Science.gov

Sample records for bank operations eva

  1. EVA-SCRAM operations

    NASA Technical Reports Server (NTRS)

    Flanigan, Lee A.; Tamir, David; Weeks, Jack L.; Mcclure, Sidney R.; Kimbrough, Andrew G.

    1994-01-01

    This paper wrestles with the on-orbit operational challenges introduced by the proposed Space Construction, Repair, and Maintenance (SCRAM) tool kit for Extra-Vehicular Activity (EVA). SCRAM undertakes a new challenging series of on-orbit tasks in support of the near-term Hubble Space Telescope, Extended Duration Orbiter, Long Duration Orbiter, Space Station Freedom, other orbital platforms, and even the future manned Lunar/Mars missions. These new EVA tasks involve welding, brazing, cutting, coating, heat-treating, and cleaning operations. Anticipated near-term EVA-SCRAM applications include construction of fluid lines and structural members, repair of punctures by orbital debris, refurbishment of surfaces eroded by atomic oxygen, and cleaning of optical, solar panel, and high emissivity radiator surfaces which have been degraded by contaminants. Future EVA-SCRAM applications are also examined, involving mass production tasks automated with robotics and artificial intelligence, for construction of large truss, aerobrake, and reactor shadow shield structures. Realistically achieving EVA-SCRAM is examined by addressing manual, teleoperated, semi-automated, and fully-automated operation modes. The operational challenges posed by EVA-SCRAM tasks are reviewed with respect to capabilities of existing and upcoming EVA systems, such as the Extravehicular Mobility Unit, the Shuttle Remote Manipulating System, the Dexterous End Effector, and the Servicing Aid Tool.

  2. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  3. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  4. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  5. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  6. EVA worksite analysis--use of computer analysis for EVA operations development and execution.

    PubMed

    Anderson, D

    1999-01-01

    To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.

  7. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than

  8. Students Speak With EVA Operations Specialist Glenda Brown

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, EVA Operations Specialist Glenda Brown participates in a Digital Learning Network (DLN) event with students at Victory Lakes Interm...

  9. EVA Requirements for Exploration EVAs

    NASA Technical Reports Server (NTRS)

    Webbon, Bruce; Luna, Bernadette

    2005-01-01

    The exploration program proposed by the President will require extensive extravehicular operations in a wide range of environments. These include Og EVAs in planetary orbits as well as potential contingency EVAs during inter-planetary flight and surface operations on the moon and Mars. The EVA environments and mission requirements are very different for each of these. Commonality among such systems is highly desirable from the programmatic standpoint but the dramatic differences in EVA environments will have a profound impact on EVA system design. This paper will examine the relevant environmental parameters and discuss their impacts on EVA system design. An EVA design philosophy that maximizes EVA system commonality will be discussed.

  10. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  11. The First Results of the Russian EVA Space Suits Operation in the International Space Station

    NASA Astrophysics Data System (ADS)

    Abramov, I. P.; Albats, E. A.; Glazov, G. M.

    The year of 2001 saw the first EVAs of the International Space Station (ISS) crews using the Russian "Orlan-M" space suits. This marked the beginning of a new stage of activities on putting into operation of the next ISS modules. The paper reviews the results of the Russian space suits' operation in the course of extravehicular activity (EVA) by the crews of the first ISS expeditions. The paper also reviews differences in operation of the "Orlan-M" in the ISS and "Mir" orbiting station resulting from space suit (SS) systems design, peculiarities of the station airlocks and EVA performance methods. The paper presents data on EVA results and comments on space suit systems' operation. The paper gives diagrams for main parameters of the space suits' life support systems (LSS) and comments about them. In conclusion the paper reviews the "Orlan-M" improvements being performed and prospects of "Orlan-M" usage in the ISS.

  12. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  13. Apollo Medical Operations Project: Recommendations for EVA and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Davis, J. R.; Duncan, J. M.; Polk, J. D.; Jones, J. A.; Gillis, D. B.; Novak, J.

    2013-01-01

    The potential risk of injury to crewmembers is inherent in aggressive surface activities, whether they be Moon-, Mars-, or asteroid-based. In December 2005, the Space Medicine Division at JSC requested a study to identify Apollo mission issues that had an impact to crew health or performance or both. This talk focused on the Apollo EVA suit and lunar surface operations concerning crew health and performance. There were roughly 20 recommendations from this study of Apollo for improving these two areas for future exploration missions, a few of which were incorporated into the Human Systems Integration Requirements (HSIR). Dr. Richard Scheuring covered these topics along with some of the analog work that has been done regarding surface operations and medical contingencies.

  14. Evidence Report: Risk of Injury and Compromised Performance due to EVA Operations

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F. J.; Bekdash, Omar S.; Benson, Elizabeth A.; Jarvis, Sarah L.; Conkin, Johnny; Gernhardt, Michael L.; House, Nancy; Jadwick, Jennifer; Jones, Jeffrey A.; Lee, Lesley R.; Scheuring, Richard A.; Tuxhorn, Jennifer A.

    2017-01-01

    Given the high physiological and functional demands of operating in a self-contained EVA or training suit in various gravity fields and system environments, there is a possibility that crew injury can occur and physiological and functional performance may be comprised.

  15. Optimization of the bank's operating portfolio

    NASA Astrophysics Data System (ADS)

    Borodachev, S. M.; Medvedev, M. A.

    2016-06-01

    The theory of efficient portfolios developed by Markowitz is used to optimize the structure of the types of financial operations of a bank (bank portfolio) in order to increase the profit and reduce the risk. The focus of this paper is to check the stability of the model to errors in the original data.

  16. Interoperability Trends in Extravehicular Activity (EVA) Space Operations for the 21st Century

    NASA Technical Reports Server (NTRS)

    Miller, Gerald E.

    1999-01-01

    No other space operations in the 21 st century more comprehensively embody the challenges and dependencies of interoperability than EVA. This discipline is already functioning at an W1paralleled level of interagency, inter-organizational and international cooperation. This trend will only increase as space programs endeavor to expand in the face of shrinking budgets. Among the topics examined in this paper are hardware-oriented issues. Differences in design standards among various space participants dictate differences in the EVA tools that must be manufactured, flown and maintained on-orbit. Presently only two types of functional space suits exist in the world. However, three versions of functional airlocks are in operation. Of the three airlocks, only the International Space Station (ISS) Joint Airlock can accommodate both types of suits. Due to functional differences in the suits, completely different operating protocols are required for each. Should additional space suit or airlock designs become available, the complexity will increase. The lessons learned as a result of designing and operating within such a system are explored. This paper also examines the non-hardware challenges presented by interoperability for a discipline that is as uniquely dependent upon the individual as EVA. Operation of space suits (essentially single-person spacecrafts) by persons whose native language is not that of the suits' designers is explored. The intricacies of shared mission planning, shared control and shared execution of joint EVA's are explained. For example, once ISS is fully functional, the potential exists for two crewmembers of different nationality to be wearing suits manufactured and controlled by a third nation, while operating within an airlock manufactured and controlled by a fourth nation, in an effort to perform tasks upon hardware belonging to a fifth nation. Everything from training issues, to procedures development and writing, to real-time operations is

  17. Ensuring of long operation life of the orbiting station EVA space suit.

    PubMed

    Abramov, I P; Glazov, G M; Svertshek, V I; Stoklitsky AYu

    1997-01-01

    Russia has gained a lot of experience in operating the space suits (SS) during the extravehicular activities (EVA) by the crews of SALYUT-6, SALYUT-7 and MIR orbiting stations. A total of 21 Orlan-type space suits of various models were operated onboard the orbiting stations (OS) during almost 20 years period. Some of these space suits served up to 3 years in orbit. The paper reviews special features of long SS operation (without return to the Earth) onboard an orbiting station as well as the problems associated with SS repeated use by several crews. An analysis of measures to support solving of the problems of SS long stay and reliable operation onboard the orbiting station is made: selection of a corresponding SS type and separate elements design; selection of the materials; routine and preventive maintenance; development tests. The advantages of the space suit of a semi-rigid type for solving the above problems are shown. The paper includes a short analysis of space suits' operation onboard the Russian orbiting station MIR, and some restuts of inspection of the Orlan-DMA space suit returned to the Earth from orbit by STS-79 alter long operation in orbit. Recommendations on further improvement of the space suits for EVA operations in the International Space Station (ISS) are given.

  18. Ensuring of long operation life of the orbiting station EVA space suit

    NASA Astrophysics Data System (ADS)

    Abramov, I. P.; Glazov, G. M.; Svertshek, V. I.; Stoklitsky, A. Yu.

    Russia has gained a lot of experience in operating the space suits (SS) during the extravehicular activities (EVA) by the crews of SALYUT-6, SALYUT-7 and MIR orbiting stations. A total of 21 Orlan-type space suits of various models were operated onboard the orbiting stations (OS) during almost 20 years period. Some of these space suits served up to 3 years in orbit. The paper reviews special features of long SS operation (without return to the Earth) onboard an orbiting station as well as the problems associated with SS repeated use by several crews. An analysis of measures to support solving of the problems of SS long stay and reliable operation onboard the orbiting station is made: selection of a corresponding SS type and separate elements design selection of the materials routine and preventive maintenance development tests. The advantages of the space suit of a semirigid type for solving the above problems are shown. The paper includes a short analysis of space suits' operation onboard the Russian orbiting station MIR, and some results of inspection of the Orian-DMA space suit returned to the Earth from orbit by STS-79 after long operation in orbit. Recommendations on further improvement of the space suits for EVA operations in the International Space Station (ISS) are given.

  19. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; Fong, T. W.; Bualat, M. G.; Lee, S. Y.; Dorsey, J. T.; Doggett, W. R.

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  20. Cooperative EVA/Telerobotic Surface Operations in Support of Exploration Science

    NASA Astrophysics Data System (ADS)

    Akin, David L.

    2001-01-01

    The contents include: 1) Planetary Surface Robotics; 2) EVA Difficulties from Apollo; 3) Robotic Capabilities for EVA Support; 4) Astronaut Support Vehicle; 5) Three ASV Preliminary Designs; 6) Small Single-arm Assistant; 7) Dual-arm Assistant; 8) Large EVA Assistant; 9) Lessons Learned-Preliminary Designs; 10) Rover Design Assumptions; 11) Design Requirements-Terrain; 12) Design Requirements; 13) Science Payload; 14) Manipulator Arm; 15) EVA Multiple Robot Cooperation; 16) SSL Rover Body Concept; 17) Advanced EVA Support Rover Concept; 18) Robotic Access to Restricted Sites; 19) Robotic Rescue of EVA crew; and 19) Why Do We Need Humans? This paper is presented in viewgraph form.

  1. Modeling the operational risk in Iranian commercial banks: case study of a private bank

    NASA Astrophysics Data System (ADS)

    Momen, Omid; Kimiagari, Alimohammad; Noorbakhsh, Eaman

    2012-08-01

    The Basel Committee on Banking Supervision from the Bank for International Settlement classifies banking risks into three main categories including credit risk, market risk, and operational risk. The focus of this study is on the operational risk measurement in Iranian banks. Therefore, issues arising when trying to implement operational risk models in Iran are discussed, and then, some solutions are recommended. Moreover, all steps of operational risk measurement based on Loss Distribution Approach with Iran's specific modifications are presented. We employed the approach of this study to model the operational risk of an Iranian private bank. The results are quite reasonable, comparing the scale of bank and other risk categories.

  2. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2010-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new concept of operations will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), the Japan Aerospace Exploration Agency's (JAXA's) H-II Transfer Vehicle (HTV) and the Boeing Delta IV Heavy (DIV-H). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  3. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  4. EVA safety: Space suit system interoperability

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.; McBarron, J. W.; Abramov, L. P.; Zvezda, A. O.

    1995-01-01

    The results and the recommendations of the International Academy of Astronautics extravehicular activities (IAA EVA) Committee work are presented. The IAA EVA protocols and operation were analyzed for harmonization procedures and for the standardization of safety critical and operationally important interfaces. The key role of EVA and how to improve the situation based on the identified EVA space suit system interoperability deficiencies were considered.

  5. Educational Development in Thailand: The Role of World Bank Lending. A World Bank Operations Evaluation Study.

    ERIC Educational Resources Information Center

    World Bank, Washington, DC.

    The World Bank's Operation Evaluation Department (OED) evaluates educational development in Thailand and assesses the cumulative impact of the Bank's projects on development in that country. From 1966 to date, the Bank supported six education projects with an estimated cost of a half billion dollars. The report covers: (1) economic and educational…

  6. Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.

  7. An International Survey of Brain Banking Operation and Characterization Practices.

    PubMed

    Palmer-Aronsten, Beatrix; Sheedy, Donna; McCrossin, Toni; Kril, Jillian

    2016-12-01

    Brain banks continue to make a major contribution to the study of neurological and psychiatric disorders. The current complexity and scope of research heighten the need for well-characterized cases and the demand for larger cohorts and necessitate strategies, such as the establishment of bank networks based in regional areas. While individual brain banks have developed protocols that meet researchers' needs within the confines of resources and funding, to further promote collaboration, standardization and scientific validity and understanding of the current protocols of participating banks are required. A survey was sent to brain banks, identified by an Internet search, to investigate operational protocols, case characterization, cohort management, data collection, standardization, and degree of collaboration between banks. The majority of the 24 banks that returned the survey have been established for more than 20 years, and most are affiliated with a regional network. While prospective donor programs were the primary source of donation, the data collected on donors varied. Longitudinal information assists case characterization and enhances the analysis capabilities of research. However, acquiring this information depended on the availability of qualified staff. Respondents indicated a high level of importance for standardization, but only 8 of 24 considered this occurred between banks. Standard diagnostic criteria were not achieved in the classification of controls, and some banks relied on the researcher to indicate the criteria for classification of controls. Although the capacity to collaborate with other banks was indicated by 16 of 24 banks, this occurred infrequently. Engagement of all brain banks to participate toward a consensus of diagnostic tools, especially for controls, will strengthen collaboration.

  8. 12 CFR 250.143 - Member bank purchase of stock of foreign operations subsidiaries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Federal Reserve Act governing the foreign investments and operations of member banks. It is clear... operate operations subsidiaries at locations in the United States. Investments by member banks in foreign... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Member bank purchase of stock of...

  9. 12 CFR 250.143 - Member bank purchase of stock of foreign operations subsidiaries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Federal Reserve Act governing the foreign investments and operations of member banks. It is clear... operate operations subsidiaries at locations in the United States. Investments by member banks in foreign... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Member bank purchase of stock of...

  10. EVA Physiology

    NASA Video Gallery

    An introduction to the risk of decompression sickness (DCS) in astronauts during EVA. This will include an explanation of Prebreathe Protocols (PB), to affect nitrogen washout as a primary risk mit...

  11. 12 CFR 7.4003 - Establishment and operation of a remote service unit by a national bank.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., operated by a customer of a bank, that conducts banking functions, such as receiving deposits, paying... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Establishment and operation of a remote service unit by a national bank. 7.4003 Section 7.4003 Banks and Banking COMPTROLLER OF THE...

  12. EVA Skills Training

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    Dr. Parazynski and a colleague from Extravehicular Activity (EVA), Robotics, & Crew Systems Operations (DX) worked closely to build the EVA Skills Training Program, and for the first time, defined the gold standards of EVA performance, allowing crewmembers to increase their performance significantly. As part of the program, individuals had the opportunity to learn at their own rate, taking additional water time as required, to achieve that level of performance. This focus on training to one's strengths and weaknesses to bolster them enabled the Crew Office and DX to field a much larger group of spacewalkers for the daunting "wall of EVA" required for the building and maintenance of the ISS. Parazynski also stressed the need for designers to understand the capabilities and the limitations of a human in a spacesuit, as well as opportunities to improve future generations of space. He shared lessons learned (how the Crew Office engaged in these endeavors) and illustrated the need to work as a team to develop these complex systems.

  13. Ground Operations Aerospace Language (GOAL). Volume 3: Data bank

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The GOAL (Ground Operations Aerospace Language) test programming language was developed for use in ground checkout operations in a space vehicle launch environment. To insure compatibility with a maximum number of applications, a systematic and error-free method of referencing command/response (analog and digital) hardware measurements is a principle feature of the language. Central to the concept of requiring the test language to be independent of launch complex equipment and terminology is that of addressing measurements via symbolic names that have meaning directly in the hardware units being tested. To form the link from test program through test system interfaces to the units being tested the concept of a data bank has been introduced. The data bank is actually a large cross-reference table that provides pertinent hardware data such as interface unit addresses, data bus routings, or any other system values required to locate and access measurements.

  14. 12 CFR 7.4009 - Applicability of state law to national bank operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Criminal law 8 8 8 Id. (iv) Rights to collect debts; (v) Acquisition and transfer of property; (vi... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Applicability of state law to national bank... BANK ACTIVITIES AND OPERATIONS Preemption § 7.4009 Applicability of state law to national...

  15. Understanding Skill in EVA Mass Handling. Volume 1; Theoretical and Operational Foundations

    NASA Technical Reports Server (NTRS)

    Riccio, Gary; McDonald, Vernon; Peters, Brian; Layne, Charles; Bloomberg, Jacob

    1997-01-01

    This report describes the theoretical and operational foundations for our analysis of skill in extravehicular mass handling. A review of our research on postural control, human-environment interactions, and exploratory behavior in skill acquisition is used to motivate our analysis. This scientific material is presented within the context of operationally valid issues concerning extravehicular mass handling. We describe the development of meaningful empirical measures that are relevant to a special class of nested control systems: manual interactions between an individual and the substantial environment. These measures are incorporated into a unique empirical protocol implemented on NASA's principal mass handling simulator, the precision air-bearing floor, in order to evaluate skill in extravehicular mass handling. We discuss the components of such skill with reference to the relationship between postural configuration and controllability of an orbital replacement unit, the relationship between orbital replacement unit control and postural stability, the relationship between antecedent and consequent movements of an orbital replacement unit, and the relationship between antecedent and consequent postural movements. Finally, we describe our expectations regarding the operational relevance of the empirical results as it pertains to extravehicular activity tools, training, monitoring, and planning.

  16. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  17. Design and Verification of Space Station EVA-Operated Truss Attachment System

    NASA Technical Reports Server (NTRS)

    Katell, Gabriel

    2001-01-01

    This paper describes the design and verification of a system used to attach two segments of the International Space Station (ISS). This system was first used in space to mate the P6 and Z1 trusses together in December 2000, through a combination of robotic and extravehicular tasks. Features that provided capture, coarse alignment, and fine alignment during the berthing process are described. Attachment of this high value hardware was critical to the ISS's sequential assembly, necessitating the inclusion of backup design and operational features. Astronauts checked for the proper performance of the alignment and bolting features during on-orbit operations. During berthing, the system accommodates truss-to-truss relative displacements that are caused by manufacturing tolerances and on-orbit thermal gradients. After bolt installation, the truss interface becomes statically determinate with respect to in-plane shear loads and isolates attach bolts from bending moments. The approach used to estimate relative displacements and the means of accommodating them is explained. Confidence in system performance was achieved through a cost-effective collection of tests and analyses, including thermal, structural, vibration, misalignment, contact dynamics, underwater simulation, and full-scale functional testing. Design considerations that have potential application to other mechanisms include accommodating variations of friction coefficients in the on-orbit joints, wrench torque tolerances, joint preload, moving element clearances at temperature extremes, and bolt-nut torque reaction.

  18. Climbing the Extravehicular Activity (EVA) Wall - Safely

    NASA Technical Reports Server (NTRS)

    Fuentes, Jose; Greene, Stacie

    2010-01-01

    The success of the EVA team, that includes the EVA project office, Crew Office, Mission Operations, Engineering and Safety, is assured by the full integration of all necessary disciplines. Safety participation in all activities from hardware development concepts, certification and crew training, provides for a strong partnership within the team. Early involvement of Safety on the EVA team has mitigated risk and produced a high degree of mission success.

  19. Risk Management in EVA

    NASA Technical Reports Server (NTRS)

    Hall, Jonathan; Lutomski, M.

    2006-01-01

    This viewgraph presentation reviews the use of risk management in Extravehicular Activities (EVA). The contents include: 1) EVA Office at NASA - JSC; 2) EVA Project Risk Management: Why and When; 3) EVA Office Risk Management: How; 4) Criteria for Closing a Risk; 5) Criteria for Accepting a Risk; 6) ISS IRMA Reference Card Data Entry Requirement s; 7) XA/ EVA Office Risk Activity Summary; 8) EVA Significant Change Summary; 9) Integrated Risk Management Application (XA) Matrix, March 31, 2004; 10) ISS Watch Item: 50XX Summary Report; and 11) EVA Project RM Usefulness

  20. Advanced EVA system design requirements study: EVAS/space station system interface requirements

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1985-01-01

    The definition of the Extravehicular Activity (EVA) systems interface requirements and accomodations for effective integration of a production EVA capability into the space station are contained. A description of the EVA systems for which the space station must provide the various interfaces and accomodations are provided. The discussion and analyses of the various space station areas in which the EVA interfaces are required and/or from which implications for EVA system design requirements are derived, are included. The rationale is provided for all EVAS mechanical, fluid, electrical, communications, and data system interfaces as well as exterior and interior requirements necessary to facilitate EVA operations. Results of the studies supporting these discussions are presented in the appendix.

  1. 12 CFR 7.4004 - Establishment and operation of a deposit production office by a national bank.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Establishment and operation of a deposit production office by a national bank. 7.4004 Section 7.4004 Banks and Banking COMPTROLLER OF THE CURRENCY... bank customer using a DPO must be performed by the customer, either in person at the main office or...

  2. Managing Climate Risk. Integrating Adaptation into World Bank Group Operations

    SciTech Connect

    Van Aalst, M.

    2006-08-15

    Climate change is already taking place, and further changes are inevitable. Developing countries, and particularly the poorest people in these countries, are most at risk. The impacts result not only from gradual changes in temperature and sea level but also, in particular, from increased climate variability and extremes, including more intense floods, droughts, and storms. These changes are already having major impacts on the economic performance of developing countries and on the lives and livelihoods of millions of poor people around the world. Climate change thus directly affects the World Bank Group's mission of eradicating poverty. It also puts at risk many projects in a wide range of sectors, including infrastructure, agriculture, human health, water resources, and environment. The risks include physical threats to the investments, potential underperformance, and the possibility that projects will indirectly contribute to rising vulnerability by, for example, triggering investment and settlement in high-risk areas. The way to address these concerns is not to separate climate change adaptation from other priorities but to integrate comprehensive climate risk management into development planning, programs, and projects. While there is a great need to heighten awareness of climate risk in Bank work, a large body of experience on climate risk management is already available, in analytical work, in country dialogues, and in a growing number of investment projects. This operational experience highlights the general ingredients for successful integration of climate risk management into the mainstream development agenda: getting the right sectoral departments and senior policy makers involved; incorporating risk management into economic planning; engaging a wide range of nongovernmental actors (businesses, nongovernmental organizations, communities, and so on); giving attention to regulatory issues; and choosing strategies that will pay off immediately under current

  3. 12 CFR 900.2 - Terms relating to Bank operations, mission and supervision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supervision. 900.2 Section 900.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.2 Terms relating to Bank operations, mission and... U.S.C. 1426(b)), and part 933 of this chapter, as approved by the Finance Board, unless the...

  4. 12 CFR 900.2 - Terms relating to Bank operations, mission and supervision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... supervision. 900.2 Section 900.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.2 Terms relating to Bank operations, mission and... U.S.C. 1426(b)), and part 933 of this chapter, as approved by the Finance Board, unless the...

  5. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  6. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  7. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie S.; Alpert, Brian K.; Montalvo, Edwin James; Welsh, Lawrence Daren; Wray, Scott; Mavridis, Costa

    2016-01-01

    The EVA Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, easy to search repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision controlled system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, as well as hundreds of others that support the EVA. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  8. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  9. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  10. EVA Wiki - Transforming Knowledge Management for EVA Flight Controllers and Instructors

    NASA Technical Reports Server (NTRS)

    Johnston, Stephanie

    2016-01-01

    The EVA (Extravehicular Activity) Wiki was recently implemented as the primary knowledge database to retain critical knowledge and skills in the EVA Operations group at NASA's Johnson Space Center by ensuring that information is recorded in a common, searchable repository. Prior to the EVA Wiki, information required for EVA flight controllers and instructors was scattered across different sources, including multiple file share directories, SharePoint, individual computers, and paper archives. Many documents were outdated, and data was often difficult to find and distribute. In 2011, a team recognized that these knowledge management problems could be solved by creating an EVA Wiki using MediaWiki, a free and open-source software developed by the Wikimedia Foundation. The EVA Wiki developed into an EVA-specific Wikipedia on an internal NASA server. While the technical implementation of the wiki had many challenges, the one of the biggest hurdles came from a cultural shift. Like many enterprise organizations, the EVA Operations group was accustomed to hierarchical data structures and individually-owned documents. Instead of sorting files into various folders, the wiki searches content. Rather than having a single document owner, the wiki harmonized the efforts of many contributors and established an automated revision control system. As the group adapted to the wiki, the usefulness of this single portal for information became apparent. It transformed into a useful data mining tool for EVA flight controllers and instructors, and also for hundreds of other NASA and contract employees. Program managers, engineers, astronauts, flight directors, and flight controllers in differing disciplines now have an easier-to-use, searchable system to find EVA data. This paper presents the benefits the EVA Wiki has brought to NASA's EVA community, as well as the cultural challenges it had to overcome.

  11. EVA Performance Prediction

    NASA Technical Reports Server (NTRS)

    Peacock, Brian; Maida, James; Rajulu, Sudhakar

    2004-01-01

    out for EVA activities are based more on extensive domain experience than any formal analytic structure. Conversely, physical task analysis for industrial and structured evidence from training and EV A contexts. Again on earth there is considerable evidence of human performance degradation due to encumbrance and fatigue. These industrial models generally take the form of a discounting equation. The development of performance estimates for space operations, such as timeline predictions for EVA is generally based on specific input from training activity, for example in the NBL or KC135. uniformed services tasks on earth are much more formalized. Human performance data in the space context has two sources: first there is the micro analysis of performance in structured tasks by the space physiology community and second there is the less structured evidence from training and EV A contexts.

  12. Best practice guidelines for the operation of a donor human milk bank in an Australian NICU.

    PubMed

    Hartmann, B T; Pang, W W; Keil, A D; Hartmann, P E; Simmer, K

    2007-10-01

    Until the establishment of the PREM Bank (Perron Rotary Express Milk Bank) donor human milk banking had not occurred in Australia for the past 20 years. In re-establishing donor human milk banking in Australia, the focus of the PREM Bank has been to develop a formal and consistent approach to safety and quality in processing during the operation of the human milk bank. There is currently no existing legislation in Australia that specifically regulates the operation of donor human milk banks. For this reason the PREM Bank has utilised existing and internationally recognised management practices for managing hazards during food production. These tools (specifically HACCP) have been used to guide the development of Standard Operating Procedures and Good Manufacturing Practice for the screening of donors and processing of donor human milk. Donor screening procedures are consistent with those recommended by other human milk banks operating internationally, and also consistent with the requirements for blood and tissue donation in Australia. Controlled documentation and record keep requirements have also been developed that allow complete traceability from individual donation to individual feed dispensed to recipient and maintain a record of all processing and storage conditions. These operational requirements have been developed to reduce any risk associated with feeding pasteurised donor human milk to hospitalised preterm or ill infants to acceptable levels.

  13. EVA Physiology, Systems and Performance [EPSP] Project

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  14. Applications of EVA guidelines and design criteria. Volume 3: EVA systems cost model formating

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    The development of a model for estimating the impact of manned EVA costs on future payloads is discussed. Basic information on the EV crewman requirements, equipment, physical and operational characteristics, and vehicle interfaces is provided. The cost model is being designed to allow system designers to quantify the impact of EVA on vehicle and payload systems.

  15. Antarctica EVA

    NASA Technical Reports Server (NTRS)

    Love, Stan

    2013-01-01

    NASA astronaut Stan Love shared his experiences with the Antarctic Search for Meteorites (ANSMET), an annual expedition to the southern continent to collect valuable samples for research in planetary science. ANSMET teams operate from isolated, remote field camps on the polar plateau, where windchill factors often reach -40? F. Several astronaut participants have noted ANSMET's similarity to a space mission. Some of the operational concepts, tools, and equipment employed by ANSMET teams may offer valuable insights to designers of future planetary surface exploration hardware.

  16. European EVA decompression sickness risks

    NASA Astrophysics Data System (ADS)

    Vogt, Lorenz; Wenzel, Jürgen; Skoog, A. I.; Luck, S.; Svensson, Bengt

    For the first manned flight of Hermes there will be a capability of performing EVA. The European EVA Space Suit will be an anthropomorphic system with an internal pressure of 500 hPa of pure oxygen. The pressure reduction from the Hermes cabin pressure of 1013 hPa will induce a risk for Decompression Sickness (DCS) for the EVA crewmember if no adequate protective procedures are implemented. Specific decompression procedures have to be developed. From a critical review of the literature and by using knowledge gained from research conducted in the past in the fields of diving and aerospace medicine safe protective procedures are proposed for the European EVA scenario. An R factor of 1.2 and a tissue half-time ( t1/2) of 360 minutes in a single-tissue model have been identified as appropriate operational values. On the basis of an acceptable risk level of approximately 1%, oxygen prebreathing times are proposed for (a) direct pressure reduction from 1013 hPa to a suit pressure of 500 hPa, and (b) staged decompression using a 700 hPa intermediate stage in the spacecraft cabin. In addition, factors which influence individual susceptibility to DCS are identified. Recommendations are also given in the areas of crew selection and medical monitoring requirements together with therapeutic measures that can be implemented in the Hermes scenario. A method for demonstration of the validity of proposed risks and procedures is proposed.

  17. EVA Physiology and Medical Considerations Working in the Suit

    NASA Technical Reports Server (NTRS)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  18. 31. SAR2, INTERIOR SHOWING SWITCHBOARD, OPERATOR'S DESK, AND TRANSFORMER BANK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SAR-2, INTERIOR SHOWING SWITCHBOARD, OPERATOR'S DESK, AND TRANSFORMER BANK. SCE negative no. 10327, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  19. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  20. Establishment, operation and development of a donor human milk bank.

    PubMed

    Biasini, Augusto; Stella, Marcello; Malaigia, Laura; China, Mariachiara; Azzalli, Milena; Laguardia, Maria Chiara; Rizzo, Vittoria

    2013-10-01

    Human milk is very valuable in premature infant nutrition. The collection, screening, processing and distribution of donor human milk are described in this report. These activities take place in the Donor Human Milk Bank (DHMB) of the Large Romagna Area (LRA) in Italy, the development of which is also described here. Over the years, the activities of this bank, which is located in Cesena Hospital, in the center of the LRA, have developed from an informal and domestic-level activity to become a multistep controlled process designed to prevent the possibility of disease transmission. This little food-supply industry, run by a multi-disciplinary team with strict rules and diverse responsibilities, complies with the Hazards Analysis and Critical Control Points (HACCP) system.

  1. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  2. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  3. Mission Specialists Mario Runco and Greg Harbaugh suiting up for EVA.

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Candid view of EVA Mission Specialists Mario Runco and Greg Harbaugh suiting up for EVA in the middeck with the assistance of Mission Specialist Susan Helms (reviewing the operation with a procedural checklist).

  4. EVA Health and Human Performance Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Abercromby, A. F.; Norcross, J.; Jarvis, S. L.

    2016-01-01

    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  5. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  6. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  7. Creating a Lunar EVA Work Envelope

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  8. Test and Operation of the WHMFC 12.6 MJ Capacitor Bank Power Supply System

    NASA Astrophysics Data System (ADS)

    Ding, H. F.; Jiang, C. X.; Xu, Y.; Ding, T. H.; Zou, X. T.; Li, L.; Pan, Y.

    2013-03-01

    The 12.6 MJ capacitor bank power supply system of the Wuhan National High Magnetic Field Center (WHMFC) at Huazhong University of Science and Technology (HUST) consists of 11 independent 1 MJ modules and 2 independent 0.8 MJ modules; it was tested and put into operation in October 2010. The capacitor bank power supply system connects to 8 measurement cells through three current collectors and four selectors. A number of nondestructive magnets for different bore sizes and peak fields have been energized by this system, including an 83 T dual stage magnet. The results of tests and operation are presented in this paper.

  9. 12 CFR 7.5009 - Location under 12 U.S.C. 85 of national banks operating exclusively through the Internet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operating exclusively through the Internet. 7.5009 Section 7.5009 Banks and Banking COMPTROLLER OF THE... under 12 U.S.C. 85 of national banks operating exclusively through the Internet. For purposes of 12 U.S.C. 85, the main office of a national bank that operates exclusively through the Internet is...

  10. 12 CFR 7.5009 - Location under 12 U.S.C. 85 of national banks operating exclusively through the Internet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operating exclusively through the Internet. 7.5009 Section 7.5009 Banks and Banking COMPTROLLER OF THE... under 12 U.S.C. 85 of national banks operating exclusively through the Internet. For purposes of 12 U.S.C. 85, the main office of a national bank that operates exclusively through the Internet is...

  11. 12 CFR 7.5009 - Location under 12 U.S.C. 85 of national banks operating exclusively through the Internet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operating exclusively through the Internet. 7.5009 Section 7.5009 Banks and Banking COMPTROLLER OF THE... under 12 U.S.C. 85 of national banks operating exclusively through the Internet. For purposes of 12 U.S.C. 85, the main office of a national bank that operates exclusively through the Internet is...

  12. 12 CFR 7.5009 - Location under 12 U.S.C. 85 of national banks operating exclusively through the Internet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operating exclusively through the Internet. 7.5009 Section 7.5009 Banks and Banking COMPTROLLER OF THE... under 12 U.S.C. 85 of national banks operating exclusively through the Internet. For purposes of 12 U.S.C. 85, the main office of a national bank that operates exclusively through the Internet is...

  13. 12 CFR 7.5009 - Location under 12 U.S.C. 85 of national banks operating exclusively through the Internet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operating exclusively through the Internet. 7.5009 Section 7.5009 Banks and Banking COMPTROLLER OF THE... under 12 U.S.C. 85 of national banks operating exclusively through the Internet. For purposes of 12 U.S.C. 85, the main office of a national bank that operates exclusively through the Internet is...

  14. 12 CFR 1500.2 - What are the limitations on managing or operating a portfolio company held as a merchant banking...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operating a portfolio company held as a merchant banking investment? 1500.2 Section 1500.2 Banks and Banking... on managing or operating a portfolio company held as a merchant banking investment? (a) May a financial holding company routinely manage or operate a portfolio company? Except as permitted in...

  15. EVA Glove Research Team

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  16. Effective Teamwork: The EVA NBL Experience

    NASA Technical Reports Server (NTRS)

    Crocker, Lori

    2007-01-01

    This viewgraph presentation reviews the experience of improving the operation of the ExtraVehiclar Activity (EVA) Neutral Buoyancy Laboratory as a team of NASA employees and contractors. It reviews specific recommendations to use in turning a struggling organization around as a NASA/contractor team

  17. Real-Time EVA Troubleshooting

    NASA Technical Reports Server (NTRS)

    Leestma, David

    2013-01-01

    David Leestma was EV-1 for the STS-41G extravehicular activity (EVA) with Kathy Sullivan (first American female spacewalker). They conducted an EVA to fully demonstrate the feasibility of refueling satellites from the Space Shuttle, and performed the first contingency EVA task involving the Ku-band antenna. STS-41G was the fourth Space Shuttle mission to perform an EVA, and Leestma related his experiences with training, the spacesuit, and EVA tasks that were conducted on October 11, 1984 during this mission.

  18. Astronaut hazard during free-flight polar EVA

    NASA Technical Reports Server (NTRS)

    Hall, W. N.

    1985-01-01

    Extravehicular Activity (EVA) during Shuttle flights planned for the late 1980's includes several factors which together may constitute an astronaut hazard. Free-flight EVA is planned whereas prior United States Earth orbit EVA has used umbilical tethers carrying communications, coolant, and oxygen. EVA associated with missions like LANDSAT Retrieval will be in orbits through the auroral oval where charging of spacecraft may occur. The astronaut performing free flight EVA constitutes an independent spacecraft. The astronaut and the Shuttle make up a system of electrically isolated spacecraft with a wide disparity in size. Unique situations, such as the astronaut being in the wake of the Shuttle while traversing an auroral disturbance, could result in significant astronaut and Shuttle charging. Charging and subsequent arc discharge are important because they have been associated with operating upsets and even satellite failure at geosynchronous orbit. Spacecraft charging theory and experiments are examined to evaluate charging for Shuttle size spacecraft in the polar ionosphere.

  19. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  20. Development of an EVA systems cost model. Volume 3: EVA systems cost model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The EVA systems cost model presented is based on proposed EVA equipment for the space shuttle program. General information on EVA crewman requirements in a weightless environment and an EVA capabilities overview are provided.

  1. What's NEXT for EVA

    NASA Astrophysics Data System (ADS)

    Fullerton, R. K.

    The NASA Exploration Team (NEXT) promotes a vision of new capabilities through an ongoing, integrated and prioritized investment in leap ahead concepts and technologies. The wise marriage of robotic and human work systems is a key element of this vision. To enable a wide array of future destinations and applications, it is important to develop and implement systems which are scalable, environmentally adaptable, reliable and efficiently productive. This paper highlights a few of the recently envisioned customers and applications for advanced extravehicular activity (EVA) systems. It also summarizes recent conceptual and practical studies to define the features and options of such a system. More importantly, it communicates the need and progress of knowledge capture, clearly defined performance targets, credible decision making tools, tangible benefits and creative leverage. With this integrated long range approach, space exploration and EVA can accelerate and enable the future for all generations.

  2. EVA-Compatible Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements—and to protect our science from human contamination—we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and suit surfaces for analysis, but requires a specialized tool for the job. Engineers at the National Aeronautics and Space Administration (NASA) recently developed an Extravehicular Activity (EVA)-compatible swab tool that can be used to sample current space suits and life support systems. Data collected now will influence Mars life support and EVA hardware early in the planning process, before design changes become difficult and expensive.NASA’s EVA swab tool pairs a Space Shuttle-era tool handle with a commercially available swab tip mounted into a custom-designed end effector. A glove-compatible release mechanism allows the handle to quickly switch between swab tips, much like a shaving razor handle can snap onto a disposable blade cartridge. Swab tips are stowed inside individual sterile containers, each fitted with a microbial filter that allows the container to equalize atmospheric pressure, but prevents cabin contaminants from rushing into the container when passing from the EVA environment into a pressurized cabin. A bank of containers arrayed inside a tool caddy allows up to six individual samples to be collected during a given spacewalk.NASA plans to use the tool in 2016 to collect samples from various spacesuits during ground testing to determine what (if any) human-borne microbial contamination leaks from the suit under simulated thermal vacuum conditions. Next, the tool will be used on board the International Space Station to assess the types of microbial contaminants found on external environmental control and life support system vents. Data will support

  3. CETA truck and EVA restraint system

    NASA Technical Reports Server (NTRS)

    Beals, David C.; Merson, Wayne R.

    1991-01-01

    The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

  4. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  5. Study of space shuttle EVA/IVA support requirements. Volume 2: EVA/IVA tasks, guidelines, and constraints definition

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    The guidelines for EVA and IVA tasks to be performed on the space shuttle are defined. In deriving tasks, guidelines, and constraints, payloads were first identified from the mission model. Payload requirements, together with man and manipulator capabilities, vehicle characteristics and operation, and safety considerations led to a definition of candidate tasks. Guidelines and constraints were also established from these considerations. Scenarios were established, and screening criteria, such as commonality of EVA and IVA activities, were applied to derive representative planned and unplanned tasks. The whole spectrum of credible contingency situations with a potential requirement for EVA/IVA was analyzed.

  6. Benefits to blood banks of a sales and operations planning process.

    PubMed

    Keal, Donald A; Hebert, Phil

    2010-12-01

    A formal sales and operations planning (S&OP) process is a decision making and communication process that balances supply and demand while integrating all business operational components with customer-focused business plans that links high level strategic plans to day-to-day operations. Furthermore, S&OP can assist in managing change across the organization as it provides the opportunity to be proactive in the face of problems and opportunities while establishing a plan for everyone to follow. Some of the key outcomes from a robust S&OP process in blood banking would include: higher customer satisfaction (donors and health care providers), balanced inventory across product lines and customers, more stable production rates and higher productivity, more cooperation across the entire operation, and timely updates to the business plan resulting in better forecasting and fewer surprises that negatively impact the bottom line.

  7. Space Shuttle/Orbiter EVA and EVA provisions

    NASA Technical Reports Server (NTRS)

    Goodman, J. R.

    1980-01-01

    EVA objectives, procedures, and equipment for the Shuttle are reviewed. The EVA will occur as a planned excursion, to complete a mission objective, or on a contingency basis as support for the mission or to effect repairs to the Orbiter or its payload. Configurations for the placement of the airlock for EVA with and without Spacelab payloads are discussed, along with the various EVA tasks which could be expected as necessary for mission completion. Handholds have been placed in strategic positions on the RMS and along the payload doors, and a safety tether has been incorporated with line extension out to 25 ft. Off-the-shelf tools such as needlenose pliers, forceps, diagonal cutters, etc. are carried as standard equipment for the repair of malfunctioning equipment and doorlatches. Finally, attention is given to EVA lighting, communication, life-support, and work station restraint systems.

  8. Note: Repetitive operation of the capacitor bank of the low-voltage miniature plasma focus at 50 Hz.

    PubMed

    Shukla, Rohit; Shyam, Anurag

    2013-10-01

    We have already reported the low-voltage operation of a plasma focus describing the operation of plasma focus at 4.2 kV which proposes possibility of making a repetitive system using compact driving source. Another recent article describes that the same capacitor-bank can drive the plasma focus for a measured ~5 × 10(4) neutrons per shot at 5 kV and 59 kA current. In the present work, repetitive operation of the capacitor-bank of plasma focus is done and that too is being reported at a very high repetition rate of 50 Hz using very simple scheme of charging and triggering the bank. The bank is continuously discharged to burst duration of 20 s in this configuration admeasuring a thousand shots.

  9. Note: Repetitive operation of the capacitor bank of the low-voltage miniature plasma focus at 50 Hz

    NASA Astrophysics Data System (ADS)

    Shukla, Rohit; Shyam, Anurag

    2013-10-01

    We have already reported the low-voltage operation of a plasma focus describing the operation of plasma focus at 4.2 kV which proposes possibility of making a repetitive system using compact driving source. Another recent article describes that the same capacitor-bank can drive the plasma focus for a measured ˜5 × 104 neutrons per shot at 5 kV and 59 kA current. In the present work, repetitive operation of the capacitor-bank of plasma focus is done and that too is being reported at a very high repetition rate of 50 Hz using very simple scheme of charging and triggering the bank. The bank is continuously discharged to burst duration of 20 s in this configuration admeasuring a thousand shots.

  10. Standard Operating Procedures, ethical and legal regulations in BTB (Brain/Tissue/Bio) banking: what is still missing?

    PubMed

    Ravid, Rivka

    2008-06-01

    The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP's which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, "financial gain" and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.

  11. Standard Operating Procedures, ethical and legal regulations in BTB (Brain/Tissue/Bio) banking: what is still missing?

    PubMed

    Ravid, Rivka

    2008-09-01

    The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP's which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, "financial gain" and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.

  12. A Human Machine Interface for EVA

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    EVA astronauts work in a challenging environment that includes high rate of muscle fatigue, haptic and proprioception impairment, lack of dexterity and interaction with robotic equipment. Currently they are heavily dependent on support from on-board crew and ground station staff for information and robotics operation. They are limited to the operation of simple controls on the suit exterior and external robot controls that are difficult to operate because of the heavy gloves that are part of the EVA suit. A wearable human machine interface (HMI) inside the suit provides a powerful alternative for robot teleoperation, procedure checklist access, generic equipment operation via virtual control panels and general information retrieval and presentation. The HMI proposed here includes speech input and output, a simple 6 degree of freedom (dof) pointing device and a heads up display (HUD). The essential characteristic of this interface is that it offers an alternative to the standard keyboard and mouse interface of a desktop computer. The astronaut's speech is used as input to command mode changes, execute arbitrary computer commands and generate text. The HMI can respond with speech also in order to confirm selections, provide status and feedback and present text output. A candidate 6 dof pointing device is Measurand's Shapetape, a flexible "tape" substrate to which is attached an optic fiber with embedded sensors. Measurement of the modulation of the light passing through the fiber can be used to compute the shape of the tape and, in particular, the position and orientation of the end of the Shapetape. It can be used to provide any kind of 3d geometric information including robot teleoperation control. The HUD can overlay graphical information onto the astronaut's visual field including robot joint torques, end effector configuration, procedure checklists and virtual control panels. With suitable tracking information about the position and orientation of the EVA suit

  13. Operational effectiveness and quality assurance mechanisms with stochastic demand of blood supply: blood bank case study.

    PubMed

    Smith, Alan D

    2011-01-01

    A general overview of various blood products operational effectiveness and related strategies that can be utilised by service providers (in particular, healthcare providers) is presented in the present study. In terms of the massive volumes of blood products, the North American blood centres collect more than eight million units of whole blood, which represents appropriately 50% of the US and Quebec, Canada?s volunteer donor blood supply. A case study of the quality inspection and inventory control concerns of the Central Blood Bank, located in the metropolitan area of Pittsburgh, PA, is presented. Initially, brief introduction to its general operating environment is followed by sections describing its general situation, quality-service initiatives, and followed by a fairly detailed discussion of the practical applications of lessons learned from the case study.

  14. Assessing the financial, operational, and social sustainability of a biobank: the Wales Cancer Bank case study.

    PubMed

    Parry-Jones, Alison

    2014-12-01

    Biobank sustainability is a multi-faceted concept that many biobanks are wrestling with to justify their continued existence. After 10 years of operation, the Wales Cancer Bank is faced with a potential reduction in grant funding that will result in the need for a restructured approach to patient consenting, sample collection, and sample issue. A review is currently in progress, using evidence from the last 12 months, to inform the decisions that will be taken at the end of 2014 regarding the biobank's future. The information presented details the areas under consideration for revision with the perceived costs and benefits associated with the amendment. Not all outcomes are currently known, and some decisions will be made once the level of future funding is confirmed. The process of assessment has proved to be a valuable exercise and has highlighted the need for biobanks to regularly evaluate strategic principles and operating procedures using sustainability as a denominator.

  15. ChEVAS: Combining Suprarenal EVAS with Chimney Technique

    SciTech Connect

    Torella, Francesco; Chan, Tze Y. Shaikh, Usman; England, Andrew; Fisher, Robert K.; McWilliams, Richard G.

    2015-10-15

    Endovascular sealing with the Nellix{sup ®} endoprosthesis (EVAS) is a new technique to treat infrarenal abdominal aortic aneurysms. We describe the use of endovascular sealing in conjunction with chimney stents for the renal arteries (chEVAS) in two patients, one with a refractory type Ia endoleak and an expanding aneurysm, and one with a large juxtarenal aneurysm unsuitable for fenestrated endovascular repair (EVAR). Both aneurysms were successfully excluded. Our report confirms the utility of chEVAS in challenging cases, where suprarenal seal is necessary. We suggest that, due to lack of knowledge on its durability, chEVAS should only been considered when more conventional treatment modalities (open repair and fenestrated EVAR) are deemed difficult or unfeasible.

  16. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  17. Health and Safety Benefits of Small Pressurized Suitport Rovers as EVA Surface Support Vehicles

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Abercromby, Andrew F. J.

    2008-01-01

    Pressurized safe-haven providing SPE protection and decompression sickness (DCS) treatment capabilities within 20 mins at all times. Up to 50% reduction in time spent in EVA suits (vs. Unpressurized Rovers) for equal or greater Boots-on-Surface EVA exploration time. Reduces suit-induced trauma and provides improved options for nutrition, hydration, and waste-management. Time spent inside SPR during long translations may be spent performing resistive and cardiovascular exercise. Multiple shorter EVAs versus single 8 hr EVAs increases DCS safety and decreases prebreathe requirements. SPRs also offer many potential operational, engineering and exploration benefits not addressed here.

  18. [Skin and tissue bank: Operational model for the recovery and preservation of tissues and skin allografts].

    PubMed

    Martínez-Flores, Francisco; Sandoval-Zamora, Hugo; Machuca-Rodriguez, Catalina; Barrera-López, Araceli; García-Cavazos, Ricardo; Madinaveitia-Villanueva, Juan Antonio

    2016-01-01

    Tissue storage is a medical process that is in the regulation and homogenisation phase in the scientific world. The international standards require the need to ensure safety and efficacy of human allografts such as skin and other tissues. The activities of skin and tissues banks currently involve their recovery, processing, storage and distribution, which are positively correlated with technological and scientific advances present in current biomedical sciences. A description is presented of the operational model of Skin and Tissue Bank at INR as successful case for procurement, recovery and preservation of skin and tissues for therapeutic uses, with high safety and biological quality. The essential and standard guidelines are presented as keystones for a tissue recovery program based on scientific evidence, and within an ethical and legal framework, as well as to propose a model for complete overview of the donation of tissues and organ programs in Mexico. Finally, it concludes with essential proposals for improving the efficacy of transplantation of organs and tissue programs.

  19. The feasibility of Doppler monitoring during EVA.

    PubMed

    Barer, A; Filipenkov, S; Katuntsev, V; Vogt, L; Wenzel, J

    1995-07-01

    During extravehicular activities (EVA) outside the spacecraft, astronauts have to work under reduced pressure in a space suit. This pressure reduction induces the risk of decompression sickness (DCS) by the formation of gas bubbles from excess nitrogen dissolved in the organism by breathing air at normal pressure. Under laboratory conditions the gas bubbles moving in the blood stream can be detected by the non-invasive ultrasonic Doppler method. By early detection of excessive bubble formation the development of DCS symptoms may be prevented by early application of preventative measures. The method could also be useful when applied in the space suit in order to compare the results of laboratory tests with operational results, because there is a discrepancy according to the DCS risk of laboratory experiments and actual EVA missions, where no symptoms have been reported yet. A prototype Doppler sensor has been developed and implemented in the Russian Orlan suit. To investigate the feasibility of this method under simulated space conditions, the equipment has been used in a series of 12 thermovacuum chamber tests with suited subjects, where intravenous bubble formation was compared to unsuited control experiments. In more than 50% of the suited tests good Doppler recordings could be achieved. In some cases with unsatisfying results the signal could be improved by breathholding. Although the results do not yet allow any conclusion about a possible difference between suited and unsuited subjects due to the small number of tests performed, the method proved its feasibility for use in EVA suits and should be further developed to enhance the safety of EVA procedures.

  20. Minimizing EVA Airlock Time and Depress Gas Losses

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Lafuse, Sharon A.

    2008-01-01

    This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas. The current ISS airlock gas reclamation method requires approximately 45 minutes of the astronaut s time in the airlock and 1 KW in electrical power. The proposed method would decrease the astronaut s time in the airlock because the depress gas is being temporarily stored in a reservoir tank for later recovery. Once the EVA crew is conducting the EVA, the volume in the reservoir would be pumped back to the cabin at a slow rate. Various trades were conducted to optimize this method, which include time to equalize the airlock with the evacuated reservoir versus reservoir size, pump power to reclaim depress gas versus time allotted, inflatable reservoir pros and cons (weight, volume, complexity), and feasibility of spent lunar nitrogen and oxygen tanks as reservoirs.

  1. 12 CFR 211.30 - Criteria for evaluating U.S. operations of foreign banks not subject to consolidated supervision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... booked in its home country, as well as the distribution and location of its assets and liabilities that... and any affiliates are subject to supervision by its home country supervisor; (3) Whether the home... home country supervisor has any objection to the bank continuing to operate in the United States;...

  2. 12 CFR 211.30 - Criteria for evaluating U.S. operations of foreign banks not subject to consolidated supervision.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... booked in its home country, as well as the distribution and location of its assets and liabilities that... and any affiliates are subject to supervision by its home country supervisor; (3) Whether the home... home country supervisor has any objection to the bank continuing to operate in the United States;...

  3. Russian-American Cooperation in EVA Area (from Russian Perspective)

    NASA Astrophysics Data System (ADS)

    Tsygankov, O. S.; Alexandrov, A. P.; Poleschuk, A. F.

    Russian and American extravehicular activity (EVA) specialists started cooperation after Russia entered the ISS Program. Practical work began in the framework of the Mir-NASA Program, when astronauts J. Linenger, M. Foale and D. Wolf were trained in Russia and participated in the EVA on MIR. This was the intercourse of two experiences, two equal schools each formed under specific conditions. The Report studies the peculiarities of national EVA schools, shows the experience in their integration for the ISS purposes. Organizational aspects of the ISS Program to optimize the implementation of the EVA tasks are presented. It gives examples of the cooperation and development of the hardware equally compatible both with EMU and ORLAN-M space suits, impacts of different schools on the operational methods. It presents proposals on the further integration of the Russian and American schools, considers the prerequisites and perspectives of maximally integrated EVA system for the ISS and the possibility of its incorporation in future in to the mission to Mars.

  4. Electrostatic Discharge Issues in International Space Station Program EVAs

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

  5. EVA crew workstation provisions for Skylab and Space Shuttle missions

    NASA Technical Reports Server (NTRS)

    Brown, N. E.; Saenger, E. L.

    1973-01-01

    A synopsis of scheduled extravehicular activities (EVA) for a nominal Skylab mission is presented with an overview of EV workstation equipment developed for the program. Also included are the unprogrammed extravehicular activities and supporting equipment that was quickly developed and retrofitted in a series of successful operations to salvage the crippled Skylab Cluster during the Skylab 1 Mission. Because EVA appears to be a requirement for the Space Shuttle Program, candidate EV workstations are discussed in terms of effective and economical Shuttle payload servicing and maintenance. Several such concepts, which could provide a versatile, portable EV support system, are presented.

  6. Simulating Retail Banking for Banking Students

    ERIC Educational Resources Information Center

    Supramaniam, Mahadevan; Shanmugam, Bala

    2009-01-01

    The purpose of this study was to examine the implementation flow and development of retail bank management simulation based training system which could provide a comprehensive knowledge about the operations and management of banks for the banking students. The prototype of a Retail banking simulation based training system was developed based on…

  7. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  8. Current status of cord blood banking during first two years of 'National Government-Assigned Public Cord Blood Banks Operation' in Korea.

    PubMed

    Roh, Eun Youn; Lee, Jung Lim; Yoon, Jong Hyun; Kim, Su Yeon; Lee, Kyung Eun; Song, Do Young; Kim, Tai Gyu; Shin, Sue

    2014-10-01

    Cord blood (CB) has become a viable stem cell source for hematopoietic stem cell transplantation (HSCT), and public cord blood banks (CBBs) have been established to manage donated cord blood units (CBUs) for unrelated HSCT. As the potential uses for CB continue to grow, there is a global tendency to encourage public CBBs. The aim of this study was to investigate the current status of public CBBs that were designated and supported by the Korean national government. We analyzed 6,168 CBUs preserved at the 3 Government-Assigned Public CBBs during their first two years of operation (2012-2013) and the standard operating procedures for CB processing at each CBB. CBU inventories at ALLCORD, Catholic HSC Bank and Fatima Public CBB were 4,022, 1,207 and 939 units, respectively. Total nucleated cell (TNC) counts per unit were 11.0 × 10(8) at ALLCORD, 10.7 × 10(8) at Fatima and 9.8 × 10(8) at Catholic, and all far exceeded the requirement for cryopreservation under the law (7.0 × 10(8)). CD34(+) cell counts and % were as follows: 3.5 × 10(6) (0.31 %) in ALLCORD, 2.2 × 10(6) (0.20 %) in Fatima and 2.2 × 10(6) (0.22 %) in Catholic. All the three banks observed the 'CB Act' in dealing with CBUs, including collection, processing, laboratory tests and cryopreservation. Government supported and strictly law-abiding public CBBs in Korea have considerable CBU inventories of high quality in terms of efficacy and safety. Legislation and accompanying government-support will be helpful for establishing CB standardization, vitalizing CBT and improving clinical outcomes.

  9. 12 CFR 225.141 - Operations subsidiaries of a bank holding company.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF THE FEDERAL RESERVE SYSTEM (CONTINUED) BANK HOLDING COMPANIES AND CHANGE IN BANK CONTROL... formation of a wholly owned subsidiary of an approved 4(c)(8) company to engage in activities that such a... not believe that such prohibition should apply to the formation by a holding company of a...

  10. 12 CFR 225.141 - Operations subsidiaries of a bank holding company.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF THE FEDERAL RESERVE SYSTEM BANK HOLDING COMPANIES AND CHANGE IN BANK CONTROL (REGULATION Y... has stated that it would permit, without any specific regulatory approval, the formation of a wholly... such prohibition should apply to the formation by a holding company of a wholly-owned subsidiary...

  11. Reducing cyclone pressure drop with evasés

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are widely used to separate particles from gas flows and as air emissions control devices. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Evasés or exit diffusers potentially could reduce exit pressure losses without affecting collection...

  12. Space Station Freedom airlock - The integration of IVA and EVA capabilities in an orbital element

    NASA Astrophysics Data System (ADS)

    Moore, Thomas O., Jr.; Matthews, Anthony P.

    1992-07-01

    In order to meet mission goals, the Space Station Freedom (SSF) airlock must maximize crew efficiency while supporting a range of extravehicular activity (EVA) and intravehicular activity (IVA) operations. EVA will be a frequently planned occurrence on SSF. In order to maximize the usefulness of the limited EVA resource, overhead times must be minimized. This paper discusses how the SSF airlock outfitting design responds to both IVA and EVA requirements. An overview of the SSF airlock and the missions it must accomplish are also provided. The focus of this paper is on how the outfitting and man systems designs provide solutions to multiple requirements, explicitly stated as well as derived requirements. The Space Station airlock is evaluated as an integrated system in the functional assessments of the EVA task, and this paper explains how station common hardware and systems are adapted to the unique airlock environment.

  13. Amendment to 2010 Italian guidelines for the establishment and operation of a donor human milk bank.

    PubMed

    Arslanoglu, S; Bertino, E; Tonetto, P; De Nisi, G; Ambruzzi, A M; Biasini, A; Profeti, C; Spreghini, M R; Moro, G E

    2012-01-01

    The present paper is an amendment to the recent Italian Guidelines of human milk banking published in 2010. Working Group on Guidelines (Panel) of the Italian Association of Human Milk Banks (AIBLUD) states, in accordance with the European Union Comission's Amending Directive of January 2011, that the hard plastic feeding bottles used in the collection, storage and pasteurization of the human milk should be Bisphenol A (BPA) free. Until new evidence are available polycarbonate feeding bottles should not be used for collection, storage and pasteurization of human milk. The paper summarizes the former and current European Commission Directives and shows the related amending changes to the 2010 Italian Human Milk Banking Guidelines.

  14. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  15. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  16. EVA 2000: A European/Russian space suit concept

    NASA Astrophysics Data System (ADS)

    Skoog, A. I.; Abramov, I. P.

    1995-07-01

    For the European manned space activities an EVA space suit system was being developed in the frame of the Hermes Space Vehicle Programme of the European Space Agency (ESA). The space suit was to serve the needs for all relevant extravehicular activities for the Hermes/Columbus operations planned to begin in 2004. For the present Russian manned space programme the relevant EVAs are performed by the Orlan-DMA semi-rigid space suit. The origin of its development reaches back to the 1970s and has since been adapted to cover the needs for extravehicular activities on Salyut and MIR until today. The latest modification of the space suit, which guaranteed its completely self-contained operation, was made in 1988. However, Russian specialists considered it necessary to start developing an EVA space suit of a new generation, which would have improved performance and would cover the needs by the turn of the century and into the beginning of the next century. Potentially these two suit developments could have a lot in common based on similarities in present concepts. As future manned space activities become more and more an international effort, a safe and reliable interoperability of the different space suit systems is required. Based on the results of the Munich Minister Conference in 1991, the European Space Agency and the Russian Space Agency agreed to initiate a requirements analysis and conceptual design study to determine the feasibility of a joint space suit development, EVA 2000. The design philosophy for the EVA 2000 study was oriented on a space suit system design of: —space suit commonality and interoperability —increased crew productivity and safety —increase in useful life and reduced maintainability —reduced development and production cost. The EVA 2000 feasibility study was performed in 1992, and with the positive conclusions for EVA 2000, this approach became the new joint European/Russian EVA Suit 2000 Development Programme. This paper gives an

  17. An EVA Suit Fatigue, Strength, and Reach Model

    NASA Technical Reports Server (NTRS)

    Maida, James C.

    1999-01-01

    The number of Extra-Vehicular Activities (EVAs) performed will increase dramatically with the upcoming Space Station assembly missions. It is estimated that up to 900 EVA hours may be required to assemble the Space Station with an additional 200 hours per year for maintenance requirements. Efficient modeling tools will be essential to assist in planning these EVAS. Important components include strength and fatigue parameters, multi-body dynamics and kinematics. This project is focused on building a model of the EVA crew member encompassing all these capabilities. Phase 1, which is currently underway, involves collecting EMU suited and unsuited fatigue, strength and range of motion data, for all major joints of the body. Phase 2 involves processing the data for model input, formulating comparisons between the EMU suits and deriving generalized relationships between suited and unsuited data. Phase 3 will be formulation of a multi-body dynamics model of the EMU capable of predicting mass handling properties and integration of empirical data into the model. Phase 4 will be validation of the model with collected EMU data from the Neutral Buoyancy Laboratory at NASA/JSC. Engineers and designers will use tie EVA suit database to better understand the capabilities of the suited individuals. This knowledge will lead to better design of tools and planned operations. Mission planners can use the modeling system and view the animations and the visualizations of the various parameters, such as overall fatigue, motion, timelines, reach, and strength to streamline the timing, duration, task arrangement, personnel and overall efficiency of the EVA tasks. Suit designers can use quantifiable data at common biomechanical structure points to better analyze and compare suit performance.

  18. Experiments with an EVA Assistant Robot

    NASA Technical Reports Server (NTRS)

    Burridge, Robert R.; Graham, Jeffrey; Shillcutt, Kim; Hirsh, Robert; Kortenkamp, David

    2003-01-01

    Human missions to the Moon or Mars will likely be accompanied by many useful robots that will assist in all aspects of the mission, from construction to maintenance to surface exploration. Such robots might scout terrain, carry tools, take pictures, curate samples, or provide status information during a traverse. At NASA/JSC, the EVA Robotic Assistant (ERA) project has developed a robot testbed for exploring the issues of astronaut-robot interaction. Together with JSC's Advanced Spacesuit Lab, the ERA team has been developing robot capabilities and testing them with space-suited test subjects at planetary surface analog sites. In this paper, we describe the current state of the ERA testbed and two weeks of remote field tests in Arizona in September 2002. A number of teams with a broad range of interests participated in these experiments to explore different aspects of what must be done to develop a program for robotic assistance to surface EVA. Technologies explored in the field experiments included a fuel cell, new mobility platform and manipulator, novel software and communications infrastructure for multi-agent modeling and planning, a mobile science lab, an "InfoPak" for monitoring the spacesuit, and delayed satellite communication to a remote operations team. In this paper, we will describe this latest round of field tests in detail.

  19. The EVA space suit development in Europe

    NASA Astrophysics Data System (ADS)

    Skoog, A. Ingemar

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  20. Dust Tolerant EVA-Compatible Connectors

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Townsend, Ivan I., III

    2010-01-01

    The objectives of this project are to develop connectors (quick disconnects and umbilical systems) that can be repetitively and reliably mated and de-mated during Lunar surface extra-vehicular activities. These standardized interfaces will be required for structural integrity and commodities transfer between linked surface elements. QD's fittings are needed for EVA spacesuit Primary Life Support Systems as well as liquid cooled garment circulation and suit heat rejection. Umbilical electro-mechanical systems (connectors) are needed between discrete surface systems for transfer of air, power, fluid (water), and data must be capable of being operated by extra vehicular astronaut crew members and/or robotic assistants. There exists an urgent need to prevent electro-statically charged dust and debris from clogging and degrading the interface seals and causing leakage and spills of hazardous commodities, contaminating the flowstream, and degrading the mechanisms needed for umbilical connection. Other challenges include modularity, standardization, autonomous operation, and lifetime sealing issues.

  1. 12 CFR 225.171 - What are the limitations on managing or operating a portfolio company held as a merchant banking...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...?—(1) Examples of routine management or operation—(i) Executive officer interlocks at the portfolio... management consulting advice to a portfolio company in a manner consistent with and subject to any... operating a portfolio company held as a merchant banking investment? 225.171 Section 225.171 Banks...

  2. 12 CFR 225.171 - What are the limitations on managing or operating a portfolio company held as a merchant banking...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...?—(1) Examples of routine management or operation—(i) Executive officer interlocks at the portfolio... management consulting advice to a portfolio company in a manner consistent with and subject to any... operating a portfolio company held as a merchant banking investment? 225.171 Section 225.171 Banks...

  3. A new method of measuring the stiffness of astronauts' EVA gloves

    NASA Astrophysics Data System (ADS)

    Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

    2014-04-01

    Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

  4. EVA Radio DRATS 2011 Report

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bakula, Casey J.

    2012-01-01

    In the Fall of 2011, National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) participated in the Desert Research and Technology Studies (DRATS) field experiments held near Flagstaff, Arizona. The objective of the DRATS outing is to provide analog mission testing of candidate technologies for space exploration, especially those technologies applicable to human exploration of extra- terrestrial rocky bodies. These activities are performed at locations with similarities to extra-terrestrial conditions. This report describes the Extravehicular Activity (EVA) Dual-Band Radio Communication System which was demonstrated during the 2011 outing. The EVA radio system is designed to transport both voice and telemetry data through a mobile ad hoc wireless network and employs a dual-band radio configuration. Some key characteristics of this system include: 1. Dual-band radio configuration. 2. Intelligent switching between two different capability wireless networks. 3. Self-healing network. 4. Simultaneous data and voice communication.

  5. Interfacing with an EVA Suit

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2011-01-01

    A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.

  6. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  7. NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA

    NASA Technical Reports Server (NTRS)

    Graff, Trevor

    2016-01-01

    The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.

  8. The Bank that Failed.

    ERIC Educational Resources Information Center

    Bumstead, Richard A.

    1983-01-01

    The school bank at Easton Middle School operated successfully as an educational experience until the state bank examiners closed it for violating banking laws. The process has become a "real life" education as school authorities and students work to change the law and open a "legal bank." (MD)

  9. EVA Human Health and Performance Benchmarking Study Overview and Development of a Microgravity Protocol

    NASA Technical Reports Server (NTRS)

    Norcross, Jason; Jarvis, Sarah; Bekdash, Omar; Cupples, Scott; Abercromby, Andrew

    2017-01-01

    The primary objective of this study is to develop a protocol to reliably characterize human health and performance metrics for individuals working inside various EVA suits under realistic spaceflight conditions. Expected results and methodologies developed during this study will provide the baseline benchmarking data and protocols with which future EVA suits and suit configurations (e.g., varied pressure, mass, center of gravity [CG]) and different test subject populations (e.g., deconditioned crewmembers) may be reliably assessed and compared. Results may also be used, in conjunction with subsequent testing, to inform fitness-for-duty standards, as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  10. STS-64 Mission Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee floats freely as he tests the new backpack called the Simplified Aid for EVA Rescue (SAFER) system. SAFER is designed for use in the event a crew member becomes untethered while conducting an EVA. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  11. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  12. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  13. EVA Systems Flight Controller Talks With Students

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, EVA Systems Flight Controller Sandy Fletcher participates in a Digital Learning Network (DLN) event with students from Northtowne Ele...

  14. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  15. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Laughlin, M. S.; Murray, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered a hazardous duty for NASA astronauts. This places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies. The purpose of this paper is to document the comprehensive EVA training data set that was compiled from multiple sources by the Lifetime Surveillance of Astronaut Health (LSAH) epidemiologists to investigate musculoskeletal injuries. The EVA training dataset does not contain any medical data, rather it only documents when EVA training was performed, by whom and other details about the session. The first activities practicing EVA maneuvers in water were performed at the Neutral Buoyancy Simulator (NBS) at the Marshall Spaceflight Center in Huntsville, Alabama. This facility opened in 1967 and was used for EVA training until the early Space Shuttle program days. Although several photographs show astronauts performing EVA training in the NBS, records detailing who performed the training and the frequency of training are unavailable. Paper training records were stored within the NBS after it was designated as a National Historic Landmark in 1985 and closed in 1997, but significant resources would be needed to identify and secure these records, and at this time LSAH has not pursued acquisition of these early training records. Training in the NBS decreased when the Johnson Space Center in Houston, Texas, opened the Weightless Environment Training Facility (WETF) in 1980. Early training records from the WETF consist of 11 hand-written dive logbooks compiled by individual workers that were digitized at the request of LSAH. The WETF was integral in the training for Space Shuttle EVAs until its closure in 1998. The Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near JSC

  16. On the Far Bank: The Effects of Gap Crossing on Operational Reach

    DTIC Science & Technology

    2015-05-25

    operations. 15. SUBJECT TERMS United States Army; Gap crossing; River crossing; Operational reach; Operation Market -Garden; Operation Plunder...3 Case Study: Operation Market Garden...successful gap crossing. The Allied failure in Operation Market -Garden during World War II showed that successfully crossing a river such as the Waal does

  17. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  18. Emergency vehicle alert system (EVAS)

    NASA Technical Reports Server (NTRS)

    Reed, Bill; Crump, Roger; Harper, Warren; Myneni, Krishna

    1995-01-01

    The Emergency Vehicle Alert System (EVAS) program is sponsored by the NASA/MSFC Technology Utilization (TU) office. The program was conceived to support the needs of hearing impaired drivers. The objective of the program is to develop a low-cost, small device which can be located in a personal vehicle and warn the driver, via a visual means, of the approach of an emergency vehicle. Many different technologies might be developed for this purpose and each has its own advantages and drawbacks. The requirements for an acoustic detection system, appear to be pretty stringent and may not allow the development of a reliable, low-cost device in the near future. The problems include variations in the sirens between various types of emergency vehicles, distortions due to wind and surrounding objects, competing background noise, sophisticated signal processing requirements, and omni-directional coverage requirements. Another approach is to use a Radio Frequency (RF) signal between the Emergency Vehicle (EV) and the Personal Vehicle (PV). This approach requires a transmitter on each EV and a receiver in each PV, however it is virtually assured that a system can be developed which works. With this approach, the real technology issue is how to make a system work as inexpensively as possible. This report gives a brief summary of the EVAS program from its inception and concentrates on describing the activities that occurred during Phase 4. References 1-3 describe activities under Phases 1-3. In the fourth phase of the program, the major effort to be expended was in development of the microcontroller system for the PV, refinement of some system elements and packaging for demonstration purposes. An EVAS system was developed and demonstrated which used standard spread spectrum modems with minor modifications.

  19. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce; Campbell, Colin

    2011-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  20. Exploration EVA Purge Flow Assessment

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Conger, Bruce

    2010-01-01

    An advanced future spacesuit will require properly sized suit and helmet purge flow rates in order to sustain a crew member with a failed Portable Life Support System (PLSS) during an Extravehicular Activity (EVA). A computational fluid dynamics evaluation was performed to estimate the helmet purge flow rate required to washout carbon dioxide and to prevent the condensing ("fogging") of water vapor on the helmet visor. An additional investigation predicted the suit purge flow rate required to provide sufficient convective cooling to keep the crew member comfortable. This paper summarizes the results of these evaluations.

  1. Approaches to decompression safety support of EVA for orbital and interplanetary missions

    NASA Astrophysics Data System (ADS)

    Katuntsev, Vladimir P.

    2010-01-01

    The paper is devoted to the analysis of possible methods for decompression safety support of extravehicular activity (EVA) in order to ground the perspective approaches for solution of decompression sickness (DCS) problem in space missions of the near and distant future. Current DCS risk mitigation strategies reduce operational efficiency: preoxygenation extends the time required on preparation to EVA. The crewmembers often experience general and hand fatigue during long EVA due to the lack of flexibility of space suits enclosure operated at 30-40 kPa. To create the safe and comfortable working conditions for EVA crewmembers on the Lunar and Martian surfaces the main biomedical requirements to a planetary space suit have to include low mass of EVA system, high mobility and flexibility of space suit enclosure and reliable protection against DCS with a short or zero preoxygenation period. Reviewed here are the possibilities for the use of preoxygenation, hypobaric gas atmosphere in space cabin and/or planetary habitat, idea of substitution of nitrogen in normobaric gas atmosphere to another inert gas (helium and neon) as countermeasures against DCS in EVA crewmembers. Physiological aspects of the conception for space suit with high operating pressure are considered.

  2. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    Woods, T. G.

    1988-01-01

    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.

  3. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the

  4. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  5. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    Spacewalkers enjoy a view of Earth once reserved for Apollo, Zeus, and other denizens of Mt. Olympus. During humanity's first extravehicular activity (EVA), Alexei Leonov floated above Gibraltar, the rock ancient seafarers saw as the gateway to the great unknown Atlantic. The symbolism was clear, Leonov stepped past a new Gibraltar when he stepped into space. More than 32 years and 154 EVAs later, Jerry Linenger conducted an EVA with Vladimir Tsibliyev as part of International Space Station Phase 1. They floated together above Gibraltar. Today the symbolism has new meaning: humanity is starting to think of stepping out of Earth orbit, space travel's new Gibraltar, and perhaps obtaining a new olympian view, a close-up look at Olympus Mons on Mars. Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in the history of spaceflight, as well as to chronicle the large body of EVA "lessons learned." Russia and the U.S. define EVA differently. Russian cosmonauts are said to perform EVA any time they are in vacuum in a space suit. A U.S. astronaut must have at least his head outside his spacecraft before he is said to perform an EVA. The difference is based in differing spacecraft design philoso- phies. Russian and Soviet spacecraft have always had a specialized airlock through which the EVA cosmonaut egressed, leaving the main habitable volume of the spacecraft pressurized. The U.S. Gemini and Apollo vehicles, on the other hand, depressurized their entire habitable volume for egress. In this document, we apply the Russian definition to Russian EVAS, and the U.S. definition to U.S. EVAS. Thus, for example, Gemini 4 Command Pilot James McDivitt does not share the honor of being first American spacewalker with Ed White, even though he was suited and in vacuum when White stepped out into space. Non-EVA spaceflights are listed in the chronology to provide context and to

  6. Software For Integration Of EVA And Telerobotics

    NASA Technical Reports Server (NTRS)

    Drews, Michael L.; Smith, Jeffrey H.; Estus, Jay M.; Heneghan, Cate; Zimmerman, Wayne; Fiorini, Paolo; Schenker, Paul S.; Mcaffee, Douglas A.

    1991-01-01

    Telerobotics/EVA Joint Analysis Systems (TEJAS) computer program is hypermedia information software system using object-oriented programming to bridge gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains 20 HyperCard stacks using visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about primitives, technologies, tasks, assumptions, and open issues involved in space-telerobot or crew-EVA tasks. Runs on any Apple MacIntosh personal computer.

  7. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  8. 12 CFR 614.4352 - Farm Credit Banks and agricultural credit banks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Farm Credit Banks and agricultural credit banks. 614.4352 Section 614.4352 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending and Leasing Limits § 614.4352 Farm Credit Banks and agricultural...

  9. 12 CFR 614.4352 - Farm Credit Banks and agricultural credit banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Farm Credit Banks and agricultural credit banks. 614.4352 Section 614.4352 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending and Leasing Limits § 614.4352 Farm Credit Banks and agricultural...

  10. 12 CFR 614.4352 - Farm Credit Banks and agricultural credit banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Farm Credit Banks and agricultural credit banks. 614.4352 Section 614.4352 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending and Leasing Limits § 614.4352 Farm Credit Banks and agricultural...

  11. 12 CFR 614.4352 - Farm Credit Banks and agricultural credit banks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Farm Credit Banks and agricultural credit banks. 614.4352 Section 614.4352 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending and Leasing Limits § 614.4352 Farm Credit Banks and agricultural...

  12. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  13. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, watches astronaut C. Michael Foale (out of frame), mission specialist, during the late phases of their shared extravehicular activity (EVA) in the STS-63 Space Shuttle Discovery's cargo bay.

  14. Astronaut Bernard Harris on RMS during EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Bernard A. Harris, Jr., payload commander, standing on a foot restraint attached to the Remote Manipulator System (RMS) arm carries astronaut C. Michael Foale, mission specialist, during their shared extravehicular activity (EVA) in the Space Shuttle Discovery's cargo bay.

  15. Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard

    2015-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  16. 12 CFR 619.9060 - Bank for cooperatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Bank for cooperatives. 619.9060 Section 619.9060 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9060 Bank for cooperatives. A bank for cooperatives is a bank that is operating under section 3.0 of the Act....

  17. 12 CFR 2.5 - Bank compensation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be credited to an affiliate operating under the Bank Holding Company Act of 1956, 12 U.S.C. 1841 et... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Bank compensation. 2.5 Section 2.5 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY SALES OF CREDIT LIFE INSURANCE § 2.5...

  18. 12 CFR 2.5 - Bank compensation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be credited to an affiliate operating under the Bank Holding Company Act of 1956, 12 U.S.C. 1841 et... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Bank compensation. 2.5 Section 2.5 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY SALES OF CREDIT LIFE INSURANCE § 2.5...

  19. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring

  20. 75 FR 3251 - JP Morgan Chase and Company; JP Morgan Investment Banking, Global Corporate Financial Operations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... (GCFO), Presentation Production Services (PPS). The petitioner further alleged that JP Morgan operates... PPS offices in the United States and send work directly to JP Morgan facilities abroad. ] The... instructed to bypass PPS but utilize centers in Argentina and India as an option if the local service was...

  1. EVA tools and equipment reference book

    NASA Technical Reports Server (NTRS)

    Fullerton, R. K.

    1993-01-01

    This document contains a mixture of tools and equipment used throughout the space shuttle-based extravehicular activity (EVA) program. Promising items which have reached the prototype stage of development are also included, but should not be considered certified ready for flight. Each item is described with a photo, a written discussion, technical specifications, dimensional drawings, and points of contact for additional information. Numbers on the upper left-hand corner of each photo may be used to order specific pictures from NASA and contractor photo libraries. Points of contact were classified as either operational or technical. An operational contact is an engineer from JSC Mission Operations Directorate who is familiar with the basic function and on-orbit use of the tool. A technical contact would be the best source of detailed technical specifications and is typically the NASA subsystem manager. The technical information table for each item uses the following terms to describe the availability or status of each hardware item: Standard - Flown on every mission as standard manifest; Flight specific - Potentially available for flight, not flown every mission (flight certification cannot be guaranteed and recertification may be required); Reference only - Item no longer in active inventory or not recommended for future use, some items may be too application-specific for general use; and Developmental - In the prototype stage only and not yet available for flight. The current availability and certification of any flight-specific tool should be verified with the technical point of contact. Those tools built and fit checked for Hubble Space Telescope maintenance are program dedicated and are not available to other customers. Other customers may have identical tools built from the existing, already certified designs as an optional service.

  2. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  3. Money in the Bank. Lessons Learned from Past Counterinsurgency (COIN) Operations

    DTIC Science & Technology

    2007-01-01

    Derechos Humanos de El Salvador] CIA Central Intelligence Agency COIN counterinsurgency CORDS Civil Operations and Revolutionary Development Support...states; labor unions in Britain and the United States were openly calling for Algerian Muslim self-determination; and in France a growing antiwar...1974 by the ERP and two radical Catholic priests. The FAPU con- ducted numerous strikes, marches, and propaganda distribution projects in the labor move

  4. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission astronaut Rex J. Walheim, accompanied by astronaut Steven L. Smith (out of frame) translates along the Destiny laboratory on the International Space Station (ISS) during the third scheduled EVA session. The duo released the locking bolts on the Mobile Transporter and rewired the Station's robotic arm. The STS-110 mission prepared the ISS for future space walks by installing and outfitting the S0 (S-Zero) Truss and the Mobile Transporter. The 43-foot-long S0 truss weighing in at 27,000 pounds was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  5. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  6. A procedure for tissue freezing and processing applicable to both intra-operative frozen section diagnosis and tissue banking in surgical pathology.

    PubMed

    Steu, Susanne; Baucamp, Maya; von Dach, Gabriela; Bawohl, Marion; Dettwiler, Susanne; Storz, Martina; Moch, Holger; Schraml, Peter

    2008-03-01

    Different methods for snap freezing surgical human tissue specimens exist. At pathology institutes with higher work loads, solid carbon dioxide, freezing sprays, and cryostat freezing are commonly used as coolants for diagnosing frozen tissue sections, whereas for tissue banking, liquid nitrogen or isopentane cooled with liquid nitrogen is preferred. Freezing tissues for diagnostic and research purposes are therefore often time consuming, laborious, even hazardous, and not user friendly. In tissue banks, frozen tissue samples are stored in cryovials, capsules, cryomolds, or cryocassettes. Tissues are additionally embedded using freezing media or wrapped in plastic bags or aluminum foils to prevent desiccation. The latter method aggravates enormously further tissue handling and processing. Here, we describe an isopentane-based workflow which concurrently facilitates tissue freezing and processing for both routine intra-operative frozen section and tissue banking and satisfies the qualitative demands of pathologists, cancer researchers, laboratory technicians, and tissue bankers.

  7. Blood Bank Analysis.

    DTIC Science & Technology

    Blood bank operations of various hospitals in the Monterey area and the Red Cross Center in San Jose were studied, and as a result a simulation model...is developed which is used to determine the effects on shortages and outdating of various operating policies in a given blood bank . Data from Fort

  8. 12 CFR 250.141 - Member bank purchase of stock of “operations subsidiaries.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... banking laws, the Board has also reexamined its rulings on what constitutes “money lent” for the purposes..., and processing applications for loans (so-called loan production offices) constitute branches. (1967... whether a bank holding company may acquire the stock of a so-called mortgage company on the basis that...

  9. 75 FR 36062 - Availability of Conservation Seat and Diving Operations Seat for the Flower Garden Banks National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... Seat for the Flower Garden Banks National Marine Sanctuary Advisory Council AGENCY: Office of National... seeking applications for the following vacant seats on the Flower Garden Banks National Marine Sanctuary... August 2, 2010. ADDRESSES: Application kits may be obtained from Jennifer Morgan, NOAA--Flower...

  10. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  11. Extravehicular Activity (EVA) Microbial Swab Tool

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    When we send humans to search for life on Mars, we'll need to know what we brought with us versus what may already be there. To ensure our crewed spacecraft meet planetary protection requirements--and to protect our science from human contamination--we'll need to know whether micro-organisms are leaking/venting from our ships and spacesuits. This is easily done by swabbing external vents and surfaces for analysis, but there was no US EVA tool for that job. NASA engineers developed an EVA-compatible swab tool that can be used to collect data on current hardware, which will influence eventual Mars life support and EVA hardware designs.

  12. STS-57 astronauts Low and Wisoff perform DTO 1210 EVA in OV-105's payload bay

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-57 extravehicular activity (EVA), Mission Specialist (MS) and Payload Commander (PLC) G. David Low (foreground) secures portable foot restraint (PFR) (manipulator foot restraint (MFR)) to the remote manipulator system (RMS) end effector using a PFR attachment device (PAD). MS3 Peter J.K. Wisoff performs operations next to Low at the stowed European Retrievable Carrier (EURECA). This EVA, designated Detailed Test Objective (DTO) 1210, included evaluation of procedures being developed to service the Hubble Space Telescope (HST) on mission STS-61 in December 1993. The scene is backdropped against the blackness of space with Endeavour's, Orbiter Vehicle (OV) 105's, payload bay (PLB) and payloads appearing in the foreground.

  13. Synergistic effects of EB irradiation and heat on EVA electrical insulators

    NASA Astrophysics Data System (ADS)

    Jipa, S.; Zaharescu, T.; Maˇrcuţaˇ, M.; Setnescu, R.; Gorghiu, L. M.; Dumitrescu, C.

    2005-07-01

    Radiation/thermal degradation is discussed as a successful endurance check. EVA samples were subjected to electron beam irradiation at 12, 30, 60 and 90 kGy. Heat treatment was performed in air at 120 °C for 72 h and 120 h. Chemiluminescence (CL) investigations on EVA specimens were carried out at 200, 210 and 220 °C. Several kinetic parameters such as oxidation induction time (ti), half-oxidation time (t1/2), maximum oxidation rate (voxmax), maximum time of thermal oxidation (tmax) and other chemiluminescence features were obtained from the time dependencies of the CL intensity. While the ageing factors of processed EVA samples reveal a constant value for two testing temperatures (200 and 210 °C), the co-operative factors that describe a combined (synergistic) degradation present higher than unity values, either for the oxidation rates or for the maximum CL intensity measured for all irradiation doses. They increase linearly with dose.

  14. Bank Terminals

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, employees of the UAB Bank, Knoxville, Tennessee, are using Teller Transaction Terminals manufactured by SCI Systems, Inc., Huntsville, Alabama, an electronics firm which has worked on a number of space projects under contract with NASA. The terminals are part of an advanced, computerized financial transaction system that offers high efficiency in bank operations. The key to the system's efficiency is a "multiplexing" technique developed for NASA's Space Shuttle. Multiplexing is simultaneous transmission of large amounts of data over a single transmission link at very high rates of speed. In the banking application, a small multiplex "data bus" interconnects all the terminals and a central computer which stores information on clients' accounts. The data bus replaces the maze-of wiring that would be needed to connect each terminal separately and it affords greater speed in recording transactions. The SCI system offers banks real-time data management through constant updating of the central computer. For example, a check is immediately cancelled at the teller's terminal and the computer is simultaneously advised of the transaction; under other methods, the check would be cancelled and the transaction recorded at the close of business. Teller checkout at the end of the day, conventionally a time-consuming matter of processing paper, can be accomplished in minutes by calling up a summary of the day's transactions. SCI manufactures other types of terminals for use in the system, such as an administrative terminal that provides an immediate printout of a client's account, and another for printing and recording savings account deposits and withdrawals. SCI systems have been installed in several banks in Tennessee, Arizona, and Oregon and additional installations are scheduled this year.

  15. 12 CFR 7.1010 - Postal service by national bank.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Postal service by national bank. 7.1010 Section 7.1010 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND... and operate a postal substation on banking premises and receive income from it. The services...

  16. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  17. Hubble Space Telescope EVA Power Ratchet Tool redesign

    NASA Astrophysics Data System (ADS)

    Richards, Paul W.; Park, Chan; Brown, Lee

    The Power Ratchet Tool (PRT) is a self contained, power-driven, 3/8 inch drive ratchet wrench which will be used by astronauts during Extravehicular Activities (EVA). This battery-powered tool is controlled by a dedicated electonic controller. The PRT was flown during the Hubble Space Telescope (HST) Deployment Mission STS-31 to deploy the solar arrays if the automatic mechanisms failed. The PRT is currently intended for use during the first HST Servicing Mission STS-61 as a general purpose power tool. The PRT consists of three major components; the wrench, the controller, and the battery module. Fourteen discrete combinations of torque, turns, and speed may be programmed into the controller before the EVA. The crewmember selects the desired parameter profile by a switch mounted on the controller. The tool may also be used in the manual mode as a non-powered ratchet wrench. The power is provided by a silver-zinc battery module, which fits into the controller and is replaceable during an EVA. The original PRT did not meet the design specification of torque output and hours of operation. To increase efficiency and reliability the PRT underwent a redesign effort. The majority of this effort focused on the wrench. The original PRT drive train consisted of a low torque, high speed brushless DC motor, a face gear set, and a planocentric gear assembly. The total gear reduction was 300:1. The new PRT wrench consists of a low speed, high torque brushless DC motor, two planetary gear sets and a bevel gear set. The total gear reduction is now 75:1. A spline clutch has also been added to disengage the drive train in the manual mode. The design changes to the controller will consist of only those modifications necessary to accomodate the redesigned wrench.

  18. Improved flexibility of an EVA glove

    NASA Technical Reports Server (NTRS)

    Eggeman, G. W.; Held, J. J.

    1986-01-01

    A student design contest was held between four universities. The project was to improve the flexibility of the NASA extra-vehicular activities (EVA) glove with the internal pressure increased from 4 psi to 8 psi. The Kansas State University team used an experimental design methodology and an industrial management scheme. This approach succeeded in making Kansas State University the winner of the competition.

  19. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner works to deploy a large stinger device designed for locking onto the orbiting satellites via entering a spent engine's nozzle.

  20. Astronaut Dale Gardner rehearses during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  1. Preparing for space - EVA training at the European Astronaut Centre

    NASA Astrophysics Data System (ADS)

    Bolender, Hans; Stevenin, Hervé; Bessone, Loredana; Torres, Antonio

    2006-11-01

    The European Astronaut Centre has developed an Extra Vehicular Activity (EVA) training course for ESA astronauts to bridge the gap between their scuba diving certification and the spacesuit qualification provided by NASA. ESA astronauts André Kuipers and Frank De Winne have already completed this "EVA Pre-Familiarisation Training Programme" before their training at NASA. In June 2006, an international crew of experienced EVA astronauts approved the course as good preparation for suited EVA training; they recommended that portions of it be used to help maintain EVA proficiency for astronauts.

  2. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  3. Bank Record Processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Barnett Banks of Florida, Inc. operates 150 banking offices in 80 Florida cities. Banking offices have computerized systems for processing deposits or withdrawals in checking/savings accounts, and for handling commercial and installment loan transactions. In developing a network engineering design for the terminals used in record processing, an affiliate, Barnett Computing Company, used COSMIC's STATCOM program. This program provided a reliable network design tool and avoided the cost of developing new software.

  4. Banking: shop and compare.

    PubMed

    O'Brien, Jennifer A; DeJarnette, Sherry

    2014-01-01

    There are many reasons to take a critical look at the practice's banking relationship(s)--technology advancements, security measures, improvements in available services, recent banking enhancements designed specifically for medical practices, the impact of the financial crisis on bank ratings and stability, changing practice needs, opportunities for operational automation at the practice--and it is just simply smart to periodically evaluate and compare the features, pricing, and potential savings offered by vendors.

  5. Overview of Umbilical Extravehicular Activity (EVA) Interfaces in Life Support Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.; Jordan, Nicole C.; Barido, Richard A.

    2007-01-01

    Extravehicular Activities (EVAs) for manned spacecraft vehicles have been performed for contingencies and nominal operations numerous times throughout history. This paper will investigate how previous U.S. manned spacecraft vehicles provided life support to crewmembers performing the EVA. Specifically defined are umbilical interfaces with respect to crewmember cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal. As historical data is available, the need for planned versus contingency EVAs in previous vehicles as well as details for a nominal EVA day versus a contingency EVA day will be discussed. The hardware used to provide the cooling, drinking water, air (or oxygen), humidity control, and carbon dioxide removal, and the general functions of that hardware, will also be detailed, as information is available. The Crew Exploration Vehicle (CEV or Orion) EVA interfaces will be generically discussed to provide a glimpse of how similar they are to the EVA interfaces in previous vehicles. Conclusions on strategies that should be used for CEV based on previous spacecraft EVA interfaces will be made in the form of questions and recommendations.

  6. Techniques for Improving the Performance of Future EVA Maneuvering Systems

    NASA Technical Reports Server (NTRS)

    Williams, Trevor W.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small propulsive backpack that was developed as an in-house effort at Johnson Space Center; it is a lightweight system which attaches to the underside of the Primary Life Support Subsystem (PLSS) backpack of the Extravehicular Mobility Unit (EMU). SAFER provides full six-axis control, as well as Automatic Attitude Hold (AAH), by means of a set of cold-gas nitrogen thrusters and a rate sensor-based control system. For compactness, a single hand controller is used, together with mode switching, to command all six axes. SAFER was successfully test-flown on the STS-64 mission in September 1994 as a Development Test Objective (DTO); development of an operational version is now proceeding. This version will be available for EVA self-rescue on the International Space Station and Mir, starting with the STS-86/Mir-7 mission in September 1997. The DTO SAFER was heavily instrumented, and produced in-flight data that was stored in a 12 MB computer memory on-board. This has allowed post-flight analysis to yield good estimates for the actual mass properties (moments and products of inertia and center of mass location) encountered on-orbit. By contrast, Manned Maneuvering Unit (MMU) post-flight results were generated mainly from analysis of video images, and so were not very accurate. The main goal of the research reported here was to use the detailed SAFER on-orbit mass properties data to optimize the design of future EVA maneuvering systems, with the aim being to improve flying qualities and/or reduce propellant consumption. The Automation, Robotics and Simulation Division Virtual Reality (VR) Laboratory proved to be a valuable research tool for such studies. A second objective of the grant was to generate an accurate dynamics model in support of the reflight of the DTO SAFER on STS-76/Mir-3. One complicating factor was the fact that a hand controller stowage box was added to the underside of SAFER on this flight; the position of

  7. First flight test results of the Simplified Aid For EVA Rescue (SAFER) propulsion unit

    NASA Technical Reports Server (NTRS)

    Meade, Carl J.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small, self-contained, propulsive-backpack system that provides free-flying mobility for an astronaut engaged in a space walk, also known as extravehicular activity (EVA.) SAFER contains no redundant systems and is intended for contingency use only. In essence, it is a small, simplified version of the Manned Maneuvering Unit (MMU) last flown aboard the Space Shuttle in 1985. The operational SAFER unit will only be used to return an adrift EVA astronaut to the spacecraft. Currently, if an EVA crew member inadvertently becomes separated from the Space Shuttle, the Orbiter will maneuver to within the crew member's reach envelope, allowing the astronaut to regain contact with the Orbiter. However, with the advent of operations aboard the Russian MIR Space Station and the International Space Station, the Space Shuttle will not be available to effect a timely rescue. Under these conditions, a SAFER unit would be worn by each EVA crew member. Flight test of the pre-production model of SAFER occurred in September 1994. The crew of Space Shuttle Mission STS-64 flew a 6.9 hour test flight which included performance, flying qualities, systems, and operational utility evaluations. We found that the unit offers adequate propellant and control authority to stabilize and enable the return of a tumbling/separating crew member. With certain modifications, production model of SAFER can provide self-rescue capability to a separated crew member. This paper will present the program background, explain the flight test results and provide some insight into the complex operations of flight test in space.

  8. Volunteer Community Language Bank.

    ERIC Educational Resources Information Center

    Novak, Sigfrid S.; And Others

    Lake Charles, Louisiana established a language bank capable of providing interpreters for 20 foreign languages. All participants are volunteers who offer to help free of charge in case of emergencies arising because of the considerable numbers of foreign visitors in the area. Smooth operation of the language bank depends on the following: (1) an…

  9. EVA suit 2000: A joint European/Russian space suit design

    NASA Astrophysics Data System (ADS)

    Möller, P.; Loewens, R.; Abramov, I. P.; Albats, E. A.

    1995-07-01

    A feasibility study in 1992 showed the benefits of a common European/Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: • first utilization aboard the Russian Space Station MIR-2 • performance improvement with respect to current operational suits • development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.

  10. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.

  11. EVA assembly of large space structure element

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.

    1981-01-01

    The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.

  12. Skylab 3 crewmen practice EVA procedures

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The three prime crewmen of the Skylab 3 mission practice procedures which will be used during the extravehicular activity (EVA) portion of the scheduled Skylab rate gyro six-pac installation. They are Scientist-Astronaut Owen K. Garriott (center), Astronaut Alan L. Bean (center background) and Astronaut Jack R. Lousma (right). Garriott is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly. This picture was taken during Skylab 3 prelaunch training at JSC. In the left foreground with back to camera is Astronaut Russell L. Schweickart, who is assisting with the Skylab 3 training. Another training officer is in the left background (31322); Lousma practices procedures for EVA in his extravehicular mobility unit (EMU). He is working with a mock-up of a trunion plug plate which is on the space station's deployment assembly (31323).

  13. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Eva Szabo is Chief of the Lung and Upper Aerodigestive Cancer Research Group at the NCI Division of Cancer Prevention. She graduated from Yale University with a BS in Molecular Biophysics and Biochemistry, received her MD from Duke University, and completed her internal medicine residency at Bellevue-NYU Medical Center. After completing her medical oncology fellowship at the National Cancer Institute, Dr. |

  14. Perspectives of co-operation with the World Bank towards elimination of low emission sources in Krakow

    SciTech Connect

    Goerlich, K.

    1995-12-31

    I am not going to speak about or for the World Bank. More time and a different scope of the conference would be needed in order to more deeply assess the role of the World Bank and other international lenders and donors in the environmental and energy sectors in Poland. I am going to stay within the context of the Krakow Clean Fossil Fuels and Energy Efficiency Project financed by the US AID and managed by the US DOE (called here for simplicity the Krakow Programme). However, in order to assess a role of the World Bank and other international lenders and donors in the pro-environment transformation of the energy systems of Krakow, one needs to briefly discuss: the possibilities and confinements related to the {open_quotes}technology{close_quotes} of disbursement of the financial resources by the multilateral development banks (MDB`s) in Poland, the type of results obtained within the {open_quotes}Krakow Programme{close_quotes} and a concept of involving American commercial companies to implement the clean-air policy for Krakow.

  15. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop.

  16. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benosn, E.; England, S.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2014-01-01

    Human hands play a significant role during extravehicular activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. It is because of this high frequency usage that hand- and arm-related injuries and discomfort are known to occur during training in the NBL and while conducting EVAs. Hand-related injuries and discomforts have been occurring to crewmembers since the days of Apollo. While there have been numerous engineering changes to the glove design, hand-related issues still persist. The primary objectives of this study are therefore to: 1) document all known EVA glove-related injuries and the circumstances of these incidents, 2) determine likely risk factors, and 3) recommend ergonomic mitigations or design strategies that can be implemented in the current and future glove designs. METHODS: The investigator team conducted an initial set of literature reviews, data mining of Lifetime Surveillance of Astronaut Health (LSAH) databases, and data distribution analyses to understand the ergonomic issues related to glove-related injuries and discomforts. The investigation focused on the injuries and discomforts of U.S. crewmembers who had worn pressurized suits and experienced glove-related incidents during the 1980 to 2010 time frame, either during training or on-orbit EVA. In addition to data mining of the LSAH database, the other objective of the study was to find complimentary sources of information such as training experience, EVA experience, suit-related sizing data, and hand-arm anthropometric data to be tied to the injury data from LSAH. RESULTS: Past studies indicated that the hand was the most frequently injured part of the body during both EVA and NBL training. This study effort thus focused primarily on crew training data in the NBL between 2002 and 2010. Of the 87 recorded training incidents, 19 occurred to women and 68 to men. While crew ages ranged from

  17. 12 CFR 7.1005 - Credit decisions at other than banking offices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Credit decisions at other than banking offices. 7.1005 Section 7.1005 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1005 Credit decisions at other than banking offices. A...

  18. 12 CFR 615.5456 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Authority of Federal Reserve Banks. 615.5456... Securities § 615.5456 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized... Federal Reserve Bank may issue Operating Circulars not inconsistent with this subpart, governing...

  19. 12 CFR 1249.15 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Authority of Federal Reserve Banks. 1249.15....15 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal... Securities Documentation, Federal Reserve Bank Operating Circulars, this part, and any procedures...

  20. 12 CFR 1249.15 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Authority of Federal Reserve Banks. 1249.15....15 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal... Securities Documentation, Federal Reserve Bank Operating Circulars, this part, and any procedures...

  1. 12 CFR 615.5456 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Authority of Federal Reserve Banks. 615.5456... Securities § 615.5456 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized... Federal Reserve Bank may issue Operating Circulars not inconsistent with this subpart, governing...

  2. 12 CFR 1511.6 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Authority of Federal Reserve Banks. 1511.6... PROCEDURE § 1511.6 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as... Securities Documentation, and Federal Reserve Bank Operating Circulars; to service and maintain...

  3. 12 CFR 1511.6 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Authority of Federal Reserve Banks. 1511.6... PROCEDURE § 1511.6 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as... Securities Documentation, and Federal Reserve Bank Operating Circulars; to service and maintain...

  4. 12 CFR 1511.6 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Authority of Federal Reserve Banks. 1511.6... PROCEDURE § 1511.6 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as... Securities Documentation, and Federal Reserve Bank Operating Circulars; to service and maintain...

  5. 12 CFR 1511.6 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Authority of Federal Reserve Banks. 1511.6... PROCEDURE § 1511.6 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as... Securities Documentation, and Federal Reserve Bank Operating Circulars; to service and maintain...

  6. 12 CFR 615.5456 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Authority of Federal Reserve Banks. 615.5456... Securities § 615.5456 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized... Federal Reserve Bank may issue Operating Circulars not inconsistent with this subpart, governing...

  7. 12 CFR 1511.6 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Authority of Federal Reserve Banks. 1511.6... PROCEDURE § 1511.6 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as... Securities Documentation, and Federal Reserve Bank Operating Circulars; to service and maintain...

  8. 12 CFR 1249.15 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Authority of Federal Reserve Banks. 1249.15....15 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal... Securities Documentation, Federal Reserve Bank Operating Circulars, this part, and any procedures...

  9. 12 CFR 615.5456 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Authority of Federal Reserve Banks. 615.5456... Securities § 615.5456 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized... Federal Reserve Bank may issue Operating Circulars not inconsistent with this subpart, governing...

  10. 12 CFR 615.5456 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Authority of Federal Reserve Banks. 615.5456... Securities § 615.5456 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized... Federal Reserve Bank may issue Operating Circulars not inconsistent with this subpart, governing...

  11. 12 CFR 1249.15 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Authority of Federal Reserve Banks. 1249.15....15 Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal... Securities Documentation, Federal Reserve Bank Operating Circulars, this part, and any procedures...

  12. 12 CFR 614.4354 - Federal land bank associations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Federal land bank associations. 614.4354 Section 614.4354 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending and Leasing Limits § 614.4354 Federal land bank associations. No Federal land...

  13. 12 CFR 614.4354 - Federal land bank associations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Federal land bank associations. 614.4354 Section 614.4354 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending and Leasing Limits § 614.4354 Federal land bank associations. No Federal land...

  14. 12 CFR 614.4000 - Farm Credit Banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Farm Credit Banks. 614.4000 Section 614.4000 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending Authorities § 614.4000 Farm Credit Banks. (a) Long-term real estate lending. Except to the extent...

  15. 12 CFR 614.4010 - Agricultural credit banks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Agricultural credit banks. 614.4010 Section 614.4010 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Lending Authorities § 614.4010 Agricultural credit banks. (a) Long-term real estate lending. Except to...

  16. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  17. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  18. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  19. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  20. Evaluation of an Anthropometric Human Body Model for Simulated EVA Task Assessment

    NASA Technical Reports Server (NTRS)

    Etter, Brad

    1996-01-01

    implementation of NBS testing has proven to invaluable in the assessment of EVA activities performed with the Orbiter and is considered to be a key step in the construction of the International Space Station (ISS). While the NBS testing is extremely valuable, it does require considerable overhead to maintain and operate. It has been estimated that the cost of utilizing the facility is approximately $10,000 per day. Therefore it is important to maximize the utility of NBS testing for optimal results. One important aspect to consider in any human/worksite interface is the considerable wealth of anthropometric and ergonomic data available. A subset of this information specific to EVA activity is available in NASA standard 3000. The difficulty in implementing this data is that most of the anthropometric information is represented in a two-dimensional format. This poses some limitations in complete evaluation of the astronaut's capabilities in a three-dimensional environment. Advances in computer hardware and software have provided for three-dimensional design and implementation of hardware with the advance of computer aided design (CAD) software. There are a number of CAD products available and most companies and agencies have adopted CAD as a fundamental aspect of the design process. Another factor which supports the use of CAD is the implementation of computer aided manufacturing (CAM) software and hardware which provides for rapid prototyping and decreases the time to product in the design process. It is probable that most hardware to be accessed by astronauts in EVA or IVA (intravehicular activity) has been designed by a CAD system, and is therefore represented in three-dimensional space for evaluation. Because of the implementation of CAD systems and the movement towards early prototyping, a need has arisen in industry and government for tools which facilitate the evaluation of ergonomic consideration in a three-dimensional environment where the hardware has been designed by

  1. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  2. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  3. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  4. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  5. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  6. The odontological identification of Eva Braun Hitler.

    PubMed

    Keiser-Nielsen, S; Strøm, F

    1983-01-01

    On May 7th-9th, 1945, a team of Russian pathologists autopsied several bodies found in and near the Fuehrer Bunker in Berlin; among them, a female body (No. 13) was later identified as that of Eva Braun Hitler (EBH), mainly by means of a gold bridge from the lower right jaw. A postmortem photograph of this bridge also shows a separate gold filling. Data now available on the dental treatment of EBH have permitted the present authors to substantiate that this gold filling also came from the mouth of EBH. Further speculation about the fate of EBH would henceforth seem professionally unfounded.

  7. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  8. Astronaut David Scott practicing for Gemini 8 EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut David R. Scott practicing for Gemini 8 extravehicular acitivity (EVA) in bldg 4 of the Manned Spacecraft Center on the air bearing floor. He is wearing the the Hand-Held Maneuvering Unit which he will use during the EVA.

  9. Astronaut Dale Gardner holds up for sale sign after EVA

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  10. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    NASA Technical Reports Server (NTRS)

    Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

    1992-01-01

    A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  11. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  12. Results from an Investigation into Extra-Vehicular Activity (EVA) Training Related Shoulder Injuries

    NASA Technical Reports Server (NTRS)

    Johnson, Brian J.; Williams, David R.

    2004-01-01

    The number and complexity of extravehicular activities (EVAs) required for the completion and maintenance of the International Space Station (ISS) is unprecedented. The training required to successfully complete this magnitude of space walks presents a real risk of overuse musculoskeletal injuries to the EVA crew population. There was mounting evidence raised by crewmembers, trainers, and physicians at the Johnson Space Center (JSC) between 1999 and 2002 that suggested a link between training in the Neutral - Buoyancy Lab (NBL) and the several reported cases of shoulder injuries. The short- and long-term health consequences of shoulder injury to astronauts in training as well as the potential mission impact associated with surgical intervention to assigned EVA crew point to this as a critical problem that must be mitigated. Thus, a multi-directorate tiger team was formed in December of 2002 led by the EVA Office and Astronaut Office at the JSC. The primary objectives of this Tiger Team were to evaluate the prevalence of these injuries and substantiate the relationship to training in the NBL with the crew person operating in the EVA Mobility Unit (EMU). Between December 2002 and June of 2003 the team collected data, surveyed crewmembers, consulted with a variety of physicians, and performed tests. The results of this effort were combined with the vast knowledge and experience of the Tiger Team members to formulate several findings and over fifty recommendations. This paper summarizes those findings and recommendations as well as the process by which these were determined. The Tiger Team concluded that training in the NBL was directly linked to several major and minor shoulder injuries that had occurred. With the assistance of JSC flight surgeons, outside consultants, and the lead crewmember/physician on the team, the mechanisms of injury were determined. These mechanisms were then linked to specific aspects of the hardware design, operational techniques, and the

  13. EVA Hazards due to TPS Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2007-01-01

    Tile inspection and repair activities have implicit hazards associated with them. When an Extra Vehicular Activities (EVA) crewmember and associated hardware are added into the equation, additional hazards are introduced. Potential hazards to the Extravehicular Mobility Unit (EMU), the Orbiter or the crew member themselves are created. In order to accurately assess the risk of performing a TPS inspection or repair, an accurate evaluation of potential hazards and how adequately these hazards are controlled is essential. The EMU could become damaged due to sharp edges, protrusions, thermal extremes, molten metal or impact with the Orbiter. Tools, tethers and the presence of a crew member in the vicinity of the Orbiter Thermal Protection System (TPS) pose hazards to the Orbiter. Hazards such as additional tile or Reinforced Carbon-Carbon (RCC) damage from a loose tool, safety tethers, crewmember or arm impact are introduced. Additionally, there are hazards to the crew which should be addressed. Crew hazards include laser injury, electrical shock, inability to return to the airlock for EMU failures or Orbiter rapid safing scenarios, as well as the potential inadvertent release of a crew member from the arm/boom. The aforementioned hazards are controlled in various ways. Generally, these controls are addressed operationally versus by design, as the majority of the interfaces are to the Orbiter and the Orbiter design did not originally account for tile repair. The Shuttle Remote Manipulator System (SRMS), for instance, was originally designed to deploy experiments, and therefore has insufficient design controls for retention of the Orbiter Boom Sensor System (OBSS). Although multiple methods to repair the Orbiter TPS exist, the majority of the hazards are applicable no matter which specific repair method is being performed. TPS Inspection performed via EVA also presents some of the same hazards. Therefore, the hazards common to all TPS inspection or repair methods will

  14. 12 CFR 7.1003 - Money lent at banking offices or at other than banking offices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Money lent at banking offices or at other than... TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1003 Money lent at banking offices or at other than...(j) and 12 CFR 5.30, “money” is deemed to be “lent” only at the place, if any, where the borrower...

  15. 12 CFR 7.1003 - Money lent at banking offices or at other than banking offices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Money lent at banking offices or at other than... TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1003 Money lent at banking offices or at other than...(j) and 12 CFR 5.30, “money” is deemed to be “lent” only at the place, if any, where the borrower...

  16. 12 CFR 7.1003 - Money lent at banking offices or at other than banking offices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Money lent at banking offices or at other than... TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1003 Money lent at banking offices or at other than...(j) and 12 CFR 5.30, “money” is deemed to be “lent” only at the place, if any, where the borrower...

  17. 12 CFR 7.1003 - Money lent at banking offices or at other than banking offices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Money lent at banking offices or at other than... TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1003 Money lent at banking offices or at other than...(j) and 12 CFR 5.30, “money” is deemed to be “lent” only at the place, if any, where the borrower...

  18. Main problems of the Russian Orlan-M space suit utilization for EVAs on the ISS

    NASA Astrophysics Data System (ADS)

    Abramov, I. P.; Pozdnyakov, S. S.; Severin, G. I.; Stoklitsky, A. Yu.

    2001-03-01

    In the recent years the Russian Orlan-M space suits have been improved as applied to their operational requirements for the ISS. A special attention is paid to enhancement of EVA crew efficiency and safety. The paper considers the main problems regarding specific features of the Russian space suit operation in the ISS, and analyses measures on their solution. In particular, the problems associated with the following are considered: enhancement of the anthropometric range for the EVA crewmembers; use of some US EMU elements and unified NASA equipment elements; Orlan-M operation support in the wide range of the ISS thermal conditions; use of Simplified Aid For Extravehicular activity Rescue (SAFER) designed as a self-rescue device, which will be used for an EVA crewmember return in the event that he (she) breaks away inadvertently from the ISS surface. The paper states the main space suit differences with reference to solution of the above problems. The paper presents briefly the design of space suit arms developed for crewmembers with small anthropometric parameters, as well as peculiarities and test results for the gloves with enhanced thermal protection. Measures on further space suit development with the purpose to improve its performances are considered.

  19. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  20. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  1. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  2. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  3. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  4. Advanced EVA Suit Camera System Development Project

    NASA Technical Reports Server (NTRS)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  5. Reconfiguration of EVA Modular Truss Assemblies using an Anthropomorphic Robot

    NASA Astrophysics Data System (ADS)

    Diftler, Myron A.; Doggett, William R.; Mehling, Joshua S.; King, Bruce D.

    2006-01-01

    NASA relies heavily on astronauts to perform Extra-Vehicular Activities (EVA) as part of space construction and maintenance operations. Astronauts provide an unmatched capability and flexibility. In the future, this capability will be in even greater demand as space platforms become more modular making on-orbit servicing, repair and reconfiguration routine. To assist crew, NASA is developing Robonaut, an anthropomorphic robot with human sized arms and hands that can work with many of the same interfaces designed for the space suited astronaut. Recently Robonaut has been used to investigate techniques for automated assembly, disassembly, and repair of space platforms. The current work focuses on techniques to reconfigure a modular truss system representative of the tasks necessary to convert a space solar power tug to a lunar orbiting solar power station in support of lunar exploration missions. An overview of these activities is given, detailing the assembly sequence and the infrastructure used by Robonaut to perform the reconfiguration operations. Advances in Robonaut's capabilities are described and include: a grip surface augmentation to Robonaut's gloves that provides a close approximation to the latest astronaut gloves, ensuring a secure grasp during truss coupler manipulation, and a shared control strategy that divides the Cartesian control of Robonaut's hands between the teleoperator and the robot's on-board controller to minimize human workload during constrained tasks. To support truss reconfiguration experiments, infrastructure is required to stabilize and register the structure during reconfiguration. Details on the design and operation of the infrastructure, a small fixture, are given.

  6. Augmented robotic device for EVA hand manoeuvres

    NASA Astrophysics Data System (ADS)

    Matheson, Eloise; Brooker, Graham

    2012-12-01

    During extravehicular activities (EVAs), pressurised space suits can lead to difficulties in performing hand manoeuvres and fatigue. This is often the cause of EVAs being terminated early, or taking longer to complete. Assistive robotic gloves can be used to augment the natural motion of a human hand, meaning work can be carried out more efficiently with less stress to the astronaut. Lightweight and low profile solutions must be found in order for the assistive robotic glove to be easily integrated with a space suit pressure garment. Pneumatic muscle actuators combined with force sensors are one such solution. These actuators are extremely light, yet can output high forces using pressurised gases as the actuation drive. Their movement is omnidirectional, so when combined with a flexible exoskeleton that itself provides a degree of freedom of movement, individual fingers can be controlled during flexion and extension. This setup allows actuators and other hardware to be stored remotely on the user's body, resulting in the least possible mass being supported by the hand. Two prototype gloves have been developed at the University of Sydney; prototype I using a fibreglass exoskeleton to provide flexion force, and prototype II using torsion springs to achieve the same result. The gloves have been designed to increase the ease of human movements, rather than to add unnatural ability to the hand. A state space control algorithm has been developed to ensure that human initiated movements are recognised, and calibration methods have been implemented to accommodate the different characteristics of each wearer's hands. For this calibration technique, it was necessary to take into account the natural tremors of the human hand which may have otherwise initiated unexpected control signals. Prototype I was able to actuate the user's hand in 1 degree of freedom (DOF) from full flexion to partial extension, and prototype II actuated a user's finger in 2 DOF with forces achieved

  7. Genomic characterization of two new enterovirus types, EV-A114 and EV-A121.

    PubMed

    Deshpande, Jagadish M; Sharma, Deepa K; Saxena, Vinay K; Shetty, Sushmitha A; Qureshi, Tarique Husain I H; Nalavade, Uma P

    2016-12-01

    Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.

  8. Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

  9. Application of EVA guidelines and design criteria. Volume 2: EVA workstation conceptual designs

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Several EV workstation concepts were developed and are documented. The workstation concepts were developed following a comprehensive analysis of potential EV missions, functions, and tasks as interpreted from NASA and contractor space shuttle and space station studies, mission models, and related reports. The design of a versatile, portable EVA workstation is aimed at reducing the design and development costs for each mission and aiding in the development of on-orbit serviceable payloads.

  10. 12 CFR 211.25 - Termination of offices of foreign banks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Termination of offices of foreign banks. 211.25 Section 211.25 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM INTERNATIONAL BANKING OPERATIONS (REGULATION K) Foreign Banking Organizations § 211.25 Termination of offices...

  11. 12 CFR 995.5 - Bank and Office of Finance employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Bank and Office of Finance employees. 995.5 Section 995.5 Banks and Banking FEDERAL HOUSING FINANCE BOARD NON-BANK SYSTEM ENTITIES FINANCING CORPORATION OPERATIONS § 995.5 Bank and Office of Finance employees. Without further approval of the...

  12. 12 CFR 995.5 - Bank and Office of Finance employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Bank and Office of Finance employees. 995.5 Section 995.5 Banks and Banking FEDERAL HOUSING FINANCE BOARD NON-BANK SYSTEM ENTITIES FINANCING CORPORATION OPERATIONS § 995.5 Bank and Office of Finance employees. Without further approval of the...

  13. 12 CFR 995.5 - Bank and Office of Finance employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Bank and Office of Finance employees. 995.5 Section 995.5 Banks and Banking FEDERAL HOUSING FINANCE BOARD NON-BANK SYSTEM ENTITIES FINANCING CORPORATION OPERATIONS § 995.5 Bank and Office of Finance employees. Without further approval of the...

  14. 12 CFR 995.5 - Bank and Office of Finance employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Bank and Office of Finance employees. 995.5 Section 995.5 Banks and Banking FEDERAL HOUSING FINANCE BOARD NON-BANK SYSTEM ENTITIES FINANCING CORPORATION OPERATIONS § 995.5 Bank and Office of Finance employees. Without further approval of the...

  15. 12 CFR 7.1021 - National bank participation in financial literacy programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false National bank participation in financial... TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1021 National bank participation in financial literacy programs. A national bank may participate in a financial literacy program on the premises of,...

  16. 12 CFR 7.2017 - Facsimile signatures on bank stock certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Facsimile signatures on bank stock certificates. 7.2017 Section 7.2017 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Corporate Practices § 7.2017 Facsimile signatures on bank stock certificates....

  17. 12 CFR 7.2017 - Facsimile signatures on bank stock certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Facsimile signatures on bank stock certificates. 7.2017 Section 7.2017 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Corporate Practices § 7.2017 Facsimile signatures on bank stock certificates....

  18. 12 CFR 7.2017 - Facsimile signatures on bank stock certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Facsimile signatures on bank stock certificates. 7.2017 Section 7.2017 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Corporate Practices § 7.2017 Facsimile signatures on bank stock certificates....

  19. 12 CFR 7.2017 - Facsimile signatures on bank stock certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Facsimile signatures on bank stock certificates. 7.2017 Section 7.2017 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Corporate Practices § 7.2017 Facsimile signatures on bank stock certificates....

  20. 12 CFR 7.2017 - Facsimile signatures on bank stock certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Facsimile signatures on bank stock certificates. 7.2017 Section 7.2017 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Corporate Practices § 7.2017 Facsimile signatures on bank stock certificates....

  1. Astronaut Noriega During Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  2. Evaluation of a Hybrid Elastic EVA Glove

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Akin, David

    2002-01-01

    The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000- series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.

  3. Exploration Architecture Options - ECLSS, TCS, EVA Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don

    2011-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. The Augustine Commission evaluated human space flight for the Obama administration then the Human Exploration Framework Teams (HEFT and HEFT2) evaluated potential exploration missions and the infrastructure and technology needs for those missions. Lunar architectures have been identified and addressed by the Lunar Surface Systems team to establish options for how to get to, and then inhabit and explore, the moon. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), Thermal Control (TCS), and Extravehicular Activity (EVA) Systems.

  4. Exploration Architecture Options - ECLSS, EVA, TCS Implications

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Henninger, Don; Lawrence, Carl

    2010-01-01

    Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.

  5. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  6. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  7. 12 CFR 975.5 - Operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Operations. 975.5 Section 975.5 Banks and Banking FEDERAL HOUSING FINANCE BOARD MISCELLANEOUS FEDERAL HOME LOAN BANK OPERATIONS AND AUTHORITIES COLLECTION, SETTLEMENT, AND PROCESSING OF PAYMENT INSTRUMENTS § 975.5 Operations. A Bank may utilize...

  8. The Evolution of Extravehicular Activity Operations to Lunar Exploration Based on Operational Lessons Learned During 2009 NASA Desert RATS Field Testing

    NASA Technical Reports Server (NTRS)

    Bell, Ernest R., Jr.; Welsh, Daren; Coan, Dave; Johnson, Kieth; Ney, Zane; McDaniel, Randall; Looper, Chris; Guirgis, Peggy

    2010-01-01

    This paper will present options to evolutionary changes in several philosophical areas of extravehicular activity (EVA) operations. These areas will include single person verses team EVAs; various loss of communications scenarios (with Mission Control, between suited crew, suited crew to rover crew, and rover crew A to rover crew B); EVA termination and abort time requirements; incapacitated crew ingress time requirements; autonomous crew operations during loss of signal periods including crew decisions on EVA execution (including decision for single verses team EVA). Additionally, suggestions as to the evolution of the make-up of the EVA flight control team from the current standard will be presented. With respect to the flight control team, the major areas of EVA flight control, EVA Systems and EVA Tasks, will be reviewed, and suggested evolutions of each will be presented. Currently both areas receive real-time information, and provide immediate feedback during EVAs as well as spacesuit (extravehicular mobility unit - EMU) maintenance and servicing periods. With respect to the tasks being performed, either EMU servicing and maintenance, or the specific EVA tasks, daily revising of plans will need to be able to be smoothly implemented to account for unforeseen situations and findings. Many of the presented ideas are a result of lessons learned by the NASA Johnson Space Center Mission Operations Directorate operations team support during the 2009 NASA Desert Research and Technology Studies (Desert RATS). It is important that the philosophy of both EVA crew operations and flight control be examined now, so that, where required, adjustments can be made to a next generation EMU and EVA equipment that will complement the anticipated needs of both the EVA flight control team and the crews.

  9. Development of an EVA systems cost model. Volume 2: Shuttle orbiter crew and equipment translation concepts and EVA workstation concept development and integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    EVA crewman/equipment translational concepts are developed for a shuttle orbiter payload application. Also considered are EVA workstation systems to meet orbiter and payload requirements for integration of workstations into candidate orbiter payload worksites.

  10. Astronaut Richard Gordon returns to hatch of spacecraft following EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., pilot for the Gemini 11 space flight, returns to the hatch of the spacecraft following extravehicular activity (EVA). This picture was taken over the Atlantic Ocean at approximately 160 nautical miles above the earth's surface.

  11. 7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, IN SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT IS $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  12. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  13. Astronauts Harris and Foale ready to egress airlock for EVA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronauts Bernard A. Harris, Jr., payload commander, (top) and C. Michael Foale, mission specialist, are ready to egress airlock for an extravehicular activity (EVA) during the STS-63 mission on the Space Shuttle Discovery.

  14. Results of EVA/mobile transporter space station truss assembly tests

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Heard, Walter L., Jr.; Bush, Harold G.; Lake, M. S.; Jensen, J. K.; Wallsom, R. E.; Phelps, J. E.

    1988-01-01

    Underwater neutral buoyance tests were conducted to evaluate the use of a Mobile Transporter concept in conjunction with EVA astronauts to construct the Space Station Freedom truss structure. A three-bay orthogonal tetrahedral truss configuration with a 15 foot square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices (mobile foot restraints). The average unit assembly time (which included integrated installation of utility trays) was 27.6 s/strut, or 6 min/bay. The results of these tests indicate that EVA assembly of space station size structures can be significantly enhanced when using a Mobile Transporter equipped with astronaut positioning devices. Rapid assembly time can be expected and are dependent primarily on the rate of translation permissible for on-orbit operations. The concept used to demonstate integrated installation of utility trays requires minimal EVA handling and consequentially, as the results show, has little impact on overall assembly time.

  15. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  16. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  17. 75 FR 55615 - The Bank of New York Mellon Corporate Trust Operations Division Also Known as Global Corporate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... Known as Global Corporate Trust Billing Including On-Site Leased Workers From Aerotek, Inc., Also Known... Mellon, Corporate Trust Operations Division, also known as Global Corporate Trust Billing, including on... September 2010. Del Min Amy Chen, Certifying Officer, Division of Trade Adjustment Assistance. BILLING...

  18. Custom Unit Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis

    2010-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.

  19. Fish Distribution and Habitat Complexity on Banks of the Strait of Sicily (Central Mediterranean Sea) from Remotely-Operated Vehicle (ROV) Explorations

    PubMed Central

    Esposito, Valentina; Battaglia, Pietro; Altobelli, Chiara; Perzia, Patrizia; Romeo, Teresa; Canese, Simonepietro; Andaloro, Franco

    2016-01-01

    The Strait of Sicily was recognized internationally as an “Ecologically or Biologically Significant Area” by the Contracting Parties of the Convention on Biological Diversity in 2014. However, basic aspects of its fish diversity are still unknown and most of the information comes from traditional trawl surveys. This paper provides the first detailed description, using a Remotely Operated Vehicle (ROV), of the composition and depth distribution of the demersal fish assemblages found on banks of the Strait of Sicily and the related habitat complexity from 35 to 240 m depth. A total of 24 families and 52 fish species were recorded and depth was consistently associated with a significant proportion of the variation of the fish assemblage. The highest species richness was observed at the shallowest depth layer (0–50 m) and significantly decreased, remaining almost constant, in deeper layers. Similarly the highest abundance was recorded at 0–50 m, where C. julis represented the most abundant species, and decreased progressively throughout the whole depth gradient. Although the factor habitat complexity explained only a small proportion of the fish assemblage variation, significant differences among different degrees of habitat complexity were observed, together with a general positive trend for species richness and abundance with increasing habitat complexity. The ROV also allowed us to observe some rare or poorly known fish species such as Scorpaenodes arenai, Hyporthodus haifensis, Myliobatis aquila, Gadella maraldi, Epinephelus caninus and Lappanella fasciata. These findings show that banks serve as reservoirs for fish abundance and biodiversity and that immediate environmental conservation and management actions represent a priority not only for Italy but also for other countries which share the same area. PMID:27936221

  20. EVA Robotic Assistant Project: Platform Attitude Prediction

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin M.

    2003-01-01

    The Robotic Systems Technology Branch is currently working on the development of an EVA Robotic Assistant under the sponsorship of the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program (CETDP). This will be a mobile robot that can follow a field geologist during planetary surface exploration, carry his tools and the samples that he collects, and provide video coverage of his activity. Prior experiments have shown that for such a robot to be useful it must be able to follow the geologist at walking speed over any terrain of interest. Geologically interesting terrain tends to be rough rather than smooth. The commercial mobile robot that was recently purchased as an initial testbed for the EVA Robotic Assistant Project, an ATRV Jr., is capable of faster than walking speed outside but it has no suspension. Its wheels with inflated rubber tires are attached to axles that are connected directly to the robot body. Any angular motion of the robot produced by driving over rough terrain will directly affect the pointing of the on-board stereo cameras. The resulting image motion is expected to make tracking of the geologist more difficult. This will either require the tracker to search a larger part of the image to find the target from frame to frame or to search mechanically in pan and tilt whenever the image motion is large enough to put the target outside the image in the next frame. This project consists of the design and implementation of a Kalman filter that combines the output of the angular rate sensors and linear accelerometers on the robot to estimate the motion of the robot base. The motion of the stereo camera pair mounted on the robot that results from this motion as the robot drives over rough terrain is then straightforward to compute. The estimates may then be used, for example, to command the robot s on-board pan-tilt unit to compensate for the camera motion induced by the base movement. This has been accomplished in two ways

  1. Further analysis of EVA self-rescue data

    NASA Astrophysics Data System (ADS)

    Brody, Adam R.

    A means for rescuing a stranded extravehicular activity (EVA) astronaut is necessary to ensure safe space station operations. One promising device is a hand-held thruster similar to the Hand-Held Maneuvering Unit (HHMU) from the Gemini and Skylab programs. A study was performed in the Virtual Interactive Environment Workstation (VIEW) at NASA Ames Research Center. Three Initial (Separation) Velocities (0.5, 1.0, and 1.5 m/s) were crossed with five Initial spin velocities (0, +/- 0.1, +/- 0.3) to yield 15 different trials. An Attitude Hold system was also modeled, which, when combined with the 15 combinations of separation and spin velocity, provided 30 distinct trails. Recent examinations of the data reveal that Initial (Separation) Velocity and Initial Spin Velocity each produced main effects and combined to produce an interaction effect on Solution Time. Solution Time increased with Initial Velocity and absolute Initial Spin Velocity. Final Roll Angle also increased Initial Spin Velocity. Attitude Hole Fuel increased with absolute Initial Spin Velocity. Interaction effects revealed that main effects were less pronounced at the lowest Initial Velocity level.

  2. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  3. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  4. Infrared On-Orbit RCC Inspection With the EVA IR Camera: Development of Flight Hardware From a COTS System

    NASA Technical Reports Server (NTRS)

    Gazanik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Jenkins, Rusty; Yates, Rusty; Stephan, Ryan; Hawk, Doug; Amoroso, Michael

    2005-01-01

    In November 2004, NASA's Space Shuttle Program approved the development of the Extravehicular (EVA) Infrared (IR) Camera to test the application of infrared thermography to on-orbit reinforced carbon-carbon (RCC) damage detection. A multi-center team composed of members from NASA's Johnson Space Center (JSC), Langley Research Center (LaRC), and Goddard Space Flight Center (GSFC) was formed to develop the camera system and plan a flight test. The initial development schedule called for the delivery of the system in time to support STS-115 in late 2005. At the request of Shuttle Program managers and the flight crews, the team accelerated its schedule and delivered a certified EVA IR Camera system in time to support STS-114 in July 2005 as a contingency. The development of the camera system, led by LaRC, was based on the Commercial-Off-the-Shelf (COTS) FLIR S65 handheld infrared camera. An assessment of the S65 system in regards to space-flight operation was critical to the project. This paper discusses the space-flight assessment and describes the significant modifications required for EVA use by the astronaut crew. The on-orbit inspection technique will be demonstrated during the third EVA of STS-121 in September 2005 by imaging damaged RCC samples mounted in a box in the Shuttle's cargo bay.

  5. A Human Factors Analysis of EVA Time Requirements

    NASA Technical Reports Server (NTRS)

    Pate, Dennis W.

    1997-01-01

    Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

  6. 12 CFR 211.601 - Status of certain offices for purposes of the International Banking Act restrictions on...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... legislative history of the International Banking Act to enable a foreign bank to expand its domestic... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Status of certain offices for purposes of the International Banking Act restrictions on interstate banking operations. 211.601 Section 211.601 Banks...

  7. EVA Glove Sensor Feasbility II Abstract

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2014-01-01

    The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.

  8. Thermal processing of EVA encapsulants and effects of formulation additives

    SciTech Connect

    Pern, F.J.; Glick, S.H.

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  9. Effects of EVA spacesuit glove on grasping and pinching tasks

    NASA Astrophysics Data System (ADS)

    Appendino, Silvia; Battezzato, Alessandro; Chen Chen, Fai; Favetto, Alain; Mousavi, Mehdi; Pescarmona, Francesco

    2014-03-01

    The human hand has a wide range of degrees of freedom, allowing a great variety of movements, and is also one of the most sensitive parts of the human body. Due to these characteristics, it is the most important tool for astronauts to perform extravehicular activities (EVA). However, astronauts must wear mandatory EVA equipment to be protected from the harsh conditions in space and this strongly reduces hand performance, in particular as regards dexterity, tactile perception, mobility and fatigue. Several studies have been conducted to determine the influence of the EVA glove on manual capabilities, both in the past and more recently. This study presents experimental data regarding the performance decline occurring in terms of force and fatigue in the execution of grasping and pinching tasks when wearing an EVA glove, in pressurized and unpressurized conditions, compared with barehanded potential. Results show that wearing the unpressurized EVA glove hinders grip and lateral pinch performances, dropping exerted forces to about 50-70%, while it barely affects two- and three-finger pinch performances. On the other hand, wearing the pressurized glove worsens performances in all cases, reducing forces to about 10-30% of barehanded potential. The results are presented and compared with the previous literature.

  10. 12 CFR 211.4 - Permissible activities and investments of foreign branches of member banks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Operations of U.S. Banking Organizations § 211.4 Permissible activities and investments of foreign branches... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Permissible activities and investments of foreign branches of member banks. 211.4 Section 211.4 Banks and Banking FEDERAL RESERVE SYSTEM BOARD...

  11. 12 CFR 211.4 - Permissible activities and investments of foreign branches of member banks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Operations of U.S. Banking Organizations § 211.4 Permissible activities and investments of foreign branches... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Permissible activities and investments of foreign branches of member banks. 211.4 Section 211.4 Banks and Banking FEDERAL RESERVE SYSTEM BOARD...

  12. 12 CFR 7.5005 - National bank acting as digital certification authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false National bank acting as digital certification... BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5005 National bank acting as digital... bank to act as a certificate authority and to issue digital certificates verifying the identity...

  13. 12 CFR 7.5005 - National bank acting as digital certification authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false National bank acting as digital certification... BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5005 National bank acting as digital... bank to act as a certificate authority and to issue digital certificates verifying the identity...

  14. 12 CFR 7.5005 - National bank acting as digital certification authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false National bank acting as digital certification... BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5005 National bank acting as digital... bank to act as a certificate authority and to issue digital certificates verifying the identity...

  15. STS-37 crewmembers work with CETA during EVA training in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-37 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Jerry L. Ross and MS Jerome Apt operate crew and equipment translation aid (CETA) electrical hand pedal cart during training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Wearing extravehicular mobility units (EMUs), Ross and Apt practice a extravehicular activity (EVA) spacewalk they will perform in OV-104's payload bay during STS-37. CETA is a type of railroad hand cart planned as a spacewalker's transportation system along the truss of Space Station Freedom (SSF). Apt is pulling Ross along to test the cart's ability to carry a person plus cargo. SCUBA divers monitor astronauts' underwater activity.

  16. Mechanisms of Injury and Countermeasures for EVA Associated Upper Extremity Medical Issues: Extended Vent Tube Study

    NASA Technical Reports Server (NTRS)

    Jones, Jeff; Hoffman, Ron; Harvey, Craig; Bowen, C. K.; Hudy, C. E.; Tuxhorn, Jennifer; Gernhardt, Mike; Scheuring, Richard A.

    2007-01-01

    The goal of this study is to determine the role that moisture plays in the injury to the fingers and fingernails during EVA training operations in the Neutral Buoyancy Laboratory. Current Extravehicular Mobility Unit (EMU, with a PLSS) as configured in the NBL was used for all testing and a vent tube was extended down a single arm of the crewmember during the test; vent tube was moved between left and right arm to serve as experimental condition being investigated and the other arm served as control condition.

  17. Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.

    1994-01-01

    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.

  18. STS-33 EVA Prep and Post with Gregory, Blaha, Carter, Thorton, and Musgrave in FFT

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This video shows the crew in the airlock of the FFT, talking with technicians about the extravehicular activity (EVA) equipment. Thornton and Carter put on EVA suits and enter the airlock as the other crew members help with checklists.

  19. STS-64 Mission Onboard Photograph - Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Mark Lee (red stripe on extravehicular activity suit) tests the new backpack called Simplified Aid for EVA Rescue (SAFER), a system designed for use in the event a crew member becomes untethered while conducting an EVA. The Lidar-In-Space Technology Experiment (LITE) is shown in the foreground. The LITE payload employs lidar, which stands for light detection and ranging, a type of optical radar using laser pulses instead of radio waves to study Earth's atmosphere. Unprecedented views were obtained of cloud structures, storm systems, dust clouds, pollutants, forest burning, and surface reflectance. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.

  20. Enhanced transdermal delivery of loratadine from the EVA matrix.

    PubMed

    Cho, Cheong-Weon; Choi, Jun-Shik; Kim, Seong-Jin; Shin, Sang-Chul

    2009-05-01

    Various enhancers, such as fatty acids (saturated, unsaturated), glycerides, propylene glycols, and non-ionic surfactants, have been incorporated in the loratadine-EVA matrix to increase the rate of skin permeation of loratadine from an EVA matrix. The enhancing effects of these enhancers on the skin permeation of loratadine were evaluated using a modified Keshary-Chien cell fitted with intact excised rat skin. The penetration enhancers showed a higher flux, probably due to the enhancing effect on the skin barrier, the stratum corneum. Among the enhancers used, such as the fatty acids, glycols, propylene glycols, and non-ionic surfactants, linoleic acid showed the best enhancement. For the enhanced transdermal delivery of loratadine, application of an EVA matrix containing a permeation enhancer might be useful in the development of a transdermal drug delivery system.

  1. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain

  2. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  3. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  4. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  5. Medical, Psychophysiological, and Human Performance Problems During Extended EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.

  6. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the August 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Lousma is at the Apollo Telescope Mount EVA work station assembling one of the two 55-foot long sectionalized poles for the twin pole solar shield which was deployed to help cool the Orbital Workshop. Part of the Airlock Module's thermal/meteoroid curtain is in the left foreground.

  7. 12 CFR 615.5181 - Bank interest rate risk management program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Risk Assessment and Management § 615.5181 Bank interest rate risk management program. (a) The board of directors of each Farm Credit Bank... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Bank interest rate risk management program....

  8. 12 CFR 615.5180 - Bank interest rate risk management program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Risk Assessment and Management § 615.5180 Bank interest rate risk management program. (a) The board of directors of each Farm Credit bank... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Bank interest rate risk management program....

  9. 12 CFR 615.5181 - Bank interest rate risk management program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Risk Assessment and Management § 615.5181 Bank interest rate risk management program. (a) The board of directors of each Farm Credit Bank... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Bank interest rate risk management program....

  10. 12 CFR 615.5181 - Bank interest rate risk management program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Risk Assessment and Management § 615.5181 Bank interest rate risk management program. (a) The board of directors of each Farm Credit Bank... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Bank interest rate risk management program....

  11. Survivability and Infectivity of Viscerotropic Leishmania Tropica from Operation Desert Storm Participants in Human Blood Products Maintained Under Blood Bank Conditions

    DTIC Science & Technology

    1993-01-01

    IC. 1986. Leishmania donovani : an opportu- 6. Gupta I3MD, 1930. The diagnosis of kala-azar b,. nistic microbe associated with progressive dis...survival of Leishmania in blood products under blood bank storage conditions. We report that L. tropica- or L. donovani - contaminated transfusable blood...transfusion, we studied the survival of Leishmania in blood products under blood bank _ storage conditions. We report that L. tropica- or L. donovani

  12. 12 CFR 1500.2 - What are the limitations on managing or operating a portfolio company held as a merchant banking...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... restrictions on such activities contained in §§ 225.28(b)(6) or 225.86(b)(1) of the Board's Regulation Y (12... 12 Banks and Banking 9 2012-01-01 2012-01-01 false What are the limitations on managing or... Company Act (12 U.S.C. 1843(k)(4)(I)); (4) A small business investment company (as defined in section...

  13. 12 CFR 1500.2 - What are the limitations on managing or operating a portfolio company held as a merchant banking...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... restrictions on such activities contained in §§ 225.28(b)(6) or 225.86(b)(1) of the Board's Regulation Y (12... 12 Banks and Banking 9 2013-01-01 2013-01-01 false What are the limitations on managing or... Company Act (12 U.S.C. 1843(k)(4)(I)); (4) A small business investment company (as defined in section...

  14. 12 CFR 1500.2 - What are the limitations on managing or operating a portfolio company held as a merchant banking...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... restrictions on such activities contained in § 225.28(b)(6) or § )(1) of the Board's Regulation Y (12 CFR 225... 12 Banks and Banking 10 2014-01-01 2014-01-01 false What are the limitations on managing or... Company Act (12 U.S.C. 1843(k)(4)(I)); (4) A small business investment company (as defined in section...

  15. 24 CFR 81.95 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Authority of Federal Reserve Banks... Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal agent of..., Federal Reserve Bank Operating Circulars, this subpart H, and procedures established by the...

  16. 24 CFR 81.95 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Authority of Federal Reserve Banks... Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal agent of..., Federal Reserve Bank Operating Circulars, this subpart H, and procedures established by the...

  17. 24 CFR 81.95 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Authority of Federal Reserve Banks... Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal agent of..., Federal Reserve Bank Operating Circulars, this subpart H, and procedures established by the...

  18. 24 CFR 81.95 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Authority of Federal Reserve Banks... Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal agent of..., Federal Reserve Bank Operating Circulars, this subpart H, and procedures established by the...

  19. 24 CFR 81.95 - Authority of Federal Reserve Banks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Authority of Federal Reserve Banks... Authority of Federal Reserve Banks. (a) Each Federal Reserve Bank is hereby authorized as fiscal agent of..., Federal Reserve Bank Operating Circulars, this subpart H, and procedures established by the...

  20. Robonaut 2 - IVA Experiments On-Board ISS and Development Towards EVA Capability

    NASA Technical Reports Server (NTRS)

    Diftler, Myron; Hulse, Aaron; Badger, Julia; Thackston, Allison; Rogers, Jonathan

    2014-01-01

    Robonaut 2 (R2) has completed its fixed base activities on-board the ISS and is scheduled to receive its climbing legs in early 2014. In its continuing line of firsts, the R2 torso finished up its on-orbit activities on its stanchion with the manipulation of space blanket materials and performed multiple tasks under teleoperation control by IVA astronauts. The successful completion of these two IVA experiments is a key step in Robonaut's progression towards an EVA capability. Integration with the legs and climbing inside the ISS will provide another important part of the experience that R2 will need prior to performing tasks on the outside of ISS. In support of these on-orbit activities, R2 has been traversing across handrails in simulated zero-g environments and working with EVA tools and equipment on the ground to determine manipulation strategies for an EVA Robonaut. R2 made significant advances in robotic manipulation of deformable materials in space while working with its softgoods task panel. This panel features quarter turn latches that secure a space blanket to the task panel structure. The space blanket covers two cloth cubes that are attached with Velcro to the structure. R2 was able to open and close the latches, pull back the blanket, and remove the cube underneath. R2 simulated cleaning up an EVA worksite as well, by replacing the cube and reattaching the blanket. In order to interact with the softgoods panel, R2 has both autonomously and with a human in the loop identified and localized these deformable objects. Using stereo color cameras, R2 identified characteristic elements on the softgoods panel then extracted the location and orientation of the object in its field of view using stereo disparity and kinematic transforms. R2 used both vision processing and supervisory control to successfully accomplish this important task. Teleoperation is a key capability for Robonaut's effectiveness as an EVA system. To build proficiency, crewmembers have

  1. 12 CFR 619.9140 - Farm Credit bank(s).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Farm Credit bank(s). 619.9140 Section 619.9140 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9140 Farm Credit bank(s). Except as otherwise defined, the term Farm Credit bank(s) includes Farm Credit...

  2. 12 CFR 619.9140 - Farm Credit bank(s).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Farm Credit bank(s). 619.9140 Section 619.9140 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DEFINITIONS § 619.9140 Farm Credit bank(s). Except as otherwise defined, the term Farm Credit bank(s) includes Farm Credit...

  3. Changes in the Banking Sector--The Case of Internet Banking in the UK.

    ERIC Educational Resources Information Center

    Jayawardhena, Chanaka; Foley, Paul

    2000-01-01

    Discussion of changes in the banking industry focuses on an analysis of 12 Internet banking operations in the United Kingdom. Topics include delivery strategies; customer demand and requirements; and an evaluation of banking Web sites that considers speed, content and design, navigation, interactivity, and security. (LRW)

  4. Testing of an Ammonia EVA Vent Tool for the International Space Station

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Stanewich, Brett J.; Wilhelm, Sheri Munekata

    2000-01-01

    When components of the International Space Station ammonia External Active Thermal Control System are replaced on-orbit, they must be vented immediately after removal from the system. Venting ensures that the component is not hard packed with liquid and thus does not pose a hazard. An extravehicular activity (EVA) vent tool has been developed to perform this function. However, there were concerns that the tool could whip, posing a hazard to the EVA astronaut, or would freeze. The ammonia vent tool was recently tested in a thermal/vacuum chamber to demonstrate that it would operate safely and would not freeze during venting. During the test, ammonia mimicking the venting conditions for six different heat exchanger initial conditions was passed through representative test articles. In the present work, the model that was used to develop the ammonia state and flow for the test points is discussed and the test setup and operation is described. The qualitative whipping and freezing results of the test are discussed and vent plume pressure measurements are described and interpreted.

  5. Banking on women's spirit.

    PubMed

    Yunus, M

    1993-11-01

    An interview with Professor Mummadad Yunus, Managing Director of the Grameen Bank, revealed that he has provided loans to poor women in Bangladesh since 1976 and that the Grameen Bank has continued his work since 1983. The idea behind the banking system is that poor people without traditionally accepted collateral are good credit risks. In 1993, the Grameen Bank had operations in 33,000 out of a possible 68,000 villages in Bangladesh. The operations include 1030 branches and a staff of 12,000 people. 1.6 million people are recipients of loans, of whom 94% are women. The population served is the poorest and has no experience in income generation. Conclusions drawn from this experience are that women are better managers of resources and are more serious entrepreneurs than men and that the benefits of loan programs for the poor go directly to children and households. Women's self-image suffers from negative social conceptions, and one task is to convince women of their value, skills, and possibility of advancement. The bank philosophy rests with the belief that all human beings are a "treasure of potential possibilities." Women are advised to protect their money and marriage and not to sacrifice one for the other. Husbands initially are against money going to wives, but eventually they understand that the family benefits. Over 200,000 loans have been made for the provision of housing. The loan requirement is that the woman must own the land on which the house is built. Husband's have the opportunity to transfer title of the land to the wife. Ownership of land provides security for the wife.

  6. Astronaut Richard Gordon practices attaching camera to film EVA

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronaut Richard F. Gordon Jr., prime crew pilot for the Gemini 11 space flight, practices attaching to a Gemini boilerplate a camera which will film his extravehicular activity (EVA) outside the spacecraft. The training exercise is being conducted in the Astronaut Training Building, Kennedy Space Center, Florida.

  7. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  8. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  9. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  10. Television transmission of Astronaut Harrison Schmitt falling during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt loses his balance and heads for a fall during the second Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site, in this black and white reproduction taken from a color television transmission made by the RCA color TV camera mounted on the Lunar Roving Vehicle. Schmitt is the lunar module pilot.

  11. Astronaut Harrison Schmitt retrieving lunar samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison Schmitt, Apollo 17 lunar module pilot, with his adjustable sampling scoop, heads for a selected rock on the lunar surface to retrieve the sample for study. The action was photographed by Apollo 17 crew commander, Astronaut Eugene A. Cernan on the mission's second extravehicular activity (EVA-2), at Station 5 (Camelot Crater) at the Taurus-Littrow landing site.

  12. 8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LESLIE WICKMAN, EVA (EXTRA VEHICULAR ACTIVITIES) SPECIALIST, GETTING OUT OF SPACE SUIT AFTER TESTING IN NEUTRAL BUOYANCY TANK. AVERAGE COST OF SUIT $1,000,000. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  13. Ordering Chaos: Eva Miller--Multnomah County Library, Portland, OR

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    Eva Miller has a knack for creating order out of disorder. She single-handedly brought Oregon's virtual reference service, Answerland, live in just under 90 days, says Rivkah Sass, now director of the Omaha Public Library. Miller created its web site, designed the graphics, developed marketing materials, and recruited and trained librarians--all…

  14. Polarization Processes of Nanocomposite Silicate-EVA and PP Materials

    NASA Astrophysics Data System (ADS)

    Montanari, Gian Carlo; Palmieri, Fabrizio; Testa, Luigi; Motori, Antonio; Saccani, Andrea; Patuelli, Francesca

    Recent works indicate that polypropylene (PP) and ethylene-vinylacetate (EVA) filled by nanosilicates may present low content of space charge and high electric strength. Investigations are being made to explain nanocomposite behaviour and characterize their electrical, thermal and mechanical properties. In this paper, the results of broad-band dielectric spectroscopy performed on EVA and PP filled by layered nanosized silicates are reported. Isochronal and isothermal curves of complex permittivity, as well as activation energies of the relaxation processes, are presented and discussed. Nanostructuration gives rise to substantial changes in the polarisation and dielectric loss behaviour. While the relaxation process of EVA, associated with glass transition of the material amorphous phase, results unchanged from base to nanostructured material, nanocomposites EVA and PP have shown the rise of a new process at higher temperatures respect to the typical host material processes, as well as a different distribution of relaxation processes. Changes in space charge accumulation in relation to the effectiveness of the purification process performed upon nanostructured materials are also reported: while the dispersion of the clean clays leads to a reduction of the space charge, especially at high fields, an unclean filler gives rise to significant homo-charge accumulation and interfacial polarisation phenomena.

  15. Astronaut James Irwin uses scoop during Apollo 15 EVA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut James B. Irwin, lunar module pilot, uses a scoop in making a trench in the lunar soil during Apollo 15 extravehicular activity (EVA). Mount Hadley rises approximately 14,765 feet (about 4,500 meters) above the plain in the background.

  16. EVA Metro Sedan Electric Propulsion System Test and Evaluation.

    DTIC Science & Technology

    1979-09-01

    This report provides the procedure and results of the performance evaluation of an EVA Metro Sedan propulsion system. Data is provided for the automatic transmission, solid state dc motor controller and the dc motor as well as the entire propulsion system. Algorithms used on the automatic data acquisition system are included. (Author)

  17. EVA: Collaborative Distributed Learning Environment Based in Agents.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Tellez, Rolando Quintero

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

  18. EVA: An Interactive Web-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Arenas, Adolfo Guzman

    2002-01-01

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…

  19. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  20. The Use of Human Modeling of EVA Tasks as a Systems Engineering Tool

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Schmidt, Henry J.; Kross, Dennis A. (Technical Monitor)

    2001-01-01

    Computer-generated human models have been used in aerospace design for a decade. They have come to be highly reliable for worksite analysis of certain types of EVA tasks. In many design environments, this analysis comes after the structural design is largely complete. However, the use of these models as a development tool is gaining acceptance within organizations that practice good systems engineering processes. The design of the United States Propulsion Module for the International Space Station provides an example of this application. The Propulsion Module will provide augmentation to the propulsion capability supplied by the Russian Service Module Zvezda. It is a late addition to the set of modules provided by the United States to the ISS Program, and as a result, faces design challenges that result from the level of immaturity of its integration into the Station. Among these are heat dissipation and physical envelopes. Since the rest of the Station was designed to maximize the use of the cooling system, little margin is available for the addition of another module. The Propulsion Module will attach at the forward end of the Station, and will be between the Orbiter and the rest of ISS. Since cargo must be removed from the Payload Bay and transferred to Station by the Canadarm, there is a potential for protrusions from the module, such as thruster booms, to interfere with robotic operations. These and similar engineering issues must be addressed as part of the development. In the implementation of good system design, all design solutions should be analyzed for compatibility with all affected subsystems. Human modeling has been used in this project to provide rapid input to system trades of design concepts. For example, the placement of radiators and avionics components for optimization of heat dissipation had to be examined for feasibility of EVA translation paths and worksite development. Likewise, the location of and mechanism for the retraction of thruster

  1. Information Flow Model of Human Extravehicular Activity Operations

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.

    2014-01-01

    Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.

  2. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    NASA Technical Reports Server (NTRS)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  3. High Performance EVA Glove Collaboration: Glove Injury Data Mining Effort

    NASA Technical Reports Server (NTRS)

    Reid, C. R.; Benson, E.; England, S.; Charvat, J.; Norcross, J. R.; McFarland, S. M.; Rajulu, S.

    2015-01-01

    Human hands play a significant role during Extravehicular Activity (EVA) missions and Neutral Buoyancy Lab (NBL) training events, as they are needed for translating and performing tasks in the weightless environment. Because of this high frequency usage, hand and arm related injuries are known to occur during EVA and EVA training in the NBL. The primary objectives of this investigation were to: 1) document all known EVA glove related injuries and circumstances of these incidents, 2) determine likely risk factors, and 3) recommend interventions where possible that could be implemented in the current and future glove designs. METHODS: The investigation focused on the discomforts and injuries of U.S. crewmembers who had worn the pressurized Extravehicular Mobility Unit (EMU) spacesuit and experienced 4000 Series or Phase VI glove related incidents during 1981 to 2010 for either EVA ground training or in-orbit flight. We conducted an observational retrospective case-control investigation using 1) a literature review of known injuries, 2) data mining of crew injury, glove sizing, and hand anthropometry databases, 3) descriptive statistical analyses, and finally 4) statistical risk correlation and predictor analyses to better understand injury prevalence and potential causation. Specific predictor statistical analyses included use of principal component analyses (PCA), multiple logistic regression, and survival analyses (Cox proportional hazards regression). Results of these analyses were computed risk variables in the forms of odds ratios (likelihood of an injury occurring given the magnitude of a risk variable) and hazard ratios (likelihood of time to injury occurrence). Due to the exploratory nature of this investigation, we selected predictor variables significant at p=0.15. RESULTS: Through 2010, there have been a total of 330 NASA crewmembers, from which 96 crewmembers performed 322 EVAs during 1981-2010, resulting in 50 crewmembers being injured inflight and 44

  4. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Izenson, Mike; Chen, Weibo

    2008-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at low pressures that simulate a PLSS environment. We obtained head/flow performance curves over a range of operating speeds, identified the maximum efficiency point for the blower, and used these results to specify the design and operating conditions for the ventilation fan. We designed a compact motor that can drive the blower under all anticipated operating requirements and operate with high efficiency during normal operation. We identified materials for the blower that will enhance safety for operation in a lunar environment. We produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSS ventilation subsystem while running at 5400 rpm and consuming only 9 W of electric power and using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power blower can meet the performance requirements for future PLSSs.

  5. A mobile transporter concept for EVA assembly of future spacecraft

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Bush, Harold G.; Heard, Walter L., Jr.; Lake, Mark S.; Jensen, J. Kermit

    1990-01-01

    This paper details the ground test program for the NASA Langley Research Center Mobile Transporter concept. The Mobile Transporter would assist EVA astronauts in the assembly of the Space Station Freedom. 1-g and simulated O-g (neutral buoyancy) tests were conducted to evaluate the use of the Mobile Transporter. A three-bay (44 struts) orthogonal tetrahedral truss configuration with a 15-foot-square cross section was repeatedly assembled by a single pair of pressure suited test subjects working from the Mobile Transporter astronaut positioning devices. The average unit assembly time was 28 seconds/strut. The results of these tests indicate that the use of a Mobile Transporter for EVA assembly of Space Station size structure is viable and practical. Additionally, the Mobile Transporter could be used to construct other spacecraft such as the submillimeter astronomical laboratory, space crane, and interplanetary (i.e., Mars and lunar) spacecraft.

  6. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  7. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder at Station 6 (base of North Massif) during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. Notice the Lunar Roving Vehicle (LRV) in the left foreground. Schmitt is the Apollo 17 lunar module pilot. This picture was taken by Astronaut Eugene A. Cernan, commander.

  8. Astronaut Harrison Schmitt standing next to boulder during third EVA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Harrison H. Schmitt is photographed standing next to a huge, split boulder during the third Apollo 17 extravehicular activity (EVA-3) at the Taurus-Littrow landing site on the Moon. The lunar rover, which transported Schmitt and Eugene A. Cernan, mission commander, to this extravehicular station from their Lunar Module, is seen in the background. Schmitt is the Apollo 17 lunar module pilot. The mosaic is made from two frames from Apollo 17 Hasselblad magaine 140.

  9. Enhanced Controlled Transdermal Delivery of Ambroxol from the EVA Matrix

    PubMed Central

    Cho, C. W.; Kim, D. B.; Cho, H. W.; Shin, S. C.

    2012-01-01

    To avoid the systemic adverse effects that might occur after oral administration, transdermal delivery of ambroxol was studied as a method for maintaining proper blood levels for an extended period. Release of ambroxol according to concentration and temperature was determined, and permeation of drug through rat skin was studied using two chamber-diffusion cells. The solubility according to PEG 400 volume fraction was highest at 40% PEG 400. The rate of drug release from the EVA matrix increased with increased temperature and drug loading doses. A linear relationship existed between the release rate and the square root of loading rate. The activation energy (Ea) was measured from the slope of the plot of log P versus 1000/T and was found to be 10.71, 10.39, 10.33 and 9.87 kcal/mol for 2, 3, 4 and 5% loading dose from the EVA matrix, respectively. To increase the permeation rate of ambroxol across rat skin from the EVA matrix, various penetration enhancers such as fatty acids (saturated, unsaturated), propylene glycols, glycerides, pyrrolidones, and non-ionic surfactants were used. The enhancing effects of the incorporated enhancers on the skin permeation of ambroxol were evaluated using Franz diffusion cells fitted with intact excised rat skin at 37° using 40% PEG 400 solution as a receptor medium. Among the enhancers used, polyoxyethylene-2-oleyl ether increased the permeation rate by 4.25-fold. In conclusion, EVA matrix containing plasticizer and permeation enhancer could be developed for enhanced transdermal delivery of ambroxol. PMID:23325993

  10. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returing from the third Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left.

  11. Custom Unit Pump Design and Testing for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F

  12. UV aging and outdoor exposure correlation for EVA PV encapsulants

    NASA Astrophysics Data System (ADS)

    Reid, Charles G.; Bokria, Jayesh G.; Woods, Joseph T.

    2013-09-01

    A widely cited approximation in the solar industry is that "one week of xenon arc weather-o-meter exposure is equivalent to one year of field exposure." This statement is a generalization of test data generated in the mid-1990s as part of the NREL managed PVMaT-3 project. This approximation was based entirely upon yellowing of first generation EVA-based encapsulants in two different accelerated test conditions, xenon arc and mirror accelerated outdoor aging. First generation EVA encapsulants were developed by STR under the JPL solar project (1975-1986) and exhibit yellowing (or browning) with exposure to UV and heat. This yellowing mechanism was understood and resolved with newer generation EVA encapsulation products introduced in late 1990s. Modules were manufactured at the end of the PVMaT-3 project that included both older and newer generation encapsulants. Those modules were on a two-axis tracker in Arizona from 1996 to 2012 and are now undergoing diagnostic tests. Older generation standard-cure encapsulant used in these modules exhibited severe browning over cells and the modules exhibit approximate power loss of about two percent per year. This same standard cure encapsulant material has been tested with updated xenon arc exposure methods and optical transmission tests to estimate the loss in power due only to browning and reduction in light transmission.

  13. Next Generation Life Support: High Performance EVA Glove

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah K.

    2015-01-01

    The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.

  14. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  15. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease

    PubMed Central

    Vickers, Mark A; Wilkie, Gwen M; Robinson, Nicolas; Rivera, Nadja; Haque, Tanzina; Crawford, Dorothy H; Barry, Jacqueline; Fraser, Neil; Turner, David M; Robertson, Victoria; Dyer, Phil; Flanagan, Peter; Newlands, Helen R; Campbell, John; Turner, Marc L

    2014-01-01

    Epstein-Barr virus (EBV) is associated with several malignancies, including post-transplant lymphoproliferative disorder (PTLD). Conventional treatments for PTLD are often successful, but risk organ rejection and cause significant side effects. EBV-specific cytotoxic T lymphocytes (CTLs) generated in vitro from peripheral blood lymphocytes provide an alternative treatment modality with few side effects, but autologous CTLs are difficult to use in clinical practice. Here we report the establishment and operation of a bank of EBV-specific CTLs derived from 25 blood donors with human leucocyte antigen (HLA) types found at high frequency in European populations. Since licensure, there have been enquiries about 37 patients, who shared a median of three class I and two class II HLA types with these donors. Cells have been infused into ten patients with lymphoproliferative disease, eight of whom achieved complete remission. Neither patient with refractory disease was matched for HLA class II. Both cases of EBV-associated non-haematopoietic sarcoma receiving cells failed to achieve complete remission. Thirteen patients died before any cells could be issued, emphasizing that the bank should be contacted before patients become pre-terminal. Thus, this third party donor-derived EBV-specific CTL cell bank can supply most patients with appropriately matched cells and most recipients have good outcomes. PMID:25066775

  16. Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie

    2003-01-01

    A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.

  17. Rapid next-generation sequencing of dengue, EV-A71 and RSV-A viruses.

    PubMed

    Baronti, Cécile; Piorkowski, Géraldine; Leparc-Goffart, Isabelle; de Lamballerie, Xavier; Dubot-Pérès, Audrey

    2015-12-15

    Accurate characterisation of viral strains constitutes a crucial objective for the management of modern virus collections. Next-generation sequencing (NGS) provides technical solution for fast and cost-effective full genome sequencing. Here, we report protocols for rapid full-genome characterisation of RNA viruses of medical importance: dengue virus, enterovirus A71 and respiratory syncytial virus A, based on a specific amplification step followed by NGS-sequencing. A subset of full-length genome sequences representing the genetic diversity of each virus type was selected in GenBank and used to design primer sets allowing the amplification of the complete genome in 3-8 overlapping PCR fragments. The technique was used for characterising 53 strains (33 DENV, 8 EV-A71, 12 RSV-A) from various genotypes and origins. In a single assay, and in just 4 days, it provided for all strains an excellent genomic coverage (∼ 99% including complete ORF for all strains) and accurate sequences with high number of reads per position (250-3500 on average). The elaboration of specific PCR-based full-genome sequencing protocols for diverse virus groups is likely to revolutionise the characterisation of viral isolates in modern collection, but also to contribute in the next future to the study of RNA viruses directly from biological samples.

  18. Effect of VA and MWNT contents on the rheological and physical properties of EVA

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ho; Lee, Seungwon; Kim, Byoung Chul; Shin, Bong-Seob; Jeon, Jong-Young; Chae, Dong Wook

    2016-02-01

    Ethylene vinyl acetate (EVA) copolymers with two different VA contents (15 and 33 wt.%, denoted by EVA15 and EVA33, respectively) were melt compounded with multi-walled carbon nanotubes (MWNTs) and the effect of VA and nanotube contents on the rheological, thermal and morphological properties was investigated. The addition of nanotubes into both EVAs increased the onset temperature of crystallization and broadened the peak, but further addition from 3 wt.% slightly decreased the temperature with increasing nanotube contents. In the wide angle X-ray diffraction patterns the peak of EVA15 was little affected by the presence of nanotubes but that of EVA33 slightly shifted to higher degree and became sharper with increasing nanotube contents. Dynamic viscosity (η') increased with nanotube contents giving abrupt increase at 2 wt.% nanotubes. Loss tangent decreased with increasing nanotube contents exhibiting the plateau-like behavior over most of the frequency range from 2 wt.% nanotubes. In the Casson plot, yield stress increased with nanotube content and its increasing extent was more notable for more VA content. In the Cole-Cole plot, the presence of nanotubes from 2 wt.% gave rise to the deviation from the single master curve by decreasing the slope. The deviated extent of EVA33 became more remarkable with increasing nanotube contents than that of EVA15. The stress-strain curve showed that more improved tensile modulus and yield stress were achieved by the introduction of MWNTs for EVA 33 than for EVA15. Tensile strength of EVA33 increased with increasing nanotube contents, while that of EVA15 decreased.

  19. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, operates a 70mm Hasselblad camera during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. The Command/Service Module and the Lunar Module 3 'Spider' are docked. This view was taken form the Command Module 'Gumdrop'. Schweickart, wearing an Extravehicular Mobility Unit (EMU), is standing in 'golden slippers' on the Lunar Module porch. On his back, partially visible, are a Portable Life Support System (PLSS) and an Oxygen Purge System (OPS).

  20. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  1. Regenerative Blower for EVA Suit Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Paul, Heather L.

    2010-01-01

    Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.

  2. Biosensors for EVA: Improved Instrumentation for Ground-based Studies

    NASA Technical Reports Server (NTRS)

    Soller, B.; Ellerby, G.; Zou, F.; Scott, P.; Jin, C.; Lee, S. M. C.; Coates, J.

    2010-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group has developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO 2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO 2 on the leg during cycling. Our NSBRI project has 4 objectives: (1) increase the accuracy of the metabolic rate calculation through improved prediction of stroke volume; (2) investigate the relative contributions of calf and thigh oxygen consumption to metabolic rate calculation for walking and running; (3) demonstrate that the NIRS-based noninvasive metabolic rate methodology is sensitive enough to detect decrement in VO 2 in a space analog; and (4) improve instrumentation to allow testing within a spacesuit. Over the past year we have made progress on all four objectives, but the most significant progress was made in improving the instrumentation. The NIRS system currently in use at JSC is based on fiber optics technology. Optical fiber bundles are used to deliver light from a light source in the monitor to the patient, and light reflected back from the patient s muscle to the monitor for spectroscopic analysis. The fiber optic cables are large and fragile, and there is no way to get them in and out of the test spacesuit used for ground-based studies. With complimentary funding from the US Army, we undertook a complete redesign of the sensor and control electronics to build a novel system small enough to be used within the spacesuit and portable enough to be used by a combat medic. In the new system the filament lamp used in the fiber optic system was replaced with a novel broadband near infrared

  3. Simulation and preparation of surface EVA in reduced gravity at the Marseilles Bay subsea analogue sites

    NASA Astrophysics Data System (ADS)

    Weiss, P.; Gardette, B.; Chirié, B.; Collina-Girard, J.; Delauze, H. G.

    2012-12-01

    Extravehicular activity (EVA) of astronauts during space missions is simulated nowadays underwater in neutral buoyancy facilities. Certain aspects of weightlessness can be reproduced underwater by adding buoyancy to a diver-astronaut, therefore exposing the subject to the difficulties of working without gravity. Such tests were done at the COMEX' test pool in Marseilles in the 1980s to train for a French-Russian mission to the MIR station, for the development of the European HERMES shuttle and the COLUMBUS laboratory. However, space agencies are currently studying missions to other destinations than the International Space Station in orbit, such as the return to the Moon, NEO (near-Earth objects) or Mars. All these objects expose different gravities: Moon has one sixth of Earth's gravity, Mars has a third of Earth's gravity and asteroids have virtually no surface gravity; the astronaut "floats" above the ground. The preparation of such missions calls for a new concept in neutral buoyancy training, not on man-made structures, but on natural terrain, underwater, to simulate EVA operations such as sampling, locomotion or even anchoring in low gravity. Underwater sites can be used not only to simulate the reduced gravity that astronauts will experience during their field trips, also human factors like stress are more realistically reproduced in such environment. The Bay of Marseille hosts several underwater sites that can be used to simulate various geologic morphologies, such as sink-holes which can be used to simulate astronaut descends into craters, caves where explorations of lava tubes can be trained or monolithic rock structures that can be used to test anchoring devices (e.g., near Earth objects). Marseilles with its aerospace and maritime/offshore heritage hosts the necessary logistics and expertise that is needed to perform such simulations underwater in a safe manner (training of astronaut-divers in local test pools, research vessels, subsea robots and

  4. 12 CFR 7.1000 - National bank ownership of property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND OPERATIONS Bank Powers § 7.1000 National bank ownership of property. (a) Investment in real estate... its business, such as fixtures, furniture, and data processing equipment. (c) Investment in bank premises—(1) Investment limitation; approval. 12 U.S.C. 371d governs when OCC approval is required...

  5. 18 CFR 1314.3 - Authority of Reserve Banks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Authority of Reserve Banks. 1314.3 Section 1314.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY BOOK.... (b) Each Reserve Bank may issue Reserve Bank Operating Circulars not inconsistent with this part...

  6. 18 CFR 1314.3 - Authority of Reserve Banks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Authority of Reserve Banks. 1314.3 Section 1314.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY BOOK.... (b) Each Reserve Bank may issue Reserve Bank Operating Circulars not inconsistent with this part...

  7. 18 CFR 1314.3 - Authority of Reserve Banks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Authority of Reserve Banks. 1314.3 Section 1314.3 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY BOOK.... (b) Each Reserve Bank may issue Reserve Bank Operating Circulars not inconsistent with this part...

  8. The Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Jewell, P. R.

    1999-12-01

    The Green Bank Telescope The 100-m NRAO Green Bank Telescope will be completed in early 2000. The GBT has a large number of unique design and performance features that will give it unprecedented scientific capability. This poster display will review those features, which include an offset feed (clear aperture) design, an active surface, a closed-loop laser metrology system for surface figure and pointing control, broad frequency coverage from 100 MHz to 115 GHz, a versatile receiver selection mechanism, and a new multi-input, 256k-channel autocorrelation spectrometer. The status of the project, the commissioning schedule, plans for early operations, the initial instrumentation suite, and plans for future instrumentation will be reviewed. Scientific areas for which the GBT will have a large impact will be discussed, including observations of young galaxies at extreme redshifts, pulsars, HI and molecular spectroscopy, VLBI work, and millimeter-wave spectroscopy and continuum studies. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  9. Astronaut Harrison Schmitt collects lunar rake samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt collects lunar rake samples at Station 1 during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture was taken by Astronatu Eugene Cernan, Apollo 17 commander. Schmitt is the lunar module pilot. The lunar rake, An Apollo lunar geology hand tool, is used to collect discrete samples of rocks and rock chips ranging in size from one-half inch (1.3 cm) to one inch (2.5 cm).

  10. Astronaut Harrison Schmitt collects lunar rake samples during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt collects lunar rake samples at Station 1 during the first Apollo 17 extravehicular activity (EVA-1) at the Taurus-Littrow landing site. This picture was taken by Astronaut Eugene Cernan, Apollo 17 commander. Schmitt is the lunar module pilot. The lunar rake, an Apollo lunar geology hand tool, is used to collect discrete samples of rocks and rock chips ranging in size from one-half inch (1.3 cm) to one inch (2.5 cm).

  11. Baseline tests of the EVA contractor electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Tryon, H. B.; Slavick, R. J.

    1977-01-01

    The EVA Contactor four door sedan, an electric passenger vehicle, was tested to characterize the state-of-the-art of electric vehicles. It is a four passenger sedan that was converted to an electric vehicle. It is powered by 16 series connected 6 volt electric vehicle batteries through a four step contactor controller actuated by a foot accelerator pedal. The controller changes the voltage applied to the separately excited DC motor. The braking system is a vacuum assisted hydraulic braking system. Regenerative braking was also provided.

  12. Boudreaux the Robot (a.k.a. EVA Robotic Assistant)

    NASA Technical Reports Server (NTRS)

    Shillcutt, Kimberly; Burridge, Robert; Graham, Jeffrey

    2002-01-01

    The EVA Robotic Assistant is a prototype for an autonomous rover designed to assist human astronauts. The primary focus of the research is to explore the interaction between humans and robots, particularly in extreme environments, and to develop a software infrastructure that could be applied to any type of assistant robot, whether for planetary exploration or orbital missions. This paper describes the background and current status of the project, the types of scenarios addressed in field demonstrations, the hardware and software that comprise the current prototype, and future research plans.

  13. Astronaut Thomas Mattingly performs EVA during Apollo 16 transearth coast

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, performs extravehicular activity (EVA) during the Apollo 16 transearth coast. mattingly is assisted by Astronaut Charles M. Duke Jr., lunar module pilot. Mattingly inspected the SIM bay of the Service Module, and retrieved film from the Mapping and Panoramic cameras. Mattingly is wearing the helmet of Astronaut John W. Young, commander. The helmet's lunar extravehicular visor assembly helped protect Mattingly's eyes frmo the bright sun. This view is a frame from motion picture film exposed by a 16mm Maurer camera.

  14. Apollo 16 lunar module 'Orion' photographed from distance during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is photographed from a distance by Astronaut Chares M. Duke Jr., lunar module pilot, aboard the moving Lunar Roving Vehicle. Astronauts Duke and John W. Young, commander, were returning from the excursion to Stone Mountain during the second Apollo 16 extravehicular activity (EVA-2). The RCA color television camera mounted on the LRV is in the foreground. A portion of the LRV's high-gain antenna is at top left. Smoky Mountain rises behind the LM in this north-looking view at the Descartes landing site.

  15. STS-118 Astronauts Rick Mastracchio and Clay Anderson Perform EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio was anchored on the foot restraint of the Canadarm2 as he participated in the third session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Expedition 15 flight engineer Clay Anderson (out of frame). During the 5 hour, 28 minute space walk, the two relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) truss to the Port 1 (P1) truss, installed a new transponder on P1 and retrieved the P6 transponder.

  16. Extravehicular Activity (EVA) Power, Avionics, and Software (PAS) 101

    NASA Technical Reports Server (NTRS)

    Irimies, David

    2011-01-01

    EVA systems consist of a spacesuit or garment, a PLSS, a PAS system, and spacesuit interface hardware. The PAS system is responsible for providing power for the suit, communication of several types of data between the suit and other mission assets, avionics hardware to perform numerous data display and processing functions, and information systems that provide crewmembers data to perform their tasks with more autonomy and efficiency. Irimies discussed how technology development efforts have advanced the state-of-the-art in these areas and shared technology development challenges.

  17. 12 CFR 932.6 - Operations risk capital requirement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... risk capital requirement if: (1) The Bank provides an alternative methodology for assessing and... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Operations risk capital requirement. 932.6 Section 932.6 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT...

  18. 12 CFR 932.6 - Operations risk capital requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... risk capital requirement if: (1) The Bank provides an alternative methodology for assessing and... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Operations risk capital requirement. 932.6 Section 932.6 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT...

  19. 12 CFR 932.6 - Operations risk capital requirement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... risk capital requirement if: (1) The Bank provides an alternative methodology for assessing and... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Operations risk capital requirement. 932.6 Section 932.6 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT...

  20. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  1. An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik

    2001-01-01

    This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.

  2. Management of a Community Hospital Blood Bank: A Descriptive Model.

    DTIC Science & Technology

    The operational activities of a community hospital blood bank are described at all levels with special attention given to the inventory management of...the bank . A distinguishing feature of this blood bank is the use of a centrifuge-freezer system which, prior to the ten day age limit, breaks down...inventory management policies thus include regulating the input of blood into the bank , the transfer of blood from the refrigerator to the freezer and

  3. Dry holes of Georges Bank

    SciTech Connect

    Bailey, D.M.

    1982-11-01

    After winning the controversial Georges Bank debate, five oil companies have found only commercially unprofitable dry holes, which experts predict will become anywhere from marginal to vital in future years. The economic boom that offshore drilling was to bring to New England has not materialized despite rumors that the companies found either oil or gas that they are not yet ready to announce. Bad weather and the high cost of offshore drilling may be more responsible for the removal of drilling rigs from the area, but an industry-wide survey finds that only 2200 of 4800 offshore rigs are currently operating. Debate over Georges Bank focused on possible damage to the fishing industry and the windfall the government will receive if leasing is accelerated. Many expect to see rigs returning to Georges Bank in the spring. (DCK)

  4. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this study,…

  5. Enhanced Adhesion of EVA Laminates to Primed Glass Substrates Subjected to Damp-Heat Exposure

    SciTech Connect

    Pern, F. J.; Jorgensen, G. J.

    2005-02-01

    We investigated the effectiveness of glass-surface priming to promote enhanced adhesion of EVA laminates during damp-heat exposure at 85 C and 85% relative humidity. The primary objective was to develop advanced encapsulant formulations by incorporation of various primer formulations that exhibit improved adhesion during damp-heat exposure. Several primer formulations were identified that greatly enhanced the EVA adhesion strength, including to the extent that peeling could not be initiated, even for the laminates of the glass substrate/fast-cure EVA15295P/TPE backsheet (a Tedlar/polyester/EVA tri-laminate) that were exposed in a damp-heat test chamber for more than 750 h. The results show that a synergistic increase in the interfacial hydrophobicity, siloxane density, and cross-linking density are the key attributes to the improvement in the EVA adhesion strength.

  6. Initial Work Toward a Robotically Assisted EVA Glove

    NASA Technical Reports Server (NTRS)

    Rogers, J.; Peters, B.; McBryan, E.; Laske, E.

    2016-01-01

    The Space Suit RoboGlove is a device designed to provide additional grasp strength or endurance for an EVA crew member since gloved hand performance is a fraction of what the unencumbered human hand can achieve. There have been past efforts to approach this problem by employing novel materials and construction techniques to the glove design, as well as integrating powered assistance devices. This application of the NASA/GM RoboGlove technology uses a unique approach to integrate the robotic actuators and sensors into a Phase VI EVA glove. This design provides grasp augmentation to the glove user while active, but can also function as a normal glove when disabled. Care was taken to avoid adding excessive bulk to the glove or affecting tactility by choosing low-profile sensors and extrinsically locating the actuators. Conduits are used to guide robotic tendons from linear actuators, across the wrist, and to the fingers. The second generation of the SSRG includes updated electronics, sensors, and actuators to improve performance. The following discusses the electromechanical design, softgoods integration, and control system of the SSRG. It also presents test results from the first integration of a powered mobility element onto a space suit, the NASA Mark III. Early results show that sensor integration did not impact tactile feedback in the glove and the actuators show potential for reduction in grasp fatigue over time.

  7. Spectroscopic, scanning laser OBIC, and I-V/QE characterizations of browned EVA solar cells

    SciTech Connect

    Pern, F.J.; Eisgruber, I.L.; Micheels, R.H.

    1996-05-01

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of -80 to -90 to the range of -20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emission peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%-48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.

  8. 12 CFR Appendix G to Part 225 - Capital Adequacy Guidelines for Bank Holding Companies: Internal-Ratings-Based and Advanced...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... commensurate with the bank holding company's credit, market, operational, or other risks. In making a... the actual risk relationship of the bank holding company to the entity. In making this determination... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Capital Adequacy Guidelines for Bank...

  9. 12 CFR Appendix G to Part 225 - Capital Adequacy Guidelines for Bank Holding Companies: Internal-Ratings-Based and Advanced...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... commensurate with the bank holding company's credit, market, operational, or other risks. In making a... the actual risk relationship of the bank holding company to the entity. In making this determination... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Capital Adequacy Guidelines for Bank...

  10. 31 CFR 354.2 - Law governing rights and obligations of Federal Reserve Banks, and Sallie Mae; rights of any...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... obligations of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... inconsistent with these regulations) and Federal Reserve Bank Operating Circulars: (1) The rights...

  11. 31 CFR 354.2 - Law governing rights and obligations of Federal Reserve Banks, and Sallie Mae; rights of any...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... obligations of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... inconsistent with these regulations) and Federal Reserve Bank Operating Circulars: (1) The rights...

  12. 31 CFR 354.2 - Law governing rights and obligations of Federal Reserve Banks, and Sallie Mae; rights of any...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... obligations of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... inconsistent with these regulations) and Federal Reserve Bank Operating Circulars: (1) The rights...

  13. 31 CFR 354.2 - Law governing rights and obligations of Federal Reserve Banks, and Sallie Mae; rights of any...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... obligations of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... inconsistent with these regulations) and Federal Reserve Bank Operating Circulars: (1) The rights...

  14. STS-49 - A demonstration of EMU operational capabilities for Space Station Freedom assembly

    NASA Astrophysics Data System (ADS)

    Bleisath, Scott A.; Johnson, Kieth G.

    1992-07-01

    One of the primary objectives for Space Shuttle mission STS-49 is to perform three EVAs on consecutive days in a manner similar to those planned for Space Station Freedom (SSF) assembly missions. The preparation and completion of this mission will serve as a pathfinder for future EVA intensive SSF assembly flights. Several operational issues pertaining to the EMU have been addressed in preparation for this mission. Provisioning and orbiter stowage of the EMU and associated hardware have been optimized for four EVA crewmembers. EMU preparatory and maintenance activities have been streamlined to help minimize crew overhead and have been carefully integrated into a very demanding mission timeline. The constraints and limitations have been assessed in providing a backup EMU capability for each EVA crewmember. Several EMU concerns have also been addressed in supporting new EVA task requirements, such as large mass handling and performing SSF assembly operations over the crew cabin and nose of the Shuttle orbiter.

  15. 76 FR 80817 - Funding and Fiscal Affairs, Loan Policies and Operations, and Funding Operations; Liquidity and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ...) banks, improve the quality of assets in the liquidity reserve, and bolster the ability of System banks... banks to pay their obligations and fund their operations by maintaining adequate liquidity to withstand... at all FCS banks; Enhance the marketability of assets that System banks hold in their...

  16. 12 CFR 5.34 - Operating subsidiaries.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Operating subsidiaries. 5.34 Section 5.34 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY RULES, POLICIES, AND PROCEDURES FOR CORPORATE ACTIVITIES Expansion of Activities § 5.34 Operating subsidiaries. (a) Authority. 12...

  17. 12 CFR 590.3 - Operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Operation. 590.3 Section 590.3 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY PREEMPTION OF STATE USURY LAWS § 590.3 Operation. (a) The provisions of the constitution or law of any state expressly limiting the rate or...

  18. Commercial Banking Industry Survey.

    ERIC Educational Resources Information Center

    Bright Horizons Children's Centers, Cambridge, MA.

    Work and family programs are becoming increasingly important in the commercial banking industry. The objective of this survey was to collect information and prepare a commercial banking industry profile on work and family programs. Fifty-nine top American commercial banks from the Fortune 500 list were invited to participate. Twenty-two…

  19. Banking on the Internet.

    ERIC Educational Resources Information Center

    Internet Research, 1996

    1996-01-01

    Electronic ground was broken in 1995 with the development of the completely Internet-based bank Security First Network Bank. This article discusses the need for developing online services, outlines the reasons for the formation of an Internet-based bank and argues that to remain competitive financial services providers must provide easier customer…

  20. NAVSHIPS Digital Data Coding Instructions for the Underwater Acoustic and Environmental Data Bank (NAVDAB).

    DTIC Science & Technology

    The Naval Ship Systems Command has created a data bank for certified underwater acoustic and environmental data. The data bank is to be used in the...construction and validation of underwater acoustic models. The report contains a description of the data bank and its operation, together with instructions for the coding of information to be entered in the bank . (Author)

  1. 31 CFR 1010.653 - Special measures against Commercial Bank of Syria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bank of Syria. 1010.653 Section 1010.653 Money and Finance: Treasury Regulations Relating to Money and... against Commercial Bank of Syria. (a) Definitions. For purposes of this section: (1) Commercial Bank of Syria means any branch, office, or subsidiary of Commercial Bank of Syria operating in Syria or in...

  2. 31 CFR 1010.653 - Special measures against Commercial Bank of Syria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Bank of Syria. 1010.653 Section 1010.653 Money and Finance: Treasury Regulations Relating to Money and... against Commercial Bank of Syria. (a) Definitions. For purposes of this section: (1) Commercial Bank of Syria means any branch, office, or subsidiary of Commercial Bank of Syria operating in Syria or in...

  3. The main results of EVA medical support on the Mir Space Station.

    PubMed

    Katuntsev, V P; Osipov, Yu Yu; Barer, A S; Gnoevaya, N K; Tarasenkov, G G

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9-13 kcal/min and 150-174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  4. A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema

    PubMed Central

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chua, Beng Hooi; Alonso, Sylvie; Chow, Vincent T. K.; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)—the main cause of EV-A71 infection-related mortality—is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications. PMID:27357918

  5. The main results of EVA medical support on the Mir Space Station

    NASA Astrophysics Data System (ADS)

    Katuntsev, V. P.; Osipov, Yu. Yu.; Barer, A. S.; Gnoevaya, N. K.; Tarasenkov, G. G.

    2004-04-01

    The aim of this paper is to review the main results of medical support of 78 two-person extravehicular activities (EVAs) which have been conducted in the Mir Space Program. Thirty-six male crewmembers participated in these EVAs. Maximum length of a space walk was equal to 7 h 14 min. The total duration of all space walks reached 717.1 man-hours. The maximum frequency of EVA's execution was 10 per year. Most of the EVAs (67) have been performed at mission elapsed time ranging from 31 to 180 days. The oxygen atmosphere of the Orlan space suit with a pressure of 40 kPa in combination with the normobaric cabin environment and a short (30 min) oxygen prebreathe protocol have minimized the risk of decompression sickness (DCS). There has been no incidence of DCS during performed EVAs. At the peak activity, metabolic rates and heart rates increased up to 9.9- 13 kcal/ min and 150- 174 min-1, respectively. The medical problems have centred on feeling of moderate overcooling during a rest period in a shadow after the high physical loads, episodes with tachycardia accompanied by cardiac rhythm disorders at the moments of emotional stress, pains in the muscles and general fatigue after the end of a hard EVA. All of the EVAs have been completed safely.

  6. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation

    PubMed Central

    Ramena, Grace; Yin, Yufang; Yu, Yang; Walia, Vijay; Elble, Randolph C.

    2016-01-01

    CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines. PMID:26930581

  7. Stem cell banking: between traceability and identifiability.

    PubMed

    Knoppers, Bartha M; Isasi, Rosario

    2010-10-05

    Stem cell banks are increasingly seen as an essential resource of biological materials for both basic and translational research. Stem cell banks support transnational access to quality-controlled and ethically sourced stem cell lines from different origins and of varying grades. According to the Organisation for Economic Co-operation and Development, advances in regenerative medicine are leading to the development of a bioeconomy, 'a world where biotechnology contributes to a significant share of economic output'. Consequently, stem cell banks are destined to constitute a pillar of the bioeconomy in many countries. While certain ethical and legal concerns are specific to the nature of stem cells, stem cell banking could do well to examine the approaches fostered by tissue banking generally. Indeed, the past decade has seen a move to simplify and harmonize biological tissue and data banking so as to foster international interoperability. In particular, the issues of consent and of traceability illustrate not only commonalities but the opportunity for stem cell banking to appreciate the lessons learned in biobanking generally. This paper analyzes convergence and divergence in issues surrounding policy harmonization, transnational sharing, informed consent, traceability and return of results in the context of stem cell banks.

  8. Further analysis of EVA self-rescue data

    NASA Astrophysics Data System (ADS)

    Brody, Adam R.

    1992-08-01

    Results of an EVA study performed in the Virtual Interactive Environment Workstation at the NASA Ames Research Center are presented. Three initial separation velocities (0.5, 1.0, and 1.5 m/s) were crossed with five initial spin velocities (0, +/-0.1, +/-0.3) to yield 15 different trials. An attitude hold system was also modeled, which, when combined with the 15 combinations of separation and spin velocity, provided 30 distinct trials. Recent examinations of the data reveal that initial separation velocity and initial spin velocity each produced the main effects and combined to produce an interaction effect on the solution time. The solution time increased with the initial velocity and absolute initial spin velocity. The final roll angle also increased the initial spin velocity. The attitude hold fuel increased with absolute initial spin velocity. Interaction effects revealed that the main effects were less pronounced at the lowest initial velocity level.

  9. STS-114 Astronauts Participate in Extra-Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. In this photograph, astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration Agency (JAXA), participates in the mission's first scheduled session of Extra-Vehicular Activity (EVA). Noguchi and crew mate Stephen K. Robinson (out of frame) completed a demonstration of Shuttle thermal protection repair techniques and enhancements to the ISS's attitude control system during the successful 6 hour, 50 minute space walk.

  10. Person to Person Biological Heat Bypass During EVA Emergencies

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Lee, Joo-Young; Kim, Jung-Hyun; Berowiski, Anna; Trevino, Robert C.

    2007-01-01

    During EVA and other extreme environments, mutual human support is sometimes the last way to survive when there is a failure of the life support equipment. The possibility to transfer a coolant to remove heat or a warming fluid to increase heat from one individual to another to support the thermal balance of the individual with system failure was assessed. The following scenarios were considered: 1. one participant has a cooling system that is not working well and already has a body heat deficit equal to 100-120 kcal and a finger temperature decline to 25 C; 2. one participant has the same status of overcooling and the other mild overheating. Preliminary findings showed promise in using such sharing tactics to extend the time duration of survival in extreme situations when there is a high metabolic rate in the donor.

  11. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  12. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  13. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  14. ESEM analysis of polymeric film in EVA-modified cement paste

    SciTech Connect

    Silva, D.A. . E-mail: denise@ecv.ufsc.br; Monteiro, P.J.M.

    2005-10-01

    Portland cement pastes modified by 20% weight (polymer/cement ratio) of poly(ethylene-co-vinyl acetate) (EVA) were prepared, cured, and immersed in water for 11 days. The effects of water saturation and drying on the EVA polymeric film formed in cement pastes were observed using environmental scanning electron microscopy (ESEM). This technique allowed the imaging of the EVA film even in saturated samples. The decrease of the relative humidity inside the ESEM chamber did not cause any visual modification of the polymeric film during its drying.

  15. Bahrain's offshore banking center

    SciTech Connect

    Gerakis, A.S.; Roncesvalles, O.

    1983-01-01

    The economic effects of Bahrain's schemes for licensing offshore banking units (OBUs) were the immediate response of major international banks and the financial services the banking center has rendered by improving regional money and exchange markets at a time when a Middle East link was needed to service the increasing demand for oil-wealth banking services. Bahrain's leadership also created a favorable climate. Aggressive competition from banks in Kuwait and Saudi Arabia have caused some friction, but informal supervision by the Bahrain Monetary Agency (BMA) should be able to avoid serious difficulty. Bahrain's success required a banking infrastructure, a free-enterprise system, a willingness to maintain banking standards, a country small enough to benefit directly from OBU income, and a gap in nearby competing centers. 39 references, 1 figure, 5 tables. (DCK)

  16. The professional clothing bank as evidence-based practice.

    PubMed

    Bishop, SueZanne Monique

    2015-01-01

    Little research exists linking interview-appropriate attire to improved employment outcomes for women. Thus, it appears that the professional clothing bank has not been investigated as evidence-based practice. To provide preliminary evidence for clothing banks, in this article the author synthesizes findings from existing research on the provision of a professional clothing bank as a means for offering interview-appropriate attire to poor women in job readiness programming. For context, job readiness programs are explored and a case study of one program operating a professional clothing bank is presented. Finally, preliminary considerations for planning and implementing clothing banks based on this literature review are given.

  17. Efficacy of Wrist/Palm Warming as an EVA Countermeasure to Maintain Finger Comfort in Cold Conditions During EVA

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Trevino, Robert C.

    2000-01-01

    This study explored the effectiveness of local wrist/palm warming as a potential countermeasure for providing finger comfort during extended duration EVA. Methods: Six subjects (5 males and 1 female) were evaluated in a sagitally divided liquid cooling/warming garment (LCWG) with modified liquid cooling/warming (LCW) gloves in three different experimental conditions. Condition 1: Stage 1- no LCWG; chamber adaptation with LCW glove inlet water temperature 33 C; Stage 2-LCW glove inlet water temperature cooled to 8 C; Stage 3-LCW glove inlet water temperature warmed to 45 C; Condition 2: Stage1-LCWG and LCW glove inlet water temperature 33 C; Stage 2-LCWG inlet temperature cooled to 31 C, LCW gloves, 8 C; Stage 3-LCWG inlet water temperature remains at 31 C, LCW glove inlet water temperature warmed to 45 C; Condition 3: Stage l -LCWG and LCW gloves 33 C; Stage 2-LCWG inlet water temperature cooled to 28 C, LCW gloves, 8 C; Stage 3-LCWG remains at 28 C, LCW glove water temperature warmed to 45 C. Results: Wrist/palm area warming significantly increased finger temperature (Tfing) and blood perfusion in Stage 3 compared to Stage 2. The LCW gloves were most effective in increasing Stage 3 Tfing in Condition 1; and in increasing blood perfusion in Conditions 1 and 2 compared to Condition 3. Ratings of subjective perception of heat in the hand and overall body heat were higher at Stage 3 than Stage 2, with no significant differences across Conditions. Conclusions: Local wrist/palm warming was effective in increasing blood circulation to the distal extremities, suggesting the potential usefulness of this technique for increasing astronaut thermal comfort during EVA while decreasing power requirements. The LCW gloves were effective in heating the highly cooled fingers when the overall body was in a mild heat deficit.

  18. Automatic antenna switching design for Extra Vehicular Activity (EVA) communication system

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1987-01-01

    An Extra Vehicular Activity (EVA) crewmember had two-way communications with the space station in the Ku-band frequency (12 to 18 GHz). The maximum range of the EVA communications link with the space station is approximately one kilometer for nominal values for transmitter power, antenna gains, and receiver noise figure. The EVA Communications System, that will continue to function regardless of the astronaut's position and orientation, requires an antenna system that has full spherical coverage. Three or more antennas that can be flush mounted on the astronaut's space suit (EMU) and/or his propulsive backpack (MMU), will be needed to provide the desired coverage. As the astronaut moves in the space station, the signal received by a given EVA antenna changes. An automatic antenna switching system is needed that will switch the communication system to the antenna with the largest signal strength. A design for automatic antenna switching is presented and discussed.

  19. EASE (Experimental Assembly of Structures in EVA) overview of selected results

    NASA Technical Reports Server (NTRS)

    Akin, David L.

    1987-01-01

    Experimental Assembly of Structures in EVA (EASE) objectives, experimental protocol, neutral buoyancy simulation, task time distribution, assembly task performance, metabolic rate/biomedical readouts are summarized. This presentation is shown in charts, figures, and graphs.

  20. Enhancing the thermal conductivity of ethylene-vinyl acetate (EVA) in a photovoltaic thermal collector

    NASA Astrophysics Data System (ADS)

    Allan, J.; Pinder, H.; Dehouche, Z.

    2016-03-01

    Samples of Ethylene-Vinyl Acetate (EVA) were doped with particles of Boron Nitride (BN) in concentrations ranging from 0-60% w/w. Thermal conductivity was measured using a Differential Scanning Calorimetery (DSC) technique. The thermal conductivity of parent EVA was increased from 0.24W/m ṡ K to 0.80W/m ṡ K for the 60% w/w sample. Two PV laminates were made; one using the parent EVA the other using EVA doped with 50% BN. When exposed to a one directional heat flux the doped laminate was, on average, 6% cooler than the standard laminate. A finite difference model had good agreement with experimental results and showed that the use of 60% BN composite achieved a PV performance increase of 0.3% compared to the standard laminate.

  1. A synopsis of the EVA training conducted on EASE/ACCESS for STS-61-B

    NASA Technical Reports Server (NTRS)

    Havens, Kathryn A.

    1987-01-01

    Experimental Assembly of Structure in EVA (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) training problems; photography/television coverage; training schedules; flight data file (FDF), and flight rules production are summarized.

  2. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  3. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  4. The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark; Johnston, Alistair

    1996-01-01

    The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.

  5. FY13 High Performance EVA Glove (HPEG) Collaboration: Glove Injury Data Mining Effort - Training Data Overview

    NASA Technical Reports Server (NTRS)

    Reid, Christopher; Benson, Elizabeth; England, Scott; Charvat, Jacqueline; Norcross, Jason; McFarland, Shane; Rajulu, Sudhakar

    2014-01-01

    From the time hand-intensive tasks were first created for EVAs, discomforts and injuries have been noted.. There have been numerous versions of EVA gloves for US crew over the past 50 years, yet pain and injuries persist. The investigation team was tasked with assisting in a glove injury assessment for the High Performance EVA Glove (HPEG) project.center dot To aid in this assessment, the team was asked to complete the following objectives: - First, to develop the best current understanding of what glove-related injuries have occurred to date, and when possible, identify the specific mechanisms that caused those injuries - Second, to create a standardized method for comparison of glove injury potential from one glove to another. center dot The overall goal of the gloved hand injury assessment is to utilize ergonomics in understanding how these glove injuries are occurring, and to propose mitigations to current designs or design changes in the next generation of EVA gloves.

  6. 12 CFR 225.131 - Activities closely related to banking.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations, systems and procedures; computer operations and mechanization; implementation of electronic funds... authority to vote such shares or shares held with sole voting rights constitute not more than five percent of the outstanding voting shares of a client bank....

  7. Overview of EVA PRA for TPS Repair for Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Duncan, Gary; Roeschel, Eduardo; Canga, Michael

    2010-01-01

    Following the Columbia accident in 2003, NASA developed techniques to repair the Thermal Protection System (TPS) in the event of damage to the TPS as one of several actions to reduce the risk to future flights from ascent debris, micro-meteoroid and/or orbital debris (MMOD). Other actions to help reduce the risk include improved inspection techniques, reduced shedding of debris from the External Tank and ability to rescue the crew with a launch on need vehicle. For the Hubble Space Telescope (HST) Servicing Mission the crew rescue capability was limited by the inability to safe haven on the International Space Station (ISS), resulting in a greater reliance on the repair capability. Therefore it was desirable to have an idea of the risk associated with conducting a repair, where the repair would have to be conducted using an Extra-Vehicular Activity (EVA). Previously, focused analyses had been conducted to quantify the risk associated with certain aspects of an EVA, for example the EVA Mobility Unit (EMU) or Space Suit; however, the analyses were somewhat limited in scope. A complete integrated model of an EVA which could quantify the risk associated with all of the major components of an EVA had never been done before. It was desired to have a complete integrated model to be able to assess the risks associated with an EVA to support the Space Shuttle Program (SSP) in making risk informed decisions. In the case of the HST Servicing Mission, this model was developed to assess specifically the risks associated with performing a TPS repair EVA. This paper provides an overview of the model that was developed to support the HST mission in the event of TPS damage. The HST Servicing Mission was successfully completed on May 24th 2009 with no critical TPS damage; therefore the model was not required for real-time mission support. However, it laid the foundation upon which future EVA quantitative risk assessments could be based.

  8. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  9. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley, P. L.; Scheidt, S.; Carter, L.; Coan, D.; Reagan, M.; Glotch, T.; Lewis, R.

    2017-02-01

    Human exploration of other planetary bodies is crucial in answering critical science questions about our solar system. As we seek to put humans on other surfaces by 2050, we must understand the science operations concepts needed for planetary EVA.

  10. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy

    PubMed Central

    Li, Mengtao; Lu, Guang; Hu, Jia; Shen, Xue; Ju, Jiabao; Gao, Yuanxu; Qu, Liujing; Xia, Yan; Chen, Yingyu; Bai, Yun

    2016-01-01

    Summary Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation. PMID:26905199

  11. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy.

    PubMed

    Li, Mengtao; Lu, Guang; Hu, Jia; Shen, Xue; Ju, Jiabao; Gao, Yuanxu; Qu, Liujing; Xia, Yan; Chen, Yingyu; Bai, Yun

    2016-03-08

    Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

  12. Oceanographic Data Bank Survey.

    DTIC Science & Technology

    1972-12-01

    This report summarizes the findings of an Oceanographic Data Bank Survey. The survey was conducted in order to eliminate duplication of data base...development and to aid the Data Base Manager in establishing the data banks for the Acoustic Environmental Support Detachment (AESD). A key finding is...that no one data bank exists that will satisfy the total needs of AESD. Data bases available from the National Oceanographic Data Center (NODC), Fleet

  13. 12 CFR 615.5180 - Interest rate risk management by banks-general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Risk Assessment and Management § 615.5180 Interest rate risk management by banks—general. The board of directors of each Farm Credit Bank... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Interest rate risk management by...

  14. 12 CFR 615.5180 - Interest rate risk management by banks-general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Risk Assessment and Management § 615.5180 Interest rate risk management by banks—general. The board of directors of each Farm Credit Bank... 12 Banks and Banking 7 2012-01-01 2012-01-01 false Interest rate risk management by...

  15. 12 CFR 615.5180 - Interest rate risk management by banks-general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Risk Assessment and Management § 615.5180 Interest rate risk management by banks—general. The board of directors of each Farm Credit Bank... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Interest rate risk management by...

  16. The World Bank and the environment

    SciTech Connect

    Not Available

    1990-01-01

    In September 1989 the World Bank set out a three-year agenda for action to combat environmental degradation. The main goal of this agenda has been the integration of environmental concerns into the Bank's development work. This report- the Bank's first annual report on the environment - reviews progress in this area during fiscal 1990 (July 1989 - June 1990). Environmental concerns were addressed in Bank operations during FY90 through country-focused environmental strategy work, policy and research activities, and lending operations. Five problem areas required special attention: destruction of natural habitats; land degradation; degradation and depletion of fresh water resources; urban, industrial, and agricultural pollution; and degradation of the global commons' through, for example, atmospheric and marine pollution. The book describes not only the Bank's successes in its environmental work but also the problems it has encountered. It raises important questions about whether real progress can be made by the Bank if inadequate resources are devoted to supervision, project monitoring, and environmental regulation.

  17. Platerm: la banque de terminologie du systeme Platon (PLATERM: The Terminology Bank of the PLATO System).

    ERIC Educational Resources Information Center

    Schwab, Wallace; St-Denis, Richard

    1980-01-01

    Describes the elements and functioning of the terminology bank of the PLATO (Programmed Loqic for Automated Teaching Operation) system. Discusses contemporary terminology and lexicography notions on which the bank is based and outlines the tasks performed through PLATERM. (MES)

  18. STS-111 Astronaut Perrin Performs Extra Vehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  19. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  20. EVA Suit R and D for Performance Optimization

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations

  1. 78 FR 12360 - PNC Bank, National Association, Retail Bank Franklin, PA; PNC Bank, National Association, Retail...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Employment and Training Administration PNC Bank, National Association, Retail Bank Franklin, PA; PNC Bank, National Association, Retail Bank West Chester, IL; Notice of Negative Determination Regarding Application... Assistance (TAA) applicable to workers and former workers of PNC Bank, National Association, Retail...

  2. Wetlands Mitigation Banking Concepts

    DTIC Science & Technology

    1992-07-01

    Naval Amphibious Bas Eslgrss Mit. Bank CA, San Diego Co. dredging & facilities Dept of the Navy SeaWorld Eelgras Mitigation Dank CA, San Diego Co...shore development, private projects SeaWorld 8 Table 2. WETLAND MITIGATION BANKS UNDER PLANNING, Institute for Water Resources Preliminary Survey Data

  3. Airport Land Banking.

    DTIC Science & Technology

    1977-08-01

    the Secretary of Transportation to conduct a study with respect to the feasibility, practicability, and cost of land bank planning and development...1977. Airport land banking was studied and analyzed from several different perspectives, including legal, economic, and financial, and the results of this study are reported in this document. (Author)

  4. GenBank

    PubMed Central

    Clark, Karen; Karsch-Mizrachi, Ilene; Lipman, David J.; Ostell, James; Sayers, Eric W.

    2016-01-01

    GenBank® (www.ncbi.nlm.nih.gov/genbank/) is a comprehensive database that contains publicly available nucleotide sequences for over 340 000 formally described species. Recent developments include a new starting page for submitters, a shift toward using accession.version identifiers rather than GI numbers, a wizard for submitting 16S rRNA sequences, and an Identical Protein Report to address growing issues of data redundancy. GenBank organizes the sequence data received from individual laboratories and large-scale sequencing projects into 18 divisions, and GenBank staff assign unique accession.version identifiers upon data receipt. Most submitters use the web-based BankIt or standalone Sequin programs. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the nuccore, nucest, and nucgss databases of the Entrez retrieval system, which integrates these records with a variety of other data including taxonomy nodes, genomes, protein structures, and biomedical journal literature in PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. PMID:26590407

  5. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2008-01-01

    GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 260 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov.

  6. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Sayers, Eric W

    2011-01-01

    GenBank® is a comprehensive database that contains publicly available nucleotide sequences for more than 380,000 organisms named at the genus level or lower, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system that integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov.

  7. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Sayers, Eric W

    2010-01-01

    GenBank is a comprehensive database that contains publicly available nucleotide sequences for more than 300,000 organisms named at the genus level or lower, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bi-monthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI homepage: www.ncbi.nlm.nih.gov.

  8. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2007-01-01

    GenBank (R) is a comprehensive database that contains publicly available nucleotide sequences for more than 240 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage (www.ncbi.nlm.nih.gov).

  9. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2006-01-01

    GenBank (R) is a comprehensive database that contains publicly available DNA sequences for more than 205 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the Web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at www.ncbi.nlm.nih.gov.

  10. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Sayers, Eric W

    2009-01-01

    GenBank is a comprehensive database that contains publicly available nucleotide sequences for more than 300,000 organisms named at the genus level or lower, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and accession numbers are assigned by GenBank(R) staff upon receipt. Daily data exchange with the European Molecular Biology Laboratory Nucleotide Sequence Database in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the National Center for Biotechnology Information (NCBI) Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, begin at the NCBI Homepage: www.ncbi.nlm.nih.gov.

  11. GenBank.

    PubMed

    Benson, Dennis A; Karsch-Mizrachi, Ilene; Lipman, David J; Ostell, James; Wheeler, David L

    2005-01-01

    GenBank is a comprehensive database that contains publicly available DNA sequences for more than 165,000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in the UK and the DNA Data Bank of Japan helps to ensure worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at http://www.ncbi.nlm.nih.gov.

  12. Satellite Communications with NRAO Green Bank Antennas

    NASA Astrophysics Data System (ADS)

    Ford, John M.; Ford, H. Alyson; Watts, Galen

    2014-11-01

    The National Radio Astronomy Observatory's Green Bank facility has several medium and large antennas that are available for satellite communications. The 100 meter Robert C. Byrd Green Bank Telescope (GBT), the largest and most sensitive antenna on site, is capable of receiving signals at frequencies as high as 86 GHz. In addition to the GBT are the fully operational 43 meter, 20 meter, and 13.7 meter antennas, and three mothballed 26 meter antennas. A transmitter could be fitted to any of these antennas for spacecraft uplinks. We discuss the characteristics of these antennas and possible operational models for future planetary science mission support.

  13. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  14. Heart Rhythm Monitoring in the Constellation Lunar and Launch/Landing EVA Suit: Recommendations from an Expert Panel

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.

    2008-01-01

    Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.

  15. 12 CFR 225.91 - How may a foreign bank elect to be treated as a financial holding company?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... financial holding company? 225.91 Section 225.91 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD... (REGULATION Y) Regulations Financial Holding Companies § 225.91 How may a foreign bank elect to be treated as a financial holding company? (a) Filing requirement. A foreign bank that operates a branch or...

  16. 31 CFR 354.2 - Law governing rights and obligations of Federal Reserve Banks, and Sallie Mae; rights of any...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal Reserve Banks and... rights and obligations of Federal Reserve Banks, and Sallie Mae; rights of any Person against Federal... the extent not inconsistent with these regulations) and Federal Reserve Bank Operating Circulars:...

  17. 12 CFR 303.46 - Financial education programs that include the provision of bank products and services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... principles of personal financial management, banking operations, or the benefits of saving for the future... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Financial education programs that include the... Branches and Offices § 303.46 Financial education programs that include the provision of bank products...

  18. 12 CFR 303.46 - Financial education programs that include the provision of bank products and services.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... principles of personal financial management, banking operations, or the benefits of saving for the future... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Financial education programs that include the... Branches and Offices § 303.46 Financial education programs that include the provision of bank products...

  19. 12 CFR 303.46 - Financial education programs that include the provision of bank products and services.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... principles of personal financial management, banking operations, or the benefits of saving for the future... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Financial education programs that include the... Branches and Offices § 303.46 Financial education programs that include the provision of bank products...

  20. 12 CFR 303.46 - Financial education programs that include the provision of bank products and services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... principles of personal financial management, banking operations, or the benefits of saving for the future... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Financial education programs that include the... Branches and Offices § 303.46 Financial education programs that include the provision of bank products...

  1. 12 CFR 932.6 - Operations risk capital requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operations risk capital requirement shall at all times equal 30 percent of the sum of the Bank's credit risk... percent but no less than 10 percent of the sum of the Bank's credit risk capital requirement and market... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Operations risk capital requirement....

  2. Beneficial effects of air inclusions on the performance of ethylene vinyl acetate (EVA) mouthguard material

    PubMed Central

    Westerman, B; Stringfellow, P; Eccleston, J

    2002-01-01

    Objective: To investigate the impact characteristics of an ethylene vinyl acetate (EVA) mouthguard material with regulated air inclusions, which included various air cell volumes and wall thickness between air cells. In particular, the aim was to identify the magnitude and direction of forces within the impacts. Method: EVA mouthguard material, 4 mm thick and with and without air inclusions, was impacted with a constant force impact pendulum with an energy of 4.4 J and a velocity of 3 m/s. Transmitted forces through the EVA material were measured using an accelerometer, which also allowed the determination of force direction and magnitude within the impacts. Results: Statistically significant reductions in the transmitted forces were observed with all the air inclusion materials when compared with EVA without air inclusions. Maximum transmitted force through one air inclusion material was reduced by 32%. Force rebound was eliminated in one material, and reduced second force impulses were observed in all the air inclusion materials. Conclusion: The regulated air inclusions improved the impact characteristics of the EVA mouthguard material, the material most commonly used in mouthguards world wide. PMID:11867493

  3. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-11-01

    Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA) forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm) aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  4. Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    NASA Technical Reports Server (NTRS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty

    2006-01-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  5. Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Loughead, Tomas E.

    1998-01-01

    Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.

  6. Development of an extra-vehicular (EVA) infrared (IR) camera inspection system

    NASA Astrophysics Data System (ADS)

    Gazarik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Pandolf, John; Jenkins, Rusty; Yates, Rusty; Stephan, Ryan; Hawk, Doug; Amoroso, Michael

    2006-04-01

    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle's Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle's inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design.

  7. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  8. Using GenBank.

    PubMed

    Sayers, Eric W; Karsch-Mizrachi, Ilene

    2016-01-01

    GenBank(®) is a comprehensive database of publicly available DNA sequences for 300,000 named organisms, more than 110,000 within the embryophyta, obtained through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Daily data exchange with the European Nucleotide Archive (ENA) in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system that integrates data from the major DNA and protein sequence databases with taxonomy, genome, mapping, protein structure and domain information, as well as the biomedical journal literature in PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. GenBank usage scenarios ranging from local analyses of the data available via FTP to online analyses supported by the NCBI web-based tools are discussed. To access GenBank and its related retrieval and analysis services, go to the NCBI home page at www.ncbi.nlm.nih.gov .

  9. Using GenBank.

    PubMed

    Wheeler, David

    2007-01-01

    GenBank(R) is a comprehensive database of publicly available DNA sequences for more than 205,000 named organisms and for more than 60,000 within the embryophyta, obtained through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Daily data exchange with the European Molecular Biology Laboratory (EMBL) in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the National Center for Biotechnology Information (NCBI) retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases with taxonomy, genome, mapping, protein structure, and domain information and the biomedical journal literature through PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available through FTP. GenBank usage scenarios ranging from local analyses of the data available through FTP to online analyses supported by the NCBI Web-based tools are discussed. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at http://www.ncbi.nlm.nih.gov.

  10. GenBank

    PubMed Central

    Benson, Dennis A.; Cavanaugh, Mark; Clark, Karen; Karsch-Mizrachi, Ilene; Lipman, David J.; Ostell, James; Sayers, Eric W.

    2017-01-01

    GenBank® (www.ncbi.nlm.nih.gov/genbank/) is a comprehensive database that contains publicly available nucleotide sequences for 370 000 formally described species. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or the NCBI Submission Portal. GenBank staff assign accession numbers upon data receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Nucleotide database, which links to related information such as taxonomy, genomes, protein sequences and structures, and biomedical journal literature in PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. Recent updates include changes to policies regarding sequence identifiers, an improved 16S submission wizard, targeted loci studies, the ability to submit methylation and BioNano mapping files, and a database of anti-microbial resistance genes. PMID:27899564

  11. 75 FR 60347 - Information Sharing Among Federal Home Loan Banks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Bank's corporate governance, its management of market risk, credit risk and operational risk, and its... residential mortgage and community lending credit through its member institutions. See 12 U.S.C. 1427. Any... of instrument-level risk modeling data; (ii) Reports related to a Bank's housing mission...

  12. Money and Banking. Social Studies: 6448.15.

    ERIC Educational Resources Information Center

    Henderson, William E.

    This Quinmester course on money and banking, part of the political and economic studies cluster for grades 10, 11, and 12, aims at examining the nature, role and scope of money in a capitalistic economy. Emphasis is placed upon understanding the operation of government policies affecting banking, with its subsequent influences on our national…

  13. World Bank Policy on Education: A Personal Account

    ERIC Educational Resources Information Center

    Psacharopoulos, George

    2006-01-01

    Based on the author's over two decades of association with the World Bank, this paper reviews the institution's policies and practice on education. It describes why education policy, as revealed by operations, shifted dramatically since the early Bank projects on education and identifies the reasons for such a shift. The paper argues that the…

  14. What a bank can do for the ophthalmologist.

    PubMed

    Harrington, J T

    1975-01-01

    The selection of a bank is the key to personal and professional finance. In this world of specialization, it is advisable to seek a banker who can assist one with not only the routine banking functions but also with credit accommodations and financial planning which will result in both the successful operation of a profession and the achieving of a sound estate plan.

  15. 12 CFR 7.1002 - National bank acting as finder.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OPERATIONS Bank Powers § 7.1002 National bank acting as finder. (a) General. It is part of the business of... and terms to potential markets for these products and services; (2) Communicating to the seller an... sellers, and conducting market research to identify potential new customers for retailers; (5)...

  16. Science Support Room Operations During Desert RATS 2009

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Hoerz, F.; Bell, M. S.; Cohen, B. A.; Eppler, D. B.; Evans,C. A.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.; Hurtado, J. M.; Lee, P.; Ming, D. W.; Rice, J. W.

    2009-01-01

    NASA s Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.

  17. Science Support Room Operations During Desert RATS 2009

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.; Hurtado, J. M.; Lee, P.; Ming, D. W.; Rice, J. W.

    2010-01-01

    NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.

  18. Risk Reduction and Measures of Injury for EVA Associated Upper Extremity Medical Issues: Extended Vent Tube Study

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.; Hoffman, Ronald B.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Gernhardt, M. L.

    2007-01-01

    During Neutral Buoyancy Lab (NBL) training sessions, a large amount of moisture accumulates in the EVA gloves. The glove design restricts the extension of the EVA suit s ventilation/cooling system to the hand. Subungual redness and fingernail pain develops for many astronauts following their NBL training sessions with subsequent oncholysis occurring over succeeding weeks. Various attempts have been made to reduce or avoid this problem. The causal role of moisture has yet to be defined. Methods: To determine the contribution that moisture plays in the injury to the fingers and fingernails during EVA training operations in NBL, the current Extravehicular Mobility Unit (EMU), with a Portable Life Support System (PLSS) was configured with a ventilation tube that extended down a single arm of the crewmember during the test and compared with the unventilated contralateral arm; with the ventilated hand serving as the experimental condition (E) and the opposite arm as the control (C). A cross-over design was used with opposite handedness for the vent tube on a subsequent NBL training run. Moisture content measures were conducted at six points on each hand with three types of moisture meters. A questionnaire was administered to determine subjective thermal hand discomfort, skin moisture perception, and hand and nail discomfort. Photographs and video were recorded. Measures were applied to six astronauts pre- and post-run in the NBL. Results: The consistent trends in relative hydration ratios at the dorsum, from 3.34 for C to 2.11 for E, and first ring finger joint locations, from 2.46 for C to 1.96 for E, indicated the extended vent tube promoted skin drying. The experimental treatment appeared to be more effective on the left hand versus the right hand, implying an interaction with hand anthropometry and glove fit. Video analyses differentiated fine and gross motor training tasks during runs and will be discussed. Conclusions: This potential countermeasure was effective in

  19. The First Women Bank -- why and for whom?

    PubMed

    Bilquees, F

    1991-01-01

    The First Women Bank with 10 branches in Pakistani cities was to have been modeled after the Grameen Bank of Bangladesh and serve the needs of very poor women. In fact, all but two branches are located in settings which are not available to the low income population and appear to cater to the needs of the wealthy. These contradictions between purpose and practice are examined in terms of the criteria for establishment of the bank and the operational strategy for bank clientele, deposit taking and credit services. Recommendations are provided. The original idea for the bank was proposed by the Finance Minister in a speech or a new Finance Minister established the women;s bank to be run by women in order to improve the socioeconomic status of women in Pakistan by offering traditional and nontraditional services. The gesture was political and not well though out. The clientele of the bank are not exclusively women. Operations are different than those which are available at other banks. The State Bank oversees operations and can always justify decisions. The bank is supposed to provide easy access to source of credit, a simplified procedure and equity requirements. Consulting and market analytical services are provided as are training facilities for women entrepreneurs. Artistic work and products from women's operations are exhibited and promoted through national and international and industrial exhibitions. In practice, the locations deter low income women from participation. Only 40% of the borrowers were identified as low income. Investment by poor women was primarily in small retail outlets. 40% were middle income and 20% were high income borrowers. The nontraditional services mandated were ignored. What actually exists is a commercial bank in the name of women.

  20. Assessment and Management of the Risks of Debris Hits During Space Station EVAs

    NASA Technical Reports Server (NTRS)

    Pate-Cornell, Elisabeth; Sachon, Marc

    1997-01-01

    The risk of EVAs is critical to the decision of whether or not to automate a large part of the construction of the International Space Station (ISS). Furthermore, the choice of the technologies of the space suit and the life support system will determine (1) the immediate safety of these operations, and (2) the long-run costs and risks of human presence in space, not only in lower orbit (as is the case of the ISS) but also perhaps, outside these orbits, or on the surface of other planets. The problem is therefore both an immediate one and a long-term one. The fundamental question is how and when to shift from the existing EMU system (suit, helmet, gloves and life support system) to another type (e.g. a hard suit), given the potential trade-offs among life-cycle costs, risks to the astronauts, performance of tasks, and uncertainties about new systems' safety inherent to such a shift in technology. A more immediate issue is how to manage the risks of EVAs during the construction and operation of the ISS in order to make the astronauts (in the words of the NASA Administrator) "as safe outside as inside". For the moment (June 1997), the plan is to construct the Space Station using the low-pressure space suits that have been developed for the space shuttle. In the following, we will refer to this suit assembly as EMU (External Maneuvering Unit). It is the product of a long evolution, starting from the U.S. Air Force pilot suits through the various versions and changes that occurred for the purpose of NASA space exploration, in particular during the Gemini and the Apollo programs. The Shuttle EMU is composed of both soft fabrics and hard plates. As an alternative to the shuttle suit, at least two hard suits were developed by NASA: the AX5 and the MRKIII. The problem of producing hard suits for space exploration is very similar to that of producing deep-sea diving suits. There was thus an opportunity to develop a suit that could be manufactured for both purposes with the

  1. Human-Centric Teaming in a Multi-Agent EVA Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower.An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of human astronauts with the survivability and physical capabilities of highly dexterous space robots is proposed. A 1-g test featuring two NASA/DARPA Robonaut systems working side-by-side with a suited human subject is conducted to evaluate human-robot teaming strategies in the context of a simulated EVA assembly task based on the STS-61B ACCESS flight experiment.

  2. STS-55 MS3 Bernard A. Harris, Jr in EMU at JSC's WETF for EVA simulation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, fully suited in an extravehicular mobility unit (EMU), stands on platform awaiting an underwater extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Harris will be lowered into the WETF's 25 foot deep pool and once underwater will perform contingency EVA tasks. With the aid of weights (attached at his ankles and upper torso) he will achieve neutral buoyancy. There is no scheduled EVA for the 1993 flight but each space flight crew includes astronauts trained for a variety of contingency tasks that could require exiting the shirt-sleeve environment of a Shuttle's cabin.

  3. Irradiation crosslinking and halogen-free flame retardation of EVA using hydrotalcite and red phosphorus

    NASA Astrophysics Data System (ADS)

    Jiao, Chuanmei; Wang, Zhengzhou; Chen, Xilei; Yu, Benyi; Hu, Yuan

    2006-05-01

    Halogen-free flame retarded ethylene vinyl acetate copolymer (EVA) composites using Mg-Al-CO 3 hydrotalcite (MALDH) and microcapsulated red phosphorus (MRP) have been prepared in a melt process. The flame retardation of the composites has been studied by the limited oxygen index (LOI) and UL-94 methods, and the thermal decomposition by the thermogravimetric analysis (TGA). The changes of their properties of the composites before and after the Gamma irradiation are compared. The synergistic effect in the flame retardation between MALDH and MRP in EVA has been found. The EVA/MALDH/MRP composites after the irradiation crosslinking result in a great increase in the Vicat softening point. The LOI value, the mechanical properties and thermal stability are also improved for the composites irradiated by a suitable irradiation dose.

  4. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  5. Investigation of the effects of extravehicular activity (EVA) gloves on performance

    NASA Technical Reports Server (NTRS)

    Bishu, Ram R.; Klute, Glenn

    1993-01-01

    The objective was to assess the effects of extravehicular activity (EVA) gloves at different pressures on human hand capabilities. A factorial experiment was performed in which three types of EVA gloves were tested at five pressure differentials. The independent variables tested in this experiment were gender, glove type, pressure differential, and glove make. Six subjects participated in an experiment where a number of dexterity measures, namely time to tie a rope, and the time to assemble a nut and bolt were recorded. Tactility was measured through a two point discrimination test. The results indicate that with EVA gloves strength is reduced by nearly 50 percent, there is a considerable reduction in dexterity, performance decrements increase with increasing pressure differential, and some interesting gender glove interactions were observed, some of which may have been due to the extent (or lack of) fit of the glove to the hand. The implications for the designer are discussed.

  6. Assessment of Scheduling and Plan Execution of Apollo 14 Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.

    2010-01-01

    Although over forty years have passed since first landing on the Moon, there is not yet a comprehensive, quantitative assessment of Apollo extravehicular activities (EVAs). Quantitatively evaluating lunar EVAs will provide a better understanding of the challenges involved with surface operations. This first evaluation of a surface EVA centers on comparing the planned and the as-ran timeline, specifically collecting data on discrepancies between durations that were estimated versus executed. Differences were summarized by task categories in order to gain insight as to the type of surface operation activities that were most challenging. One Apollo 14 EVA was assessed utilizing the described methodology. Selected metrics and task categorizations were effective, and limitations to this process were identified.

  7. Virtual blood banking in Hong Kong.

    PubMed

    Wong, K F; Kwan, Angela M Y; Wong, Michael L G; Lam, Clarence C K; Yip, S C

    2012-08-01

    OBJECTIVE. To review our experience in virtual blood banking for intra-operative transfusion in Hong Kong. DESIGN. Retrospective study. SETTING. Three major acute hospitals and a specialised centre for joint replacement surgery with installation of an Operating Theatre Blood Transaction System. PATIENTS. Patients undergoing surgery under anaesthesia and requiring intra-operative transfusion for the period from the implementation of the system in individual institutes (Queen Elizabeth Hospital: June 1997; Princess Margaret Hospital: May 2001; Queen Mary Hospital: October 2009; and Hong Kong Buddhist Hospital: December 2010) till September 2011. RESULTS. Under the system, 58 923 units of red cells were released intra-operatively for 18 264 patients (11% of the total number of blood units issued by the blood banks in these institutes during the study period). About 1% of them (613 units) entailed unmatched red cells given to 183 patients for emergency transfusions during surgery. The mean time required for the issue of the first unit of red cells was less than 1 minute. A total of 1231 units of red cells were returned unused after being released. Among them, 95 units were deemed unfit for re-issue because they had left the temperature-monitored blood storage refrigerators in the operating theatres for more than 30 minutes. There was no delay in transfusion or postponement of surgery due to problems or downtime of the Operating Theatre Blood Transaction System. CONCLUSION. Our experience has shown that our virtual blood banking system was efficient and effective, and helped ensure that the right patient received the right amount of the right blood at the right time. The system can be implemented either locally in the same hospital with a central blood bank, or in a more remote and networked site without a nearby supporting blood bank.

  8. Cord-Blood Banking

    MedlinePlus

    ... lymphoma , aplastic anemia , severe sickle cell disease , and severe combined immunodeficiency . There are two types of banks that store ... For Kids For Parents MORE ON THIS TOPIC Severe Combined Immunodeficiency Birthing Centers and Hospital Maternity Services A Guide ...

  9. Tree-bank grammars

    SciTech Connect

    Charniak, E.

    1996-12-31

    By a {open_quotes}tree-bank grammar{close_quotes} we mean a context-free grammar created by reading the production rules directly from hand-parsed sentences in a tree bank. Common wisdom has it that such grammars do not perform well, though we know of no published data on the issue. The primary purpose of this paper is to show that the common wisdom is wrong. In particular, we present results on a tree-bank grammar based on the Penn Wall Street Journal tree bank. To the best of our knowledge, this grammar outperforms all other non-word-based statistical parsers/grammars on this corpus. That is, it outperforms parsers that consider the input as a string of tags and ignore the actual words of the corpus.

  10. Mitigation Banking Factsheet

    EPA Pesticide Factsheets

    A mitigation bank is an aquatic resource area that has been restored, established, enhanced, or preserved for the purpose of providing compensation for unavoidable impacts to aquatic resources permitted under Section 404

  11. Learning Under Siege on the West Bank

    ERIC Educational Resources Information Center

    Miller, Judith

    1975-01-01

    Birzeit College, the only secular institution of higher education in the Israeli-occupied territories, continues to operate with 500 Palestinians attending classes on the West Bank of the Jordan River Valley even though its president, expelled for alleged subversive activities, continues to run the college from Beirut. (JT)

  12. Characterization of the Radiation Shielding Properties of US andRussian EVA Suits

    SciTech Connect

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-10-26

    Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measured using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.

  13. Systemic Losses Due to Counterparty Risk in a Stylized Banking System

    NASA Astrophysics Data System (ADS)

    Birch, Annika; Aste, Tomaso

    2014-09-01

    We report a study of a stylized banking cascade model investigating systemic risk caused by counterparty failure using liabilities and assets to define banks' balance sheet. In our stylized system, banks can be in two states: normally operating or distressed and the state of a bank changes from normally operating to distressed whenever its liabilities are larger than the banks' assets. The banks are connected through an interbank lending network and, whenever a bank is distressed, its creditor cannot expect the loan from the distressed bank to be repaid, potentially becoming distressed themselves. We solve the problem analytically for a homogeneous system and test the robustness and generality of the results with simulations of more complex systems. We investigate the parameter space and the corresponding distribution of operating banks mapping the conditions under which the whole system is stable or unstable. This allows us to determine how financial stability of a banking system is influenced by regulatory decisions, such as leverage; we discuss the effect of central bank actions, such as quantitative easing and we determine the cost of rescuing a distressed banking system using re-capitalisation. Finally, we estimate the stability of the UK and US banking systems comparing the years 2007 and 2012 by using real data.

  14. Femoral head banking: NUH tissue bank experience.

    PubMed

    Nather, Aziz; David, Vikram

    2007-04-01

    National University Hospital Tissue Bank protocol follows guidelines recommended by the American Association of Tissue Banks and the European Association of Tissue Banks using donor selection criteria: medical history, clinical examination, chart review and laboratory tests for acquired immunodeficiency syndrome (AIDS), hepatitis B, hepatitis C, syphilis, and specimen for culture/sensitivity tests. For living donors, repeat testing is performed for AIDS and hepatitis C approximately 180 days after procurement. Femoral heads are procured using the "sterile double jar technique" and stored at -80 degrees C. Our first study of 273 consecutive potential donors undergoing hemiarthroplasty from 1989 to 1994 showed that a high percentage (42.5%) was unsuitable for use. A second study involving 175 potential donors was conducted from 1995 to 2003 after hepatitis C screening was introduced. The bacterial contamination rates in both studies (3.5% and 5.7%) are low. The incidence of other diseases also are low: hepatitis B, 2.3% and syphilis, 1.8% in the first study and hepatitis B, 5.7%; hepatitis C, 0.6%; and syphilis, 5.1% in the second cohort. No cases of AIDS were reported in either study. By 2003, femoral heads were transplanted in 205 patients with a low complication rate of 2.9%.

  15. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  16. STS-37 MS Apt tests CETA cart during EVA in OV-104's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, suited in extravehicular mobility unit (EMU), tests Crew and Equipment Translation Aid (CETA) electrical hand pedal cart during extravehicular activity (EVA) in Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). Apt works his way along the CETA deployable track mounted on OV-104's PLB port side. The ascent particle monitor (APM) is visible on the starboard side in the foreground. In the background are the aft PLB bulkhead and the vertical tail and orbital maneuvering system (OMS) pods. Crewmembers spent several hours evaluating means of performing future EVA chores, transporting tools and crewmembers, etc. on Space Station Freedom (SSF).

  17. A structure-odour relationship study using EVA descriptors and hierarchical clustering.

    PubMed

    Takane, Shin-ya; Mitchell, John B O

    2004-11-21

    Structure-odour relationship analyses using hierarchical clustering were carried out on a diverse dataset of 47 molecules. These molecules were divided into seven odour categories: ambergris, bitter almond, camphoraceous, rose, jasmine, muguet, and musk. The alignment-independent descriptor EVA (EigenVAlue) was used as the molecular descriptor. The results were compared with those of another kind of descriptor, the UNITY 2D fingerprint. The dendrograms obtained with these descriptors were compared with the seven odour categories using the adjusted Rand index. The dendrograms produced by EVA consistently outperformed those from UNITY 2D in reproducing the experimental odour classifications of these 47 molecules.

  18. Baseline tests of the EVA change-of-pace coupe electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Maslowski, E. A.; Dustin, M. O.

    1977-01-01

    The EVA Change-of-Pace Coupe, is an electric passenger vehicle, to characterize the state-of-the-art of electric vehicles. The EVA Change-of-Pace Coupe is a four passenger sedan that has been coverted to an electric vehicle. It is powered by twenty 6 volt traction batteries through a silicon controlled rectifier chopper controller actuated by a foot throttle to change the voltage applied to the series wound, direct current motor. Braking is accomplished with a vacuum assist hydraulic braking system. Regenerative braking is also provided.

  19. STS-37 Mission Specialist Ross in OV-104's payload bay (PLB) during EVA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerry L. Ross, suited in extravehicular mobility unit (EMU), peers into Atlantis', Orbiter Vehicle (OV) 104's, aft flight deck viewing window while performing emergency extravehicular activity (EVA) procedures in the payload bay (PLB). The unscheduled EVA was necessary to manually extend the Gamma Ray Observatory's (GRO's) high gain antenna (HGA). The GRO grappled by the remote manipulator system (RMS) end effector and held above the PLB is visible in the background. The entire scene is backdropped against the blue and white surface of the Earth.

  20. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.