Sample records for bank erosion processes

  1. Modelling river bank erosion processes and mass failure mechanisms using 2-D depth averaged numerical model

    NASA Astrophysics Data System (ADS)

    Die Moran, Andres; El kadi Abderrezzak, Kamal; Tassi, Pablo; Herouvet, Jean-Michel

    2014-05-01

    Bank erosion is a key process that may cause a large number of economic and environmental problems (e.g. land loss, damage to structures and aquatic habitat). Stream bank erosion (toe erosion and mass failure) represents an important form of channel morphology changes and a significant source of sediment. With the advances made in computational techniques, two-dimensional (2-D) numerical models have become valuable tools for investigating flow and sediment transport in open channels at large temporal and spatial scales. However, the implementation of mass failure process in 2D numerical models is still a challenging task. In this paper, a simple, innovative algorithm is implemented in the Telemac-Mascaret modeling platform to handle bank failure: failure occurs whether the actual slope of one given bed element is higher than the internal friction angle. The unstable bed elements are rotated around an appropriate axis, ensuring mass conservation. Mass failure of a bank due to slope instability is applied at the end of each sediment transport evolution iteration, once the bed evolution due to bed load (and/or suspended load) has been computed, but before the global sediment mass balance is verified. This bank failure algorithm is successfully tested using two laboratory experimental cases. Then, bank failure in a 1:40 scale physical model of the Rhine River composed of non-uniform material is simulated. The main features of the bank erosion and failure are correctly reproduced in the numerical simulations, namely the mass wasting at the bank toe, followed by failure at the bank head, and subsequent transport of the mobilised material in an aggradation front. Volumes of eroded material obtained are of the same order of magnitude as the volumes measured during the laboratory tests.

  2. Bank erosion along the dam-regulated lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Hupp, C.R.; Schenk, E.R.; Richter, J.M.; Peet, Robert K.; Townsend, Phil A.

    2009-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability and erosion. Three high dams (completed between 1953 and 1963) were built along the Piedmont portion of the Roanoke River, North Carolina; just downstream the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, >700 bank-erosion pins were installed along 66 bank transects. Additionally, discrete measurements of channel bathymetry, turbidity, and presence or absence of mass wasting were documented along the entire study reach (153 km). A bank-erosion- floodplain-deposition sediment budget was estimated for the lower river. Bank toe erosion related to consistently high low-flow stages may play a large role in increased mid- and upper-bank erosion. Present bank-erosion rates are relatively high and are greatest along the middle reaches (mean 63 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates, such that erosion-rate maxima have since migrated downstream. Mass wasting and turbidity also peak along the middle reaches; floodplain sedimentation systematically increases downstream in the study reach. The lower Roanoke River isnet depositional (on floodplain) with a surplus of ??2,800,000 m3yr. Results suggest that unmeasured erosion, particularly mass wasting, may partly explain this surplus and should be part of sediment budgets downstream of dams. ?? 2009 The Geological Society of America.

  3. Modelling river bank retreat by combining fluvial erosion, seepage and mass failure

    NASA Astrophysics Data System (ADS)

    Dapporto, S.; Rinaldi, M.

    2003-04-01

    Streambank erosion processes contribute significantly to the sediment yielded from a river system and represent an important issue in the contexts of soil degradation and river management. Bank retreat is controlled by a complex interaction of hydrologic, geotechnical, and hydraulic processes. The capability of modelling these different components allows for a full reconstruction and comprehension of the causes and rates of bank erosion. River bank retreat during a single flow event has been modelled by combining simulation of fluvial erosion, seepage, and mass failures. The study site, along the Sieve River (Central Italy), has been subject to extensive researches, including monitoring of pore water pressures for a period of 4 years. The simulation reconstructs fairly faithfully the observed changes, and is used to: a) test the potentiality and discuss advantages and limitations of such type of methodology for modelling bank retreat; c) quantify the contribution and mutual role of the different processes determining bank retreat. The hydrograph of the event is divided in a series of time steps. Modelling of the riverbank retreat includes for each step the following components: a) fluvial erosion and consequent changes in bank geometry; b) finite element seepage analysis; c) stability analysis by limit equilibrium method. Direct fluvial shear erosion is computed using empirically derived relationships expressing lateral erosion rate as a function of the excess of shear stress to the critical entrainment value for the different materials along the bank profile. Lateral erosion rate has been calibrated on the basis of the total bank retreat measured by digital terrestrial photogrammetry. Finite element seepage analysis is then conducted to reconstruct the saturated and unsaturated flow within the bank and the pore water pressure distribution for each time step. The safety factor for mass failures is then computed, using the pore water pressure distribution obtained

  4. Bank Erosion Vulnerability Zonation (BEVZ) -A Proposed Method of Preparing Bank Erosion Zonation and Its Application on the River Haora, Tripura, India

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Shreya; de, Sunil Kumar

    2014-05-01

    In the present paper an attempt has been made to propose RS-GIS based method for erosion vulnerability zonation for the entire river based on simple techniques that requires very less field investigation. This method consist of 8 parameters, such as, rainfall erosivity, lithological factor, bank slope, meander index, river gradient, soil erosivity, vegetation cover and anthropogenic impact. Meteorological data, GSI maps, LISS III (30m resolution), SRTM DEM (56m resolution) and Google Images have been used to determine rainfall erosivity, lithological factor, bank slope, meander index, river gradient, vegetation cover and anthropogenic impact; Soil map of the NBSSLP, India has been used for assessing Soil Erosivity index. By integrating the individual values of those six parameters (the 1st two parameters are remained constant for this particular study area) a bank erosion vulnerability zonation map of the River Haora, Tripura, India (23°37' - 23°53'N and 91°15'-91°37'E) has been prepared. The values have been compared with the existing BEHI-NBS method of 60 spots and also with field data of 30 cross sections (covering the 60 spots) taken along 51 km stretch of the river in Indian Territory and found that the estimated values are matching with the existing method as well as with field data. The whole stretch has been divided into 5 hazard zones, i.e. Very High, High, Moderate, Low and Very Low Hazard Zones and they are covering 5.66 km, 16.81 km, 40.82km, 29.67 km and 9.04 km respectively. KEY WORDS: Bank erosion, Bank Erosion Hazard Index (BEHI), Near Bank Stress (NBS), Erosivity, Bank Erosion Vulnerability Zonation.

  5. The role of bank collapse on tidal creek ontogeny: A novel process-based model for bank retreat

    NASA Astrophysics Data System (ADS)

    Gong, Zheng; Zhao, Kun; Zhang, Changkuan; Dai, Weiqi; Coco, Giovanni; Zhou, Zeng

    2018-06-01

    Bank retreat in coastal tidal flats plays a primary role on the planimetric shape of tidal creeks and is commonly driven by both flow-induced bank erosion and gravity-induced bank collapse. However, existing modelling studies largely focus on bank erosion and overlook bank collapse. We build a bank retreat model coupling hydrodynamics, bank erosion and bank collapse. To simulate the process of bank collapse, a stress-deformation model is utilized to calculate the stress variation of bank soil after bank erosion, and the Mohr-Coulomb failure criterion is then applied to evaluate the stability of the tidal creek bank. Results show that the bank failure process can be categorized into three stages, i.e., shear failure at the bank toe (stage I), tensile failure on the bank top (stage II), and sectional cracking from the bank top to the toe (stage III). With only bank erosion, the planimetric shapes of tidal creeks are funneled due to the gradually seaward increasing discharge. In contrast to bank erosion, bank collapse is discontinuous, and the contribution of bank collapse to bank retreat can reach 85%, highlighting that the expansion of tidal creeks can be dominated by bank collapse process. The planimetric shapes of tidal creeks are funneled with a much faster expansion rate when bank collapse is considered. Overall, this study makes a further step toward more physical and realistic simulation of bank retreat in estuarine and coastal settings and the developed bank collapse module can be readily included in other morphodynamic models.

  6. Geomorphology and bank erosion of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.

    2011-01-01

    Bank erosion along the Matanuska River, a braided, glacial river in southcentral Alaska, has damaged or threatened houses, roadways, and public facilities for decades. Mapping of river geomorphology and bank characteristics for a 65-mile study area from the Matanuska Glacier to the river mouth provided erodibility information that was assessed along with 1949-2006 erosion to establish erosion hazard data. Braid plain margins were delineated from 1949, 1962, and 2006 orthophotographs to provide detailed measurements of erosion. Bank material and height and geomorphic features within the Matanuska River valley (primarily terraces and tributary fans) were mapped in a Geographic Information System (GIS) from orthophotographs and field observations to provide categories of erodibility and extent of the erodible corridor. The braid plain expanded 861 acres between 1949 and 2006. Erosion in the highest category ranged from 225 to 1,043 feet at reaches of bank an average of 0.5 mile long, affecting 8 percent of the banks but accounting for 64 percent of the erosion. Correlation of erosion to measurable predictor variables was limited to bank height and material. Streamflow statistics, such as peak streamflow or mean annual streamflow, were not clearly linked to erosion, which can occur during the prolonged period of summer high flows where channels are adjacent to an erodible braid plain margin. The historical braid plain, which includes vegetated braid plain bars and islands and active channels, was identified as the greatest riverine hazard area on the basis of its historical occupation. In 2006, the historical braid plain was an average of 15 years old, as determined from the estimated age of vegetation visible in orthophotographs. Bank erosion hazards at the braid plain margins can be mapped by combining bank material, bank height, and geomorphology data. Bedrock bluffs at least 10 feet high (31 percent of the braid plain margins) present no erosion hazard. At

  7. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  8. Human vulnerability, dislocation and resettlement: adaptation processes of river-bank erosion-induced displacees in Bangladesh.

    PubMed

    Hutton, David; Haque, C Emdad

    2004-03-01

    The purpose of this research was to identify and analyse patterns of economic and social adaptation among river-bank erosion-induced displacees in Bangladesh. It was hypothesised that the role of social demographic and socio-economic variables in determining the coping ability and recovery of the river-bank erosion-induced displacees is quite significant. The findings of the research reveal that displacees experience substantial socio-economic impoverishment and marginalisation as a consequence of involuntary migration. This in part is a socially constructed process, reflecting inequitable access to land and other resources. Vulnerability to disasters is further heightened by a number of identifiable social and demographic factors including gender, education and age, although extreme poverty and marginalisation create complexity to isolate the relative influence of these variables. The need to integrate hazard analysis and mitigation with the broader economic and social context is discussed. It is argued that the capacity of people to respond to environmental threats is a function of not only the physical forces which affect them, but also of underlying economic and social relationships which increase human vulnerability to risk. Hazard analysis and mitigation can be more effective when it takes into account such social and demographic and socio-economic dimensions of disasters.

  9. River Bank Erosion and the Influence of Environmental Flow Management.

    PubMed

    Vietz, Geoff J; Lintern, Anna; Webb, J Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional 'know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  10. River Bank Erosion and the Influence of Environmental Flow Management

    NASA Astrophysics Data System (ADS)

    Vietz, Geoff J.; Lintern, Anna; Webb, J. Angus; Straccione, David

    2018-03-01

    Environmental flows aim to influence river hydrology to provide appropriate physical conditions for ecological functioning within the restrictions of flow regulation. The hydrologic characteristics of flow events, however, may also lead to unintended morphologic effects in rivers, such as increases in riverbank erosion beyond natural rates. This may negatively impact habitat for biota, riparian infrastructure, and land use. Strategic environmental flow delivery linked to monitoring and adaptive management can help mitigate risks. We monitor riverbank condition (erosion and deposition) relative to environmental flows on the Goulburn River, Victoria, Australia. We describe the process of adaptive management aimed at reducing potential impacts of flow management on bank condition. Field measurements (erosion pins) quantify the hydrogeomorphic response of banks to the delivery of planned and natural flow events. Managed flows provide opportunities for monitoring riverbank response to flows, which in turn informs planning. The results demonstrate that environmental flows have little influence on bank erosion and visual perceptions in the absence of monitoring are an unreliable guide. This monitoring project represents a mutually beneficial, science-practice partnership demonstrating that a traditional `know then do' approach can be foreshortened by close collaboration between researchers and managers. To do so requires transparent, often informal lines of communication. The benefits for researchers-a more strategic and targeted approach to monitoring activities; and benefits for the practitioners-reduced time between actions and understanding response; mean that a learn by doing approach is likely to have better outcomes for researchers, stakeholders, the public, and the environment.

  11. Methods for monitoring the effects of grazing management on bank erosion and channel morphology, Fever River, Pioneer Farm, Wisconsin, 2004

    USGS Publications Warehouse

    Peppler, Marie C.; Fitzpatrick, Faith A.

    2005-01-01

    Bank erosion is a natural process that occurs in meandering streams (Leopold and others, 1964); however, in the Midwestern United States, historical and present agricultural activities in uplands, riparian areas, and channels have increased erosion (Waters, 1995; Lyons and others, 2000; Simon and Rinaldi, 2000; and Knox, 2001). Reducing streambank erosion is important because sediment carried by streams has adverse environmental effects; for example, sediment carried by streams is a major source of phosphorus (Waters, 1995). Continuous cattle grazing in riparian areas may increase local erosion processes in a meandering stream by removal or trampling of bank vegetation, which in turn affects channel morphology, water chemistry, and fish and aquatic-insect habitat (Kauffman and Krueger, 1984; Fitch and Adams, 1998). However, studies of livestock exclusion from riparian corridors have shown mixed results in reducing bank erosion (Trimble, 1994; Sarr, 2002). Some studies have shown reduced bank erosion after row-cropped or continuously grazed riparian areas are converted to managed grazing (see inset box) (Lyons and others, 2000; Sovell and others, 2000; and Zaimes and others, 2004).

  12. Slow Long-Term Erosion Rates of Banks Peninsula, New Zealand

    NASA Astrophysics Data System (ADS)

    Dudunake, T.; Nichols, K. K.; Pugsley, E.; Nelson, S.; Colton, J.

    2017-12-01

    Banks Peninsula, located south of Christchurch, New Zealand, is composed of a multi-aged complex of volcanic centers. The oldest, Lyttelton Volcano is 12 to 10 Ma, and 350 km3. The largest volcano, Akaroa Volcano, is 9 to 8 Ma and 1200 km3. Both of these volcanoes have large embayments (Lyttelton Harbour and Akaroa Harbour) that connect the central volcano (the location of the former volcanic summits) to the ocean. The other eruptive centers, Mt. Herbert ( 9.5 to 8 Ma) and Diamond Harbor (7 to 5.8 Ma), have not eroded to sea level. We used inferred original surfaces and present day topography to calculate the volume of rock eroded from river valleys draining the flanks of Lyttelton (n=11) and Akaroa (n=26) volcanoes and from the large embayments that penetrate the eroding Lyttelton (n=8) and Akaroa (n=25) volcanoes. We used the youngest age of the eruptions as the start of erosion (Lyttelton = 10 Ma and Akaroa = 8 Ma) to determine erosion rates. Preliminary data suggest average erosion rates of 8.2 ± 2.4 m/My (averaged over 10 Ma) on the flanks of Lyttelton Volcano and 12 ± 5.1 m/My (averaged over 8 Ma) on the flanks of Akaroa Volcano. Dating control and formation processes of Lyttelton Harbour and Akaroa Harbour are poorly constrained. The youngest lava flows, Diamond Harbor, are 5.7 Ma and flow into the Lyttelton Harbour embayment. Using endmembers of embayment age for Lyttelton Harbour (10 Ma to 5.7 Ma) the erosion rates range between 18 ± 5.8 m/My and 31 ± 10 m/My. Similarly, the hillslopes of Akaroa Harbour have slow erosion rates (based on endmember ages of 8 Ma and 5.7 Ma) and range between 22 ± 18 and 31 ± 25 m/My. Even the fastest erosion rates on Banks Peninsula are an order of magnitude slower than the erosion rates of other basalt volcanoes in the world's oceans. Using a similar methodology, Tahiti is eroding between 1200 and 2700 m/Ma (Hildenbrand et al., 2008). Other erosion rates, based on sediment yields and water chemistry for La Reunion (400

  13. Decoding the drivers of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and snowmelt.

    PubMed

    Darby, Stephen E; Leyland, Julian; Kummu, Matti; Räsänen, Timo A; Lauri, Hannu

    2013-04-01

    We evaluate links between climate and simulated river bank erosion for one of the world's largest rivers, the Mekong. We employ a process-based model to reconstruct multidecadal time series of bank erosion at study sites within the Mekong's two main hydrological response zones, defining a new parameter, accumulated excess runoff (AER), pertinent to bank erosion. We employ a hydrological model to isolate how snowmelt, tropical storms and monsoon precipitation each contribute to AER and thus modeled bank erosion. Our results show that melt (23.9% at the upstream study site, declining to 11.1% downstream) and tropical cyclones (17.5% and 26.4% at the upstream and downstream sites, respectively) both force significant fractions of bank erosion on the Mekong. We also show (i) small, but significant, declines in AER and hence assumed bank erosion during the 20th century, and; (ii) that significant correlations exist between AER and the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Of these modes of climate variability, we find that IOD events exert a greater control on simulated bank erosion than ENSO events; but the influences of both ENSO and IOD when averaged over several decades are found to be relatively weak. However, importantly, relationships between ENSO, IOD, and AER and hence inferred river bank erosion are not time invariant. Specifically, we show that there is an intense and prolonged epoch of strong coherence between ENSO and AER from the early 1980s to present, such that in recent decades derived Mekong River bank erosion has been more strongly affected by ENSO.

  14. Decoding the drivers of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and snowmelt

    PubMed Central

    Darby, Stephen E; Leyland, Julian; Kummu, Matti; Räsänen, Timo A; Lauri, Hannu

    2013-01-01

    We evaluate links between climate and simulated river bank erosion for one of the world's largest rivers, the Mekong. We employ a process-based model to reconstruct multidecadal time series of bank erosion at study sites within the Mekong's two main hydrological response zones, defining a new parameter, accumulated excess runoff (AER), pertinent to bank erosion. We employ a hydrological model to isolate how snowmelt, tropical storms and monsoon precipitation each contribute to AER and thus modeled bank erosion. Our results show that melt (23.9% at the upstream study site, declining to 11.1% downstream) and tropical cyclones (17.5% and 26.4% at the upstream and downstream sites, respectively) both force significant fractions of bank erosion on the Mekong. We also show (i) small, but significant, declines in AER and hence assumed bank erosion during the 20th century, and; (ii) that significant correlations exist between AER and the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Of these modes of climate variability, we find that IOD events exert a greater control on simulated bank erosion than ENSO events; but the influences of both ENSO and IOD when averaged over several decades are found to be relatively weak. However, importantly, relationships between ENSO, IOD, and AER and hence inferred river bank erosion are not time invariant. Specifically, we show that there is an intense and prolonged epoch of strong coherence between ENSO and AER from the early 1980s to present, such that in recent decades derived Mekong River bank erosion has been more strongly affected by ENSO. PMID:23926362

  15. Phosphorus load to surface water from bank erosion in a Danish lowland river basin.

    PubMed

    Kronvang, Brian; Audet, Joachim; Baattrup-Pedersen, Annette; Jensen, Henning S; Larsen, Søren E

    2012-01-01

    Phosphorus loss from bank erosion was studied in the catchment of River Odense, a lowland Danish river basin, with the aim of testing the hypothesis of whether stream banks act as major diffuse phosphorus (P) sources at catchment scale. Furthermore, the study aimed at analyzing the impact of different factors influencing bank erosion and P loss such as stream order, anthropogenic disturbances, width of uncultivated buffer strips, and the vegetation of buffer strips. A random stratified procedure in geographical information system (GIS) was used to select two replicate stream reaches covering different stream orders, channelized vs. naturally meandering channels, width of uncultivated buffer strips (≤ 2 m and ≥ 10 m), and buffer strips with different vegetation types. Thirty-six 100-m stream reaches with 180 bank plots and a total of 3000 erosion pins were established in autumn 2006, and readings were conducted during a 3-yr period (2006-2009). The results show that neither stream size nor stream disturbance measured as channelization of channel or the width of uncultivated buffer strip had any significant ( < 0.05) influence on bank erosion and P losses during each of the 3 yr studied. In buffer strips with natural trees bank erosion was significantly ( < 0.05) lower than in buffer strips dominated by grass and herbs. Gross and net P input from bank erosion amounted to 13.8 to 16.5 and 2.4 to 6.3 t P, respectively, in the River Odense catchment during the three study years. The net P input from bank erosion equaled 17 to 29% of the annual total P export and 21 to 62% of the annual export of P from diffuse sources from the River Odense catchment. Most of the exported total P was found to be bioavailable (71.7%) based on a P speciation of monthly suspended sediment samples collected at the outlet of the river basin. The results found in this study have a great importance for managers working with P mitigation and modeling at catchment scale. Copyright © by the

  16. Historic evidence for a link between riparian vegetation and bank erosion in the context of instream habitat restoration

    NASA Astrophysics Data System (ADS)

    Salant, N.; Baillie, M. B.; Schmidt, J. C.; Intermountain CenterRiver Rehabilitation; Restoration

    2010-12-01

    An analysis of historic aerial photographs of the upper Strawberry River, Utah, demonstrates that rates of lateral bank erosion peaked with the loss of riparian cover during periods of willow removal for livestock grazing. Erosion rates have declined over the past two decades, concurrent with the removal of livestock grazing, modest increases in riparian cover, and the return of natural flows. Contrary to perception, present-day erosion rates are actually lower than pre-disturbance rates. Recent restoration activities to stabilize stream banks were based on the assumption that high erosion rates were contributing excess sediment to the streambed and degrading spawning gravels. However, our results show that while the historic loss of riparian vegetation contributed to an increase in bank erosion rates, bank erosion rates were not high prior to restoration. Furthermore, streambed samples show that the percentage of fine sediment in the substrate is insufficient to have a significant biological impact, supporting the finding that present-day bank erosion rates are not excessive relative to pre-disturbance rates. Current bank stabilization efforts were therefore motivated by a limited understanding of system conditions and history, suggesting that these restoration activities are unnecessary and misconceived. Our results demonstrate the large influence of riparian vegetation on bank erosion and instream habitat, as well as the importance of incorporating system history into restoration design.

  17. Lidar quantification of bank erosion in Blue Earth County, Minnesota.

    PubMed

    Kessler, A C; Gupta, S C; Dolliver, H A S; Thoma, D P

    2012-01-01

    Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  19. Predicting the Rate of River Bank Erosion Caused by Large Wood Log

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Rutherfurd, I.; Ghisalberti, M.

    2016-12-01

    When a single tree falls into a river channel, flow is deflected and accelerated between the tree roots and the bank face, increasing shear stress and scouring the bank. The scallop shaped erosion increases the diversity of the channel morphology, but also causes concern for adjacent landholders. Concern about increased bank erosion is one of the main reasons for large wood to still be removed from channels in SE Australia. Further, the hydraulic effect of many logs in the channel can reduce overall bank erosion rates. Although both phenomena have been described before, this research develops a hydraulic model that estimates their magnitude, and tests and calibrates this model with flume and field measurements, with logs with various configurations and sizes. Specifically, the model estimates the change in excess shear stress on the bank associated . The model addresses the effect of the log angle, distance from bank, and log size and flow condition by solving the mass continuity and energy conservation between the cross section at the approaching flow and contracted flow. Then, we evaluate our model against flume experiment preformed with semi-realistic log models to represent logs in different sizes and decay stages by comparing the measured and simulated velocity increase in the gap between the log and the bank. The log angle, distance from bank, and flow condition are systemically varied for each log model during the experiment. Final, the calibrated model is compared with the field data collected in anabranching channels of Murray River in SE Australia where there are abundant instream logs and regulated and consistent high flow for irrigation. Preliminary results suggest that a log can significantly increase the shear stress on the bank, especially when it positions perpendicular to the flow. The shear stress increases with the log angle in a rising curve (The log angle is the angle between log trunk and flow direction. 0o means log is parallel to flow with

  20. Erosion processes by water in agricultural landscapes: a low-cost methodology for post-event analyses

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography

  1. [Seasonal dynamics and vertical distribution pattern of bud bank in different erosion environments on hilly-gully Loess Plateau of Northwest China].

    PubMed

    Du, Hua-Dong; Jiao, Ju-Ying; Kou, Meng; Wang, Ning

    2013-05-01

    This paper studied the vegetation composition, bud composition, and the seasonal dynamics and vertical distribution pattern of bud bank in five erosion environments (sunny gully slope, sunny hilly slope, hilltop, shady hilly slope, and shady gully slope) on the hilly-gully Loess Plateau of North Shaanxi. In the study area, the perennial species with perennial bud bank accounted for 80.3% of the total species, while the annual species with seasonal bud bank took up 19.7% of the total. In vegetation turning-green season, there was a relatively large perennial bud bank stock on the sunny hilly-gully slope where serious erosion occurred, while seasonal bud bank showed a higher bud bank density in blossom and fruit-setting season on the hilltop and two shady slopes where soil erosion intensity was relatively gentle. The proportion of underground bud bank to total perennial bud bank in different erosion environments was relatively stable. On the land surface, the perennial bud bank stock was larger on the sunny slope where the soil disturbance often occurred, whereas the seasonal bud bank stock was larger on the shady slope and hilltop. Due to the different species composition of plant communities in different erosion environments, in addition to the disturbance of soil erosion and the seasonal plant regeneration, the seasonal dynamics and vertical distribution pattern of bud bank changed. It was suggested that bud bank played an important role in the vegetation regeneration after the disturbance of soil erosion on the hilly-gully Loess Plateau of North Shaanxi.

  2. Contribution of bank erosion to the sediment budget of a drained agricultural lowland catchment

    NASA Astrophysics Data System (ADS)

    Cerdan, Olivier; Foucher, Anthony; Vandromme, Rosalie; Salvador-Blanes, Sébastien; Gay, Aurore; Landemaine, Valentin; Evrard, Olivier

    2017-04-01

    Following the shift towards more intensive agriculture in cultivated lowlands in Europe, field sizes have increased and stream valley meanderings have been removed and realigned along new straight field borders. These modifications have led to profound alterations of the hydromorphology of the streams. To test the impact of these modifications, the long-term and current volumes of sediment originating from stream banks were calculated as they provided potential sources of sediment in a large pond located at the outlet of a small agricultural lowland basin under strong anthropogenic pressure. Bank erosion was measured using several methodologies, i) over a short period using a set of erosion pins along a small stream (1400 m long) to quantify the material exported during a single winter season (2012/2013); ii) over the last 69 years using an original approach involving the comparison of a compilation of three-dimensional historical stream redesign plans from 1944 vs. new measurements conducted in 2013 (DGPS and LiDAR data); iii) over several decades by using tracers (137Cs) that can differentiate between surface and subsoil erosion. At the catchment scale, total sediment exports were estimated from 1945 to 2013 combining seismic imagery and core dating in the lake. Sediment exports decreased with time, from 300 t. km-2.yr-between 1954 and 1980 to 95 t. km-2.yr-1 between 1980 and 2013. Today, erosion rates recorded at the outlet of the catchment vary between 90-102 t.km-2.yr-1. Therefore, the order of magnitude of the mean export rate is approximately 180 t. km-2.yr-1 for the last 70 years. The contribution of channel banks to this sediment export was the highest ( 30%) between 1954 and 1980 when the ditches were constructed. For the entire period since the landscape modification, the contribution of bank erosion is lower but still reaches 20%. Bank erosion can therefore be considered as a significant contributor to the sediment budget of the lowland catchments that

  3. Bank erosion of navigation canals in the western and central Gulf of Mexico

    USGS Publications Warehouse

    Thatcher, Cindy A.; Hartley, Stephen B.; Wilson, Scott A.

    2011-01-01

    Erosion of navigation canal banks is a direct cause of land loss, but there has been little quantitative analysis to determine why certain major canals exhibit faster widening rates (indicative of erosion) than others in the coastal zones of Texas, Louisiana, Mississippi, and Alabama. We hypothesize that navigation canals exhibit varying rates of erosion based on soil properties of the embankment substrate, vegetation type, geologic region (derived from digital versions of state geologic maps), and the presence or absence of canal bank armaments (that is, rock rip-rap, concrete bulkheads, or other shoreline protection structures). The first objective of this project was to map the shoreline position and substrate along both banks of the navigation canals, which were digitized from 3 different time periods of aerial photography spanning the years of 1978/79 to 2005/06. The second objective was to quantify the erosion rates of the navigation canals in the study area and to determine whether differences in erosion rates are related to embankment substrate, vegetation type, geologic region, or soil type. To measure changes in shoreline position over time, transects spaced at 50-m (164-ft) intervals were intersected with shorelines from all three time periods, and an annual rate of change was calculated for each transect. Mean annual rates of shoreline change ranged from 1.75 m/year (5.74 ft/year) on the west side of the Atchafalaya River, La., where there was shoreline advancement or canal narrowing, to -3.29 m/year (-10.79 ft/year) on the south side of the Theodore Ship Channel, Ala., where there was shoreline retreat or erosion. Statistical analysis indicated that there were significant differences in shoreline retreat rates according to geologic region and marsh vegetation type, and a weak relationship with soil organic content. This information can be used to better estimate future land loss rates associated with navigation canals and to prioritize the location of

  4. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    PubMed

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  5. Factors Influencing Bank Geomorphology and Erosion of the Haw River, a High Order River in North Carolina, since European Settlement

    PubMed Central

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2–3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956

  6. A physically-based channel-modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS bank-stability and toe-erosion model (BSTEM)

    USDA-ARS?s Scientific Manuscript database

    Classical, one-dimensional, mobile bed, sediment-transport models simulate vertical channel adjustment, raising or lowering cross-section node elevations to simulate erosion or deposition. This approach does not account for bank erosion processes including toe scour and mass failure. In many systems...

  7. Legacy effects of colonial millponds on floodplain sedimentation, bank erosion, and channel morphology, MID-Atlantic, USA

    USGS Publications Warehouse

    Schenk, E.R.; Hupp, C.R.

    2009-01-01

    Many rivers and streams of the Mid-Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004-2007 at five sites along a 28-km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28-km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (-5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28-km reach produced a net mean sediment loss of 5,634 Mg/year for 2004-2007, indicating that bank

  8. Using Braid Plain Ecology and Geomorphology to Inform Bank Erosion Management along a Braided River, Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.; McTeague, M. L.

    2010-12-01

    Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on

  9. Spatial patterns of (137)Cs inventories and soil erosion from earth-banked terraces in the Yimeng Mountains, China.

    PubMed

    Zhang, Yunqi; Long, Yi; An, Juan; Yu, Xingxiu; Wang, Xiaoli

    2014-10-01

    The Yimeng Mountains is one of China's most susceptible regions to soil erosion. In this region, slopes are composed of granite- or gneiss-derived soils that are commonly cultivated using earth-banked terraces. Based on the (137)Cs measurement for nine reference cores, the present study analysed the spatial patterns of (137)Cs inventory and soil erosion using 105 sampling points in a seven-level earth-banked terrace system. The mean (137)Cs inventory, standard deviation, coefficient of variation, and allowable error for the nine reference cores were 987 Bq m(-2), 71 Bq m(-2), 7%, and 6%, respectively, values that may reflect the heterogeneity of the initial (137)Cs fallout deposit. Within each terrace, the (137)Cs inventory generally increases from the rear edge to the front edge, accompanied by a decrease in the erosion rate. This results from planation by tillage and rainfall runoff during the development of the earth-banked terraces. Across the entire seven-level terrace system, (137)Cs inventories decrease from the highest terrace downwards, but increase in the lower terraces, whereas erosion rate displays the opposite trend. These trends are the result of the combined effects of the earth-bank segmented hillslope, the limited protection of the earth banks, and rainfall runoff in combination with tillage. The high coefficients of variation of (137)Cs inventories for the 21 sampling rows, with a mean value of 44%, demonstrate the combined effects of variations in original microtopography, anthropogenic disturbance, the incohesive soils weathered from underlying granite, and the warm climate. Although earth-banked terraces can reduce soil erosion to some extent, the estimated erosion rates for the study area are still very high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Combining Field and Laboratory Experiments in Order to Understand Interactions Between Flow, Sediment, Vegetation And Bank Erosion in Riparian Rehabilitation Works

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Gorrick, S.; Kalma, J.; Cook, N.; Outhet, D.; Raine, A.

    2005-12-01

    Riparian lands are important for maintaining viable ecosystems, improving water quality and reducing sediment yields. Yet, riparian lands are frequently neglected, degraded and poorly managed. In many Australian riverine zones clearing or grazing of native riparian vegetation has resulted in varying degrees of erosion, sedimentation and degradation of aquatic ecosystems. Reintroducing riparian vegetation is one of the preferred methods for improving bank stability, reducing bank erosion to natural rates and rehabilitating channels. The present research aims to explore how reintroduced riparian vegetation modifies the flow and sediment transport patterns and at the same time how the vegetation is affected by flow and sediment. Both field experimentation and laboratory studies will lead to basic understanding of the processes involved and will help the efficient design of plantings for riparian rehabilitation. In order to be able to reproduce the most important processes in a laboratory physical model, a field site with a relatively simple geometry has been selected for the study. The site is on a small sand bed stream in the Hunter Valley in NSW. The reach has a large radius bend with no riparian vegetation on the outer bank, where erosion occurs periodically. Reintroduction of vegetation is planned for October 2005, with pre and post monitoring stages running from March 2005 to August 2008. Laboratory physical modelling based on field characteristics and with varying flow discharges and plant arrangement will provide information to help develop, adapt and test quantitative models of flow dynamics, sediment transport and bank erosion incorporating the effects of vegetation. These results can then be used by river managers when they are developing rehabilitation strategies.

  11. Riverbank erosion induced by gravel bar accretion

    NASA Astrophysics Data System (ADS)

    Klösch, Mario; Habersack, Helmut

    2010-05-01

    Riverbank erosion is known to be strongly fluvially controlled and determination of shear stresses at the bank surface and at the bank toe is a crucial point in bank erosion modeling. In many modeling attempts hydraulics are simulated separately in a hydrodynamic-numerical model and the simulated shear stresses are further applied onto the bank surface in a bank erosion model. Hydrodynamics are usually simulated at a constant geometry. However, in some cases bed geometry may vary strongly during the event, changing the conditions for hydrodynamics along the bank. This research seeks to investigate the effect of gravel bar accretion during high discharges on final bank retreat. At a restored section of the Drava River bed widenings have been implemented to counter bed degradation. There, in an initiated side-arm, self-dynamic widening strongly affects bed development and long-term connectivity to the main channel. Understanding the riverbank erosion processes there would help to improve planning of future restoration measures. At one riverbank section in the side-arm large bank retreat was measured repeatedly after several flow events. This section is situated between two groins with a distance of 60 m, which act as lateral boundaries to the self-widening channel. In front of this bank section a gravel bar developed. During low flow condition most discharge of the side-arm flows beside the gravel bar along the bank, but shear stresses are too low for triggering bank erosion. For higher discharges results from a two-dimensional hydrodynamic-numerical model suggested shear stresses there to be generally low during the entire events. At some discharges the modeled flow velocities even showed to be recirculating along the bank. These results didn't explain the observed bank retreat. Based on the modeled shear stresses, bank erosion models would have greatly underestimated the bank retreat induced by the investigated events. Repeated surveys after events applying

  12. Modeling stream-bank erosion in the Southern Blue Ridge Mountains

    Treesearch

    James C. Rogers; David S. Leigh

    2013-01-01

    Deforestation, followed by soil erosion and subsequent deposition of alluvium in valleys, played a critical role in the formation of historical terraces in much of the Southern Blue Ridge Mountains. Such terraces add a significant amount of sediment to the tributaries of the region as streams laterally erode the terrace banks. This study examined the contribution of...

  13. Improvements in Quantifying Bank Erosion for Sediment Budgets within the Chesapeake Bay Watershed by Integrating Structure-From-Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Bell, J. M.; Cashman, M. J.; Nibert, L.; Jackson, S.

    2017-12-01

    Fine sediment is a major source of pollution due to its ability to attenuate light, smother habitat, and sorb and transport nutrients, such as phosphorus and nitrogen. Piedmont streams in the Mid-Atlantic region of the United States are frequently characterized as incised with steep, highly erodible banks of legacy sediment that can contribute to high sediment loads. Multiple sediment fingerprinting studies in this region have demonstrated that stream banks can contribute a large proportion of the total sediment load, but stream banks are frequently overlooked in sediment delivery models and Total Maximum Daily Load allocations. The direct quantification of bank erosion is therefore essential to producing accurate sediment budgets, which are needed to inform the targeted mitigation and remediation of degraded fluvial systems. This study contrasts the use of traditional bank pin measurements, structure-from-motion photogrammetric techniques, and aerial LIDAR at sites within Maryland, USA. Bank pin measurements, representing only single points in space, were found to be highly variable with subjective initial placement often missing nearby, large-scale bank failures. In contrast, photogrammetric techniques, using structure-from-motion, were able to capture a more spatially-complete streambank profile. Using a Nikon D810 camera, bank scans were able to reconstruct banks with a RMSE as low as 0.1mm and repeat scan alignment resolution of <2mm. However, during summer months, photogrammetry exhibited some coverage gaps in areas of high vegetation density. Difference-maps rendered from multiple UAV structure-from-motion scans provided an ability to rapidly assess changes to river channel morphology during leaf-off conditions. Additionally, UAV-derived scans were georeferenced over historical LIDAR data to evaluate historical bank-erosion over multi-year timescales. Future work will include difference mapping channel features at watershed scales. This photogrammetric

  14. Reduction of livelihood risk for river bank erosion affected villagers

    NASA Astrophysics Data System (ADS)

    Majumder, S. Sen; Fox, D. M.; Chakrabari, S.; Bhandari, G.

    2014-12-01

    Bank erosion process of the Ganga River created a serious livelihood risk for the villagers situated on left bank of the river in Malda district of the State of West Bengal, India since last four decades. Due to the erosion of agriculture land by the river, most of the villagers having agriculture as their only means of livelihood became jobless suddenly. Presently they are living in a miserable condition. One of the main objectives of this paper is to find out an alternative means of livelihood for the victims to improve their miserable socio-economic condition. It has been found from field survey that some erosion affected villagers have started to live and practice agriculture temporarily on the riverine islands (large and stable since thirteen years) as these islands have very fertile soil. If the re-emerged land plots can again be demarcated on the newly formed islands and distributed among the landless people to practice agriculture over there, then it will be a useful alternative livelihood strategy for the victims. The demarcation of re-emerged plots can be achieved by georeferencing the cadastral maps and then overlaying the plots on the present river course. In the present study area geo-referencing process of the cadastral maps became a serious issue as the study area has been very dynamic in terms of land cover and land use. Most of the villages were lost into the river course. Thus the common permanent features, required for geo-referencing, shown in the cadastral maps (surveyed during 1954-1962) were not found in the present satellite images. The second important objective of the present study is to develop a proper methodology for geo-referencing the cadastral maps of this area. The Spatial Adjustment Transformation and Automatic Digitization tools of Arc GIS were used to prepare geo-referenced plot maps. In Projective Transformation method the geometrically corrected block maps having village boundaries were used as source file. Then the

  15. A West Virginia case study: does erosion differ between streambanks clustered by the bank assessment of nonpoint source consequences of sediment (BANCS) model parameters?

    Treesearch

    Abby L. McQueen; Nicolas P. Zegre; Danny L. Welsch

    2013-01-01

    The integration of factors and processes responsible for streambank erosion is complex. To explore the influence of physical variables on streambank erosion, parameters for the bank assessment of nonpoint source consequences of sediment (BANCS) model were collected on a 1-km reach of Horseshoe Run in Tucker County, West Virginia. Cluster analysis was used to establish...

  16. Monitoring bank erosion at the Locke Island Archaeological National Register District: Summary of 1996/1997 field activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickens, P.R.; Bjornstad, B.N.; Nickens, P.R.

    1998-08-01

    Locke Island is located in the Columbia River in south-central Washington. The US Department of Energy (DOE) owns Locke Island as part of its Hanford Site. In the 1960s and 1970s, as a result of intensive irrigation developments on the inland shoreline to the east of the island, the White Bluffs, which form the eastern boundary of the Columbia River channel in this area, began to show geological failures as excess irrigation water seeped out along the bluffs. One of the largest such failures, known as the Locke Island Landslide, is located just east of Locke Island. By the earlymore » 1980s, this landslide mass had moved westward into the river channel toward the island and was diverting the current at the island`s eastern perimeter. Erosion of the bank in the center of the island accelerated, threatening the cultural resources. By the early 1990s, the erosion had exposed cultural features and artifacts along the bank, leading to the beginning of intermittent monitoring of the cutbank. In 1994, DOE initiated more scheduled, systematic monitoring of island erosion to better understand the physical processes involved as well as mitigate ongoing loss of the archaeological record.« less

  17. Calculating erosion rates of river bank sediment by combining field measurements of erodibility parameters and small-scale topographic features – A case study at the Danube River

    USDA-ARS?s Scientific Manuscript database

    This paper examines the application of a method for calculating fluvial erosion on river banks. In the investigated area the determination of potential erosion rates are essential to estimating the initiated river widening processes and their effect on navigation. A mini-jet device was employed, for...

  18. Seepage erosion mechanisms of bank collapse: three-dimensional seepage particle mobilization and undercutting

    USDA-ARS?s Scientific Manuscript database

    Seepage flow initiates undercutting, similar to development and headward migration of internal gullies, by liquefaction of soil particles, followed by mass wasting of the bank. Although seepage erosion has three-dimensional characteristics, two-dimensional lysimeters have been used in previous resea...

  19. The similarity of river evolution at the initial stage of channel erosion

    NASA Astrophysics Data System (ADS)

    Lin, Jiun-Chuan

    2014-05-01

    The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.

  20. Baseline channel morphology and bank erosion inventory of South Fork Campbell Creek at Campbell Tract, Anchorage, Alaska, 1999 and 2000

    USGS Publications Warehouse

    Curran, Janet H.

    2001-01-01

    South Fork Campbell Creek drains largely undeveloped land in Anchorage, Alaska, but supports heavy use near the Bureau of Land Management (BLM) Campbell Tract facility for recreation and environmental education. To help assess the impacts of human activities in the basin on biological communities, particularly aquatic and terrestrial biota, morphological changes to the channel bed and banks were monitored for 2 years. Erosion conditions and rates of change were measured and 11 transects were surveyed in three reaches of Campbell Creek near the BLM Campbell Creek Science Center in 1999. Repeat measurements at these 33 transects in 2000 documented noticeable differences between horizontal or vertical channel position at eight transects. Repeat measurements of 51 erosion pins at the survey transects provided details of bank erosion between the 2 years. Annual erosion rates at the erosion pins ranged from 0.81 foot per year of erosion to 0.16 foot per year of deposition.

  1. The similarity of river evolution at the initial stage of channel erosion

    NASA Astrophysics Data System (ADS)

    Lin, J.

    2011-12-01

    The similarity of river evolution at the initial stage of channel erosion Jiun-Chuan Lin Department of Geography, National Taiwan University Abstract The study deals with a comparison study of two types of rocks at the initial stage of channel erosion in Taiwan. It is interesting that channel erosion at different types of rocks shows some similarity. There are two types of rocks: sandstone at Ta-an River, central Taiwan where river channel erosion from the nick point because of earthquake uplifting and mud rock at Tainan, southern Taiwan where rill erosion on a flat surface after artificial engineering. These two situations are both at the beginning stage of channel erosion, there are some similar landform appeared on channels. However the rate of erosion and magnitude of erosion are different. According to the using of photogrammetry method to reconstruct archive imageries and field surveying by total station and 3D scanner at different stages. The incision rate is high both at the Ta-an River and the bank erosion and it is even more obvious at mud rock area because of erodibility of mud rock. The results show that bank erosion and incision both are obvious processes. Bank erosion made channel into meander. The bank erosion cause slope in a asymmetric channel profile. The incision process will start at the site where land is relatively uplifted. This paper demonstrates such similarity and landform characters.

  2. Grazing management effects on stream bank erosion and phosphorus delivery to a pasture stream

    USDA-ARS?s Scientific Manuscript database

    Pasture lands may deliver significant sediment and phosphorus (P) to surface waters. To determine the effects of beef (Bos taurus) grazing practices on stream bank erosion and P losses, three treatments [rotational stocking (RS), continuous stocking with restricted stream access (CSR), and continuou...

  3. Erosion of Perennially Frozen Streambanks,

    DTIC Science & Technology

    1983-12-01

    erosional processes. Factors that determine rates and locations of erosion in- dude physical, thermal and structural properties of bank sediments , stream...Program, Environmental Impact, and Civil Works Work Unit CWIS 31722, Sediment Transport and Deposition in Northern Rivers; Research Area, Flood Control...between bank and bluff zones of eroding, perennially frozen streambanks 4 3. Cantilevered blocks of frozen sediment above thermoerosional niche, northern

  4. Bank Record Processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Barnett Banks of Florida, Inc. operates 150 banking offices in 80 Florida cities. Banking offices have computerized systems for processing deposits or withdrawals in checking/savings accounts, and for handling commercial and installment loan transactions. In developing a network engineering design for the terminals used in record processing, an affiliate, Barnett Computing Company, used COSMIC's STATCOM program. This program provided a reliable network design tool and avoided the cost of developing new software.

  5. Enhanced sediment loading facilitates point bar growth and accelerates bank erosion along a modelled meander bend on the Sacramento River, USA

    NASA Astrophysics Data System (ADS)

    Ahmed, J.; Constantine, J. A.; Hales, T. C.

    2017-12-01

    Meandering channels provide a conduit through which sediment and water is routed from the uplands to the sea. Alluvial material is periodically stored and transported through the channel network as permitted by the prevailing hydrologic conditions. The lowlands are typically characterised by accumulations of sediment attached to the inner banks of meander bends (point bars). These bedforms have been identified as important for facilitating a link between in-stream sediment supplies and channel dynamism. A 2D curvilinear hydrodynamic model (MIKE 21C) was used to perform a number of experiments in which the sediment load was adjusted to investigate how changes in alluvial material fluxes affect the development of point bars and the resultant patterns of bank erosion. A doubling of the sediment load caused a longitudinal increase in the bar in the upstream direction and caused a coeval doubling of the transverse channel slope at the meander apex. The upstream growth of the point bar was accompanied by an increase in length over which lateral migration took place at the outer bank. The magnitude of outer bank erosion was 9-times greater for the high-sediment simulation. These results suggest that enhanced sediment loads (potentially the result of changes in land use or climate) can trigger greater rates of bank erosion and channel change through the sequestration of alluvial material on point bars, which encourage high-velocity fluid deflection towards the outer bank of the meander. This controls riparian habitat development and exchanges of sediment and nutrients across the channel-floodplain interface.

  6. Wind erosion processes and control

    USDA-ARS?s Scientific Manuscript database

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  7. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    NASA Astrophysics Data System (ADS)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order < 3). This may imply that river sediment play different roles between down- and upstream segments. River sediment in the upstream is an erosion agent vertically

  8. Geomorphic Effects of Gravel Augmentation and Bank Re-erosion on the Old Rhine River Downstream From The Kembs Dam (France, Germany)

    NASA Astrophysics Data System (ADS)

    Chardon, V.; Laurent, S.; Piegay, H.; Arnaud, F.; Houssier, J.; Serouilou, J.; Clutier, A.

    2017-12-01

    The Old Rhine is a 50 km by-passed reach downstream from the Kembs diversion dam in the Alsacian plain (France/Germany). It has been impacted by engineering works since the 19th century. This reach exhibits poor ecological functionalities due to severe geomorphological alterations (e.g., channel bed stabilization, narrowing, degradation and armoring, sediment deficit). In the frame of the Kembs power plant relicensing (2010), Électricité de France has undertaken two gravel augmentations (18 000 and 30 000 m3) and three controlled bank erosions following riprap protection removal over 300 m bank length to enhance bedload transport and habitat diversification. A first pilot gravel augmentation was also implemented in 2010 (23 000 m3). A geomorphological monitoring based on bedload tracking, grain size analyses and topo-bathymetric surveys has been performed on the three gravel augmentation reaches and one of the controlled bank erosion sites to assess the efficiency and sustainability of these actions (2010-2017). Results show that augmented gravels are entrained for a Q2 flood. Gravels moved several hundred meters for moderate floods and up to one kilometer for more intense floods (Q15), while sediment deposition mainly diffused within the channel. Morphological and grain size diversification, including sediment refinement, are still relatively limited following gravel augmentation. Furthermore, sediment armoring reestablished once the sediment wave moved more downstream, after only four to six years, due to the stability and the narrowness of the channel but also by the absence of upstream bedload supply. Habitat diversification was higher on the controlled bank erosion site thanks to the presence of two artificial groynes, even though eroded sediment volumes were lower than expected (less than 1500m3 for a Q15 flood). This monitoring demonstrates gravel augmentations are not sufficient to really diversify geomorphological conditions of the Old Rhine. Channel

  9. Two case studies in river naturalization: planform migration and bank erosion control

    NASA Astrophysics Data System (ADS)

    Abad, J. D.; Guneralp, I.; Rhoads, B. L.; Garcia, M. H.

    2005-05-01

    A sound understanding of river planform evolution and bank erosion control, along with integration of expertise from several disciplines is required for the development of predictive models for river naturalization. Over the last few years, several methodologies have been presented for naturalization projects, from purely heuristic to more advanced methods. Since the time and space scales of concern in naturalization vary widely, there is a need for appropriate tools at a variety of time and space scales. This study presents two case studies at different scales. The first case study describes the prediction of river planform evolution for a remeandering project based on a simplified two-dimensional hydrodynamic model. The second case study describes the applicability of a Computational Fluid Dynamics (CFD) model for evaluating the effectiveness of bank-erosion control structures in individual meander bends. Understanding the hydrodynamic influence of control structures on flow through bends allows accurate prediction of depositional and erosional distribution patterns, resulting in better assessment on river planform stability, especially for the case of natural complex systems. The first case study introduces a mathematical model for evolution of meandering rivers that can be used in remeandering projects. In United States in particular, several rivers have been channelized in the past causing environmental and ecological problems. Following Newton's third law, "for every action, there is a reaction", naturalization techniques evolve as natural reactive solutions to channelization. This model (herein referred as RVR Meander) can be used as a stand-alone Windows application or as module in a Geographic Information System. The model was applied to the Poplar Creek re-meanderization project and used to evaluate re-meandering alternatives for an approximately 800-meter long reach of Poplar Creek that was straightened in 1938. The second case study describes a

  10. Evaluating a process-based model for use in streambank stabilization and stream restoration: insights on the bank stability and toe erosion model (BSTEM)

    USDA-ARS?s Scientific Manuscript database

    Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model ...

  11. Interrill soil erosion processes on steep slopes

    USDA-ARS?s Scientific Manuscript database

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  12. Quantifying streambank erosion: a comparative study using an unmanned aerial system (UAS) and a terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Rizzo, D.; Hamshaw, S. D.; Dewoolkar, M.; ONeil-Dunne, J.; Frolik, J.; Bryce, T. G.; Waldron, A. Y.

    2015-12-01

    Streambank erosion is a common non-point source contributing to suspended sediment and nutrient loading of waterways, and recently has been estimated to account for 30-80% of sediment loading into receiving waters. There is interest in developing reliable methods to quantify bank erosion in watersheds, so effective management strategies can be devised. However, current methods can be either cost prohibitive or unreliable. Direct measurement approaches (surveys and erosion pins) are labor intensive and yield site-specific measurements that are limited for extrapolation to larger scales. Similar issues arise with analytical methods such as slope stability analysis, which require material parameters that are resource intensive to determine. Newer approaches such as use of aerial LiDAR data have proved effective for watershed level assessment, but come with long turnaround times and high cost. Terrestrial laser scanning (TLS) is also effective and offers high accuracy, however collection over large areas is impractical and post-processing is labor intensive. New technology in the form of unmanned aerial systems (UAS) has the potential to significantly enhance the ability to monitor channel migration and quantify bank erosion at variable scales. In this study, 20 km of the Mad and Winooski Rivers in Vermont were flown using a senseFly eBee UAS. Flights were made in spring and fall 2015 in leaf-off conditions with selected portions also flown after large storms in the summer. Change in bank profiles between spring and fall flights provide a comprehensive estimate of bank erosion along the study reaches. Six sites with varying bank heights, erosion sensitivity, and vegetation conditions were selected for simultaneous surveying using a TLS. Point cloud data from both the TLS and UAS were compared to assess the accuracy of the UAS for capturing the bank profile. Changes in bank cross-sections and in volumes calculated from 3D digital surface models were used to compare the

  13. Interactions between Point Bar Growth and Bank Erosion on a Low Sinuosity Meander Bend in an Ephemeral Channel: Insights from Repeat Topographic Surveys and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Ursic, M.; Langendoen, E. J.

    2017-12-01

    Interactions between point bar growth, bank migration, and hydraulics on meandering rivers are complicated and not well understood. For ephemeral streams, rapid fluctuations in flow further complicate studying and understanding these interactions. This study seeks to answer the following `cause-and-effect' question: Does point bar morphologic adjustment determine where bank erosion occurs (for example, through topographic steering of the flow), or does local bank retreat determine where accretion/erosion occurs on the point bar, or do bank erosion and point bar morphologic adjustment co-evolve? Further, is there a response time between the `cause-and-effect' processes and what variables determine its magnitude and duration? In an effort to answer these questions for an ephemeral stream, a dataset of forty-eight repeat topographic surveys over a ten-year period (1996-2006) of a low sinuosity bend within the Goodwin Creek Experimental Watershed, located near Batesville, MS, were utilized in conjunction with continuous discharge measurements to correlate flow variability and erosional and depositional zones, spatially and temporally. Hydraulically, the bend is located immediately downstream of a confluence with a major tributary. Supercritical flumes on both the primary and tributary channels just upstream of the confluence provide continuous measured discharges to the bend over the survey period. In addition, water surface elevations were continuously measured at the upstream and downstream ends of the bend. No spatial correlation trends could be discerned between reach-scale bank retreat, point bar morphologic adjustment, and flow discharge. Because detailed flow patterns were not available, the two-dimensional computer model Telemac2D was used to provide these details. The model was calibrated and validated for a set of runoff events for which more detailed flow data were available. Telemac2D simulations were created for each topographic survey period. Flows

  14. Bedrock river erosion measurements and modelling along a river of the Frontal Himalaya

    NASA Astrophysics Data System (ADS)

    Lave, Jerome; Dubille, Matthieu

    2017-04-01

    River incision is a key process in mountains denudation and therefore in landscape evolution models. Despite its importance, most incision models for mountain rivers rely on simplified, or quite empirical relations, and generally only consider annual average values for water discharge and sediment flux. In contrast, very few studies consider mechanistic models at the timescale of a flood, and try to bridge the gap between experimental or theoretical approaches and long term river incision studies. In this contribution, we present observations made during 7 monsoon seasons on fluvial bedrock erosion along the Bakeya river across the Frontal Himalaya in Central Nepal. Along its lower gorge, this river incises alternation of indurated sandstone and less resistant claystone, at Holocene rates larger than 10mm/yr. More importantly, its upper drainage mostly drains through non-cohesive conglomerate which allows, in this specific setting, estimating the bedload characteristics and instantaneous fluxes, i.e. a pre-requisite to test mechanistic models of fluvial erosion. During the study period, we monitored and documented the channel bank erosion in order to understand the amplitude of the erosion processes, their occurrence in relation with hydrology, in order to test time-integrated models of erosion. Besides hydrologic monitoring, erosion measurements were threefold: (1) at the scale of the whole monsoon, plucking and block removal by repeated photo surveys of a 400m long channel reach, (2) detailed microtopographic surveys of channel bedrock elevation along a few sandstone bars to document their abrasion, (3) real time measurement of fluvial bedrock wear to document erosion timing using a new erosion sensor. Results indicate that: 1. Erosion is highly dependent on rock resistance, but on average block detachment and removal is a more efficient process than bedrock attrition, and operates at a rate that permit channel banks downcutting to keep pace with Holocene uplift

  15. Advances in soil erosion research: processes, measurement, and modeling

    USDA-ARS?s Scientific Manuscript database

    Soil erosion by the environmental agents of water and wind is a continuing global menace that threatens the agricultural base that sustains our civilization. Members of ASABE have been at the forefront of research to understand erosion processes, measure erosion and related processes, and model very...

  16. Soil Erosion as a stochastic process

    NASA Astrophysics Data System (ADS)

    Casper, Markus C.

    2015-04-01

    The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be

  17. Sediment detachment and transport processes associated with internal erosion of soil pipes: Often overlooked processes of gully erosion

    USDA-ARS?s Scientific Manuscript database

    Subsurface flow can be an important process in gully erosion through its impact on decreasing soil cohesion and erosion resistance as soil water content or pressure increases and more directly by the effects of seepage forces on particle detachment and piping. The development of perched water tables...

  18. Bank stability as a risk factor for pipeline infrastructure: a Scottish example

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios; Williams, Richard; Hoey, Trevor

    2017-04-01

    Bank erosion is a spatially variable process controlled by a number of factors that are interrelated (e.g. grain size, moisture content, organic content, vegetation, bank gradient). As a risk factor, bank erosion has been strongly connected to the failure of infrastructure that crosses or is adjacent to morphologically dynamic rivers. To manage this risk, comprehensive infrastructure asset management programs should include risk assessment of all structures that cross or are near a river. In Scotland, a significant proportion of cross-river infrastructure is pipe bridges, for both clean and waste water. These river crossings are maintained and managed by Scottish Water, a supplier responsible for a 48,000 km long drinking water pipe network and a 52,000 km long wastewater pipe network. Recently, Scottish Water began a comprehensive pipe bridge asset inspection program, which incorporates the acquisition of data to assess riverbank stability. The first step in the development of this database is the use of a prototype software application (a tablet app) which simplifies the surveying process by framing specific geomorphological questions and surveying tasks. As a result, the surveys can be conducted by inspectors with no specialist training in bank stability assessment and then reviewed by those with more expertise. Here, results are presented of a review of survey data, enabling the identification of the assets that are most at risk from bank erosion. The assessment focuses on assets from catchments in two contrasting areas of Scotland; the Hebrides and Glasgow. The uncertainty analysis focuses on input data quality and the variability of information available for desk based risk assessments using Geographic Information Systems (GIS). In parallel, considerations regarding the extension of this framework towards a unified strategy for assessing bank erosion are discussed such as the selection of a statistical framework and the catchment classification process

  19. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1984-08-16

    This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.

  20. Stream bank and sediment movement associated with 2008 flooding, South Fork Iowa River

    USDA-ARS?s Scientific Manuscript database

    Stream bank erosion can cause substantial damage to riparian systems and impact the use of water downstream. Risks of bank erosion increase during extreme flood events, and frequencies of extreme events may be increasing under changing climate. We assessed bank erosion within the South Fork Iowa Riv...

  1. Disc valve for sampling erosive process streams

    DOEpatents

    Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.

    1986-01-07

    A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.

  2. Role of vegetation on erosion processes: experimental investigation

    NASA Astrophysics Data System (ADS)

    Termini, Donatella

    2014-05-01

    Investigations on soil-system ecology are ever more oriented toward quantitative information based on the study of the linkages between physical processes and ecological response in rivers. As it is known, in presence of vegetation, the hydrodynamics characteristics of flow are principally determined by the mutual interrelation between the flow velocity field and the hydraulic behavior (completely submerged or emergent) of the vegetation elements. Much effort has been made toward identifying the theoretical law to interpret the vertical profile of flow longitudinal velocity in vegetated channels. Many theoretical and experimental studies in laboratory channels have been carried out and especially the case of submerged flexible vegetation has been examined (Termini, 2012). The effects of vegetation on flow velocity are significant and of crucial importance for stabilizing sediments and reducing erosion. Vegetation has a complex effect on walls roughness and the study of the hydrodynamic conditions of flow is difficult. Although most studies based on the "boundary layer" scheme so that the hydrodynamic conditions inside and above the vegetated layer are considered separately, some authors (Ghisalberti and Nepft, 2002; Carollo et al., 2008) claim that the "mixing layer" scheme is more appropriate to define the velocity profile both inside and outside the vegetated layer. Experimental program has been recently carried out in two laboratory flumes constructed at the laboratory of Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali - University of Palermo (Italy) with real and flexible vegetation on the bed. In this paper, attention is paid to the influence of vegetation on the erosion processes both on the bed and on the channel banks. The structure of the detailed flow velocity field is analyzed and compared with that obtained in absence of vegetation. Attention is then devoted to the analysis of soil erosion mechanism. Carollo F.G., Ferro V

  3. Rio Grande Lidar Bank Erosion Monitoring: Preliminary 2007-2008 Results and Survey Design Considerations

    DTIC Science & Technology

    2010-09-01

    was reexposed by erosion following the initial event (Figure 9). Erosion of the fan toe in the vicinity of the downstream array is primarily...Digitally Capture the Topography of Sand Dunes in High Spatial Resolution. Earth Surface Processes and Landforms 29:391-398. Queensland, G. 2008

  4. Topographic changes detection through Structure-from-Motion in agricultural lands affected by erosion processes

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Pradetto Sordo, Nicoletta; Burguet, Maria; Di Prima, Simone; Terol Esparza, Enric; Tarolli, Paolo; Cerdà, Artemi

    2016-04-01

    Throughout the world, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas (Cerdà et al., 2009; Cerdan et al., 2010; García-Ruiz, 2010). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as land-use changes on large scales and unsustainable farming practices (Boardman et al., 1990; Cerdà 1994; Montgomery, 2007). Tillage operations, combined with weather conditions, are recognized to primarily influence soil erosion rates. If, on one hand, tillage operations cause uniform changes based on the tool used, on the other, weather conditions, such as rainfalls, produce more random changes, less easily traceable (Snapir et al., 2014). Within this context, remote-sensing technologies can facilitate the detection and quantification of these topographic changes. In particular, a real opportunity and challenge is offered by the low-cost and flexible photogrammetric technique, called 'Structure-from-Motion' (SfM), combined with the use of smartphones (Micheletti et al., 2014; Prosdocimi et al., 2015). This represents a significant advance compared with more expensive technologies and applications (e.g. Terrestrial Laser Scanner - TLS) (Tarolli, 2014). This work wants to test the Structure from Motion to obtain high-resolution topography for the detection of topographic changes in agricultural lands affected by erosion processes. Two case studies were selected: i) a tilled plot characterized by bare soil and affected by rill erosion located in the hilly countryside of Marche region (central Italy), and ii) a Mediterranean vineyard located within the province of Valencia (south eastern Spain) where rainfall simulation experiments were carried out. Extensive photosets were obtained by using one standalone reflex digital camera and one smartphone built-in digital camera. Digital

  5. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers

    NASA Astrophysics Data System (ADS)

    Caitcheon, Gary G.; Olley, Jon M.; Pantus, Francis; Hancock, Gary; Leslie, Christopher

    2012-05-01

    The tropics of northern Australia have received relatively little attention with regard to the impact of soil erosion on the many large river systems that are an important part of Australia's water resource, especially given the high potential for erosion when long dry seasons are followed by intense wet season rain. Here we use 137Cs concentrations to determine the erosion processes supplying sediment to two major northern Australian Rivers; the Daly River (Northern Territory), and the Mitchell River (Queensland). We also present data from five sediment samples collected from a 100 km reach of the Cloncurry River, a major tributary of the Flinders River (Queensland). Concentrations of 137Cs in the surface soil and subsurface (channel banks and gully) samples were used to derive 'best fit' probability density functions describing their distributions. These modelled distributions are then used to estimate the relative contribution of these two components to the river sediments. Our results are consistent with channel and gully erosion being the dominant source of sediment, with more than 90% of sediment transported along the main stem of these rivers originating from subsoil. We summarize the findings of similar studies on tropical Australian rivers and conclude that the primary source of sediment delivered to these systems is gully and channel bank erosion. Previously, as a result of catchment scale modelling, sheet-wash and rill erosion was considered to be the major sediment source in these rivers. Identifying the relative importance of sediment sources, as shown in this paper, will provide valuable information for land management planning in the region. This study also reinforces the importance of testing model predictions before they are used to target investment in remedial action.

  6. Geomorphic processes active in the Southwestern Louisiana Canal, Lafourche Parish, Louisiana

    NASA Technical Reports Server (NTRS)

    Doiron, L. N.; Whitehurst, C. A.

    1974-01-01

    The geomorphological changes causing the destruction of the banks of the Southwestern Louisiana Canal are studied by means of field work, laboratory analyses, and infrared color imagery interpretation. Turbulence and flow patterns are mapped, and related to erosion and sediment deposition processes. The accelerated erosion rate of the last decade is discussed, with two causative factors cited: (1) development of faster boats, increasing bank and bottom erosion, and (2) a subsequently larger tidal influx, with greater erosive ability. The physical properties of the canal bank materials are also analyzed. It is concluded that channel erosion progressively increases, with no indications of stabilization, until they merge with other waterways and become indistinguishable from natural water bodies.

  7. Mechanics of aeolian processes: Soil erosion and dust production

    NASA Technical Reports Server (NTRS)

    Mehrabadi, M. M.

    1989-01-01

    Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.

  8. Saltmarsh creek bank stability: Biostabilisation and consolidation with depth

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Thompson, C. E. L.; Collins, M. B.

    2012-03-01

    The stability of cohesive sediments of a saltmarsh in Southern England was measured in the field and the laboratory using a Cohesive Strength Meter (CSM) and a shear vane apparatus. Cores and sediment samples were collected from two tidal creek banks, covered by Atriplex portulacoides (Sea Purslane) and Juncus maritimus (Sea Rush), respectively. The objectives of the study were to examine the variation of sediment stability throughout banks with cantilevers present and investigate the influence of roots and downcore consolidation on bank stability. Data on erosion threshold and shear strength were interpreted with reference to bank depth, sediment properties and biological influences. The higher average erosion threshold was from the Sea Purslane bank whilst the Sea Rush bank showed higher average vane shear strength. The vertical variation in core sediment stability was mainly affected by roots and downcore consolidation with depth. The data obtained from the bank faces revealed that vertical variations in both erosion threshold and vane shear strength were affected primarily by roots and algae. A quantitative estimate of the relative contributions of roots and downcore consolidation to bank sediment stability was undertaken using the bank stability data and sediment density data. This showed that roots contributed more to the Sea Purslane bank stability than downcore consolidation, whilst downcore consolidation has more pronounced effects on the Sea Rush bank stability.

  9. [Sediment-yielding process and its mechanisms of slope erosion in wind-water erosion crisscross region of Loess Plateau, Northwest China].

    PubMed

    Tuo, Deng-Feng; Xu, Ming-Xiang; Zheng, Shi-Qing; Li, Qiang

    2012-12-01

    Due to the coupling effects of wind and water erosions in the wind-water erosion crisscross region of Loess Plateau, the slope erosion in the region was quite serious, and the erosion process was quite complicated. By using wind tunnel combined with simulated rainfall, this paper studied the sediment-yielding process and its mechanisms of slope erosion under the effects of wind-water alternate erosion, and quantitatively analyzed the efffects of wind erosion on water erosion and the relationships between wind and water erosions. There was an obvious positive interaction between wind and water erosions. Wind erosion promoted the development of microtopography, and altered the quantitative relationship between the sediment-yielding under water erosion and the variation of rainfall intensity. At the rainfall intensity of 60 and 80 mm x h(-1), the sediment-yielding without wind erosion decreased with the duration of rainfall and tended to be stable, but the sediment-yielding with wind erosion decreased to a certain valley value first, and then showed an increasing trend. At the rainfall intensity of 60, 80, and 100 mm x h(-1), the sediment-yielding with the wind erosion at speeds of 11 and 14 m x s(-1) increased by 7.3%-27.9% and 23.2%-39.0%, respectively, as compared with the sediment-yielding without wind erosion. At the rainfall intensity of 120 and 150 mm x h(-1) and in the rainfall duration of 15 minutes, the sediment-yielding with and without wind erosion presented a decreasing trend, but, with the increase of rainfall duration, the sediment-yielding with wind erosion showed a trend of decreasing first and increasing then, as compared with the sediment-yielding without wind erosion. The mechanisms of wind-water alternate erosion were complicated, reflecting in the mutual relation and mutual promotion of wind erosion and water erosion in the aspects of temporal-spatial distribution, energy supply, and action mode of erosion forces.

  10. Environmental Impact Research Program: Reservoir Bank Erosion and Cultural Resources: Experiments in Mapping and Predicting the Erosion of Archeological Sediments at Reservoirs Along the Middle Missouri River with Sequential Historical Aerial Photographs

    DTIC Science & Technology

    1989-08-01

    points on both the photos and base map. Transects placed at 100-m intervals along the waterline, oriented perpendicular to the gradient or slope just...the identifica- tion of major factors influencing bank erosion, independent variables measured included gradient of the land at the intersection of...have a very steep gradient , approaching vertical in some cases, broken only by intermittent minor drainages which have dissected terrace margins. b

  11. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    USGS Publications Warehouse

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  12. Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel.

    PubMed

    Selvam, Karthikeyan; Mandal, Priya; Grewal, Harpreet Singh; Arora, Harpreet Singh

    2018-06-01

    Cavitation erosion remains the primary cause of material degradation in fluid machinery components operating at high speed. Micro-jets/shock waves caused by implosion of bubbles on material surface results in significant material loss and premature failure of the components. The presence of corrosive medium further exuberates this effect, causing rapid degradation. Here, we demonstrate a novel pathway to control cavitation erosion-corrosion by tailoring the surface properties using submerged friction stir processing (FSP), a severe plastic deformation process. FSP parameters were varied over wide range of strain-rates to generate tailored microstructures. High strain-rate processing resulted in nearly single phase fine grained structure while low strain-rate processing resulted in phase transformation in addition to grain refinement. As-received and processed samples were subjected to ultrasonic cavitation in distilled water as well as in corrosive environment of 3.5% NaCl solution. Individual roles of cavitation erosion, corrosion and their synergistic effects were analyzed. Depending on the microstructure, processed samples showed nearly 4-6 times higher cavitation erosion resistance compared to as-received alloy. Superior cavitation erosion-corrosion resistance of processed samples was attributed to surface strengthening, higher strain-hardening ability and quick passivation kinetics. The results of current study could be potentially transformative in designing robust materials for hydro-dynamic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Understanding erosion process using rare earth element tracers in a preformed interrill-rill system

    USDA-ARS?s Scientific Manuscript database

    Tracking sediment source and movement is essential to fully understanding soil erosion processes. The objectives of this study were to identify dominant erosion process and to characterize the effects of upslope interrill erosion on downslope interrill and rill erosion in a preformed interrill-rill ...

  14. Computational analysis of Pelton bucket tip erosion using digital image processing

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim Prasad; Gautam, Bijaya; Bajracharya, Tri Ratna

    2008-03-01

    Erosion of hydro turbine components through sand laden river is one of the biggest problems in Himalayas. Even with sediment trapping systems, complete removal of fine sediment from water is impossible and uneconomical; hence most of the turbine components in Himalayan Rivers are exposed to sand laden water and subject to erode. Pelton bucket which are being wildly used in different hydropower generation plant undergoes erosion on the continuous presence of sand particles in water. The subsequent erosion causes increase in splitter thickness, which is supposed to be theoretically zero. This increase in splitter thickness gives rise to back hitting of water followed by decrease in turbine efficiency. This paper describes the process of measurement of sharp edges like bucket tip using digital image processing. Image of each bucket is captured and allowed to run for 72 hours; sand concentration in water hitting the bucket is closely controlled and monitored. Later, the image of the test bucket is taken in the same condition. The process is repeated for 10 times. In this paper digital image processing which encompasses processes that performs image enhancement in both spatial and frequency domain. In addition, the processes that extract attributes from images, up to and including the measurement of splitter's tip. Processing of image has been done in MATLAB 6.5 platform. The result shows that quantitative measurement of edge erosion of sharp edges could accurately be detected and the erosion profile could be generated using image processing technique.

  15. Comparison of erosion and channel characteristics

    USGS Publications Warehouse

    Parker, Gene W.

    1998-01-01

    Erosion was observed at 33 percent of 22,495 bridge sites in nine States. Among sites with erosion, 56 percent were associated with skewed flows, curved channels, or a combination of these two conditions, and at 18 percent of the sites, channels were straight with steep bank angles. The remaining 26 percent are sites with observable erosion at piers or abutments on straight channels. Comparison of the sites with erosion to channel bed-material indicate that 44 percent of the single-span sites had gravel-size or smaller bed material and 70 percent of the multiple-span sites had gravel-size or smaller bed material.

  16. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  17. Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia

    NASA Astrophysics Data System (ADS)

    Tananaev, Nikita I.

    2016-01-01

    Water regime and sedimentary features of the middle Lena River reach near Yakutsk, central Yakutia, were studied to assess their control over fluvial thermal erosion. The Lena River floodplain in the studied reach has complex structure and embodies multiple levels varying in height and origin. Two key sites, corresponding to high and medium floodplain levels, were surveyed in 2008 to describe major sedimentary units and properties of bank material. Three units are present in both profiles, corresponding to topsoil, overbank (cohesive), and channel fill (noncohesive) deposits. Thermoerosional activity is mostly confined to a basal layer of frozen channel fill deposits and in general occurs within a certain water level interval. Magnitude-frequency analysis of water level data from Tabaga gauging station shows that a single interval can be deemed responsible for the initiation of thermal action and development of thermoerosional notches. This interval corresponds to the discharges between 21,000 and 31,000 m3 s- 1, observed normally during spring meltwater peak and summer floods. Competence of fluvial thermal erosion depends on the height of floodplain level being eroded, as it acts preferentially in high floodplain banks. In medium floodplain banks, thermal erosion during spring flood is constrained by insufficient bank height, and erosion is essentially mechanical during summer flood season. Bank retreat rate is argued to be positively linked with bank height under periglacial conditions.

  18. Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes

    NASA Astrophysics Data System (ADS)

    Wilken, Florian; Sommer, Michael; Van Oost, Kristof; Bens, Oliver; Fiener, Peter

    2017-05-01

    Coupled modelling of soil erosion, carbon redistribution, and turnover has received great attention over the last decades due to large uncertainties regarding erosion-induced carbon fluxes. For a process-oriented representation of event dynamics, coupled soil-carbon erosion models have been developed. However, there are currently few models that represent tillage erosion, preferential water erosion, and transport of different carbon fractions (e.g. mineral bound carbon, carbon encapsulated by soil aggregates). We couple a process-oriented multi-class sediment transport model with a carbon turnover model (MCST-C) to identify relevant redistribution processes for carbon dynamics. The model is applied for two arable catchments (3.7 and 7.8 ha) located in the Tertiary Hills about 40 km north of Munich, Germany. Our findings indicate the following: (i) redistribution by tillage has a large effect on erosion-induced vertical carbon fluxes and has a large carbon sequestration potential; (ii) water erosion has a minor effect on vertical fluxes, but episodic soil organic carbon (SOC) delivery controls the long-term erosion-induced carbon balance; (iii) delivered sediments are highly enriched in SOC compared to the parent soil, and sediment delivery is driven by event size and catchment connectivity; and (iv) soil aggregation enhances SOC deposition due to the transformation of highly mobile carbon-rich fine primary particles into rather immobile soil aggregates.

  19. Modelling soil carbon fate under erosion process in vineyard

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Scalenghe, Riccardo; Minacapilli, Mario; Maltese, Antonino; Capodici, Fulvio; Borgogno Mondino, Enrico; Gristina, Luciano

    2017-04-01

    Soil erosion processes in vineyards beyond water runoff and sediment transport have a strong effect on soil organic carbon loss (SOC) and redistribution along the slope. The variation of SOC across the landscape determines a difference in soil fertility and vine productivity. The aim of this research was to study erosion of a Mediterranean vineyard, develop an approach to estimate the SOC loss, correlate the vines vigor with sediment and carbon erosion. The study was carried out in a Sicilian (Italy) vineyard, planted in 2011. Along the slope, six pedons were studied by digging 6 pits up to 60cm depth. Soil was sampled in each pedon every 10cm and SOC was analyzed. Soil erosion, detachment and deposition areas were measured by pole height method. The vigor of vegetation was expressed in term of NDVI (Normalized difference Vegetation Index) derived from a satellite image (RapidEye) acquired at berry pre-veraison stage (July) and characterized by 5 spectral bands in the shortwave region, including a band in the red wavelength (R, 630-685 nm) and in the near infrared (NIR, 760-850 nm) . Results showed that soil erosion, sediments redistribution and SOC across the hill was strongly affected by topographic features, slope and curvature. The erosion rate was 46Mg ha-1 y-1 during the first 6 years since planting. The SOC redistribution was strongly correlated with the detachment or deposition area as highlighted by pole height measurements. The approach developed to estimate the SOC loss showed that during the whole study period the off-farm SOC amounts to 1.6Mg C ha-1. As highlighted by NDVI results, the plant vigor is strong correlated with SOC content and therefore, developing an accurate NDVI approach could be useful to detect the vineyard areas characterized by low fertility due to erosion process.

  20. Automated Erosion System to Protect Highway Bridge Crossings at Abutments

    DOT National Transportation Integrated Search

    2010-06-01

    A new instrument (Photo-Electronic Erosion Pin, or PEEP) was examined in collecting field data and remotely monitoring bank erosion near bridge abutments during floods. The performance of PEEPs was evaluated through a detailed field study to determin...

  1. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    2008-01-01

    In most episodic erosion and deposition systems, knowledge of the timing of geomorphological change, in relation to fluctuations in the driving forces, is crucial to strong erosion process inference, and model building, validation and development. A challenge for geomorphology, however, is that few studies have focused on geomorphological event structure (timing, magnitude, frequency and duration of individual erosion and deposition events), in relation to applied stresses, because of the absence of key monitoring methodologies. This paper therefore (a) presents full details of a new erosion and deposition measurement system — PEEP-3T — developed from the Photo-Electronic Erosion Pin sensor in five key areas, including the addition of nocturnal monitoring through the integration of the Thermal Consonance Timing (TCT) concept, to produce a continuous sensing system; (b) presents novel high-resolution datasets from the redesigned PEEP-3T system for river bank system of the Rivers Nidd and Wharfe, northern England, UK; and (c) comments on their potential for wider application throughout geomorphology to address these key measurement challenges. Relative to manual methods of erosion and deposition quantification, continuous PEEP-3T methodologies increase the temporal resolution of erosion/deposition event detection by more than three orders of magnitude (better than 1-second resolution if required), and this facility can significantly enhance process inference. Results show that river banks are highly dynamic thermally and respond quickly to radiation inputs. Data on bank retreat timing, fixed with PEEP-3T TCT evidence, confirmed that they were significantly delayed up to 55 h after flood peaks. One event occurred 13 h after emergence from the flow. This suggests that mass failure processes rather than fluid entrainment dominated the system. It is also shown how, by integrating turbidity instrumentation with TCT ideas, linkages between sediment supply and sediment

  2. Gaining insights into interrill soil erosion processes using rare earth element tracers

    USDA-ARS?s Scientific Manuscript database

    Increasing interest in developing process-based erosion models requires better understanding of the relationships among soil detachment, transportation, and deposition. The objectives are to 1) identify the limiting process between soil detachment and sediment transport for interrill erosion, 2) und...

  3. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    reforestation works. However the organic carbon in deposited sediments comes not only from surface erosion processes, but also from deeper soil or sediment layers mobilized by concentrated erosion processes. Sediment richer in organic carbon comes from the soil surface of vegetated (reforested) areas close and well connected to the channels. Subcatchments dominated by laminar erosion processes showed two times higher TOC/total erosion ratio than subcatchments dominated by concentrated flow erosion processes. Lithology, soils and geomorphology exert a more important control on organic carbon redistribution than land use and vegetation cover in this geomorphologically very active catchment.

  4. Rate estimates for lateral bedrock erosion based on radiocarbon ages, Duck River, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brakenridge, G.R.

    Rates of bedrock erosion in ingrown meandering rivers can be inferred from the location of buried relict flood-plain and river-bank surfaces, associated paleosols, and radiocarbon dates. Two independent methods are used to evaluate the long-term rates of limestone bedrock erosion by the Duck River. Radiocarbon dates on samples retrieved from buried Holocene flood-plain and bank surfaces indicate lateral migration of the river bank at average rates of 0.6-1.9 m/100 yr. Such rates agree with lateral bedrock cliff erosion rates of 0.5-1.4 m/100 yr, as determined from a comparison of late Pleistocene and modern bedrock cliff and terrace scarp positions. Thesemore » results show that lateral bedrock erosion by this river could have occurred coevally with flood-plain and terrace formation and that the resulting evolution of valley meander bends carved into bedrock is similar in many respects to that of channel meanders cut into alluvium. 11 references, 5 figures.« less

  5. Optimization of business processes in banks through flexible workflow

    NASA Astrophysics Data System (ADS)

    Postolache, V.

    2017-08-01

    This article describes an integrated business model of a commercial bank. There are examples of components that go into its composition: wooden models and business processes, strategic goals, organizational structure, system architecture, operational and marketing risk models, etc. The practice has shown that the development and implementation of the integrated business model of the bank significantly increase operating efficiency and its management, ensures organizational and technology stable development. Considering the evolution of business processes in the banking sector, should be analysed their common characteristics. From the author’s point of view, a business process is a set of various activities of a commercial bank in which “Input” is one or more financial and material resources, as a result of this activity and “output” is created by banking product, which is some value to consumer. Using workflow technology, management business process efficiency issue is a matter of managing the integration of resources and sequence of actions aimed at achieving this goal. In turn, it implies management of jobs or functions’ interaction, synchronizing of the assignments periods, reducing delays in the transmission of the results etc. Workflow technology is very important for managers at all levels, as they can use it to easily strengthen the control over what is happening in a particular unit, and in the bank as a whole. The manager is able to plan, to implement rules, to interact within the framework of the company’s procedures and tasks entrusted to the system of the distribution function and execution control, alert on the implementation and issuance of the statistical data on the effectiveness of operating procedures. Development and active use of the integrated bank business model is one of the key success factors that contribute to long-term and stable development of the bank, increase employee efficiency and business processes, implement the

  6. Effect of bank protection measures, Stehekin River, Chelan County, Washington

    USGS Publications Warehouse

    Nelson, L.M.

    1986-01-01

    An investigation of the lower Stehekin River was conducted to study the effects on flood elevations and velocities from four bank protection and flood prevention measures that are being contemplated as a means of reducing erosional losses of river bank property. These measures are: bank armoring, armored revetment levees, spur dikes, and redevelopment of old cutoff channels. The banks at seven study sites could be armored without adverse effect on the flood velocities and elevations. The largest increases due to armoring--up to 1.6 ft/sec in velocity and 1 ft in elevation--occurred in the vicinity of sites 5, 6, and 7 where the gradient of the river channel is about 50 ft/mi and the velocities are high to begin with (about 6 to 13 ft/sec). The use of a levee in conjunction with armoring on the northeast bank from sites 5 to 7 would increase the velocities as much as 2.8 ft/sec and increase the elevation as much as 1 ft, but it would also provide some flood protection to the east bank, which is frequently inundated. Spur dikes were considered a practical alternative only at site 3, where reduced bank erosion may occur without aggravating flood inundation or erosion elsewhere. The rerouting of flood flow through an old cutoff channel near site 1 increased the velocity by 3.2 ft/sec and the elevation by 1 ft for the 100-year flood; however, it would move floodwater away from residential property where bank erosion is a problem. The few other old channels that shortcut river bends where much erosion occurs are apparently already part of the channel during floods. (Author 's abstract)

  7. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    NASA Astrophysics Data System (ADS)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  8. RVR Meander – Migration of meandering rivers in homogeneous and heterogeneous floodplains using physically-based bank erosion

    USDA-ARS?s Scientific Manuscript database

    The RVR Meander platform for computing long-term meandering-channel migration is presented, together with a method for planform migration based on the modeling of the streambank erosion processes of hydraulic erosion and mass failure. An application to a real-world river, with assumption of homogene...

  9. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province.

    PubMed

    Rivera, Jesus; Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25-30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount's summit. Sediment waves

  10. Modeling soil erosion processes on a hillslope with dendritic rill network

    NASA Astrophysics Data System (ADS)

    Chen, L.; Wu, S.

    2017-12-01

    The effect of planform of dendritic rill network on hillslope rainfall-runoff and soil erosion processes was usually neglected in previous studies, which, however, could dramatically alter the mechanisms of the hydrologic and geomorphic processes. In the present study, the interrill areas were treated as two-dimensional (2D), while the complicated rill network was represented by a piecewise one-dimensional (1D) rill retaining the characteristic of rill network (the rill density and average rill deflection angle). Based on a 2D diffusive wave overland flow model, and the WEPP erosion theory, the 1D and 2D coupling model was developed to simulate the hillslope runoff and soil erosion on both the interrill areas and the representative rill. The rill number and rill inclination angle were introduced in the model to reflect the actual rill density, rill length, rill slope gradient, and confluence processes from the interrill areas to the rill. The excess rainfall and sediment load coming into the representative rill were not only from the two lateral interrill areas but also from the upstream interrill areas. The model was successfully tested against experimental data obtained from a hillslope with complicated rill network. Comparison of the results obtained from the present model with WEPP indicates that WEPP calculated the hillslope runoff yield accurately but overestimated the amount of rill erosion. Moreover, the effects of rill deflection angle and rill number distribution on both interrill and rill erosions were examined and found neglecting the planar characteristic of rill network has a considerable impact on soil erosion prediction. It is expected that the model can extend the scope of WEPP application and predict more accurately the runoff and erosion yield on a hillslope with complicated rill network.

  11. Boat-Wave-Induced Bank Erosion on the Kenai River, Alaska

    DTIC Science & Technology

    2008-03-01

    with coir log habitat restoration. .....................................................................75 Figure 51. Type 1 bank with willow...various types of streambank stabilization. Common stabilization techniques consist of root wads, spruce tree revetments, coir logs, and riprap...restoration. ERDC TR-08-5 75 Figure 50. Type 1 bank with coir log habitat restoration. Figure 51. Type 1 bank with willow plantings/ladder access habitat

  12. An Improved Experimental Method for Simulating Erosion Processes by Concentrated Channel Flow

    PubMed Central

    Chen, Xiao-Yan; Zhao, Yu; Mo, Bin; Mi, Hong-Xing

    2014-01-01

    Rill erosion is an important process that occurs on hill slopes, including sloped farmland. Laboratory simulations have been vital to understanding rill erosion. Previous experiments obtained sediment yields using rills of various lengths to get the sedimentation process, which disrupted the continuity of the rill erosion process and was time-consuming. In this study, an improved experimental method was used to measure the rill erosion processes by concentrated channel flow. By using this method, a laboratory platform, 12 m long and 3 m wide, was used to construct rills of 0.1 m wide and 12 m long for experiments under five slope gradients (5, 10, 15, 20, and 25 degrees) and three flow rates (2, 4, and 8 L min−1). Sediment laden water was simultaneously sampled along the rill at locations 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 10 m, and 12 m from the water inlet to determine the sediment concentration distribution. The rill erosion process measured by the method used in this study and that by previous experimental methods are approximately the same. The experimental data indicated that sediment concentrations increase with slope gradient and flow rate, which highlights the hydraulic impact on rill erosion. Sediment concentration increased rapidly at the initial section of the rill, and the rate of increase in sediment concentration reduced with the rill length. Overall, both experimental methods are feasible and applicable. However, the method proposed in this study is more efficient and easier to operate. This improved method will be useful in related research. PMID:24949621

  13. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province

    PubMed Central

    Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment

  14. A watershed scale spatially-distributed model for streambank erosion rate driven by channel curvature

    NASA Astrophysics Data System (ADS)

    McMillan, Mitchell; Hu, Zhiyong

    2017-10-01

    Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.

  15. Impact of rainfall pattern on interrill erosion process

    USDA-ARS?s Scientific Manuscript database

    The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving different rain intensities, stages, intensity sequences, and surface cover conditions were conducted to investigate the impacts of rain...

  16. Development of a statistical model for the determination of the probability of riverbank erosion in a Meditteranean river basin

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Kourgialas, Nektarios; Karatzas, George; Giannakis, Georgios; Lilli, Maria; Nikolaidis, Nikolaos

    2014-05-01

    Riverbank erosion affects the river morphology and the local habitat and results in riparian land loss, damage to property and infrastructures, ultimately weakening flood defences. An important issue concerning riverbank erosion is the identification of the areas vulnerable to erosion, as it allows for predicting changes and assists with stream management and restoration. One way to predict the vulnerable to erosion areas is to determine the erosion probability by identifying the underlying relations between riverbank erosion and the geomorphological and/or hydrological variables that prevent or stimulate erosion. A statistical model for evaluating the probability of erosion based on a series of independent local variables and by using logistic regression is developed in this work. The main variables affecting erosion are vegetation index (stability), the presence or absence of meanders, bank material (classification), stream power, bank height, river bank slope, riverbed slope, cross section width and water velocities (Luppi et al. 2009). In statistics, logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable, e.g. binary response, based on one or more predictor variables (continuous or categorical). The probabilities of the possible outcomes are modelled as a function of independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. 1 = "presence of erosion" and 0 = "no erosion") for any value of the independent variables. The regression coefficients are estimated by using maximum likelihood estimation. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding

  17. Erosion of Coastal Foredunes: A Review on the Effect of Dune Vegetation

    DTIC Science & Technology

    2017-02-01

    intensity, sustainable nature-based coastal protection measures are of growing interest. One of these considered features is coastal dunes, which... protection by sand banks, beaches, and dunes. Coastal Engineering 87:136–146. Hesp, P. 1991. Ecological processes and plant adaptations on coastal dunes...ERDC/CHL CHETN-I-94 February 2017 Approved for public release; distribution is unlimited. Erosion of Coastal Foredunes: A Review on the Effect

  18. Project Bank: Word Processing on Campus.

    ERIC Educational Resources Information Center

    Hlavin, Robert F.

    Project Bank was initiated at Triton College (Illinois) to increase student awareness of the merits of word processing as it affects their class work and related assignments; to make faculty aware of advances in word processing programs; and to increase the utilization of the college's computer laboratory. All fall 1985 incoming freshmen were…

  19. Shoreline Erosion in the Albemarle-Pamlico Estuarine System, Northeastern North Carolina

    NASA Astrophysics Data System (ADS)

    Murphy, M. A.; Riggs, S. R.

    2002-12-01

    Computer analysis of aerial photographic series demonstrates that the estuarine shorelines within the North Carolina Albemarle-Pamlico coastal system are eroding at 2-3 times greater rates than previous studies reported. Specific rates and amounts of shoreline recession vary tremendously depending upon local variables including: 1) shoreline type, geometry, and composition; 2) geographic location, size, and shape of associated estuary; 3) frequency, intensity, and fetch of storms; 4) type and abundance of associated vegetation; and locally 5) boat wakes. Organic or wetland shorelines (marsh and swamp forest) comprise approximately 62% of the estuarine margins in NE NC, whereas sediment banks (low, high, and bluff) constitute about 38%. The goals of this study were to determine the rates of recession for different shoreline types and the role of local variables in the erosion process. Shorelines were mapped using high precision GPS mapping techniques, digital orthographic quarter quadrangles, and other georeferenced aerial photographs from the early 1950's to 2001. Shoreline change was then calculated for 20 estuarine study sites. Field mapping of each site provided data on shoreline characteristics and erosional processes. Data synthesis suggests mean annual shoreline erosion rates are significantly different for shoreline types as follows: 1) marshes = 7.4 ft/yr (range 2.7-17.0 ft/yr), low sediment banks = 5.0 ft/yr (range 1.0-12.0 ft/yr), bluff sediment banks = 5.0 ft/yr (range = 3.9-6.0 ft/yr), swamp forests = 3.0 ft/yr (range = 1.7-4.0 ft/yr), high sediment banks = 2.8 ft/yr (range = 2.7-2.9 ft/yr). Modified shorelines continue to erode, however at lower mean annual rates that range from 0.9-2.7 ft/yr. Locally, specific marsh shorelines have eroded at rates up to 100 ft/yr during particularly stormy periods. Thus, about 1166 acres of land are lost each year along the 1593 miles of mapped estuarine shoreline in NE NC. If these erosion rates are representative of

  20. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    PubMed

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  1. An important erosion process on steep burnt hillslopes

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.

  2. Reservoir Bank Erosion Caused and Influenced by Ice Cover.

    DTIC Science & Technology

    1982-12-01

    8 8. Bank sediment deposited on shorefast ice ------------ 9 9. Sediment frozen to the bottom of ice laid down onto the reservoir bed...end of November 1979 during a storm with 45-mph northwesterly winds-- 17 16. Ice and shore sediment uplifted where an ice pres- sure ridge intersects...restarts at breakup when the ice becomes mobile; the ice scrapes, shoves and scours the shore or bank, and transports sediment away. Figure 1. Narrow zone

  3. Impact of terrain attributes, parent material and soil types on gully erosion

    NASA Astrophysics Data System (ADS)

    Chaplot, Vincent

    2013-03-01

    Gully erosion is a worldwide matter of concern because of the irreversible losses of fertile land, which often have severe environmental, economic and social consequences. While most of the studies on the gullying process have investigated the involved mechanisms (either overland flow incision, seepage or piping erosion), only few have been conducted on the controlling factors of gully wall retreat, an important, if not the dominant, land degradation process and sediment source in river systems. In a representative 4.4 km2 degraded area of the Drakensberg foothills (South Africa) the main objective of this study was to evaluate the relationship between the rate of gully bank retreat (GBR) and parent material, soil types and selected terrain attributes (elevation, specific drainage area, mean slope gradient, slope length factor, stream power index, compound topographic index and slope curvatures). The survey of gully bank retreat was performed during an entire hydrological year, from September 2007 to September 2008, using a network of pins (n = 440 from 110 pits). Both the gully contours and pin coordinates were determined, using a GPS with a 0.5 m horizontal accuracy (n = 20,120). The information on the parent material and the soil types was obtained from field observations complemented by laboratory analysis, while terrain attributes were extracted from a 20 m DEM generated from 5 m interval contour lines. The average GBR value for the 6512 m of gully banks found in the area was 0.049 ± 0.0013 m y- 1, which, considering bank height and soil bulk density, corresponded to an erosion rate of 2.30 ton ha- 1 y- 1. There was no significant difference in GBR between sandstone and dolerite and between Acrisols and Luvisols. Despite a weak one-to-one correlation with the selected terrain attributes (r < 0.2), a principal component analysis (PCA), the first two axes of which explained 68% of the data variability, pointed out that GBR was the highest at hillslope inflexion

  4. Determination of riverbank erosion probability using Locally Weighted Logistic Regression

    NASA Astrophysics Data System (ADS)

    Ioannidou, Elena; Flori, Aikaterini; Varouchakis, Emmanouil A.; Giannakis, Georgios; Vozinaki, Anthi Eirini K.; Karatzas, George P.; Nikolaidis, Nikolaos

    2015-04-01

    Riverbank erosion is a natural geomorphologic process that affects the fluvial environment. The most important issue concerning riverbank erosion is the identification of the vulnerable locations. An alternative to the usual hydrodynamic models to predict vulnerable locations is to quantify the probability of erosion occurrence. This can be achieved by identifying the underlying relations between riverbank erosion and the geomorphological or hydrological variables that prevent or stimulate erosion. Thus, riverbank erosion can be determined by a regression model using independent variables that are considered to affect the erosion process. The impact of such variables may vary spatially, therefore, a non-stationary regression model is preferred instead of a stationary equivalent. Locally Weighted Regression (LWR) is proposed as a suitable choice. This method can be extended to predict the binary presence or absence of erosion based on a series of independent local variables by using the logistic regression model. It is referred to as Locally Weighted Logistic Regression (LWLR). Logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable (e.g. binary response) based on one or more predictor variables. The method can be combined with LWR to assign weights to local independent variables of the dependent one. LWR allows model parameters to vary over space in order to reflect spatial heterogeneity. The probabilities of the possible outcomes are modelled as a function of the independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. erosion presence or absence) for any value of the independent variables. The

  5. Waterline Erosion Control Essential To Streambank Rehabilitation

    Treesearch

    Dean H. Urie

    1967-01-01

    Tests of streambank erosion control measures on three Michigan streams have shown the key role of waterline stabilization. After undercutting was stopped, the upper banks were revegetated in 1 to 5 years depending on treatment. Without waterline control, all revegetation efforts were ineffective.

  6. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    NASA Astrophysics Data System (ADS)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  7. Microhardness evaluation of silorane and methacrylate composites submitted to erosion and abrasion processes

    PubMed Central

    Gazola, Eloá Aguiar; Rego, Marcos Augusto; Brandt, William Cunha; D’Arce, Maria Beatriz Freitas; Liporoni, Priscila Christiane Suzy

    2015-01-01

    Abstract Objective: The aim of this study was to evaluate the Knoop hardness number (KHN) of methacrylate (MC) and silorane (SC) composites after being submitted to erosion and abrasion processes. Material and methods: Forty samples were made with each composite: MC and SC. The samples were divided into eight groups (n = 10) according to the type of composite (G1–G4, MC; G5–G8, SC) and the beverages involved in the erosion process (G1 and G5 – Control (C), without erosion, with abrasion; G2 and G6 – Orange Juice (OJ), abrasion; G3 and G7 – Smirnoff Ice® (SI), abrasion; G4 and G8 – Gatorade® (GA), abrasion). The KHN test was performed 24 h after the last cycle of erosion/abrasion. Results: The MC groups showed smaller KHN values for the SI group (p < 0.05) when compared to the Control and OJ groups; however, for the SC groups, no differences were found (p > 0.05). Conclusion: Methacrylate composite when submitted to acidic beverages erosive challenge combined with abrasive process might alter its surface microhardness. However, the beverages used in the present study were not able to interfere in silorane composite surface microhardness. PMID:28642903

  8. Development and testing of a physically based model of streambank erosion for coupling with a basin-scale hydrologic model SWAT

    USDA-ARS?s Scientific Manuscript database

    A comprehensive stream bank erosion model based on excess shear stress has been developed and incorporated in the hydrological model Soil and Water Assessment Tool (SWAT). It takes into account processes such as weathering, vegetative cover, and channel meanders to adjust critical and effective str...

  9. Soil water erosion processes in mountain forest catchment - analysis by using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław

    2013-04-01

    The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser

  10. Streambank Protection and Erosion Control.

    DTIC Science & Technology

    1987-01-01

    TABLE OF CONTENTS N CHAPTER ONE - INTRODUCTION ----------------------------------------- -- 1. 1.1 Purpose...downstream cross sectional area by stream bank erosion and bed scour to accommodate the increased flow. This may be caused by poor planning and assessment...the magnitude, except for very large floods which occur infrequently. 3.2 Channel Geometry [6] .*. Channel geometry of a river cross section is an

  11. The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed

    PubMed Central

    Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling

    2013-01-01

    A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898

  12. Carbon and nitrogen loss during initial erosion processes under litter cover

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Scholten, Thomas

    2013-04-01

    Soil erosion translocates carbon (C) and nitrogen (N) from the soil pool. In natural or near-natural ecosystems like forests the soil is usually covered by litter. It can be assumed that litter decomposition and dust particles adhered on the surface of the leaves contribute to C and N fluxes during erosion processes as well. To our knowledge, the contribution of these compartments to the C and N balance of soil erosion is not yet known. As part of the "New Integrated Litter Experiment" within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" we conducted a rainfall simulation experiment to quantify the role of litter cover for C and N fluxes during soil erosion in subtropical China. 96 mini runoff plots (40cm x 40cm) were established and divided into four blocks, two of them replicates. Seven different domestic litter species were used in this study combined to 1-species, 2-species and 4-species mixtures and complemented by none species plots (bare ground). Erosion processes were initiated by artificial rainfall using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Sediment discharge and runoff volume were measured every 5 minutes for 20 minutes of rainfall duration and filtrated in the laboratory. Two time steps of rainfall simulation were carried out (summer 2012 and autumn 2012). Total C and N content were quantified from the solid sediment and the liquid runoff volume. Leaf decomposition rates were calculated based on the mass, leaf litter coverage was measured and loss of C and N contents from the decomposing leaves were provided by other project members. Additionally, C and N content of corresponding soils were designated. Lab work and statistical analysis are still ongoing. First results show that C and N concentrations of runoff and sediment are slightly higher for plots covered by litter than bare plots during the first run in summer 2012. It seems that 4-species plots have the highest C and N flux during

  13. Minor soil erosion contribution to denudation in Central Nepal Himalaya.

    NASA Astrophysics Data System (ADS)

    Morin, Guillaume; France-Lanord, Christian; Gallo, Florian; Lupker, Maarten; Lavé, Jérôme; Gajurel, Ananta

    2013-04-01

    In order to decipher river sediments provenance in terms of erosion processes, we characterized geochemical compositions of hillslope material coming from soils, glaciers and landslide, and compared them to rivers sediments. We focused our study on two South flank Himalayan catchments: (1) Khudi khola, as an example of small High Himalayan catchment (150 km2), undergoing severe precipitation, and rapid erosion ≈ 3.5 mm/yr [A] and (2) the Narayani-Gandak Transhimalayan basin (52000 km2) that drains the whole central Nepal. To assess the question, systematic samplings were conducted on hillslope material from different erosion processes in the basins. River sediment include daily sampling during the 2010 monsoon at two stations, and banks samples in different parts of the basins. Source rocks, soil and landslide samples, are compared to river sediment mobile to immobile element ratios, completed by hydration degree H2O+ analysis[2]. Data show that soils are clearly depleted in mobile elements Na, K, Ca, and highly hydrated compared to source rocks and other erosion products. In the Khudi basin, the contrast between soil and river sediment signatures allow to estimate that soil erosion represents less than 5% of the total sediment exported by the river. Most of the river sediment therefore derives from landslides inputs and to a lesser extent by barren high elevation sub-basins. This is further consistent with direct observation that, during monsoon, significant tributaries of the Khudi river do not export sediments. Considering that active landslide zones represent less than 0.5% of the total watershed area, it implies that erosion distribution is highly heterogeneous. Landslide erosion rate could reach more than 50 cm/yr in the landslide area. Sediments of the Narayani river are not significantly different from those of the Khudi in spite of more diverse geomorphology and larger area of the basin. Only H2O+ and Total Organic Carbon concentrations normalised to Al

  14. Erosion of Earthen Levees by Wave Action

    NASA Astrophysics Data System (ADS)

    Ozeren, Y.; Wren, D. G.; Reba, M. L.

    2016-02-01

    Earthen levees of aquaculture and irrigation reservoirs in the United States often experience significant erosion due to wind-generated waves. Typically constructed using local soils, unprotected levees are subjected to rapid erosion and retreat due to wind generated waves and surface runoff. Only a limited amount of published work addresses the erosion rates for unprotected levees, and producers who rely on irrigation reservoirs need an economic basis for selecting a protection method for vulnerable levees. This, in turn, means that a relationship between wave energy and erosion of cohesive soils is needed. In this study, laboratory experiments were carried out in order to quantify wave induced levee erosion and retreat. A model erodible bank was packed using a soil consisting of approximately 14% sand, 73% silt, and 13% clay in a 20.6 m long 0.7 m wide and 1.2 m deep wave tank at the USDA-ARS, National Sedimentation Laboratory in Oxford MS. The geometry of the levee face was monitored by digital camera and the waves were measured by means of 6 capacitance wave staffs. Relationships were established between levee erosion, edge and retreat rates, and incident wave energy.

  15. Cold-water coral banks and submarine landslides: a review

    NASA Astrophysics Data System (ADS)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  16. Terrace effects on soil erosion processes in a watershed of the loess plateau

    USDA-ARS?s Scientific Manuscript database

    Terraces in crop fields are one of the most important soil and water conservation measures that affect runoff and erosion processes in a watershed. In this paper, terrace effects on soil erosion and sediment transport in the upstream and middle sections of the Weihe River basin in the Loess Plateau ...

  17. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    USDA-ARS?s Scientific Manuscript database

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...

  18. Development of an inexpensive optical method for studies of dental erosion process in vitro

    NASA Astrophysics Data System (ADS)

    Nasution, A. M. T.; Noerjanto, B.; Triwanto, L.

    2008-09-01

    Teeth have important roles in digestion of food, supporting the facial-structure, as well as in articulation of speech. Abnormality in teeth structure can be initiated by an erosion process due to diet or beverages consumption that lead to destruction which affect their functionality. Research to study the erosion processes that lead to teeth's abnormality is important in order to be used as a care and prevention purpose. Accurate measurement methods would be necessary as a research tool, in order to be capable for quantifying dental destruction's degree. In this work an inexpensive optical method as tool to study dental erosion process is developed. It is based on extraction the parameters from the 3D dental visual information. The 3D visual image is obtained from reconstruction of multiple lateral projection of 2D images that captured from many angles. Using a simple motor stepper and a pocket digital camera, sequence of multi-projection 2D images of premolar tooth is obtained. This images are then reconstructed to produce a 3D image, which is useful for quantifying related dental erosion parameters. The quantification process is obtained from the shrinkage of dental volume as well as surface properties due to erosion process. Results of quantification is correlated to the ones of dissolved calcium atom which released from the tooth using atomic absorption spectrometry. This proposed method would be useful as visualization tool in many engineering, dentistry, and medical research. It would be useful also for the educational purposes.

  19. Erosion control study : final report : Part II : roadside channels.

    DOT National Transportation Integrated Search

    1971-04-01

    The objective of the study were: : 1) To evaluate present methods and develop new methods for establishing a permanent vegetative cover. : 2) To develop erosion control practices for existing highway drains and ditches. : 3) To develop highway bank s...

  20. Process-based coastal erosion modeling for Drew Point (North Slope, Alaska)

    USGS Publications Warehouse

    Ravens, Thomas M.; Jones, Benjamin M.; Zhang, Jinlin; Arp, Christopher D.; Schmutz, Joel A.

    2012-01-01

    A predictive, coastal erosion/shoreline change model has been developed for a small coastal segment near Drew Point, Beaufort Sea, Alaska. This coastal setting has experienced a dramatic increase in erosion since the early 2000’s. The bluffs at this site are 3-4 m tall and consist of ice-wedge bounded blocks of fine-grained sediments cemented by ice-rich permafrost and capped with a thin organic layer. The bluffs are typically fronted by a narrow (∼ 5  m wide) beach or none at all. During a storm surge, the sea contacts the base of the bluff and a niche is formed through thermal and mechanical erosion. The niche grows both vertically and laterally and eventually undermines the bluff, leading to block failure or collapse. The fallen block is then eroded both thermally and mechanically by waves and currents, which must occur before a new niche forming episode may begin. The erosion model explicitly accounts for and integrates a number of these processes including: (1) storm surge generation resulting from wind and atmospheric forcing, (2) erosional niche growth resulting from wave-induced turbulent heat transfer and sediment transport (using the Kobayashi niche erosion model), and (3) thermal and mechanical erosion of the fallen block. The model was calibrated with historic shoreline change data for one time period (1979-2002), and validated with a later time period (2002-2007).

  1. Geophysical observations on northern part of Georges Bank and adjacent basins of Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Hathaway, J.C.; Dillon, William P.; Hendricks, J.D.; Robb, James M.

    1974-01-01

    Continuous-seismic-reflection and magnetic-intensity profiles provide data for inferences about the geology of the northern part of Georges Bank and the basins of the Gulf of Maine adjacent to the bank.Basement is inferred to be mostly sedimentary and volcanic rocks of Paleozoic age that were metamorphosed and intruded locally by felsic and mafic plutons near the end of the Paleozoic Era. During Late Triassic time, large fault basins formed within the Gulf of Maine and probably beneath Georges Bank. The fault basins and a possible major northeast-trending fault zone beneath the northern part of the bank probably formed as a result of the opening Atlantic during the Mesozoic. Nonmarine sediments, associated with mafic flows and intrusive rocks, were deposited in the fault basins as they formed. The upper surface of the Triassic and pre-Triassic rocks that comprise basement is an unconformity that makes up much of the bottom of the Gulf of Maine. Depth to the basement surface beneath the gulf differ greatly because of fluvial erosion in Tertiary time and glacial erosion in Pleistocene time. Beneath the northern part of Georges Bank the basement surface is smoother and slopes southward. Prominent valleys, cut before Late Cretaceous time, are present beneath this part of the bank.Cretaceous, Tertiary, and possibly Jurassic times were characterized by episodes of coastal-plain deposition and fluvial erosion. During this time a very thick wedge of sediment, mostly of Jurassic(?) and Cretaceous ages, was deposited on the shelf. Major periods of erosion took place at the close of the Cretaceous and during the Pliocene. Fluvial erosion during the Pliocene removed much of the coastal-plain sedimentary wedge and formed the Gulf of Maine.Pleistocene glaciers eroded all but a few remnants of the coastal-plain sediments within the gulf and deposited a thick section of drift against the north slope of Georges Bank and a thin veneer of outwash on the bank. Marine sediments were

  2. Relationships between slope erosion processes and aggregate stability of Ultisols from subtropical China during rainstorms

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Xiao, Hai; Liu, Puling

    2017-04-01

    Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the

  3. Channel Bank Cohesion and the Maintenance of Suspension Rivers

    NASA Astrophysics Data System (ADS)

    Dunne, K. B. J.; Jerolmack, D. J.

    2017-12-01

    Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is

  4. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  5. Fluvial erosion and post-erosional processes on Titan

    USGS Publications Warehouse

    Jaumann, R.; Brown, R.H.; Stephan, K.; Barnes, J.W.; Soderblom, L.A.; Sotin, Christophe; Le, Mouelic S.; Clark, R.N.; Soderblom, J.; Buratti, B.J.; Wagner, R.; McCord, T.B.; Rodriguez, S.; Baines, K.H.; Cruikshank, D.P.; Nicholson, P.D.; Griffith, C.A.; Langhans, M.; Lorenz, R.D.

    2008-01-01

    The surface of Titan has been revealed by Cassini observations in the infrared and radar wavelength ranges as well as locally by the Huygens lander instruments. Sand seas, recently discovered lakes, distinct landscapes and dendritic erosion patterns indicate dynamic surface processes. This study focus on erosional and depositional features that can be used to constrain the amount of liquids involved in the erosional process as well as on the compositional characteristics of depositional areas. Fluvial erosion channels on Titan as identified at the Huygens landing site and in RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations have been compared to analogous channel widths on Earth yielding average discharges of up to 1600 m3/s for short recurrence intervals that are sufficient to move centimeter-sized sediment and significantly higher discharges for long intervals. With respect to the associated drainage areas, this roughly translates to 1-150 cm/day runoff production rates with 10 years recurrence intervals and by assuming precipitation this implies 0.6-60 mm/h rainfall rates. Thus the observed surface erosion fits with the methane convective storm models as well as with the rates needed to transport sediment. During Cassini's T20 fly-by, the VIMS observed an extremely eroded area at 30?? W, 7?? S with resolutions of up to 500 m/pixel that extends over thousands of square kilometers. The spectral characteristics of this area change systematically, reflecting continuous compositional and/or particle size variations indicative of transported sediment settling out while flow capacities cease. To account for the estimated runoff production and widespread alluvial deposits of fine-grained material, release of area-dependent large fluid volumes are required. Only frequent storms with heavy rainfall or cryovolcanic induced melting can explain these erosional features. ?? 2008 Elsevier Inc.

  6. Current research issues related to post-wildfire runoff and erosion processes

    USGS Publications Warehouse

    Moody, John A.; Shakesby, Richard A.; Robichaud, Peter R.; Cannon, Susan H.; Martin, Deborah A.

    2013-01-01

    Research into post-wildfire effects began in the United States more than 70 years ago and only later extended to other parts of the world. Post-wildfire responses are typically transient, episodic, variable in space and time, dependent on thresholds, and involve multiple processes measured by different methods. These characteristics tend to hinder research progress, but the large empirical knowledge base amassed in different regions of the world suggests that it should now be possible to synthesize the data and make a substantial improvement in the understanding of post-wildfire runoff and erosion response. Thus, it is important to identify and prioritize the research issues related to post-wildfire runoff and erosion. Priority research issues are the need to: (1) organize and synthesize similarities and differences in post-wildfire responses between different fire-prone regions of the world in order to determine common patterns and generalities that can explain cause and effect relations; (2) identify and quantify functional relations between metrics of fire effects and soil hydraulic properties that will better represent the dynamic and transient conditions after a wildfire; (3) determine the interaction between burned landscapes and temporally and spatially variable meso-scale precipitation, which is often the primary driver of post-wildfire runoff and erosion responses; (4) determine functional relations between precipitation, basin morphology, runoff connectivity, contributing area, surface roughness, depression storage, and soil characteristics required to predict the timing, magnitudes, and duration of floods and debris flows from ungaged burned basins; and (5) develop standard measurement methods that will ensure the collection of uniform and comparable runoff and erosion data. Resolution of these issues will help to improve conceptual and computer models of post-wildfire runoff and erosion processes.

  7. Effect of storms on Barrier Island dynamics, Core Banks, Cape Lookout National Seashore, North Carolina, 1960-2001

    USGS Publications Warehouse

    Riggs, Stanley R.; Ames, Dorothea V.

    2007-01-01

    raising the island elevation through time, which in turn led to decreased numbers of overwash events. The latter processes and responses in turn led to a substantial increase in vegetative growth on the barrier island, as well as submerged aquatic vegetation on the back-barrier sand shoals. Integration of the USACE, G&G, ECU, and NCDCM shoreline erosion data for Core Banks shows several important points about shoreline recession. (1) The ECU and NCDCM data sets demonstrate that there is an ongoing net, long-term, but small-scale shoreline recession associated with Core Banks; (2) the USACE short-term data sets demonstrate that processes associated with individual storm events or sets of events produce extremely large-scale changes that include both erosion and accretion; (3) the short-term, non-stormy period data set of G&G demonstrates that if given enough time between storm events, barriers can rebuild to their pre-storm period conditions; and (4) the post-storm response generally tends to approach the pre-storm location, but rarely reaches it before the next storm or stormy period sets in. The result is the net long-term change documented by both the ECU 1960–2001 and NCDCM 1946–1998 Core Banks data sets that resulted in erosion rates ranging from 0 to -30 ft/yr with net annual average recession rates of -5 ft/yr. Analysis and comparison of these data sets supply important information for understanding the dynamics and responses of barrier island systems through time. In addition, the results of the present study on Core Banks supply essential process-response information that can be used to design and implement management plans for the Cape Lookout and Cape Hatteras National Seashores and for other seashores in the U.S. National Park Service system.

  8. Rapid shoreline erosion induced by human impacts in a tropical muddy coast context, an example from western French Guiana.

    NASA Astrophysics Data System (ADS)

    Brunier, Guillaume; Anthony, Edward; Gardel, Antoine

    2015-04-01

    The Guyanas coast (French Guiana, Surinam and Guiana) is the longest muddy coast in the world (1500 km). It is under the influence of mud banks in transit from the Amazon delta in Brazil to the Orinoco delta in Venezuela. This westward mud bank migration induces a strong geomorphic control on the shoreline which can be summarized in terms of "bank" (shoreline advance and wave energy dissipation) and "inter-bank" phases (erosion of shoreline by waves). Our study site, rice polders close to Mana city (western French Guiana), is a fine example of the exacerbation, by human activities, of the erosional dynamics on this muddy coast during an "inter-bank" phase. The polders cover 50,000 ha, in 200 x 600 m compartments flanked by earth dikes and canals. They were built in the muddy Holocene coastal plain in the 1980s and are rapidly eroding. Waves (mean significant height = 1.5 m height) comprise Atlantic swell and local trade wind-waves, and the tidal context is semi-diurnal and meso-tidal. We determined historical shoreline evolution from satellite (Landsat & SPOT) and orthophotography images, and conducted four field campaigns between October 2013 and October 2014, comprising topographic (RTK-DGPS) and hydrodynamic (pressure sensors) measurements. The results show intense erosion of 150 m/year affecting the polders since 2001, and lesser retreat (30 to 100 m/year) of the adjacent sectors colonized by mangrove forests. The erosive shoreface shows the same structure in each polder compartment: a chenier beach which freely retreats backwards under the influence of wave overwash. The chenier retreat rate is 100 m/year and it appears to be more intense (net retreat of 45 m) during the high wave-energy season (December to March), which generates more overwashing. In front of the chenier, we observed a large (50 m) inter-tidal mud bed showing different levels of induration and bioturbation by mangrove roots. The mud shorefaces exhibit an erosion rate of 100 m/year on average

  9. Bottomland Hardwood Forest Influence on Floodplain Hydrology and Stream Bank Stability in an Urbanizing Watershed of the Central U.S

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Zell, C.; Huang, D.

    2012-12-01

    Conversion of bottomland hardwood forest (BHF) to agricultural and urban land uses in the 19th and 20th centuries altered the hydrology of streams, floodplains, and remnant BHF. Broadened and steepened stream channels lead to increased channel instability, accelerated erosion, and reduced floodplain hydrologic connectivity. A case study was implemented to investigate floodplain and stream hydrogeomorphological processes comparing a remnant BHF and Ag site (sites = 0.90 km apart). 120 m2 grids were established to estimate canopy cover (LAI = 3.1), soil characteristics by the soil core method at depths of 0, 15, 30, 50, 75 and 100 cm (n = 302), and surface soil infiltration capacity (n = 42). 80 m2 grids (each site) were implemented with nine equally spaced piezometers to estimate shallow groundwater depth and flow. Stream bank erosion study sites were located adjacent to BHF and agricultural floodplain study sites using the erosion pin method (10 pin plots, n = 342 pins). Results indicate average porosity (n = 150) of 0.56 (SD = 0.04) and 0.59 (SD = 0.04) in agricultural and BHF sites, respectively. Average infiltration capacity was 44 cm/hr (SD = 38 cm/hr) and 59 cm/hr (SD = 54 cm/hr) in agricultural and BHF sites, respectively. Depth integrated calculations of equivalent depth of soil water (EDSW) were significantly different (CI = 99%) 33.3 cm/m (SD = 2.24 cm/m) and 36.9 cm/m (SD = 2.68 cm/m) between Ag and BHF sites, respectively. Shallow groundwater analyses (Water Year 2011) indicated that average head at the BHF and Ag sites increased by approximately 0.25 m, and 0.50 m, respectively 90 m inland from the streambank. Stream bank erosion results showed that during a drier (762 mm) than average (10yr avg = 1077 mm) rainfall year (Water Year 2011), 15.7 and 177.8 tonnes of soil erosion occurred on the right side (facing downstream) stream banks of the BHF and Ag sites, respectively. Average bank erosion depth measured at the BHF and Ag sites was 18 and 112 mm

  10. 77 FR 17036 - Revised Notice of Intent To Prepare a Draft Environmental Impact Statement for the Bogue Banks...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Prepare a Draft Environmental Impact Statement for the Bogue Banks Coastal Storm Damage Reduction... alternatives to reduce coastal storm damages from beach erosion on Bogue Banks North Carolina. The Bogue Banks.... This area [[Page 17037

  11. Zonal characterization of hillslope erosion processes in a semi-arid high mountain catchment

    NASA Astrophysics Data System (ADS)

    Torres, Raquel; Millares, Agustín; Aguilar, Cristina; Moñino, Antonio; Ángel Losada, Miguel; José Polo, María

    2013-04-01

    Mediterranean and semi-arid catchments, generally suffer heterogeneous erosive processes at different spatio-temporal scales which produce, in a synergistic manner, a large amount of sediment supply. In mountainous catchments, the influence of pluvio-nival hydrological regime leads to a clear subdivision into homogeneous zones regarding the nature of hillslope processes. Here, a distinction could be addressed with 1) subsurface erosion due to saturated soil by intense snowmelt pulses and 2) steepest mid-mountain soil loss with rill/interrill, small-scale landslides and ephemeral or permanent gullying. Furthermore, the associated channels in these areas are formed by wide alluvial floodplains with important bedload contributions. This complexity conditions the evaluation of erosion and monitoring at catchment scale with elevated costs in time, devices and staff. The catchment of the Guadalfeo river encloses 1200 km², with important presence of snow in the summits height on its right margin, and semiarid low range hills with very erodible soils on its left margin. Gully erosion, landslides and stream bed-load processes, extremely actives in this area, are responsible of a real problem of soil loss and desertification with a high associated cost. This work suggests a methodology for the zonal assessment of different erosive processes taking into account the described heterogeneity and the reduction of research costs. To do this, high resolution bathymetric and topographic surveys supported in a reservoir (110 hm3) allowed the differentiation of bedload and suspended sediments as both are deposited in different locations and hence the validation of the hillslope sediment yield. In parallel, measurements in homogeneous areas were selected in order to obtain zonal results to achieve the representative processes involved. The use of portable samplers allows the remote changing of sampling routines, and thus to capture the temporal scale of the processes and the

  12. Report on: Connecticut River Streambank Erosion Study, Massachusetts, New Hampshire and Vermont

    DTIC Science & Technology

    1979-11-01

    Plastic filter cloths are used with considerable success beneath tiprap and other revetment materials such as articulated concrete blocks . The...rihutior unlimited II. SUPPLEMENTARY NOTES It. KEY WORDS (Continue on fever&e elde ifneceeeery and identify by block number). alluvial channel...erosion boat waves shear stress rock riprap lower bank erosion revetments flow control vegetation 20. ABSTRACT (Continue on reverse aide if neceesary and

  13. Post-fire hillslope debris flows: Evidence of a distinct erosion process

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Philip J.; Van der Sant, Rene E.; Lane, Patrick N. J.; Sheridan, Gary J.

    2017-10-01

    After wildfire a hitherto unexplained erosion process that some authors have called 'miniature debris flows on hillslopes' and that leave behind levee-lined rills has been observed in some regions of the world. Despite the unusual proposition of debris flow on planar hillslopes, the process has not received much attention. The objectives of this study were to (1) accumulate observational evidence of Hillslope Debris Flows (HDF) as we have defined the process, to (2) understand their initiation process by conducting runoff experiments on hillslopes, to (3) propose a conceptual model of HDF, and to (4) contrast and classify HDF relative to other erosion and transport processes in the post-wildfire hillslope domain. HDF have been observed at relatively steep slope gradients (0.4-0.8), on a variety of geologies, and after fire of at least moderate severity and consist of a lobe of gravel- to cobble-sized material 0.2-1 m wide that is pushed by runoff damming up behind it. During initiation, runoff moved individual particles that accumulated a small distance downslope until the accumulation of grains failed and formed the granular lobe of the HDF. HDF are a threshold process, and runoff rates of 0.5 L s- 1 2 L s- 1 were required for their initiation during the experiments. The conceptual model highlights HDF as a geomorphic process distinct from channel debris flows, because they occur on planar, unconfined hillslopes rather than confined channels. HDF can erode very coarse non-cohesive surface soil, which distinguishes them from rill erosion that have suspended and bedload transport. On a matrix of slope and grain size, HDF are enveloped between purely gravity-driven dry ravel, and mostly runoff driven bedload transport in rills.

  14. Thermal erosion of a permafrost coastline: Improving process-based models using time-lapse photography

    USGS Publications Warehouse

    Wobus, C.; Anderson, R.; Overeem, I.; Matell, N.; Clow, G.; Urban, F.

    2011-01-01

    Coastal erosion rates locally exceeding 30 m y-1 have been documented along Alaska's Beaufort Sea coastline, and a number of studies suggest that these erosion rates have accelerated as a result of climate change. However, a lack of direct observational evidence has limited our progress in quantifying the specific processes that connect climate change to coastal erosion rates in the Arctic. In particular, while longer ice-free periods are likely to lead to both warmer surface waters and longer fetch, the relative roles of thermal and mechanical (wave) erosion in driving coastal retreat have not been comprehensively quantified. We focus on a permafrost coastline in the northern National Petroleum Reserve-Alaska (NPR-A), where coastal erosion rates have averaged 10-15 m y-1 over two years of direct monitoring. We take advantage of these extraordinary rates of coastal erosion to observe and quantify coastal erosion directly via time-lapse photography in combination with meteorological observations. Our observations indicate that the erosion of these bluffs is largely thermally driven, but that surface winds play a crucial role in exposing the frozen bluffs to the radiatively warmed seawater that drives melting of interstitial ice. To first order, erosion in this setting can be modeled using formulations developed to describe iceberg deterioration in the open ocean. These simple models provide a conceptual framework for evaluating how climate-induced changes in thermal and wave energy might influence future erosion rates in this setting.

  15. Shoreline erosion at selected areas along Lake Sharpe on the Lower Brule Reservation in South Dakota, 1966–2015

    USGS Publications Warehouse

    Thompson, Ryan F.; Stamm, John F.

    2018-06-21

    The Lower Brule Reservation in central South Dakota is losing land because of shoreline erosion along Lake Sharpe, a reservoir on the Missouri River, which has caused detrimental effects for the Lower Brule Sioux Tribe including losses of cultural sites, recreation access points, wildlife habitat, irrigated cropland, and landmass. To better understand and quantify shoreline erosion, the Lower Brule Sioux Tribe and the U.S. Geological Survey cooperated on a series of data-collection efforts and study of shoreline erosion along Lake Sharpe. Data collected or compiled for 1966–2015 were used to describe and quantify shoreline erosion along Lake Sharpe. The progression of shoreline erosion near the community of Lower Brule, South Dakota, was tracked by comparing current or recent aerial imagery with existing historical maps. At 33 evaluation lines along a 7-mile reach of Lake Sharpe shoreline near Lower Brule, cumulative change of shoreline from 1966 to 2010 ranged from about −224 feet of deposition to 770 feet of erosion.Photographic and location data were collected for this study to understand the processes affecting erosion and estimate erosion rates. Photographs were collected only in the 7-mile reach near Lower Brule, but locations of the bank over time were collected at the 7-mile reach and two additional reaches within the Lower Brule Reservation. Global navigation satellite system equipment was used in real-time kinematic mode to collect bank locations along three reaches of interest. Reach-length data were collected four times between November 2011 and November 2012. A small, unmanned aerial system (drone) was used to capture digital video along the shoreline of the 7-mile reach.Water-level fluctuations contribute to the number of wet-dry cycles experienced by the soils at the shoreline or bank. The soils present under the current (2017) location of the reservoir are predominantly terrace alluvium, consisting of sand and silt. Detailed soils data for Lyman

  16. Physical processes and sedimentation on a broad, shallow bank

    NASA Astrophysics Data System (ADS)

    Murray, S. P.; Hsu, S. A.; Roberts, H. H.; Owens, E. H.; Crout, R. L.

    1982-02-01

    An integrated study of the meteorology, physical oceanography, sedimentationand coastal morphology on the broad, shallow Miskito Bank off the eastern coast of Nicaragua has uncovered systematic interrelationships between driving forces. Bank geometry and sedimentologic environments on the Bank. Extremely high rainfall results from an interaction between meteorological processes over the Bank and topographic effects along the coast. Both acoustic and radio sounding of the lower atmosphere have documented the feedback between convective plumes, inversion layers and the incessant rainfall, which brings three times more freshwater and 15 times more sediment down to a unit length of coast than on the U.S. Atlantic shore. The resultant brackish, turbid coastal water moves as a highly organized band of water parallel to the coast. Seaward of this coastal boundary layer, offshore water from the Caribbean Current rides up on the Bank and provides an environment ideal for carbonate production. A zone of fine-grained terrigenous sediment underlying the coastal boundary current merges abruptly into a smooth carbonate plain covering most of the surface of the Bank. These central Bank carbonates are composed primarily of the disintegration products of prolific calcareous green algae. A trend of high relief, luxuriant coral reef growth is aligned along the steep dropoff at the Bank edge, a zone of observed upwelling of cooler and saltier basin water. A threefold southerly increase in wave energy at the shoreline due to the decreasing width of the shallow shelf results in wave-dominated coastal morphologies in the south compared to fluvial domination in the north and a systematic change from straight, linear bars and beaches in the north to rhythmic topography in the south.

  17. Smartphone imagery to analyze animal-induced erosion in riverbanks

    NASA Astrophysics Data System (ADS)

    Sofia, Giulia; Masin, Roberta; Tarolli, Paolo

    2016-04-01

    damage as classified according to Coypu relative abundance ratings when available. This would offer the basis to compare biomes, identifying those suffering the most. The quantification of eroded sediment would also provide a scientific basis to improve the analysis of the impacts of burrowing animals on riparian habitats and native species as well as on the efficiency of buffer zones. Prosdocimi, M., Sofia, G., Dalla Fontana, G., Tarolli, P. (2015). Bank erosion in agricultural drainage networks: effectiveness of Structure-from-Motion photogrammetry for post-event analysis, Earth Surface Processes and Landforms, 40: 1891-1906. doi: 10.1002/esp.3767.

  18. Comparison of unmanned aircraft systems (UAS) to LiDAR for streambank erosion measurement at the site-specific and river network scales

    NASA Astrophysics Data System (ADS)

    Hamshaw, S. D.; Dewoolkar, M. M.; Rizzo, D.; ONeil-Dunne, J.; Frolik, J.

    2016-12-01

    Measurement of rates and extent of streambank erosion along river corridors is an important component of many catchment studies and necessary for engineering projects such as river restoration, hazard assessment, and total maximum daily load (TMDL) development. A variety of methods have been developed to quantify streambank erosion, including bank pins, ground surveys, photogrammetry, LiDAR, and analytical models. However, these methods are not only resource intensive, but many are feasible and appropriate only for site-specific studies and not practical for erosion estimates at larger scales. Recent advancements in unmanned aircraft systems (UAS) and photogrammetry software provide capabilities for more rapid and economical quantification of streambank erosion and deposition at multiple scales (from site-specific to river network). At the site-specific scale, the capability of UAS to quantify streambank erosion was compared to terrestrial laser scanning (TLS) and RTK-GPS ground survey and assessed at seven streambank monitoring sites in central Vermont. Across all sites, the UAS-derived bank topography had mean errors of 0.21 m compared to TLS and GPS data. Highest accuracies were achieved in early spring conditions where mean errors approached 10 cm. The cross sectional area of bank erosion at a typical, vegetated streambank site was found to be reliably calculated within 10% of actual for erosion areas greater than 3.5 m2. At the river network-level scale, 20 km of river corridor along the New Haven, Winooski, and Mad Rivers was flown on multiple dates with UAS and used to generate digital elevation models (DEMs) that were then compared for change detection analysis. Airborne LiDAR data collected prior to UAS surveys was also compared to UAS data to determine multi-year rates of bank erosion. UAS-based photogrammetry for generation of fine scale topographic data shows promise for the monitoring of streambank erosion both at the individual site scale and river

  19. Application of short-range photogrammetry for monitoring seepage erosion of riverbank by laboratory experiments

    NASA Astrophysics Data System (ADS)

    Masoodi, A.; Noorzad, A.; Majdzadeh Tabatabai, M. R.; Samadi, A.

    2018-03-01

    Temporal and spatial monitoring play a significant role in evaluating and examining the riverbank morphology and its spatiotemporal changes. Unlike the terrestrial laser scanners, other previously used methods such as satellite images, total station surveying, and erosion pins have limited application to quantify the small-scale bank variations due to the lack of rapid survey and resolution in data acquisition. High cost, lack of availability, specialized equipment and hard movement of laser scanners make it necessary to develop new accurate, economical and easily available methods. The present study aims to test the Kinect photogrametric technology for measuring and assessing riverbank variations in laboratory environment. For this purpose, three models of layered soil blocks for three different levels of groundwater (i.e. 24, 34 and 44 cm) were designed to investigate the seepage erosion behavior experimentally. The results indicate the high accuracy of Kinect in measuring the bank erosion cavity dimensions (i.e., 0.5% error) with high spatial resolution data (i.e. 300,000 points per frame). The high speed of Kinect in riverbank scanning enables the analysis of time variations of mechanisms such as seepage erosion which occurs rather rapidly. The results confirmed that there is a power relationship between the seepage gradient and the time of the bank failure with a determination coefficient of 0.97. Moreover, an increase in the level of groundwater on the riverbank increases the rate of undercutting retreat that caused more rapid failure of the riverbank.

  20. Impacts of the post-fire erosion processes compared with the agricultural erosion rates for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Marisa Santos, Juliana; Nunes, João Pedro; Bernard-Jannin, Léonard; Gonzalez Pelayo, Oscar; Keizer, Jan Jacob

    2014-05-01

    Mediterranean ecosystems are very vulnerable to soil erosion by water due to particular characteristics of climate, lithology and land use history. Moreover, the foreseen climate changes might worsen land degradation and desertification, in which soil erosion has been classified as one of the most important driving forces. In this context, the frequent forest fires seen in some Mediterranean regions can case disturbances to vegetation cover and enhance soil erosion processes. This work addresses this issue for the Caramulo mountain range, NW Iberia. In the past century, large land use changes occurred due to massive afforestation. Changes from mixed natural forest cover and shrublands to Pine, the introduction of Eucalyptus plantations and, more recently, a trend for the substitution of pines by eucalypts, are the evidence of a large and rapid land use change in the last decades. Forest fires started to occur as afforestation proceeded, as a consequence of the disappearance of pasturage and accumulation of highly inflammable material; they became more frequent after the 1960's and became a determinant factor for land use changes in this region. Data collection focused on the Macieira de Alcoba catchment, a headwater agro-forested catchment (94 ha) located in this region. It has a wet Mediterranean climate, with an average annual rainfall of about 1300 mm (2002-2012), concentrated in autumn and winter, while spring and summer are dryer seasons. The mean annual temperature is 14°C and in summer it can reach 35°C. The land use is mixed, with forest and agriculture lands covering respectively 60 and 35% of the catchment area, 5% being built-up areas in the village of Macieira de Alcoba. In the last decades, this catchment suffered several forest fires (in 1969, 1986, 1991, and 2011). Erosion processes are related with periods of low vegetation cover in autumn in fields with a pasture-corn rotation, but also with forest plantations after clear-cutting and especially

  1. A comprehensive fluvial geomorphology study of riverbank erosion on the Red River in Winnipeg, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, Navid; Goharrokhi, Masoud; Clark, Shawn P.; Ahmari, Habib

    2015-10-01

    Riverbank erosion on the Red River in Winnipeg, Manitoba has raised concerns over the last 20 years and more. Although several recent studies have shown that fluvial erosion can reduce riverbank stability and promote geotechnical slope failure, there are too few that have focused on this phenomenon. The present study includes field measurements, experimental testing, and numerical modelling to quantify fluvial erosion through a 10 km reach of the Red River. Results have shown that seasonal freeze-thaw processes can dramatically reduce the critical shear stress and increase erodibility of the riverbanks. Moreover, a simple method has been employed using hydrodynamic numerical models to define the applied shear stresses on the river banks based on the river water level, which will be useful for further research and design purposes. The TEMP/W numerical model was used to define seasonal frost depth to estimate freeze-thaw effects. Finally all field measurements, experimental and numerical models results were used to predict annual fluvial erosion through this reach of the river.

  2. Postfire soil erosion processes are conditioned by aridity

    NASA Astrophysics Data System (ADS)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    In this work we have studied the runoff and rate of erosion in severely burnt Mediterranean shrublands of southern Spain by simulating high intensity rainfall over a period of 5 years. We have also observed temporal changes in soil surface properties (0-10 mm) of two scrub areas in different years. In both cases, surface runoff increased appreciably during the first year after the fire, compared to burning bushes in more rainy areas. Although differences in the rate of infiltration (determined by a mini-disk infiltrometer with ethanol, to avoid the effect of hydrophobicity) were observed, the increase in the rate of runoff was related to the increase of water repellency in the first millimeters of the soil surface, regardless of other physical properties (texture or percentage of rock fragments), chemical (acidity, organic matter content) or fire severity. Sediment loss was also exceptionally high during the first year. Then, runoff and soil loss rates were progressively approaching the values observed in the control zones. However, most of the physical and chemical properties of the soil after the fire did not change during the post-fire period, suggesting erosion of sediment depletion. No large differences were observed between the study points along the precipitation gradient, suggesting that, independently of this and other factors, the impact of high severity fires can be long over time. Although other authors have shown that relatively small changes in aridity have great impacts on erosion processes, this does not seem to be valid in the case of high severity fires in Mediterranean areas.

  3. Estimation of erosion-accumulative processes at the Inia River's mouth near high-rise construction zones.

    NASA Astrophysics Data System (ADS)

    Sineeva, Natalya

    2018-03-01

    Our study relevance is due to the increasing man-made impact on water bodies and associated land resources within the urban areas, as a consequence, by a change in the morphology and dynamics of Rivers' canals. This leads to the need to predict the development of erosion-accumulation processes, especially within the built-up urban areas. Purpose of the study is to develop programs on the assessment of erosion-accumulation processes at a water body, a mouth area of the Inia River, in the of perspective high-rise construction zone of a residential microdistrict, the place, where floodplain-channel complex is intensively expected to develop. Results of the study: Within the velocities of the water flow comparing, full-scale measured conditions, and calculated from the model, a slight discrepancy was recorded. This allows us to say that the numerical model reliably describes the physical processes developing in the River. The carried out calculations to assess the direction and intensity of the channel re-formations, made us possible to conclude, there was an insignificant predominance of erosion processes over the accumulative ones on the undeveloped part of the Inia River (the processes activity is noticeable only in certain areas (by the coasts and the island)). Importance of the study: The study on the erosion-accumulation processes evaluation can be used in design decisions for the future high-rise construction of this territory, which will increase their economic efficiency.

  4. Wave-current induced erosion of cohesive riverbanks in northern Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, N.; Clark, S.; Ahmari, H.; Hunt, J.

    2015-03-01

    The field of cohesive soil erosion is still not fully understood, in large part due to the many soil parameters that affect cohesive soil erodibility. This study is focused on two channels, 2-Mile and 8-Mile channels in northern Manitoba, Canada, that were built to connect Lake Winnipeg with Playgreen Lake and Playgreen Lake with Kiskikittogisu Lake, respectively. The banks of the channels consist of clay rich soils and alluvial deposits of layered clay, silts and sands. The study of erosion at the sites is further complicated because the flow-induced erosion is combined with the effects of significant wave action due to the large fetch length on the adjacent lakes, particularly Lake Winnipeg that is the seventh largest lake in North America. The study included three main components: field measurements, laboratory experiments and numerical modelling. Field measurements consisted of soil sampling from the banks and bed of the channels, current measurements and water sampling. Grab soil samples were used to measure the essential physical and electrochemical properties of the riverbanks, and standard ASTM Shelby tube samples were used to estimate the critical shear stress and erodibility of the soil samples using an erosion measurement device (EMD). Water samples were taken to estimate the sediment concentration profile and also to monitor changes in sediment concentration along the channels over time. An Acoustic Doppler Current Profiler (ADCP) was used to collect bathymetry and current data, and two water level gauges have been installed to record water levels at the entrance and outlet of the channels. The MIKE 21 NSW model was used to simulate waves using historical winds and measured bathymetry of the channels and lakes. Finally, results from the wave numerical model, laboratory tests and current measurement were used to estimate the effect of each component on erodibility of the cohesive banks.

  5. Erosion and sediment transport in the Owens River near Bishop, California

    USGS Publications Warehouse

    Williams, Rhea P.

    1975-01-01

    Closure of Pleasant Valley Dam in 1954 has almost eliminated the supply of gravel to the 16-mile (25.7-kilometre) study reach of the Owens River. Because of armoring of the channel, scour has been limited to approximately 1 foot (0.3 metre) in the upper 2.3 miles (3.7 kilometres).This report presents information useful in determining long-term erosion effects below Pleasant Valley Dam, in assessing the feasibility of a proposed bypass channel versus retention of the main channel in its present state, and in determining man's influence on river morphology.Bedload transport is dependent on the hydraulics of a section and the availability of material. Ninety-eight percent by weight of the sampled bedload transported between sites 1 and 6 in the study reach was finer than 8 millimetres, although only 6 to 12 percent of the material in the bed available for transport was finer than 8 millimetres. Bank material, a prime source of new material for transport, is predominantly finer than 16 millimetres.Bank erosion is accelerated by wide ranges in flow release. The bank-erosion rates interpreted from aerial photographs indicate average annual erosion rates of 750 tons (680 tonnes) from 1947 to 1967, 1,970 tons (1,790 tonnes) from 1967 to 1968, and 2,020 tons (1,830 tonnes) from 1968 to 1971. These rates are compatible with the water discharge-sediment discharge relation developed from field data collected during 1972-73.Hydraulic geometry of the six sites indicates a shift in the river system regime since 1954. These changes have progressed downstream from the dam to a point between sites 4 and 5. Farther downstream channel changes will occur until the channel stabilizes.

  6. Wave basin model tests of technical-biological bank protection

    NASA Astrophysics Data System (ADS)

    Eisenmann, J.

    2012-04-01

    Sloped embankments of inland waterways are usually protected from erosion and other negative im-pacts of ship-induced hydraulic loads by technical revetments consisting of riprap. Concerning the dimensioning of such bank protection there are several design rules available, e.g. the "Principles for the Design of Bank and Bottom Protection for Inland Waterways" or the Code of Practice "Use of Standard Construction Methods for Bank and Bottom Protection on Waterways" issued by the BAW (Federal Waterways Engineering and Research Institute). Since the European Water Framework Directive has been put into action special emphasis was put on natural banks. Therefore the application of technical-biological bank protection is favoured. Currently design principles for technical-biological bank protection on inland waterways are missing. The existing experiences mainly refer to flowing waters with no or low ship-induced hydraulic loads on the banks. Since 2004 the Federal Waterways Engineering and Research Institute has been tracking the re-search and development project "Alternative Technical-Biological Bank Protection on Inland Water-ways" in company with the Federal Institute of Hydrology. The investigation to date includes the ex-amination of waterway sections where technical- biological bank protection is applied locally. For the development of design rules for technical-biological bank protection investigations shall be carried out in a next step, considering the mechanics and resilience of technical-biological bank protection with special attention to ship-induced hydraulic loads. The presentation gives a short introduction into hydraulic loads at inland waterways and their bank protection. More in detail model tests of a willow brush mattress as a technical-biological bank protec-tion in a wave basin are explained. Within the scope of these tests the brush mattresses were ex-posed to wave impacts to determine their resilience towards hydraulic loads. Since the

  7. Erosion and lateral surface processes

    USDA-ARS?s Scientific Manuscript database

    : Erosion can cause serious agricultural and environmental hazards. It can generate severe damage to the landscape, lead to significant loss of agricultural land and consequently to reduction in agricultural productivity, induce surface water pollution due to the transport of sediments and suspende...

  8. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Katopodes, Nikolaos D.

    2013-09-01

    A novel two-dimensional, physically based model of soil erosion and sediment transport coupled to models of hydrological and overland flow processes has been developed. The Hairsine-Rose formulation of erosion and deposition processes is used to account for size-selective sediment transport and differentiate bed material into original and deposited soil layers. The formulation is integrated within the framework of the hydrologic and hydrodynamic model tRIBS-OFM, Triangulated irregular network-based, Real-time Integrated Basin Simulator-Overland Flow Model. The integrated model explicitly couples the hydrodynamic formulation with the advection-dominated transport equations for sediment of multiple particle sizes. To solve the system of equations including both the Saint-Venant and the Hairsine-Rose equations, the finite volume method is employed based on Roe's approximate Riemann solver on an unstructured grid. The formulation yields space-time dynamics of flow, erosion, and sediment transport at fine scale. The integrated model has been successfully verified with analytical solutions and empirical data for two benchmark cases. Sensitivity tests to grid resolution and the number of used particle sizes have been carried out. The model has been validated at the catchment scale for the Lucky Hills watershed located in southeastern Arizona, USA, using 10 events for which catchment-scale streamflow and sediment yield data were available. Since the model is based on physical laws and explicitly uses multiple types of watershed information, satisfactory results were obtained. The spatial output has been analyzed and the driving role of topography in erosion processes has been discussed. It is expected that the integrated formulation of the model has the promise to reduce uncertainties associated with typical parameterizations of flow and erosion processes. A potential for more credible modeling of earth-surface processes is thus anticipated.

  9. Measuring Erosion and Deposition During the World's Largest Dam Removal in Near-Real-Time: An Example of 4-Dimensional SfM from the Elwha River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Ritchie, A.; Bountry, J.; Randle, T. J.; Warrick, J. A.

    2016-12-01

    The stepwise removal of two dams on the Elwha River beginning in September 2011 exposed 21 million cubic meters of sediment to fluvial erosion and created an unprecedented opportunity to monitor reservoir sediment erosion and river evolution during base level adjustment and a pulsed sediment release. We conduct repeat aerial surveys with a Cessna 172 using a simple custom wing-mount for consumer grade cameras and SfM photogrammetry to produce orthoimagery and digital elevation models in near-real-time at sub-weekly to monthly time intervals, depending on hydrology. Multiple lidar flights and ground survey campaigns provide estimates of both systematic and random error for this uniquely dense dataset. Co-registration of multiple SfM surveys during processing reduces systematic error and allows boot-strapping of ephemeral ground control points to earlier or later flights. Measurements of reservoir erosion volumes, delta growth, channel braiding, and bank erosion illustrate the reservoir and river channel responses to dam removal at resolutions comparable to hydrologic forcing events, allowing us to quantify reservoir sediment budgets on a per-storm basis. This allows for the analysis of sediment transported relative to rates of reservoir drawdown and river stream power for dozens of time intervals. Temporal decoupling of peak sediment flux and bank erosion rates is noted from these analyses. This dataset illustrates both challenges and opportunities emerging with the advent of big data in remote sensing of earth surface processes. Digital AbstractErosion and deposition by year in former Lake Mills reservoir measured using SfM-derived photogrammetry and LiDAR for WY2011 through 2016 (partial). Approximately 70% of available sediment has been eroded.

  10. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at

  11. Three Years Measuring Sediment Erosion and Deposition from the Largest Dam Removal Ever at Weekly-­to-­Monthly Scales Using SfM: Elwha River, Washington, USA.

    NASA Astrophysics Data System (ADS)

    Ritchie, A.; Randle, T. J.; Bountry, J.; Warrick, J. A.

    2015-12-01

    The stepwise removal of two dams on the Elwha River beginning in September 2011 exposed ~21 million cubic meters of sediment to fluvial erosion and created an unprecedented opportunity to monitor reservoir sediment erosion and river evolution during base level adjustment and a pulsed sediment release. We have conducted more than 60 aerial surveys with a Cessna 172 using a simple custom wing-mount for consumer grade cameras and SfM photogrammetry to produce orthoimagery and digital elevation models in near-real-time at weekly to monthly time intervals. Multiple lidar flights and ground survey campaigns have provided estimates of both systematic and random error for this uniquely dense dataset. Co-registration of multiple surveys during processing reduces systematic error and allows boot-strapping of subsequently established ground control to earlier flights. Measurements chronicle the erosion of 12 million cubic meters of reservoir sediment and record corresponding changes in channel braiding, wood loading and bank erosion. These data capture reservoir and river channel responses to dam removal at resolutions comparable to hydrologic forcing events, allowing us to quantify reservoir sediment budgets on a per-storm basis. This allows for the analysis of sediment transported relative to rates of reservoir drawdown and river stream power for dozens of intervals of time. Temporal decoupling of peak sediment flux and bank erosion rates is noted from these analyses. This dataset illustrates some of the challenges and opportunities emerging with the advent of big data in remote sensing of earth surface processes.

  12. Dynamic Modelling of Erosion and Deposition Processes in Debris Flows With Application to Real Debris Flow Events in Switzerland

    NASA Astrophysics Data System (ADS)

    Deubelbeiss, Y.; McArdell, B. W.; Graf, C.

    2011-12-01

    The dynamics of a debris flow can be significantly influenced by erosion and deposition processes during an event because volume changes have a strong influence on flow properties such as flow velocity, flow heights and runout distances. It is therefore worth exploring how to include these processes in numerical models, which are used for hazard assessment and mitigation measure planning. However, it is still under debate, what mechanism drives the erosion of material at the base of a debris flow. There are different processes attributed to erosion: it has been proposed that erosion correlates with the stresses due to granular interactions at the front, which in turn strongly depend on particle size or it may be related to basal shear forces. Because it is expected that larger flow heights result in larger stresses one can additionally hypothesize that there is a correlation between erosion rate and flow height. To test different erosion laws in a numerical model and its influence on the flow behavior we implement different relationships and compare simulation results with field data. Herefore, we use the numerical model, RAMMS (Christen et al., 2010), employing the Voellmy-fluid friction law. While it has already been shown that a correlation of erosion with velocity does not lead to a satisfying result (too high entrainment in the tail) a correlation with flow height combined with velocity (momentum) has been successfully applied to ice-avalanches. Currently, we are testing the momentum-driven and for comparison we reconsider the simple velocity-driven erosion rate. However, these laws do not consider processes on a smaller scale such as particle fluctuations resulting in energy production, which might play an important role. Therefore, we additionally consider an erosion model that has potential to draw new insights on the erosion process in debris flows. The model is based on an extended Voellmy model, which additionally employs an equation, which is a measure

  13. Empirical relations for cavitation and liquid impingement erosion processes

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1984-01-01

    A unified power-law relationship between average erosion rate and cumulative erosion is presented. Extensive data analyses from venturi, magnetostriction (stationary and oscillating specimens), liquid drop, and jet impact devices appear to conform to this relation. A normalization technique using cavitation and liquid impingement erosion data is also presented to facilitate prediction. Attempts are made to understand the relationship between the coefficients in the power-law relationships and the material properties.

  14. Maximum outer-bank velocity reduction for vane-dike fields installed in channel bends

    Treesearch

    S. Michael Scurlock; Amanda L. Cox; Christopher I. Thornton; Drew C. Baird

    2011-01-01

    Hydraulic conditions associated with channel bends in meandering rivers include secondary, helical currents, mass shift of flow to the outside of the bend, and increased erosion along the outer streambank. Such outer-bank erosion may result in undesired plan-form migration of the stream course, placing valuable land holdings or infrastructure in jeopardy. A type of in-...

  15. Internal structures of the nieuwpoort bank (southern north sea)

    NASA Astrophysics Data System (ADS)

    de Maeyer, P.; Wartel, S.; de Moor, G.

    The subbottom survey of the Nieuwpoort Banks allows recognition of 4 successive stages underlain by leper Clay: (1) The bank rests upon a sedimentary unit, at least 2 to 5 m thick, having a subhorizontal or wedge-like interior stratification. (2) This unit is cut by a subhorizontal erosive surface. (3) On top of this a first ridge, still recognizable on its interior structure and with shoreward-dipping foreset beds, developed. (4) On top of this former ridge the present-day bank was formed with shoreward-dipping foreset beds. Since the same structures are observed in the Stroom Bank, it seems likely that the above mentioned scheme can be generalized for all near-shore ridges close to the Belgian coast.

  16. Developing an Erosion Rate Map for Myanmar Using USLE, GIS and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Emtehani, Sobhan; Rutten, Martine

    2017-04-01

    Predicting erosion and estimating sediment loads in rivers are of major tasks in water resources system planning and management. In Myanmar erosion and collapse of river banks is common during the rainy season and riverine communities are frequently forced to relocate as their homes are dangerously close to the disintegrating river banks (Mann 2013). Myanmar is one of climatically most diverse countries located in Southeast Asia, where sheet, rill, and gully erosion affect crop yields as well as livelihood strategies of many people (Htwe, Brinkmann et al. 2015). In Myanmar, soil erosion measurement and monitoring approaches are increasingly important for land management planning to effectively avoid erosion and soil degradation, but such monitoring is limited by the availability of data and budgetary constraints. Therefore, spatial modeling approaches using GIS and remote sensing techniques play an important role for rapid risk assessments (Htwe 2016). In this study ''Model Builder'' tool in ArcGIS was used to create a model which generates an erosion rate map using Universal Soil Loss Equation (USLE). USLE is the product of five factors: rainfall erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), crop management factor (C), and support practice factor (P). Input data files for this model were acquired from online open source databases. Precipitation data was downloaded from Tropical Rainfall Measuring Mission (TRMM) for calculation of R factor. The resolution of TRMM data is very coarse (0.25 degree × 0.25 degree), therefore it was spatially downscaled by developing a relation between TRMM and Normalized Difference Vegetation Index (NDVI) using regression analysis method. Soil maps depicting percentages of sand, clay and silt were obtained from soilgrids website for calculation of K factor. Digital Elevation Model (DEM) with resolution of 90 meters was taken from Shuttle Radar Topography Mission (SRTM) for calculation of LS

  17. Spatio-temporal changes in river bank mass failures in the Lockyer Valley, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky; Grove, James; Khanal, Giri

    2013-06-01

    Wet-flow river bank failure processes are poorly understood relative to the more commonly studied processes of fluvial entrainment and gravity-induced mass failures. Using high resolution topographic data (LiDAR) and near coincident aerial photography, this study documents the downstream distribution of river bank mass failures which occurred as a result of a catastrophic flood in the Lockyer Valley in January 2011. In addition, this distribution is compared with wet flow mass failure features from previous large floods. The downstream analysis of these two temporal data sets indicated that they occur across a range of river lengths, catchment areas, bank heights and angles and do not appear to be scale-dependent or spatially restricted to certain downstream zones. The downstream trends of each bank failure distribution show limited spatial overlap with only 17% of wet flows common to both distributions. The modification of these features during the catastrophic flood of January 2011 also indicated that such features tend to form at some 'optimum' shape and show limited evidence of subsequent enlargement even when flow and energy conditions within the banks and channel were high. Elevation changes indicate that such features show evidence for infilling during subsequent floods. The preservation of these features in the landscape for a period of at least 150 years suggests that the seepage processes dominant in their initial formation appear to have limited role in their continuing enlargement over time. No evidence of gully extension or headwall retreat is evident. It is estimated that at least 12 inundation events would be required to fill these failures based on the average net elevation change recorded for the 2011 event. Existing conceptual models of downstream bank erosion process zones may need to consider a wider array of mass failure processes to accommodate for wet flow failures.

  18. Evaluation of soil erosion risk using Analytic Network Process and GIS: a case study from Spanish mountain olive plantations.

    PubMed

    Nekhay, Olexandr; Arriaza, Manuel; Boerboom, Luc

    2009-07-01

    The study presents an approach that combined objective information such as sampling or experimental data with subjective information such as expert opinions. This combined approach was based on the Analytic Network Process method. It was applied to evaluate soil erosion risk and overcomes one of the drawbacks of USLE/RUSLE soil erosion models, namely that they do not consider interactions among soil erosion factors. Another advantage of this method is that it can be used if there are insufficient experimental data. The lack of experimental data can be compensated for through the use of expert evaluations. As an example of the proposed approach, the risk of soil erosion was evaluated in olive groves in Southern Spain, showing the potential of the ANP method for modelling a complex physical process like soil erosion.

  19. Soil Organic Matter Erosion by Interrill Processes from Organically and Conventionally farmed Devon Soil

    NASA Astrophysics Data System (ADS)

    Armstrong, E.; Ling, A.; Kuhn, N. J.

    2012-04-01

    Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm) surface layer corresponds to 4 to 40 kg ha-1 of P on arable land (1.094 mil km2). Therefore, the role of interrill processes for nutrient cycling and the global carbon cycle requires close attention. Interrill erosion is a complex phenomenon involving the detachment, transport and deposition of soil particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion and particle size. As a consequence, erosion on interrill areas is selective, moving the most easily detached small and/or light soil particles. This leads to the enrichment of clay, phosphorous (P) and carbon (C). Such enrichment in interrill sediment is well documented, however, the role of interrill erosion processes on the enrichment remains unclear. Enrichment of P and C in interrill sediment is attributed to the preferential erosion of the smaller, lighter soil particles. In this study, the P and organic C content of sediment generated from two Devon silts under conventional (CS) and organic (OS) soil management were examined. Artificial rainfall was applied to the soils using two rainfall scenarios of differing intensity and kinetic energy to determine the effects on the P and C enrichment in interrill sediment. Interrill soil erodibility was lower on the OS, irrespective of rainfall intensity. Sediment from both soils showed a significant enrichment in P and C compared to the bulk soil. However, sediment from the OS displayed a much greater degree of P enrichment. This shows

  20. Geomorphic considerations for erosion prediction

    USGS Publications Warehouse

    Osterkamp, W.R.; Toy, T.J.

    1997-01-01

    Current soil-erosion prediction technology addresses processes of rainsplash, overland-flow sediment transport, and rill erosion in small watersheds. The effects of factors determining sediment yield from larger-scale drainage basins, in which sediment movement is controlled by the combined small-scale processes and a complex set of channel and other basin-scale sediment-delivery processes, such as soil creep, bioturbation, and accelerated erosion due to denudation of vegetation, have been poorly evaluated. General suggestions are provided for the development of erosion-prediction technology at the geomorphic or drainage-basin scale based on the separation of sediment-yield data for channel and geomorphic processes from those of field-scale soil loss. An emerging technology must consider: (1) the effects on sediment yield of climate, geology and soils, topography, biotic interactions with other soil processes, and land-use practices; (2) all processes of sediment delivery to a channel system; and (3) the general tendency in most drainage basins for progressively greater sediment storage in the downstream direction.

  1. Developing a vulnerability index for assessing riverbank erosion in large catchments

    NASA Astrophysics Data System (ADS)

    Regan, Siôn; Smith, Hugh

    2017-04-01

    Riverbank erosion is a natural process involved in floodplain development, but can have negative impacts such as excessive sediment supply to the river channel, undermining infrastructure and eroding valuable agricultural land. Catchment managers often work with limited budgets and for remediation efforts to be the most effective they should be targeted in areas that are at the highest risk of suffering excessive riverbank erosion. Recent developments in high resolution spatial data capture, such as aerial LiDAR have allowed for much more detailed representation of the riparian area, including the channel location and riparian vegetation. This presentation will propose a new dimensionless index that has been developed to identify and rank sections of river channel according to erosion vulnerability. The index combines information on channel position, slope and curvature extracted from LiDAR-derived DEMs with riparian vegetation cover. It also accounts for the extent of lateral confinement limiting erosion and bank silt-clay composition influencing erodibility. The index is designed to be applied to alluvial channels across large catchments (>500 km2) to support the identification riverbank erosion 'hotspots' at the reach scale (approximating 50-200 m intervals). The performance of the vulnerability index in discriminating actively eroding and non-eroding channel reaches was assessed in the River Lugg catchment, UK. Historic mapping and aerial photographs were used to determine the channel position, slope and riparian vegetation coverage in the 1960s. The index was then calculated for the historic river channel position and compared with ranked metrics of lateral channel change that occurred between the 1960s and present. This approach provides a basis for evaluating the utility of a simple vulnerability index that could be used for prioritising the location of future investments to reduce excessive riverbank erosion in large catchments.

  2. Linking Soil Moisture Variation and Abundance of Plants to Geomorphic Processes: A Generalized Model for Erosion-Uplifting Landscapes

    NASA Astrophysics Data System (ADS)

    Ding, Junyan; Johnson, Edward A.; Martin, Yvonne E.

    2018-03-01

    The diffusive and advective erosion-created landscapes have similar structure (hillslopes and channels) across different scales regardless of variations in drivers and controls. The relative magnitude of diffusive erosion to advective erosion (D/K ratio) in a landscape development model controls hillslope length, shape, and drainage density, which regulate soil moisture variation, one of the critical resources of plants, through the contributing area (A) and local slope (S) represented by a topographic index (TI). Here we explore the theoretical relation between geomorphic processes, TI, and the abundance and distribution of plants. We derived an analytical model that expresses the TI with D, K, and A. This gives us the relation between soil moisture variation and geomorphic processes. Plant tolerance curves are used to link plant performance to soil moisture. Using the hypothetical tolerance curves of three plants, we show that the abundance and distribution of xeric, mesic, and hydric plants on the landscape are regulated by the D/K ratio. Where diffusive erosion is the major erosion process (large D/K ratio), mesic plants have higher abundance relative to xeric and hydric plants and the landscape has longer and convex-upward hillslope and low channel density. Increasing the dominance of advective erosion increases relative abundance of xeric and hydric plants dominance, and the landscape has short and concave hillslope and high channel density.

  3. Scales and erosion

    USDA-ARS?s Scientific Manuscript database

    There is a need to develop scale explicit understanding of erosion to overcome existing conceptual and methodological flaws in our modelling methods currently applied to understand the process of erosion, transport and deposition at the catchment scale. These models need to be based on a sound under...

  4. Metal droplet erosion and shielding plasma layer under plasma flows typical of transient processes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru

    It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.

  5. Preliminary assessment of soil erosion impact during forest restoration process

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan

    2014-05-01

    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  6. Integrated process-based hydrologic and ephemeral gully modeling for better assessment of soil erosion in small watersheds

    NASA Astrophysics Data System (ADS)

    Sheshukov, A. Y.; Karimov, V. R.

    2017-12-01

    Excessive soil erosion in agriculturally dominated watersheds causes degradation of arable land and affects agricultural productivity. Structural and soil-quality best management practices can be beneficial in reducing sheet and rill erosion, however, larger rills, ephemeral gullies, and concentrated flow channels still remain to be significant sources of sediment. A better understanding of channelized soil erosion, underlying physical processes, and ways to mitigate the problem is needed to develop innovative approaches for evaluation of soil losses from various sediment sources. The goal of this study was to develop a novel integrated process-based catchment-scale model for sheet, rill, and ephemeral gully erosion and assess soil erosion mitigation practices. Geospatially, a catchment was divided into ephemeral channels and contributing hillslopes. Surface runoff hydrograph and sheet-rill erosion rates from contributing hillslopes were calculated based on the Water Erosion Prediction Project (WEPP) model. For ephemeral channels, a dynamic ephemeral gully erosion model was developed. Each channel was divided into segments, and channel flow was routed according to the kinematic wave equation. Reshaping of the channel profile in each segment (sediment deposition, soil detachment) was simulated at each time-step according to acting shear stress distribution along the channel boundary and excess shear stress equation. The approach assumed physically-consistent channel shape reconfiguration representing channel walls failure and deposition in the bottom of the channel. Soil erodibility and critical shear stress parameters were dynamically adjusted due to seepage/drainage forces based on computed infiltration gradients. The model was validated on the data obtained from the field study by Karimov et al. (2014) yielding agreement with NSE coefficient of 0.72. The developed model allowed to compute ephemeral gully erosion while accounting for antecedent soil moisture

  7. Soil erosion and sediment production on watershed landscapes: Processes and control

    Treesearch

    Peter F. Ffolliott; Kenneth N. Brooks; Daniel G. Neary; Roberto Pizarro Tapia; Pablo Garcia-Chevesich

    2013-01-01

    Losses of the soil resources from otherwise productive and well functioning watersheds is often a recurring problem confronting hydrologists and watershed managers. These losses of soil have both on-site and off-site effects on the watershed impacted. In addition to the loss of inherent soil resources through erosion processes, on-site effects can include the breakdown...

  8. Extreme rates of riverbank erosion of the high bluff formed by the ice-rich syngenetic permafrost (yedoma), Itkillik River, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Shur, Y.; Fortier, D.; Jorgenson, T.; Stephani, E.; Strauss, J.

    2013-12-01

    Riverbank erosion in areas underlain by ice-rich permafrost is strongly affected by the processes of thawing of ground ice, which include (1) thermal erosion, and (2) thermal denudation. Thermal erosion is a process of combined thermal and mechanical action of moving water, which results in simultaneous thawing of frozen soil and its removal by water. Thermal erosion can cause block collapse of eroded banks. Thermal denudation is a process of thawing of frozen soils exposed in the bluff due to solar energy and consequent removal of thawed soils by gravity. Studies of riverbank and coastal erosion revealed that the highest rates of erosion are typical of bluffs composed by yedoma (ice- and organic-rich syngenetically frozen silty deposits). Yedoma deposits can be up to 50 m thick, and they contain huge ice wedges up to 10 m wide. Since 2006, we have studied the process of riverbank erosion of the 35 m high exposure of yedoma along the Itkillik River in northern Alaska. Based on five measurements of the areas occupied by wedge ice in panoramic photographs taken in 2006, 2007, 2011, and 2012, the average wedge-ice volume makes 61% of the entire exposed bluff. The total volumetric ground ice content of the Itkillik yedoma, including wedge, segregated and pore ice, is 85%. We detect three main stages of the riverbank erosion for the study site and other similar sites in the areas of ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. The first stage includes formation of thermoerosional niches; development of sub-vertical cracks and block-fall collapse of cornices; and thawing and disintegration of blocks of ground ice and frozen soil in the water. All these processes are accompanied by thermal denudation of the exposed bluff. On August 16, 2007, a big portion of the bluff fell down along the crack sub-parallel to the bluff. As a result, the vertical wall more than 65 m long entirely formed by

  9. Topographic Signatures of Meandering Rivers with Differences in Outer Bank Cohesion

    NASA Astrophysics Data System (ADS)

    Kelly, S. A.; Belmont, P.

    2014-12-01

    Within a given valley setting, interactions between river hydraulics, sediment, topography, and vegetation determine attributes of channel morphology, including planform, width and depth, slope, and bed and bank properties. These feedbacks also govern river behavior, including migration and avulsion. Bank cohesion, from the addition of fine sediment and/or vegetation has been recognized in flume experiments as a necessary component to create and maintain a meandering channel planform. Greater bank cohesion slows bank erosion, limiting the rate at which a river can adjust laterally and preventing so-called "runaway widening" to a braided state. Feedbacks of bank cohesion on channel hydraulics and sediment transport may thus produce distinct topographic signatures, or patterns in channel width, depth, and point bar transverse slope. We expect that in bends of greater outer bank cohesion the channel will be narrower, deeper, and bars will have greater transverse slopes. Only recently have we recognized that biotic processes may imprint distinct topographic signatures on the landscape. This study explores topographic signatures of three US rivers: the lower Minnesota River, near Mankato, MN, the Le Sueur River, south central MN, and the Fall River, Rocky Mountain National Park, CO. Each of these rivers has variability in outer bank cohesion, quantified based on geotechnical and vegetation properties, and in-channel topography, which was derived from rtkGPS and acoustic bathymetry surveys. We present methods for incorporating biophysical feedbacks into geomorphic transport laws so that models can better simulate the spatial patterns and variability of topographic signatures.

  10. A review of concentrated flow erosion processes on rangelands: fundamental understanding and knowledge gaps

    USDA-ARS?s Scientific Manuscript database

    Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolera...

  11. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards.

    PubMed

    Rodrigo Comino, J; Iserloh, T; Lassu, T; Cerdà, A; Keestra, S D; Prosdocimi, M; Brings, C; Marzen, M; Ramos, M C; Senciales, J M; Ruiz Sinoga, J D; Seeger, M; Ries, J B

    2016-09-15

    The aim of this study was to enable a quantitative comparison of initial soil erosion processes in European vineyards using the same methodology and equipment. The study was conducted in four viticultural areas with different characteristics (Valencia and Málaga in Spain, Ruwer-Mosel valley and Saar-Mosel valley in Germany). Old and young vineyards, with conventional and ecological planting and management systems were compared. The same portable rainfall simulator with identical rainfall intensity (40mmh(-1)) and sampling intervals (30min of test duration, collecting the samples at 5-min-intervals) was used over a circular test plot with 0.28m(2). The results of 83 simulations have been analysed and correlation coefficients were calculated for each study area to identify the relationship between environmental plot characteristics, soil texture, soil erosion, runoff and infiltration. The results allow for identification of the main factors related to soil properties, topography and management, which control soil erosion processes in vineyards. The most important factors influencing soil erosion and runoff were the vegetation cover for the ecological German vineyards (with 97.6±8% infiltration coefficients) and stone cover, soil moisture and slope steepness for the conventional land uses. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Disaggregating soil erosion processes within an evolving experimental landscape

    USDA-ARS?s Scientific Manuscript database

    Soil-mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This st...

  13. Annotated bibliography on soil erosion and erosion control in subarctic and high-latitude regions of North America.

    Treesearch

    C.W. Slaughter; J.W. Aldrich

    1989-01-01

    This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...

  14. Anthropogenic control on geomorphic process rates: can we slow down the erosion rates? (Geomorphology Outstanding Young Scientist Award & Penck Lecture)

    NASA Astrophysics Data System (ADS)

    Vanacker, V.

    2012-04-01

    The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.

  15. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  16. River bank burrowing by invasive crayfish: Spatial distribution, biophysical controls and biogeomorphic significance.

    PubMed

    Faller, Matej; Harvey, Gemma L; Henshaw, Alexander J; Bertoldi, Walter; Bruno, Maria Cristina; England, Judy

    2016-11-01

    Invasive species generate significant global environmental and economic costs and represent a particularly potent threat to freshwater systems. The biogeomorphic impacts of invasive aquatic and riparian species on river processes and landforms remain largely unquantified, but have the potential to generate significant sediment management issues within invaded catchments. Several species of invasive (non-native) crayfish are known to burrow into river banks and visual evidence of river bank damage is generating public concern and media attention. Despite this, there is a paucity of understanding of burrow distribution, biophysical controls and the potential significance of this problem beyond a small number of local studies at heavily impacted sites. This paper presents the first multi-catchment analysis of this phenomenon, combining existing data on biophysical river properties and invasive crayfish observations with purpose-designed field surveys across 103 river reaches to derive key trends. Crayfish burrows were observed on the majority of reaches, but burrowing tended to be patchy in spatial distribution, concentrated in a small proportion (<10%) of the length of rivers surveyed. Burrow distribution was better explained by local bank biophysical properties than by reach-scale properties, and burrowed banks were more likely to be characterised by cohesive bank material, steeper bank profiles with large areas of bare bank face, often on outer bend locations. Burrow excavation alone has delivered a considerable amount of sediment to invaded river systems in the surveyed sites (3tkm(-1) impacted bank) and this represents a minimum contribution and certainly an underestimate of the absolute yield (submerged burrows were not recorded). Furthermore, burrowing was associated with bank profiles that were either actively eroding or exposed to fluvial action and/or mass failure processes, providing the first quantitative evidence that invasive crayfish may cause or

  17. Quantifying coastal erosion rates using anatomical change in exposed tree roots at Porquerolles Island (Var, France).

    NASA Astrophysics Data System (ADS)

    Morel, Pauline; Corona, Christophe; Lopez-Saez, Jérôme; Rovéra, Georges; Dewez, Thomas; Stoffel, Markus; Berger, Frédéric

    2017-04-01

    Rocky coasts are the most common type of ocean-land contacts and can be found in all types of morphogenetic environments. Most work on rocky environments focused on the impacts of modern sea level rise on cliff stability derived from sequential surveys, direct measurements or erosional features in anthropogenic structures. Studies mainly focused on rapid erosion so that little is known about erosion rates of the French Mediterranean coastal area. Using anatomical reactions in roots, has been successfully used in various environments in the past to quantify continuous denudation rates, mostly in relation with gullying processes (Vandekerckhove, 2001; Malik, 2008), aerial (or sheet) (Bodoque et al., 2005; Lopez Saez et al., 2011; Lucia et al., 2011), river bank (Malik, 2006; Hitz et al., 2008a; Stoffel et al., 2012), or lake shore (Fantucci, 2007) erosion, but never so far on coastal cliffs environment. This study aims at exploring the potential of dendrogeomorphic approach to quantify multidecadal changes in coastal environments on Porquerolles Island (Var, France). We sampled 56 discs from Pinus halepensis Mill. roots on former alluvial deposits eroded by present day sea level (escarpments of a few meter in height) and on sandy-gravelly cliffs. We were able to dates erosion pulses as well as changes in cliff geometry with annual resolution over 30-40 years showing an average erosion rate of 2.1 cm yr-1. Our results are consistent with those found in the study of Giuliano (2015) on Mediterranean coastal environment. This contribution therefore demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and are a powerful tool for the quantification of multidecadal cliff retreats rates in areas where measurements of past erosion is lacking. References: Bodoque J, Díez-Herrero A, Martín-Duque J, Rubiales J, Godfrey A, Pedraza J, Carrasco R, Sanz M. 2005. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed

  18. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion

    PubMed Central

    Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze

    2017-01-01

    Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652

  19. Erosion processes and prediction in NW U.S. forests

    Treesearch

    W. J. Elliot; P. R. Robichaud; R. B. Foltz

    2011-01-01

    The greatest amounts of forest erosion usually follow infrequent wildfires. Sediment from these fires is gradually routed through the stream system. The forest road network is usually the second greatest source of sediment, generating sediment annually. Erosion rates associated with timber harvest, biomass removal, and prescribed fire are generally minimal with current...

  20. Using computer models to design gully erosion control structures for humid northern Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Classic gully erosion control measures such as check dams have been unsuccessful in halting gully formation and growth in the humid northern Ethiopian highlands. Gullies are typically formed in vertisols and flow often bypasses the check dams as elevated groundwater tables make gully banks unstable....

  1. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  2. Finding of No Significant Impact: Proposed Bank Stabilization Tennessee River River Mile 466.2 - 466.5, Hamilton County, Tennessee

    DTIC Science & Technology

    2013-05-02

    Bank erosion is endangering approximately 1,100 feet of a 42-inch concrete gravity sanitary main, two manholes, and a 30-inch iron sanitary sewer...stabilizing the bank. Kingfisher nests are excavated burrows with bare soil along stream banks (USACE, 2009). “Banks with a high content of clay , gravel, or...34’ g -- - -- - - ---- --- -------- 1 LEGEND ESTIMATED 42’’ GRAVITY SEWER LINE ESTIMATED 30’’ FORCE MAIN ® SANITARY SEWER MANHOLE • AUTO

  3. Investigating the Influence of Clay Mineralogy on Stream Bank Erodibility

    NASA Astrophysics Data System (ADS)

    Ambers, R. K.; Stine, M. B.

    2005-12-01

    Soil scientists concerned with erosion of agricultural fields and geotechnical engineers concerned with the mechanical behavior of soils under different conditions have both examined the role of clay mineralogy in controlling soil/sediment properties. Fluvial geomorphologists studying stream channel erosion and stability have focused more on the effects of particle-size distribution, vegetation and rooting. The clay mineralogy of bed and bank sediment has the potential to influence cohesiveness and erodibility, however. The goal of this study is to determine the influence of clay mineralogy on the erodibility of natural stream bank sediment, utilizing techniques drawn from pedology and soil mechanics. Bank samples were collected from eleven sites in small watersheds in central and western Virginia. To obtain sediment containing a range of different clay minerals, watersheds with different types of bedrock were chosen for sampling. Rock types included mafic to felsic metamorphic and igneous rocks, shale, sandstone, and limestone. Where stream bank materials were clearly stratified, different layers were sampled separately. X-ray diffraction of the clay-fraction of the sediment indicates the presence of kaolinite, illite, vermiculite, and mixed-layer clay minerals in various abundances in the different samples. Clay content is 9-46%, as determined by the hydrometer method, and textures range from silty clay and silt loam to clay loam and sandy loam. Organic mater contents range from 1-5% by the loss-on-ignition method. Bulk density of intact sediment samples averages 1.5 g/cc. Liquid limits range from 23-41 with one sample having a value of 65; plasticity indices range from 15-22. While these tests predict that the samples would show a range of mechanical behaviors, the channel morphology at the sampling sites was not strikingly different, all having steep cut banks eroded primarily by scour with no evidence of mass movement and most having a width/depth ratio around

  4. Post-fire "Hillslope Debris Flows": evidence of a distinct erosion process

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Phil; Vandersant, Rene; Lane, Patrick; Sheridan, Gary

    2017-04-01

    Debris flows occurring soon after fire have been associated with a somewhat mysterious erosion process upslope of their initiation zone that some authors have called 'miniature debris flows on hillslopes', and that leave behind levee-lined rills. Despite the unusual proposition of debris flow on planar hillslopes, the process has not received much attention. The objective of this study was to present evidence of this process from field observations, to analyse its initiation, movement and form through runoff experiments and video, explore the role of fire severity and runoff rate, and to propose a conceptual model of the process. Hillslope debris flows (HDF) consist of a lobe of gravel- to cobble-sized material 0.2 - 1 m wide that is pushed by runoff damming up behind it. During initiation, runoff moved individual particles that accumulated a small distance downslope until the accumulation of grains failed and formed the granular lobe of the HDF. They occur at relatively steep slope gradients (0.4 - 0.8), on a variety of geologies, and after fire of at least moderate intensity, where all litter is burnt and the soil surface becomes non-cohesive. HDF are a threshold process, and runoff rates of less than 0.5 L s-1 to more than 1 L s-1 were required for their initiation during the experiments. Char and ash lower the threshold considerably. Our conceptual model highlights HDF as a geomorphic process distinct from channel debris flows and classical rill erosion. On a matrix of slope and grain size, HDF are enveloped between purely gravity-driven dry ravel, and mostly runoff-driven bedload transport in rills.

  5. Process-Based Modeling of Upland Erosion and Salt Load in the Upper Colorado River Basin

    USDA-ARS?s Scientific Manuscript database

    Hillslope runoff and soil erosion processes are indicators of sustainability in rangeland ecosystem due to their control on resource mobility. Hillslope processes are dominant contributors to sediment delivery on semi-arid rangeland watersheds. The influence of vegetation on hillslope runoff and sed...

  6. Use of Sediment Budgets for Watershed Erosion Control Planning: A Case Study From Northern California

    NASA Astrophysics Data System (ADS)

    O'Connor, M.; McDavitt, W.

    2002-05-01

    Erosion, sedimentation and peak flow increases caused by forest management for commercial timber production may negatively affect aquatic habitat of endangered anadromous fish such as coho salmon ({\\ it O. kisutch}). This paper summarizes a portion of a Watershed Analysis study performed for Pacific Lumber Company, Scotia, CA, focusing on erosion and sedimentation processes and rates and downstream sediment routing and water quality in the Freshwater Creek watershed in northwest California. Hillslope, road and bank erosion, channel sedimentation and sediment rates were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. The resulting sediment budget was validated through comparison using recent short-term, high-quality estimates of suspended sediment yield collected by a community watershed group at a downstream monitoring site with technical assistance from the US Forest Service. Another check on the sediment budget was provided by bedload yield data from an adjacent watershed, Jacoby Creek. The sediment budget techniques and bedload routing models used for this study provide sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments for use in the TMDL process. The sediment budget also identifies the most significant sediment sources and suggests a framework within which effective erosion control strategies can be developed.

  7. Shoreline Erosion Processes: Orwell Lake, Minnesota.

    DTIC Science & Technology

    1984-12-01

    1976) and Savat ( 1981 ) found such splash layer Will absorb much of the impact of the rain- erosion to increase with increasing slope angle, but...pp. 188-196. U.S. Army Corps of Engineers (1979) Flood control, Savat , J. ( 1981 ) Work done by splash: Laboratory Orwell Dam, Otter Tail River

  8. The age of vines as a controlling factor of soil erosion processes in Mediterranean vineyards.

    PubMed

    Rodrigo-Comino, Jesús; Brevik, Eric C; Cerdà, Artemi

    2018-03-01

    Vineyards incur the highest soil and water losses among all Mediterranean agricultural fields. The state-of-the-art shows that soil erosion in vineyards has been primarily surveyed with topographical methods, soil erosion plots and rainfall simulations, but these techniques do not typically assess temporal changes in soil erosion. When vines are planted they are about 30cm high×1cm diameter without leaves, the root system varies from 2 to over 40cm depth, and sometimes the lack of care used during transplanting can result in a field with highly erodible bare soils. This means that the time since vine plantation plays a key role in soil erosion rates, but very little attention has been paid to this by the scientific community. Thus, the main goal of this research was to estimate soil losses and assess soil erosion processes in two paired vineyard plantations of different ages. To achieve this goal, the improved stock unearthing method (ISUM) was applied to vineyards on colluvial parent materials with similar soil properties, topographical characteristics and land managements in the Les Alcusses Valley, southwestern Valencia province, Spain. Our findings suggested that the old vineyards showed lower erosion rates (-1.61Mgha -1 yr -1 ) than those that were recently planted (-8.16Mgha -1 yr -1 ). This is because of the damage that the plantation of the vines causes to soil. Tillage after planting (4 times per year) resulted in changes in the inter-row and row morphology, promoting the development of a ridge underneath the vines that disconnected the inter-rows and reduced soil losses with time. After the second year and until the 25th year after plantation, soil erosion was approximately 1Mgha -1 y -1 , which means that most of the erosion took place during the first two years after the plantation. Soil conservation strategies should be applied immediately after the plantation works to allow sustainable grape production. That is when soil erosion most needs to be

  9. Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA.

    PubMed

    Pope, Ian C; Odhiambo, Ben K

    2014-03-01

    Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha(-1) year(-1) in the same time period. (210)Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm(-2) year(-1) respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year(-1). These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.

  10. Benefits to blood banks of a sales and operations planning process.

    PubMed

    Keal, Donald A; Hebert, Phil

    2010-12-01

    A formal sales and operations planning (S&OP) process is a decision making and communication process that balances supply and demand while integrating all business operational components with customer-focused business plans that links high level strategic plans to day-to-day operations. Furthermore, S&OP can assist in managing change across the organization as it provides the opportunity to be proactive in the face of problems and opportunities while establishing a plan for everyone to follow. Some of the key outcomes from a robust S&OP process in blood banking would include: higher customer satisfaction (donors and health care providers), balanced inventory across product lines and customers, more stable production rates and higher productivity, more cooperation across the entire operation, and timely updates to the business plan resulting in better forecasting and fewer surprises that negatively impact the bottom line. © 2010 American Association of Blood Banks.

  11. The management submodel of the Wind Erosion Prediction System

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step, computer model that predicts soil erosion via simulation of the physical processes controlling wind erosion. WEPS is comprised of several individual modules (submodels) that reflect different sets of physical processes, ...

  12. Internal erosion during soil pipe flow: Role in gully erosion and hillslope instability

    USDA-ARS?s Scientific Manuscript database

    Many field observations have lead to speculation on the role of piping in embankment failures, landslides, and gully erosion. However, there has not been a consensus on the subsurface flow and erosion processes involved and inconsistent use of terms have exasperated the problem. One such piping proc...

  13. Utilising Structure-From-Motion Approaches to Develop a Spatial Understanding of Soil Erosion Processes, in an Experimental Setting.

    NASA Astrophysics Data System (ADS)

    Benaud, P.; Anderson, K.; Quine, T. A.; James, M. R.; Quinton, J.; Brazier, R. E.

    2016-12-01

    While total sediment capture can accurately quantify soil loss via water erosion, it isn't practical at the field scale and provides little information on the spatial nature of soil erosion processes. Consequently, high-resolution, remote sensing, point cloud data provide an alternative method for quantifying soil loss. The accessibility of Structure-from-Motion Multi-Stereo View (SfM) and the potential for multi-temporal applications, offers an exciting opportunity to spatially quantify soil erosion. Accordingly, published research provides examples of the successful quantification of large erosion features and events, to centimetre accuracy. Through rigorous control of the camera and image network geometry, the centimetre accuracy achievable at the field scale, can translate to sub-millimetre accuracies within a laboratory environment. Accordingly, this study looks to understand how the ultra-high-resolution spatial information on soil surface topography, derived from SfM, can be integrated with a multi-element sediment tracer to develop a mechanistic understanding of rill and inter-rill erosion, under experimental conditions. A rainfall simulator was used to create three soil surface conditions; compaction and rainsplash, inter-rill erosion, and rill erosion, at two experimental scales (0.15 m2 and 3 m2). Total sediment capture was the primary validation for the experiments, allowing the comparison between structurally and volumetrically derived change, and true soil loss. A Terrestrial Laser Scanner (resolution of ca. 0.8mm) has been employed to assess spatial discrepancies within the SfM data sets and to provide an alternative measure of volumetric change. Preliminary results show the SfM approach used can achieve a ground resolution of less than 0.2 mm per pixel, and a RMSE of less than 0.3 mm. Consequently, it is expected that the ultra-high-resolution SfM point clouds can be utilised to provide a detailed assessment of soil loss via water erosion processes.

  14. Use of bacteria for improving the lignocellulose biorefinery process: importance of pre-erosion.

    PubMed

    Zhuo, Shengnan; Yan, Xu; Liu, Dan; Si, Mengying; Zhang, Kejing; Liu, Mingren; Peng, Bing; Shi, Yan

    2018-01-01

    Biological pretreatment is an important alternative strategy for biorefining lignocellulose and has attracted increasing attention in recent years. However, current designs for this pretreatment mainly focus on using various white rot fungi, overlooking the bacteria. To the best of our knowledge, for the first time, we evaluated the potential contribution of bacteria to lignocellulose pretreatment, with and without a physicochemical process, based on the bacterial strain Pandoraea sp. B-6 (hereafter B-6) that was isolated from erosive bamboo slips. Moreover, the mechanism of the improvement of reducing sugar yield by bacteria was elucidated via analyses of the physicochemical changes of corn stover (CS) before and after pretreatment. The digestibility of CS pretreated with B-6 was equivalent to that of untreated CS. The recalcitrant CS surface provided fewer mediators for contact with the extracellular enzymes of B-6. A pre-erosion strategy using a tetrahydrofuran-water co-solvent system was shown to destroy the recalcitrant CS surface. The optimal condition for pre-erosion showed a 6.5-fold increase in enzymatic digestibility compared with untreated CS. The pre-erosion of CS can expose more phenolic compounds that were chelated to oxidized Mn 3+ and also provided mediators for combination with laccase, which was attributable to B-6 pretreatment. B-6 pretreatment following pre-erosion exhibited a sugar yield that was 91.2 mg/g greater than that of pre-erosion alone and 7.5-fold higher than that of untreated CS. This pre-erosion application was able to destroy the recalcitrant CS surface, thus leading to a rough and porous architecture that better facilitated the diffusion and transport of lignin derivatives. This enhanced the ability of laccase and manganese peroxidase secreted by B-6 to improve the efficiency of this biological pretreatment. Bacteria were not found useful alone as a biological pretreatment, but they significantly improved enzymatic digestion

  15. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    PubMed Central

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530

  16. International Heart Valve Bank Survey: A Review of Processing Practices and Activity Outcomes

    PubMed Central

    Albrecht, Helmi; Lim, Yeong Phang; Manning, Linda

    2013-01-01

    A survey of 24 international heart valve banks was conducted to acquire information on heart valve processing techniques used and outcomes achieved. The objective was to provide an overview of heart valve banking activities for tissue bankers, tissue banking associations, and regulatory bodies worldwide. Despite similarities found for basic manufacturing processes, distinct differences in procedural details were also identified. The similarities included (1) use of sterile culture media for procedures, (2) antibiotic decontamination, (3) use of dimethyl sulfoxide (DMSO) as a cryoprotectant, (4) controlled rate freezing for cryopreservation, and (5) storage at ultralow temperatures of below −135°C. Differences in procedures included (1) type of sterile media used, (2) antibiotics combination, (3) temperature and duration used for bioburden reduction, (4) concentration of DMSO used for cryopreservation, and (5) storage duration for released allografts. For most banks, the primary reasons why allografts failed to meet release criteria were positive microbiological culture and abnormal morphology. On average, 85% of allografts meeting release criteria were implanted, with valve size and type being the main reasons why released allografts were not used clinically. The wide variation in percentage of allografts meeting release requirements, despite undergoing validated manufacturing procedures, justifies the need for regular review of important outcomes as cited in this paper, in order to encourage comparison and improvements in the HVBs' processes. PMID:24163756

  17. (210)Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment.

    PubMed

    Matisoff, Gerald

    2014-12-01

    Although (137)Cs has been used extensively to study soil erosion and particle transport in the terrestrial environment, there has been much less work using excess or unsupported (210)Pb ((210)Pbxs) to study the same processes. Furthermore, since (137)Cs activities in soils are decreasing because of radioactive decay, some locations have an added complication due to the addition of Chernobyl-derived (137)Cs, and the activities of (137)Cs in the southern hemisphere are low, there is a need to develop techniques that use (210)Pbxs to provide estimates of rates of soil erosion and particle transport. This paper reviews the current status of (210)Pbxs methods to quantify soil erosion rates, to identify and partition suspended sediment source areas, and to determine the transport rates of particles in the terrestrial landscape. Soil erosion rates determined using (210)Pbxs are based on the unsupported (210)Pb ((210)Pbxs) inventory in the soil, the depth distribution of (210)Pbxs, and a mass balance calibration ('conversion model') that relates the soil inventory to the erosion rate using a 'reference site' at which neither soil erosion nor soil deposition has occurred. In this paper several different models are presented to illustrate the effects of different model assumptions such as the timing, depth and rates of the surface soil mixing on the calculated erosion rates. The suitability of model assumptions, including estimates of the depositional flux of (210)Pbxs to the soil surface and the post-depositional mobility of (210)Pb are also discussed. (210)Pb can be used as one tracer to permit sediment source area identification. This sediment 'fingerprinting' has been extended far beyond using (210)Pb as a single radioisotope to include numerous radioactive and stable tracers and has been applied to identifying the source areas of suspended sediment based on underlying rock type, land use (roads, stream banks, channel beds, cultivated or uncultivated lands, pasture lands

  18. Experimental Investigation of Rainfall Impact on Overland Flow Driven Erosion Processes and Flow Hydrodynamics on a Steep Hillslope

    NASA Astrophysics Data System (ADS)

    Tian, P.; Xu, X.; Pan, C.; Hsu, K. L.; Yang, T.

    2016-12-01

    Few attempts have been made to investigate the quantitative effects of rainfall on overland flow driven erosion processes and flow hydrodynamics on steep hillslopes under field conditions. Field experiments were performed in flows for six inflow rates (q: 6-36 Lmin-1m-1) with and without rainfall (60 mm h-1) on a steep slope (26°) to investigate: (1) the quantitative effects of rainfall on runoff and sediment yield processes, and flow hydrodynamics; (2) the effect of interaction between rainfall and overland flow on soil loss. Results showed that the rainfall increased runoff coefficients and the fluctuation of temporal variations in runoff. The rainfall significantly increased soil loss (10.6-68.0%), but this increment declined as q increased. When the interrill erosion dominated (q=6 Lmin-1m-1), the increment in the rill erosion was 1.5 times that in the interrill erosion, and the effect of the interaction on soil loss was negative. When the rill erosion dominated (q=6-36 Lmin-1m-1), the increment in the interrill erosion was 1.7-8.8 times that in the rill erosion, and the effect of the interaction on soil loss became positive. The rainfall was conducive to the development of rills especially for low inflow rates. The rainfall always decreased interrill flow velocity, decreased rill flow velocity (q=6-24 Lmin-1m-1), and enhanced the spatial uniformity of the velocity distribution. Under rainfall disturbance, flow depth, Reynolds number (Re) and resistance were increased but Froude number was reduced, and lower Re was needed to transform a laminar flow to turbulent flow. The rainfall significantly increased flow shear stress (τ) and stream power (φ), with the most sensitive parameters to sediment yield being τ (R2=0.994) and φ (R2=0.993), respectively, for non-rainfall and rainfall conditions. Compared to non-rainfall conditions, there was a reduction in the critical hydrodynamic parameters of mean flow velocity, τ, and φ by the rainfall. These findings

  19. Numerical study of impact erosion of multiple solid particle

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping

    2017-11-01

    Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.

  20. Wind erosion of soils burned by wildfire

    Treesearch

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud

    2011-01-01

    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  1. 31 CFR 375.3 - What is the role of the Federal Reserve Bank of New York in this process?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reserve Bank of New York in this process? 375.3 Section 375.3 Money and Finance: Treasury Regulations... of the Federal Reserve Bank of New York in this process? As fiscal agent of the United States, the Federal Reserve Bank of New York performs various activities necessary to conduct a redemption operation...

  2. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  3. The influence of badland surfaces and erosion processes on vegetation cover

    NASA Astrophysics Data System (ADS)

    Hardenbicker, Ulrike; Matheis, Sarah

    2014-05-01

    less dense pioneer vegetation consisting of grasses and sage bushes indicating minimal surface erosion or sedimentation. Geomorphic mapping documented a high density of active pipes in this area, transporting silt and fine sand from the sandstone cliffs to lower and basal pediments. Vegetation cover alone is a poor indicator of badland surfaces and erosion processes because of the three-dimensional nature of badland erosion processes, and the shrink-swell capacity of the bentonitic bedrock. A combination of geomorphic and vegetation mapping is needed to identify badland surfaces and processes in the study area.

  4. How does slope form affect erosion in CATFLOW-SED?

    NASA Astrophysics Data System (ADS)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  5. Arbuscule mycorrhizae: A linkage between erosion and plant processes in a southwest grassland

    Treesearch

    Mary O' Dea; D. Phillip Guertin; C. P. P. Reid

    2000-01-01

    Plant and soil processes within a natural ecosystem interact with surface hydrology through their influence on surface roughness, soil structure, and evaporation, and through their relation with soil biota. In the Southwest, decreases in perennial grass cover and erosion on uplands and stream channels can initiate a decline in watershed condition. Agronomic literature...

  6. Cavitation erosion - scale effect and model investigations

    NASA Astrophysics Data System (ADS)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  7. Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA

    USGS Publications Warehouse

    Collins, B.D.; Sitar, N.

    2008-01-01

    Coastal bluff erosion and landsliding are currently the major geomorphic processes sculpting much of the marine terrace dominated coastline of northern California. In this study, we identify the spatial and temporal processes responsible for erosion and landsliding in an area of weakly lithified sand coastal bluffs located south of San Francisco, California. Using the results of a five year observational study consisting of site visits, terrestrial lidar scanning, and development of empirical failure indices, we identify the lithologic and process controls that determine the failure mechanism and mode for coastal bluff retreat in this region and present concise descriptions of each process. Bluffs composed of weakly cemented sands (unconfined compressive strength - UCS between 5 and 30??kPa) fail principally due to oversteepening by wave action with maximum slope inclinations on the order of 65 at incipient failure. Periods of significant wave action were identified on the basis of an empirical wave run-up equation, predicting failure when wave run-up exceeds the seasonal average value and the bluff toe elevation. The empirical relationship was verified through recorded observations of failures. Bluffs composed of moderately cemented sands (UCS up to 400??kPa) fail due to precipitation-induced groundwater seepage, which leads to tensile strength reduction and fracture. An empirical rainfall threshold was also developed to predict failure on the basis of a 48-hour cumulative precipitation index but was found to be dependent on a time delay in groundwater seepage in some cases.

  8. The Impact of Hydrodynamics in Erosion - Deposition Process in Can Gio Mangrove Biosphere Reserve, South Viet Nam

    NASA Astrophysics Data System (ADS)

    Vo-Luong, H. P.

    2014-12-01

    Can Gio Mangrove Biosphere Reserve is always considered as a friendly green belt to protect and bring up the habitants. However, recently some mangrove areas in the Dong Tranh estuary are being eroded seriously. Based on the field measurements in SW and NE monsoons as well as data of topography changes in 10 years, it is proved that hydrodynamics of waves, tidal currents and riverine currents are the main reasons for erosion-deposition processes at the studied site. The erosion-deposition process changes due to monsoon. The analysed results show that high waves and tidal oscillation cause the increase of the erosion rate in NE monsoon. However, high sediment deposition occurs in SW monsoon due to weak waves and more alluvium from upstream. Many young mangrove trees grow up and develop in the SW monsoon. From the research, it is strongly emphasized the role of mangrove forests in soil retention and energy dissipation.

  9. Erosion processes in molassic cliffs: the role of the rock surface temperature and atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellán, Antonio; Guerin, Antoine; Jaboyedoff, Michel; Voumard, Jérémie

    2014-05-01

    The morphology of the Swiss Plateau is modeled by numerous steep cliffs of Molasse. These cliffs are mainly composed of sub-horizontal alternated layers of sandstone, shale and conglomerates deposed in the Alps foreland basin during the Tertiary period. These Molasse cliffs are affected by erosion processes inducing numerous rockfall events. Thus, it is relevant to understand how different external factors influence Molasse erosion rates. In this study, we focus on analyzing temperature variation during a winter season. As pilot study area we selected a cliff which is formed by a sub-horizontal alternation of outcropping sandstone and shale. The westward facing test site (La Cornalle, Vaud, Switzerland), which is a lateral scarp of a slow moving landslide area, is currently affected by intense erosion. Regarding data acquisition, we monitored both in-situ rock and air temperatures at 15 minutes time-step since October 2013: (1) on the one hand we measured Ground Surface Temperature (GST) at near-surface (0.1 meter depth) using a GST mini-datalogger M-Log5W-Rock model; (2) On the other hand we monitored atmospheric conditions using a weather station (Davis Vantage pro2 plus) collecting numerous parameters (i.e. temperature, irradiation, rain, wind speed, etc.). Furthermore, the area was also seasonally monitored by Ground-Based (GB) LiDAR since 2010 and monthly monitored since September 2013. In order to understand how atmospheric conditions (such as freeze and thaw effect) influence the erosion of the cliff, we modeled the temperature diffusion through the rock mass. To this end, we applied heat diffusion and radiation equation using a 1D temperature profile, obtaining as a result both temperature variations at different depths together with the location of the 0°C isotherm. Our model was calibrated during a given training set using both in-situ rock temperatures and atmospheric conditions. We then carried out a comparison with the rockfall events derived from the

  10. The Outer Banks of North Carolina

    USGS Publications Warehouse

    Dolan, Robert; Lins, Harry F.; Smith, Jodi Jones

    2016-12-27

    , trees, and shrubs.In 1937, Congress authorized the Cape Hatteras National Seashore, which was established in 1953. The national seashore preserved one of the world’s best examples of a barrier island environment, and minimized the effect of erosion that was becoming a serious problem. In 1966, Congress authorized the Cape Lookout National Seashore to ensure that Core and Shackleford Banks would not undergo major development and could be preserved in their natural state.The rate of population growth along the Outer Banks in recent decades has been among the highest in North Carolina. More important, however, has been the growth in vacationers—in 2008, more than a quarter of a million visitors during a typical week. Municipalities now need to provide services to a transient population as much as six times as large as their permanent resident population.Although human activities have dominated the landscape changes observed on the Outer Banks for the past century or two, these changes must be understood in the context of the prevailing atmospheric, oceanic, and geologic processes that have governed the form and function of these islands for thousands of years. It is these natural processes that imbue the Outer Banks with their unique and dichotomous qualities of tranquility and tumult. In the presence of human occupation, it is these same processes that make the islands one of the highest natural-hazard risk zones along the Eastern Seaboard of the United States.

  11. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Zheng; Dong, Yong-Sheng; Wang, Qiang; Dan, Wei; Zhang, Chunfu; Xu, Wang; Huang, Ming-Liang

    2017-01-01

    Subduction erosion is confirmed as a crucial geodynamic process of crustal recycling based on geological, geochemical, and geophysical observations at modern convergent plate margins. So far, not a single metamorphic record has been used for constraining a general tectonic evolution for subduction erosion. Here we first revealed metamorphic records for a subduction erosion process based on our study of the Late Paleozoic garnet-staurolite-muscovite schists in the central Qiangtang block, Tibet. Provenance analyses suggest that the protoliths of garnet-staurolite-muscovite schists have the Northern Qiangtang-affinity and were deposited in an active continental margin setting. Mineral inclusion data show that the early metamorphic stage (M1) recorded blueschist facies pressure-temperature (P-T) conditions of 0.8-1.1 GPa and 402-441°C, indicating that a part of the material from the overriding plate had been abraded into the subduction channel and undergone high-pressure/low-temperature metamorphism. The peak metamorphic stage (M2) recorded amphibolite facies P-T conditions of 0.3-0.5 GPa and 470-520°C. The 40Ar/39Ar cooling ages (263-259 Ma) yielded from muscovite suggest the amphibolite facies metamorphism (>263 Ma) occurred at oceanic subduction stage. The distinctly staged metamorphism defines a clockwise and warming decompression P-T-t path which reveals an underplating process following the early subduction erosion. During the tectonic process, the eroded low-density material escaped from the cold subduction channel and rise upward into the warm middle-lower crust of the upper plate, undergoing amphibolite facies metamorphism. Our new results revealed a complete evolutional process from the early subduction erosion to the subsequent underplating during the northward subduction of the Paleo-Tethys Ocean.

  12. Degradation of the Mitchell River fluvial megafan by alluvial gully erosion increased by post-European land use change, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Shellberg, J. G.; Spencer, J.; Brooks, A. P.; Pietsch, T. J.

    2016-08-01

    Along low gradient rivers in northern Australia, there is widespread gully erosion into unconfined alluvial deposits of active and inactive floodplains. On the Mitchell River fluvial megafan in northern Queensland, river incision and fan-head trenching into Pleistocene and Holocene megafan units with sodic soils created the potential energy for a secondary cycle of erosion. In this study, rates of alluvial gully erosion into incipiently-unstable channel banks and/or pre-existing floodplain features were quantified to assess the influence of land use change following European settlement. Alluvial gully scarp retreat rates were quantified at 18 sites across the megafan using recent GPS surveys and historic air photos, demonstrating rapid increases in gully area of 1.2 to 10 times their 1949 values. Extrapolation of gully area growth trends backward in time suggested that the current widespread phase of gullying initiated between 1880 and 1950, which is post-European settlement. This is supported by young optically stimulated luminescence (OSL) dates of gully inset-floodplain deposits, LiDAR terrain analysis, historic explorer accounts of earlier gully types, and archival records of cattle numbers and land management. It is deduced that intense cattle grazing and associated disturbance concentrated in the riparian zones during the dry season promoted gully erosion in the wet season along steep banks, adjacent floodplain hollows and precursor gullies. This is a result of reduced native grass cover, increased physical disturbance of soils, and the concentration of water runoff along cattle tracks, in addition to fire regime modifications, episodic drought, and the establishment of exotic weed and grass species. Geomorphic processes operating over geologic time across the fluvial megafan predisposed the landscape to being pushed by land used change across an intrinsically close geomorphic threshold towards instability. The evolution of these alluvial gullies is discussed

  13. Erosion Processes, Sediment Transport and Hydrological Responses Due to Land Use Changes in Serbian Ski Resorts

    NASA Astrophysics Data System (ADS)

    Ristic, R.; Radic, B.; Vasiljevic, N.; Nikic, Z.; Malusevic, I.

    2012-04-01

    The construction or improvement of Serbian ski resorts provoked intensive erosion processes, sediment transport and hydrological responses due to land use changes, affecting the surrounding environment and even endangering the functionality of the built objects. The dominant disturbing activities (clear cuttings, trunk transport, machine grading of slopes, huge excavations, and access road construction) were followed by the activities during skiing and non skiing periods (skiing, usage of snow groomers, moving of vehicles and tourists, forestry activities and overgrazing). These activities put a lot of pressure on the environment, including the removal or compaction of the surface soil layer, the reduction of the infiltration capacity, the destruction or degradation of the vegetation cover, the intensifying of the surface runoff and the development of erosion processes. The most affected ski runs were surveyed (scale 1:1000) and all damages were mapped and classified during the summers of 2007-2010. The development of rills and gullies was measured at experimental plots (100x60 m), and the survey data were entered into a GIS application. The area sediment yield and the intensity of erosion processes were estimated on the basis of the "Erosion Potential Method"(EPM). The changes in hydrological conditions were estimated by comparing the computed values of maximal discharges in the conditions before and after massive activities in the ski resorts, as well as by using the local hydrological records. The determination of maximal discharges was achieved using a combined method: the synthetic unit hydrograph (maximum ordinate of unit runoff, qmax) and the Soil Conservation Service (SCS, 1979) methodology (deriving effective rainfall, Pe, from total precipitation, Pb). The determination was performed for AMC III (Antecedent Moisture Conditions III: high water content in the soil and significantly reduced infiltration capacity). The computations of maximal discharges were

  14. Physical erosion modelling of complex morphodynamics in the upper Val d'Orcia: a combination of EROSION 3D, UAV, SFM and CANUPO

    NASA Astrophysics Data System (ADS)

    Buchholz, Arno; Kaiser, Andreas; Neugirg, Fabian; Schindewolf, Marcus; Schmidt, Jürgen

    2017-04-01

    Throughout the Mediterranean Basin soil erosion is both a widely spread and a landscape shaping process. In order to increase the understanding of morphodynamics inside large Italian badland areas, so called Calanchi, the process based erosion model EROSION 3D was parameterized by artificial rainfall simulations, soil sampling and an UAV based high resolution digital elevation model. Vegetation structures were removed with the CANUPO-classifier in CloudCompare. The rainfall experiments proved to be a convenient but costly tool for deriving the model input parameters. While building up the model, different composition of the inhomogeneous soil surface was considered. A diverse behavior against erosion by water was observed. The results showed that the deposition surfaces of rotational or translational slides, besides calanco depth contour, tend to degrade. Although these deposits present a comparatively low bulk density, they reduce the infiltration due to soil surface clogging and cause less erosion resistances. The differential consideration of erosion sub-processes turns out as particularly challenging. The simulation of a reference year showed an annual soil export from the catchment of 43 t/ha, which corresponds to an average surface lowering of 3 mm. Sheet erosion represents an amount of about 5% of the total erosion of badlands. Furthermore, infiltration depth, amount of runoff, sediment concentration, and grain size composition of the deposits were calculated. This study makes a contribution to the understanding of denudation processes in Calanchi badlands. The presented process-based modeling of badlands is contributing a new aspect to erosion research.

  15. Determining Relative Contributions of Eroded Landscape Sediment and Bank Sediment to the Suspended Load of Streams and Wetlands Using 7Be and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.

    2005-12-01

    The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.

  16. Cropping system effects on wind erosion potential

    USDA-ARS?s Scientific Manuscript database

    Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...

  17. Soil Biogeochemical Properties and Erosion Source Prediction Model Summary for the Buffalo Bayou Watershed, Houston, Texas

    NASA Astrophysics Data System (ADS)

    Ahmed, I.

    2015-12-01

    We draw conclusions on the research output and findings from a 4-year multidisciplinary USDA-CBG collaborative program in sustainable integrated monitoring of soil organic carbon (SOC) loss prediction via erosion. The underlying method uses the state-of-the-art stable isotope science of sediment tracing under uncertain hydrologic influences. The research finds are rooted in the (i) application of Bayesian Markov Chain Monte Carlo statistical models to assess the relationship between rainfall-runoff and soil erosion in space and time, (ii) capture of the episodic nature of rainfall events and its role in the spatial distribution of SOC loss from water erosion, (iii) stable isotope composition guided fingerprinting (source and quantity) of eroded soil, and (iv) the creation of an integrated watershed scale statistical soil loss monitoring model driven by spatial and temporal correlation of flow and stable isotope composition. The research theme was successfully applied on the urbanized Buffalo Bayou Watershed in Houston, Texas. The application brought to light novel future research conceptual outlines which will also be discussed in this deliverable to the AGU meeting. These include but not limited to: regional rainfall cluster research, physics of muddy river-bank soil and suspended sediment interaction, and friction & mobility that together make up the plasticity of soil aggregates that control erosion processes and landscape changes in a riparian corridor. References: Ahmed, I., Karim, A., Boutton, T.W., and Strom, K.B. (2013a). "Monitoring Soil Organic Carbon Loss from Erosion Using Stable Isotopes." Proc., Soil Carbon Sequestration, International Conference, May 26-29, Reykjavik, Iceland. Ahmed, I, Bouttom, T.W., Strom, K. B., Karim, A., and Irvin-Smith, N. (2013b). "Soil carbon distribution and loss monitoring in the urbanized Buffalo Bayou watershed, Houston, Texas." Proc., 4th Annual All Investigators Meeting of the North American Carbon Program, February 4

  18. Coastal Vulnerability to Erosion Processes: Study Cases from Different Countries

    NASA Astrophysics Data System (ADS)

    Anfuso, Giorgio; Martinez Del Pozo, Jose Angel; Rangel-Buitrago, Nelson

    2010-05-01

    When natural processes affect or threaten human activities or infrastructures they become a natural hazard. In order to prevent the natural hazards impact and the associated economic and human losses, coastal managers need to know the intrinsic vulnerability of the littoral, using information on the physical and ecological coastal features, human occupation and present and future shoreline trends. The prediction of future coastline positions can be based on the study of coastal changes which have occurred over recent decades. Vertical aerial photographs, satellite imagery and maps are very useful data sources for the reconstruction of coast line changes at long (>60 years) and medium (between 60 and 10 years) temporal and spatial scales. Vulnerability maps have been obtained for several coastal sectors around the world through the use of Geographical Information Systems (GIS), computer-assisted multivariate analysis and numerical models. In the USA, "Flood Insurance Rate Maps" have been created by the government and "Coastal Zone Hazard Maps" have been prepared for coastal stretches affected by hurricane Hugo. In Spain, the vulnerability of the Ebro and an Andalusia coastal sector were investigated over different time scales. McLaughlin et al., (2002) developed a GIS based coastal vulnerability index for the Northern Ireland littoral that took into account socio-economic activities and coastal resistance to erosion and energetic characteristics. Lizárraga et al., (2001) combined beach reduction at Rosario (Mexico) with the probability of damage to landward structures, obtaining a vulnerability matrix. In this work several coastal vulnerability maps have also been created by comparing data on coastal erosion/accretion and land use along different coastal sectors in Italy, Morocco and Colombia. Keywords: Hazard, Vulnerability, Coastal Erosion, Italy, Morocco, Colombia.

  19. Opportunities provided by UAVs to monitor erosion processes in agricultural catchments: a case study from Northern France

    NASA Astrophysics Data System (ADS)

    Frankl, Amaury; Stal, Cornelis; De Wit, Bart; De Wulf, Alain; Salvador, Pierre-Gil; Nyssen, Jan

    2014-05-01

    In erosion studies, accurate spatio-temporal data are required to fully understand the processes involved and their relationship with environmental controls. With cameras being mounted on Unmanned Aerial Vehicles (UAVs), the latter allow to collect low-altitude aerial photographs over small catchments in a cost-effective and rapid way. From large data sets of overlapping aerial photographs, Structure from Motion - Multi View Stereo workflows, integrated in various software such as PhotoScan used here, allow to produced detailed Digital Surface Models (DSMs) and ortho-mosaics. In this study we present the results from a survey carried out in a small agricultural catchment near Hallines, in Northern France. A DSM and ortho-mosaic was produced of the catchment using photographs taken from a low-cost radio-controlled microdrone (DroneFlyer Hexacopter). Photographs were taken with a Sony Nex 5 (16.1 M pixels) camera having a fixed normal lens of 50 mm. In the field, Ground Control Points were materialized by unambiguously determinable targets, measured with a 1'' total station (Leica TS15i). Cross-sections of rills and ephemeral gullies were also quantified from total station measurements and from terrestrial image-based 3D modelling. These data allowed to define the accuracy of the DSM and the representation of the erosion features in it. The feasibility of UAVs photographic surveys to improve our understanding on water-erosion processes such as sheet, rill and gully erosion is discussed. Keywords: Ephemeral gully, Erosion study, Image-based 3D modelling, Microdrone, Rill, UAVs.

  20. What Should a Restored River Look Like? (Invited)

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Chin, A.

    2010-12-01

    Removal of infrastructure such as dams, levees, and erosion control structures is a promising approach toward restoring river system connectivity, processes, and ecology. Significant management challenges exist, however, related to removal of such structures that have already transformed riparian processes or societal perceptions. Here, we consider the effects of bank erosion infrastructure versus the benefits of allowing channel banks to erode in order to address the question: what should a restored river look like? The extent of channel bank infrastructure globally is unknown; nevertheless, it dominates rivers in most urban areas and is growing in rural areas as small projects merge and creeks and rivers are progressively channelized. Bank erosion control structures are usually installed to limit land loss and to reduce associated hazards. Structures are sometimes themselves considered restoration under the assumption that sediment erosion is bad for ecosystems. Geomorphic and ecological effects of bank erosion control structures are well understood, however, and include loss of sediment sources, bank substrate, dynamic geomorphic processes, and riparian habitat. Thus, a rationale for allowing eroding banks in restored rivers is as follows: 1) bank erosion processes are a component of system-scale channel adjustment needed to accommodate variable hydrology and sediment loads and to promote long-term stability; 2) bank erosion is a source of coarse and fine sediment to channels needed to maintain downstream bed elevations and topographic heterogeneity; and 3) bank erosion is a component of river migration, a process that promotes riparian vegetation succession and provides large woody material and morphologic diversity required to sustain habitat and riparian biodiversity. When structures that were originally intended to control or manage dynamic natural processes such as flooding and erosion are removed, not surprisingly, a return to dynamic processes may cause

  1. Fingerprinting the main erosion processes delivering sediment to hillside reservoirs: Case of Kamech catchment in Cape Bon, Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Slimane, A.; Raclot, D.; Evrard, O.; Sanaa, M.; Lefèvre, I.; Ahmadi, M.; Le Bissonnais, Y.

    2011-12-01

    About 74% of agricultural soils are affected by water erosion in Tunisia. This intense soil degradation threatens the sustainability of food production in the country. It also leads to the siltation of the numerous hillslide reservoirs that were constructed in the 1990s to protect downstream villages against floods and provide a source of water in cultivated areas. Very dense gully systems are observed in Tunisian agricultural land and in other Mediterranean regions, but their contribution to contemporary sediment supply to hillside reservoirs has not been quantified yet. Still, there is a need to quantify the sediment sources in this region in order to guide the implementation of erosion control measures. Sediment can be supplied by gully systems but it can also be provided by erosion of the superficial layer of cultivated soil. We propose a methodology to estimate the relative contribution of gully erosion vs. interrill erosion to the sediment accumulated in hillside reservoirs. This work was conducted in a pilot catchment (i.e., Kamech catchment, 263ha, Cape Bon, Tunisia) to define guidelines on the number and the location of sediment core samples to collect in the reservoirs, in order to provide relevant information on the evolution of sediment sources throughout the last two decades. Once validated, this methodology will be applied to other catchments of the Tunisian Ridge. We applied the sediment fingerprinting method, which consists in measuring conservative and stable properties in both sources and sinks of sediment to outline their origin. Sampling efforts were concentrated on the field surface (cropland and grassland), gullies and channel banks. Thirteen sediment cores were collected along an upstream-downstream transect across Kamech hillside reservoir, in order to estimate the contribution of each potential sediment source to the material accumulated at the outlet, and to investigate the potential spatial differences of sediment origin across the

  2. Probabilistic soil erosion modeling using the Erosion Risk Management Tool (ERMIT) after wildfires

    Treesearch

    P. R. Robichaud; W. J. Elliot; J. W. Wagenbrenner

    2011-01-01

    The decision of whether or not to apply post-fire hillslope erosion mitigation treatments, and if so, where these treatments are most needed, is a multi-step process. Land managers must assess the risk of damaging runoff and sediment delivery events occurring on the unrecovered burned hillslope. We developed the Erosion Risk Management Tool (ERMiT) to address this need...

  3. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of

  4. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument

    NASA Astrophysics Data System (ADS)

    DuPlain, Ron; Ransom, Scott; Demorest, Paul; Brandt, Patrick; Ford, John; Shelton, Amy L.

    2008-08-01

    The National Radio Astronomy Observatory (NRAO) is launching the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), a prototype flexible digital signal processor designed for pulsar observations with the Robert C. Byrd Green Bank Telescope (GBT). GUPPI uses field programmable gate array (FPGA) hardware and design tools developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. The NRAO has been concurrently developing GUPPI software and hardware using minimal software resources. The software handles instrument monitor and control, data acquisition, and hardware interfacing. GUPPI is currently an expert-only spectrometer, but supports future integration with the full GBT production system. The NRAO was able to take advantage of the unique flexibility of the CASPER FPGA hardware platform, develop hardware and software in parallel, and build a suite of software tools for monitoring, controlling, and acquiring data with a new instrument over a short timeline of just a few months. The NRAO interacts regularly with CASPER and its users, and GUPPI stands as an example of what reconfigurable computing and open-source development can do for radio astronomy. GUPPI is modular for portability, and the NRAO provides the results of development as an open-source resource.

  5. Soil erosion in humid regions: a review

    Treesearch

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  6. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion: Case studies from South Africa and Iran

    NASA Astrophysics Data System (ADS)

    Maerker, Michael; Sommer, Christian; Zakerinejad, Reza; Cama, Elena

    2017-04-01

    Soil erosion by water is a significant problem in arid and semi arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources. Especially in semiarid areas like in the Mazayjan watershed in the Southwestern Fars province as well as in the Mkomazi catchment in Kwa Zulu Natal, South Africa, gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area with a stochastic approach and to assess the process dynamics in an integrative way. Therefore, we applied GIS, and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a multiple years period by fieldwork and Google Earth high resolution images as well as with structure for motion algorithm. Finally, the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes in data scarce areas. The application of GIS and stochastic model approaches to spatialize the USPED model input yield valuable results for the prediction of soil erosion in the test areas. The results of this research help to develop an appropriate management of soil and water resources in the study areas.

  7. Erosion and sediment delivery following removal of forest roads

    USGS Publications Warehouse

    Madej, Mary Ann

    2001-01-01

    Erosion control treatments were applied to abandoned logging roads in California, with the goal of reducing road-related sediment input to streams and restoring natural hydrologic patterns on the landscape. Treatment of stream crossings involved excavating culverts and associated road fill and reshaping streambanks. A variety of techniques were applied to road benches, which included decompacting the road surface, placing unstable road fill in more stable locations, and re-establishing natural surface drainage patterns. Following treatment and a 12-year recurrence-interval storm, some road reaches and excavated stream crossings showed evidence of mass movement failures, gullying, bank erosion and channel incision. Post-treatment erosion from excavated stream crossings was related to two variables: a surrogate for stream power (drainage area × channel gradient) and the volume of fill excavated from the channel. Post-treatment erosion on road reaches was related to four explanatory variables: method of treatment, hillslope position (upper, mid-slope or lower), date of treatment, and an interaction term (hillslope position × method of treatment). Sediment delivery from treated roads in upper, middle and lower hillslope positions was 10, 135 and 550 m3 of sediment per kilometre of treated roads, respectively. In contrast, inventories of almost 500 km of forest roads in adjacent catchments indicate that untreated roads produced 1500 to 4700 m3 of sediment per kilometre of road length. Erosion from 300 km of treated roads contributed less than 2 per cent of the total sediment load of Redwood Creek during the period 1978 to 1998. Although road removal treatments do not completely eliminate erosion associated with forest roads, they do substantially reduce sediment yields from abandoned logging roads.

  8. Influence of Afforestation on the Species Diversity of the Soil Seed Bank and Understory Vegetation in the Hill-Gullied Loess Plateau, China.

    PubMed

    Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli

    2017-10-24

    The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m², and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land.

  9. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    PubMed Central

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, <10%, 10-25%, and >50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  10. Trend of Soil Erosion Processes within the Southern Half of the Russian Plain for the Last Decades

    NASA Astrophysics Data System (ADS)

    Golosov, V. N.; Yermolaev, O. P.; Safina, G. R.; Maltsev, K. A.; Gusarov, A. V.; Rysin, I. I.

    2018-01-01

    Complex approach is applied for assessment of recent trends of sheet, rill and gully erosion in different landscape zones of study area. Investigation is undertaken in 6 selected sectors (area of each transect is about 6-10 thousand km2), uniformly distributed over the area of the Russian Plain. Changes of the different factors, including some meteorological and hydrological parameters, land use change, USLE C-factor, were determined for the period 1980-2015. A set of field methods was used for quantification of sediment redistribution rates for the key small catchments. It was found that erosion rate decreased in forest and forest-steppe zone. Gully density decreases considerably in all landscape zones. The reduction of surface runoff from cultivated slope during snow-melting is the main reason of decreasing of sheet, rill and gully erosion rates in the forest, forest steppe and the north of steppe landscape zones. Increasing the proportion of perennial grasses in crop-rotation is the other factor of serious reduction of erosion processes in the forest zone.

  11. Hindcasting Storm-Induced Erosional Hazards for the Outer Banks, NC.

    NASA Astrophysics Data System (ADS)

    Wetzell, L. M.; Howd, P. A.; Sallenger, A. H.

    2002-12-01

    The spatial variability of dune response along a section of the NC Outer Banks has been examined for the 1999 Hurricane Dennis. Dennis generated some of the largest wave heights recorded in the past 20 years along the Outer Banks of North Carolina, reaching 6.3 meters (measured at the U.S. Army Corps of Engineers Field Research Facility at Duck, North Carolina). Pre and post-storm topography was measured as part of a joint USGS-NASA program using lidar technology. These data were used to calculate changes in the elevation and location of the dune crest and dune base (Dhi and Dlo). Roughly 66% of the region from Cape Hatteras to Ocracoke Inlet experienced some dune erosion. The spatial variability in dune response is compared to hindcast erosion hazard predictions. Observations of maximum wave conditions are used as input to SWAN, a 3rd generation and shoaling wave model, output from which is used to drive empirical relationships for wave runup. Estimates of hazard potential are derived from Sallenger's recently proposed storm impact scale. The hindcast hazard potentials are then compared to direct observations.

  12. Assessment and management of dental erosion.

    PubMed

    Wang, Xiaojie; Lussi, Adrian

    2010-07-01

    Studies have shown a growing trend toward increasing prevalence of dental erosion, associated with the declining prevalence of caries disease in industrialized countries. Erosion is an irreversible chemical process that results in tooth substance loss and leaves teeth susceptible to damage as a result of wear over the course of an individual's lifetime. Therefore, early diagnosis and adequate prevention are essential to minimize the risk of tooth erosion. Clinical appearance is the most important sign to be used to diagnose erosion. The Basic Erosive Wear Examination (BEWE) is a simple method to fulfill this task. The determination of a variety of risk and protective factors (patient-dependent and nutrition-dependent factors) as well as their interplay are necessary to initiate preventive measures tailored to the individual. When tooth loss caused by erosive wear reaches a certain level, oral rehabilitation becomes necessary. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Dental Erosion in Industry

    PubMed Central

    Cate, H. J. Ten Bruggen

    1968-01-01

    Five hundred and fifty-five acid workers were examined between March 1962 and October 1964. One hundred and seventy-six (31·7%) were affected by industrial dental erosion at the first examinations. In 33 cases (6·0%) the dentine was affected. During the period of the survey, 66 (20·4%) of 324 workers examined more than once showed evidence that erosion was progressing. The prevalence and incidence of erosion were highest among battery formation workers, lower among picklers, and least among other processes covered by the survey. The age of workers did not appear to influence their susceptibility to erosion. The habit of working with the lips slightly parted had little effect. Erosion superimposed upon attrition predisposed to more severe loss of tooth structure than either operating alone. Little inconvenience or functional disability was suffered by acid workers due to erosion. Twenty-seven (23·7%) of 114 erosions were considered to be disfiguring. Regular dental treatment was sought less by acid workers than by controls, and the oral hygiene of the latter was superior. There was no evidence to show any difference between caries experience among acid workers and controls. Calculus and periodontal disease were more prevalent among acid workers than among controls, but it was not possible to attribute this to the working environment. Black staining in iron picklers was considered to be due to the working environment. The use of closed acid containers or lip extraction on open acid vats prevented significant atmospheric contamination and diminished the prevalence of erosion. The use of wall fans and detergent foaming agents was helpful. Images PMID:5723349

  14. Rainfall erosivity in Europe.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  15. Spatio-temporal variation of erosion-type non-point source pollution in a small watershed of hilly and gully region, Chinese Loess Plateau.

    PubMed

    Wu, Lei; Liu, Xia; Ma, Xiao-Yi

    2016-06-01

    Loss of nitrogen and phosphorus in the hilly and gully region of Chinese Loess Plateau not only decreases the utilization rate of fertilizer but also is a potential threat to aquatic environments. In order to explore the process of erosion-type non-point source (NPS) pollution in Majiagou watershed of Loess Plateau, a distributed, dynamic, and integrated NPS pollution model was established to investigate impacts of returning farmland on erosion-type NPS pollution load from 1995 to 2012. Results indicate that (1) the integrated model proposed in this study was verified to be reasonable; the general methodology is universal and can be applicable to the hilly and gully region, Loess Plateau; (2) the erosion-type NPS total nitrogen (TN) and total phosphorus (TP) load showed an overall decreasing trend; the average nitrogen and phosphorus load modulus in the last four years (2009-2012) were 1.23 and 1.63 t/km(2) · a, respectively, which were both decreased by about 35.4 % compared with the initial treatment period (1995-1998); and (3) The spatial variations of NPS pollution are closely related to spatial characteristics of rainfall, topography, and soil and land use types; the peak regions of TN and TP loss mainly occurred along the main river banks of the Yanhe River watershed from northeast to southeast, and gradually decreased with the increase of distance to the left and right river banks, respectively. Results may provide scientific basis for the watershed-scale NPS pollution control of the Loess Plateau.

  16. Erosion

    USDA-ARS?s Scientific Manuscript database

    Erosion is the detachment of soil particles and transportation to another location. Wind erosion occurs when wind speed exceeds a critical threshold level, and loose soil particles or soil particles removed by abrasion then move in one of three ways: creep, saltation, and suspension. Erosion by wate...

  17. Erosion performance studies on sansevieria cylindrica reinforced vinylester composite

    NASA Astrophysics Data System (ADS)

    Johnson, R. Deepak Joel; Arumugaprabu, V.; Uthayakumar, M.; Vigneshwaran, S.; Manikandan, V.; Bennet, C.

    2018-03-01

    The intent of the research is to study the erosion behaviour of NaOH treated and untreated sansevieria cylindrica reinforced vinyl ester composites (SCVEC). The SCVEC was fabricated by varying fiber length as 30 mm and 40 mm and the fiber concentration as 30 wt%, 40 wt% and 50 wt% respectively for both NaOH treated and untreated sansevieria cylindrica fibres. The fabricated SCVEC was subjected to erosion studies using abrasive air jet erosion test rig. Full factorial design of experiment for conducting the erosion studies was made using Taguchi technique. The erosion test process variables like impingement angle 30°, 60° and 90°, impact velocity 28, 41 and 72 m s‑1, erodent feed rate or discharge 2.5, 3.3 and 4 g min‑1 and exposure time 5, 10 and 15 min were used to study the erosion rate of the SCVEC specimen. From the Taguchi analysis the optimized erosion process parameter and fabrication process parameters were found to be as fiber length 30 mm, NaOH treated fiber, fiber content 40 wt.%, impingement angle 90°, impact velocity 41 m s‑1, erodent discharge 4 g min‑1 and exposure time 15 min. Further, the erosion mechanism on the surface of the eroded SCVEC specimen was studied using Scanning electron microscope (SEM).

  18. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography

    NASA Astrophysics Data System (ADS)

    Nichols, M. H.; Nearing, M.; Hernandez, M.; Polyakov, V. O.

    2016-07-01

    Gullies that terminate at a vertical-wall are ubiquitous throughout arid and semiarid regions. Multi-year assessments of gully evolution and headcut advance are typically accomplished using traditional ground surveys and aerial photographs, with much recent research focused on integrating data collected at very high spatial resolutions using new techniques such as aerial surveys with blimps or kites and ground surveys with LiDar scanners. However, knowledge of specific processes that drive headcut advance is limited due to inadequate observation and documentation of flash floods and subsequent erosion that can occur at temporal resolutions not captured through repeat surveys. This paper presents a method for using very-high temporal resolution ground-based time-lapse photography to capture short-duration flash floods and gully head evolution in response. In 2004, a base level controlling concrete weir was removed from the outlet of a 1.29 ha semiarid headwater drainage on the Walnut Gulch Experimental Watershed in southeastern Arizona, USA. During the ten year period from 2004 to 2014 the headcut migrated upchannel a total of 14.5 m reducing the contributing area at the headwall by 9.5%. Beginning in July 2012, time-lapse photography was employed to observe event scale channel evolution dynamics. The most frequent erosion processes observed during three seasons of time-lapse photography were plunge pool erosion and mass wasting through sidewall or channel headwall slumping that occurred during summer months. Geomorphic change during the ten year period was dominated by a single piping event in August 2014 that advanced the channel head 7.4 m (51% of the overall advance) and removed 11.3 m3 of sediment. High temporal resolution time-lapse photography was critical for identifying subsurface erosion processes, in the absence of time-lapse images piping would not have been identified as an erosion mechanism responsible for advancing the gully headwall at this site.

  19. Rainfall simulations as a tool for quantification of soil erosion processes caused by the trampling of sheep and goats in semi-arid and arid landscapes

    NASA Astrophysics Data System (ADS)

    Ruthenberg, Jonas; Tumbrink, Jonas; Wilms, Tobias; Peter, Klaus Daniel; Wirtz, Stefan; Ries, Johannes B.

    2015-04-01

    As there is a massive increase of livestock husbandry in semi-arid and arid landscapes, the investigation of trampling-induced soil erosion has become indispensable for a better understanding of erosive processes such as loosening and translocation of sediment, as well as the genesis of rill erosion and gully systems. Our work will support other studies focusing on desertification and land-use changes in the investigated landscapes. Up to this date, research on livestock-induced soil erosion, even in relation to other erosion processes such as aeolian and fluvial/pluvial sediment translocation, is very scarcely found in literature. The presented study on trampling-induced soil erosion by sheep and goats in arid and semi-arid landscapes aims to create a general understanding, an estimation and quantification of the influencing factors of these erosive processes. Within this study, we present the first results of several field rainfall experiments on rock fragment translocation as well as loosening and transportation of coarse and fine sediment depending on the motion sequence and the individual weight, size, and hoof beat of the animals. Furthermore, we conducted additional experiments to investigate the trampling-induced erosion processes for various other sediments, especially those in the range of clay, silt, and sand. To do so, we used a specially designed test plot, equipped with sediment traps on each side. For a clear and reliable analysis of the measured parameters, univariate as well as multivariate statistical methods have been used. For all field methods, we developed relevant statements concerning flock size. The rock fragment translocation experiments done so fare have shown that a flock of 45 sheep or goats moved 87 % of 320 spread out rock fragments with a mean translocation distance of 0.123 m when trampling across a test plot of 3.2 m^2. Besides that we found out that the soil surface was worked up in a way that the loosened fine sediment proved to

  20. Interactions between river channel processes and riparian vegetation - an example from the Lužnice River, Czech Republic

    NASA Astrophysics Data System (ADS)

    Krejci, Lukas; Macka, Zdenek

    2010-05-01

    Riparian vegetation responds to hydrogemorphic processes and environmental changes and also controls these processes. Our study focuses on the interactions between woody riparian vegetation (live and dead trees) and river channel morphology on the example of three 1 km long reaches of the Lužnice River in southern Czech Republic. Here, we propose that despite spatial proximity, identical hydrological and sedimentological controls, three river reaches have different geomorphology due to varying character of riparian woody vegetation and different character and abundance of large in-stream wood (LW). Upstream, middle and downstream reaches vary markedly in channel dimensions (width, depth) and the present day rate of lateral erosion. Three reaches also show the different in-stream wood loads which are dependent mainly on the character of the riparian vegetation, and on the lateral activity of the channel. The highest wood load was recorded at the downstream reach with 102,162 m3/ha, the lowest at the middle reach 37,041 m3/ha, the upstream reach has load 81,370 m3/ha. Upper reach woody vegetation is the mixture of willow, alder, chokecherry and oak. The reach is only slightly sinuous with the moderate rate of incision and lateral erosion. The channel width and depth are 13 m and 2,1 m respectively, the mean cross section area is 27,3 m2. Erosion in the reach is slightly enhanced by the river training works upstream (canalisation, weir construction). Middle reach woody vegetation mostly consist of willow. Tree-tops often incline into the channel, thus, dissipating effectively the energy of the river flow. The reach is moderately sinuous and rather laterally stable. The channel width and depth are 10 m and 2,5 m respectively, the mean cross section area is 25 m2. The reach approximates the natural condition of the pristine river. The impact of river training works is minor only with the road bridge upstream. This reach in the most natural condition shows the lowest in

  1. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques.

    PubMed

    Nosrati, Kazem

    2013-04-01

    Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.

  2. Soil erodibility for water erosion: A perspective and Chinese experiences

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  3. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil

  4. Numerical Estimation of the Outer Bank Resistance Characteristics in AN Evolving Meandering River

    NASA Astrophysics Data System (ADS)

    Wang, D.; Konsoer, K. M.; Rhoads, B. L.; Garcia, M. H.; Best, J.

    2017-12-01

    Few studies have examined the three-dimensional flow structure and its interaction with bed morphology within elongate loops of large meandering rivers. The present study uses a numerical model to simulate the flow pattern and sediment transport, especially the flow close to the outer-bank, at two elongate meandering loops in Wabash River, USA. The numerical grid for the model is based on a combination of airborne LIDAR data on floodplains and the multibeam data within the river channel. A Finite Element Method (FEM) is used to solve the non-hydrostatic RANS equation using a K-epsilon turbulence closure scheme. High-resolution topographic data allows detailed numerical simulation of flow patterns along the outer bank and model calibration involves comparing simulated velocities to ADCP measurements at 41 cross sections near this bank. Results indicate that flow along the outer bank is strongly influenced by large resistance elements, including woody debris, large erosional scallops within the bank face, and outcropping bedrock. In general, patterns of bank migration conform with zones of high near-bank velocity and shear stress. Using the existing model, different virtual events can be simulated to explore the impacts of different resistance characteristics on patterns of flow, sediment transport, and bank erosion.

  5. Nonmonotonic and spatial-temporal dynamic slope effects on soil erosion during rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Wu, Songbai; Yu, Minghui; Chen, Li

    2017-02-01

    The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.

  6. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes

    NASA Astrophysics Data System (ADS)

    Tian, Pei; Xu, Xinyi; Pan, Chengzhong; Hsu, Kuolin; Yang, Tiantian

    2017-05-01

    Limited information has isolated the impacts of rainfall on rill formation and erosion on steep hillslopes where upslope inflow simultaneously exists. Field simulation experiments were conducted on steep hillslopes (26°) under rainfall (60 mm h-1), inflow (6, 12, 18, 24, 30, 36 L min-1 m-1), and combination of rainfall and inflow to explore the impacts of rainfall on rill formation, and the interaction between rainfall and inflow on soil erosion. Rainfall decreased soil infiltration rate (10%-26%) mainly due to soil crust by raindrop impact. Rainfall strengthened rill formation, which behaved in the increment in rill width (5%-26%), length (4%-22%), and depth (3%-22%), but this increment decreased as inflow rates increased. Additionally, the contribution of rainfall on rill formation was most significant at the initial stage, followed by the final stage and active period of rill development. Rainfall increased rill erosion (8%-80%) and interrill erosion (36%-64%), but it played a dominant role in increasing interrill erosion under relatively high inflow rates. The most sensitive hydrodynamic parameter to soil erosion was shear stress and stream power under inflow and 'inflow + rainfall' conditions, respectively. For the lowest inflow rate, the reduction in soil loss by interaction between rainfall and inflow accounted for 20% of total soil loss, indicating a negative interaction. However, such interaction became positive with increasing inflow rates. The contribution rate to rill erosion by the interaction was greater than that of interrill erosion under relatively low inflow rates. Our results provide a better understanding of hillslope soil erosion mechanism.

  7. An holistic approach to beach erosion vulnerability assessment.

    PubMed

    Alexandrakis, George; Poulos, Serafim Ε

    2014-08-15

    Erosion is a major threat for coasts worldwide, beaches in particular, which constitute one of the most valuable coastal landforms. Vulnerability assessments related to beach erosion may contribute to planning measures to counteract erosion by identifying, quantifying and ranking vulnerability. Herein, we present a new index, the Beach Vulnerability Index (BVI), which combines simplicity in calculations, easily obtainable data and low processing capacity. This approach provides results not only for different beaches, but also for different sectors of the same beach and enables the identification of the relative significance of the processes involved. It functions through the numerical approximation of indicators that correspond to the mechanisms related to the processes that control beach evolution, such as sediment availability, wave climate, beach morhodynamics and sea level change. The BVI is also intended to be used as a managerial tool for beach sustainability, including resilience to climate change impact on beach erosion.

  8. Influence of Afforestation on the Species Diversity of the Soil Seed Bank and Understory Vegetation in the Hill-Gullied Loess Plateau, China

    PubMed Central

    Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli

    2017-01-01

    The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m2, and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land. PMID:29064405

  9. Time scale bias in erosion rates of glaciated landscapes

    PubMed Central

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe

    2016-01-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925

  10. Time scale bias in erosion rates of glaciated landscapes.

    PubMed

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe

    2016-10-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.

  11. Soil erosion - a local and national problem

    Treesearch

    C.G. Bates; O.R. Zeasman

    1930-01-01

    The erosion of soils through the action of rain water and that from melting snow is almost universal in its occurrence. The gradual erosion and levelling of any country is inevitable, being a process which has gone on as long as there has been free water on the face of the earth. Nevertheless, this process is an extremely slow one where the landscape is naturally well...

  12. The Rangeland Hydrology and Erosion Model

    NASA Astrophysics Data System (ADS)

    Nearing, M. A.

    2016-12-01

    The Rangeland Hydrology and Erosion Model (RHEM) is a process-based model that was designed to address rangelands conditions. RHEM is designed for government agencies, land managers and conservationists who need sound, science-based technology to model, assess, and predict runoff and erosion rates on rangelands and to assist in evaluating rangeland conservation practices effects. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of as single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions. Moreover, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant community by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. A dynamic partial differential sediment continuity equation is used to model the total detachment rate of concentrated flow and rain splash and sheet flow. RHEM is also designed to be used as a calculator, or "engine", within other watershed scale models. From the research perspective RHEM acts as a vehicle for incorporating new scientific findings from rangeland infiltration, runoff, and erosion studies. Current applications of the model include: 1) a web site for general use (conservation planning, research, etc.), 2) National Resource Inventory reports to Congress, 3) as a computational engine within watershed scale models (e.g., KINEROS, HEC), 4) Ecological Site & State and Transition Descriptions, 5) proposed in 2015 to become part of the NRCS Desktop applications for field offices.

  13. 15 CFR 923.25 - Shoreline erosion/mitigation planning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purpose in developing this planning process is to give special attention to erosion issues. This special management attention may be achieved by designating erosion areas as areas of particular concern pursuant to...

  14. 17 CFR 239.43 - Form F-N, appointment of agent for service of process by foreign banks and foreign insurance...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for service of process by foreign banks and foreign insurance companies and certain of their holding companies and finance subsidiaries making public offerings of securities in the United States. 239.43... agent for service of process by foreign banks and foreign insurance companies and certain of their...

  15. 17 CFR 239.43 - Form F-N, appointment of agent for service of process by foreign banks and foreign insurance...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for service of process by foreign banks and foreign insurance companies and certain of their holding companies and finance subsidiaries making public offerings of securities in the United States. 239.43... agent for service of process by foreign banks and foreign insurance companies and certain of their...

  16. 17 CFR 239.43 - Form F-N, appointment of agent for service of process by foreign banks and foreign insurance...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for service of process by foreign banks and foreign insurance companies and certain of their holding companies and finance subsidiaries making public offerings of securities in the United States. 239.43... agent for service of process by foreign banks and foreign insurance companies and certain of their...

  17. Sedimentation and erosion in Lake Diefenbaker, Canada: solutions for shoreline retreat monitoring.

    PubMed

    Sadeghian, Amir; de Boer, Dirk; Lindenschmidt, Karl-Erich

    2017-09-15

    This study looks into sedimentation and erosion rates in Lake Diefenbaker, a prairie reservoir, in Saskatchewan, Canada, which has been in operation since 1968. First, we looked at the historical data in all different formats over the last 70 years, which includes data from more than 20 years before the formation of the lake. The field observations indicate high rates of shoreline erosion, especially in the upstream portion as a potential region for shoreline retreat. Because of the great importance of this waterbody to the province, monitoring sedimentation and erosion rates is necessary for maintaining the quality of water especially after severe floods which are more common due to climate change effects. Second, we used Google Maps Elevation API, a new tool from Google that provides elevation data for cross sections drawn between two points, by drawing 24 cross sections in the upstream area extending 250 m from each bank. This feature from Google can be used as an easy and fast monitoring tool, is free of charge, and provides excellent control capabilities for monitoring changes in cross-sectional profiles.

  18. Spatial bedrock erosion distribution in a natural gorge

    NASA Astrophysics Data System (ADS)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half

  19. Advances in modeling soil erosion after disturbance on rangelands

    USDA-ARS?s Scientific Manuscript database

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  20. Simulating bank erosion over an extended natural sinuous river reach using a universal slope stability algorithm coupled with a morphodynamic model

    NASA Astrophysics Data System (ADS)

    Rousseau, Yannick Y.; Van de Wiel, Marco J.; Biron, Pascale M.

    2017-10-01

    Meandering river channels are often associated with cohesive banks. Yet only a few river modelling packages include geotechnical and plant effects. Existing packages are solely compatible with single-threaded channels, require a specific mesh structure, derive lateral migration rates from hydraulic properties, determine stability based on friction angle, rely on nonphysical assumptions to describe cutoffs, or exclude floodplain processes and vegetation. In this paper, we evaluate the accuracy of a new geotechnical module that was developed and coupled with Telemac-Mascaret to address these limitations. Innovatively, the newly developed module relies on a fully configurable, universal genetic algorithm with tournament selection that permits it (1) to assess geotechnical stability along potentially unstable slope profiles intersecting liquid-solid boundaries, and (2) to predict the shape and extent of slump blocks while considering mechanical plant effects, bank hydrology, and the hydrostatic pressure caused by flow. The profiles of unstable banks are altered while ensuring mass conservation. Importantly, the new stability module is independent of mesh structure and can operate efficiently along multithreaded channels, cutoffs, and islands. Data collected along a 1.5-km-long reach of the semialluvial Medway Creek, Canada, over a period of 3.5 years are used to evaluate the capacity of the coupled model to accurately predict bank retreat in meandering river channels and to evaluate the extent to which the new model can be applied to a natural river reach located in a complex environment. Our results indicate that key geotechnical parameters can indeed be adjusted to fit observations, even with a minimal calibration effort, and that the model correctly identifies the location of the most severely eroded bank regions. The combined use of genetic and spatial analysis algorithms, in particular for the evaluation of geotechnical stability independently of the hydrodynamic

  1. Modeling and analysis of Soil Erosion processes by the River Basins model: The Case Study of the Krivacki Potok Watershed, Montenegro

    NASA Astrophysics Data System (ADS)

    Vujacic, Dusko; Barovic, Goran; Mijanovic, Dragica; Spalevic, Velibor; Curovic, Milic; Tanaskovic, Vjekoslav; Djurovic, Nevenka

    2016-04-01

    The objective of this research was to study soil erosion processes in one of Northern Montenegrin watersheds, the Krivacki Potok Watershed of the Polimlje River Basin, using modeling techniques: the River Basins computer-graphic model, based on the analytical Erosion Potential Method (EPM) of Gavrilovic for calculation of runoff and soil loss. Our findings indicate a low potential of soil erosion risk, with 554 m³ yr-1 of annual sediment yield; an area-specific sediment yield of 180 m³km-2 yr-1. The calculation outcomes were validated for the entire 57 River Basins of Polimlje, through measurements of lake sediment deposition at the Potpec hydropower plant dam. According to our analysis, the Krivacki Potok drainage basin is with the relatively low sediment discharge; according to the erosion type, it is mixed erosion. The value of the Z coefficient was calculated on 0.297, what indicates that the river basin belongs to 4th destruction category (of five). The calculated peak discharge from the river basin was 73 m3s-1 for the incidence of 100 years and there is a possibility for large flood waves to appear in the studied river basin. Using the adequate computer-graphic and analytical modeling tools, we improved the knowledge on the soil erosion processes of the river basins of this part of Montenegro. The computer-graphic River Basins model of Spalevic, which is based on the EPM analytical method of Gavrilovic, is highly recommended for soil erosion modelling in other river basins of the Southeastern Europe. This is because of its reliable detection and appropriate classification of the areas affected by the soil loss caused by soil erosion, at the same time taking into consideration interactions between the various environmental elements such as Physical-Geographical Features, Climate, Geological, Pedological characteristics, including the analysis of Land Use, all calculated at the catchment scale.

  2. Anthropogenic Increase Of Soil Erosion In The Gangetic Plain Revealed By Geochemical Budget Of Erosion

    NASA Astrophysics Data System (ADS)

    Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.

    2007-12-01

    Tectonic and climatic factors are the key natural variables controlling the erosion through complex interactions. Nonetheless, over the last few hundred years, human activity also exerts a dominant control in response to extensive land use. The geochemical budget of erosion allows the balance between the different erosion processes to be quantified. The chemical composition of river sediment results from the chemical composition of the source rock modified by (1) weathering reactions occurring during erosion and (2) physical segregation during transport. If erosion is at steady state, the difference between the chemical composition of source rocks and that of river sediments must therefore be counterbalanced by the dissolved flux. However, climatic variations or anthropic impact can induce changes in the erosion distribution in a given basin resulting in non steady state erosion. Using a mass balance approach, the comparison of detailed geochemical data on river sediments with the current flux of dissolved elements allows the steady state hypothesis to be tested. In this study, we present a geochemical budget of weathering for the Ganga basin, one of the most densely populated basin in the world, based on detailed sampling of Himalayan rivers and of the Ganga in the delta. Sampling includes depth profile in the river, to assess the variability generated by transport processes. Himalayan river sediments are described by the dilution of an aluminous component (micas + clays + feldspars) by quartz. Ganga sediments on the other hand correspond to the mixing of bedload, similar to coarse Himalayan sediments, with an aluminous component highly depleted in alkaline elements. Compared with the dissolved flux, the depletion of alkaline elements in Ganga sediments shows that the alkaline weathering budget is imbalanced. This imbalance results from an overabundance of fine soil material in the Ganga sediment relative to other less weathered material directly derived from

  3. "Keynote address, Theme 4, Management of steepland erosion: an overview"

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Abstract - Steepland erosion is a composite of surface, channel, and mass erosion. The relative importance of each process is determined by an interaction between climate, soil, geology, topography, and vegetation. A change in any of these components can increase or decrease the rate of erosion. The key to successful management of erosion is the ability to 1)...

  4. Robotic weld overlay coatings for erosion control

    NASA Astrophysics Data System (ADS)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  5. Advances in wind erosion modelling in Europe

    NASA Astrophysics Data System (ADS)

    Borrelli, Pasquale; Lugato, Emanuele; Alewell, Christine; Montanarella, Luca; Panagos, Panos

    2017-04-01

    Soil erosion by wind is a serious environmental problem often resulting in severe forms of soil degradation. Wind erosion is also a phenomenon relevant for Europe, although this land degradation process has been overlooked until very recently. The state-of-the-art literature presents wind erosion as a process that locally affects the semi-arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Actual observations, field measurements and modelling assessments, however, are all extremely limited and highly unequally distributed across Europe. As a result, we currently lack comprehensive understanding about where and when wind erosion occurs in Europe, and the intensity of erosion that poses a threat to agricultural productivity. Today's challenge is to integrate the insights of local experiments and field-scale models into a new generation of large-scale wind erosion models. While naturally being less accurate than field-scale models, these large-scale modelling approaches still provide essential knowledge about where and when wind erosion occurs and can disclose the level of risk for agricultural productivity in specific areas. Here, we present a geographic information system (GIS) version of the RWEQ (named GIS-RWEQ) to quantitatively assess soil loss by wind over large study areas (Land Degradation & Development, DOI: 10.1002/ldr.2588). The model designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution shows high consistency with local measurements reported in literature. The average soil loss predicted by GIS-RWEQ for the European arable land totals 62 million Mg yr-1, with an average area-specific soil loss of 0.53 Mg yr-1. The JRC model RUSLE2015, for the same area estimates 295 million Mg yr-1 of soil loss due to water erosion. Notably, soil loss by wind erosion in the European arable land could be as high as 20% of water erosion, even though the areas affected are mainly

  6. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, (Normandy, Northern France)

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, D.

    2014-09-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groin, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3-10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2-101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceeding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  7. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, Normandy, northern France

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, T.

    2015-02-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groyne, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3 to 10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2 to 101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  8. 12 CFR 7.4002 - National bank charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... judgment and safe and sound banking principles. A national bank establishes non-interest charges and fees in accordance with safe and sound banking principles if the bank employs a decision-making process... of the competitive position of the bank in accordance with the bank's business plan and marketing...

  9. Quaternary bedrock erosion and landscape evolution in the Sør Rondane Mountains, East Antarctica: Reevaluating rates and processes

    NASA Astrophysics Data System (ADS)

    Matsuoka, Norikazu; Thomachot, Céline E.; Oguchi, Chiaki T.; Hatta, Tamao; Abe, Masahiro; Matsuzaki, Hiroyuki

    2006-11-01

    Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma - 1 . The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.

  10. Scale and processes dominating soil erosion and sediment transport: case studies from Indonesia and Australia

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Bruijnzeel, L. A.

    2009-04-01

    Soil erosion and sediment transport at different scales of space and time are dominated by a variable set of landscape properties and processes. Research results from West Java (Indonesia) and southeast Australia are presented, taking a natural resources management perspective. The dominant role of vegetation and soil health, rainfall infiltration, and connectivity between hillslope and stream are elaborated on. In humid volcanic upland West Java, vegetative cover and associated infiltration capacity are the dominant control on surface runoff and sediment generation, with additional variation attributed to slope and soil surface structure. Use of process models to replicate and upscale field measurements highlighted that a predictive theory to link vegetative cover and infiltration capacity is lacking, and that full knowledge of the covariance between terrain attributes that promote sediment generation is needed for process based modelling. At the hillslope to catchment scale, slope gradient and a less erodible substrate became additional constraints on sediment yield. A conceptual framework relating processes, scale and sediment delivery ratio was developed. In water-limited southeast Australia, measures to reduce erosion and sediment production generally aim to intercept surface runoff, allowing runoff to infiltrate and sediment to settle on vegetated buffer strips or roadsides or in leaky dams. It is illustrated how remote sensing can help to assess the sources of sediment and hydrological connectivity at different scales and to identify opportunities for mitigation.

  11. Issues of upscaling in space and time with soil erosion models

    NASA Astrophysics Data System (ADS)

    Brazier, R. E.; Parsons, A. J.; Wainwright, J.; Hutton, C.

    2009-04-01

    Soil erosion - the entrainment, transport and deposition of soil particles - is an important phenomenon to understand; the quantity of soil loss determines the long term on-site sustainability of agricultural production (Pimental et al., 1995), and has potentially important off-site impacts on water quality (Bilotta and Brazier, 2008). The fundamental mechanisms of the soil erosion process have been studied at the laboratory scale, plot scale (Wainwright et al., 2000), the small catchment scale (refs here) and river basin scale through sediment yield and budgeting work. Subsequently, soil erosion models have developed alongside and directly from this empirical work, from data-based models such as the USLE (Wischmeier and Smith, 1978), to ‘physics or process-based' models such as EUROSEM (Morgan et al., 1998) and WEPP (Nearing et al., 1989). Model development has helped to structure our understanding of the fundamental factors that control soil erosion process at the plot and field scale. Despite these advances, however, our understanding of and ability to predict erosion and sediment yield at the same plot, field and also larger catchment scales remains poor. Sediment yield has been shown to both increase and decrease as a function of drainage area (de Vente et al., 2006); the lack of a simple relationship demonstrates complex and scale-dependant process domination throughout a catchment, and emphasises our uncertainty and poor conceptual basis for predicting plot to catchment scale erosion rates and sediment yields (Parsons et al., 2006b). Therefore, this paper presents a review of the problems associated with modelling soil erosion across spatial and temporal scales and suggests some potential solutions to address these problems. The transport-distance approach to scaling erosion rates (Wainwright, et al., 2008) is assessed and discussed in light of alternative techniques to predict erosion across spatial and temporal scales. References Bilotta, G.S. and

  12. Natural Erosion of Sandstone as Shape Optimisation.

    PubMed

    Ostanin, Igor; Safonov, Alexander; Oseledets, Ivan

    2017-12-11

    Natural arches, pillars and other exotic sandstone formations have always been attracting attention for their unusual shapes and amazing mechanical balance that leave a strong impression of intelligent design rather than the result of a stochastic process. It has been recently demonstrated that these shapes could have been the result of the negative feedback between stress and erosion that originates in fundamental laws of friction between the rock's constituent particles. Here we present a deeper analysis of this idea and bridge it with the approaches utilized in shape and topology optimisation. It appears that the processes of natural erosion, driven by stochastic surface forces and Mohr-Coulomb law of dry friction, can be viewed within the framework of local optimisation for minimum elastic strain energy. Our hypothesis is confirmed by numerical simulations of the erosion using the topological-shape optimisation model. Our work contributes to a better understanding of stochastic erosion and feasible landscape formations that could be found on Earth and beyond.

  13. Evaluating the effectiveness of agricultural mulches for reducing post-wildfire wind erosion

    USDA-ARS?s Scientific Manuscript database

    Post-wildfire soil erosion can be caused by water or aeolian processes yet most erosion research has focused on predominantly water-driven erosion. This study investigates the effectiveness of three agricultural mulches, with and without a tackifier, on aeolian sediment transport processes. A wind t...

  14. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.

  15. Erosion Performance of Gadolinium Zirconate-Based Thermal Barrier Coatings Processed by Suspension Plasma Spray

    NASA Astrophysics Data System (ADS)

    Mahade, Satyapal; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per; Vaßen, Robert

    2017-01-01

    7-8 wt.% Yttria-stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used by the gas turbines industry due to its excellent thermal and thermo-mechanical properties up to 1200 °C. The need for improvement in gas turbine efficiency has led to an increase in the turbine inlet gas temperature. However, above 1200 °C, YSZ has issues such as poor sintering resistance, poor phase stability and susceptibility to calcium magnesium alumino silicates (CMAS) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperatures (>1200 °C) due to its low thermal conductivity, good sintering resistance and CMAS attack resistance. Single-layer 8YSZ, double-layer GZ/YSZ and triple-layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS) process. Microstructural analysis was carried out by scanning electron microscopy (SEM). A columnar microstructure was observed in the single-, double- and triple-layer TBCs. Phase analysis of the as-sprayed TBCs was carried out using XRD (x-ray diffraction) where a tetragonal prime phase of zirconia in the single-layer YSZ TBC and a cubic defect fluorite phase of GZ in the double and triple-layer TBCs was observed. Porosity measurements of the as-sprayed TBCs were made by water intrusion method and image analysis method. The as-sprayed GZ-based multi-layered TBCs were subjected to erosion test at room temperature, and their erosion resistance was compared with single-layer 8YSZ. It was shown that the erosion resistance of 8YSZ single-layer TBC was higher than GZ-based multi-layered TBCs. Among the multi-layered TBCs, triple-layer TBC was slightly better than double layer in terms of erosion resistance. The eroded TBCs were cold-mounted and analyzed by SEM.

  16. Business Process Flow Diagrams in Tissue Bank Informatics System Design, and Identification and Communication of Best Practices: The Pharmaceutical Industry Experience.

    PubMed

    McDonald, Sandra A; Velasco, Elizabeth; Ilasi, Nicholas T

    2010-12-01

    Pfizer, Inc.'s Tissue Bank, in conjunction with Pfizer's BioBank (biofluid repository), endeavored to create an overarching internal software package to cover all general functions of both research facilities, including sample receipt, reconciliation, processing, storage, and ordering. Business process flow diagrams were developed by the Tissue Bank and Informatics teams as a way of characterizing best practices both within the Bank and in its interactions with key internal and external stakeholders. Besides serving as a first step for the software development, such formalized process maps greatly assisted the identification and communication of best practices and the optimization of current procedures. The diagrams shared here could assist other biospecimen research repositories (both pharmaceutical and other settings) for comparative purposes or as a guide to successful informatics design. Therefore, it is recommended that biorepositories consider establishing formalized business process flow diagrams for their laboratories, to address these objectives of communication and strategy.

  17. The limits on the usefulness of erosion hazard ratings

    Treesearch

    R. M. Rice; P. D. Gradek

    1984-01-01

    Although erosion-hazard ratings are often used to guide forest practices, those used in California from 1974 to 1982 have been inadequate for estimating erosion potential. To improve the erosion-hazard rating procedure, separate estimating equations were used for different situations. The ratings were partitioned according to yarding method, erosional process, and...

  18. Bed Erosion Process in Geophysical Viscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.

    2017-12-01

    The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.

  19. Efficacy of bedrock erosion by subglacial water flow

    NASA Astrophysics Data System (ADS)

    Beaud, F.; Flowers, G. E.; Venditti, J. G.

    2015-09-01

    Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.

  20. Quantification of soil erosion and transport processes in the in the Myjava Hill Land

    NASA Astrophysics Data System (ADS)

    Hlavcová, Kamila; Kohnová, Silvia; Velisková, Yvetta; Studvová, Zuzana; Socuvka, Valentin; Németová, Zuzana; Duregová, Maria

    2017-04-01

    The aim of the study is a complex analysis of soil erosion processes and proposals for erosion control in the region of the Myjava Hill Land located in western Slovakia. The Myjava Hill Land is characteristic of quick runoff response, intensive soil erosion by water and related muddy floods, which are determined by both natural and socio-economic conditions. In this paper a case study in the Svacenický Creek catchment, with a focus on the quantification of soil loss from the agriculturally arable lands and sediment transport to the dry water reservoir (polder) of the Svacenický Creek is presented. Erosion, sediment transport, and the deposition of sediments in the water reservoir represent a significant impact on its operation, mainly with regard to reducing its accumulation volume. For the analysis of the soil loss and sediment transport from the Svacenický Creek catchment, the Universal Soil Loss Equation, the USLE 2D, and the Sediment Delivery Ratio (SDR) models were applied. Because the resulting values of the soil loss exceeded the values of the tolerated soil loss, erosion control measures by strip cropping were designed. Strip cropping is based on altering crop strips with protective (infiltration) strips. The effectiveness of the protective (infiltration) strips for reducing runoff from the basin by the SCS-CN method was estimated. Monitoring the morphological parameters of bottom sediments and their changes over time is crucial information in the field of water reservoir operations. In September 2015, the AUV EcoMapper was used to gather the data information on the Svacenický Creek reservoir. The data includes information about the sediment depths and parameters of the water quality. The results of the surveying are GIS datasets and maps, which provide a higher resolution of the bathymetric data and contours of the bottom reservoir. To display the relief of the bottom, the ArcMap 10.1. software was used. Based on the current status of the bottom

  1. Economic valuation of erosion

    NASA Astrophysics Data System (ADS)

    Marupah; Zubair, H.; Rukmana, D.; Baja, S.

    2018-05-01

    Various results of erosion research on highland vegetable farming land indicate that the erosion level is classified as dangerous. This condition cannot be tolerated, because it will cause economic problems in the future both society and government. For farmers who are actively processing potatoes, the longer the farming the greater the cost of production so that the rate of profit gained tends to decrease. For the government, environmental degradation will reduce the possible use of the budget for the development of social welfare because the available funds are used to finance the prevention and handling of environmental disasters such as floods and landslides. The purpose of this study is to find out how many profit opportunities are lost due to erosion occurring in potato farming, using the method of analysis of agricultural systems and then calculate the opportunity price of potato farming system. The results of this study indicate that the value needed to reduce erosion by 0.54 t.ha-1 in one harvest season was IDR. 5,605,556.-. The opportunity to earn a profit of IDR. 5,600,000.- will be lost if farmers do not apply conservation techniques to potato farming in sub-districts Tinggimoncong.

  2. Controlled Ultrasound Tissue Erosion

    PubMed Central

    Xu, Zhen; Ludomirsky, Achiau; Eun, Lucy Y.; Hall, Timothy L.; Tran, Binh C.; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    The ability of ultrasound to produce highly controlled tissue erosion was investigated. This study is motivated by the need to develop a noninvasive procedure to perforate the neonatal atrial septum as the first step in treatment of hypoplastic left heart syndrome. A total of 232 holes were generated in 40 pieces of excised porcine atrial wall by a 788 kHz single-element transducer. The effects of various parameters [e.g., pulse repetition frequency (PRF), pulse duration (PD), and gas content of liquid] on the erosion rate and energy efficiency were explored. An Isppa of 9000 W/cm2, PDs of 3, 6, 12, and 24 cycles; PRFs between 1.34 kHz and 66.7 kHz; and gas saturation of 40–55% and 79–85% were used. The results show that very short pulses delivered at certain PRFs could maximize the erosion rate and energy efficiency. We show that well-defined perforations can be precisely located in the atrial wall through the controlled ultrasound tissue erosion (CUTE) process. A preliminary in vivo experiment was conducted on a canine subject, and the atrial septum was perforated using CUTE. PMID:15244286

  3. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed

  4. Designing a Virtual Item Bank Based on the Techniques of Image Processing

    ERIC Educational Resources Information Center

    Liao, Wen-Wei; Ho, Rong-Guey

    2011-01-01

    One of the major weaknesses of the item exposure rates of figural items in Intelligence Quotient (IQ) tests lies in its inaccuracies. In this study, a new approach is proposed and a useful test tool known as the Virtual Item Bank (VIB) is introduced. The VIB combine Automatic Item Generation theory and image processing theory with the concepts of…

  5. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.

    2011-12-01

    Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in

  6. Mapping soil erosion risk in Serra de Grândola (Portugal)

    NASA Astrophysics Data System (ADS)

    Neto Paixão, H. M.; Granja Martins, F. M.; Zavala, L. M.; Jordán, A.; Bellinfante, N.

    2012-04-01

    Geomorphological processes can pose environmental risks to people and economical activities. Information and a better knowledge of the genesis of these processes is important for environmental planning, since it allows to model, quantify and classify risks, what can mitigate the threats. The objective of this research is to assess the soil erosion risk in Serra de Grândola, which is a north-south oriented mountain ridge with an altitude of 383 m, located in southwest of Alentejo (southern Portugal). The study area is 675 km2, including the councils of Grândola, Santiago do Cacém and Sines. The process for mapping of erosive status was based on the guidelines for measuring and mapping the processes of erosion of coastal areas of the Mediterranean proposed by PAP/RAC (1997), developed and later modified by other authors in different areas. This method is based on the application of a geographic information system that integrates different types of spatial information inserted into a digital terrain model and in their derivative models. Erosive status are classified using information from soil erodibility, slope, land use and vegetation cover. The rainfall erosivity map was obtained using the modified Fournier index, calculated from the mean monthly rainfall, as recorded in 30 meteorological stations with influence in the study area. Finally, the soil erosion risk map was designed by ovelaying the erosive status map and the rainfall erosivity map.

  7. Soil erosion under multiple time-varying rainfall events

    NASA Astrophysics Data System (ADS)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  8. Statistics of rocky coast erosion and percolation theory

    NASA Astrophysics Data System (ADS)

    Baldassarri, A.; Sapoval, B.

    2012-04-01

    The dynamics of rocky coasts is an erratic phenomenon featuring numerous small erosion events, but sometimes large dramatic collapses. In this sense, its study should not limit or rely on average erosion rates. Recent studies, based on historical as well as recent data, have indicated that the frequency of magnitude of erosion events display long tail distribution, similar to what observed in landslide. In other words the time evolution of a coast morphology does not enter the classical category of Gaussian process, but rather that of critical systems in physics. We recently proposed a minimal dynamical model of rocky coast erosion which is able to reproduce the diversity of rocky coast morphologies and their dynamics. This model is based on a single, simple ingredient, the retroaction of the coast morphology on the erosive power of the sea. It follows from the idea that erosion can spontaneously create irregular seashores, but, in turn, the geometrical irregularity of the coast participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. The resulting mutual self-stabilization dynamics of the sea erosion power and coastal irregular morphology leads spontaneously the system to a critical dynamics. Our results indicate then that rocky coast erosion and the statistical theory of percolation are closely related. In this framework, the sometimes fractal geometry of coastlines can be recovered and understood in terms of fractal dimension of the external perimeter of a percolation cluster. From a more practical point of view, the analogy with percolation interfaces means that the coast constitutes a strong, but possibly fragile, barrier to sea erosion, emerging from a self-organised selection process. Accordingly, the effect of a slow weathering degradation of the rocks mechanical properties, as well as other perturbations from natural or human cause, can trigger random and large erosion events difficult to predict and control. To

  9. From minerals to hillslopes: Towards an integrated framework for interpreting chemical and physical erosion

    NASA Astrophysics Data System (ADS)

    Hahm, W.; Riebe, C. S.; Ferrier, K.; Kirchner, J. W.

    2011-12-01

    Traditional frameworks for conceptualizing hillslope denudation distinguish between the movement of mass in solution (chemical erosion) and mass moved via mechanical processes (physical erosion). At the hillslope scale, physical and chemical erosion rates can be quantified by combining measurements of regolith chemistry with cosmogenic nuclide concentrations in bedrock and sediment, while basin-scale rates are often inferred from riverine solute and sediment loads. These techniques integrate the effects of numerous weathering and erosion mechanisms and do not provide prima facie information about the precise nature and scale of those mechanisms. For insight into erosional process, physical erosion has been considered in terms of two limiting regimes. When physical erosion outpaces weathering front advance, regolith is mobilized downslope as soon as it is sufficiently loosened by weathering, and physical erosion rates are limited by rates of mobile regolith production. This is commonly termed weathering-limited erosion. Conversely, when weathering front advance outpaces erosion, the mobile regolith layer grows thicker over time, and physical erosion rates are limited by the efficiency of downslope transport processes. This is termed transport-limited erosion. This terminology brings the description of hillslope evolution closer to the realm of essential realism, to the extent that measurable quantities from the field can be cast in a process-based framework. An analogous process-limitation framework describes chemical erosion. In supply-limited chemical erosion, chemical weathering depletes regolith of its reactive phases during residence on a hillslope, and chemical erosion rates are limited by the supply of fresh minerals to the weathering zone. Alternatively, hillslopes may exhibit kinetic-limited chemical erosion, where physical erosion transports regolith downslope before weatherable phases are completely removed by chemical erosion. We show how supply- and

  10. Development of tissue bank.

    PubMed

    Narayan, R P

    2012-05-01

    The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole.

  11. Parameterization of erodibility in the Rangeland Hydrology and Erosion Model

    USDA-ARS?s Scientific Manuscript database

    The magnitude of erosion from a hillslope is governed by the availability of sediment and connectivity of runoff and erosion processes. For undisturbed rangelands, sediment is primarily detached and transported by rainsplash and sheetflow (splash-sheet) processes in isolated bare batches, but sedime...

  12. Determining Consistency of Tillage Direction with Soil Erosion Protection Requirements as The Element of Decision-Making Process in Planning and Applying Land Consolidation

    NASA Astrophysics Data System (ADS)

    Bozek, Piotr; Janus, Jaroslaw; Taszakowski, Jaroslaw; Glowacka, Agnieszka

    2016-10-01

    Water erosion is one of the factors which have negative effect on soil productivity. It often leads to irreversible soil degradation, making soil worthless for agricultural activities. One way of preventing water erosion is making the direction of cultivation perpendicular to the direction of rainwater run-off. Matching the direction with the shape of parcels boundaries in small and extended ones is often possible only through changes in the configuration of property boundaries, which is possible only in the process of land consolidation. The article presents methodology of qualifying the areas for changes in boundaries configuration and cultivation direction in view of existing erosion risk. A computation process was suggested that uses, among others, LIDAR data to model the terrain shape precisely as well as cadastral data that defines the geometry of parcels and, resulting from it, the direction of cultivation and form of use. The suggested process includes also the information on the texture of soil upper horizons from soil agricultural maps. The RUSLE erosion model was applied and the computation process took place in ArcGIS environment with the use of dedicated algorithms suggested and implemented to solve the formulated problem. Computations were conducted for test area of several hundred hectares which was characterized by vast diversity of soil types and landforms. The results prove the usefulness of the suggested method as an element of systems that support decision-making processes used in the stage of determining objects chosen for the realization of consolidating processes (including local consolidation, which covers only chosen fragment of a village). They can also be used in the stage of completing detailed plans of parcels distribution in land consolidation process. The importance of the method is particularly seen in the analysis of areas where land fragmentation indices are unfavourable. Especially in these cases, without the reorganization of

  13. Repeated erosion of cohesive sediments with biofilms

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Mariotti, G.; Fagherazzi, S.

    2014-04-01

    This study aims to explore the interplay between biofilms and erodability of cohesive sediments. Erosion experiments were run in four laboratory annular flumes with natural sediments. After each erosion the sediment was allowed to settle, mimicking intermittent physical processes like tidal currents and waves. The time between consecutive erosion events ranged from 1 to 12 days. Turbidity of the water column caused by sediment resuspension was used to determine the erodability of the sediments with respect to small and moderate shear stresses. Erodability was also compared on the basis of the presence of benthic biofilms, which were quantified using a Pulse-Amplitude Modulation (PAM) Underwater Fluorometer. We found that frequent erosion lead to the establishment of a weak biofilm, which reduced sediment erosion at small shear stresses (around 0.1 Pa). If prolonged periods without erosion were present, the biofilm fully established, resulting in lower erosion at moderate shear stresses (around 0.4 Pa). We conclude that an unstructured extracellular polymeric substances (EPS) matrix always affect sediment erodability at low shear stresses, while only a fully developed biofilm mat can reduce sediment erodability at moderate shear stresses.

  14. Stability evaluation of modernized bank protections in a culvert construction

    NASA Astrophysics Data System (ADS)

    Cholewa, Mariusz; Plesiński, Karol; Kamińska, Katarzyna; Wójcik, Izabela

    2018-02-01

    The paper presents stability evaluation of the banks of the Wilga River on a chosen stretch in Koźmice Wielkie, Małopolska Province. The examined stretch included the river bed upstream from the culvert on a district road. The culvert construction, built over four decades ago, was disassembled in 2014. The former construction, two pipes that were 1.4 m in diameter, was entirely removed. The investor decided to build a new construction in the form of insitu poured reinforced concrete with a 4 x 2 m cross section. Change of geometry and different location in relation to the river current caused increase in the flow velocity and, as a consequence, erosion of both protected and natural banks. Groundwater conditions were determined based on the geotechnical tests that were carried out on soil samples taken from the banks and the river bed. Stability calculations of natural slopes of the Wilga River and the ones protected with riprap indicate mistakes in the design project concerning construction of the river banks. The purpose of the study was to determine the stability of the Wilga River banks on a selected section adjacent to the rebuilt culvert. Stability of a chosen cross section was analysed in the paper. Presented conclusions are based on the results of geotechnical tests and numerical calculations.

  15. Utilisation of Indian Remote Sensing Satellite (IRS) data for assessment of soil erosion process of a watershed in Chhotanagpur plateau region, India

    NASA Astrophysics Data System (ADS)

    Pramod Krishna, Akhouri

    A watershed in Chhotanagpur plateau region was investigated utilizing space data from Indian Remote Sensing (IRS) Satellite towards spatial and temporal soil erosion process study. Geomorphologically, this plateau region is an undulating pediplain. The watershed namely Potpoto river watershed covering an area of 8160 hectares is situated in the vicinity of Ranchi, capital city of newly created Jharkahnd state. As per the national watershed atlas, Potpoto river is a tributary of Subarnarekha river system within the Upper Subarnarekha river basin under watershed no. 4H3C8. This rural to semi-urban watershed is important towards various services to Ranchi city as well as experiencing direct or indirect pressures of development. Drivers of land use changes at ground level are responsible for change in soil erosion rates in any watershed in coupled human-environment systems. This may adversely affect the soil cover of such watersheds depicted through changed rates of erosion. In a rural to semi-urban watershed like this, there are general tendencies of land use and thereby land cover changes from forests to agricultural lands, within agricultural land in terms of cropping pattern changes to cash-crops, orchards, commercial plantations and conversions to other land use categories as well towards infrastructure expansions. Universal Soil Loss Equation (USLE) was used as a basis to observe the intensity of erosion using remote sensing, rainfall data, soil data and land use/land cover map. IRS1C LISSIII and IRSP6 LISSIII data were used to identify land use status for the years 1996 and 2004 respectively. LISSIII sensor provides data in the visible to near infrared (Bands 2, 3, 4) as well as short wave infrared (Band 5) range of electromagnetic spectrum. In this study, bands 2 (0.52-0.59 microns), 3 (0.62-0.68 microns) and 4 (0.77-0.86 microns) were used with spatial resolution of 23.5 meters at nadir. Digital image processing was carried out using ERDAS Imagine software

  16. Effects of Bedrock Landsliding on Cosmogenically Determined Erosion Rates

    NASA Technical Reports Server (NTRS)

    Niemi, Nathan; Oskin, Mike; Burbank, Douglas; Heimsath, Arjun

    2005-01-01

    The successful quantification of long-term erosion rates underpins our understanding of landscape. formation, the topographic evolution of mountain ranges, and the mass balance within active orogens. The measurement of in situ-produced cosmogenic radionuclides (CRNs) in fluvial and alluvial sediments is perhaps the method with the greatest ability to provide such long-term erosion rates. In active orogens, however, deep-seated bedrock landsliding is an important erosional process, the effect of which on CRN-derived erosion rates is largely unquantified. We present a numerical simulation of cosmogenic nuclide production and distribution in landslide-dominated catchments to address the effect of bedrock landsliding on cosmogenic erosion rates in actively eroding landscapes. Results of the simulation indicate that the temporal stability of erosion rates determined from CRN concentrations in sediment decreases with increased ratios of landsliding to sediment detachment rates within a given catchment area, and that larger catchment areas must be sampled with increased frequency of landsliding in order to accurately evaluate long-term erosion rates. In addition, results of this simulation suggest that sediment sampling for CRNs is the appropriate method for determining long-term erosion rates in regions dominated by mass-wasting processes, while bedrock surface sampling for CRNs is generally an ineffective means of determining long-term erosion rates. Response times of CRN concentrations to changes in erosion rate indicate that climatically driven cycles of erosion may be detected relatively quickly after such changes occur, but that complete equilibration of CRN concentrations to new erosional conditions may take tens of thousands of years. Simulation results of CRN erosion rates are compared with a new, rich dataset of CRN concentrations from the Nepalese Himalaya, supporting conclusions drawn from the simulation.

  17. High natural erosion rates are the backdrop for enhanced anthropogenic soil erosion in the Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; Aumaître, G.; Bourlès, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2014-08-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be difficult to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well-maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills, but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Because of the high natural background rates, simple comparison of short- and long-term rates may not reveal unsustainable soil degradation, particularly if much of the catchment-scale erosion flux derives from mass wasting. Correcting for the mass wasting contribution in the Likhu implies minimum catchment-averaged soil production rates of ~0.25-0.35 mm yr-1. The deficit between these production rates and soil losses suggests that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest and scrubland may lead to rapid depletion of soil resources.

  18. On the patterns and processes of wood in northern California streams

    NASA Astrophysics Data System (ADS)

    Benda, Lee; Bigelow, Paul

    2014-03-01

    Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate

  19. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    NASA Astrophysics Data System (ADS)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  20. Hydrodynamic Impacts on Coastal Erosion and Deposition Processes in Cu Lao Dung (Soc Trang) and Rach Goc (Ca Mau)

    NASA Astrophysics Data System (ADS)

    Vo-Luong, H. P.; Phong, N. H.; Tran, D. X.; Ogston, A. S.

    2016-02-01

    Coastal mangrove forests are special and unique vegetation found in the tropics. They are classified as the most vulnerable ecosystem in coastal ecosystems. Moreover, mangrove forests are dynamic systems that directly influence coastal erosion and deposition processes. Cu Lao Dung (Soc Trang province) and Rach Goc (Ca Mau province) are chosen as studied sites. Although they both belong to the Mekong Delta on the eastern coast of Viet Nam, coastal erosion and deposition processes are different: Cu Lao Dung tends to be aggradational while the Rach Goc area is seriously erosional. This study aims to focus on the impact of hydrodynamics in the coastal processes at the Cu Lao Dung and Rach Goc sites. As part of field measurements in NE and SW monsoons (2014-2015), wave, current, river discharge, suspended sediment concentration, and bathymetry were measured. These data were collected in shallow sub-tidal water, on the muddy flat and within the mangrove forest. The observed data show that waves and current are dissipated quickly from shallow coastal water into the mangroves. They also depend on topography changes, characteristic in mangroves. Suspended sediment concentration increases from shallow water into the mangroves, and fluctuates according to tides, waves and currents. The analyzed data in Cu Lao Dung and Rach Goc are compared and from that, the main factors causing the erosion and deposition in these studied sites are explained.

  1. Progress in the application of landform analysis in studies of semiarid erosion

    USGS Publications Warehouse

    Schumm, Stanley Alfred; Hadley, R.F.

    1961-01-01

    The analysis of topographic and hydrologic data gathered during studies of erosion in semiarid areas of Western United States show the following relation: (a) Mean annual sediment yield from small drainage basins is related to a ratio of basin relief to length; (b) mean annual runoff from small drainage basins is related to drainage density; (c) mean annual sediment yield per unit area decreases with increase in drainage area; (d) the form of some convex hill slopes is related to surficial creep; (e) asymmetry of drainage basins, including differences in hill-slope erosion and drainage density, is related to microclimatic variations on slopes of diverse exposure; .(f) the cutting of discontinuous gullies is closely related to steepening by deposition of the semiarid valley floor; (g) aggradation in ephemeral streams seems to be most prevalent in reaches where the ratio of contributing drainage area to channel length is relatively small; and (h) streamchannel shape, expressed as a width-depth ratio, is related to the percentage of silt-clay in bed and bank alluvium. The above relations cannot be detected without measurement of terrain characteristics. They further indicate the importance of quantitative terrain analysis in studies of erosion.

  2. Interaction between attrition,abrasion and erosion in tooth wear.

    PubMed

    Addy, M; Shellis, R P

    2006-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence seems insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear through formation of pellicle and by remineralisation but cannot prevent it.

  3. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    NASA Astrophysics Data System (ADS)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  4. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  5. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  6. Managing dental erosion.

    PubMed

    Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal

    2012-01-01

    The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.

  7. Erosion of composite materials

    NASA Technical Reports Server (NTRS)

    Springer, G. S.

    1980-01-01

    A model for describing the response of uncoated and coated fiber reinforced composites subjected to repeated impingements of liquid (rain) droplets is presented. The model is based on the concept that fatigue is the dominant factor in the erosion process. Algebraic expressions are provided which give the incubation period, the rate of mass loss past the incubation period, and the total mass loss of the material during rain impact. The influence of material properties on erosion damage and the protection offered by different coatings are discussed and the use of the model in the design in the design of structures and components is illustrated.

  8. Research of wind erosion intensity in the region of Subotica-Horgos sands

    Treesearch

    Velizar Velasevic; Ljubomir Letic

    1991-01-01

    Wind is an important erosional process in the areas of steppe-savanna climate in Europe as typified by the Bojvodina plain in Yugoslavia. Cultivated and forested plots on the Subotica-Horgos Sands were used to study aeolian erosion processes. Wind erosion on the cultivated plot was 3-29 times greater than that occurring on a plot planted to forest trees. That erosion...

  9. [Erosive petechial gastritis].

    PubMed

    Llorens, P

    1988-01-01

    We studied 20 patients in which a variety of erosive gastritis is described. We named it petechial erosive gastritis. We have to bring up that its sequence is due to the presence of the petechiae in the center of the mucosal area. Then in degrees of higher intensity erosions occur also at the center of the area mucosa. Occasionally the erosions meet, become larger and may bleed. An endoscopic classification of petechial erosive gastritis is established it rates mild, moderate, severe and hemorrhagic degrees. Even if the histopathologic study does not keep a strict correspondence with the severity of endoscopic observation of the lesions, it is possible to separate easily a petechial stage from an erosive stage. Demonstration of these lesions at their sequence from petechial to bleeding erosion constitutes an important contribution to the study of acute gastric lesions and it might open a way to a better study of the alterations of the irrigation of the gastric mucosa and the etiology of erosive lesions and acute ulcer.

  10. The Role of Vegetation Cover in Interactions between Climate and Erosion

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Torres-Acosta, V.; Düsing, W.; Garcin, Y.; Strecker, M. R.

    2016-12-01

    Interactions between tectonics, climate and erosion during mountain building are often considered to include a positive feedback between precipitation and erosion, with the onset of orographic rainfall inducing greater erosion, which in turn may drive faster deformation. Here, we consider two different case studies that explore specifically the relationship between climate and erosion. Within the Kenya Rift of East Africa, spatial variations in 10Be derived erosion rates show no clear dependency on yearly precipitation. Instead, we find that the data fall into two categories. In areas that are sparsely vegetated, erosion rates increase rapidly with slope, whereas in areas that are densely vegetated, erosion rates increase slowly with slope. These data imply that vegetation cover plays a major role in stabilizing hillslopes. From these results, we hypothesize that in a sparsely vegetated region, the onset of greater precipitation will lead to faster erosion, but only until vegetation becomes denser, after which erosion rates will strongly decrease. Initial results from an ongoing study that reconstruct paleo-erosion rates from a sedimentary archive support this hypothesis. Hence, we infer that in this region, vegetation cover acts as a negative feedback in the interactions between climate and erosion. Compared to East Africa, we find a very different relationship between climate and 10Be derived erosion rates in the Toro intermontane basin in NW Argentina. There, the fastest erosion rates occur in the wettest areas with dense vegetation cover, implying a positive feedback between increased precipitation and erosion rates. Also, paleo-erosion rates from the nearby Humahuaca Basin derived from fluvial terraces point to faster erosion during wetter periods in the past. In this region, the stabilizing effects of vegetation cover may be muted. Ultimately, whether increased precipitation leads to faster or slower erosion could hinge on the dominant erosion processes

  11. A multifaceted approach to prioritize and design bank stabilization measures along the Big Sioux River, South Dakota, USA

    USDA-ARS?s Scientific Manuscript database

    A multifaceted approach was used to manage fine-grained sediment loadings from river bank erosion along the Big Sioux River between Dell Rapids and Sioux Falls, South Dakota, USA. Simulations with the RVR Meander and CONCEPTS river-morphodynamics computer models were conducted to identify stream-ban...

  12. LAPSUS: soil erosion - landscape evolution model

    NASA Astrophysics Data System (ADS)

    van Gorp, Wouter; Temme, Arnaud; Schoorl, Jeroen

    2015-04-01

    LAPSUS is a soil erosion - landscape evolution model which is capable of simulating landscape evolution of a gridded DEM by using multiple water, mass movement and human driven processes on multiple temporal and spatial scales. It is able to deal with a variety of human landscape interventions such as landuse management and tillage and it can model their interactions with natural processes. The complex spatially explicit feedbacks the model simulates demonstrate the importance of spatial interaction of human activity and erosion deposition patterns. In addition LAPSUS can model shallow landsliding, slope collapse, creep, solifluction, biological and frost weathering, fluvial behaviour. Furthermore, an algorithm to deal with natural depressions has been added and event-based modelling with an improved infiltration description and dust deposition has been pursued. LAPSUS has been used for case studies in many parts of the world and is continuously developing and expanding. it is now available for third-party and educational use. It has a comprehensive user interface and it is accompanied by a manual and exercises. The LAPSUS model is highly suitable to quantify and understand catchment-scale erosion processes. More information and a download link is available on www.lapsusmodel.nl.

  13. Rainfall and sheet power equation for interrill erosion on steep hillslope

    USDA-ARS?s Scientific Manuscript database

    Splash and sheet erosion processes dominate on most undisturbed hillslopes of rangeland. Interrill soil erosion should consider the influence of both raindrop and sheet flow to work of soil particles detached by raindrop impact and transported by rainfall-disturbed sheet flow. Interrill erosion equa...

  14. Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs)

    NASA Astrophysics Data System (ADS)

    Bechet, Jacques; Duc, Julien; Loye, Alexandre; Jaboyedoff, Michel; Mathys, Nicolle; Malet, Jean-Philippe; Klotz, Sébastien; Le Bouteiller, Caroline; Rudaz, Benjamin; Travelletti, Julien

    2016-10-01

    The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to erosion and weathering processes. For 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope processes on the scale of elementary gullies. Since 2007, surface changes have been monitored by comparing high-resolution digital elevation models (HRDEMs) produced from terrestrial laser scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the digital elevation model (DEM) on the centimetre scale. The topographic changes over a time span of 2 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes show and confirm that during winter, loose regolith is created by mechanical weathering, and it is eroded and accumulates in the rills and gullies. Because of limited rainfall intensity in spring, part of the material is transported in the main gullies, which are assumed to be a transport-limited erosion system. In the late spring and summer the rainfall intensities increase, allowing the regolith, weathered and accumulated in the gullies and rills during the earlier seasons, to be washed out. Later in the year the catchment acts as a sediment-limited system because no more loose regolith is available. One interesting result is the fact that in the gullies the erosion-deposition processes are more active around the slope angle value of 35°, which probably indicates a behaviour close to dry granular material. It is also observed that there exist thresholds for the rainfall events that are able to

  15. The interactions between attrition, abrasion and erosion in tooth wear.

    PubMed

    Shellis, R Peter; Addy, Martin

    2014-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.

  16. Human milk banking.

    PubMed

    O'Hare, Esther Marie; Wood, Angela; Fiske, Elizabeth

    2013-01-01

    Forms of human milk banking and donation have been present for more than a century worldwide, but, since 1985, the Human Milk Banking Association of North America (HM BANA) has established guidelines to make the use of donor's breast milk safe and the second best form of feeding to maternal breast milk for a neonatal intensive care unit (NICU) infant. The Indiana Mother's Human Milk Bank provides an extensive and meticulous process of selecting breast milk donors. The process begins with a phone interview with a potential donor and includes the review of the donor's medical records, blood laboratory screening, medication and dietary intake, as well as consent from the donor's pediatrician. The milk bank follows steps of collecting, storing, and receiving the breast milk in accordance with the guidelines of the HM BANA. Pasteurization is the method used to ensure the proper heating and cooling of breast milk. Despite the rigorous pasteurization method, the donor's breast milk will not lose most of the important beneficial components needed for sick or ill NICU infants. Every batch of pasteurized breast milk will be cultured for any possible contamination and shipped to NICUs after it has been cleared by laboratory testing.

  17. Development of a flash flood warning system based on real-time radar data and process-based erosion modelling

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Kaiser, Andreas; Buchholtz, Arno; Schmidt, Jürgen

    2017-04-01

    Extreme rainfall events and resulting flash floods led to massive devastations in Germany during spring 2016. The study presented aims on the development of a early warning system, which allows the simulation and assessment of negative effects on infrastructure by radar-based heavy rainfall predictions, serving as input data for the process-based soil loss and deposition model EROSION 3D. Our approach enables a detailed identification of runoff and sediment fluxes in agricultural used landscapes. In a first step, documented historical events were analyzed concerning the accordance of measured radar rainfall and large scale erosion risk maps. A second step focused on a small scale erosion monitoring via UAV of source areas of heavy flooding events and a model reconstruction of the processes involved. In all examples damages were caused to local infrastructure. Both analyses are promising in order to detect runoff and sediment delivering areas even in a high temporal and spatial resolution. Results prove the important role of late-covering crops such as maize, sugar beet or potatoes in runoff generation. While e.g. winter wheat positively affects extensive runoff generation on undulating landscapes, massive soil loss and thus muddy flows are observed and depicted in model results. Future research aims on large scale model parameterization and application in real time, uncertainty estimation of precipitation forecast and interface developments.

  18. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  19. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China.

    PubMed

    Wu, Xinliang; Wei, Yujie; Wang, Junguang; Xia, Jinwen; Cai, Chongfa; Wei, Zhiyuan

    2018-04-15

    Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90mmh -1 ) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p<0.05). Rainfall intensity significantly contributed to the erosional process (p<0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R 2 >88%, p<0.001). Sediment size was dominated by <0.1mm size fraction for the Luvisols and bimodally distributed with the peaks at <0.1mm and 1-0.5mm size for the other soil types. Exchangeable sodium decreased sediment size while rainfall intensity and clay content increased it (Adj-R 2 =96%, p<0.01). These results allow to better understand the climate effect on

  20. Mechanical erosion of xenoliths by magmatic shear flow

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Piero; Ventura, Guido

    2008-05-01

    We focus on the role of mechanical erosion by magmatic shear flow in the formation of xenoliths occurring in lava flows. The process is analyzed by combining the physics of fragmentation and erosion to the concept of rock mass. The conditions for the country rock fragmentation are analyzed as a function of the magma viscosity, strain rate and tensile strength of the rock mass. In reservoirs, mechanical processes play a subordinate role and thermal erosion processes prevail. In conduits, intermediate and silicic magmas may erode and, eventually, fragment good to poor quality country rock masses. Basalts may erode poor quality country rocks. A crystal-rich magma has more chance to break up the conduit walls with respect to a vesiculated melt. The variety of xenoliths of a lava reflects a set of wall-rocks with similar mechanical properties and may not mirror the stratigraphy of the substratum of a volcanic area.

  1. Long-term erosion rates of Panamanian drainage basins determined using in situ 10Be

    NASA Astrophysics Data System (ADS)

    Gonzalez, Veronica Sosa; Bierman, Paul R.; Nichols, Kyle K.; Rood, Dylan H.

    2016-12-01

    from Panama; finer grain sizes from landslide material have lower 10Be concentration than fine-grained fluvial sediment. Large grains from both landslide and stream sediments have similarly low 10Be concentrations. These data suggest that fluvial gravel is delivered to the channel by landslides whereas sand is preferentially delivered by soil creep and bank collapse. Furthermore, the difference in 10Be concentration in sand-sized material delivered by soil creep and that delivered by landsliding suggests that the frequency and intensity of landslides influence basin scale erosion rates.

  2. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Treesearch

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  3. Evaluation of resolution-precision relationships when using Structure-from-Motion to measure low intensity erosion processes, within a laboratory setting.

    NASA Astrophysics Data System (ADS)

    Benaud, Pia; Anderson, Karen; Quine, Timothy; James, Mike; Quinton, John; Brazier, Richard E.

    2017-04-01

    The accessibility of Structure-from-Motion Multi-Stereo View (SfM) and the potential for multi-temporal applications, offers an exciting opportunity to quantify soil erosion spatially. Accordingly, published research provides examples of the successful quantification of large erosion features and events, to centimetre accuracy. Through rigorous control of the camera and image network geometry, the centimetre accuracy achievable at the field scale, can translate to sub-millimetre accuracies within a laboratory environment. The broad aim of this study, therefore, was to understand how ultra-high-resolution spatial information on soil surface topography, derived from SfM, can be utilised to develop a spatially explicit, mechanistic understanding of rill and inter-rill erosion, under experimental conditions. A rainfall simulator was used to create three soil surface conditions; compaction and rainsplash erosion, inter-rill erosion, and rill erosion. Total sediment capture was the primary validation for the experiments, allowing the comparison between structurally and volumetrically derived change, and true soil loss. A Terrestrial Laser Scanner (resolution of ca. 0.8mm) was employed to assess spatial discrepancies within the SfM datasets and to provide an alternative measure of volumetric change. The body of work will present the workflow that has been developed for the laboratory-scale studies and provide information on the importance of DTM resolution for volumetric calculations of soil loss, under different soil surface conditions. To-date, using the methodology presented, point clouds with ca. 3.38 x 107 points per m2, and RMSE values of 0.17 to 0.43 mm (relative precision 1:2023-5117), were constructed. Preliminary results suggest a decrease in DTM resolution from 0.5 to 10 mm does not result in a significant change in volumetric calculations (p = 0.088), while affording a 24-fold decrease in processing times, but may impact negatively on mechanistic understanding

  4. Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

    PubMed Central

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction. PMID:27006906

  5. Monitoring and Risk Identification Caused by High Water, Floods and Erosion Processes in Urban Part of Sava Riverbed

    NASA Astrophysics Data System (ADS)

    Oskoruš, D.; Miković, N.; Ljevar, I.

    2012-04-01

    Riverbed erosion and bottom deepening are part of natural fluvial processes in the upper stream of Sava River. The increasing gradient of those changes is interconnected with the level of human influence in the river basin and riverbed as well. In time period of last forty years the consequences of riverbed erosion are become serious as well as dangerous and they threaten the stability of hydro technical structures. The increasing value of flow velocity in riverbed in urban part of river section during high water level, mud and debris flow during the floods as well, is especially dangerous for old bridges. This paper contains result of velocity measurements during high waters taken by Hydrological Service of Republic Croatia, load transport monitoring during such events and cross sections in some vulnerable location. In this paper is given one example of Jakuševac railway bridge in Zagreb, heavily destroyed during high water event on the 30 March 2009., recently reconstructed by "Croatian Railways" company. Keywords: Riverbed erosion, flow velocity, mud and debris flow, risk identification, stability of bridges

  6. 12 CFR 619.9140 - Farm Credit bank(s).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Farm Credit bank(s). 619.9140 Section 619.9140 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9140 Farm Credit bank(s). Except as otherwise defined, the term Farm Credit bank(s) includes Farm Credit Banks...

  7. 12 CFR 619.9140 - Farm Credit bank(s).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Farm Credit bank(s). 619.9140 Section 619.9140 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9140 Farm Credit bank(s). Except as otherwise defined, the term Farm Credit bank(s) includes Farm Credit Banks...

  8. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-03-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We clearly demonstrate the importance of root system architecture for the control of soil erosion. We also demonstrate that some plant species respond to nutrient enriched patches by increasing lateral root proliferation. The soil response to root proliferation will depend upon its location: at the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff and thus erosion; whereas at depth local increases in shear strength may reinforce soils against structural failure at the shear plane. Additionally, in nutrient deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilising nutrient placement at depth may represent a potentially new, easily implemented, management strategy on nutrient poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  9. Detection of seasonal erosion processes at the scale of an elementary black marl gully from time series of Hi-Resolution DEMs

    NASA Astrophysics Data System (ADS)

    Bechet, J.; Duc, J.; Loye, A.; Jaboyedoff, M.; Mathys, N.; Malet, J.-P.; Klotz, S.; Le Bouteiller, C.; Rudaz, B.; Travelletti, J.

    2015-12-01

    The Roubine catchment located in the experimental research station of Draix-Bléone (south French Alps) is situated in Callovo-Oxfordian black marls, a lithology particularly prone to weathering processes. Since 30 years, this small watershed (0.13 ha) has been monitored for analysing hillslope erosion processes at the scale of elementary gullies. Since 2007, a monitoring of surface changes has been performed by comparing of high-resolution digital elevation models (HR-DEMs) produced from Terrestrial Laser Scanner (TLS). The objectives are (1) to detect and (2) to quantify the sediment production and the evolution of the gully morphology in terms of sediment availability/transport capacity vs. rainfall and runoff generation. Time series of TLS observations have been acquired periodically based on the seasonal runoff activity with a very high point cloud density ensuring a resolution of the DEM at the centimetre scale. The topographic changes over a time span of 4 years are analysed. Quantitative analyses of the seasonal erosion activity and of the sediment fluxes contributing to the recharge of tributary gullies and rills are presented. According to the transport capacity generated by runoff, loose regolith soil sources are eroded at different periods of the year. These are forming transient deposits in the main reach when routed downstream, evolving from a transport-limited to a supply-limited regime through the year. The monitoring allows a better understanding of the seasonal pattern of erosion processes for black marls badland-type slopes and illustrates the mode of sediment production and the temporal storage/entrainment in similar slopes. The observed surface changes caused by erosion (ablation/deposition) are quantified for the complete TLS time-series, and sediment budget maps are presented for each season. Comparisons of the TLS sediment budget map with the in situ sediment monitoring (limnigraph and sedigraph) in the stream are discussed. Intense and long

  10. Erosion risk assessment along coastlines, rivers, and lakes

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni; Harbitz, Carl B.; Issler, Dieter; Forsberg, Carl Fredrik; Høydal, Øyvind A.; Glimsdal, Sylfest; Frauenfelder, Regula

    2017-04-01

    An effect of the expected climate changes is that densely populated areas will be more exposed to natural hazards. There is a rising concern about geotechnical challenges associated with the transition zone between water and land, in particular with regard to erosion. This needs to be considered as part of the climate adaptation strategies in the society and applies to both coastal settlements and to settlements along rivers. Climate change, as reported by the IPCC, includes global warming, sea level rise as well as more precipitation, both with respect to intensity and frequency. A larger number of cities are expected to be affected by floods and with higher frequency. With large floods, the current speed in rivers and hence their erosion potential increases, leading to scouring along riverbanks, where important transport routes and other infrastructure are often located. The frequency and intensity of storm surges are expected to increase, as well as the risk of coastal erosion. In steep terrain, the likelihood of debris flows increases. The project "Multi-scale Erosion Risk under Climate Change" was initiated to prepare for such challenges as well as local climate adaptation. The project is an internal NGI strategic project funded by the Research Council of Norway for the period 2017 - 2019. The project aims to investigate relevant erosive and mass-flow processes in the coastal zone, along rivers, and in lakes. Further, the knowledge and tools to be developed within the project aim to reduce the risk associated with these processes, through appropriate land-use planning and innovative mitigation measures. The project is thematically subdivided into the following five work packages: WP1: Modelling of erosion processes in rivers, at the coast and in mass movements WP2: Floods, debris flows and sediment mobility in complex topography WP3: Coastal hydrodynamic processes WP4: Monitoring, warning and non-physical mitigation measures WP5: Dissemination and knowledge

  11. BONE BANKS.

    PubMed

    de Alencar, Paulo Gilberto Cimbalista; Vieira, Inácio Facó Ventura

    2010-01-01

    Bone banks are necessary for providing biological material for a series of orthopedic procedures. The growing need for musculoskeletal tissues for transplantation has been due to the development of new surgical techniques, and this has led to a situation in which a variety of hospital services have been willing to have their own source of tissue for transplantation. To increase the safety of transplanted tissues, standards for bone bank operation have been imposed by the government, which has limited the number of authorized institutions. The good performance in a bone bank depends on strict control over all stages, including: formation of well-trained harvesting teams; donor selection; conducting various tests on the tissues obtained; and strict control over the processing techniques used. Combination of these factors enables greater scope of use and numbers of recipient patients, while the incidence of tissue contamination becomes statistically insignificant, and there is traceability between donors and recipients. This paper describes technical considerations relating to how a bone bank functions, the use of grafts and orthopedic applications, the ethical issues and the main obstacles encountered.

  12. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  13. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  14. The Cannona Data Base: long-term field data for studies on soil management impact on runoff and erosion processes.

    NASA Astrophysics Data System (ADS)

    Biddoccu, Marcella; Ferraris, Stefano; Opsi, Francesca; Cavallo, Eugenio

    2014-05-01

    Long-term data have been collected by IMAMOTER-CNR from field-scale vineyard plots within the Tenuta Cannona Vine and Wine Experimental Centre of Regione Piemonte, which is located in a valuable vine production area in north-western Italy. Since 2000, runoff and soil erosion monitoring has been carried out under natural rainfall conditions on three parallel field plots (75 m long and 16,5 m wide, slope gradient about 15%) that are conducted with different inter-rows soil management techniques (conventional tillage, reduced tillage, controlled grass cover). Experimental plots are part of a 16-hectars experimental vineyard, managed in according to conventional farming for wine production. Recurrent surveys have been carried out in the runoff plots to investigate spatial and temporal variability of the soil bulk density, soil moisture and penetration resistance. The primary intent of the program was to evaluate the effects of agricultural management practices and tractor traffic on the hydrologic, soil erosion and soil compaction processes in vineyard. The Cannona Data Base (CDB) represents a data collection which is unique in Italy, showing the response of soil to rainfall in terms of runoff and soil erosion over more than a decade. It includes data for more than 200 runoff events and over 70 soil loss events; moreover, periodic measurements for soil physical characteristics are included for the three plots. The CDB can now be accessed via a website supported by the CNR, that is addressed to water and land management researchers and professionals. The CDB is currently used to calibrate a model for runoff and soil erosion prediction in vineyard environment. The CDB website includes a descriptive and informative section, which contains results of over than 10 years of experimental activity, reports and presentations, addressed to enhance the awareness of citizens and stakeholders about land degradation processes and about impacts of different soil management practices

  15. Challenges in soil erosion research and prediction model development

    USDA-ARS?s Scientific Manuscript database

    Quantification of soil erosion has been traditionally considered as a surface hydrologic process with equations for soil detachment and sediment transport derived from the mechanics and hydraulics of the rainfall and surface flow. Under the current erosion modeling framework, the soil has a constant...

  16. A field method for soil erosion measurements in agricultural and natural lands

    Treesearch

    Y.P. Hsieh; K.T. Grant; G.C. Bugna

    2009-01-01

    Soil erosion is one of the most important watershed processes in nature, yet quantifying it under field conditions remains a challenge. The lack of soil erosion field data is a major factor hindering our ability to predict soil erosion in a watershed. We present here the development of a simple and sensitive field method that quantifies soil erosion and the resulting...

  17. Virtual blood bank

    PubMed Central

    Wong, Kit Fai

    2011-01-01

    Virtual blood bank is the computer-controlled, electronically linked information management system that allows online ordering and real-time, remote delivery of blood for transfusion. It connects the site of testing to the point of care at a remote site in a real-time fashion with networked computers thus maintaining the integrity of immunohematology test results. It has taken the advantages of information and communication technologies to ensure the accuracy of patient, specimen and blood component identification and to enhance personnel traceability and system security. The built-in logics and process constraints in the design of the virtual blood bank can guide the selection of appropriate blood and minimize transfusion risk. The quality of blood inventory is ascertained and monitored, and an audit trail for critical procedures in the transfusion process is provided by the paperless system. Thus, the virtual blood bank can help ensure that the right patient receives the right amount of the right blood component at the right time. PMID:21383930

  18. Human Milk Banking.

    PubMed

    Haiden, Nadja; Ziegler, Ekhard E

    2016-01-01

    Human milk banks play an essential role by providing human milk to infants who would otherwise not be able to receive human milk. The largest group of recipients are premature infants who derive very substantial benefits from it. Human milk protects premature infants from necrotizing enterocolitis and from sepsis, two devastating medical conditions. Milk banks collect, screen, store, process, and distribute human milk. Donating women usually nurse their own infants and have a milk supply that exceeds their own infants' needs. Donor women are carefully selected and are screened for HIV-1, HIV-2, human T-cell leukemia virus 1 and 2, hepatitis B, hepatitis C, and syphilis. In the milk bank, handling, storing, processing, pooling, and bacterial screening follow standardized algorithms. Heat treatment of human milk diminishes anti-infective properties, cellular components, growth factors, and nutrients. However, the beneficial effects of donor milk remain significant and donor milk is still highly preferable in comparison to formula. © 2017 S. Karger AG, Basel.

  19. Modeling erosion on steep sagebrush rangeland before and after prescribed fire

    Treesearch

    Corey A. Moffet; Frederick B. Pierson; Kenneth E. Spaeth

    2007-01-01

    Fire in sagebrush rangelands significantly alters canopy cover, ground cover, and soil properties that influence runoff and erosion processes. Runoff is generated more quickly and a larger volume of runoff is produced following prescribed fire. The result is increased risk of severe erosion and downstream flooding. The Water Erosion Prediction Project (WEPP), developed...

  20. Sediment transport dynamics in the Central Himalaya: assessing during monsoon the erosion processes signature in the daily suspended load of the Narayani river

    NASA Astrophysics Data System (ADS)

    Morin, Guillaume; Lavé, Jérôme; Lanord, Christian France; Prassad Gajurel, Ananta

    2017-04-01

    The evolution of mountainous landscapes is the result of competition between tectonic and erosional processes. In response to the creation of topography by tectonics, fluvial, glacial, and hillslope denudation processes erode topography, leading to rock exhumation and sediment redistribution. When trying to better document the links between climate, tectonic, or lithologic controls in mountain range evolution, a detailed understanding of the influence of each erosion process in a given environment is fundamental. At the scale of a whole mountain range, a systematic survey and monitoring of all the geomorphologic processes at work can rapidly become difficult. An alternative approach can be provided by studying the characteristics and temporal evolution of the sediments exported out of the range. In central Himalaya, the Narayani watershed presents contrasted lithologic, geochemical or isotopic signatures of the outcropping rocks as well as of the erosional processes: this particular setting allows conducting such type of approach by partly untangling the myopic vision of the spatial integration at the watershed scale. Based on the acquisition and analysis of a new dataset on the daily suspended load concentration and geochemical characteristics at the mountain outlet of one of the largest Himalayan rivers (drainage area = 30000 km2) bring several important results on Himalayan erosion, and on climatic and process controls. 1. Based on discrete depth sampling and on daily surface sampling of suspended load associated to flow characterization through ADCP measurements, we were first able to integrate sediment flux across a river cross-section and over time. We estimate for 2010 year an equivalent erosion rate of 1.8 +0.35/-0.2 mm/yr, and over the last 15 years, using past sediment load records from the DHM of Nepal, an equivalent erosion rate of 1.6 +0.3/-0.2 mm/yr. These rates are also in close agreement with the longer term ( 500 yrs) denudation rates of 1.7 mm

  1. LIDAR data to support coastal erosion analysis: the Conero study case

    NASA Astrophysics Data System (ADS)

    Calligaro, Simone; Sofia, Giulia; Guarnieri, Alberto; Tarolli, Paolo

    2013-04-01

    risk maps. At this regard, a clear example is the case of coastal erosion. In this work a detailed TLS survey was carried out in summer 2012, in the Conero Regional Park (Marche, province of Ancona), along the "spiaggia Urbani" and "spiaggia San Michele". These two study areas present several sections affected by erosion, rock falls and slope failures. They are also a part of a very prestigious place for tourism during the summer season; therefore deriving risk maps is critical. Thanks to the TLS survey, it was possible to obtain a 10 cm resolution DTM covering a reach of about 1.5 km of the coast. This high resolution DTM was used to derive topographic attributes such as curvature from which it has been possible to automatically recognize (Tarolli et al, 2012) and map the surface features related to any surface instabilities. These topographic information and results will also serve as the reference point for future yearly TLS surveys, that absolutely will help in recognizing any micro changes and slope failures, improving the delineation of risk maps. References Tarolli, P., Arrowsmith, J.R., Vivoni, E.R. (2009). Understanding earth surface processes from remotely sensed digital terrain models, Geomorphology, 113, 1-3, doi:10.1016/j.geomorph. 2009.07.005. Tarolli, P., Sofia, G., Dalla Fontana, G. (2012). Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion, Natural Hazards, 61, 65-83, doi:10.1007/s11069-010-9695-2.

  2. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS

    USGS Publications Warehouse

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.

    2000-01-01

    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As

  3. Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows

    NASA Astrophysics Data System (ADS)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-12-01

    Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  4. How to explain variations in sea cliff erosion rate?

    NASA Astrophysics Data System (ADS)

    Prémaillon, Melody; Regard, Vincent; Dewez, Thomas

    2017-04-01

    Every rocky coast of the world is eroding at different rate (cliff retreat rates). Erosion is caused by a complex interaction of multiple sea weather factors. While numerous local studies exist and explain erosion processes on specific sites, global studies lack. We started to compile many of those local studies and analyse their results with a global point of view in order to quantify the various parameters influencing erosion rates. In other words: is erosion more important in energetic seas? Are chalk cliff eroding faster in rainy environment? etc. In order to do this, we built a database based on literature and national erosion databases. It now contains 80 publications which represents 2500 cliffs studied and more than 3500 erosion rate estimates. A statistical analysis was conducted on this database. On a first approximation, cliff lithology is the only clear signal explaining erosion rate variation: hard lithologies are eroding at 1cm/y or less, whereas unconsolidated lithologies commonly erode faster than 10cm/y. No clear statistical relation were found between erosion rate and external parameters such as sea energy (swell, tide) or weather condition, even on cliff with similar lithology.

  5. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    PubMed

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Processes and mechanisms governing hard rock cliff erosion in western Brittany, France

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Letortu, Pauline; Le Dantec, Nicolas

    2017-04-01

    The evolution of rocky coasts is controlled by the interplay between subaerial, marine as well as biological processes, and the geological context. In times of ongoing climate change it is difficult to predict how these erosional landscapes will respond for example to anticipated sea-level rise or to an increase in storminess. However, it can be expected that changes in the morphodynamics of rocky coasts will have a noticeable effect on society and infrastructure. Recent studies have proven that monitoring cliff micro-seismic ground motion has been very effective in exploring both marine and atmospheric actions on coastal cliffs. But only few studies have focused so far on the effects of wave loading and water circulation (runoff, infiltration, water table variations) on cliff stability and subsequent erosion, considering the interaction between subaerial and marine processes. This project focuses on the identification and quantification of environmental controls on hard rock cliff erosion with an emphasis on discriminating the relative contributions of subaerial and marine processes. We aim at relating different sources of mechanical stress (e.g. wave loading, direct wave impact, hydrostatic pressure, thermal expansion) to cliff-scale strain (cliff-top swaying and shaking) and micro-fracturing (generation, expansion and contraction of micro-cracks) with the objective to unravel and discriminate triggering mechanisms of cliff failure. A four-month monitoring field experiment during the winter period (February-May) of 2017 is carried out at a cliff face located in Porsmilin beach (western Brittany, France). The selected cliff section is exposed to Atlantic swell from the south/southwest with a significant wave height of ca. 1.5 m on average and, reaching up to 4 m during storm events. The cliff rises ca. 20 m above the beach and is mainly formed of orthogneiss with intrusions of granodiorite. The entire cliff is highly fractured and altered, which can promote slope

  7. Cash efficiency for bank branches.

    PubMed

    Cabello, Julia García

    2013-01-01

    Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.

  8. Prevention of dentine erosion by brushing with anti-erosive toothpastes.

    PubMed

    Aykut-Yetkiner, Arzu; Attin, Thomas; Wiegand, Annette

    2014-07-01

    This in vitro study aimed to investigate the preventive effect of brushing with anti-erosive toothpastes compared to a conventional fluoride toothpaste on dentine erosion. Bovine dentine specimens (n=12 per subgroup) were eroded in an artificial mouth (6 days, 6×30 s/day) using either citric acid (pH:2.5) or a hydrochloric acid/pepsin solution (pH:1.6), simulating extrinsic or intrinsic erosive conditions, respectively. In between, the specimens were rinsed with artificial saliva. Twice daily, the specimens were brushed for 15 s in an automatic brushing machine at 2.5 N with a conventional fluoride toothpaste slurry (elmex, AmF) or toothpaste slurries with anti-erosive formulations: Apacare (NaF/1% nHAP), Biorepair (ZnCO3-HAP), Chitodent (Chitosan), elmex Erosionsschutz (NaF/AmF/SnCl2/Chitosan), mirasensitive hap (NaF/30% HAP), Sensodyne Proschmelz (NaF/KNO3). Unbrushed specimens served as control. Dentine loss was measured profilometrically and statistically analysed using two-way and one-way ANOVA followed by Scheffe's post hoc tests. RDA-values of all toothpastes were determined, and linear mixed models were applied to analyse the influence of toothpaste abrasivity on dentine wear (p<0.05). Dentine erosion of unbrushed specimens amounted to 5.1±1.0 μm (extrinsic conditions) and 12.9±1.4 μm (intrinsic conditions). All toothpastes significantly reduced dentine erosion by 24-67% (extrinsic conditions) and 21-40% (intrinsic conditions). Biorepair was least effective, while all other toothpastes were not significantly different from each other. Linear mixed models did not show a significant effect of the RDA-value of the respective toothpaste on dentine loss. Toothpastes with anti-erosive formulations reduced dentine erosion, especially under simulated extrinsic erosive conditions, but were not superior to a conventional fluoride toothpaste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. RSRM Nozzle Anomalous Throat Erosion Investigation Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Wendel, Gary M.

    1998-01-01

    In September, 1996, anomalous pocketing erosion was observed in the aft end of the throat ring of the nozzle of one of the reusable solid rocket motors (RSRM 56B) used on NASA's space transportation system (STS) mission 79. The RSRM throat ring is constructed of bias tape-wrapped carbon cloth/ phenolic (CCP) ablative material. A comprehensive investigation revealed necessary and sufficient conditions for occurrence of the pocketing event and provided rationale that the solid rocket motors for the subsequent mission, STS-80, were safe to fly. The nozzles of both of these motors also exhibited anomalous erosion similar to, but less extensive than that observed on STS-79. Subsequent to this flight, the investigation to identify both the specific causes and the corrective actions for elimination of the necessary and sufficient conditions for the pocketing erosion was intensified. A detailed fault tree approach was utilized to examine potential material and process contributors to the anomalous performance. The investigation involved extensive constituent and component material property testing, pedigree assessments, supplier audits, process audits, full scale processing test article fabrication and evaluation, thermal and thermostructural analyses, nondestructive evaluation, and material performance tests conducted using hot fire simulation in laboratory test beds and subscale and full scale solid rocket motor static test firings. This presentation will provide an over-view of the observed anomalous nozzle erosion and the comprehensive, fault-tree based investigation conducted to resolve this issue.

  10. Assessing cumulative watershed stressors: Using LIDAR to assess the amount of open lands and young forest associated with in-channel erosion for North Shore tributaries

    EPA Science Inventory

    Hydrologists with the US Forest Service have demonstrated the cumulative impacts of land use change, particularly additional open lands and young forest (< 15 yrs) on bank full flows and in-channel erosion. Mapping these impacts has been difficult due to challenges associated ...

  11. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    NASA Astrophysics Data System (ADS)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  12. Numerical and experimental investigations on cavitation erosion

    NASA Astrophysics Data System (ADS)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  13. Rainfall erosivity in Central Chile

    NASA Astrophysics Data System (ADS)

    Bonilla, Carlos A.; Vidal, Karim L.

    2011-11-01

    SummaryOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor ( R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy ( E) and its maximum 30-min intensity ( I30), known as the EI30. The original method used to calculate EI30 requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr -1. More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha -1 h -1 yr -1 in the north up to 7375 MJ mm ha -1 h -1 yr -1 in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by

  14. Infiltration and soil erosion modelling on Lausatian post mine sites

    NASA Astrophysics Data System (ADS)

    Kunth, Franziska; Schmidt, Jürgen

    2013-04-01

    Land management of reclaimed lignite mine sites requires long-term and safe structuring of recultivation areas. Erosion by water leads to explicit soil losses, especially on heavily endangered water repellent and non-vegetated soil surfaces. Beyond that, weathering of pyrite-containing lignite burden dumps causes sulfuric acid-formation, and hence the acidification of groundwater, seepage water and surface waters. Pyrite containing sediment is detached by precipitation and transported into worked-out open cuts by draining runoff. In addition to ground water influence, erosion processes are therefore involved in acidification of surface waters. A model-based approach for the conservation of man-made slopes of post mining sites is the objective of this ongoing study. The study shall be completed by modeling of the effectiveness of different mine site recultivation scenarios. Erosion risks on man-made slopes in recultivation areas should be determined by applying the physical, raster- and event based computer model EROSION 2D/3D (Schmidt, 1991, 1992; v. Werner, 1995). The widely used erosion model is able to predict runoff as well as detachment, transport and deposition of sediments. Lignite burden dumps contain hydrophobic substances that cover soil particles. Consequently, these soils show strong water repellency, which influences the processes of infiltration and soil erosion on non-vegetated, coal containing dump soils. The influence of water repellency had to be implemented into EROSION 2D/3D. Required input data for soil erosion modelling (e.g. physical soil parameters, infiltration rates, calibration factors, etc.) were gained by soil sampling and rainfall experiments on non-vegetated as well as recultivated reclaimed mine sites in the Lusatia lignite mining region (southeast of Berlin, Germany). The measured infiltration rates on the non-vegetated water repellent sites were extremely low. Therefore, a newly developed water repellency-factor was applied to

  15. Tolerable soil erosion in Europe

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  16. A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers

    USDA-ARS?s Scientific Manuscript database

    Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...

  17. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus.

    PubMed

    Li, Xu-Zhao; Yang, Xu-Yan; Wang, Yu; Zhang, Shuai-Nan; Zou, Wei; Wang, Yan; Li, Xiao-Nan; Wang, Ling-Shu; Zhang, Zhi-Gang; Xie, Liang-Zhen

    2017-01-01

    Oral lichen planus (OLP) is a relatively common chronic immune-pathological and inflammatory disease and potentially oral precancerous lesion. Erosive OLP patients show the higher rate of malignant transformation than patients with non-erosive OLP. Identifying the potential biomarkers related to erosive OLP may help to understand the pathogenesis of the diseases. Metabolic profiles were compared in control and patient subjects with erosive OLP by using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods An integrative analysis was used to identify the perturbed metabolic pathways and pathological processes that may be associated with the disease. In total, 12 modulated metabolites were identified and considered as the potential biomarkers of erosive OLP. Multiple metabolic pathways and pathological processes were involved in erosive OLP. The dysregulations of these metabolites could be used to explain the pathogenesis of the disease, which could also be the potential therapeutic targets for the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cloud forest restoration for erosion control in a Kichwa community of the Ecuadorian central Andes Mountains

    NASA Astrophysics Data System (ADS)

    Backus, L.; Giordanengo, J.; Sacatoro, I.

    2013-12-01

    The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., < 40%) is severe and often associated with roads, water supply systems, and loss of native cloud forests followed by burning and cultivation of food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working

  19. Reduction in soil aggregate size distribution due to wind erosion

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2017-04-01

    Soil erosion process by wind causes emission of fine soil particles, and thus alters the topsoil's properties, fertility, and erodibility. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Although the key role of aggregates in soil erodibility, quantitative information on the relations between soil aggregate size distribution (ASD) and erosion is still lucking. This study focuses on ASD analyses before and after soil erosion by wind. Wind tunnel experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that in all initial soil conditions saltation of sand particles caused the breakdown of macro-aggregates > 500 µm, resulting in increase of micro-aggregates (63-250 µm). The micro-aggregate production increases with the wind shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight dynamics in soil aggregation in response to erosion process, and therefore the significance of ASD in quantifying soil degradation and soil loss potential.

  20. Process-based soil erodibility estimation for empirical water erosion models

    USDA-ARS?s Scientific Manuscript database

    A variety of modeling technologies exist for water erosion prediction each with specific parameters. It is of interest to scrutinize parameters of a particular model from the point of their compatibility with dataset of other models. In this research, functional relationships between soil erodibilit...

  1. Erosion processes and prediction with WEPP technology in forests in the Northwestern U.S.

    Treesearch

    W. J. Elliot

    2013-01-01

    In the northwestern U.S., the greatest amounts of forest erosion usually follow infrequent wildfires. Sediment from these fires is gradually routed through the stream system. The forest road network is usually the second greatest source of sediment, generating sediment annually. Erosion rates associated with timber harvest, biomass removal, and prescribed fire are...

  2. Universal approach to analysis of cavitation and liquid-impingement erosion data

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.

    1982-01-01

    Cavitation erosion experimental data was analyzed by using normalization and curve-fitting techniques. Data were taken from experiments on several materials tested in both a rotating disk device and a magnetostriction apparatus. Cumulative average volume loss rate and time data were normalized relative to the peak erosion rate and the time to peak erosion rate, respectively. From this process a universal approach was derived that can include data on specific materials from different test devices for liquid impingement and cavitation erosion studies.

  3. Erosion in Mediterranean landscapes: Changes and future challenges

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; Nadal-Romero, Estela; Lana-Renault, Noemí; Beguería, Santiago

    2013-09-01

    Intense erosion processes are widespread in the Mediterranean region, and include sheet wash erosion, rilling, gullying, shallow landsliding, and the development of large and active badlands in both subhumid and semi-arid areas. This review analyses the main environmental and human features related to soil erosion processes, and the main factors that explain the extreme variability of factors influencing soil erosion, particularly recent land use changes. The importance of erosion in the Mediterranean is related to the long history of human activity in a region characterized by low levels of annual precipitation, the occurrence of intense rainstorms and long-lasting droughts, high evapotranspiration, the presence of steep slopes and the occurrence of recent tectonic activity, together with the recurrent use of fire, overgrazing and farming. These factors have resulted in a complex landscape in which intensification and abandonment, wealth and poverty can co-exist. The changing conditions of national and international markets and the evolution of population pressure are now the main drivers explaining land use changes, including farmland abandonment in mountain areas, the expansion of some subsidized crops to marginal lands, and the development of new terraces affected by landslides and intense soil erosion during extreme rainstorm events. The occurrence of human-related forest fires affecting thousands of hectares each year is a significant problem in both the northern and southern areas of the Mediterranean basin. Here, we highlight the rise of new scientific challenges in controlling the negative consequences of soil erosion in the Mediterranean region: 1) to reduce the effects and extent of forest fires, and restructure the spatial organization of abandoned landscapes; 2) to provide guidance for making the EU agricultural policy more adapted to the complexity and fragility of Mediterranean environments; 3) to develop field methods and models to improve the

  4. Splash erosion. A bibliometric Review

    NASA Astrophysics Data System (ADS)

    Fernández Raga, M. B.

    2012-04-01

    Ellison (1944) developed the splash board as a system for measuring splash erosion that was both cheap and reliable. Bollinne (1975), Morgan (1978, 1981). Mutchler (1967) described another different type of splash detectors according to whether they were passive or could register data. In the study mentioned above these authors included bottles, funnels, glasses, photography, markers. After that several devices has been made up like the splash sampler (Leguedois et al., 2005), soil tray (Van Dijk et al., 2002), splash funnel (Terry, 1989) and several rain cups (Fernandez-Raga et al., 2010; Molina and Llinares, 1996; Torri et al., 1987). Splash erosion research has materialized in the form of a number of papers published in international journals. The database of bibliographic references employed has been one of the most prestigious ones: theWeb of Science (ISI). The search was carried out on January 27th 2012. Among the 3x10^8 scholarly documents included in the Science Citation Index Expanded (SCI-EXPANDED) 1899 to present , the searching engine located 439 containing the word "splash erosion*", where the asterisk acts as a wildcard for any letter or group of letters. Of these, 383 were classified as articles, 87 as proceeding papers, 5 as editorial material, 2 as notes and 1 as correction. These documents have been published in 163 different journals, although four are particularly recurrent: Earth surface processes and Landforms, Catena, Soil Science Society of America Journal and Hydrological processes, with 41, 35, 35 and 26 published documents respectively. A geographic analysis of these articles has been carried out in an attempt to determine in what parts of the world research projects were making use of splash erosion. The results are that anglo-saxon countries, as USA, England and Australia dominate, particularly USA, with 130 articles. China and Japan are large communities of researches too, and some Central European countries as Belgium, France Germany

  5. Glacial lake outburst floods and fluvial erosion in the Himalaya - insights from the 2016 Bhote Koshi GLOF

    NASA Astrophysics Data System (ADS)

    Cook, K. L.; Gimbert, F.; Andermann, C.; Hovius, N.; Adhikari, B. R.

    2017-12-01

    The Himalaya is a region of rapid erosion where fluvial processes are assumed to be driven by precipitation delivered during the annual Indian Summer Monsoon. However, the rivers in this region are also subject to catastrophic floods caused by the failure of glacial lake and landslide dams. Because these floods are rarely observed, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan valleys is largely unknown. In July 2016, the Bhotekoshi/Sunkoshi River in central Nepal was hit by a glacial lake outburst flood (GLOF) that caused substantial changes to the channel bed, banks, and adjacent hillslopes, causing at least 26 landslides and an average of 11 m of channel widening. The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. Our data indicate that impacts of the GLOF far exceed those driven by the annual summer monsoon, likely due to extremely coarse sediment that armors much of the channel. The relatively frequent occurrence of GLOFs and the extremely high discharges relative to monsoon floods suggest that GLOFs may

  6. The comparison of various approach to evaluation erosion risks and design control erosion measures

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas

  7. Methods for monitoring erosion using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Chan, Andrew C.; Darling, Cynthia L.; Fried, Daniel

    Since optical coherence tomography is well suited for measuring small dimensional changes on tooth surfaces it has great potential for monitoring tooth erosion. The purpose of this study was to explore different approaches for monitoring the erosion of enamel. Application of an acid resistant varnish to protect the tooth surface from erosion has proven effective for providing a reference surface for in vitro studies but has limited potential for in vivo studies. Two approaches which can potentially be used in vivo were investigated. The first approach is to measure the remaining enamel thickness, namely the distance from the tooth surface to the dentinal-enamel junction (DEJ). The second more novel approach is to irradiate the surface with a carbon dioxide laser to create a reference layer which resists erosion. Measuring the remaining enamel thickness proved challenging since the surface roughening and subsurface demineralization that commonly occurs during the erosion process can prevent resolution of the underlying DEJ. The areas irradiated by the laser manifested lower rates of erosion compared to the non-irradiated areas and this method appears promising but it is highly dependent on the severity of the acid challenge.

  8. Nonprofit Human Milk Banking in the United States.

    PubMed

    Updegrove, Kimberly

    2013-01-01

    Human milk, widely understood to be beneficial for infants, can be lifesaving for preterm neonates, especially in reducing the risk of necrotizing enterocolitis. Donor human milk (DHM) is an option when mothers are unable to provide milk or have an inadequate supply for their infants. Nonprofit donor human milk banks are established to provide safe, processed human milk from milk donated by healthy lactating mothers who have undergone a rigorous screening process. These milk banks, operating under the auspices of the Human Milk Banking Association of North America, obtain, process, and dispense human milk under strict guidelines set by the association. Increasing the supply of donor human milk to meet a dramatic increase in demand poses a significant challenge for nonprofit milk banks. Efforts to increase supply nationwide include education of providers, use of social media to engage potential donors, and outreach to news media. In parallel, milk banks are establishing regional depots to collect donations, and additional milk banks are being developed. This article describes the current nonprofit milk bank industry in the United States, its challenges, and its future prospects. © 2013 by the American College of Nurse‐Midwives.

  9. Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion.

    PubMed

    Ferlito, Carmelo; Siewert, Jens

    2006-01-20

    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.

  10. Deriving principal channel metrics from bank and long-profile geometry with the R package cmgo

    NASA Astrophysics Data System (ADS)

    Golly, Antonius; Turowski, Jens M.

    2017-09-01

    Landscape patterns result from landscape forming processes. This link can be exploited in geomorphological research by reversely analyzing the geometrical content of landscapes to develop or confirm theories of the underlying processes. Since rivers represent a dominant control on landscape formation, there is a particular interest in examining channel metrics in a quantitative and objective manner. For example, river cross-section geometry is required to model local flow hydraulics, which in turn determine erosion and thus channel dynamics. Similarly, channel geometry is crucial for engineering purposes, water resource management, and ecological restoration efforts. These applications require a framework to capture and derive the data. In this paper we present an open-source software tool that performs the calculation of several channel metrics (length, slope, width, bank retreat, knickpoints, etc.) in an objective and reproducible way based on principal bank geometry that can be measured in the field or in a GIS. Furthermore, the software provides a framework to integrate spatial features, for example the abundance of species or the occurrence of knickpoints. The program is available at https://github.com/AntoniusGolly/cmgo and is free to use, modify, and redistribute under the terms of the GNU General Public License version 3 as published by the Free Software Foundation.

  11. Using Crater Counts to Constrain Erosion Rates on Mars: Implications for the Global Dust Cycle, Sedimentary Rock Erosion and Organic Matter Preservation

    NASA Astrophysics Data System (ADS)

    Mayer, D. P.; Kite, E. S.

    2016-12-01

    Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.

  12. Erosion resistant coatings

    NASA Technical Reports Server (NTRS)

    Falco, L.; Cushini, A.

    1981-01-01

    Apparatus for measuring the resistance of materials to erosion is examined and a scheme for standardization of the test parameters is described. Current materials being used for protecting aircraft parts from erosion are surveyed, their chief characteristics being given. The superior properties of urethane coatings are pointed out. The complete cycle for painting areas subject to erosion is described.

  13. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Na, Jiaming; Tang, Guoan; Wang, Tingting; Zhu, Axing

    2018-04-01

    As one of most active gully types in the Chinese Loess Plateau, bank gullies generally indicate soil loss and land degradation. This study addressed the lack of detailed, large scale monitoring of bank gullies and proposed a semi-automatic method for extracting bank gullies, given typical topographic features based on 5 m resolution DEMs. First, channel networks, including bank gullies, are extracted through an iterative channel burn-in algorithm. Second, gully heads are correctly positioned based on the spatial relationship between gully heads and their corresponding gully shoulder lines. Third, bank gullies are distinguished from other gullies using the newly proposed topographic measurement of "relative gully depth (RGD)." The experimental results from the loess hilly area of the Linjiajian watershed in the Chinese Loess Plateau show that the producer accuracy reaches 87.5%. The accuracy is affected by the DEM resolution and RGD parameters, as well as the accuracy of the gully shoulder line. The application in the Madigou watershed with a high DEM resolution validated the duplicability of this method in other areas. The overall performance shows that bank gullies can be extracted with acceptable accuracy over a large area, which provides essential information for research on soil erosion, geomorphology, and environmental ecology.

  14. Evaluating the new soil erosion map of Hungary

    NASA Astrophysics Data System (ADS)

    Waltner, István; Centeri, Csaba; Takács, Katalin; Pirkó, Béla; Koós, Sándor; László, Péter; Pásztor, László

    2017-04-01

    With growing concerns on the effects of climate change and land use practices on our soil resources, soil erosion by water is becoming a significant issue internationally. Since the 1964 publication of the first soil erosion map of Hungary, there have been several attempts to provide a countrywide assessment of erosion susceptibility. However, there has been no up-to-date map produced in the last decade. In 2016, a new, 1:100 000 scale soil erosion map was published, based on available soil, elevation, land use and meteorological data for the extremely wet year of 2010. The map utilized combined outputs for two spatially explicit methods: the widely used empirical Universal Soil Loss Equation (USLE) and the process-based Pan-European Soil Erosion Risk Assessment (PESERA) models. The present study aims to provide a detailed analysis of the model results. In lieu of available national monitoring data, information from other sources were used. The Soil Degradation Subsystem (TDR) of the National Environmental Information System (OKIR) is a digital database based on a soil survey and farm dairy data collected from representative farms in Hungary. During the survey all kind of degradation forms - including soil erosion - were considered. Agricultural and demographic data was obtained from the Hungarian Central Statistical Office (KSH). Data from an interview-based survey was also used in an attempt to assess public awareness of soil erosion risks. Point-based evaluation of the model results was complemented with cross-regional assessment of soil erosion estimates. This, combined with available demographic information provides us with an opportunity to address soil erosion on a community level, with the identification of regions with the highest risk of being affected by soil erosion.

  15. Multi-scale wind erosion monitoring and assessment for US rangelands

    USDA-ARS?s Scientific Manuscript database

    Wind erosion is a major resource concern for rangeland managers. Although wind erosion is a naturally occurring process in many drylands, land use activities, and land management in particular, can accelerate wind-driven soil loss – impacting ecosystem dynamics and agricultural production, air quali...

  16. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    NASA Astrophysics Data System (ADS)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  17. AERO: A Decision Support Tool for Wind Erosion Assessment in Rangelands and Croplands

    NASA Astrophysics Data System (ADS)

    Galloza, M.; Webb, N.; Herrick, J.

    2015-12-01

    Wind erosion is a key driver of global land degradation, with on- and off-site impacts on agricultural production, air quality, ecosystem services and climate. Measuring rates of wind erosion and dust emission across land use and land cover types is important for quantifying the impacts and identifying and testing practical management options. This process can be assisted by the application of predictive models, which can be a powerful tool for land management agencies. The Aeolian EROsion (AERO) model, a wind erosion and dust emission model interface provides access by non-expert land managers to a sophisticated wind erosion decision-support tool. AERO incorporates land surface processes and sediment transport equations from existing wind erosion models and was designed for application with available national long-term monitoring datasets (e.g. USDI BLM Assessment, Inventory and Monitoring, USDA NRCS Natural Resources Inventory) and monitoring protocols. Ongoing AERO model calibration and validation are supported by geographically diverse data on wind erosion rates and land surface conditions collected by the new National Wind Erosion Research Network. Here we present the new AERO interface, describe parameterization of the underpinning wind erosion model, and provide a summary of the model applications across agricultural lands and rangelands in the United States.

  18. Simulating Retail Banking for Banking Students

    ERIC Educational Resources Information Center

    Supramaniam, Mahadevan; Shanmugam, Bala

    2009-01-01

    The purpose of this study was to examine the implementation flow and development of retail bank management simulation based training system which could provide a comprehensive knowledge about the operations and management of banks for the banking students. The prototype of a Retail banking simulation based training system was developed based on…

  19. A field experiment on the controls of sediment transport on bedrock erosion

    NASA Astrophysics Data System (ADS)

    Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.

    2012-12-01

    The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.

  20. Irrigation: Erosion

    USDA-ARS?s Scientific Manuscript database

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  1. Design of special purpose database for credit cooperation bank business processing network system

    NASA Astrophysics Data System (ADS)

    Yu, Yongling; Zong, Sisheng; Shi, Jinfa

    2011-12-01

    With the popularization of e-finance in the city, the construction of e-finance is transfering to the vast rural market, and quickly to develop in depth. Developing the business processing network system suitable for the rural credit cooperative Banks can make business processing conveniently, and have a good application prospect. In this paper, We analyse the necessity of adopting special purpose distributed database in Credit Cooperation Band System, give corresponding distributed database system structure , design the specical purpose database and interface technology . The application in Tongbai Rural Credit Cooperatives has shown that system has better performance and higher efficiency.

  2. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges

    PubMed Central

    Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; da Silva, Thiago Cruvinel; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges. PMID:28817591

  3. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    PubMed

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  4. Modeling Paragenesis: Erosion Opposite to Gravity in Cave Channels

    NASA Astrophysics Data System (ADS)

    Cooper, M. P.; Covington, M. D.

    2017-12-01

    Sediment plays an important role in bedrock channels, providing both tools and cover that influence patterns of bed erosion. It has also been shown that sediment load influences bedrock channel width, with increased sediment leading to wider channels. A variety of models have been developed to explore these effects. In caves, it is hypothesized that sediments covering the floors of fully flooded channels that are forming beneath the water table (phreatic zone) can force dissolution upwards towards the water table, leading to upward erosion balanced by gradual deposition of sediment within the channel bottom. This strange process is termed paragenesis, and while there are conceptual and experimental models of the process, no prior mathematical models of cave passage evolution has captured these effects. Consequently, there is little quantitative understanding of the processes that drive paragenesis and how they link to the morphology of the cave channels that develop. We adapt a previously developed algorithm for estimating boundary shear stress within channels with free-surface flows to enable calculation of boundary shear stress in pipe-full conditions. This model successfully duplicates scaling relationships in surface channels, and geometries of caves formed in the phreatic zone such as phreatic tubes. Once sediment flux is incorporated the model successfully duplicates the hypothesized processes of paragenetic gallery formation: the cover effect prevents dissolution in the direction of gravity; passages are enlarged upwards reducing the sediment transport capacity; sediment is deposited and the process drives a continuing feedback loop. Simulations reveal that equilibrium paragenetic channel widths scale with both sediment flux and discharge. Unlike in open channel settings, increased sediment load actually narrows paragenetic channels. The cross section evolution model also reveals that the existence of equilibrium widths in such galleries requires erosion to

  5. Comparison of SWAT and GeoWEPP model in predicting the impact of stone bunds on runoff and erosion processes in the Northern Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Demelash, Nigus; Flagler, Jared; Renschler, Chris; Strohmeier, Stefan; Holzmann, Hubert; Feras, Ziadat; Addis, Hailu; Zucca, Claudio; Bayu, Wondimu; Klik, Andreas

    2017-04-01

    Soil degradation is a major issue in the Ethiopian highlands which are most suitable for agriculture and, therefore, support a major part of human population and livestock. Heavy rainstorms during the rainy season in summer create soil erosion and runoff processes which affect soil fertility and food security. In the last years programs for soil conservation and afforestation were initiated by the Ethiopian government to reduce erosion risk, retain water in the landscape and improve crop yields. The study was done in two adjacent watersheds in the Northwestern highlands of Ethiopia. One of the watersheds is developed by soil and water conservation structures (stone bunds) in 2011 and the other one is without soil and water conservation structures. Spatial distribution of soil textures and other soil properties were determined in the field and in the laboratory and a soil map was derived. A land use map was evaluated based on satellite images and ground truth data. A Digital Elevation Model of the watershed was developed based on conventional terrestrial surveying using a total station. At the outlet of the watersheds weirs with cameras were installed to measure surface runoff. During each event runoff samples were collected and sediment concentration was analyzed. The objective of this study is 1) to assess the impact of stone bunds on runoff and erosion processes by using simulation models, and 2) to compare the performance of two soil erosion models in predicting the measurements. The selected erosion models were the Soil and Water Assessment Tool (SWAT) and the Geospatial Interface to the Water Erosion Prediction Project (GeoWEPP). The simulation models were calibrated/verified for the 2011-2013 periods and validated with 2014-2015 data. Results of this comparison will be presented.

  6. The role of erosion, abrasion and attrition in tooth wear.

    PubMed

    Barbour, Michele E; Rees, Gareth D

    2006-01-01

    There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.

  7. Enhancing wind erosion monitoring and assessment for U.S. rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Van Zee, Justin W.; Karl, Jason W.; Herrick, Jeffrey E.; Courtright, Ericha M.; Billings, Benjamin J.; Boyd, Robert C.; Chappell, Adrian; Duniway, Michael C.; Derner, Justin D.; Hand, Jenny L.; Kachergis, Emily; McCord, Sarah E.; Newingham, Beth A.; Pierson, Frederick B.; Steiner, Jean L.; Tatarko, John; Tedela, Negussie H.; Toledo, David; Van Pelt, R. Scott

    2017-01-01

    On the GroundWind erosion is a major resource concern for rangeland managers because it can impact soil health, ecosystem structure and function, hydrologic processes, agricultural production, and air quality.Despite its significance, little is known about which landscapes are eroding, by how much, and when.The National Wind Erosion Research Network was established in 2014 to develop tools for monitoring and assessing wind erosion and dust emissions across the United States.The Network, currently consisting of 13 sites, creates opportunities to enhance existing rangeland soil, vegetation, and air quality monitoring programs.Decision-support tools developed by the Network will improve the prediction and management of wind erosion across rangeland ecosystems.

  8. Mercury Transport Modeling of the Carson River System, Nevada: An Investigation of Total and Dissolved Species and Associated Uncertainty

    NASA Astrophysics Data System (ADS)

    Carroll, R. W.; Warwick, J. J.

    2009-12-01

    Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.

  9. High natural erosion rates are the backdrop for present-day soil erosion in the agricultural Middle Hills of Nepal

    NASA Astrophysics Data System (ADS)

    West, A. J.; Arnold, M.; AumaItre, G.; Bourles, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2015-07-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be challenging to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Catchment-scale erosional fluxes may be similar over short and long timescales if both are dominated by mass wasting sources such as gullies, landslides, and debris flows (e.g., as is evident in the landslide-dominated Khudi Khola of the Nepal High Himalaya, based on compiled data). As a consequence, simple comparison of catchment-scale fluxes will not necessarily pinpoint land use effects on soils where these are only a small part of the total erosion budget, unless rates of mass wasting are also considered. Estimates of the mass wasting contribution to erosion in the Likhu imply catchment-averaged soil production rates on the order of ~ 0.25-0.35 mm yr-1, though rates of mass wasting are

  10. Recent (1995-1998) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics

    NASA Astrophysics Data System (ADS)

    Ashmore, P.; Conly, F. M.; Deboer, D.; Martin, Y.; Petticrew, E.; Roy, A.

    2000-06-01

    Canadian research on contemporary erosion and sedimentation processes covers a wide range of scales, processes, approaches and environmental problems. This review of recent research focuses on the themes of sediment yield, land-use impact, fine-sediment transport, bed material transport and river morphology and numerical modelling of fluvial landscape development.Research on sediment yield and denudation has confirmed that Canadian rivers are often dominated by riparian sediment sources. Studies of the effects of forestry on erosion, in-stream sedimentation and habitat are prominent, including major field experimental studies in coastal and central British Columbia. Studies of fine-sediment transport mechanisms have focused on the composition of particles and the dynamics of flocculation. In fluvial dynamics there have been important contributions to problems of turbulence-scale flow structure and entrainment processes, and the characteristics of bedload transport in gravel-bed rivers. Although much of the work has been empirical and field-based, results of numerical modelling of denudational processes and landscape development also have begun to appear.The nature of research in Canada is driven by the progress of the science internationally, but also by the nature of the Canadian landscape, its history and resource exploitation. Yet knowledge of Canadian rivers is still limited, and problems of, for example, large pristine rivers or rivers in cold climates, remain unexplored. Research on larger scale issues of sediment transfer or the effects of hydrological change is now hampered by reductions in national monitoring programmes. This also will make it difficult to test theory and assess modelling results. Monitoring has been replaced by project- and issues-based research, which has yielded some valuable information on river system processes and opened opportunities for fluvial scientists. However, future contributions will depend on our ability to continue with

  11. An empirical approach to estimate soil erosion risk in Spain.

    PubMed

    Martín-Fernández, Luis; Martínez-Núñez, Margarita

    2011-08-01

    Soil erosion is one of the most important factors in land degradation and influences desertification worldwide. In 2001, the Spanish Ministry of the Environment launched the 'National Inventory of Soil Erosion (INES) 2002-2012' to study the process of soil erosion in Spain. The aim of the current article is to assess the usefulness of this National Inventory as an instrument of control, measurement and monitoring of soil erosion in Spain. The methodology and main features of this National Inventory are described in detail. The results achieved as of the end of May 2010 are presented, together with an explanation of the utility of the Inventory as a tool for planning forest hydrologic restoration, soil protection, erosion control, and protection against desertification. Finally, the authors make a comparative analysis of similar initiatives for assessing soil erosion in other countries at the national and European levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Protection from erosion following wildfire

    Treesearch

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  13. Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain.

    PubMed

    Pardini, Giovanni; Gispert, Maria; Dunjó, Gemma

    2004-07-26

    Abandonment of terraced soils and increased brushland cover has increased wildfire occurrence to almost an annual rate in the Cap de Creus Peninsula, NE Pyrenees Range, Province of Girona, Spain. A wildfire occurred in August 2000 and affected an area of 6760 ha of shrubs and cork trees, whereas still cultivated plots were only slightly affected. Five stations of erosion measurements, corresponding to five different environments (from present cultivation to late abandonment) were destroyed by the passage of fire, and were promptly replaced to allow to monitoring post-fire effects on soil erosion. Selected soil properties were determined monthly before the fire and during 6 months after the fire at a monthly rate. Runoff and sediment yield together with dissolved organic carbon (DOC) in runoff water and organic carbon losses in eroded sediments (EOC) were evaluated throughout 2000. The last stage of abandonment, stands of cork trees, had the highest soil stability. Nevertheless, evidence of unfavourable soil conditions was detected at the shrub stage, when Cistus monspeliensis cover was the dominant opportunistic plant. This stage was considered to be a critical threshold leading either to degradation or regeneration processes according to fire frequency. A drastic change in soil properties, erosion and nutrient depletion occurred after the fire in all the environments. Statistics enabled to state that environments differed significantly in main soil properties. By statistically comparing the measured variables between the environments before and after the fire, DOC was found to be the soil parameter showing the highest significance between environments. Absolute values of erosion were low with respect to other Mediterranean environments although the shallow nature of these soils might deserve special attention because of a comparatively higher risk of degradation. Copyright 2004 Elsevier B.V.

  14. The Internet and the Banks' Strategic Distribution Channel Decisions.

    ERIC Educational Resources Information Center

    Mols, Niels Peter

    1998-01-01

    Discusses two strategic distribution channel decisions facing banks, one regarding whether to target the Internet banking segment of customers versus the branch banking segment, and the other regarding the geographical area banks aim to serve. Future distribution channels, the change process, and local, national, and international strategies are…

  15. The evolution of concepts for soil erosion modelling

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike

    2013-04-01

    From the earliest models for soil erosion, based on power laws relating sediment discharge or yield to slope length and gradient, the development of the Universal Soil Loss Equation was a natural step, although one that has long continued to hinder the development of better perceptual models for erosion processes. Key stumbling blocks have been: 1. The failure to go through runoff generation as a key intermediary 2. The failure to separate hydrological and strength parameters of the soil 3. The failure to treat sediment transport along a slope as a routing problem 4. The failure to analyse the nature of the dependence on vegetation Key advances have been in these directions (among others) 1. Improved understanding of the hydrological processes (e.g. infiltration and runoff, sediment entrainment) leading to KINEROS, LISEM,WEPP, PESERA 2. Recognition of selective sediment transport (e.g. transport- or supply-limited removal, grain travel distances) leading e.g. to MAHLERAN 3. Development of models adapted to particular time/space scales Some major remaining problems 1. Failure to integrate geomorphological and agronomic approaches 2. Tillage erosion - Is erosion loss of sediment or lowering of centre of mass? 3. Dynamic change during an event, as rills etc form.

  16. Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models

    NASA Astrophysics Data System (ADS)

    Langston, Abigail L.; Tucker, Gregory E.

    2018-01-01

    Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.

  17. Skin bank development and critical incident response.

    PubMed

    Hamilton, Kellie T; Herson, Marisa R

    2011-05-01

    The Donor Tissue Bank of Victoria (DTBV), situated in Melbourne, Australia developed a skin banking program in 1994. It remains Australia's only operational skin bank, processing cryopreserved human cadaveric skin for the treatment of burns. The demand for allograft skin in Australia has steadily increased since the development of the program. The bank has been involved in the provision of skin for a number of critical incidences or disasters both in Australia and overseas. Demand always exceeds supply, and in the absence of other local skin banks, the DTBV has needed to develop strategies to enable increased provision of allograft skin nationally.

  18. Lateral movement and stability of channel banks near four highway crossings in southwestern Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil

    1994-01-01

    Channel meandering in alluvial streams has caused localized channel instability that has resulted in bridge failure and loss of human life in Mississippi. The U.S. Geological Survey, in coopera- tion with the Mississippi Department of Transpor- tation, conducted a study to develop a better methodology for defining and estimating channel meandering. For this report, river reaches near four bridge sites with current lateral movement of channel banks were selected for study. The lateral movement of channel banks was studied by mapping meanders from aerial photographs taken at various times, evaluating available discharge measurements, and measuring existing channel geometry and soil strength properties at these sites. Rapid, unre- stricted meander cuts and sandy banks are charac- teristic of the sites. Lateral movement was signi- ficant upstream from all four sites, and only one bridge site did not have significant lateral channel-bank movement during the study period. The development of cutbanks and localized channel-bank erosion have caused unstable conditions at three of the sites. Maps of tops of channel indicate significant lateral movement of channel banks upstream and downstream of all four sites and near the bridges at three of four sites. No significant movement occurred at the U.S. Highway 98 crossing of the Bogue Chitto near Tylertown from 1941 to 1991 despite large floods in 1983 and 1990. Slope stability analyses indicated this site to be marginally stable. The maximum lateral movement indicated from maps of tops of channel banks was 680 feet of northward movement of the right (north) bank of the Homochitto River near the State Highway 33 crossing at Rosetta from 1941 to 1983.

  19. Erosion, sedimentation, and cumulative effects in the Northern Rocky Mountains

    Treesearch

    Walter F. Megahan; John G. King

    2004-01-01

    Erosion and sedimentation are natural geomorphic processes characterized by large temporal and spatial variability. Recent radionuclide studies suggest that rare episodic events, such as large wildfires, produce massive sediment yields over time scales of thousands of years, thereby causing long-term average sediment production to exceed present-day average erosion...

  20. Linking erosion history and mantle processes in southern Africa

    NASA Astrophysics Data System (ADS)

    Stanley, J. R.; Braun, J.; Flowers, R. M.; Baby, G.; Wildman, M.; Guillocheau, F.; Robin, C.; Beucher, R.; Brown, R. W.

    2017-12-01

    The large, low relief, high elevation plateau of southern Africa has been the focus of many studies, but there is still considerable debate about how it formed. Lack of tectonic convergence and crustal thickening suggests mantle dynamics play an important role in the evolution of topography there, but the time and specific mechanisms of topographic development are still contested. Many mantle mechanisms of topographic support have been suggested including dynamic topography associated with either deep or shallow mantle thermal anomalies, thermochemical modification of the lithosphere, and plume tails related to Mesozoic magmatic activity. These mechanisms predict different timing and patterns of surface uplift such that better constraints on the uplift history have the potential to constrain the nature of the source of topographic support. Here we test several of these geodynamic hypotheses using a landscape evolution model that is used to predict the erosional response to surface uplift. Several recent studies have provided a clearer picture of the erosion history of the plateau surface and margins using low temperature thermochronology and the geometries of the surrounding offshore depositional systems. Model results are directly compared with these data. We use an inversion method (the Neighborhood Algorithm) to constrain the range in erosional and uplift parameters that can best reproduce the observed data. The combination of different types of geologic information including sedimentary flux, landscape shape, and thermochronolology is valuable for constraining many of these parameters. We show that both the characteristics of the geodynamic forcing as well as the physical characteristics of the eroding plateau have significant control on the plateau erosion patterns. Models that match the erosion history data well suggest uplift of the eastern margin in the Cretaceous ( 100 Ma) followed by uplift of the western margin 20 Myr later. The amplitude of this uplift

  1. Forces acting on particles in a Pelton bucket and similarity considerations for erosion

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Kumar, A.; Staubli, T.

    2016-11-01

    High sediment transport rates cause severe erosion issues in hydropower plants leading to interruptions in power generation, decrease in efficiency and shutdown for repair and maintenance. For Pelton turbines operating at high head, the issue of erosion is severe, especially in components like buckets, nozzle rings and needles. Goal of the study is to develop erosion focussed guidelines for both designing as well as operating hydropower plants with Pelton runners. In this study, the flow of sediment inside a Pelton bucket with respect to forces acting on solid particles is analysed with an analytical approach by considering different dynamic forces originating from the rotation of the turbine, the curvature of the buckets, and the Coriolis effect. Further, the path of sediment particles and its effect on erosion phenomena are analysed based on the process of separation of different sized sediment particles from streamlines. The data relating to head, power, discharge, number of jet and efficiency of 250 hydropower plants installed all over the world were analysed in this study to find the major factors related to erosion in Pelton turbine bucket. From analysis of different force ratios, it is found that an increase of D/B, i.e. the ratio of pitch circle diameter and bucket width, and/or decrease of specific speed (nq) enhances erosion. As the erosion process depends significantly on nondimensional parameters D/B and nq, these are considered as similarity measures for scaling of the erosion process in the Pelton buckets of various sizes.

  2. Does Canoeing Increase Streambank Erosion?

    Treesearch

    Edward A. Hansen

    1975-01-01

    Describes research on the Pine River in Michigan to determine if large increases in canoeing accelerated streambank erosion. Most erosion was natural, but people sliding and camping on streambanks created some erosion. Heavy canoe traffic was not a cause of erosion.

  3. Vegetation and erosion: comments on the linking mechanisms from the perspective of the Australian drylands.

    NASA Astrophysics Data System (ADS)

    Dunkerley, D.

    2009-04-01

    of overland flow behaviour. In such analyses, the role of vascular plants has to be seen as one component of the system that also includes organic litter and non-vascular plants. A gap in understanding here relates to splash dislodgement of soil materials. This is known to depend on the depth of water lying above the mineral soil, being reduced for both shallow and deep water layers, and maximised at depths of a few incident drop diameters. Resolving how vegetation modifies surface water depths, and how splash dislodgement responds, across the spectrum of event sizes, remains a significant research challenge. Australian dryland streams exhibit abundant channel-associated vegetation. This exhibits diverse roles, again depending on context. Trees growing in the channel, together with associated barriers formed from floating woody debris, reduce flow speeds. On the other hand, deflector jams can result in locally intensified erosion of the banks. But the mechanisms linking vegetation and erosion are again complex. For instance, by reducing flow speeds and creating backwater effects, debris barriers promote mud deposition over channel margin sediments. This in turn reduces transmission losses, and sustains peak flow and associated sediment transport capacity further downstream than would otherwise be the case. As for hillslope processes, much remains to be learned about how these various processes play out across the spectrum of event magnitudes. Clearly, therefore, in a time of ongoing environmental change, the informed management of the global drylands requires continued research effort of the kind so well championed by John Thornes.

  4. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri

    2013-02-01

    Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a

  5. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.

    1985-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  6. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1987-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  7. Combination of techniques for mapping structural and functional connectivity of soil erosion processes: a case study in a small watershed

    NASA Astrophysics Data System (ADS)

    Seeger, Manuel; Taguas, Encarnación; Brings, Christine; Wirtz, Stefan; Rodrigo Comino, Jesus; Albert, Enrique; Ries, Johabbes B.

    2016-04-01

    Sediment connectivity is understood as the interaction of sediment sources, the sinks and the pathways which connect them. During the last decade, the research on connectivity has increased, as it is crucial to understand the relation between the observed sediments at a certain point, and the processes leading them to that location. Thus, the knowledge of the biogeophysical features involved in sediment connectivity in an area of interest is essential to understand its functioning and to design treatments allowing its management, e. g. to reduce soil erosion. The structural connectivity is given by landscape elements which enable the production, transport and deposition of sediments, whereas the functional connectivity is understood here as variable processes that lead the sediments through a catchment. Therefore, 2 different levels of connectivity have been considered which superpose each other according to the catchments conditions. We studied the different connectivity features in a catchment almost completely covered by an olive grove. It is located south of Córdoba (Spain), close to the city of Puente Genil. The olive plantation type is of low productivity. The soil management was no tillage for the least 9 years. The farmer allow weed growing in the lanes although he applied herbicide treatment and tractor passes usually in the end of spring. Firstly, a detailed mapping of geomorphodynamic features was carried out. We identified spatially distributed areas of increased sheet-wash and crusting, but also areas where rill erosion has leadedto a high density of rills and small gullies. Especially within these areas rock outcrops up to several m² were mapped, showing like this (former) intense erosion processes. In addition, field measurements with different methodologies were applied on infiltration (single ring infiltrometers, rainfall simulations), soil permeability (Guelph permeameter), interrill erosion (rainfall simulator) and concentrated flow (rill

  8. Implementation of channel-routing routines in the Water Erosion Prediction Project (WEPP) model

    Treesearch

    Li Wang; Joan Q. Wu; William J. Elliott; Shuhui Dun; Sergey Lapin; Fritz R. Fiedler; Dennis C. Flanagan

    2010-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based, continuous-simulation, watershed hydrology and erosion model. It is an important tool for water erosion simulation owing to its unique functionality in representing diverse landuse and management conditions. Its applicability is limited to relatively small watersheds since its current version does...

  9. CFD study of fluid flow changes with erosion

    NASA Astrophysics Data System (ADS)

    López, Alejandro; Stickland, Matthew T.; Dempster, William M.

    2018-06-01

    For the first time, a three dimensional mesh deformation algorithm is used to assess fluid flow changes with erosion. The validation case chosen is the Jet Impingement Test, which was thoroughly analysed in previous works by Hattori et al. (Kenichi Sugiyama and Harada, 2008), Gnanavelu et al. in (Gnanavelu et al., 2009, 2011), Lopez et al. in (Lopez et al., 2015) and Mackenzie et al. in (Mackenzie et al., 2015). Nguyen et al. (2014) showed the formation of a new stagnation area when the wear scar is deep enough by performing a three-dimensional scan of the wear scar after 30 min of jet impingement test. However, in the work developed here, this stagnation area was obtained solely by computational means. The procedure consisted of applying an erosion model in order to obtain a deformed geometry, which, due to the changes in the flow pattern lead to the formation of a new stagnation area. The results as well as the wear scar were compared to the results by Nguyen et al. (2014) showing the same trend. OpenFOAM® was the software chosen for the implementation of the deforming mesh algorithm as well as remeshing of the computational domain after deformation. Different techniques for mesh deformation and approaches to erosion modelling are discussed and a new methodology for erosion calculation including mesh deformation is developed. This new approach is independent of the erosion modelling approach, being applicable to both Eulerian and Lagrangian based equations for erosion calculation. Its different applications such as performance decay in machinery subjected to erosion as well as modelling of natural erosion processes are discussed here.

  10. Climatic controls on the pace of glacier erosion

    NASA Astrophysics Data System (ADS)

    Koppes, Michele; Hallet, Bernard; Rignot, Eric; Mouginot, Jeremie; Wellner, Julia; Love, Katherine

    2016-04-01

    Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, suggesting that modern erosion rates exceed orogenic rates by 2-3 orders of magnitude. These modern rates are presumed to be due to dynamic acceleration of the ice masses during deglaciation and retreat. Recent numerical models have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple quantitative index that relates erosion rate to ice dynamics and to climate. To provide such an index, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes. Holding tectonic history, bedrock lithology and glacier hypsometries relatively constant across a latitudinal transect from Patagonia to the Antarctic Peninsula, we find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 for temperate tidewater glaciers to 0.01-<0.1 mm yr-1 for polar outlet glaciers, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theory. The general relationship between ice dynamics and erosion suggests that the erosion rate scales non-linearly with basal sliding speed, with an exponent n ≈ 2-2.62. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar ice discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold

  11. A Red Oak Data Bank for Computer Simulations of Secondary Processing

    Treesearch

    Charles J. Gatchell; Janice K. Wiedenbeck; Elizabeth S. Walker

    1993-01-01

    An extensive data bank for red oak lumber that is compatible with most secondary manufacturing computer simulator tools is now available. Currently, the data bank contains 10,718 board feet in 1,578 boards. The National Hardwood Lumber Associations (NHLA) Special Kiln Dried Rule was used to grade the boards. The percentage of a boardâs surface measure contained in...

  12. Manufacturing issues which affect coating erosion performance in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  13. PREDICTING MINESOIL EROSION POTENTIAL

    EPA Science Inventory

    Two experimental plots were instrumented with erosion pins to study the correspondence between point erosion and erosion over an area on strip mine soil. Using a rotating boom rainfall simulator, data were collected by sampling the runoff every five minutes for the duration of th...

  14. The influence of rock strength on erosion processes and river morphology in central Arizona: the accumulation of damage from macro-abrasion

    NASA Astrophysics Data System (ADS)

    Larimer, J. E.; Yanites, B.

    2017-12-01

    River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary

  15. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    PubMed

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  16. Tidal asymmetry and residual circulation over linear sandbanks and their implication on sediment transport: a process-oriented numerical study

    USGS Publications Warehouse

    Sanay, Rosario; Voulgaris, George; Warner, John C.

    2007-01-01

    A series of process-oriented numerical simulations is carried out in order to evaluate the relative role of locally generated residual flow and overtides on net sediment transport over linear sandbanks. The idealized bathymetry and forcing are similar to those present in the Norfolk Sandbanks, North Sea. The importance of bottom drag parameterization and bank orientation with respect to the ambient flow is examined in terms of residual flow and overtide generation, and subsequent sediment transport implications are discussed. The results show that although the magnitudes of residual flow and overtides are sensitive to bottom roughness parameterization and bank orientation, the magnitude of the generated residual flow is always larger than that of the locally generated overtides. Also, net sediment transport is always dominated by the nonlinear interaction of the residual flow and the semidiurnal tidal currents, although cross-bank sediment transport can occur even in the absence of a cross-shore residual flow. On the other hand, net sediment divergence/convergence increases as the bottom drag decreases and as bank orientation increases. The sediment erosion/deposition is not symmetric about the crest of the bank, suggesting that originally symmetric banks would have the tendency to become asymmetric.

  17. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape

    Treesearch

    Frederick B. Pierson; Peter R. Robichaud; Corey A. Moffet; Kenneth E. Spaeth; Stuart P. Hardegree; Patrick E. Clark; C. Jason Williams

    2008-01-01

    Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow...

  18. Erosion of a grooved surface caused by impact of particle-laden flow

    NASA Astrophysics Data System (ADS)

    Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young

    2016-11-01

    Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.

  19. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar

    USGS Publications Warehouse

    Rengers, Francis K.; Tucker, G.E.; Moody, J.A.; Ebel, Brian

    2016-01-01

    Erosion following a wildfire is much greater than background erosion in forests because of wildfire-induced changes to soil erodibility and water infiltration. While many previous studies have documented post-wildfire erosion with point and small plot-scale measurements, the spatial distribution of post-fire erosion patterns at the watershed scale remains largely unexplored. In this study lidar surveys were collected periodically in a small, first-order drainage basin over a period of 2 years following a wildfire. The study site was relatively steep with slopes ranging from 17° to > 30°. During the study period, several different types of rain storms occurred on the site including low-intensity frontal storms (2.4 mm h−1) and high-intensity convective thunderstorms (79 mm h−1). These storms were the dominant drivers of erosion. Erosion resulting from dry ravel and debris flows was notably absent at the site. Successive lidar surveys were subtracted from one another to obtain digital maps of topographic change between surveys. The results show an evolution in geomorphic response, such that the erosional response after rain storms was strongly influenced by the previous erosional events and pre-fire site morphology. Hillslope and channel roughness increased over time, and the watershed armored as coarse cobbles and boulders were exposed. The erosional response was spatially nonuniform; shallow erosion from hillslopes (87% of the study area) contributed 3 times more sediment volume than erosion from convergent areas (13% of the study area). However, the total normalized erosion depth (volume/area) was highest in convergent areas. From a detailed understanding of the spatial locations of erosion, we made inferences regarding the processes driving erosion. It appears that hillslope erosion is controlled by rain splash (for detachment) and overland flow (for transport and quasi-channelized erosion), with the sites of highest erosion corresponding to locations

  20. Impact erosion model for gravity-dominated planetesimals

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Fujita, Tomoaki; Kobayashi, Hiroshi; Tanaka, Hidekazu; Suetsugu, Ryo; Abe, Yutaka

    2017-09-01

    Disruptive collisions have been regarded as an important process for planet formation, while non-disruptive, small-scale collisions (hereafter called erosive collisions) have been underestimated or neglected by many studies. However, recent studies have suggested that erosive collisions are also important to the growth of planets, because they are much more frequent than disruptive collisions. Although the thresholds of the specific impact energy for disruptive collisions (QRD*) have been investigated well, there is no reliable model for erosive collisions. In this study, we systematically carried out impact simulations of gravity-dominated planetesimals for a wide range of specific impact energy (QR) from disruptive collisions (QR ∼ QRD*) to erosive ones (QR << QRD*) using the smoothed particle hydrodynamics method. We found that the ejected mass normalized by the total mass (Mej/Mtot) depends on the numerical resolution, the target radius (Rtar) and the impact velocity (vimp), as well as on QR, but that it can be nicely scaled by QRD* for the parameter ranges investigated (Rtar = 30-300 km, vimp = 2-5 km/s). This means that Mej/Mtot depends only on QR/QRD* in these parameter ranges. We confirmed that the collision outcomes for much less erosive collisions (QR < 0.01 QRD*) converge to the results of an impact onto a planar target for various impact angles (θ) and that Mej/Mtot ∝ QR/QRD* holds. For disruptive collisions (QR ∼ QRD*), the curvature of the target has a significant effect on Mej/Mtot. We also examined the angle-averaged value of Mej/Mtot and found that the numerically obtained relation between angle-averaged Mej/Mtot and QR/QRD* is very similar to the cases for θ = 45° impacts. We proposed a new erosion model based on our numerical simulations for future research on planet formation with collisional erosion.

  1. Erosion of cohesive soil layers above underground conduits

    NASA Astrophysics Data System (ADS)

    Luu, Li-Hua; Philippe, Pierre; Noury, Gildas; Perrin, Jérôme; Brivois, Olivier

    2017-06-01

    Using a recently developed 2D numerical modelling that combines Discrete Element (DEM) and Lattice Boltzmann methods (LBM), we simulate the destabilisation by an hydraulic gradient of a cohesive granular soil clogging the top of an underground conduit. We aim to perform a multi-scale study that relates the grain scale behavior to the macroscopic erosion process. In particular, we study the influence of the flow conditions and the inter-particle contact forces intensity on the erosion kinetic.

  2. Riparian erosion vulnerability model based on environmental features.

    PubMed

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  3. Global rainfall erosivity assessment based on high-temporal resolution rainfall records.

    PubMed

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Yu, Bofu; Klik, Andreas; Jae Lim, Kyoung; Yang, Jae E; Ni, Jinren; Miao, Chiyuan; Chattopadhyay, Nabansu; Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab; Zabihi, Mohsen; Larionov, Gennady A; Krasnov, Sergey F; Gorobets, Andrey V; Levi, Yoav; Erpul, Gunay; Birkel, Christian; Hoyos, Natalia; Naipal, Victoria; Oliveira, Paulo Tarso S; Bonilla, Carlos A; Meddi, Mohamed; Nel, Werner; Al Dashti, Hassan; Boni, Martino; Diodato, Nazzareno; Van Oost, Kristof; Nearing, Mark; Ballabio, Cristiano

    2017-06-23

    The exposure of the Earth's surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(<30 min) and high fidelity rainfall recordings. We present the results of an extensive global data collection effort whereby we estimated rainfall erosivity for 3,625 stations covering 63 countries. This first ever Global Rainfall Erosivity Database was used to develop a global erosivity map at 30 arc-seconds(~1 km) based on a Gaussian Process Regression(GPR). Globally, the mean rainfall erosivity was estimated to be 2,190 MJ mm ha -1 h -1 yr -1 , with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.

  4. Diet and dental erosion in young people in south-east Brazil.

    PubMed

    Waterhouse, Paula J; Auad, Sheyla M; Nunn, June H; Steen, Ian N; Moynihan, Paula J

    2008-09-01

    The regular consumption of acidic foods and drinks may be associated with dental erosion, and soft drink consumption appears to be increasing both in developed and developing countries. Dentists are aware that an acidic diet can contribute to the development of erosion; however, there may be confusion within the profession concerning the general health message of eating five portions of fruits and vegetables each day. The aim of this study was to investigate associations between dental erosion and the consumption of acidic foods and beverages in schoolchildren in south-east Brazil. The objective was to gather information, by means of a dietary questionnaire, on frequency of intake and patterns of consumption of acidic foods and drinks in a group of schoolchildren. The hypothesis was that the experience of dental erosion among the study sample was associated with the frequency and pattern of consumption of soft drinks, fruit juices, fruits, and yogurt. A cross-sectional study was conducted in Três Corações, south-east Brazil. A sample of 458 schoolchildren, mean age 13.8 (SD 0.39) years, completed the study. Information about potential dietary risk factors for dental erosion was collected through a questionnaire survey completed by the schoolchildren. For the dental examinations, the subjects were examined for dental erosion in a school room. Associations between dental erosion and the variables under study were investigated through processes of bivariate and multivariate analyses. The statistical significance level was set at 5%. Analysis of the questionnaire surveys showed that the frequency of consumption of sugared carbonated drinks was the only variable independently associated with the erosive process, with subjects who had a daily consumption of such drinks having a greater likelihood of having erosion (P = 0.015, odds ratio 1.752, 95% confidence interval 1.116-2.750). Of all tested factors in this sample of schoolchildren the consumption of sugared

  5. Formation and evolution of a drainage network during the Pleistocene through a process of homoclinal shifting initiated by headward erosion.

    NASA Astrophysics Data System (ADS)

    Castelltort, F. Xavier; Carles Balasch, J.; Cirés, Jordi; Colombo, Ferran

    2017-04-01

    A homoclinal shifting process in NE of the Ebro basin, NE Iberian Peninsula, reorganized an old flow network into a new one. This process was initiated by the reactivation of a major normal fault (Amer Fault). An anaclinal stream, flowing to the hanging wall block, incised in the fault-line scarp, accessing by headward erosion the less resistant Paleogene units. The result was the formation of a sequence of strike valleys. The first valleys are situated in a more elevated topographical position than the valleys formed later. The last and the most important valley is La Plana de Vic, which is being emptied by differential erosion in front of the resistant base layer. The study of the lateral migration of a drainage basin since its initial stages has allowed the recognition of the layout of a drainage network and its model of evolution. The new drainage network includes three different subsystems. The main subsystem consists of stream courses flowing along the strike valley. While the other two subsystems flow into the main or can flow directly to the basin sink. These are the anaclinal subsystem, which drains the scarp face of the asymmetric valley, and the cataclinal subsystem, which drains the cuesta. The process of homoclinal shifting makes the strike streams migrate laterally and dip in the less resistant unit. This migration implies the reorganization of the other two tributary subsystems. The sequence of reorganizations may be preserved on the resistant bedrock of the cuesta. This allows the reconstruction of the route of the headward erosion of the initial anaclinal stream course through remnants of ancient strike streams flowing into former basin sinks, and its cataclinal tributaries draining the cuesta. In the case study of La Plana de Vic the migration route of the basin sink can be reconstructed from its initial position, Early Pleistocene, until present day. Besides, reorganization of the cataclinal network can also be recognized. During the lateral

  6. Sorting Out Effects of Active Stream Restoration: Channel Morphology, Channel Change Processes and Potential Controls

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2017-12-01

    In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed

  7. Channelization in porous media driven by erosion and deposition.

    PubMed

    Jäger, R; Mendoza, M; Herrmann, H J

    2017-01-01

    We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.

  8. Can control of soil erosion mitigate water pollution by sediments?

    PubMed

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  9. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    NASA Astrophysics Data System (ADS)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  10. Water droplet erosion mechanisms of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Kamkar Zahmatkesh, Niloofar

    Water impingement erosion of materials can be a life-limiting phenomenon for the components in many erosive environments. For example, aircraft body exposed to rain, steam turbine blade, and recently in gas turbine coupled with inlet fogging system. The last is the focus of this study. Inlet fogging system is the most common method used to augment gas turbine output during hot days; high ambient temperature causes strong deterioration of the engine performance. Micro-scaled droplets introduced into the inlet airflow allow the cooling of entering air as well as intercooling the compressor (overspray) and thus optimizes the output power. However, erosion damage of the compressor blades in overspray stage is one of the major concerns associated with the inlet fogging system. The main objective of this research work (CRIAQ MANU419 project) is to understand the erosion induced by water droplets on Titanium alloy to eventually optimize the erosion resistance of the Ti-based compressor blade. Therefore, characterization of the water droplet erosion damage on Ti-6Al-4V receives the major importance. The influence of base material microstructure and impact parameters were considered in erosion evaluation in present study. This work covers the characterization of the erosion damage on Ti-6Al-4V alloy in two parts: - The water droplet erosion damage through a novel experimental approach. The collected data were processed both qualitatively and quantitatively for multi-aspects damage study. - The influence of impact velocity on erosion in an attempt to represent the in-service conditions.

  11. Saliva and dental erosion

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  12. Saliva and dental erosion.

    PubMed

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  13. 12 CFR 209.2 - Banks desiring to become member banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Banks desiring to become member banks. 209.2 Section 209.2 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ISSUE AND CANCELLATION OF FEDERAL RESERVE BANK CAPITAL STOCK (REGULATION I) § 209.2 Banks desiring to...

  14. Soil erosion, sedimentation and the carbon cycle

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.

    2012-04-01

    Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.

  15. Estimating rangeland runoff, soil erosion, and salt mobility and transport processes

    USDA-ARS?s Scientific Manuscript database

    Over 55% of sediment and salts entering the Colorado River are derived from accelerated soil erosion from federal rangelands with damages estimated to be $385 million per year. About 55% of the loading is derived from rangelands. This suggests a significant potential to reduce dissolved-solids loa...

  16. Recent findings related to measuring and modeling forest road erosion

    Treesearch

    W. J. Elliot; R. B. Foltz; P. R. Robichaud

    2009-01-01

    Sediment is the greatest pollutant of forest streams. In the absence of wildfire, forest road networks are usually the main source of sediment in forest watersheds. An understanding of forest road erosion processes is important to aid in predicting sediment delivery from roads to streams. The flowpath followed by runoff is the key to understanding road erosion...

  17. The consequences of land-cover changes on soil erosion distribution in Slovakia

    NASA Astrophysics Data System (ADS)

    Cebecauer, Tomáš; Hofierka, Jaroslav

    2008-06-01

    Soil erosion is a complex process determined by mutual interaction of numerous factors. The aim of erosion research at regional scales is a general evaluation of the landscape susceptibility to soil erosion by water, taking into account the main factors influencing this process. One of the key factors influencing the susceptibility of a region to soil erosion is land cover. Natural as well as human-induced changes of landscape may result in both the diminishment and acceleration of soil erosion. Recent studies of land-cover changes indicate that during the last decade more than 4.11% of Slovak territory has changed. The objective of this study is to assess the influence of land-cover and crop rotation changes over the 1990-2000 period on the intensity and spatial pattern of soil erosion in Slovakia. The assessment is based on principles defined in the Universal Soil Loss Equation (USLE) modified for application at regional scale and the use of the CORINE land cover (CLC) databases for 1990 and 2000. The C factor for arable land has been refined using statistical data on the mean crop rotation and the acreage of particular agricultural crops in the districts of Slovakia. The L factor has been calculated using sample areas with parcels identified by LANDSAT TM data. The results indicate that the land-cover and crop rotation changes had a significant influence on soil erosion pattern predominately in the hilly and mountainous parts of Slovakia. The pattern of soil erosion changes exhibits high spatial variation with overall slightly decreased soil erosion risks. These changes are associated with ongoing land ownership changes, changing structure of crops, deforestation and afforestation.

  18. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.; Hawke, R. S.

    1982-09-01

    Experimental and theoretical research was conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams were launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressure in the tens of megabars range are obtained for high pressure equations of state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The beating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined.

  19. Evaluation of the serum zinc level in erosive and non-erosive oral lichen planus.

    PubMed

    Gholizadeh, N; Mehdipour, M; Najafi, Sh; Bahramian, A; Garjani, Sh; Khoeini Poorfar, H

    2014-06-01

    Lichen planus is a chronic inflammatory immunologic-based disease involving skin and mucosa. This disease is generally divided into two categories: erosive and non-erosive. Many etiologic factors are deliberated regarding the disease; however, the disorders of immune system and the role of cytotoxic T-lymphocytes and monocytes are more highlighted. Zinc is an imperative element for the growth of epithelium and its deficiency induces the cytotoxic activity of T-helper2 cells, which seems to be associated with lichen planus. This study was aimed to evaluate the levels of serum zinc in erosive and non-erosive oral lichen planus (OLP) and to compare it with the healthy control group to find out any feasible inference. A total of 22 patients with erosive oral lichen planus, 22 patients with non erosive OLP and 44 healthy individuals as the control group were recruited in this descriptive-comparative study. All the participants were selected from the referees to the department of oral medicine, school of dentistry, Tabriz University of Medical Sciences. Serum zinc level was examined for all the individuals with liquid-stat kit (Beckman Instruments Inc.; Carlsbad, CA). Data were analyzed by adopting the ANOVA and Tukey tests, using SPSS 16 statistical software. The mean age of patients with erosive and non-erosive LP was 41.7 and 41.3 years, respectively. The mean age of the healthy control group was 34.4 years .The mean serum zinc levels in the erosive and non erosive lichen planus groups and control groups were 8.3 (1.15), 11.15 (0.92) and 15.74 (1.75) μg/dl respectively. The difference was statistically significant (p< 0.05). The serum zinc levels were decreased in patients with erosive oral lichen planus. This finding may probably indicate the promising role of zinc in development of oral lichen planus.

  20. The World Bank's innovation market.

    PubMed

    Wood, Robert Chapman; Hamel, Gary

    2002-11-01

    Large, tradition-bound organizations can make space for radical, low-cost (and therefore low-risk) innovations. Just ask executives at the World Bank. The story of this best practice begins in 1998, when a young new-products group at the international funding agency proposed holding an Innovation Marketplace to capture novel ideas within the Bank for alleviating poverty. The forum, which eventually was opened to external participants, let people informally present their antipoverty ideas to potential funding sources. Funders could move among hundreds of booths and evaluate proposals for, say, a program that would provide postdisaster reconstruction insurance in developing countries or a vaccination development initiative. The marketplace truncated the Bank's standard project-review processes, which often stretched to a year or more, and gave funders permission to make commitments in the tens of thousands of dollars, rather than in the tens of millions more typical of Bank-financed projects. The marketplace concept met with some skepticism at the beginning. Some senior executives at the Bank felt no group had the right to spend the agency's money without following its well-established resource allocations process. But the marketplace team believed an open process for allocating grants would produce more breakthrough ideas in the long run than a centralized one. In this article, the authors describe how the new-products team brainstormed to create a market for ideas, how it got senior management's support, and how it has expanded on the original concept for these innovation marketplaces. The program's success, they contend, offers hope both for the world's poor and for business leaders looking to find new ideas under the hard crust of corporate dogma, conformance, and bureaucracy.

  1. Bank Terminals

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, employees of the UAB Bank, Knoxville, Tennessee, are using Teller Transaction Terminals manufactured by SCI Systems, Inc., Huntsville, Alabama, an electronics firm which has worked on a number of space projects under contract with NASA. The terminals are part of an advanced, computerized financial transaction system that offers high efficiency in bank operations. The key to the system's efficiency is a "multiplexing" technique developed for NASA's Space Shuttle. Multiplexing is simultaneous transmission of large amounts of data over a single transmission link at very high rates of speed. In the banking application, a small multiplex "data bus" interconnects all the terminals and a central computer which stores information on clients' accounts. The data bus replaces the maze-of wiring that would be needed to connect each terminal separately and it affords greater speed in recording transactions. The SCI system offers banks real-time data management through constant updating of the central computer. For example, a check is immediately cancelled at the teller's terminal and the computer is simultaneously advised of the transaction; under other methods, the check would be cancelled and the transaction recorded at the close of business. Teller checkout at the end of the day, conventionally a time-consuming matter of processing paper, can be accomplished in minutes by calling up a summary of the day's transactions. SCI manufactures other types of terminals for use in the system, such as an administrative terminal that provides an immediate printout of a client's account, and another for printing and recording savings account deposits and withdrawals. SCI systems have been installed in several banks in Tennessee, Arizona, and Oregon and additional installations are scheduled this year.

  2. The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, M. A.; Stoetter, J.; Sartohadi, J.; Christanto, N.

    2009-04-01

    Many types of soil erosion modeling have been developed worldwide; each of models has its own advantage and assumption based on the originated area. Ironically, in the tropical countries where the rainfall intensity is higher than other area, the soil erosion problem gain less attention. As in Indonesia, due the inadequate supporting data and method to dealing with, the soil erosion management appears to be least prior in the policy decision. Hence, there is increasing necessity towards the initiation and integration of risk management model in the soil erosion, to prevent further land degradation problem in Indonesia. The main research objective is to generate a model which can analyze the dynamic system of soil erosion problem. This model will comprehensively consider four main aspects within the dynamic system analysis, i.e.: soil erosion rate modeling, the tolerable soil erosion rate, total soil erosion cost, and soil erosion management measures. The generating model will involve some sub-software i.e. the PC Raster to maintain the soil erosion modeling, Powersim Constructor Ver. 2.5 as the tool to analyze the dynamic system and Python Ver. 2.6.1 to build the main Graphical User Interface model. The first step addressed in this research is figuring the most appropriate soil erosion model to be applied in Indonesia based on landscape, climate, and data availability condition. This appropriate model must have the simplicity aspect in input data but still deal with the process based analysis. By using the soil erosion model result, the total soil erosion cost will be calculated both on-site and off-site effect. The total soil erosion cost will be stated in Rupiah (Indonesian currency) and Dollar. That total result is then used as one of input parameters for the tolerable soil erosion rate. Subsequently, the tolerable soil erosion rate decides whether the soil erosion rate has exceeded the allowed value or not. If the soil erosion rate has bigger value than the

  3. Soil erosion in Iran: Issues and solutions

    NASA Astrophysics Data System (ADS)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  4. Dental erosion and its association with diet in Libyan schoolchildren.

    PubMed

    Huew, R; Waterhouse, P J; Moynihan, P J; Kometa, S; Maguire, A

    2011-10-01

    To investigate any association between dental erosion and its potential dietary risk factors in a group of schoolchildren in Benghazi, Libya. A cross-sectional observational study. A random sample of 12-year-old schoolchildren in 36 randomly selected schools completed a questionnaire to provide dietary data and underwent dental examination. Dental erosion was assessed using UK National Diet and Nutrition Survey (2000) criteria. Associations between erosion and dietary variables under study were investigated through processes of bivariate and multivariate analyses. Of 791 schoolchildren dentally examined, 40.8% had dental erosion; erosion into enamel affecting 32.5%, into dentine affecting 8% and into pulp affecting 0.3% of subjects. Bivariate analysis showed frequency of fruit-based sugary drink intake was statistically significantly and positively associated with erosion (p=0.006, Odds Ratio; 1.498, 95% CI; 1.124, 1.996) as was the length of time taken to consume acidic drinks (p≠0.005, Odds Ratio; 1.593, 95%CI; 1.161, 2.186). Additionally, multivariate analysis showed frequency of consumption of fruit other than bananas, sugared tea with milk and flavoured milk to also be positively associated with erosion (p=<0.05). In this group of Libyan 12-year-olds, frequency of consumption of fruit-based sugary drinks and length of time taken to consume acidic drinks were the primary statistically significant positive risk factors for dental erosion.

  5. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?

    NASA Astrophysics Data System (ADS)

    Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C. L.; Lejeune, P.; Colinet, G.; Degré, A.

    2017-03-01

    Erosion and deposition modelling should rely on field data. Currently these data are seldom available at large spatial scales and/or at high spatial resolution. In addition, conventional erosion monitoring approaches are labour intensive and costly. This calls for the development of new approaches for field erosion data acquisition. As a result of rapid technological developments and low cost, unmanned aerial vehicles (UAV) have recently become an attractive means of generating high resolution digital elevation models (DEMs). The use of UAV to observe and quantify gully erosion is now widely established. However, in some agro-pedological contexts, soil erosion results from multiple processes, including sheet and rill erosion, tillage erosion and erosion due to harvest of root crops. These diffuse erosion processes often represent a particular challenge because of the limited elevation changes they induce. In this study, we propose to assess the reliability and development perspectives of UAV to locate and quantify erosion and deposition in a context of an agricultural watershed with silt loam soils and a smooth relief. Erosion and deposition rates derived from high resolution DEM time series are compared to field measurements. The UAV technique demonstrates a high level of flexibility and can be used, for instance, after a major erosive event. It delivers a very high resolution DEM (pixel size: 6 cm) which allows us to compute high resolution runoff pathways. This could enable us to precisely locate runoff management practices such as fascines. Furthermore, the DEMs can be used diachronically to extract elevation differences before and after a strongly erosive rainfall and be validated by field measurements. While the analysis for this study was carried out over 2 years, we observed a tendency along the slope from erosion to deposition. Erosion and deposition patterns detected at the watershed scale are also promising. Nevertheless, further development in the

  6. Duke Data Bank

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA computerized image processing techniques are an integral part of a cardiovascular data bank at Duke University Medical Center. Developed by Dr. C. F. Starmer and colleagues at Duke, the data bank documents the Center's clinical experience with more than 4,000 heart patients as an aid to diagnosis and treatment of heart disease. Data is stored in a computerized system that allows a physician to summon detailed records of former patients whose medical profiles are similar to those of a new patient. A video display (photo) and printed report shows prognostic information for the new patient based on similar past experience.

  7. Twenty-first century brain banking. Processing brains for research: the Columbia University methods

    PubMed Central

    del Amaya, Maria Pilar; Keller, Christian E.

    2007-01-01

    Carefully categorized postmortem human brains are crucial for research. The lack of generally accepted methods for processing human postmortem brains for research persists. Thus, brain banking is essential; however, it cannot be achieved at the cost of the teaching mission of the academic institution by routing brains away from residency programs, particularly when the autopsy rate is steadily decreasing. A consensus must be reached whereby a brain can be utilizable for diagnosis, research, and teaching. The best diagnostic categorization possible must be secured and the yield of samples for basic investigation maximized. This report focuses on integrated, novel methods currently applied at the New York Brain Bank, Columbia University, New York, which are designed to reach accurate neuropathological diagnosis, optimize the yield of samples, and process fresh-frozen samples suitable for a wide range of modern investigations. The brains donated for research are processed as soon as possible after death. The prosector must have a good command of the neuroanatomy, neuropathology, and the protocol. One half of each brain is immersed in formalin for performing the thorough neuropathologic evaluation, which is combined with the teaching task. The contralateral half is extensively dissected at the fresh state. The anatomical origin of each sample is recorded using the map of Brodmann for the cortical samples. The samples are frozen at −160°C, barcode labeled, and ready for immediate disbursement once categorized diagnostically. A rigorous organization of freezer space, coupled to an electronic tracking system with its attached software, fosters efficient access for retrieval within minutes of any specific frozen samples in storage. This report describes how this achievement is feasible with emphasis on the actual processing of brains donated for research. PMID:17985145

  8. Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin

    2017-04-01

    Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.

  9. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  10. Stochastic and deterministic processes regulate spatio-temporal variation in seed bank diversity

    Treesearch

    Alejandro A. Royo; Todd E. Ristau

    2013-01-01

    Seed banks often serve as reservoirs of taxonomic and genetic diversity that buffer plant populations and influence post-disturbance vegetation trajectories; yet evaluating their importance requires understanding how their composition varies within and across spatial and temporal scales (α- and β-diversity). Shifts in seed bank diversity are strongly...

  11. Effect of stone coverage on soil erosion

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.

    2010-12-01

    Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in

  12. Can banks offer digital keys for health care?

    PubMed

    Casillas, John

    2013-01-01

    In the quest to implement electronic health care records, health care stakeholders have uncovered an elephant in the room - how to implement patient identity and integrity solutions. Without this, linking the unique records of an individual is impossible. An inaccurate record can be dangerous for prescribing treatment. Yet many consider a unique patient identifier as an unacceptable privacy risk. Medical banking, or the convergence of banking and heath IT systems, is spawning new ideas that could impact on this difficult area. This article suggests that new forms of efficiency in payment processing may yield a common, cross-industry technology platform for managing digital identity by banks. Redefining a bank based on core competencies, the article looks at three areas: (1) the "identity theft arms race"; (2) innovations in payment processing; and (3) consumer engagement, and suggests that, as banking and health care systems converge, digital identity may become the new money. This realization may find banks fully engaged in helping health care to overcome the challenge of patient identity and integrity.

  13. Erosion of ejecta at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Grant, John A.; Schultz, Peter H.

    1993-01-01

    New methods for estimating erosion at Meteor Crater, Arizona, indicate that continuous ejecta deposits beyond 1/4-1/2 crater radii from the rim have been lowered less than 1 m on the average. This conclusion is based on the results of two approaches: coarsening of unweathered ejecta into surface lag deposits and calculation of the sediment budget within a drainage basin on the ejecta. Preserved ejecta morphologies beneath thin alluvium revealed by ground-penetrating radar provide qualitative support for the derived estimates. Although slightly greater erosion of less resistant ejecta locally has occurred, such deposits were limited in extent, particularly beyond 0.25R-0.5R from the present rim. Subtle but preserved primary ejecta features further support our estimate of minimal erosion of ejecta since the crater formed about 50,000 years ago. Unconsolidated deposits formed during other sudden extreme events exhibit similarly low erosion over the same time frame; the common factor is the presence of large fragments or large fragments in a matrix of finer debris. At Meteor Crater, fluvial and eolian processes remove surrounding fines leaving behind a surface lag of coarse-grained ejecta fragments that armor surfaces and slow vertical lowering.

  14. A Study of Cavitation Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiromu Isaka; Masatsugu Tsutsumi; Tadashi Shiraishi

    2002-07-01

    The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regardingmore » the 1. item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2. item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results. (authors)« less

  15. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    PubMed

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue

  16. A review of physically based models for soil erosion by water

    NASA Astrophysics Data System (ADS)

    Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane

    2010-05-01

    Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.

  17. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  18. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    NASA Astrophysics Data System (ADS)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  19. Verification and completion of a soil data base for process based erosion model applications in Mato Grosso/Brazil

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2014-05-01

    The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced

  20. The Arctic Coastal Erosion Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.; Thomas, Matthew Anthony; Bull, Diana L.

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible bymore » all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  1. 12 CFR 615.5144 - Banks for cooperatives and agricultural credit banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Banks for cooperatives and agricultural credit banks. 615.5144 Section 615.5144 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM FUNDING....5144 Banks for cooperatives and agricultural credit banks. As may be authorized by the banks for...

  2. Do erosion control and snakes mesh?

    Treesearch

    Christopher Barton; Karen Kinkead

    2005-01-01

    In the battle to curb soil erosion and sedimentation, numberous techniques and products for controlling erosion and sedimentation have been developed and are being implemented. Rolled erosion control products, such as a temporary erosion control blankets and permanent turf reinforcement mats, represent one type of erosion control product that has been used extensively...

  3. Glacier Erosion and Response to Climate in Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Koppes, M.; Hallet, B.; Stewart, R.

    2006-12-01

    A vibrant dimension in current research on landscape evolution is the potential impact of climate change on erosion rates due to differences in efficiency of glacial and non-glacial erosion processes. The climate-sensitive rate and spatial distribution of erosion can be as important as the tectonic environment in determining the development of mountain ranges. To evaluate properly how glacial erosion influences orogenic processes and reflects climate variability, it is necessary to understand how ice dynamics control erosion rates. The Patagonian Andes are a unique laboratory for documenting glacial erosion in a range of precipitation and thermal regimes, as zonal atmospheric circulation in the region creates strong latitudinal gradients. We will present relevant findings from two tidewater glaciers in Chilean Patagonia: San Rafael glacier, which drains the northern portion of the North Patagonian Icefield (46.6S, 74W), and Marinelli glacier, the largest glacier in the Cordillera Darwin of Tierra del Fuego (54.6S, 69W). Both glaciers have been in steady retreat during the latter half of the 20th century, and both calve into a fjord or lagoon, which provides an efficient trap for the sediment eroded by the glacier and deposited at the calving front. The reconstructed flux of ice into the glaciers is compared to the retreat of the ice fronts and to the sediment flux to examine the influence of ice dynamics on the rate of glacier erosion. NCEP-NCAR Reanalysis climate data, adjusted to local conditions by correlation with automatic weather stations installed at the glacier termini and coupled to a model of orographic enhancement of precipitation over the glacier basin, were used to reconstruct the daily precipitation input into and ablation output from the glaciers during the last 50 years. The sediment flux out of the glaciers during this period was calculated from acoustic reflection profiles of the sediments accumulated in the proglacial fjords, and used to infer

  4. Extreme erosion response after wildfire in the Upper Ovens, south-east Australia: Assessment of catchment scale connectivity by an intensive field survey

    NASA Astrophysics Data System (ADS)

    Box, Walter; Keestra, Saskia; Nyman, Petter; Langhans, Christoph; Sheridan, Gary

    2015-04-01

    South-eastern Australia is generally regarded as one of the world's most fire-prone environments because of its high temperatures, low rainfall and flammable native Eucalyptus forests. Modifications to the landscape by fire can lead to significant changes to erosion rates and hydrological processes. Debris flows in particular have been recognised as a process which increases in frequency as a result of fire. This study used a debris flow event in the east Upper Ovens occurred on the 28th of February 2013 as a case study for analysing sediment transport processes and connectivity of sediment sources and sinks. Source areas were identified using a 15 cm resolution areal imagery and a logistic regression model was made based on fire severity, aridity index and slope to predict locations of source areas. Deposits were measured by making cross-sections using a combination of a differential GPS and a total station. In total 77 cross-sections were made in a 14.1 km2 sub-catchment and distributed based on channel gradient and width. A more detailed estimation was obtained by making more cross-sections where the volume per area is higher. Particle size distribution between sources and sink areas were obtained by combination of field assessment, photography imagery analyses and sieve and laser diffraction. Sediment was locally eroded, transported and deposited depending on factors such as longitude gradient, stream power and the composition of bed and bank material. The role of headwaters as sediment sinks changed dramatically as a result of the extreme erosion event in the wildfire affected areas. Disconnected headwaters became connected to low order streams due to debris flow processes in the contributing catchment. However this redistribution of sediment from headwaters to the drainage network was confined to upper reaches of the Ovens. Below this upper part of the catchment the event resulted in redistribution of sediment already existing in the channel through a

  5. Global evaluation of erosion rates in relation to tectonics

    NASA Astrophysics Data System (ADS)

    Hecht, Hagar; Oguchi, Takashi

    2017-12-01

    Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (< 0.68 g) and short distance (< 94.34 km) are almost inexistent suggesting a strong coupling between PGA and distance to tectonic plate boundary. Groups with low erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.

  6. 75 FR 20848 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Carolina, Seneca National Bank, Seneca, South Carolina, and The Peoples National Bank, Easley, South... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C...

  7. Soil erosion in mountainous areas: how far can we go?

    NASA Astrophysics Data System (ADS)

    Egli, Markus

    2017-04-01

    Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow

  8. Distinguishing erosive osteoarthritis and calcium pyrophosphate deposition disease.

    PubMed

    Rothschild, Bruce M

    2013-04-18

    Erosive osteoarthritis is a term utilized to describe a specific inflammatory condition of the interphalangeal and first carpal metacarpal joints of the hands. The term has become a part of medical philosophical semantics and paradigms, but the issue is actually more complicated. Even the term osteoarthritis (non-erosive) has been controversial, with some suggesting osteoarthrosis to be more appropriate in view of the perspective that it is a non-inflammatory process undeserving of the "itis" suffix. The term "erosion" has also been a source of confusion in osteoarthritis, as it has been used to describe cartilage, not bone lesions. Inflammation in individuals with osteoarthritis actually appears to be related to complicating phenomena, such as calcium pyrophosphate and hydroxyapatite crystal deposition producing arthritis. Erosive osteoarthritis is the contentious term. It is used to describe a specific form of joint damage to specific joints. The damage has been termed erosions and the distribution of the damage is to the interphalangeal joints of the hand and first carpal metacarpal joint. Inflammation is recognized by joint redness and warmth, while X-rays reveal alteration of the articular surfaces, producing a smudged appearance. This ill-defined, joint damage has a crumbling appearance and is quite distinct from the sharply defined erosions of rheumatoid arthritis and spondyloarthropathy. The appearance is identical to those found with calcium pyrophosphate deposition disease, both in character and their unique responsiveness to hydroxychloroquine treatment. Low doses of the latter often resolve symptoms within weeks, in contrast to higher doses and the months required for response in other forms of inflammatory arthritis. Reconsidering erosive osteoarthritis as a form of calcium pyrophosphate deposition disease guides physicians to more effective therapeutic intervention.

  9. Spatially dependent responses of a large-river fish assemblage to bank stabilization and side channels

    USGS Publications Warehouse

    Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Poole, Geoffrey C.; Roberts, David W.

    2017-01-01

    The alteration of rivers by anthropogenic bank stabilization to prevent the erosion of economically valuable lands and structures has become commonplace. However, such alteration has ambiguous consequences for fish assemblages, especially in large rivers. Because most large, temperate rivers have impoundments, it can be difficult to separate the influences of bank stabilization structures from those of main-stem impoundments, especially because both stabilization structures and impoundments can cause side-channel loss. Few large rivers are free flowing and retain extensive side channels, but the Yellowstone River (our study area) is one such river. We hypothesized that in this river (1) bank stabilization has changed fish assemblage structure by altering habitats, (2) side-channel availability has influenced fish assemblage structure by providing habitat heterogeneity, and (3) the influences of bank stabilization and side channels on fish assemblages were spatially scale dependent. We developed a spatially explicit framework to test these hypotheses. Fish assemblage structure varied with the extent of bank stabilization and the availability of side channels; however, not all assemblage subsets were influenced. Nevertheless, bank stabilization and side channels had different and sometimes opposite influences on the fish assemblage. The effects of side channels on fish were more consistent and widespread than those of bank stabilization; the catches of more fishes were positively correlated with side-channel availability than with the extent of bank stabilization. The influences of bank stabilization and side channels on the relative abundances of fish also varied, depending on species and river bend geomorphology. The variation in river morphology probably contributed to the assemblage differences between stabilized and reference river bends; stabilized alluvial pools were deeper than reference alluvial pools, but the depths of stabilized and reference bluff pools

  10. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  11. Experimental rill erosion research vs. model concepts - quantification of the hydraulic and erosional efficiency of rills

    NASA Astrophysics Data System (ADS)

    Wirtz, Stefan

    2014-05-01

    In soil erosion research, rills are believed to be one of the most efficient forms. They act as preferential flow paths for overland flow and hence become the most efficient sediment sources in a catchment. However their fraction of the overall detachment in a certain area compared to other soil erosion processes is contentious. The requirement for handling this subject is the standardization of the used measurement methods for rill erosion quantification. Only by using a standardized method, the results of different studies become comparable and can be synthesized to one overall statement. In rill erosion research, such a standardized field method was missing until now. Hence, the first aim of this study is to present an experimental setup that enables us to obtain comparable data about process dynamics in eroding rills under standardized conditions in the field. Using this rill experiment, the runoff efficiency of rills (second aim) and the fraction of rill erosion on total soil loss (third aim) in a catchment are quantified. The erosion rate [g m-2] in the rills is between twenty- and sixty-times higher compared to the interrill areas, the specific discharge [L s-1 m-2] in the rills is about 2000 times higher. The identification and quantification of different rill erosion processes are the fourth aim within this project. Gravitative processes like side wall failure, headcut- and knickpoint retreat provide up to 94 % of the detached sediment quantity. In soil erosion models, only the incision into the rill's bottom is considered, hence the modelled results are unsatisfactorily. Due to the low quality of soil erosion model results, the fifth aim of the study is to review two physical basic assumptions using the rill experiments. Contrasting with the model assumptions, there is no clear linear correlation between any hydraulic parameter and the detachment rate and the transport rate is capable of exceeding the transport capacity. In conclusion, the results clearly

  12. A field guide for the assessment of erosion, sediment transport, and deposition in incised channels of the southwestern United States

    USGS Publications Warehouse

    Parker, John T.C.

    2000-01-01

    Deeply incised channels, commonly called arroyos, are a typical feature of the dry alluvium-filled valleys of the southwestern United States. Unlike many geological processes that operate over millions of years, the formation of many miles of arroyos is one that took place in a little more than a century. Most arroyos in the region began to form in the late 19th century. Because dry landscapes change so quickly, they present society with special problems. Rapid expansion of channels by headcut migration, deepening, and widening causes loss of productive agricultural and commercial lands and threatens infrastructure such as roads, bridges, and buildings. High rates of sedimentation shorten the life of reservoirs, clog culverts, and fill stream channels to the extent that they can no longer contain streamflow within their banks. This report presents an explanation of erosional and depositional processes in desert landscapes, especially those characterized by incised channels, for the use of those who use, manage, and live on such lands. The basic principles of erosion, sediment transport, and deposition are presented including the formation of sediment, the forces that erode and transport it, the forces that resist its erosion and transport, and the conditions that cause it to be deposited. The peculiarities of sedimentation processes in the Southwest include the infrequent and variable precipitation, the geological setting, and the sparseness of vegetation. A classification system for incised channels that is intended for users who do not necessarily have a background in fluvial hydrology has been developed and is presented in this report. The classification system is intended to enable a user to classify a reach of channel quickly on the basis of field observations. The system is based on the shape and condition of channels and on the sedimentation processes that are predominantly responsible for those conditions. Because those processes are controlled by

  13. 75 FR 49493 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Peoples Bank and Trust Company, both of North Carrollton, Mississippi. B. Federal Reserve Bank of Dallas... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C...

  14. Rill erosion rates in burned forests

    Treesearch

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  15. Connectivity of rainfall and human activity impacts on soil erosion processes in Mediterranean vineyards

    NASA Astrophysics Data System (ADS)

    Rodrigo-Comino, Jesús; Terol Esparza, Enric; Damián Ruiz-Sinoga, José; Cerdà, Artemi

    2017-04-01

    Soils are recognized as one of the most important components characterizing a terroir (Vaudour et al., 2015). However, the soils of vineyards are one of the most degraded in comparison to other cultivated context due to traditional tillage management (Prosdocimi et al., 2016). The key factor to understand the connectivity between topsoil redistribution and overland flow is the human activity as the management, who can reduce or increase these geomorphological interchanges (sediment and runoff) and changes the soil properties such it was found in different regions and under different crops (Parras-Alcántara et al., 2016). In order to assess this topsoil redistribution in vineyards, the Stock Unearthing Method (SUM) has been accepted to be a reliable method to assess erosion rates and spatial evolution and interchanging of the topsoil, sediments and water flux directions at long-term time scales in vineyards (Brenot et al., 2008; Paroissien et al., 2010; Rodrigo Comino et al., 2016). The SUM is based on the measurement of the distance from the topsoil to the grafted vine stock, confirmed as a passive indicator of topsoil movements since the initial planting of vine stocks. Therefore, the aims of this work are: i) to quantify the soil erosion rates by means of Stock Unearthing Method; ii) to measure the impact of plantation of new vineyards; iii) to compare sediment transport, water flux directions and topsoil redistributions between different soil types, land management (bare soil, amendments, straw mulch…) and soil tillage practices; iv) to assess sediment budgets and water flux direction conditioned by the micro-topographical variations; and, v) to detect key factors and impact on the surface features within the detected connectivity processes (rills and inter-rills…) using cartography. Acknowledgements The research leading to these results has received funding from the COST Action (Connecting European Connectivity Research): ES1306 and the European Union

  16. Can seed removal through soil erosion explain the scarcity of vegetation in the Chinese Loess Plateau?

    NASA Astrophysics Data System (ADS)

    Jiao, Juying; Han, Luyan; Jia, Yanfeng; Wang, Ning; Lei, Dong; Li, Linyu

    2011-09-01

    Seed removal by water erosion may explain the sparse vegetation cover in systems like the Chinese Loess Plateau, which is characterized by severe soil erosion. The seeds from 16 species found on the plateau were examined in relation to the likelihood of their removal by erosion, as tested by rainfall simulation experiments. The experiments were performed over 1-m 2 plots with slopes of 10°, 15°, 20° and 25° for 60 min at intensities of 50 mm h -1, 100 mm h -1 and 150 mm h -1, respectively. Seed loss occurred at simulated rainfall intensities of 100 mm h -1 and 150 mm h -1, with total seed loss rates of 26-33% and 59-67%, respectively. Most seeds were displaced, even at 50 mm h -1. The degrees of seed loss and displacement varied among species. These data, in combination with data from our former research on propagule, seedling and population development in these species, indicate that the species with high seed loss rates either compensate by having a soil seed bank that produces seedlings during the growing season or reproduce by vegetative propagation; the species with no seed loss are still sparsely distributed. Seed germination and seedling survival seem to be more important than seed loss in determining establishment in these regions of the Loess Plateau. Seed translocation by water erosion, however, contributes to the observed distribution of vegetation in this geographic region.

  17. Effect of mechanical properties on erosion resistance of ductile materials

    NASA Astrophysics Data System (ADS)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  18. 75 FR 54148 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  19. 75 FR 9414 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  20. 75 FR 39016 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  1. 75 FR 51814 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  2. 75 FR 33810 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  3. 75 FR 3904 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  4. 75 FR 10484 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  5. 75 FR 53968 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  6. 75 FR 5322 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  7. 75 FR 51073 - Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisition of Shares of Bank or Bank Holding Companies The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C. 1817(j)) and Sec. [thinsp]225.41 of the Board's Regulation Y (12 CFR 225.41) to acquire a bank or bank...

  8. Solid impingement erosion mechanisms and characterization of erosion resistance of ductile metals

    NASA Technical Reports Server (NTRS)

    Rao, V. P.; Buckley, D. H.

    1982-01-01

    Experimental results pertaining to spherical glass bead and angular crushed glass particle impingement are presented. A concept of energy adsorption to explain the failure of material is proposed. The erosion characteristics of several pure metals were correlated with the proposed energy parameters and with other properties. Correlations of erosion and material properties were also carried out with these materials to study the effect of the angle of impingement. Analyses of extensive erosion data indicate that surface energy, strain energy, melting point, bulk modulus, hardness, ultimate resilience, atomic volume and product of linear coefficient of thermal expansion, bulk modulus, and temperature rise required for melting, and ultimate resilience, and hardness exhibit the best correlations. It appears that both energy and thermal properties contribute to the total erosion.

  9. Environmental processes and spectral reflectance characteristics associated with soil erosion in desert fringe regions

    NASA Technical Reports Server (NTRS)

    Jacobberger, P. A.

    1986-01-01

    Two Thematic Mapper (TM) scenes were acquired. A scene was acquired for the Bahariya, Egypt field area, and one was acquired covering the Okavango Delta site. Investigations at the northwest Botswana study sites have concentrated upon a system of large linear (alab) dunes possessing an average wavelength of 2 kilometers and an east-west orientation. These dunes exist to the north and west of the Okavango Swamp, the pseudodeltaic end-sink of the internal Okavango-Cubango-Cuito drainage network. One archival scene and two TM acquisitions are on order, but at present no TM data were acquired for the Tombouctou/Azaouad Dunes, Mali. The three areas taken together comprise an environmental series ranging from hyperarid to semi-arid, with desertization processes operational or incipient in each. The long range goal is to predict normal seasonal variations, so that aperiodic spectral changes resulting from soil erosion, vegetation damage, and associated surface processes would be distinguishable as departures from the norm.

  10. Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.

    2013-04-01

    Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g. economic, environmental and social). Global intensification of agroecosystems is a major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Elevated erosion and transport is common in agroecosystems and presents a multi-disciplinary problem with direct physical impacts (e.g. soil loss), other less tangible impacts (e.g. loss of ecosystem productivity), and indirect downstream effects that necessitate an integrated approach to effectively address the problem. Climate is also likely to increase susceptibility of soil to erosion. Beyond physical response, the consequences of erosion on soil biota have hitherto been ignored, yet biota play a fundamental role in ecosystem service provision. To our knowledge few studies have addressed the gap between erosion and consequent impacts on soil biota. Transport and redistribution of soil biota by erosion is poorly understood, as is the concomitant impact on biodiversity and ability of soil to deliver the necessary range of ecosystem services to maintain function. To investigate impacts of erosion on soil biota a two-fold research approach is suggested. Physical processes involved in redistribution should be characterised and rates of transport and redistribution quantified. Similarly, cumulative and long-term impacts of biota erosion should be considered. Understanding these fundamental aspects will provide a basis upon which mitigation strategies can be considered.

  11. Quality indicators for eye bank.

    PubMed

    Acharya, Manisha; Biswas, Saurabh; Das, Animesh; Mathur, Umang; Dave, Abhishek; Singh, Ashok; Dubey, Suneeta

    2018-03-01

    The aim of this study is to identify quality indicators of the eye bank and validate their effectivity. Adverse reaction rate, discard rate, protocol deviation rate, and compliance rate were defined as Quality Indicators of the eye bank. These were identified based on definition of quality that captures two dimensions - "result quality" and "process quality." The indicators were measured and tracked as part of quality assurance (QA) program of the eye bank. Regular audits were performed to validate alignment of standard operating procedures (SOP) with regulatory and surgeon acceptance standards and alignment of activities performed in the eye bank with the SOP. Prospective study of the indicators was performed by comparing their observed values over the period 2011-2016. Adverse reaction rate decreased more than 8-fold (from 0.61% to 0.07%), discard rate decreased and stabilized at 30%, protocol deviation rate decreased from 1.05% to 0.08%, and compliance rate reported by annual quality audits improved from 59% to 96% at the same time. In effect, adverse reaction rate, discard rate, and protocol deviation rate were leading indicators, and compliance rate was the trailing indicator. These indicators fulfill an important gap in available literature on QA in eye banking. There are two ways in which these findings can be meaningful. First, eye banks which are new to quality measurement can adopt these indicators. Second, eye banks which are already deeply engaged in quality improvement can test these indicators in their eye bank, thereby incorporating them widely and improving them over time.

  12. Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments

    NASA Astrophysics Data System (ADS)

    Singh, Sunil K.; France-Lanord, Christian

    2002-09-01

    Bank sediments and suspended loads of the Brahmaputra River and its important tributaries were collected from the Himalayan front to Bangladesh along with most of the important tributaries. Chemical and isotopic compositions of the sediments are used to trace sediment provenance and to understand erosion patterns in the basin. Overall isotopic compositions range from 0.7053 to 0.8250 for Sr and ɛNd from -20.5 to -6.9. This large range derives from the variable proportions of sediments from Himalayan formations with high Sr isotopic ratios and low ɛNd, and Transhimalayan plutonic belt with lower Sr isotopic ratios and higher ɛNd. The latter are exposed to erosion in the Tsangpo and in the eastern tributary drainages. Overall erosion of the Himalayan rocks is dominant, representing ca 70% of the detrital influx. Compositions of the Brahmaputra main channel are rather stable between 0.7177 and 0.7284 for Sr and between -14.4 and -12.5 for ɛNd throughout its course in the plain from the Siang-Tsangpo at the foot of the Himalayan range down to the delta. This stability, despite the input of large Himalayan rivers suggests that the Siang-Tsangpo River represents the major source of sediment to the whole Brahmaputra. Geochemical budget implies that erosion of the Namche Barwa zone represents about 45% of the total flux at its outflow before confluence with the Ganga from only 20% of the mountain area. Higher erosion rates in the eastern syntaxis compared to the other Himalayan ranges is related to the rapid exhumation rates of this region, possibly triggered by higher precipitation over the far-eastern Himalaya and the high incision potential of the Tsangpo River due to its very high water discharge.

  13. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria.

    PubMed

    Ehigiator, O A; Anyata, B U

    2011-11-01

    This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The interplay of contourite and mass-wasting recent sedimentary processes at the Guadalquivir Bank Margin uplift, Gulf of Cadiz: morphological high-resolution approach

    NASA Astrophysics Data System (ADS)

    Garcia, Marga; Alonso, Belén; Tomas Vazquez, Juan; Ercilla, Gemma; Palomino, Desirée; Estrada, Ferran; Fernandez Puga, Ma Carmen; Lopez Gonzalez, Nieves; Roque, Cristina

    2014-05-01

    The Gulf of Cadiz records the interplay of a variety of sedimentary processes related to the flow of the Mediterranean Outflow Water (MOW) exiting the Mediterranean Sea, with downslope sedimentary processes and the topography of the region. This work presents detailed morphological features of the Guadalquivir Ridge area, based on high resolution bathymetry and very-high resolution seismic profiles (TOPAS) acquired during the MONTERA cruise. The Guadalquivir Ridge is a SW-NE-oriented relief located on the middle slope of the Gulf of Cadiz (8º-7º10' W). It reaches minimum depths at two highs, one at the Guadalquivir Bank, at the western extreme of the ridge (275 m), and a second one close to the eastern extreme (350 m). The ridge is cut by a gap where the Diego Cao contourite moat is incised forming a narrow, 4-5 km wide, SE-NW oriented channel. It delimits two contourite sheeted drifts (SD) at the northern side of the ridge: the Faro SD at the east (~ 600 m water depth) and the Bartolomeo Dias SD, at the west (~750 m water depth). The SD are relatively flat and become shallower progressively in a SE direction towards the Guadalquivir Ridge. At the SE side of the Guadalquivir Ridge depth increases dramatically where the Huelva and Cadiz contourite channels occur. They are originated by the direct erosion of the Lower Core of the MOW, running at depths of around 1200 m. The Diego Cao channel is related to the Upper Core, which runs at depths of around 800 m (Ambar and Serra, 2007). High resolution data reveal the existence of a variety of features. Semi-circular scarps, up to 10s km long, occur at the SE side of the Guadalquivir Ridge and at the SW side of the Bartolomeo Dias SD, at the rim of the Diego Cao contourite channel. Scarps occur at depths of 550 to 750 m and form steep steps of tens to hundreds of meters and in some cases occur overlapped one on each other at different depths. The second type of feature is a series of circular to ellipse

  15. Effect of current ripple on cathode erosion in 30 kWe class arcjets

    NASA Technical Reports Server (NTRS)

    Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.

    1991-01-01

    An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.

  16. Demonstration of the Water Erosion Prediction Project (WEPP) internet interface and services

    USDA-ARS?s Scientific Manuscript database

    The Water Erosion Prediction Project (WEPP) model is a process-based FORTRAN computer simulation program for prediction of runoff and soil erosion by water at hillslope profile, field, and small watershed scales. To effectively run the WEPP model and interpret results additional software has been de...

  17. Quality Assurance in Stem Cell Banking: Emphasis on Embryonic and Induced Pluripotent Stem Cell Banking.

    PubMed

    Kallur, Therése; Blomberg, Pontus; Stenfelt, Sonya; Tryggvason, Kristian; Hovatta, Outi

    2017-01-01

    For quality assurance (QA) in stem cell banking, a planned system is needed to ensure that the banked products, stem cells, meet the standards required for research, clinical use, and commercial biotechnological applications. QA is process oriented, avoids, or minimizes unacceptable product defects, and particularly encompasses the management and operational systems of the bank, as well as the ethical and legal frameworks. Quality control (QC ) is product oriented and therefore ensures the stem cells of a bank are what they are expected to be. Testing is for controlling, not assuring, product quality, and is therefore a part of QC , not QA. Like QA, QC is essential for banking cells for quality research and translational application (Schwartz et al., Lancet 379:713-720, 2012). Human embryonic stem cells (hESCs), as cells derived from donated supernumerary embryos from in vitro fertilization (IVF) therapy, are different from other stem cell types in resulting from an embryo that has had two donors . This imposes important ethical and legal constraints on the utility of the cells, which, together with quite specific culture conditions, require special attention in the QA system. Importantly, although the origin and derivation of induced pluripotent stem cells (iPSCs ) differ from that of hESCs, many of the principles of QA for hESC banking are applicable to iPSC banking (Stacey et al., Cell Stem Cell 13:385-388, 2013). Furthermore, despite differences between the legal and regulatory frameworks for hESC and iPSC banking between different countries, the requirements for QA are being harmonized (Stacey et al., Cell Stem Cell 13:385-388, 2013; International Stem Cell Banking Initiative, Stem Cell Rev 5:301-314, 2009).

  18. THE IMPACT OF HUMANS ON CONTINENTAL EROSION AND SEDIMENTATION (Invited)

    NASA Astrophysics Data System (ADS)

    Wilkinson, B.; McElroy, B.

    2009-12-01

    Tectonic uplift and erosional denudation of orogenic belts have long been the most important geologic processes that serve to shape continental surfaces, but the rate of geomorphic change resulting from these natural phenomena has now been outstripped by human activities associated with agriculture, construction, and mining. Although humans are now the most important geomorphic agent on the planet’s surface, natural and anthropogenic processes serve to modify quite different parts of the Earth landscape. In order to better understand the impact of humans on continental erosion, we have examined both long-term and short-term data on rates of sediment transfer in response to glacio-fluvial and anthropogenic processes. Phanerozoic rates of subaerial denudation inferred from preserved volumes of sedimentary rock require a mean continental erosion rate on the order of 16 meters per million years (m/My), resulting in the accumulation of about 5 giga-tons of sediment per year (Gt/y). Erosion irregularly increased over the ~542 million year span of Phanerozoic time to a Pliocene value of 81 m/My (~19 Gt/y). Current estimates of large river sediment loads are similar to this late Neogene value, and require net denudation of ice-free land surfaces at a rate of about 74 m/My (~25 Gt/y). Consideration of variation in large river sediment loads and the geomorphology of respective river basin catchments suggests that natural erosion is primarily confined to drainage headwaters; ~83% of the global river sediment flux is derived from the highest 10% of the Earth’s surface. Subaerial erosion as a result of human activity, primarily through agricultural practices, has resulted in a sharp increase in net rates of continental denudation; although less well constrained than estimates based on surviving rock volumes or current river loads, available data suggest that present farmland denudation is proceeding at a rate of about 600 m/My (~74 Gt/y), and is largely confined to lower

  19. The ethics of donor human milk banking.

    PubMed

    Arnold, Lois D W

    2006-01-01

    This case study of donor human milk banking and the ethics that govern interested parties is the first time the ethics of donor milk banking has been explored. Two different models of ethics and their direct impact on donor milk banking are examined: biomedical ethics and public health ethics. How these models and principles affect different aspects of donor human milk banking and the parties involved in the delivery of this service are elucidated. Interactions of parties with each other and how the quality and type of interaction affects the ethical delivery of donor milk banking services are described. Crystallization is at the heart of the qualitative methodology used. Writing as a method of inquiry, an integrative research review, and personal experience are the three methods involved in the crystallization process. Suggestions are made for improving access and knowledge of banked donor human milk, a valuable public health resource.

  20. Trends of the gully erosion development in the territory of the Republic of Tatarstan

    NASA Astrophysics Data System (ADS)

    Medvedeva, R. A.

    2018-01-01

    Gully erosion is one of the most active geomorphic processes and one of the major cause of land degradation worldwide. The aim of the study was identifying the dynamics of gully erosion development in the Republic of Tatarstan. The interpretation of satellite images were used for evaluation of the modern dynamics of gullies. Two key indicators of gully erosion (length density and gully head density) were determined. Maps of modern gully erosion for a part of the Republic of Tatarstan were constructed.