all the stars they contain have identical age and initial chemical composition. The diffusion effects are predicted to vary with evolutionary stage. Therefore, measured atmospheric abundance trends with evolutionary stage are a signature of diffusion. Eighteen stars were observed for between 2 and 12 hours with the multi-object spectrograph FLAMES-UVES on ESO's Very Large Telescope. The FLAMES spectrograph is ideally suited as it allows astronomers to obtain spectra of many stars at a time. Even in a nearby globular cluster like NGC 6397, the unevolved stars are very faint and require rather long exposure times. The observations clearly show systematic abundance trends along the evolutionary sequence of NGC 6397, as predicted by diffusion models with extra mixing. Thus, the abundances measured in the atmospheres of old stars are not, strictly speaking, representative of the gas the stars originally formed from. "Once this effect is corrected for, the abundance of lithium measured in old, unevolved stars agrees with the cosmologically predicted value", said Korn. "The cosmological lithium discrepancy is thus largely removed." "The ball is now in the camp of the theoreticians," he added. "They have to identify the physical mechanism that is at the origin of the extra mixing."
Information-efficient spectral imaging sensor
Sweatt, William C.; Gentry, Stephen M.; Boye, Clinton A.; Grotbeck, Carter L.; Stallard, Brian R.; Descour, Michael R.
2003-01-01
A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.
Micromachined edge illuminated optically transparent automotive light guide panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas
2012-03-01
Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.
Optical propagation analysis in photobioreactor measurements on cyanobacteria
NASA Astrophysics Data System (ADS)
Fanjul-Vélez, F.; Arce-Diego, J. L.
2017-12-01
Biotechnology applications are nowadays increasing in many areas, from agriculture to biochemistry, or even biomedicine. Knowledge on biological processes is becoming essential in order to be able to adequately estimate and control the production of these elements. Cyanobacteria present the capability of producing oxygen and biomass, from CO2 and light irradiation. Therefore, they could be fundamental for human subsistence in adverse environments, as basic needs of breathing and food would be guaranteed. Cyanobacteria cultivation, as other microorganisms, is carried out in photo-bioreactors. The adequate design of photobioreactors greatly influences elements production throughput. This design includes optical illumination and optical measurement of cyanobacteria growth. In this work an analysis of optical measurement of cyanobacteria growth in a photobioreactor is made. As cyanobacteria are inhomogeneous elements, the influence of light scattering is significant. Several types of cyanobacteria are considered, as long as several spatial profiles and irradiances of the incident light. Depending on cyanobacteria optical properties, optical distribution of transmitted light can be estimated. These results allow an appropriate consideration, in the optical design, of the relationship between detected light and cyanobacteria growth. As a consequence, the most adequate conditions of elements production from cyanobacteria could be estimated.
Fuel assembly for the production of tritium in light water reactors
Cawley, W.E.; Trapp, T.J.
1983-06-10
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
Fuel assembly for the production of tritium in light water reactors
Cawley, William E.; Trapp, Turner J.
1985-01-01
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
Light higgsino dark matter from non-thermal cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar
We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less
Light higgsino dark matter from non-thermal cosmology
Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar; ...
2016-11-01
We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less
Neutrino physics from the cosmic microwave background and large scale structure
NASA Astrophysics Data System (ADS)
Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.
2015-03-01
This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν) = 16 meV and σ (Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν , whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046 .
NASA Telescopes Uncover Early Construction of Giant Galaxy
2014-08-27
Astronomers have for the first time caught a glimpse of the earliest stages of massive galaxy construction. The building site, dubbed “Sparky,” is a dense galactic core blazing with the light of millions of newborn stars that are forming at a ferocious rate. The discovery was made possible through combined observations from NASA’s Hubble and Spitzer space telescopes, the W.M. Keck Observatory in Mauna Kea, Hawaii, and the European Space Agency's Herschel space observatory, in which NASA plays an important role. A fully developed elliptical galaxy is a gas-deficient gathering of ancient stars theorized to develop from the inside out, with a compact core marking its beginnings. Because the galactic core is so far away, the light of the forming galaxy that is observable from Earth was actually created 11 billion years ago, just 3 billion years after the Big Bang. Read more: 1.usa.gov/1rAMSSr Credit: NASA, Z. Levay, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram